1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc_interface/collectedHeap.inline.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/cardTableModRefBS.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #ifndef SERIALGC
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  42 #include "gc_implementation/g1/heapRegion.hpp"
  43 #endif
  44 
  45 #ifdef PRODUCT
  46 #define BLOCK_COMMENT(str) /* nothing */
  47 #define STOP(error) stop(error)
  48 #else
  49 #define BLOCK_COMMENT(str) block_comment(str)
  50 #define STOP(error) block_comment(error); stop(error)
  51 #endif
  52 
  53 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  54 // Implementation of AddressLiteral
  55 
  56 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  57   _is_lval = false;
  58   _target = target;
  59   switch (rtype) {
  60   case relocInfo::oop_type:
  61   case relocInfo::metadata_type:
  62     // Oops are a special case. Normally they would be their own section
  63     // but in cases like icBuffer they are literals in the code stream that
  64     // we don't have a section for. We use none so that we get a literal address
  65     // which is always patchable.
  66     break;
  67   case relocInfo::external_word_type:
  68     _rspec = external_word_Relocation::spec(target);
  69     break;
  70   case relocInfo::internal_word_type:
  71     _rspec = internal_word_Relocation::spec(target);
  72     break;
  73   case relocInfo::opt_virtual_call_type:
  74     _rspec = opt_virtual_call_Relocation::spec();
  75     break;
  76   case relocInfo::static_call_type:
  77     _rspec = static_call_Relocation::spec();
  78     break;
  79   case relocInfo::runtime_call_type:
  80     _rspec = runtime_call_Relocation::spec();
  81     break;
  82   case relocInfo::poll_type:
  83   case relocInfo::poll_return_type:
  84     _rspec = Relocation::spec_simple(rtype);
  85     break;
  86   case relocInfo::none:
  87     break;
  88   default:
  89     ShouldNotReachHere();
  90     break;
  91   }
  92 }
  93 
  94 // Implementation of Address
  95 
  96 #ifdef _LP64
  97 
  98 Address Address::make_array(ArrayAddress adr) {
  99   // Not implementable on 64bit machines
 100   // Should have been handled higher up the call chain.
 101   ShouldNotReachHere();
 102   return Address();
 103 }
 104 
 105 // exceedingly dangerous constructor
 106 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 107   _base  = noreg;
 108   _index = noreg;
 109   _scale = no_scale;
 110   _disp  = disp;
 111   switch (rtype) {
 112     case relocInfo::external_word_type:
 113       _rspec = external_word_Relocation::spec(loc);
 114       break;
 115     case relocInfo::internal_word_type:
 116       _rspec = internal_word_Relocation::spec(loc);
 117       break;
 118     case relocInfo::runtime_call_type:
 119       // HMM
 120       _rspec = runtime_call_Relocation::spec();
 121       break;
 122     case relocInfo::poll_type:
 123     case relocInfo::poll_return_type:
 124       _rspec = Relocation::spec_simple(rtype);
 125       break;
 126     case relocInfo::none:
 127       break;
 128     default:
 129       ShouldNotReachHere();
 130   }
 131 }
 132 #else // LP64
 133 
 134 Address Address::make_array(ArrayAddress adr) {
 135   AddressLiteral base = adr.base();
 136   Address index = adr.index();
 137   assert(index._disp == 0, "must not have disp"); // maybe it can?
 138   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 139   array._rspec = base._rspec;
 140   return array;
 141 }
 142 
 143 // exceedingly dangerous constructor
 144 Address::Address(address loc, RelocationHolder spec) {
 145   _base  = noreg;
 146   _index = noreg;
 147   _scale = no_scale;
 148   _disp  = (intptr_t) loc;
 149   _rspec = spec;
 150 }
 151 
 152 #endif // _LP64
 153 
 154 
 155 
 156 // Convert the raw encoding form into the form expected by the constructor for
 157 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 158 // that to noreg for the Address constructor.
 159 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 160   RelocationHolder rspec;
 161   if (disp_reloc != relocInfo::none) {
 162     rspec = Relocation::spec_simple(disp_reloc);
 163   }
 164   bool valid_index = index != rsp->encoding();
 165   if (valid_index) {
 166     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 167     madr._rspec = rspec;
 168     return madr;
 169   } else {
 170     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 171     madr._rspec = rspec;
 172     return madr;
 173   }
 174 }
 175 
 176 // Implementation of Assembler
 177 
 178 int AbstractAssembler::code_fill_byte() {
 179   return (u_char)'\xF4'; // hlt
 180 }
 181 
 182 // make this go away someday
 183 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 184   if (rtype == relocInfo::none)
 185         emit_long(data);
 186   else  emit_data(data, Relocation::spec_simple(rtype), format);
 187 }
 188 
 189 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 190   assert(imm_operand == 0, "default format must be immediate in this file");
 191   assert(inst_mark() != NULL, "must be inside InstructionMark");
 192   if (rspec.type() !=  relocInfo::none) {
 193     #ifdef ASSERT
 194       check_relocation(rspec, format);
 195     #endif
 196     // Do not use AbstractAssembler::relocate, which is not intended for
 197     // embedded words.  Instead, relocate to the enclosing instruction.
 198 
 199     // hack. call32 is too wide for mask so use disp32
 200     if (format == call32_operand)
 201       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 202     else
 203       code_section()->relocate(inst_mark(), rspec, format);
 204   }
 205   emit_long(data);
 206 }
 207 
 208 static int encode(Register r) {
 209   int enc = r->encoding();
 210   if (enc >= 8) {
 211     enc -= 8;
 212   }
 213   return enc;
 214 }
 215 
 216 static int encode(XMMRegister r) {
 217   int enc = r->encoding();
 218   if (enc >= 8) {
 219     enc -= 8;
 220   }
 221   return enc;
 222 }
 223 
 224 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 225   assert(dst->has_byte_register(), "must have byte register");
 226   assert(isByte(op1) && isByte(op2), "wrong opcode");
 227   assert(isByte(imm8), "not a byte");
 228   assert((op1 & 0x01) == 0, "should be 8bit operation");
 229   emit_byte(op1);
 230   emit_byte(op2 | encode(dst));
 231   emit_byte(imm8);
 232 }
 233 
 234 
 235 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 236   assert(isByte(op1) && isByte(op2), "wrong opcode");
 237   assert((op1 & 0x01) == 1, "should be 32bit operation");
 238   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 239   if (is8bit(imm32)) {
 240     emit_byte(op1 | 0x02); // set sign bit
 241     emit_byte(op2 | encode(dst));
 242     emit_byte(imm32 & 0xFF);
 243   } else {
 244     emit_byte(op1);
 245     emit_byte(op2 | encode(dst));
 246     emit_long(imm32);
 247   }
 248 }
 249 
 250 // Force generation of a 4 byte immediate value even if it fits into 8bit
 251 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 252   assert(isByte(op1) && isByte(op2), "wrong opcode");
 253   assert((op1 & 0x01) == 1, "should be 32bit operation");
 254   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 255   emit_byte(op1);
 256   emit_byte(op2 | encode(dst));
 257   emit_long(imm32);
 258 }
 259 
 260 // immediate-to-memory forms
 261 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 262   assert((op1 & 0x01) == 1, "should be 32bit operation");
 263   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 264   if (is8bit(imm32)) {
 265     emit_byte(op1 | 0x02); // set sign bit
 266     emit_operand(rm, adr, 1);
 267     emit_byte(imm32 & 0xFF);
 268   } else {
 269     emit_byte(op1);
 270     emit_operand(rm, adr, 4);
 271     emit_long(imm32);
 272   }
 273 }
 274 
 275 
 276 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 277   assert(isByte(op1) && isByte(op2), "wrong opcode");
 278   emit_byte(op1);
 279   emit_byte(op2 | encode(dst) << 3 | encode(src));
 280 }
 281 
 282 
 283 void Assembler::emit_operand(Register reg, Register base, Register index,
 284                              Address::ScaleFactor scale, int disp,
 285                              RelocationHolder const& rspec,
 286                              int rip_relative_correction) {
 287   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 288 
 289   // Encode the registers as needed in the fields they are used in
 290 
 291   int regenc = encode(reg) << 3;
 292   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 293   int baseenc = base->is_valid() ? encode(base) : 0;
 294 
 295   if (base->is_valid()) {
 296     if (index->is_valid()) {
 297       assert(scale != Address::no_scale, "inconsistent address");
 298       // [base + index*scale + disp]
 299       if (disp == 0 && rtype == relocInfo::none  &&
 300           base != rbp LP64_ONLY(&& base != r13)) {
 301         // [base + index*scale]
 302         // [00 reg 100][ss index base]
 303         assert(index != rsp, "illegal addressing mode");
 304         emit_byte(0x04 | regenc);
 305         emit_byte(scale << 6 | indexenc | baseenc);
 306       } else if (is8bit(disp) && rtype == relocInfo::none) {
 307         // [base + index*scale + imm8]
 308         // [01 reg 100][ss index base] imm8
 309         assert(index != rsp, "illegal addressing mode");
 310         emit_byte(0x44 | regenc);
 311         emit_byte(scale << 6 | indexenc | baseenc);
 312         emit_byte(disp & 0xFF);
 313       } else {
 314         // [base + index*scale + disp32]
 315         // [10 reg 100][ss index base] disp32
 316         assert(index != rsp, "illegal addressing mode");
 317         emit_byte(0x84 | regenc);
 318         emit_byte(scale << 6 | indexenc | baseenc);
 319         emit_data(disp, rspec, disp32_operand);
 320       }
 321     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 322       // [rsp + disp]
 323       if (disp == 0 && rtype == relocInfo::none) {
 324         // [rsp]
 325         // [00 reg 100][00 100 100]
 326         emit_byte(0x04 | regenc);
 327         emit_byte(0x24);
 328       } else if (is8bit(disp) && rtype == relocInfo::none) {
 329         // [rsp + imm8]
 330         // [01 reg 100][00 100 100] disp8
 331         emit_byte(0x44 | regenc);
 332         emit_byte(0x24);
 333         emit_byte(disp & 0xFF);
 334       } else {
 335         // [rsp + imm32]
 336         // [10 reg 100][00 100 100] disp32
 337         emit_byte(0x84 | regenc);
 338         emit_byte(0x24);
 339         emit_data(disp, rspec, disp32_operand);
 340       }
 341     } else {
 342       // [base + disp]
 343       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 344       if (disp == 0 && rtype == relocInfo::none &&
 345           base != rbp LP64_ONLY(&& base != r13)) {
 346         // [base]
 347         // [00 reg base]
 348         emit_byte(0x00 | regenc | baseenc);
 349       } else if (is8bit(disp) && rtype == relocInfo::none) {
 350         // [base + disp8]
 351         // [01 reg base] disp8
 352         emit_byte(0x40 | regenc | baseenc);
 353         emit_byte(disp & 0xFF);
 354       } else {
 355         // [base + disp32]
 356         // [10 reg base] disp32
 357         emit_byte(0x80 | regenc | baseenc);
 358         emit_data(disp, rspec, disp32_operand);
 359       }
 360     }
 361   } else {
 362     if (index->is_valid()) {
 363       assert(scale != Address::no_scale, "inconsistent address");
 364       // [index*scale + disp]
 365       // [00 reg 100][ss index 101] disp32
 366       assert(index != rsp, "illegal addressing mode");
 367       emit_byte(0x04 | regenc);
 368       emit_byte(scale << 6 | indexenc | 0x05);
 369       emit_data(disp, rspec, disp32_operand);
 370     } else if (rtype != relocInfo::none ) {
 371       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 372       // [00 000 101] disp32
 373 
 374       emit_byte(0x05 | regenc);
 375       // Note that the RIP-rel. correction applies to the generated
 376       // disp field, but _not_ to the target address in the rspec.
 377 
 378       // disp was created by converting the target address minus the pc
 379       // at the start of the instruction. That needs more correction here.
 380       // intptr_t disp = target - next_ip;
 381       assert(inst_mark() != NULL, "must be inside InstructionMark");
 382       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 383       int64_t adjusted = disp;
 384       // Do rip-rel adjustment for 64bit
 385       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 386       assert(is_simm32(adjusted),
 387              "must be 32bit offset (RIP relative address)");
 388       emit_data((int32_t) adjusted, rspec, disp32_operand);
 389 
 390     } else {
 391       // 32bit never did this, did everything as the rip-rel/disp code above
 392       // [disp] ABSOLUTE
 393       // [00 reg 100][00 100 101] disp32
 394       emit_byte(0x04 | regenc);
 395       emit_byte(0x25);
 396       emit_data(disp, rspec, disp32_operand);
 397     }
 398   }
 399 }
 400 
 401 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 402                              Address::ScaleFactor scale, int disp,
 403                              RelocationHolder const& rspec) {
 404   emit_operand((Register)reg, base, index, scale, disp, rspec);
 405 }
 406 
 407 // Secret local extension to Assembler::WhichOperand:
 408 #define end_pc_operand (_WhichOperand_limit)
 409 
 410 address Assembler::locate_operand(address inst, WhichOperand which) {
 411   // Decode the given instruction, and return the address of
 412   // an embedded 32-bit operand word.
 413 
 414   // If "which" is disp32_operand, selects the displacement portion
 415   // of an effective address specifier.
 416   // If "which" is imm64_operand, selects the trailing immediate constant.
 417   // If "which" is call32_operand, selects the displacement of a call or jump.
 418   // Caller is responsible for ensuring that there is such an operand,
 419   // and that it is 32/64 bits wide.
 420 
 421   // If "which" is end_pc_operand, find the end of the instruction.
 422 
 423   address ip = inst;
 424   bool is_64bit = false;
 425 
 426   debug_only(bool has_disp32 = false);
 427   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 428 
 429   again_after_prefix:
 430   switch (0xFF & *ip++) {
 431 
 432   // These convenience macros generate groups of "case" labels for the switch.
 433 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 434 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 435              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 436 #define REP16(x) REP8((x)+0): \
 437               case REP8((x)+8)
 438 
 439   case CS_segment:
 440   case SS_segment:
 441   case DS_segment:
 442   case ES_segment:
 443   case FS_segment:
 444   case GS_segment:
 445     // Seems dubious
 446     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 447     assert(ip == inst+1, "only one prefix allowed");
 448     goto again_after_prefix;
 449 
 450   case 0x67:
 451   case REX:
 452   case REX_B:
 453   case REX_X:
 454   case REX_XB:
 455   case REX_R:
 456   case REX_RB:
 457   case REX_RX:
 458   case REX_RXB:
 459     NOT_LP64(assert(false, "64bit prefixes"));
 460     goto again_after_prefix;
 461 
 462   case REX_W:
 463   case REX_WB:
 464   case REX_WX:
 465   case REX_WXB:
 466   case REX_WR:
 467   case REX_WRB:
 468   case REX_WRX:
 469   case REX_WRXB:
 470     NOT_LP64(assert(false, "64bit prefixes"));
 471     is_64bit = true;
 472     goto again_after_prefix;
 473 
 474   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 475   case 0x88: // movb a, r
 476   case 0x89: // movl a, r
 477   case 0x8A: // movb r, a
 478   case 0x8B: // movl r, a
 479   case 0x8F: // popl a
 480     debug_only(has_disp32 = true);
 481     break;
 482 
 483   case 0x68: // pushq #32
 484     if (which == end_pc_operand) {
 485       return ip + 4;
 486     }
 487     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 488     return ip;                  // not produced by emit_operand
 489 
 490   case 0x66: // movw ... (size prefix)
 491     again_after_size_prefix2:
 492     switch (0xFF & *ip++) {
 493     case REX:
 494     case REX_B:
 495     case REX_X:
 496     case REX_XB:
 497     case REX_R:
 498     case REX_RB:
 499     case REX_RX:
 500     case REX_RXB:
 501     case REX_W:
 502     case REX_WB:
 503     case REX_WX:
 504     case REX_WXB:
 505     case REX_WR:
 506     case REX_WRB:
 507     case REX_WRX:
 508     case REX_WRXB:
 509       NOT_LP64(assert(false, "64bit prefix found"));
 510       goto again_after_size_prefix2;
 511     case 0x8B: // movw r, a
 512     case 0x89: // movw a, r
 513       debug_only(has_disp32 = true);
 514       break;
 515     case 0xC7: // movw a, #16
 516       debug_only(has_disp32 = true);
 517       tail_size = 2;  // the imm16
 518       break;
 519     case 0x0F: // several SSE/SSE2 variants
 520       ip--;    // reparse the 0x0F
 521       goto again_after_prefix;
 522     default:
 523       ShouldNotReachHere();
 524     }
 525     break;
 526 
 527   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 528     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 529     // these asserts are somewhat nonsensical
 530 #ifndef _LP64
 531     assert(which == imm_operand || which == disp32_operand,
 532            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
 533 #else
 534     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 535            which == narrow_oop_operand && !is_64bit,
 536            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
 537 #endif // _LP64
 538     return ip;
 539 
 540   case 0x69: // imul r, a, #32
 541   case 0xC7: // movl a, #32(oop?)
 542     tail_size = 4;
 543     debug_only(has_disp32 = true); // has both kinds of operands!
 544     break;
 545 
 546   case 0x0F: // movx..., etc.
 547     switch (0xFF & *ip++) {
 548     case 0x3A: // pcmpestri
 549       tail_size = 1;
 550     case 0x38: // ptest, pmovzxbw
 551       ip++; // skip opcode
 552       debug_only(has_disp32 = true); // has both kinds of operands!
 553       break;
 554 
 555     case 0x70: // pshufd r, r/a, #8
 556       debug_only(has_disp32 = true); // has both kinds of operands!
 557     case 0x73: // psrldq r, #8
 558       tail_size = 1;
 559       break;
 560 
 561     case 0x12: // movlps
 562     case 0x28: // movaps
 563     case 0x2E: // ucomiss
 564     case 0x2F: // comiss
 565     case 0x54: // andps
 566     case 0x55: // andnps
 567     case 0x56: // orps
 568     case 0x57: // xorps
 569     case 0x6E: // movd
 570     case 0x7E: // movd
 571     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 572       debug_only(has_disp32 = true);
 573       break;
 574 
 575     case 0xAD: // shrd r, a, %cl
 576     case 0xAF: // imul r, a
 577     case 0xBE: // movsbl r, a (movsxb)
 578     case 0xBF: // movswl r, a (movsxw)
 579     case 0xB6: // movzbl r, a (movzxb)
 580     case 0xB7: // movzwl r, a (movzxw)
 581     case REP16(0x40): // cmovl cc, r, a
 582     case 0xB0: // cmpxchgb
 583     case 0xB1: // cmpxchg
 584     case 0xC1: // xaddl
 585     case 0xC7: // cmpxchg8
 586     case REP16(0x90): // setcc a
 587       debug_only(has_disp32 = true);
 588       // fall out of the switch to decode the address
 589       break;
 590 
 591     case 0xC4: // pinsrw r, a, #8
 592       debug_only(has_disp32 = true);
 593     case 0xC5: // pextrw r, r, #8
 594       tail_size = 1;  // the imm8
 595       break;
 596 
 597     case 0xAC: // shrd r, a, #8
 598       debug_only(has_disp32 = true);
 599       tail_size = 1;  // the imm8
 600       break;
 601 
 602     case REP16(0x80): // jcc rdisp32
 603       if (which == end_pc_operand)  return ip + 4;
 604       assert(which == call32_operand, "jcc has no disp32 or imm");
 605       return ip;
 606     default:
 607       ShouldNotReachHere();
 608     }
 609     break;
 610 
 611   case 0x81: // addl a, #32; addl r, #32
 612     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 613     // on 32bit in the case of cmpl, the imm might be an oop
 614     tail_size = 4;
 615     debug_only(has_disp32 = true); // has both kinds of operands!
 616     break;
 617 
 618   case 0x83: // addl a, #8; addl r, #8
 619     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 620     debug_only(has_disp32 = true); // has both kinds of operands!
 621     tail_size = 1;
 622     break;
 623 
 624   case 0x9B:
 625     switch (0xFF & *ip++) {
 626     case 0xD9: // fnstcw a
 627       debug_only(has_disp32 = true);
 628       break;
 629     default:
 630       ShouldNotReachHere();
 631     }
 632     break;
 633 
 634   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 635   case REP4(0x10): // adc...
 636   case REP4(0x20): // and...
 637   case REP4(0x30): // xor...
 638   case REP4(0x08): // or...
 639   case REP4(0x18): // sbb...
 640   case REP4(0x28): // sub...
 641   case 0xF7: // mull a
 642   case 0x8D: // lea r, a
 643   case 0x87: // xchg r, a
 644   case REP4(0x38): // cmp...
 645   case 0x85: // test r, a
 646     debug_only(has_disp32 = true); // has both kinds of operands!
 647     break;
 648 
 649   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 650   case 0xC6: // movb a, #8
 651   case 0x80: // cmpb a, #8
 652   case 0x6B: // imul r, a, #8
 653     debug_only(has_disp32 = true); // has both kinds of operands!
 654     tail_size = 1; // the imm8
 655     break;
 656 
 657   case 0xC4: // VEX_3bytes
 658   case 0xC5: // VEX_2bytes
 659     assert((UseAVX > 0), "shouldn't have VEX prefix");
 660     assert(ip == inst+1, "no prefixes allowed");
 661     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 662     // but they have prefix 0x0F and processed when 0x0F processed above.
 663     //
 664     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 665     // instructions (these instructions are not supported in 64-bit mode).
 666     // To distinguish them bits [7:6] are set in the VEX second byte since
 667     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 668     // those VEX bits REX and vvvv bits are inverted.
 669     //
 670     // Fortunately C2 doesn't generate these instructions so we don't need
 671     // to check for them in product version.
 672 
 673     // Check second byte
 674     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 675 
 676     // First byte
 677     if ((0xFF & *inst) == VEX_3bytes) {
 678       ip++; // third byte
 679       is_64bit = ((VEX_W & *ip) == VEX_W);
 680     }
 681     ip++; // opcode
 682     // To find the end of instruction (which == end_pc_operand).
 683     switch (0xFF & *ip) {
 684     case 0x61: // pcmpestri r, r/a, #8
 685     case 0x70: // pshufd r, r/a, #8
 686     case 0x73: // psrldq r, #8
 687       tail_size = 1;  // the imm8
 688       break;
 689     default:
 690       break;
 691     }
 692     ip++; // skip opcode
 693     debug_only(has_disp32 = true); // has both kinds of operands!
 694     break;
 695 
 696   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 697   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 698   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 699   case 0xDD: // fld_d a; fst_d a; fstp_d a
 700   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 701   case 0xDF: // fild_d a; fistp_d a
 702   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 703   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 704   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 705     debug_only(has_disp32 = true);
 706     break;
 707 
 708   case 0xE8: // call rdisp32
 709   case 0xE9: // jmp  rdisp32
 710     if (which == end_pc_operand)  return ip + 4;
 711     assert(which == call32_operand, "call has no disp32 or imm");
 712     return ip;
 713 
 714   case 0xF0:                    // Lock
 715     assert(os::is_MP(), "only on MP");
 716     goto again_after_prefix;
 717 
 718   case 0xF3:                    // For SSE
 719   case 0xF2:                    // For SSE2
 720     switch (0xFF & *ip++) {
 721     case REX:
 722     case REX_B:
 723     case REX_X:
 724     case REX_XB:
 725     case REX_R:
 726     case REX_RB:
 727     case REX_RX:
 728     case REX_RXB:
 729     case REX_W:
 730     case REX_WB:
 731     case REX_WX:
 732     case REX_WXB:
 733     case REX_WR:
 734     case REX_WRB:
 735     case REX_WRX:
 736     case REX_WRXB:
 737       NOT_LP64(assert(false, "found 64bit prefix"));
 738       ip++;
 739     default:
 740       ip++;
 741     }
 742     debug_only(has_disp32 = true); // has both kinds of operands!
 743     break;
 744 
 745   default:
 746     ShouldNotReachHere();
 747 
 748 #undef REP8
 749 #undef REP16
 750   }
 751 
 752   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 753 #ifdef _LP64
 754   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 755 #else
 756   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 757   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 758 #endif // LP64
 759   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 760 
 761   // parse the output of emit_operand
 762   int op2 = 0xFF & *ip++;
 763   int base = op2 & 0x07;
 764   int op3 = -1;
 765   const int b100 = 4;
 766   const int b101 = 5;
 767   if (base == b100 && (op2 >> 6) != 3) {
 768     op3 = 0xFF & *ip++;
 769     base = op3 & 0x07;   // refetch the base
 770   }
 771   // now ip points at the disp (if any)
 772 
 773   switch (op2 >> 6) {
 774   case 0:
 775     // [00 reg  100][ss index base]
 776     // [00 reg  100][00   100  esp]
 777     // [00 reg base]
 778     // [00 reg  100][ss index  101][disp32]
 779     // [00 reg  101]               [disp32]
 780 
 781     if (base == b101) {
 782       if (which == disp32_operand)
 783         return ip;              // caller wants the disp32
 784       ip += 4;                  // skip the disp32
 785     }
 786     break;
 787 
 788   case 1:
 789     // [01 reg  100][ss index base][disp8]
 790     // [01 reg  100][00   100  esp][disp8]
 791     // [01 reg base]               [disp8]
 792     ip += 1;                    // skip the disp8
 793     break;
 794 
 795   case 2:
 796     // [10 reg  100][ss index base][disp32]
 797     // [10 reg  100][00   100  esp][disp32]
 798     // [10 reg base]               [disp32]
 799     if (which == disp32_operand)
 800       return ip;                // caller wants the disp32
 801     ip += 4;                    // skip the disp32
 802     break;
 803 
 804   case 3:
 805     // [11 reg base]  (not a memory addressing mode)
 806     break;
 807   }
 808 
 809   if (which == end_pc_operand) {
 810     return ip + tail_size;
 811   }
 812 
 813 #ifdef _LP64
 814   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
 815 #else
 816   assert(which == imm_operand, "instruction has only an imm field");
 817 #endif // LP64
 818   return ip;
 819 }
 820 
 821 address Assembler::locate_next_instruction(address inst) {
 822   // Secretly share code with locate_operand:
 823   return locate_operand(inst, end_pc_operand);
 824 }
 825 
 826 
 827 #ifdef ASSERT
 828 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
 829   address inst = inst_mark();
 830   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
 831   address opnd;
 832 
 833   Relocation* r = rspec.reloc();
 834   if (r->type() == relocInfo::none) {
 835     return;
 836   } else if (r->is_call() || format == call32_operand) {
 837     // assert(format == imm32_operand, "cannot specify a nonzero format");
 838     opnd = locate_operand(inst, call32_operand);
 839   } else if (r->is_data()) {
 840     assert(format == imm_operand || format == disp32_operand
 841            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
 842     opnd = locate_operand(inst, (WhichOperand)format);
 843   } else {
 844     assert(format == imm_operand, "cannot specify a format");
 845     return;
 846   }
 847   assert(opnd == pc(), "must put operand where relocs can find it");
 848 }
 849 #endif // ASSERT
 850 
 851 void Assembler::emit_operand32(Register reg, Address adr) {
 852   assert(reg->encoding() < 8, "no extended registers");
 853   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 854   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 855                adr._rspec);
 856 }
 857 
 858 void Assembler::emit_operand(Register reg, Address adr,
 859                              int rip_relative_correction) {
 860   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 861                adr._rspec,
 862                rip_relative_correction);
 863 }
 864 
 865 void Assembler::emit_operand(XMMRegister reg, Address adr) {
 866   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 867                adr._rspec);
 868 }
 869 
 870 // MMX operations
 871 void Assembler::emit_operand(MMXRegister reg, Address adr) {
 872   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 873   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 874 }
 875 
 876 // work around gcc (3.2.1-7a) bug
 877 void Assembler::emit_operand(Address adr, MMXRegister reg) {
 878   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 879   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 880 }
 881 
 882 
 883 void Assembler::emit_farith(int b1, int b2, int i) {
 884   assert(isByte(b1) && isByte(b2), "wrong opcode");
 885   assert(0 <= i &&  i < 8, "illegal stack offset");
 886   emit_byte(b1);
 887   emit_byte(b2 + i);
 888 }
 889 
 890 
 891 // Now the Assembler instructions (identical for 32/64 bits)
 892 
 893 void Assembler::adcl(Address dst, int32_t imm32) {
 894   InstructionMark im(this);
 895   prefix(dst);
 896   emit_arith_operand(0x81, rdx, dst, imm32);
 897 }
 898 
 899 void Assembler::adcl(Address dst, Register src) {
 900   InstructionMark im(this);
 901   prefix(dst, src);
 902   emit_byte(0x11);
 903   emit_operand(src, dst);
 904 }
 905 
 906 void Assembler::adcl(Register dst, int32_t imm32) {
 907   prefix(dst);
 908   emit_arith(0x81, 0xD0, dst, imm32);
 909 }
 910 
 911 void Assembler::adcl(Register dst, Address src) {
 912   InstructionMark im(this);
 913   prefix(src, dst);
 914   emit_byte(0x13);
 915   emit_operand(dst, src);
 916 }
 917 
 918 void Assembler::adcl(Register dst, Register src) {
 919   (void) prefix_and_encode(dst->encoding(), src->encoding());
 920   emit_arith(0x13, 0xC0, dst, src);
 921 }
 922 
 923 void Assembler::addl(Address dst, int32_t imm32) {
 924   InstructionMark im(this);
 925   prefix(dst);
 926   emit_arith_operand(0x81, rax, dst, imm32);
 927 }
 928 
 929 void Assembler::addl(Address dst, Register src) {
 930   InstructionMark im(this);
 931   prefix(dst, src);
 932   emit_byte(0x01);
 933   emit_operand(src, dst);
 934 }
 935 
 936 void Assembler::addl(Register dst, int32_t imm32) {
 937   prefix(dst);
 938   emit_arith(0x81, 0xC0, dst, imm32);
 939 }
 940 
 941 void Assembler::addl(Register dst, Address src) {
 942   InstructionMark im(this);
 943   prefix(src, dst);
 944   emit_byte(0x03);
 945   emit_operand(dst, src);
 946 }
 947 
 948 void Assembler::addl(Register dst, Register src) {
 949   (void) prefix_and_encode(dst->encoding(), src->encoding());
 950   emit_arith(0x03, 0xC0, dst, src);
 951 }
 952 
 953 void Assembler::addr_nop_4() {
 954   assert(UseAddressNop, "no CPU support");
 955   // 4 bytes: NOP DWORD PTR [EAX+0]
 956   emit_byte(0x0F);
 957   emit_byte(0x1F);
 958   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
 959   emit_byte(0);    // 8-bits offset (1 byte)
 960 }
 961 
 962 void Assembler::addr_nop_5() {
 963   assert(UseAddressNop, "no CPU support");
 964   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
 965   emit_byte(0x0F);
 966   emit_byte(0x1F);
 967   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
 968   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 969   emit_byte(0);    // 8-bits offset (1 byte)
 970 }
 971 
 972 void Assembler::addr_nop_7() {
 973   assert(UseAddressNop, "no CPU support");
 974   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
 975   emit_byte(0x0F);
 976   emit_byte(0x1F);
 977   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
 978   emit_long(0);    // 32-bits offset (4 bytes)
 979 }
 980 
 981 void Assembler::addr_nop_8() {
 982   assert(UseAddressNop, "no CPU support");
 983   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
 984   emit_byte(0x0F);
 985   emit_byte(0x1F);
 986   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
 987   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 988   emit_long(0);    // 32-bits offset (4 bytes)
 989 }
 990 
 991 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
 992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 993   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
 994 }
 995 
 996 void Assembler::addsd(XMMRegister dst, Address src) {
 997   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 998   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
 999 }
1000 
1001 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1002   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1003   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1004 }
1005 
1006 void Assembler::addss(XMMRegister dst, Address src) {
1007   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1008   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1009 }
1010 
1011 void Assembler::aesdec(XMMRegister dst, Address src) {
1012   assert(VM_Version::supports_aes(), "");
1013   InstructionMark im(this);
1014   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1015   emit_byte(0xde);
1016   emit_operand(dst, src);
1017 }
1018 
1019 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1020   assert(VM_Version::supports_aes(), "");
1021   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1022   emit_byte(0xde);
1023   emit_byte(0xC0 | encode);
1024 }
1025 
1026 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1027   assert(VM_Version::supports_aes(), "");
1028   InstructionMark im(this);
1029   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1030   emit_byte(0xdf);
1031   emit_operand(dst, src);
1032 }
1033 
1034 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1035   assert(VM_Version::supports_aes(), "");
1036   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1037   emit_byte(0xdf);
1038   emit_byte(0xC0 | encode);
1039 }
1040 
1041 void Assembler::aesenc(XMMRegister dst, Address src) {
1042   assert(VM_Version::supports_aes(), "");
1043   InstructionMark im(this);
1044   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1045   emit_byte(0xdc);
1046   emit_operand(dst, src);
1047 }
1048 
1049 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1050   assert(VM_Version::supports_aes(), "");
1051   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1052   emit_byte(0xdc);
1053   emit_byte(0xC0 | encode);
1054 }
1055 
1056 void Assembler::aesenclast(XMMRegister dst, Address src) {
1057   assert(VM_Version::supports_aes(), "");
1058   InstructionMark im(this);
1059   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1060   emit_byte(0xdd);
1061   emit_operand(dst, src);
1062 }
1063 
1064 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1065   assert(VM_Version::supports_aes(), "");
1066   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1067   emit_byte(0xdd);
1068   emit_byte(0xC0 | encode);
1069 }
1070 
1071 
1072 void Assembler::andl(Address dst, int32_t imm32) {
1073   InstructionMark im(this);
1074   prefix(dst);
1075   emit_byte(0x81);
1076   emit_operand(rsp, dst, 4);
1077   emit_long(imm32);
1078 }
1079 
1080 void Assembler::andl(Register dst, int32_t imm32) {
1081   prefix(dst);
1082   emit_arith(0x81, 0xE0, dst, imm32);
1083 }
1084 
1085 void Assembler::andl(Register dst, Address src) {
1086   InstructionMark im(this);
1087   prefix(src, dst);
1088   emit_byte(0x23);
1089   emit_operand(dst, src);
1090 }
1091 
1092 void Assembler::andl(Register dst, Register src) {
1093   (void) prefix_and_encode(dst->encoding(), src->encoding());
1094   emit_arith(0x23, 0xC0, dst, src);
1095 }
1096 
1097 void Assembler::bsfl(Register dst, Register src) {
1098   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1099   emit_byte(0x0F);
1100   emit_byte(0xBC);
1101   emit_byte(0xC0 | encode);
1102 }
1103 
1104 void Assembler::bsrl(Register dst, Register src) {
1105   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
1106   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1107   emit_byte(0x0F);
1108   emit_byte(0xBD);
1109   emit_byte(0xC0 | encode);
1110 }
1111 
1112 void Assembler::bswapl(Register reg) { // bswap
1113   int encode = prefix_and_encode(reg->encoding());
1114   emit_byte(0x0F);
1115   emit_byte(0xC8 | encode);
1116 }
1117 
1118 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1119   // suspect disp32 is always good
1120   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1121 
1122   if (L.is_bound()) {
1123     const int long_size = 5;
1124     int offs = (int)( target(L) - pc() );
1125     assert(offs <= 0, "assembler error");
1126     InstructionMark im(this);
1127     // 1110 1000 #32-bit disp
1128     emit_byte(0xE8);
1129     emit_data(offs - long_size, rtype, operand);
1130   } else {
1131     InstructionMark im(this);
1132     // 1110 1000 #32-bit disp
1133     L.add_patch_at(code(), locator());
1134 
1135     emit_byte(0xE8);
1136     emit_data(int(0), rtype, operand);
1137   }
1138 }
1139 
1140 void Assembler::call(Register dst) {
1141   int encode = prefix_and_encode(dst->encoding());
1142   emit_byte(0xFF);
1143   emit_byte(0xD0 | encode);
1144 }
1145 
1146 
1147 void Assembler::call(Address adr) {
1148   InstructionMark im(this);
1149   prefix(adr);
1150   emit_byte(0xFF);
1151   emit_operand(rdx, adr);
1152 }
1153 
1154 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1155   assert(entry != NULL, "call most probably wrong");
1156   InstructionMark im(this);
1157   emit_byte(0xE8);
1158   intptr_t disp = entry - (pc() + sizeof(int32_t));
1159   assert(is_simm32(disp), "must be 32bit offset (call2)");
1160   // Technically, should use call32_operand, but this format is
1161   // implied by the fact that we're emitting a call instruction.
1162 
1163   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1164   emit_data((int) disp, rspec, operand);
1165 }
1166 
1167 void Assembler::cdql() {
1168   emit_byte(0x99);
1169 }
1170 
1171 void Assembler::cld() {
1172   emit_byte(0xfc);
1173 }
1174 
1175 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1176   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1177   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1178   emit_byte(0x0F);
1179   emit_byte(0x40 | cc);
1180   emit_byte(0xC0 | encode);
1181 }
1182 
1183 
1184 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1185   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1186   prefix(src, dst);
1187   emit_byte(0x0F);
1188   emit_byte(0x40 | cc);
1189   emit_operand(dst, src);
1190 }
1191 
1192 void Assembler::cmpb(Address dst, int imm8) {
1193   InstructionMark im(this);
1194   prefix(dst);
1195   emit_byte(0x80);
1196   emit_operand(rdi, dst, 1);
1197   emit_byte(imm8);
1198 }
1199 
1200 void Assembler::cmpl(Address dst, int32_t imm32) {
1201   InstructionMark im(this);
1202   prefix(dst);
1203   emit_byte(0x81);
1204   emit_operand(rdi, dst, 4);
1205   emit_long(imm32);
1206 }
1207 
1208 void Assembler::cmpl(Register dst, int32_t imm32) {
1209   prefix(dst);
1210   emit_arith(0x81, 0xF8, dst, imm32);
1211 }
1212 
1213 void Assembler::cmpl(Register dst, Register src) {
1214   (void) prefix_and_encode(dst->encoding(), src->encoding());
1215   emit_arith(0x3B, 0xC0, dst, src);
1216 }
1217 
1218 
1219 void Assembler::cmpl(Register dst, Address  src) {
1220   InstructionMark im(this);
1221   prefix(src, dst);
1222   emit_byte(0x3B);
1223   emit_operand(dst, src);
1224 }
1225 
1226 void Assembler::cmpw(Address dst, int imm16) {
1227   InstructionMark im(this);
1228   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1229   emit_byte(0x66);
1230   emit_byte(0x81);
1231   emit_operand(rdi, dst, 2);
1232   emit_word(imm16);
1233 }
1234 
1235 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1236 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1237 // The ZF is set if the compared values were equal, and cleared otherwise.
1238 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1239   InstructionMark im(this);
1240   prefix(adr, reg);
1241   emit_byte(0x0F);
1242   emit_byte(0xB1);
1243   emit_operand(reg, adr);
1244 }
1245 
1246 void Assembler::comisd(XMMRegister dst, Address src) {
1247   // NOTE: dbx seems to decode this as comiss even though the
1248   // 0x66 is there. Strangly ucomisd comes out correct
1249   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1250   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1251 }
1252 
1253 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1254   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1255   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1256 }
1257 
1258 void Assembler::comiss(XMMRegister dst, Address src) {
1259   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1260   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
1261 }
1262 
1263 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1264   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1265   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
1266 }
1267 
1268 void Assembler::cpuid() {
1269   emit_byte(0x0F);
1270   emit_byte(0xA2);
1271 }
1272 
1273 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1274   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1275   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
1276 }
1277 
1278 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1279   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1280   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
1281 }
1282 
1283 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1284   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1285   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1286 }
1287 
1288 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1289   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1290   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1291 }
1292 
1293 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1294   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1295   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
1296   emit_byte(0x2A);
1297   emit_byte(0xC0 | encode);
1298 }
1299 
1300 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1301   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1302   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1303 }
1304 
1305 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1306   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1307   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
1308   emit_byte(0x2A);
1309   emit_byte(0xC0 | encode);
1310 }
1311 
1312 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1313   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1314   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
1315 }
1316 
1317 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1318   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1319   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1320 }
1321 
1322 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1323   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1324   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1325 }
1326 
1327 
1328 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1329   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1330   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
1331   emit_byte(0x2C);
1332   emit_byte(0xC0 | encode);
1333 }
1334 
1335 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1336   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1337   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
1338   emit_byte(0x2C);
1339   emit_byte(0xC0 | encode);
1340 }
1341 
1342 void Assembler::decl(Address dst) {
1343   // Don't use it directly. Use MacroAssembler::decrement() instead.
1344   InstructionMark im(this);
1345   prefix(dst);
1346   emit_byte(0xFF);
1347   emit_operand(rcx, dst);
1348 }
1349 
1350 void Assembler::divsd(XMMRegister dst, Address src) {
1351   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1352   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1353 }
1354 
1355 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1356   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1357   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1358 }
1359 
1360 void Assembler::divss(XMMRegister dst, Address src) {
1361   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1362   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1363 }
1364 
1365 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1366   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1367   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1368 }
1369 
1370 void Assembler::emms() {
1371   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1372   emit_byte(0x0F);
1373   emit_byte(0x77);
1374 }
1375 
1376 void Assembler::hlt() {
1377   emit_byte(0xF4);
1378 }
1379 
1380 void Assembler::idivl(Register src) {
1381   int encode = prefix_and_encode(src->encoding());
1382   emit_byte(0xF7);
1383   emit_byte(0xF8 | encode);
1384 }
1385 
1386 void Assembler::divl(Register src) { // Unsigned
1387   int encode = prefix_and_encode(src->encoding());
1388   emit_byte(0xF7);
1389   emit_byte(0xF0 | encode);
1390 }
1391 
1392 void Assembler::imull(Register dst, Register src) {
1393   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1394   emit_byte(0x0F);
1395   emit_byte(0xAF);
1396   emit_byte(0xC0 | encode);
1397 }
1398 
1399 
1400 void Assembler::imull(Register dst, Register src, int value) {
1401   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1402   if (is8bit(value)) {
1403     emit_byte(0x6B);
1404     emit_byte(0xC0 | encode);
1405     emit_byte(value & 0xFF);
1406   } else {
1407     emit_byte(0x69);
1408     emit_byte(0xC0 | encode);
1409     emit_long(value);
1410   }
1411 }
1412 
1413 void Assembler::incl(Address dst) {
1414   // Don't use it directly. Use MacroAssembler::increment() instead.
1415   InstructionMark im(this);
1416   prefix(dst);
1417   emit_byte(0xFF);
1418   emit_operand(rax, dst);
1419 }
1420 
1421 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1422   InstructionMark im(this);
1423   assert((0 <= cc) && (cc < 16), "illegal cc");
1424   if (L.is_bound()) {
1425     address dst = target(L);
1426     assert(dst != NULL, "jcc most probably wrong");
1427 
1428     const int short_size = 2;
1429     const int long_size = 6;
1430     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1431     if (maybe_short && is8bit(offs - short_size)) {
1432       // 0111 tttn #8-bit disp
1433       emit_byte(0x70 | cc);
1434       emit_byte((offs - short_size) & 0xFF);
1435     } else {
1436       // 0000 1111 1000 tttn #32-bit disp
1437       assert(is_simm32(offs - long_size),
1438              "must be 32bit offset (call4)");
1439       emit_byte(0x0F);
1440       emit_byte(0x80 | cc);
1441       emit_long(offs - long_size);
1442     }
1443   } else {
1444     // Note: could eliminate cond. jumps to this jump if condition
1445     //       is the same however, seems to be rather unlikely case.
1446     // Note: use jccb() if label to be bound is very close to get
1447     //       an 8-bit displacement
1448     L.add_patch_at(code(), locator());
1449     emit_byte(0x0F);
1450     emit_byte(0x80 | cc);
1451     emit_long(0);
1452   }
1453 }
1454 
1455 void Assembler::jccb(Condition cc, Label& L) {
1456   if (L.is_bound()) {
1457     const int short_size = 2;
1458     address entry = target(L);
1459 #ifdef ASSERT
1460     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1461     intptr_t delta = short_branch_delta();
1462     if (delta != 0) {
1463       dist += (dist < 0 ? (-delta) :delta);
1464     }
1465     assert(is8bit(dist), "Dispacement too large for a short jmp");
1466 #endif
1467     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1468     // 0111 tttn #8-bit disp
1469     emit_byte(0x70 | cc);
1470     emit_byte((offs - short_size) & 0xFF);
1471   } else {
1472     InstructionMark im(this);
1473     L.add_patch_at(code(), locator());
1474     emit_byte(0x70 | cc);
1475     emit_byte(0);
1476   }
1477 }
1478 
1479 void Assembler::jmp(Address adr) {
1480   InstructionMark im(this);
1481   prefix(adr);
1482   emit_byte(0xFF);
1483   emit_operand(rsp, adr);
1484 }
1485 
1486 void Assembler::jmp(Label& L, bool maybe_short) {
1487   if (L.is_bound()) {
1488     address entry = target(L);
1489     assert(entry != NULL, "jmp most probably wrong");
1490     InstructionMark im(this);
1491     const int short_size = 2;
1492     const int long_size = 5;
1493     intptr_t offs = entry - pc();
1494     if (maybe_short && is8bit(offs - short_size)) {
1495       emit_byte(0xEB);
1496       emit_byte((offs - short_size) & 0xFF);
1497     } else {
1498       emit_byte(0xE9);
1499       emit_long(offs - long_size);
1500     }
1501   } else {
1502     // By default, forward jumps are always 32-bit displacements, since
1503     // we can't yet know where the label will be bound.  If you're sure that
1504     // the forward jump will not run beyond 256 bytes, use jmpb to
1505     // force an 8-bit displacement.
1506     InstructionMark im(this);
1507     L.add_patch_at(code(), locator());
1508     emit_byte(0xE9);
1509     emit_long(0);
1510   }
1511 }
1512 
1513 void Assembler::jmp(Register entry) {
1514   int encode = prefix_and_encode(entry->encoding());
1515   emit_byte(0xFF);
1516   emit_byte(0xE0 | encode);
1517 }
1518 
1519 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1520   InstructionMark im(this);
1521   emit_byte(0xE9);
1522   assert(dest != NULL, "must have a target");
1523   intptr_t disp = dest - (pc() + sizeof(int32_t));
1524   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1525   emit_data(disp, rspec.reloc(), call32_operand);
1526 }
1527 
1528 void Assembler::jmpb(Label& L) {
1529   if (L.is_bound()) {
1530     const int short_size = 2;
1531     address entry = target(L);
1532     assert(entry != NULL, "jmp most probably wrong");
1533 #ifdef ASSERT
1534     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1535     intptr_t delta = short_branch_delta();
1536     if (delta != 0) {
1537       dist += (dist < 0 ? (-delta) :delta);
1538     }
1539     assert(is8bit(dist), "Dispacement too large for a short jmp");
1540 #endif
1541     intptr_t offs = entry - pc();
1542     emit_byte(0xEB);
1543     emit_byte((offs - short_size) & 0xFF);
1544   } else {
1545     InstructionMark im(this);
1546     L.add_patch_at(code(), locator());
1547     emit_byte(0xEB);
1548     emit_byte(0);
1549   }
1550 }
1551 
1552 void Assembler::ldmxcsr( Address src) {
1553   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1554   InstructionMark im(this);
1555   prefix(src);
1556   emit_byte(0x0F);
1557   emit_byte(0xAE);
1558   emit_operand(as_Register(2), src);
1559 }
1560 
1561 void Assembler::leal(Register dst, Address src) {
1562   InstructionMark im(this);
1563 #ifdef _LP64
1564   emit_byte(0x67); // addr32
1565   prefix(src, dst);
1566 #endif // LP64
1567   emit_byte(0x8D);
1568   emit_operand(dst, src);
1569 }
1570 
1571 void Assembler::lfence() {
1572   emit_byte(0x0F);
1573   emit_byte(0xAE);
1574   emit_byte(0xE8);
1575 }
1576 
1577 void Assembler::lock() {
1578   emit_byte(0xF0);
1579 }
1580 
1581 void Assembler::lzcntl(Register dst, Register src) {
1582   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1583   emit_byte(0xF3);
1584   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1585   emit_byte(0x0F);
1586   emit_byte(0xBD);
1587   emit_byte(0xC0 | encode);
1588 }
1589 
1590 // Emit mfence instruction
1591 void Assembler::mfence() {
1592   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1593   emit_byte( 0x0F );
1594   emit_byte( 0xAE );
1595   emit_byte( 0xF0 );
1596 }
1597 
1598 void Assembler::mov(Register dst, Register src) {
1599   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1600 }
1601 
1602 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1603   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1604   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
1605 }
1606 
1607 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1608   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1609   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
1610 }
1611 
1612 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
1613   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1614   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
1615   emit_byte(0x16);
1616   emit_byte(0xC0 | encode);
1617 }
1618 
1619 void Assembler::movb(Register dst, Address src) {
1620   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
1621   InstructionMark im(this);
1622   prefix(src, dst, true);
1623   emit_byte(0x8A);
1624   emit_operand(dst, src);
1625 }
1626 
1627 
1628 void Assembler::movb(Address dst, int imm8) {
1629   InstructionMark im(this);
1630    prefix(dst);
1631   emit_byte(0xC6);
1632   emit_operand(rax, dst, 1);
1633   emit_byte(imm8);
1634 }
1635 
1636 
1637 void Assembler::movb(Address dst, Register src) {
1638   assert(src->has_byte_register(), "must have byte register");
1639   InstructionMark im(this);
1640   prefix(dst, src, true);
1641   emit_byte(0x88);
1642   emit_operand(src, dst);
1643 }
1644 
1645 void Assembler::movdl(XMMRegister dst, Register src) {
1646   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1647   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
1648   emit_byte(0x6E);
1649   emit_byte(0xC0 | encode);
1650 }
1651 
1652 void Assembler::movdl(Register dst, XMMRegister src) {
1653   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1654   // swap src/dst to get correct prefix
1655   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
1656   emit_byte(0x7E);
1657   emit_byte(0xC0 | encode);
1658 }
1659 
1660 void Assembler::movdl(XMMRegister dst, Address src) {
1661   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1662   InstructionMark im(this);
1663   simd_prefix(dst, src, VEX_SIMD_66);
1664   emit_byte(0x6E);
1665   emit_operand(dst, src);
1666 }
1667 
1668 void Assembler::movdl(Address dst, XMMRegister src) {
1669   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1670   InstructionMark im(this);
1671   simd_prefix(dst, src, VEX_SIMD_66);
1672   emit_byte(0x7E);
1673   emit_operand(src, dst);
1674 }
1675 
1676 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
1677   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1678   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
1679 }
1680 
1681 void Assembler::movdqu(XMMRegister dst, Address src) {
1682   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1683   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1684 }
1685 
1686 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
1687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1688   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1689 }
1690 
1691 void Assembler::movdqu(Address dst, XMMRegister src) {
1692   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1693   InstructionMark im(this);
1694   simd_prefix(dst, src, VEX_SIMD_F3);
1695   emit_byte(0x7F);
1696   emit_operand(src, dst);
1697 }
1698 
1699 // Move Unaligned 256bit Vector
1700 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
1701   assert(UseAVX, "");
1702   bool vector256 = true;
1703   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1704   emit_byte(0x6F);
1705   emit_byte(0xC0 | encode);
1706 }
1707 
1708 void Assembler::vmovdqu(XMMRegister dst, Address src) {
1709   assert(UseAVX, "");
1710   InstructionMark im(this);
1711   bool vector256 = true;
1712   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1713   emit_byte(0x6F);
1714   emit_operand(dst, src);
1715 }
1716 
1717 void Assembler::vmovdqu(Address dst, XMMRegister src) {
1718   assert(UseAVX, "");
1719   InstructionMark im(this);
1720   bool vector256 = true;
1721   // swap src<->dst for encoding
1722   assert(src != xnoreg, "sanity");
1723   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
1724   emit_byte(0x7F);
1725   emit_operand(src, dst);
1726 }
1727 
1728 // Uses zero extension on 64bit
1729 
1730 void Assembler::movl(Register dst, int32_t imm32) {
1731   int encode = prefix_and_encode(dst->encoding());
1732   emit_byte(0xB8 | encode);
1733   emit_long(imm32);
1734 }
1735 
1736 void Assembler::movl(Register dst, Register src) {
1737   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1738   emit_byte(0x8B);
1739   emit_byte(0xC0 | encode);
1740 }
1741 
1742 void Assembler::movl(Register dst, Address src) {
1743   InstructionMark im(this);
1744   prefix(src, dst);
1745   emit_byte(0x8B);
1746   emit_operand(dst, src);
1747 }
1748 
1749 void Assembler::movl(Address dst, int32_t imm32) {
1750   InstructionMark im(this);
1751   prefix(dst);
1752   emit_byte(0xC7);
1753   emit_operand(rax, dst, 4);
1754   emit_long(imm32);
1755 }
1756 
1757 void Assembler::movl(Address dst, Register src) {
1758   InstructionMark im(this);
1759   prefix(dst, src);
1760   emit_byte(0x89);
1761   emit_operand(src, dst);
1762 }
1763 
1764 // New cpus require to use movsd and movss to avoid partial register stall
1765 // when loading from memory. But for old Opteron use movlpd instead of movsd.
1766 // The selection is done in MacroAssembler::movdbl() and movflt().
1767 void Assembler::movlpd(XMMRegister dst, Address src) {
1768   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1769   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
1770 }
1771 
1772 void Assembler::movq( MMXRegister dst, Address src ) {
1773   assert( VM_Version::supports_mmx(), "" );
1774   emit_byte(0x0F);
1775   emit_byte(0x6F);
1776   emit_operand(dst, src);
1777 }
1778 
1779 void Assembler::movq( Address dst, MMXRegister src ) {
1780   assert( VM_Version::supports_mmx(), "" );
1781   emit_byte(0x0F);
1782   emit_byte(0x7F);
1783   // workaround gcc (3.2.1-7a) bug
1784   // In that version of gcc with only an emit_operand(MMX, Address)
1785   // gcc will tail jump and try and reverse the parameters completely
1786   // obliterating dst in the process. By having a version available
1787   // that doesn't need to swap the args at the tail jump the bug is
1788   // avoided.
1789   emit_operand(dst, src);
1790 }
1791 
1792 void Assembler::movq(XMMRegister dst, Address src) {
1793   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1794   InstructionMark im(this);
1795   simd_prefix(dst, src, VEX_SIMD_F3);
1796   emit_byte(0x7E);
1797   emit_operand(dst, src);
1798 }
1799 
1800 void Assembler::movq(Address dst, XMMRegister src) {
1801   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1802   InstructionMark im(this);
1803   simd_prefix(dst, src, VEX_SIMD_66);
1804   emit_byte(0xD6);
1805   emit_operand(src, dst);
1806 }
1807 
1808 void Assembler::movsbl(Register dst, Address src) { // movsxb
1809   InstructionMark im(this);
1810   prefix(src, dst);
1811   emit_byte(0x0F);
1812   emit_byte(0xBE);
1813   emit_operand(dst, src);
1814 }
1815 
1816 void Assembler::movsbl(Register dst, Register src) { // movsxb
1817   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1818   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1819   emit_byte(0x0F);
1820   emit_byte(0xBE);
1821   emit_byte(0xC0 | encode);
1822 }
1823 
1824 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
1825   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1826   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
1827 }
1828 
1829 void Assembler::movsd(XMMRegister dst, Address src) {
1830   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1831   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
1832 }
1833 
1834 void Assembler::movsd(Address dst, XMMRegister src) {
1835   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1836   InstructionMark im(this);
1837   simd_prefix(dst, src, VEX_SIMD_F2);
1838   emit_byte(0x11);
1839   emit_operand(src, dst);
1840 }
1841 
1842 void Assembler::movss(XMMRegister dst, XMMRegister src) {
1843   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1844   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
1845 }
1846 
1847 void Assembler::movss(XMMRegister dst, Address src) {
1848   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1849   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
1850 }
1851 
1852 void Assembler::movss(Address dst, XMMRegister src) {
1853   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1854   InstructionMark im(this);
1855   simd_prefix(dst, src, VEX_SIMD_F3);
1856   emit_byte(0x11);
1857   emit_operand(src, dst);
1858 }
1859 
1860 void Assembler::movswl(Register dst, Address src) { // movsxw
1861   InstructionMark im(this);
1862   prefix(src, dst);
1863   emit_byte(0x0F);
1864   emit_byte(0xBF);
1865   emit_operand(dst, src);
1866 }
1867 
1868 void Assembler::movswl(Register dst, Register src) { // movsxw
1869   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1870   emit_byte(0x0F);
1871   emit_byte(0xBF);
1872   emit_byte(0xC0 | encode);
1873 }
1874 
1875 void Assembler::movw(Address dst, int imm16) {
1876   InstructionMark im(this);
1877 
1878   emit_byte(0x66); // switch to 16-bit mode
1879   prefix(dst);
1880   emit_byte(0xC7);
1881   emit_operand(rax, dst, 2);
1882   emit_word(imm16);
1883 }
1884 
1885 void Assembler::movw(Register dst, Address src) {
1886   InstructionMark im(this);
1887   emit_byte(0x66);
1888   prefix(src, dst);
1889   emit_byte(0x8B);
1890   emit_operand(dst, src);
1891 }
1892 
1893 void Assembler::movw(Address dst, Register src) {
1894   InstructionMark im(this);
1895   emit_byte(0x66);
1896   prefix(dst, src);
1897   emit_byte(0x89);
1898   emit_operand(src, dst);
1899 }
1900 
1901 void Assembler::movzbl(Register dst, Address src) { // movzxb
1902   InstructionMark im(this);
1903   prefix(src, dst);
1904   emit_byte(0x0F);
1905   emit_byte(0xB6);
1906   emit_operand(dst, src);
1907 }
1908 
1909 void Assembler::movzbl(Register dst, Register src) { // movzxb
1910   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1911   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1912   emit_byte(0x0F);
1913   emit_byte(0xB6);
1914   emit_byte(0xC0 | encode);
1915 }
1916 
1917 void Assembler::movzwl(Register dst, Address src) { // movzxw
1918   InstructionMark im(this);
1919   prefix(src, dst);
1920   emit_byte(0x0F);
1921   emit_byte(0xB7);
1922   emit_operand(dst, src);
1923 }
1924 
1925 void Assembler::movzwl(Register dst, Register src) { // movzxw
1926   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1927   emit_byte(0x0F);
1928   emit_byte(0xB7);
1929   emit_byte(0xC0 | encode);
1930 }
1931 
1932 void Assembler::mull(Address src) {
1933   InstructionMark im(this);
1934   prefix(src);
1935   emit_byte(0xF7);
1936   emit_operand(rsp, src);
1937 }
1938 
1939 void Assembler::mull(Register src) {
1940   int encode = prefix_and_encode(src->encoding());
1941   emit_byte(0xF7);
1942   emit_byte(0xE0 | encode);
1943 }
1944 
1945 void Assembler::mulsd(XMMRegister dst, Address src) {
1946   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1947   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
1948 }
1949 
1950 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
1951   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1952   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
1953 }
1954 
1955 void Assembler::mulss(XMMRegister dst, Address src) {
1956   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1957   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
1958 }
1959 
1960 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
1961   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1962   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
1963 }
1964 
1965 void Assembler::negl(Register dst) {
1966   int encode = prefix_and_encode(dst->encoding());
1967   emit_byte(0xF7);
1968   emit_byte(0xD8 | encode);
1969 }
1970 
1971 void Assembler::nop(int i) {
1972 #ifdef ASSERT
1973   assert(i > 0, " ");
1974   // The fancy nops aren't currently recognized by debuggers making it a
1975   // pain to disassemble code while debugging. If asserts are on clearly
1976   // speed is not an issue so simply use the single byte traditional nop
1977   // to do alignment.
1978 
1979   for (; i > 0 ; i--) emit_byte(0x90);
1980   return;
1981 
1982 #endif // ASSERT
1983 
1984   if (UseAddressNop && VM_Version::is_intel()) {
1985     //
1986     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
1987     //  1: 0x90
1988     //  2: 0x66 0x90
1989     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
1990     //  4: 0x0F 0x1F 0x40 0x00
1991     //  5: 0x0F 0x1F 0x44 0x00 0x00
1992     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
1993     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
1994     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1995     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1996     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1997     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1998 
1999     // The rest coding is Intel specific - don't use consecutive address nops
2000 
2001     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2002     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2003     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2004     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2005 
2006     while(i >= 15) {
2007       // For Intel don't generate consecutive addess nops (mix with regular nops)
2008       i -= 15;
2009       emit_byte(0x66);   // size prefix
2010       emit_byte(0x66);   // size prefix
2011       emit_byte(0x66);   // size prefix
2012       addr_nop_8();
2013       emit_byte(0x66);   // size prefix
2014       emit_byte(0x66);   // size prefix
2015       emit_byte(0x66);   // size prefix
2016       emit_byte(0x90);   // nop
2017     }
2018     switch (i) {
2019       case 14:
2020         emit_byte(0x66); // size prefix
2021       case 13:
2022         emit_byte(0x66); // size prefix
2023       case 12:
2024         addr_nop_8();
2025         emit_byte(0x66); // size prefix
2026         emit_byte(0x66); // size prefix
2027         emit_byte(0x66); // size prefix
2028         emit_byte(0x90); // nop
2029         break;
2030       case 11:
2031         emit_byte(0x66); // size prefix
2032       case 10:
2033         emit_byte(0x66); // size prefix
2034       case 9:
2035         emit_byte(0x66); // size prefix
2036       case 8:
2037         addr_nop_8();
2038         break;
2039       case 7:
2040         addr_nop_7();
2041         break;
2042       case 6:
2043         emit_byte(0x66); // size prefix
2044       case 5:
2045         addr_nop_5();
2046         break;
2047       case 4:
2048         addr_nop_4();
2049         break;
2050       case 3:
2051         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2052         emit_byte(0x66); // size prefix
2053       case 2:
2054         emit_byte(0x66); // size prefix
2055       case 1:
2056         emit_byte(0x90); // nop
2057         break;
2058       default:
2059         assert(i == 0, " ");
2060     }
2061     return;
2062   }
2063   if (UseAddressNop && VM_Version::is_amd()) {
2064     //
2065     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2066     //  1: 0x90
2067     //  2: 0x66 0x90
2068     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2069     //  4: 0x0F 0x1F 0x40 0x00
2070     //  5: 0x0F 0x1F 0x44 0x00 0x00
2071     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2072     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2073     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2074     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2075     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2076     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2077 
2078     // The rest coding is AMD specific - use consecutive address nops
2079 
2080     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2081     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2082     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2083     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2084     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2085     //     Size prefixes (0x66) are added for larger sizes
2086 
2087     while(i >= 22) {
2088       i -= 11;
2089       emit_byte(0x66); // size prefix
2090       emit_byte(0x66); // size prefix
2091       emit_byte(0x66); // size prefix
2092       addr_nop_8();
2093     }
2094     // Generate first nop for size between 21-12
2095     switch (i) {
2096       case 21:
2097         i -= 1;
2098         emit_byte(0x66); // size prefix
2099       case 20:
2100       case 19:
2101         i -= 1;
2102         emit_byte(0x66); // size prefix
2103       case 18:
2104       case 17:
2105         i -= 1;
2106         emit_byte(0x66); // size prefix
2107       case 16:
2108       case 15:
2109         i -= 8;
2110         addr_nop_8();
2111         break;
2112       case 14:
2113       case 13:
2114         i -= 7;
2115         addr_nop_7();
2116         break;
2117       case 12:
2118         i -= 6;
2119         emit_byte(0x66); // size prefix
2120         addr_nop_5();
2121         break;
2122       default:
2123         assert(i < 12, " ");
2124     }
2125 
2126     // Generate second nop for size between 11-1
2127     switch (i) {
2128       case 11:
2129         emit_byte(0x66); // size prefix
2130       case 10:
2131         emit_byte(0x66); // size prefix
2132       case 9:
2133         emit_byte(0x66); // size prefix
2134       case 8:
2135         addr_nop_8();
2136         break;
2137       case 7:
2138         addr_nop_7();
2139         break;
2140       case 6:
2141         emit_byte(0x66); // size prefix
2142       case 5:
2143         addr_nop_5();
2144         break;
2145       case 4:
2146         addr_nop_4();
2147         break;
2148       case 3:
2149         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2150         emit_byte(0x66); // size prefix
2151       case 2:
2152         emit_byte(0x66); // size prefix
2153       case 1:
2154         emit_byte(0x90); // nop
2155         break;
2156       default:
2157         assert(i == 0, " ");
2158     }
2159     return;
2160   }
2161 
2162   // Using nops with size prefixes "0x66 0x90".
2163   // From AMD Optimization Guide:
2164   //  1: 0x90
2165   //  2: 0x66 0x90
2166   //  3: 0x66 0x66 0x90
2167   //  4: 0x66 0x66 0x66 0x90
2168   //  5: 0x66 0x66 0x90 0x66 0x90
2169   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2170   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2171   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2172   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2173   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2174   //
2175   while(i > 12) {
2176     i -= 4;
2177     emit_byte(0x66); // size prefix
2178     emit_byte(0x66);
2179     emit_byte(0x66);
2180     emit_byte(0x90); // nop
2181   }
2182   // 1 - 12 nops
2183   if(i > 8) {
2184     if(i > 9) {
2185       i -= 1;
2186       emit_byte(0x66);
2187     }
2188     i -= 3;
2189     emit_byte(0x66);
2190     emit_byte(0x66);
2191     emit_byte(0x90);
2192   }
2193   // 1 - 8 nops
2194   if(i > 4) {
2195     if(i > 6) {
2196       i -= 1;
2197       emit_byte(0x66);
2198     }
2199     i -= 3;
2200     emit_byte(0x66);
2201     emit_byte(0x66);
2202     emit_byte(0x90);
2203   }
2204   switch (i) {
2205     case 4:
2206       emit_byte(0x66);
2207     case 3:
2208       emit_byte(0x66);
2209     case 2:
2210       emit_byte(0x66);
2211     case 1:
2212       emit_byte(0x90);
2213       break;
2214     default:
2215       assert(i == 0, " ");
2216   }
2217 }
2218 
2219 void Assembler::notl(Register dst) {
2220   int encode = prefix_and_encode(dst->encoding());
2221   emit_byte(0xF7);
2222   emit_byte(0xD0 | encode );
2223 }
2224 
2225 void Assembler::orl(Address dst, int32_t imm32) {
2226   InstructionMark im(this);
2227   prefix(dst);
2228   emit_arith_operand(0x81, rcx, dst, imm32);
2229 }
2230 
2231 void Assembler::orl(Register dst, int32_t imm32) {
2232   prefix(dst);
2233   emit_arith(0x81, 0xC8, dst, imm32);
2234 }
2235 
2236 void Assembler::orl(Register dst, Address src) {
2237   InstructionMark im(this);
2238   prefix(src, dst);
2239   emit_byte(0x0B);
2240   emit_operand(dst, src);
2241 }
2242 
2243 void Assembler::orl(Register dst, Register src) {
2244   (void) prefix_and_encode(dst->encoding(), src->encoding());
2245   emit_arith(0x0B, 0xC0, dst, src);
2246 }
2247 
2248 void Assembler::packuswb(XMMRegister dst, Address src) {
2249   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2250   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2251   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
2252 }
2253 
2254 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2255   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2256   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
2257 }
2258 
2259 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2260   assert(VM_Version::supports_sse4_2(), "");
2261   InstructionMark im(this);
2262   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2263   emit_byte(0x61);
2264   emit_operand(dst, src);
2265   emit_byte(imm8);
2266 }
2267 
2268 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2269   assert(VM_Version::supports_sse4_2(), "");
2270   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2271   emit_byte(0x61);
2272   emit_byte(0xC0 | encode);
2273   emit_byte(imm8);
2274 }
2275 
2276 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2277   assert(VM_Version::supports_sse4_1(), "");
2278   InstructionMark im(this);
2279   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2280   emit_byte(0x30);
2281   emit_operand(dst, src);
2282 }
2283 
2284 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2285   assert(VM_Version::supports_sse4_1(), "");
2286   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2287   emit_byte(0x30);
2288   emit_byte(0xC0 | encode);
2289 }
2290 
2291 // generic
2292 void Assembler::pop(Register dst) {
2293   int encode = prefix_and_encode(dst->encoding());
2294   emit_byte(0x58 | encode);
2295 }
2296 
2297 void Assembler::popcntl(Register dst, Address src) {
2298   assert(VM_Version::supports_popcnt(), "must support");
2299   InstructionMark im(this);
2300   emit_byte(0xF3);
2301   prefix(src, dst);
2302   emit_byte(0x0F);
2303   emit_byte(0xB8);
2304   emit_operand(dst, src);
2305 }
2306 
2307 void Assembler::popcntl(Register dst, Register src) {
2308   assert(VM_Version::supports_popcnt(), "must support");
2309   emit_byte(0xF3);
2310   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2311   emit_byte(0x0F);
2312   emit_byte(0xB8);
2313   emit_byte(0xC0 | encode);
2314 }
2315 
2316 void Assembler::popf() {
2317   emit_byte(0x9D);
2318 }
2319 
2320 #ifndef _LP64 // no 32bit push/pop on amd64
2321 void Assembler::popl(Address dst) {
2322   // NOTE: this will adjust stack by 8byte on 64bits
2323   InstructionMark im(this);
2324   prefix(dst);
2325   emit_byte(0x8F);
2326   emit_operand(rax, dst);
2327 }
2328 #endif
2329 
2330 void Assembler::prefetch_prefix(Address src) {
2331   prefix(src);
2332   emit_byte(0x0F);
2333 }
2334 
2335 void Assembler::prefetchnta(Address src) {
2336   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2337   InstructionMark im(this);
2338   prefetch_prefix(src);
2339   emit_byte(0x18);
2340   emit_operand(rax, src); // 0, src
2341 }
2342 
2343 void Assembler::prefetchr(Address src) {
2344   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2345   InstructionMark im(this);
2346   prefetch_prefix(src);
2347   emit_byte(0x0D);
2348   emit_operand(rax, src); // 0, src
2349 }
2350 
2351 void Assembler::prefetcht0(Address src) {
2352   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2353   InstructionMark im(this);
2354   prefetch_prefix(src);
2355   emit_byte(0x18);
2356   emit_operand(rcx, src); // 1, src
2357 }
2358 
2359 void Assembler::prefetcht1(Address src) {
2360   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2361   InstructionMark im(this);
2362   prefetch_prefix(src);
2363   emit_byte(0x18);
2364   emit_operand(rdx, src); // 2, src
2365 }
2366 
2367 void Assembler::prefetcht2(Address src) {
2368   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2369   InstructionMark im(this);
2370   prefetch_prefix(src);
2371   emit_byte(0x18);
2372   emit_operand(rbx, src); // 3, src
2373 }
2374 
2375 void Assembler::prefetchw(Address src) {
2376   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2377   InstructionMark im(this);
2378   prefetch_prefix(src);
2379   emit_byte(0x0D);
2380   emit_operand(rcx, src); // 1, src
2381 }
2382 
2383 void Assembler::prefix(Prefix p) {
2384   a_byte(p);
2385 }
2386 
2387 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
2388   assert(VM_Version::supports_ssse3(), "");
2389   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2390   emit_byte(0x00);
2391   emit_byte(0xC0 | encode);
2392 }
2393 
2394 void Assembler::pshufb(XMMRegister dst, Address src) {
2395   assert(VM_Version::supports_ssse3(), "");
2396   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2397   InstructionMark im(this);
2398   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2399   emit_byte(0x00);
2400   emit_operand(dst, src);
2401 }
2402 
2403 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
2404   assert(isByte(mode), "invalid value");
2405   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2406   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
2407   emit_byte(mode & 0xFF);
2408 
2409 }
2410 
2411 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
2412   assert(isByte(mode), "invalid value");
2413   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2414   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2415   InstructionMark im(this);
2416   simd_prefix(dst, src, VEX_SIMD_66);
2417   emit_byte(0x70);
2418   emit_operand(dst, src);
2419   emit_byte(mode & 0xFF);
2420 }
2421 
2422 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
2423   assert(isByte(mode), "invalid value");
2424   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2425   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
2426   emit_byte(mode & 0xFF);
2427 }
2428 
2429 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
2430   assert(isByte(mode), "invalid value");
2431   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2432   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2433   InstructionMark im(this);
2434   simd_prefix(dst, src, VEX_SIMD_F2);
2435   emit_byte(0x70);
2436   emit_operand(dst, src);
2437   emit_byte(mode & 0xFF);
2438 }
2439 
2440 void Assembler::psrldq(XMMRegister dst, int shift) {
2441   // Shift 128 bit value in xmm register by number of bytes.
2442   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2443   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
2444   emit_byte(0x73);
2445   emit_byte(0xC0 | encode);
2446   emit_byte(shift);
2447 }
2448 
2449 void Assembler::ptest(XMMRegister dst, Address src) {
2450   assert(VM_Version::supports_sse4_1(), "");
2451   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2452   InstructionMark im(this);
2453   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2454   emit_byte(0x17);
2455   emit_operand(dst, src);
2456 }
2457 
2458 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2459   assert(VM_Version::supports_sse4_1(), "");
2460   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2461   emit_byte(0x17);
2462   emit_byte(0xC0 | encode);
2463 }
2464 
2465 void Assembler::punpcklbw(XMMRegister dst, Address src) {
2466   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2467   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2468   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
2469 }
2470 
2471 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
2472   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2473   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
2474 }
2475 
2476 void Assembler::punpckldq(XMMRegister dst, Address src) {
2477   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2478   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2479   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
2480 }
2481 
2482 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
2483   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2484   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
2485 }
2486 
2487 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
2488   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2489   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
2490 }
2491 
2492 void Assembler::push(int32_t imm32) {
2493   // in 64bits we push 64bits onto the stack but only
2494   // take a 32bit immediate
2495   emit_byte(0x68);
2496   emit_long(imm32);
2497 }
2498 
2499 void Assembler::push(Register src) {
2500   int encode = prefix_and_encode(src->encoding());
2501 
2502   emit_byte(0x50 | encode);
2503 }
2504 
2505 void Assembler::pushf() {
2506   emit_byte(0x9C);
2507 }
2508 
2509 #ifndef _LP64 // no 32bit push/pop on amd64
2510 void Assembler::pushl(Address src) {
2511   // Note this will push 64bit on 64bit
2512   InstructionMark im(this);
2513   prefix(src);
2514   emit_byte(0xFF);
2515   emit_operand(rsi, src);
2516 }
2517 #endif
2518 
2519 void Assembler::rcll(Register dst, int imm8) {
2520   assert(isShiftCount(imm8), "illegal shift count");
2521   int encode = prefix_and_encode(dst->encoding());
2522   if (imm8 == 1) {
2523     emit_byte(0xD1);
2524     emit_byte(0xD0 | encode);
2525   } else {
2526     emit_byte(0xC1);
2527     emit_byte(0xD0 | encode);
2528     emit_byte(imm8);
2529   }
2530 }
2531 
2532 // copies data from [esi] to [edi] using rcx pointer sized words
2533 // generic
2534 void Assembler::rep_mov() {
2535   emit_byte(0xF3);
2536   // MOVSQ
2537   LP64_ONLY(prefix(REX_W));
2538   emit_byte(0xA5);
2539 }
2540 
2541 // sets rcx pointer sized words with rax, value at [edi]
2542 // generic
2543 void Assembler::rep_set() { // rep_set
2544   emit_byte(0xF3);
2545   // STOSQ
2546   LP64_ONLY(prefix(REX_W));
2547   emit_byte(0xAB);
2548 }
2549 
2550 // scans rcx pointer sized words at [edi] for occurance of rax,
2551 // generic
2552 void Assembler::repne_scan() { // repne_scan
2553   emit_byte(0xF2);
2554   // SCASQ
2555   LP64_ONLY(prefix(REX_W));
2556   emit_byte(0xAF);
2557 }
2558 
2559 #ifdef _LP64
2560 // scans rcx 4 byte words at [edi] for occurance of rax,
2561 // generic
2562 void Assembler::repne_scanl() { // repne_scan
2563   emit_byte(0xF2);
2564   // SCASL
2565   emit_byte(0xAF);
2566 }
2567 #endif
2568 
2569 void Assembler::ret(int imm16) {
2570   if (imm16 == 0) {
2571     emit_byte(0xC3);
2572   } else {
2573     emit_byte(0xC2);
2574     emit_word(imm16);
2575   }
2576 }
2577 
2578 void Assembler::sahf() {
2579 #ifdef _LP64
2580   // Not supported in 64bit mode
2581   ShouldNotReachHere();
2582 #endif
2583   emit_byte(0x9E);
2584 }
2585 
2586 void Assembler::sarl(Register dst, int imm8) {
2587   int encode = prefix_and_encode(dst->encoding());
2588   assert(isShiftCount(imm8), "illegal shift count");
2589   if (imm8 == 1) {
2590     emit_byte(0xD1);
2591     emit_byte(0xF8 | encode);
2592   } else {
2593     emit_byte(0xC1);
2594     emit_byte(0xF8 | encode);
2595     emit_byte(imm8);
2596   }
2597 }
2598 
2599 void Assembler::sarl(Register dst) {
2600   int encode = prefix_and_encode(dst->encoding());
2601   emit_byte(0xD3);
2602   emit_byte(0xF8 | encode);
2603 }
2604 
2605 void Assembler::sbbl(Address dst, int32_t imm32) {
2606   InstructionMark im(this);
2607   prefix(dst);
2608   emit_arith_operand(0x81, rbx, dst, imm32);
2609 }
2610 
2611 void Assembler::sbbl(Register dst, int32_t imm32) {
2612   prefix(dst);
2613   emit_arith(0x81, 0xD8, dst, imm32);
2614 }
2615 
2616 
2617 void Assembler::sbbl(Register dst, Address src) {
2618   InstructionMark im(this);
2619   prefix(src, dst);
2620   emit_byte(0x1B);
2621   emit_operand(dst, src);
2622 }
2623 
2624 void Assembler::sbbl(Register dst, Register src) {
2625   (void) prefix_and_encode(dst->encoding(), src->encoding());
2626   emit_arith(0x1B, 0xC0, dst, src);
2627 }
2628 
2629 void Assembler::setb(Condition cc, Register dst) {
2630   assert(0 <= cc && cc < 16, "illegal cc");
2631   int encode = prefix_and_encode(dst->encoding(), true);
2632   emit_byte(0x0F);
2633   emit_byte(0x90 | cc);
2634   emit_byte(0xC0 | encode);
2635 }
2636 
2637 void Assembler::shll(Register dst, int imm8) {
2638   assert(isShiftCount(imm8), "illegal shift count");
2639   int encode = prefix_and_encode(dst->encoding());
2640   if (imm8 == 1 ) {
2641     emit_byte(0xD1);
2642     emit_byte(0xE0 | encode);
2643   } else {
2644     emit_byte(0xC1);
2645     emit_byte(0xE0 | encode);
2646     emit_byte(imm8);
2647   }
2648 }
2649 
2650 void Assembler::shll(Register dst) {
2651   int encode = prefix_and_encode(dst->encoding());
2652   emit_byte(0xD3);
2653   emit_byte(0xE0 | encode);
2654 }
2655 
2656 void Assembler::shrl(Register dst, int imm8) {
2657   assert(isShiftCount(imm8), "illegal shift count");
2658   int encode = prefix_and_encode(dst->encoding());
2659   emit_byte(0xC1);
2660   emit_byte(0xE8 | encode);
2661   emit_byte(imm8);
2662 }
2663 
2664 void Assembler::shrl(Register dst) {
2665   int encode = prefix_and_encode(dst->encoding());
2666   emit_byte(0xD3);
2667   emit_byte(0xE8 | encode);
2668 }
2669 
2670 // copies a single word from [esi] to [edi]
2671 void Assembler::smovl() {
2672   emit_byte(0xA5);
2673 }
2674 
2675 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
2676   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2677   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2678 }
2679 
2680 void Assembler::sqrtsd(XMMRegister dst, Address src) {
2681   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2682   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2683 }
2684 
2685 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
2686   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2687   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2688 }
2689 
2690 void Assembler::std() {
2691   emit_byte(0xfd);
2692 }
2693 
2694 void Assembler::sqrtss(XMMRegister dst, Address src) {
2695   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2696   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2697 }
2698 
2699 void Assembler::stmxcsr( Address dst) {
2700   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2701   InstructionMark im(this);
2702   prefix(dst);
2703   emit_byte(0x0F);
2704   emit_byte(0xAE);
2705   emit_operand(as_Register(3), dst);
2706 }
2707 
2708 void Assembler::subl(Address dst, int32_t imm32) {
2709   InstructionMark im(this);
2710   prefix(dst);
2711   emit_arith_operand(0x81, rbp, dst, imm32);
2712 }
2713 
2714 void Assembler::subl(Address dst, Register src) {
2715   InstructionMark im(this);
2716   prefix(dst, src);
2717   emit_byte(0x29);
2718   emit_operand(src, dst);
2719 }
2720 
2721 void Assembler::subl(Register dst, int32_t imm32) {
2722   prefix(dst);
2723   emit_arith(0x81, 0xE8, dst, imm32);
2724 }
2725 
2726 // Force generation of a 4 byte immediate value even if it fits into 8bit
2727 void Assembler::subl_imm32(Register dst, int32_t imm32) {
2728   prefix(dst);
2729   emit_arith_imm32(0x81, 0xE8, dst, imm32);
2730 }
2731 
2732 void Assembler::subl(Register dst, Address src) {
2733   InstructionMark im(this);
2734   prefix(src, dst);
2735   emit_byte(0x2B);
2736   emit_operand(dst, src);
2737 }
2738 
2739 void Assembler::subl(Register dst, Register src) {
2740   (void) prefix_and_encode(dst->encoding(), src->encoding());
2741   emit_arith(0x2B, 0xC0, dst, src);
2742 }
2743 
2744 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
2745   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2746   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
2747 }
2748 
2749 void Assembler::subsd(XMMRegister dst, Address src) {
2750   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2751   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
2752 }
2753 
2754 void Assembler::subss(XMMRegister dst, XMMRegister src) {
2755   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2756   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
2757 }
2758 
2759 void Assembler::subss(XMMRegister dst, Address src) {
2760   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2761   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
2762 }
2763 
2764 void Assembler::testb(Register dst, int imm8) {
2765   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2766   (void) prefix_and_encode(dst->encoding(), true);
2767   emit_arith_b(0xF6, 0xC0, dst, imm8);
2768 }
2769 
2770 void Assembler::testl(Register dst, int32_t imm32) {
2771   // not using emit_arith because test
2772   // doesn't support sign-extension of
2773   // 8bit operands
2774   int encode = dst->encoding();
2775   if (encode == 0) {
2776     emit_byte(0xA9);
2777   } else {
2778     encode = prefix_and_encode(encode);
2779     emit_byte(0xF7);
2780     emit_byte(0xC0 | encode);
2781   }
2782   emit_long(imm32);
2783 }
2784 
2785 void Assembler::testl(Register dst, Register src) {
2786   (void) prefix_and_encode(dst->encoding(), src->encoding());
2787   emit_arith(0x85, 0xC0, dst, src);
2788 }
2789 
2790 void Assembler::testl(Register dst, Address  src) {
2791   InstructionMark im(this);
2792   prefix(src, dst);
2793   emit_byte(0x85);
2794   emit_operand(dst, src);
2795 }
2796 
2797 void Assembler::ucomisd(XMMRegister dst, Address src) {
2798   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2799   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
2800 }
2801 
2802 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
2803   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2804   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
2805 }
2806 
2807 void Assembler::ucomiss(XMMRegister dst, Address src) {
2808   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2809   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2810 }
2811 
2812 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
2813   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2814   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2815 }
2816 
2817 
2818 void Assembler::xaddl(Address dst, Register src) {
2819   InstructionMark im(this);
2820   prefix(dst, src);
2821   emit_byte(0x0F);
2822   emit_byte(0xC1);
2823   emit_operand(src, dst);
2824 }
2825 
2826 void Assembler::xchgl(Register dst, Address src) { // xchg
2827   InstructionMark im(this);
2828   prefix(src, dst);
2829   emit_byte(0x87);
2830   emit_operand(dst, src);
2831 }
2832 
2833 void Assembler::xchgl(Register dst, Register src) {
2834   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2835   emit_byte(0x87);
2836   emit_byte(0xc0 | encode);
2837 }
2838 
2839 void Assembler::xgetbv() {
2840   emit_byte(0x0F);
2841   emit_byte(0x01);
2842   emit_byte(0xD0);
2843 }
2844 
2845 void Assembler::xorl(Register dst, int32_t imm32) {
2846   prefix(dst);
2847   emit_arith(0x81, 0xF0, dst, imm32);
2848 }
2849 
2850 void Assembler::xorl(Register dst, Address src) {
2851   InstructionMark im(this);
2852   prefix(src, dst);
2853   emit_byte(0x33);
2854   emit_operand(dst, src);
2855 }
2856 
2857 void Assembler::xorl(Register dst, Register src) {
2858   (void) prefix_and_encode(dst->encoding(), src->encoding());
2859   emit_arith(0x33, 0xC0, dst, src);
2860 }
2861 
2862 
2863 // AVX 3-operands scalar float-point arithmetic instructions
2864 
2865 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
2866   assert(VM_Version::supports_avx(), "");
2867   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2868 }
2869 
2870 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2871   assert(VM_Version::supports_avx(), "");
2872   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2873 }
2874 
2875 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
2876   assert(VM_Version::supports_avx(), "");
2877   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2878 }
2879 
2880 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2881   assert(VM_Version::supports_avx(), "");
2882   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2883 }
2884 
2885 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
2886   assert(VM_Version::supports_avx(), "");
2887   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2888 }
2889 
2890 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2891   assert(VM_Version::supports_avx(), "");
2892   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2893 }
2894 
2895 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
2896   assert(VM_Version::supports_avx(), "");
2897   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2898 }
2899 
2900 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2901   assert(VM_Version::supports_avx(), "");
2902   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2903 }
2904 
2905 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
2906   assert(VM_Version::supports_avx(), "");
2907   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2908 }
2909 
2910 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2911   assert(VM_Version::supports_avx(), "");
2912   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2913 }
2914 
2915 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
2916   assert(VM_Version::supports_avx(), "");
2917   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2918 }
2919 
2920 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2921   assert(VM_Version::supports_avx(), "");
2922   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2923 }
2924 
2925 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
2926   assert(VM_Version::supports_avx(), "");
2927   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2928 }
2929 
2930 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2931   assert(VM_Version::supports_avx(), "");
2932   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2933 }
2934 
2935 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
2936   assert(VM_Version::supports_avx(), "");
2937   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2938 }
2939 
2940 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2941   assert(VM_Version::supports_avx(), "");
2942   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2943 }
2944 
2945 //====================VECTOR ARITHMETIC=====================================
2946 
2947 // Float-point vector arithmetic
2948 
2949 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
2950   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2951   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
2952 }
2953 
2954 void Assembler::addps(XMMRegister dst, XMMRegister src) {
2955   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2956   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
2957 }
2958 
2959 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
2960   assert(VM_Version::supports_avx(), "");
2961   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
2962 }
2963 
2964 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
2965   assert(VM_Version::supports_avx(), "");
2966   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
2967 }
2968 
2969 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
2970   assert(VM_Version::supports_avx(), "");
2971   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
2972 }
2973 
2974 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
2975   assert(VM_Version::supports_avx(), "");
2976   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
2977 }
2978 
2979 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
2980   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2981   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
2982 }
2983 
2984 void Assembler::subps(XMMRegister dst, XMMRegister src) {
2985   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2986   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
2987 }
2988 
2989 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
2990   assert(VM_Version::supports_avx(), "");
2991   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
2992 }
2993 
2994 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
2995   assert(VM_Version::supports_avx(), "");
2996   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
2997 }
2998 
2999 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3000   assert(VM_Version::supports_avx(), "");
3001   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
3002 }
3003 
3004 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3005   assert(VM_Version::supports_avx(), "");
3006   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
3007 }
3008 
3009 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
3010   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3011   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3012 }
3013 
3014 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
3015   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3016   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
3017 }
3018 
3019 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3020   assert(VM_Version::supports_avx(), "");
3021   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
3022 }
3023 
3024 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3025   assert(VM_Version::supports_avx(), "");
3026   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
3027 }
3028 
3029 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3030   assert(VM_Version::supports_avx(), "");
3031   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
3032 }
3033 
3034 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3035   assert(VM_Version::supports_avx(), "");
3036   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
3037 }
3038 
3039 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
3040   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3041   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
3042 }
3043 
3044 void Assembler::divps(XMMRegister dst, XMMRegister src) {
3045   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3046   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
3047 }
3048 
3049 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3050   assert(VM_Version::supports_avx(), "");
3051   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
3052 }
3053 
3054 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3055   assert(VM_Version::supports_avx(), "");
3056   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
3057 }
3058 
3059 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3060   assert(VM_Version::supports_avx(), "");
3061   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
3062 }
3063 
3064 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3065   assert(VM_Version::supports_avx(), "");
3066   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
3067 }
3068 
3069 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
3070   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3071   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
3072 }
3073 
3074 void Assembler::andps(XMMRegister dst, XMMRegister src) {
3075   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3076   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
3077 }
3078 
3079 void Assembler::andps(XMMRegister dst, Address src) {
3080   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3081   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
3082 }
3083 
3084 void Assembler::andpd(XMMRegister dst, Address src) {
3085   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3086   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
3087 }
3088 
3089 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3090   assert(VM_Version::supports_avx(), "");
3091   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
3092 }
3093 
3094 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3095   assert(VM_Version::supports_avx(), "");
3096   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
3097 }
3098 
3099 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3100   assert(VM_Version::supports_avx(), "");
3101   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
3102 }
3103 
3104 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3105   assert(VM_Version::supports_avx(), "");
3106   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
3107 }
3108 
3109 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
3110   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3111   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
3112 }
3113 
3114 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
3115   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3116   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
3117 }
3118 
3119 void Assembler::xorpd(XMMRegister dst, Address src) {
3120   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3121   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
3122 }
3123 
3124 void Assembler::xorps(XMMRegister dst, Address src) {
3125   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3126   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
3127 }
3128 
3129 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3130   assert(VM_Version::supports_avx(), "");
3131   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
3132 }
3133 
3134 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3135   assert(VM_Version::supports_avx(), "");
3136   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
3137 }
3138 
3139 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3140   assert(VM_Version::supports_avx(), "");
3141   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
3142 }
3143 
3144 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3145   assert(VM_Version::supports_avx(), "");
3146   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
3147 }
3148 
3149 
3150 // Integer vector arithmetic
3151 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
3152   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3153   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
3154 }
3155 
3156 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
3157   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3158   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
3159 }
3160 
3161 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
3162   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3163   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
3164 }
3165 
3166 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
3167   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3168   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
3169 }
3170 
3171 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3172   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3173   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
3174 }
3175 
3176 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3177   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3178   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
3179 }
3180 
3181 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3182   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3183   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
3184 }
3185 
3186 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3187   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3188   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
3189 }
3190 
3191 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3192   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3193   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
3194 }
3195 
3196 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3197   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3198   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
3199 }
3200 
3201 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3202   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3203   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
3204 }
3205 
3206 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3207   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3208   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
3209 }
3210 
3211 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
3212   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3213   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
3214 }
3215 
3216 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
3217   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3218   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
3219 }
3220 
3221 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
3222   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3223   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
3224 }
3225 
3226 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
3227   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3228   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
3229 }
3230 
3231 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3232   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3233   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
3234 }
3235 
3236 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3237   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3238   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
3239 }
3240 
3241 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3242   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3243   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
3244 }
3245 
3246 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3247   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3248   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
3249 }
3250 
3251 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3252   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3253   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
3254 }
3255 
3256 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3257   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3258   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
3259 }
3260 
3261 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3262   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3263   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
3264 }
3265 
3266 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3267   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3268   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
3269 }
3270 
3271 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
3272   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3273   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
3274 }
3275 
3276 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
3277   assert(VM_Version::supports_sse4_1(), "");
3278   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
3279   emit_byte(0x40);
3280   emit_byte(0xC0 | encode);
3281 }
3282 
3283 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3284   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3285   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
3286 }
3287 
3288 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3289   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3290   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3291   emit_byte(0x40);
3292   emit_byte(0xC0 | encode);
3293 }
3294 
3295 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3296   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3297   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
3298 }
3299 
3300 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3301   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3302   InstructionMark im(this);
3303   int dst_enc = dst->encoding();
3304   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3305   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
3306   emit_byte(0x40);
3307   emit_operand(dst, src);
3308 }
3309 
3310 // Shift packed integers left by specified number of bits.
3311 void Assembler::psllw(XMMRegister dst, int shift) {
3312   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3313   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
3314   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3315   emit_byte(0x71);
3316   emit_byte(0xC0 | encode);
3317   emit_byte(shift & 0xFF);
3318 }
3319 
3320 void Assembler::pslld(XMMRegister dst, int shift) {
3321   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3322   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
3323   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3324   emit_byte(0x72);
3325   emit_byte(0xC0 | encode);
3326   emit_byte(shift & 0xFF);
3327 }
3328 
3329 void Assembler::psllq(XMMRegister dst, int shift) {
3330   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3331   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
3332   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3333   emit_byte(0x73);
3334   emit_byte(0xC0 | encode);
3335   emit_byte(shift & 0xFF);
3336 }
3337 
3338 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
3339   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3340   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
3341 }
3342 
3343 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
3344   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3345   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
3346 }
3347 
3348 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
3349   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3350   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
3351 }
3352 
3353 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3354   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3355   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
3356   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
3357   emit_byte(shift & 0xFF);
3358 }
3359 
3360 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3361   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3362   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
3363   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
3364   emit_byte(shift & 0xFF);
3365 }
3366 
3367 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3368   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3369   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
3370   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
3371   emit_byte(shift & 0xFF);
3372 }
3373 
3374 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3375   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3376   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
3377 }
3378 
3379 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3380   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3381   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
3382 }
3383 
3384 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3385   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3386   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
3387 }
3388 
3389 // Shift packed integers logically right by specified number of bits.
3390 void Assembler::psrlw(XMMRegister dst, int shift) {
3391   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3392   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
3393   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3394   emit_byte(0x71);
3395   emit_byte(0xC0 | encode);
3396   emit_byte(shift & 0xFF);
3397 }
3398 
3399 void Assembler::psrld(XMMRegister dst, int shift) {
3400   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3401   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
3402   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3403   emit_byte(0x72);
3404   emit_byte(0xC0 | encode);
3405   emit_byte(shift & 0xFF);
3406 }
3407 
3408 void Assembler::psrlq(XMMRegister dst, int shift) {
3409   // Do not confuse it with psrldq SSE2 instruction which
3410   // shifts 128 bit value in xmm register by number of bytes.
3411   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3412   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3413   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3414   emit_byte(0x73);
3415   emit_byte(0xC0 | encode);
3416   emit_byte(shift & 0xFF);
3417 }
3418 
3419 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
3420   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3421   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
3422 }
3423 
3424 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
3425   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3426   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
3427 }
3428 
3429 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
3430   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3431   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
3432 }
3433 
3434 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3435   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3436   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3437   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
3438   emit_byte(shift & 0xFF);
3439 }
3440 
3441 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3442   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3443   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3444   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
3445   emit_byte(shift & 0xFF);
3446 }
3447 
3448 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3449   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3450   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3451   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
3452   emit_byte(shift & 0xFF);
3453 }
3454 
3455 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3456   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3457   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
3458 }
3459 
3460 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3461   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3462   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
3463 }
3464 
3465 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3466   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3467   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
3468 }
3469 
3470 // Shift packed integers arithmetically right by specified number of bits.
3471 void Assembler::psraw(XMMRegister dst, int shift) {
3472   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3473   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3474   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3475   emit_byte(0x71);
3476   emit_byte(0xC0 | encode);
3477   emit_byte(shift & 0xFF);
3478 }
3479 
3480 void Assembler::psrad(XMMRegister dst, int shift) {
3481   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3482   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
3483   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3484   emit_byte(0x72);
3485   emit_byte(0xC0 | encode);
3486   emit_byte(shift & 0xFF);
3487 }
3488 
3489 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
3490   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3491   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
3492 }
3493 
3494 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
3495   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3496   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
3497 }
3498 
3499 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3500   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3501   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3502   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
3503   emit_byte(shift & 0xFF);
3504 }
3505 
3506 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3507   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3508   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3509   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
3510   emit_byte(shift & 0xFF);
3511 }
3512 
3513 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3514   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3515   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
3516 }
3517 
3518 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3519   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3520   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
3521 }
3522 
3523 
3524 // AND packed integers
3525 void Assembler::pand(XMMRegister dst, XMMRegister src) {
3526   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3527   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
3528 }
3529 
3530 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3531   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3532   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
3533 }
3534 
3535 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3536   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3537   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
3538 }
3539 
3540 void Assembler::por(XMMRegister dst, XMMRegister src) {
3541   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3542   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
3543 }
3544 
3545 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3546   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3547   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
3548 }
3549 
3550 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3551   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3552   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
3553 }
3554 
3555 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
3556   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3557   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
3558 }
3559 
3560 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3561   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3562   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
3563 }
3564 
3565 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3566   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3567   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
3568 }
3569 
3570 
3571 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3572   assert(VM_Version::supports_avx(), "");
3573   bool vector256 = true;
3574   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3575   emit_byte(0x18);
3576   emit_byte(0xC0 | encode);
3577   // 0x00 - insert into lower 128 bits
3578   // 0x01 - insert into upper 128 bits
3579   emit_byte(0x01);
3580 }
3581 
3582 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
3583   assert(VM_Version::supports_avx(), "");
3584   InstructionMark im(this);
3585   bool vector256 = true;
3586   assert(dst != xnoreg, "sanity");
3587   int dst_enc = dst->encoding();
3588   // swap src<->dst for encoding
3589   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3590   emit_byte(0x18);
3591   emit_operand(dst, src);
3592   // 0x01 - insert into upper 128 bits
3593   emit_byte(0x01);
3594 }
3595 
3596 void Assembler::vextractf128h(Address dst, XMMRegister src) {
3597   assert(VM_Version::supports_avx(), "");
3598   InstructionMark im(this);
3599   bool vector256 = true;
3600   assert(src != xnoreg, "sanity");
3601   int src_enc = src->encoding();
3602   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3603   emit_byte(0x19);
3604   emit_operand(src, dst);
3605   // 0x01 - extract from upper 128 bits
3606   emit_byte(0x01);
3607 }
3608 
3609 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3610   assert(VM_Version::supports_avx2(), "");
3611   bool vector256 = true;
3612   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3613   emit_byte(0x38);
3614   emit_byte(0xC0 | encode);
3615   // 0x00 - insert into lower 128 bits
3616   // 0x01 - insert into upper 128 bits
3617   emit_byte(0x01);
3618 }
3619 
3620 void Assembler::vinserti128h(XMMRegister dst, Address src) {
3621   assert(VM_Version::supports_avx2(), "");
3622   InstructionMark im(this);
3623   bool vector256 = true;
3624   assert(dst != xnoreg, "sanity");
3625   int dst_enc = dst->encoding();
3626   // swap src<->dst for encoding
3627   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3628   emit_byte(0x38);
3629   emit_operand(dst, src);
3630   // 0x01 - insert into upper 128 bits
3631   emit_byte(0x01);
3632 }
3633 
3634 void Assembler::vextracti128h(Address dst, XMMRegister src) {
3635   assert(VM_Version::supports_avx2(), "");
3636   InstructionMark im(this);
3637   bool vector256 = true;
3638   assert(src != xnoreg, "sanity");
3639   int src_enc = src->encoding();
3640   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3641   emit_byte(0x39);
3642   emit_operand(src, dst);
3643   // 0x01 - extract from upper 128 bits
3644   emit_byte(0x01);
3645 }
3646 
3647 void Assembler::vzeroupper() {
3648   assert(VM_Version::supports_avx(), "");
3649   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
3650   emit_byte(0x77);
3651 }
3652 
3653 
3654 #ifndef _LP64
3655 // 32bit only pieces of the assembler
3656 
3657 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
3658   // NO PREFIX AS NEVER 64BIT
3659   InstructionMark im(this);
3660   emit_byte(0x81);
3661   emit_byte(0xF8 | src1->encoding());
3662   emit_data(imm32, rspec, 0);
3663 }
3664 
3665 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
3666   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
3667   InstructionMark im(this);
3668   emit_byte(0x81);
3669   emit_operand(rdi, src1);
3670   emit_data(imm32, rspec, 0);
3671 }
3672 
3673 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
3674 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
3675 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
3676 void Assembler::cmpxchg8(Address adr) {
3677   InstructionMark im(this);
3678   emit_byte(0x0F);
3679   emit_byte(0xc7);
3680   emit_operand(rcx, adr);
3681 }
3682 
3683 void Assembler::decl(Register dst) {
3684   // Don't use it directly. Use MacroAssembler::decrementl() instead.
3685  emit_byte(0x48 | dst->encoding());
3686 }
3687 
3688 #endif // _LP64
3689 
3690 // 64bit typically doesn't use the x87 but needs to for the trig funcs
3691 
3692 void Assembler::fabs() {
3693   emit_byte(0xD9);
3694   emit_byte(0xE1);
3695 }
3696 
3697 void Assembler::fadd(int i) {
3698   emit_farith(0xD8, 0xC0, i);
3699 }
3700 
3701 void Assembler::fadd_d(Address src) {
3702   InstructionMark im(this);
3703   emit_byte(0xDC);
3704   emit_operand32(rax, src);
3705 }
3706 
3707 void Assembler::fadd_s(Address src) {
3708   InstructionMark im(this);
3709   emit_byte(0xD8);
3710   emit_operand32(rax, src);
3711 }
3712 
3713 void Assembler::fadda(int i) {
3714   emit_farith(0xDC, 0xC0, i);
3715 }
3716 
3717 void Assembler::faddp(int i) {
3718   emit_farith(0xDE, 0xC0, i);
3719 }
3720 
3721 void Assembler::fchs() {
3722   emit_byte(0xD9);
3723   emit_byte(0xE0);
3724 }
3725 
3726 void Assembler::fcom(int i) {
3727   emit_farith(0xD8, 0xD0, i);
3728 }
3729 
3730 void Assembler::fcomp(int i) {
3731   emit_farith(0xD8, 0xD8, i);
3732 }
3733 
3734 void Assembler::fcomp_d(Address src) {
3735   InstructionMark im(this);
3736   emit_byte(0xDC);
3737   emit_operand32(rbx, src);
3738 }
3739 
3740 void Assembler::fcomp_s(Address src) {
3741   InstructionMark im(this);
3742   emit_byte(0xD8);
3743   emit_operand32(rbx, src);
3744 }
3745 
3746 void Assembler::fcompp() {
3747   emit_byte(0xDE);
3748   emit_byte(0xD9);
3749 }
3750 
3751 void Assembler::fcos() {
3752   emit_byte(0xD9);
3753   emit_byte(0xFF);
3754 }
3755 
3756 void Assembler::fdecstp() {
3757   emit_byte(0xD9);
3758   emit_byte(0xF6);
3759 }
3760 
3761 void Assembler::fdiv(int i) {
3762   emit_farith(0xD8, 0xF0, i);
3763 }
3764 
3765 void Assembler::fdiv_d(Address src) {
3766   InstructionMark im(this);
3767   emit_byte(0xDC);
3768   emit_operand32(rsi, src);
3769 }
3770 
3771 void Assembler::fdiv_s(Address src) {
3772   InstructionMark im(this);
3773   emit_byte(0xD8);
3774   emit_operand32(rsi, src);
3775 }
3776 
3777 void Assembler::fdiva(int i) {
3778   emit_farith(0xDC, 0xF8, i);
3779 }
3780 
3781 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
3782 //       is erroneous for some of the floating-point instructions below.
3783 
3784 void Assembler::fdivp(int i) {
3785   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
3786 }
3787 
3788 void Assembler::fdivr(int i) {
3789   emit_farith(0xD8, 0xF8, i);
3790 }
3791 
3792 void Assembler::fdivr_d(Address src) {
3793   InstructionMark im(this);
3794   emit_byte(0xDC);
3795   emit_operand32(rdi, src);
3796 }
3797 
3798 void Assembler::fdivr_s(Address src) {
3799   InstructionMark im(this);
3800   emit_byte(0xD8);
3801   emit_operand32(rdi, src);
3802 }
3803 
3804 void Assembler::fdivra(int i) {
3805   emit_farith(0xDC, 0xF0, i);
3806 }
3807 
3808 void Assembler::fdivrp(int i) {
3809   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
3810 }
3811 
3812 void Assembler::ffree(int i) {
3813   emit_farith(0xDD, 0xC0, i);
3814 }
3815 
3816 void Assembler::fild_d(Address adr) {
3817   InstructionMark im(this);
3818   emit_byte(0xDF);
3819   emit_operand32(rbp, adr);
3820 }
3821 
3822 void Assembler::fild_s(Address adr) {
3823   InstructionMark im(this);
3824   emit_byte(0xDB);
3825   emit_operand32(rax, adr);
3826 }
3827 
3828 void Assembler::fincstp() {
3829   emit_byte(0xD9);
3830   emit_byte(0xF7);
3831 }
3832 
3833 void Assembler::finit() {
3834   emit_byte(0x9B);
3835   emit_byte(0xDB);
3836   emit_byte(0xE3);
3837 }
3838 
3839 void Assembler::fist_s(Address adr) {
3840   InstructionMark im(this);
3841   emit_byte(0xDB);
3842   emit_operand32(rdx, adr);
3843 }
3844 
3845 void Assembler::fistp_d(Address adr) {
3846   InstructionMark im(this);
3847   emit_byte(0xDF);
3848   emit_operand32(rdi, adr);
3849 }
3850 
3851 void Assembler::fistp_s(Address adr) {
3852   InstructionMark im(this);
3853   emit_byte(0xDB);
3854   emit_operand32(rbx, adr);
3855 }
3856 
3857 void Assembler::fld1() {
3858   emit_byte(0xD9);
3859   emit_byte(0xE8);
3860 }
3861 
3862 void Assembler::fld_d(Address adr) {
3863   InstructionMark im(this);
3864   emit_byte(0xDD);
3865   emit_operand32(rax, adr);
3866 }
3867 
3868 void Assembler::fld_s(Address adr) {
3869   InstructionMark im(this);
3870   emit_byte(0xD9);
3871   emit_operand32(rax, adr);
3872 }
3873 
3874 
3875 void Assembler::fld_s(int index) {
3876   emit_farith(0xD9, 0xC0, index);
3877 }
3878 
3879 void Assembler::fld_x(Address adr) {
3880   InstructionMark im(this);
3881   emit_byte(0xDB);
3882   emit_operand32(rbp, adr);
3883 }
3884 
3885 void Assembler::fldcw(Address src) {
3886   InstructionMark im(this);
3887   emit_byte(0xd9);
3888   emit_operand32(rbp, src);
3889 }
3890 
3891 void Assembler::fldenv(Address src) {
3892   InstructionMark im(this);
3893   emit_byte(0xD9);
3894   emit_operand32(rsp, src);
3895 }
3896 
3897 void Assembler::fldlg2() {
3898   emit_byte(0xD9);
3899   emit_byte(0xEC);
3900 }
3901 
3902 void Assembler::fldln2() {
3903   emit_byte(0xD9);
3904   emit_byte(0xED);
3905 }
3906 
3907 void Assembler::fldz() {
3908   emit_byte(0xD9);
3909   emit_byte(0xEE);
3910 }
3911 
3912 void Assembler::flog() {
3913   fldln2();
3914   fxch();
3915   fyl2x();
3916 }
3917 
3918 void Assembler::flog10() {
3919   fldlg2();
3920   fxch();
3921   fyl2x();
3922 }
3923 
3924 void Assembler::fmul(int i) {
3925   emit_farith(0xD8, 0xC8, i);
3926 }
3927 
3928 void Assembler::fmul_d(Address src) {
3929   InstructionMark im(this);
3930   emit_byte(0xDC);
3931   emit_operand32(rcx, src);
3932 }
3933 
3934 void Assembler::fmul_s(Address src) {
3935   InstructionMark im(this);
3936   emit_byte(0xD8);
3937   emit_operand32(rcx, src);
3938 }
3939 
3940 void Assembler::fmula(int i) {
3941   emit_farith(0xDC, 0xC8, i);
3942 }
3943 
3944 void Assembler::fmulp(int i) {
3945   emit_farith(0xDE, 0xC8, i);
3946 }
3947 
3948 void Assembler::fnsave(Address dst) {
3949   InstructionMark im(this);
3950   emit_byte(0xDD);
3951   emit_operand32(rsi, dst);
3952 }
3953 
3954 void Assembler::fnstcw(Address src) {
3955   InstructionMark im(this);
3956   emit_byte(0x9B);
3957   emit_byte(0xD9);
3958   emit_operand32(rdi, src);
3959 }
3960 
3961 void Assembler::fnstsw_ax() {
3962   emit_byte(0xdF);
3963   emit_byte(0xE0);
3964 }
3965 
3966 void Assembler::fprem() {
3967   emit_byte(0xD9);
3968   emit_byte(0xF8);
3969 }
3970 
3971 void Assembler::fprem1() {
3972   emit_byte(0xD9);
3973   emit_byte(0xF5);
3974 }
3975 
3976 void Assembler::frstor(Address src) {
3977   InstructionMark im(this);
3978   emit_byte(0xDD);
3979   emit_operand32(rsp, src);
3980 }
3981 
3982 void Assembler::fsin() {
3983   emit_byte(0xD9);
3984   emit_byte(0xFE);
3985 }
3986 
3987 void Assembler::fsqrt() {
3988   emit_byte(0xD9);
3989   emit_byte(0xFA);
3990 }
3991 
3992 void Assembler::fst_d(Address adr) {
3993   InstructionMark im(this);
3994   emit_byte(0xDD);
3995   emit_operand32(rdx, adr);
3996 }
3997 
3998 void Assembler::fst_s(Address adr) {
3999   InstructionMark im(this);
4000   emit_byte(0xD9);
4001   emit_operand32(rdx, adr);
4002 }
4003 
4004 void Assembler::fstp_d(Address adr) {
4005   InstructionMark im(this);
4006   emit_byte(0xDD);
4007   emit_operand32(rbx, adr);
4008 }
4009 
4010 void Assembler::fstp_d(int index) {
4011   emit_farith(0xDD, 0xD8, index);
4012 }
4013 
4014 void Assembler::fstp_s(Address adr) {
4015   InstructionMark im(this);
4016   emit_byte(0xD9);
4017   emit_operand32(rbx, adr);
4018 }
4019 
4020 void Assembler::fstp_x(Address adr) {
4021   InstructionMark im(this);
4022   emit_byte(0xDB);
4023   emit_operand32(rdi, adr);
4024 }
4025 
4026 void Assembler::fsub(int i) {
4027   emit_farith(0xD8, 0xE0, i);
4028 }
4029 
4030 void Assembler::fsub_d(Address src) {
4031   InstructionMark im(this);
4032   emit_byte(0xDC);
4033   emit_operand32(rsp, src);
4034 }
4035 
4036 void Assembler::fsub_s(Address src) {
4037   InstructionMark im(this);
4038   emit_byte(0xD8);
4039   emit_operand32(rsp, src);
4040 }
4041 
4042 void Assembler::fsuba(int i) {
4043   emit_farith(0xDC, 0xE8, i);
4044 }
4045 
4046 void Assembler::fsubp(int i) {
4047   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
4048 }
4049 
4050 void Assembler::fsubr(int i) {
4051   emit_farith(0xD8, 0xE8, i);
4052 }
4053 
4054 void Assembler::fsubr_d(Address src) {
4055   InstructionMark im(this);
4056   emit_byte(0xDC);
4057   emit_operand32(rbp, src);
4058 }
4059 
4060 void Assembler::fsubr_s(Address src) {
4061   InstructionMark im(this);
4062   emit_byte(0xD8);
4063   emit_operand32(rbp, src);
4064 }
4065 
4066 void Assembler::fsubra(int i) {
4067   emit_farith(0xDC, 0xE0, i);
4068 }
4069 
4070 void Assembler::fsubrp(int i) {
4071   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
4072 }
4073 
4074 void Assembler::ftan() {
4075   emit_byte(0xD9);
4076   emit_byte(0xF2);
4077   emit_byte(0xDD);
4078   emit_byte(0xD8);
4079 }
4080 
4081 void Assembler::ftst() {
4082   emit_byte(0xD9);
4083   emit_byte(0xE4);
4084 }
4085 
4086 void Assembler::fucomi(int i) {
4087   // make sure the instruction is supported (introduced for P6, together with cmov)
4088   guarantee(VM_Version::supports_cmov(), "illegal instruction");
4089   emit_farith(0xDB, 0xE8, i);
4090 }
4091 
4092 void Assembler::fucomip(int i) {
4093   // make sure the instruction is supported (introduced for P6, together with cmov)
4094   guarantee(VM_Version::supports_cmov(), "illegal instruction");
4095   emit_farith(0xDF, 0xE8, i);
4096 }
4097 
4098 void Assembler::fwait() {
4099   emit_byte(0x9B);
4100 }
4101 
4102 void Assembler::fxch(int i) {
4103   emit_farith(0xD9, 0xC8, i);
4104 }
4105 
4106 void Assembler::fyl2x() {
4107   emit_byte(0xD9);
4108   emit_byte(0xF1);
4109 }
4110 
4111 void Assembler::frndint() {
4112   emit_byte(0xD9);
4113   emit_byte(0xFC);
4114 }
4115 
4116 void Assembler::f2xm1() {
4117   emit_byte(0xD9);
4118   emit_byte(0xF0);
4119 }
4120 
4121 void Assembler::fldl2e() {
4122   emit_byte(0xD9);
4123   emit_byte(0xEA);
4124 }
4125 
4126 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
4127 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
4128 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
4129 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
4130 
4131 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
4132 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
4133   if (pre > 0) {
4134     emit_byte(simd_pre[pre]);
4135   }
4136   if (rex_w) {
4137     prefixq(adr, xreg);
4138   } else {
4139     prefix(adr, xreg);
4140   }
4141   if (opc > 0) {
4142     emit_byte(0x0F);
4143     int opc2 = simd_opc[opc];
4144     if (opc2 > 0) {
4145       emit_byte(opc2);
4146     }
4147   }
4148 }
4149 
4150 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
4151   if (pre > 0) {
4152     emit_byte(simd_pre[pre]);
4153   }
4154   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
4155                           prefix_and_encode(dst_enc, src_enc);
4156   if (opc > 0) {
4157     emit_byte(0x0F);
4158     int opc2 = simd_opc[opc];
4159     if (opc2 > 0) {
4160       emit_byte(opc2);
4161     }
4162   }
4163   return encode;
4164 }
4165 
4166 
4167 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
4168   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
4169     prefix(VEX_3bytes);
4170 
4171     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
4172     byte1 = (~byte1) & 0xE0;
4173     byte1 |= opc;
4174     a_byte(byte1);
4175 
4176     int byte2 = ((~nds_enc) & 0xf) << 3;
4177     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
4178     emit_byte(byte2);
4179   } else {
4180     prefix(VEX_2bytes);
4181 
4182     int byte1 = vex_r ? VEX_R : 0;
4183     byte1 = (~byte1) & 0x80;
4184     byte1 |= ((~nds_enc) & 0xf) << 3;
4185     byte1 |= (vector256 ? 4 : 0) | pre;
4186     emit_byte(byte1);
4187   }
4188 }
4189 
4190 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
4191   bool vex_r = (xreg_enc >= 8);
4192   bool vex_b = adr.base_needs_rex();
4193   bool vex_x = adr.index_needs_rex();
4194   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
4195 }
4196 
4197 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
4198   bool vex_r = (dst_enc >= 8);
4199   bool vex_b = (src_enc >= 8);
4200   bool vex_x = false;
4201   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
4202   return (((dst_enc & 7) << 3) | (src_enc & 7));
4203 }
4204 
4205 
4206 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
4207   if (UseAVX > 0) {
4208     int xreg_enc = xreg->encoding();
4209     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
4210     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
4211   } else {
4212     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
4213     rex_prefix(adr, xreg, pre, opc, rex_w);
4214   }
4215 }
4216 
4217 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
4218   int dst_enc = dst->encoding();
4219   int src_enc = src->encoding();
4220   if (UseAVX > 0) {
4221     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4222     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
4223   } else {
4224     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
4225     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
4226   }
4227 }
4228 
4229 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
4230   InstructionMark im(this);
4231   simd_prefix(dst, dst, src, pre);
4232   emit_byte(opcode);
4233   emit_operand(dst, src);
4234 }
4235 
4236 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
4237   int encode = simd_prefix_and_encode(dst, dst, src, pre);
4238   emit_byte(opcode);
4239   emit_byte(0xC0 | encode);
4240 }
4241 
4242 // Versions with no second source register (non-destructive source).
4243 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
4244   InstructionMark im(this);
4245   simd_prefix(dst, xnoreg, src, pre);
4246   emit_byte(opcode);
4247   emit_operand(dst, src);
4248 }
4249 
4250 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
4251   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
4252   emit_byte(opcode);
4253   emit_byte(0xC0 | encode);
4254 }
4255 
4256 // 3-operands AVX instructions
4257 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
4258                                Address src, VexSimdPrefix pre, bool vector256) {
4259   InstructionMark im(this);
4260   vex_prefix(dst, nds, src, pre, vector256);
4261   emit_byte(opcode);
4262   emit_operand(dst, src);
4263 }
4264 
4265 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
4266                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
4267   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
4268   emit_byte(opcode);
4269   emit_byte(0xC0 | encode);
4270 }
4271 
4272 #ifndef _LP64
4273 
4274 void Assembler::incl(Register dst) {
4275   // Don't use it directly. Use MacroAssembler::incrementl() instead.
4276   emit_byte(0x40 | dst->encoding());
4277 }
4278 
4279 void Assembler::lea(Register dst, Address src) {
4280   leal(dst, src);
4281 }
4282 
4283 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
4284   InstructionMark im(this);
4285   emit_byte(0xC7);
4286   emit_operand(rax, dst);
4287   emit_data((int)imm32, rspec, 0);
4288 }
4289 
4290 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
4291   InstructionMark im(this);
4292   int encode = prefix_and_encode(dst->encoding());
4293   emit_byte(0xB8 | encode);
4294   emit_data((int)imm32, rspec, 0);
4295 }
4296 
4297 void Assembler::popa() { // 32bit
4298   emit_byte(0x61);
4299 }
4300 
4301 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
4302   InstructionMark im(this);
4303   emit_byte(0x68);
4304   emit_data(imm32, rspec, 0);
4305 }
4306 
4307 void Assembler::pusha() { // 32bit
4308   emit_byte(0x60);
4309 }
4310 
4311 void Assembler::set_byte_if_not_zero(Register dst) {
4312   emit_byte(0x0F);
4313   emit_byte(0x95);
4314   emit_byte(0xE0 | dst->encoding());
4315 }
4316 
4317 void Assembler::shldl(Register dst, Register src) {
4318   emit_byte(0x0F);
4319   emit_byte(0xA5);
4320   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
4321 }
4322 
4323 void Assembler::shrdl(Register dst, Register src) {
4324   emit_byte(0x0F);
4325   emit_byte(0xAD);
4326   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
4327 }
4328 
4329 #else // LP64
4330 
4331 void Assembler::set_byte_if_not_zero(Register dst) {
4332   int enc = prefix_and_encode(dst->encoding(), true);
4333   emit_byte(0x0F);
4334   emit_byte(0x95);
4335   emit_byte(0xE0 | enc);
4336 }
4337 
4338 // 64bit only pieces of the assembler
4339 // This should only be used by 64bit instructions that can use rip-relative
4340 // it cannot be used by instructions that want an immediate value.
4341 
4342 bool Assembler::reachable(AddressLiteral adr) {
4343   int64_t disp;
4344   // None will force a 64bit literal to the code stream. Likely a placeholder
4345   // for something that will be patched later and we need to certain it will
4346   // always be reachable.
4347   if (adr.reloc() == relocInfo::none) {
4348     return false;
4349   }
4350   if (adr.reloc() == relocInfo::internal_word_type) {
4351     // This should be rip relative and easily reachable.
4352     return true;
4353   }
4354   if (adr.reloc() == relocInfo::virtual_call_type ||
4355       adr.reloc() == relocInfo::opt_virtual_call_type ||
4356       adr.reloc() == relocInfo::static_call_type ||
4357       adr.reloc() == relocInfo::static_stub_type ) {
4358     // This should be rip relative within the code cache and easily
4359     // reachable until we get huge code caches. (At which point
4360     // ic code is going to have issues).
4361     return true;
4362   }
4363   if (adr.reloc() != relocInfo::external_word_type &&
4364       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
4365       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
4366       adr.reloc() != relocInfo::runtime_call_type ) {
4367     return false;
4368   }
4369 
4370   // Stress the correction code
4371   if (ForceUnreachable) {
4372     // Must be runtimecall reloc, see if it is in the codecache
4373     // Flipping stuff in the codecache to be unreachable causes issues
4374     // with things like inline caches where the additional instructions
4375     // are not handled.
4376     if (CodeCache::find_blob(adr._target) == NULL) {
4377       return false;
4378     }
4379   }
4380   // For external_word_type/runtime_call_type if it is reachable from where we
4381   // are now (possibly a temp buffer) and where we might end up
4382   // anywhere in the codeCache then we are always reachable.
4383   // This would have to change if we ever save/restore shared code
4384   // to be more pessimistic.
4385   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
4386   if (!is_simm32(disp)) return false;
4387   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
4388   if (!is_simm32(disp)) return false;
4389 
4390   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
4391 
4392   // Because rip relative is a disp + address_of_next_instruction and we
4393   // don't know the value of address_of_next_instruction we apply a fudge factor
4394   // to make sure we will be ok no matter the size of the instruction we get placed into.
4395   // We don't have to fudge the checks above here because they are already worst case.
4396 
4397   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
4398   // + 4 because better safe than sorry.
4399   const int fudge = 12 + 4;
4400   if (disp < 0) {
4401     disp -= fudge;
4402   } else {
4403     disp += fudge;
4404   }
4405   return is_simm32(disp);
4406 }
4407 
4408 // Check if the polling page is not reachable from the code cache using rip-relative
4409 // addressing.
4410 bool Assembler::is_polling_page_far() {
4411   intptr_t addr = (intptr_t)os::get_polling_page();
4412   return ForceUnreachable ||
4413          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
4414          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
4415 }
4416 
4417 void Assembler::emit_data64(jlong data,
4418                             relocInfo::relocType rtype,
4419                             int format) {
4420   if (rtype == relocInfo::none) {
4421     emit_int64(data);
4422   } else {
4423     emit_data64(data, Relocation::spec_simple(rtype), format);
4424   }
4425 }
4426 
4427 void Assembler::emit_data64(jlong data,
4428                             RelocationHolder const& rspec,
4429                             int format) {
4430   assert(imm_operand == 0, "default format must be immediate in this file");
4431   assert(imm_operand == format, "must be immediate");
4432   assert(inst_mark() != NULL, "must be inside InstructionMark");
4433   // Do not use AbstractAssembler::relocate, which is not intended for
4434   // embedded words.  Instead, relocate to the enclosing instruction.
4435   code_section()->relocate(inst_mark(), rspec, format);
4436 #ifdef ASSERT
4437   check_relocation(rspec, format);
4438 #endif
4439   emit_int64(data);
4440 }
4441 
4442 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
4443   if (reg_enc >= 8) {
4444     prefix(REX_B);
4445     reg_enc -= 8;
4446   } else if (byteinst && reg_enc >= 4) {
4447     prefix(REX);
4448   }
4449   return reg_enc;
4450 }
4451 
4452 int Assembler::prefixq_and_encode(int reg_enc) {
4453   if (reg_enc < 8) {
4454     prefix(REX_W);
4455   } else {
4456     prefix(REX_WB);
4457     reg_enc -= 8;
4458   }
4459   return reg_enc;
4460 }
4461 
4462 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
4463   if (dst_enc < 8) {
4464     if (src_enc >= 8) {
4465       prefix(REX_B);
4466       src_enc -= 8;
4467     } else if (byteinst && src_enc >= 4) {
4468       prefix(REX);
4469     }
4470   } else {
4471     if (src_enc < 8) {
4472       prefix(REX_R);
4473     } else {
4474       prefix(REX_RB);
4475       src_enc -= 8;
4476     }
4477     dst_enc -= 8;
4478   }
4479   return dst_enc << 3 | src_enc;
4480 }
4481 
4482 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
4483   if (dst_enc < 8) {
4484     if (src_enc < 8) {
4485       prefix(REX_W);
4486     } else {
4487       prefix(REX_WB);
4488       src_enc -= 8;
4489     }
4490   } else {
4491     if (src_enc < 8) {
4492       prefix(REX_WR);
4493     } else {
4494       prefix(REX_WRB);
4495       src_enc -= 8;
4496     }
4497     dst_enc -= 8;
4498   }
4499   return dst_enc << 3 | src_enc;
4500 }
4501 
4502 void Assembler::prefix(Register reg) {
4503   if (reg->encoding() >= 8) {
4504     prefix(REX_B);
4505   }
4506 }
4507 
4508 void Assembler::prefix(Address adr) {
4509   if (adr.base_needs_rex()) {
4510     if (adr.index_needs_rex()) {
4511       prefix(REX_XB);
4512     } else {
4513       prefix(REX_B);
4514     }
4515   } else {
4516     if (adr.index_needs_rex()) {
4517       prefix(REX_X);
4518     }
4519   }
4520 }
4521 
4522 void Assembler::prefixq(Address adr) {
4523   if (adr.base_needs_rex()) {
4524     if (adr.index_needs_rex()) {
4525       prefix(REX_WXB);
4526     } else {
4527       prefix(REX_WB);
4528     }
4529   } else {
4530     if (adr.index_needs_rex()) {
4531       prefix(REX_WX);
4532     } else {
4533       prefix(REX_W);
4534     }
4535   }
4536 }
4537 
4538 
4539 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
4540   if (reg->encoding() < 8) {
4541     if (adr.base_needs_rex()) {
4542       if (adr.index_needs_rex()) {
4543         prefix(REX_XB);
4544       } else {
4545         prefix(REX_B);
4546       }
4547     } else {
4548       if (adr.index_needs_rex()) {
4549         prefix(REX_X);
4550       } else if (byteinst && reg->encoding() >= 4 ) {
4551         prefix(REX);
4552       }
4553     }
4554   } else {
4555     if (adr.base_needs_rex()) {
4556       if (adr.index_needs_rex()) {
4557         prefix(REX_RXB);
4558       } else {
4559         prefix(REX_RB);
4560       }
4561     } else {
4562       if (adr.index_needs_rex()) {
4563         prefix(REX_RX);
4564       } else {
4565         prefix(REX_R);
4566       }
4567     }
4568   }
4569 }
4570 
4571 void Assembler::prefixq(Address adr, Register src) {
4572   if (src->encoding() < 8) {
4573     if (adr.base_needs_rex()) {
4574       if (adr.index_needs_rex()) {
4575         prefix(REX_WXB);
4576       } else {
4577         prefix(REX_WB);
4578       }
4579     } else {
4580       if (adr.index_needs_rex()) {
4581         prefix(REX_WX);
4582       } else {
4583         prefix(REX_W);
4584       }
4585     }
4586   } else {
4587     if (adr.base_needs_rex()) {
4588       if (adr.index_needs_rex()) {
4589         prefix(REX_WRXB);
4590       } else {
4591         prefix(REX_WRB);
4592       }
4593     } else {
4594       if (adr.index_needs_rex()) {
4595         prefix(REX_WRX);
4596       } else {
4597         prefix(REX_WR);
4598       }
4599     }
4600   }
4601 }
4602 
4603 void Assembler::prefix(Address adr, XMMRegister reg) {
4604   if (reg->encoding() < 8) {
4605     if (adr.base_needs_rex()) {
4606       if (adr.index_needs_rex()) {
4607         prefix(REX_XB);
4608       } else {
4609         prefix(REX_B);
4610       }
4611     } else {
4612       if (adr.index_needs_rex()) {
4613         prefix(REX_X);
4614       }
4615     }
4616   } else {
4617     if (adr.base_needs_rex()) {
4618       if (adr.index_needs_rex()) {
4619         prefix(REX_RXB);
4620       } else {
4621         prefix(REX_RB);
4622       }
4623     } else {
4624       if (adr.index_needs_rex()) {
4625         prefix(REX_RX);
4626       } else {
4627         prefix(REX_R);
4628       }
4629     }
4630   }
4631 }
4632 
4633 void Assembler::prefixq(Address adr, XMMRegister src) {
4634   if (src->encoding() < 8) {
4635     if (adr.base_needs_rex()) {
4636       if (adr.index_needs_rex()) {
4637         prefix(REX_WXB);
4638       } else {
4639         prefix(REX_WB);
4640       }
4641     } else {
4642       if (adr.index_needs_rex()) {
4643         prefix(REX_WX);
4644       } else {
4645         prefix(REX_W);
4646       }
4647     }
4648   } else {
4649     if (adr.base_needs_rex()) {
4650       if (adr.index_needs_rex()) {
4651         prefix(REX_WRXB);
4652       } else {
4653         prefix(REX_WRB);
4654       }
4655     } else {
4656       if (adr.index_needs_rex()) {
4657         prefix(REX_WRX);
4658       } else {
4659         prefix(REX_WR);
4660       }
4661     }
4662   }
4663 }
4664 
4665 void Assembler::adcq(Register dst, int32_t imm32) {
4666   (void) prefixq_and_encode(dst->encoding());
4667   emit_arith(0x81, 0xD0, dst, imm32);
4668 }
4669 
4670 void Assembler::adcq(Register dst, Address src) {
4671   InstructionMark im(this);
4672   prefixq(src, dst);
4673   emit_byte(0x13);
4674   emit_operand(dst, src);
4675 }
4676 
4677 void Assembler::adcq(Register dst, Register src) {
4678   (int) prefixq_and_encode(dst->encoding(), src->encoding());
4679   emit_arith(0x13, 0xC0, dst, src);
4680 }
4681 
4682 void Assembler::addq(Address dst, int32_t imm32) {
4683   InstructionMark im(this);
4684   prefixq(dst);
4685   emit_arith_operand(0x81, rax, dst,imm32);
4686 }
4687 
4688 void Assembler::addq(Address dst, Register src) {
4689   InstructionMark im(this);
4690   prefixq(dst, src);
4691   emit_byte(0x01);
4692   emit_operand(src, dst);
4693 }
4694 
4695 void Assembler::addq(Register dst, int32_t imm32) {
4696   (void) prefixq_and_encode(dst->encoding());
4697   emit_arith(0x81, 0xC0, dst, imm32);
4698 }
4699 
4700 void Assembler::addq(Register dst, Address src) {
4701   InstructionMark im(this);
4702   prefixq(src, dst);
4703   emit_byte(0x03);
4704   emit_operand(dst, src);
4705 }
4706 
4707 void Assembler::addq(Register dst, Register src) {
4708   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4709   emit_arith(0x03, 0xC0, dst, src);
4710 }
4711 
4712 void Assembler::andq(Address dst, int32_t imm32) {
4713   InstructionMark im(this);
4714   prefixq(dst);
4715   emit_byte(0x81);
4716   emit_operand(rsp, dst, 4);
4717   emit_long(imm32);
4718 }
4719 
4720 void Assembler::andq(Register dst, int32_t imm32) {
4721   (void) prefixq_and_encode(dst->encoding());
4722   emit_arith(0x81, 0xE0, dst, imm32);
4723 }
4724 
4725 void Assembler::andq(Register dst, Address src) {
4726   InstructionMark im(this);
4727   prefixq(src, dst);
4728   emit_byte(0x23);
4729   emit_operand(dst, src);
4730 }
4731 
4732 void Assembler::andq(Register dst, Register src) {
4733   (int) prefixq_and_encode(dst->encoding(), src->encoding());
4734   emit_arith(0x23, 0xC0, dst, src);
4735 }
4736 
4737 void Assembler::bsfq(Register dst, Register src) {
4738   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4739   emit_byte(0x0F);
4740   emit_byte(0xBC);
4741   emit_byte(0xC0 | encode);
4742 }
4743 
4744 void Assembler::bsrq(Register dst, Register src) {
4745   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
4746   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4747   emit_byte(0x0F);
4748   emit_byte(0xBD);
4749   emit_byte(0xC0 | encode);
4750 }
4751 
4752 void Assembler::bswapq(Register reg) {
4753   int encode = prefixq_and_encode(reg->encoding());
4754   emit_byte(0x0F);
4755   emit_byte(0xC8 | encode);
4756 }
4757 
4758 void Assembler::cdqq() {
4759   prefix(REX_W);
4760   emit_byte(0x99);
4761 }
4762 
4763 void Assembler::clflush(Address adr) {
4764   prefix(adr);
4765   emit_byte(0x0F);
4766   emit_byte(0xAE);
4767   emit_operand(rdi, adr);
4768 }
4769 
4770 void Assembler::cmovq(Condition cc, Register dst, Register src) {
4771   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4772   emit_byte(0x0F);
4773   emit_byte(0x40 | cc);
4774   emit_byte(0xC0 | encode);
4775 }
4776 
4777 void Assembler::cmovq(Condition cc, Register dst, Address src) {
4778   InstructionMark im(this);
4779   prefixq(src, dst);
4780   emit_byte(0x0F);
4781   emit_byte(0x40 | cc);
4782   emit_operand(dst, src);
4783 }
4784 
4785 void Assembler::cmpq(Address dst, int32_t imm32) {
4786   InstructionMark im(this);
4787   prefixq(dst);
4788   emit_byte(0x81);
4789   emit_operand(rdi, dst, 4);
4790   emit_long(imm32);
4791 }
4792 
4793 void Assembler::cmpq(Register dst, int32_t imm32) {
4794   (void) prefixq_and_encode(dst->encoding());
4795   emit_arith(0x81, 0xF8, dst, imm32);
4796 }
4797 
4798 void Assembler::cmpq(Address dst, Register src) {
4799   InstructionMark im(this);
4800   prefixq(dst, src);
4801   emit_byte(0x3B);
4802   emit_operand(src, dst);
4803 }
4804 
4805 void Assembler::cmpq(Register dst, Register src) {
4806   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4807   emit_arith(0x3B, 0xC0, dst, src);
4808 }
4809 
4810 void Assembler::cmpq(Register dst, Address  src) {
4811   InstructionMark im(this);
4812   prefixq(src, dst);
4813   emit_byte(0x3B);
4814   emit_operand(dst, src);
4815 }
4816 
4817 void Assembler::cmpxchgq(Register reg, Address adr) {
4818   InstructionMark im(this);
4819   prefixq(adr, reg);
4820   emit_byte(0x0F);
4821   emit_byte(0xB1);
4822   emit_operand(reg, adr);
4823 }
4824 
4825 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
4826   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4827   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
4828   emit_byte(0x2A);
4829   emit_byte(0xC0 | encode);
4830 }
4831 
4832 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
4833   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4834   InstructionMark im(this);
4835   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
4836   emit_byte(0x2A);
4837   emit_operand(dst, src);
4838 }
4839 
4840 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
4841   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4842   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
4843   emit_byte(0x2A);
4844   emit_byte(0xC0 | encode);
4845 }
4846 
4847 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
4848   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4849   InstructionMark im(this);
4850   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
4851   emit_byte(0x2A);
4852   emit_operand(dst, src);
4853 }
4854 
4855 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
4856   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4857   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
4858   emit_byte(0x2C);
4859   emit_byte(0xC0 | encode);
4860 }
4861 
4862 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
4863   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4864   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
4865   emit_byte(0x2C);
4866   emit_byte(0xC0 | encode);
4867 }
4868 
4869 void Assembler::decl(Register dst) {
4870   // Don't use it directly. Use MacroAssembler::decrementl() instead.
4871   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
4872   int encode = prefix_and_encode(dst->encoding());
4873   emit_byte(0xFF);
4874   emit_byte(0xC8 | encode);
4875 }
4876 
4877 void Assembler::decq(Register dst) {
4878   // Don't use it directly. Use MacroAssembler::decrementq() instead.
4879   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
4880   int encode = prefixq_and_encode(dst->encoding());
4881   emit_byte(0xFF);
4882   emit_byte(0xC8 | encode);
4883 }
4884 
4885 void Assembler::decq(Address dst) {
4886   // Don't use it directly. Use MacroAssembler::decrementq() instead.
4887   InstructionMark im(this);
4888   prefixq(dst);
4889   emit_byte(0xFF);
4890   emit_operand(rcx, dst);
4891 }
4892 
4893 void Assembler::fxrstor(Address src) {
4894   prefixq(src);
4895   emit_byte(0x0F);
4896   emit_byte(0xAE);
4897   emit_operand(as_Register(1), src);
4898 }
4899 
4900 void Assembler::fxsave(Address dst) {
4901   prefixq(dst);
4902   emit_byte(0x0F);
4903   emit_byte(0xAE);
4904   emit_operand(as_Register(0), dst);
4905 }
4906 
4907 void Assembler::idivq(Register src) {
4908   int encode = prefixq_and_encode(src->encoding());
4909   emit_byte(0xF7);
4910   emit_byte(0xF8 | encode);
4911 }
4912 
4913 void Assembler::imulq(Register dst, Register src) {
4914   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4915   emit_byte(0x0F);
4916   emit_byte(0xAF);
4917   emit_byte(0xC0 | encode);
4918 }
4919 
4920 void Assembler::imulq(Register dst, Register src, int value) {
4921   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4922   if (is8bit(value)) {
4923     emit_byte(0x6B);
4924     emit_byte(0xC0 | encode);
4925     emit_byte(value & 0xFF);
4926   } else {
4927     emit_byte(0x69);
4928     emit_byte(0xC0 | encode);
4929     emit_long(value);
4930   }
4931 }
4932 
4933 void Assembler::incl(Register dst) {
4934   // Don't use it directly. Use MacroAssembler::incrementl() instead.
4935   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
4936   int encode = prefix_and_encode(dst->encoding());
4937   emit_byte(0xFF);
4938   emit_byte(0xC0 | encode);
4939 }
4940 
4941 void Assembler::incq(Register dst) {
4942   // Don't use it directly. Use MacroAssembler::incrementq() instead.
4943   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
4944   int encode = prefixq_and_encode(dst->encoding());
4945   emit_byte(0xFF);
4946   emit_byte(0xC0 | encode);
4947 }
4948 
4949 void Assembler::incq(Address dst) {
4950   // Don't use it directly. Use MacroAssembler::incrementq() instead.
4951   InstructionMark im(this);
4952   prefixq(dst);
4953   emit_byte(0xFF);
4954   emit_operand(rax, dst);
4955 }
4956 
4957 void Assembler::lea(Register dst, Address src) {
4958   leaq(dst, src);
4959 }
4960 
4961 void Assembler::leaq(Register dst, Address src) {
4962   InstructionMark im(this);
4963   prefixq(src, dst);
4964   emit_byte(0x8D);
4965   emit_operand(dst, src);
4966 }
4967 
4968 void Assembler::mov64(Register dst, int64_t imm64) {
4969   InstructionMark im(this);
4970   int encode = prefixq_and_encode(dst->encoding());
4971   emit_byte(0xB8 | encode);
4972   emit_int64(imm64);
4973 }
4974 
4975 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
4976   InstructionMark im(this);
4977   int encode = prefixq_and_encode(dst->encoding());
4978   emit_byte(0xB8 | encode);
4979   emit_data64(imm64, rspec);
4980 }
4981 
4982 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
4983   InstructionMark im(this);
4984   int encode = prefix_and_encode(dst->encoding());
4985   emit_byte(0xB8 | encode);
4986   emit_data((int)imm32, rspec, narrow_oop_operand);
4987 }
4988 
4989 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
4990   InstructionMark im(this);
4991   prefix(dst);
4992   emit_byte(0xC7);
4993   emit_operand(rax, dst, 4);
4994   emit_data((int)imm32, rspec, narrow_oop_operand);
4995 }
4996 
4997 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
4998   InstructionMark im(this);
4999   int encode = prefix_and_encode(src1->encoding());
5000   emit_byte(0x81);
5001   emit_byte(0xF8 | encode);
5002   emit_data((int)imm32, rspec, narrow_oop_operand);
5003 }
5004 
5005 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5006   InstructionMark im(this);
5007   prefix(src1);
5008   emit_byte(0x81);
5009   emit_operand(rax, src1, 4);
5010   emit_data((int)imm32, rspec, narrow_oop_operand);
5011 }
5012 
5013 void Assembler::lzcntq(Register dst, Register src) {
5014   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
5015   emit_byte(0xF3);
5016   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5017   emit_byte(0x0F);
5018   emit_byte(0xBD);
5019   emit_byte(0xC0 | encode);
5020 }
5021 
5022 void Assembler::movdq(XMMRegister dst, Register src) {
5023   // table D-1 says MMX/SSE2
5024   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5025   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
5026   emit_byte(0x6E);
5027   emit_byte(0xC0 | encode);
5028 }
5029 
5030 void Assembler::movdq(Register dst, XMMRegister src) {
5031   // table D-1 says MMX/SSE2
5032   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5033   // swap src/dst to get correct prefix
5034   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
5035   emit_byte(0x7E);
5036   emit_byte(0xC0 | encode);
5037 }
5038 
5039 void Assembler::movq(Register dst, Register src) {
5040   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5041   emit_byte(0x8B);
5042   emit_byte(0xC0 | encode);
5043 }
5044 
5045 void Assembler::movq(Register dst, Address src) {
5046   InstructionMark im(this);
5047   prefixq(src, dst);
5048   emit_byte(0x8B);
5049   emit_operand(dst, src);
5050 }
5051 
5052 void Assembler::movq(Address dst, Register src) {
5053   InstructionMark im(this);
5054   prefixq(dst, src);
5055   emit_byte(0x89);
5056   emit_operand(src, dst);
5057 }
5058 
5059 void Assembler::movsbq(Register dst, Address src) {
5060   InstructionMark im(this);
5061   prefixq(src, dst);
5062   emit_byte(0x0F);
5063   emit_byte(0xBE);
5064   emit_operand(dst, src);
5065 }
5066 
5067 void Assembler::movsbq(Register dst, Register src) {
5068   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5069   emit_byte(0x0F);
5070   emit_byte(0xBE);
5071   emit_byte(0xC0 | encode);
5072 }
5073 
5074 void Assembler::movslq(Register dst, int32_t imm32) {
5075   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
5076   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
5077   // as a result we shouldn't use until tested at runtime...
5078   ShouldNotReachHere();
5079   InstructionMark im(this);
5080   int encode = prefixq_and_encode(dst->encoding());
5081   emit_byte(0xC7 | encode);
5082   emit_long(imm32);
5083 }
5084 
5085 void Assembler::movslq(Address dst, int32_t imm32) {
5086   assert(is_simm32(imm32), "lost bits");
5087   InstructionMark im(this);
5088   prefixq(dst);
5089   emit_byte(0xC7);
5090   emit_operand(rax, dst, 4);
5091   emit_long(imm32);
5092 }
5093 
5094 void Assembler::movslq(Register dst, Address src) {
5095   InstructionMark im(this);
5096   prefixq(src, dst);
5097   emit_byte(0x63);
5098   emit_operand(dst, src);
5099 }
5100 
5101 void Assembler::movslq(Register dst, Register src) {
5102   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5103   emit_byte(0x63);
5104   emit_byte(0xC0 | encode);
5105 }
5106 
5107 void Assembler::movswq(Register dst, Address src) {
5108   InstructionMark im(this);
5109   prefixq(src, dst);
5110   emit_byte(0x0F);
5111   emit_byte(0xBF);
5112   emit_operand(dst, src);
5113 }
5114 
5115 void Assembler::movswq(Register dst, Register src) {
5116   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5117   emit_byte(0x0F);
5118   emit_byte(0xBF);
5119   emit_byte(0xC0 | encode);
5120 }
5121 
5122 void Assembler::movzbq(Register dst, Address src) {
5123   InstructionMark im(this);
5124   prefixq(src, dst);
5125   emit_byte(0x0F);
5126   emit_byte(0xB6);
5127   emit_operand(dst, src);
5128 }
5129 
5130 void Assembler::movzbq(Register dst, Register src) {
5131   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5132   emit_byte(0x0F);
5133   emit_byte(0xB6);
5134   emit_byte(0xC0 | encode);
5135 }
5136 
5137 void Assembler::movzwq(Register dst, Address src) {
5138   InstructionMark im(this);
5139   prefixq(src, dst);
5140   emit_byte(0x0F);
5141   emit_byte(0xB7);
5142   emit_operand(dst, src);
5143 }
5144 
5145 void Assembler::movzwq(Register dst, Register src) {
5146   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5147   emit_byte(0x0F);
5148   emit_byte(0xB7);
5149   emit_byte(0xC0 | encode);
5150 }
5151 
5152 void Assembler::negq(Register dst) {
5153   int encode = prefixq_and_encode(dst->encoding());
5154   emit_byte(0xF7);
5155   emit_byte(0xD8 | encode);
5156 }
5157 
5158 void Assembler::notq(Register dst) {
5159   int encode = prefixq_and_encode(dst->encoding());
5160   emit_byte(0xF7);
5161   emit_byte(0xD0 | encode);
5162 }
5163 
5164 void Assembler::orq(Address dst, int32_t imm32) {
5165   InstructionMark im(this);
5166   prefixq(dst);
5167   emit_byte(0x81);
5168   emit_operand(rcx, dst, 4);
5169   emit_long(imm32);
5170 }
5171 
5172 void Assembler::orq(Register dst, int32_t imm32) {
5173   (void) prefixq_and_encode(dst->encoding());
5174   emit_arith(0x81, 0xC8, dst, imm32);
5175 }
5176 
5177 void Assembler::orq(Register dst, Address src) {
5178   InstructionMark im(this);
5179   prefixq(src, dst);
5180   emit_byte(0x0B);
5181   emit_operand(dst, src);
5182 }
5183 
5184 void Assembler::orq(Register dst, Register src) {
5185   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5186   emit_arith(0x0B, 0xC0, dst, src);
5187 }
5188 
5189 void Assembler::popa() { // 64bit
5190   movq(r15, Address(rsp, 0));
5191   movq(r14, Address(rsp, wordSize));
5192   movq(r13, Address(rsp, 2 * wordSize));
5193   movq(r12, Address(rsp, 3 * wordSize));
5194   movq(r11, Address(rsp, 4 * wordSize));
5195   movq(r10, Address(rsp, 5 * wordSize));
5196   movq(r9,  Address(rsp, 6 * wordSize));
5197   movq(r8,  Address(rsp, 7 * wordSize));
5198   movq(rdi, Address(rsp, 8 * wordSize));
5199   movq(rsi, Address(rsp, 9 * wordSize));
5200   movq(rbp, Address(rsp, 10 * wordSize));
5201   // skip rsp
5202   movq(rbx, Address(rsp, 12 * wordSize));
5203   movq(rdx, Address(rsp, 13 * wordSize));
5204   movq(rcx, Address(rsp, 14 * wordSize));
5205   movq(rax, Address(rsp, 15 * wordSize));
5206 
5207   addq(rsp, 16 * wordSize);
5208 }
5209 
5210 void Assembler::popcntq(Register dst, Address src) {
5211   assert(VM_Version::supports_popcnt(), "must support");
5212   InstructionMark im(this);
5213   emit_byte(0xF3);
5214   prefixq(src, dst);
5215   emit_byte(0x0F);
5216   emit_byte(0xB8);
5217   emit_operand(dst, src);
5218 }
5219 
5220 void Assembler::popcntq(Register dst, Register src) {
5221   assert(VM_Version::supports_popcnt(), "must support");
5222   emit_byte(0xF3);
5223   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5224   emit_byte(0x0F);
5225   emit_byte(0xB8);
5226   emit_byte(0xC0 | encode);
5227 }
5228 
5229 void Assembler::popq(Address dst) {
5230   InstructionMark im(this);
5231   prefixq(dst);
5232   emit_byte(0x8F);
5233   emit_operand(rax, dst);
5234 }
5235 
5236 void Assembler::pusha() { // 64bit
5237   // we have to store original rsp.  ABI says that 128 bytes
5238   // below rsp are local scratch.
5239   movq(Address(rsp, -5 * wordSize), rsp);
5240 
5241   subq(rsp, 16 * wordSize);
5242 
5243   movq(Address(rsp, 15 * wordSize), rax);
5244   movq(Address(rsp, 14 * wordSize), rcx);
5245   movq(Address(rsp, 13 * wordSize), rdx);
5246   movq(Address(rsp, 12 * wordSize), rbx);
5247   // skip rsp
5248   movq(Address(rsp, 10 * wordSize), rbp);
5249   movq(Address(rsp, 9 * wordSize), rsi);
5250   movq(Address(rsp, 8 * wordSize), rdi);
5251   movq(Address(rsp, 7 * wordSize), r8);
5252   movq(Address(rsp, 6 * wordSize), r9);
5253   movq(Address(rsp, 5 * wordSize), r10);
5254   movq(Address(rsp, 4 * wordSize), r11);
5255   movq(Address(rsp, 3 * wordSize), r12);
5256   movq(Address(rsp, 2 * wordSize), r13);
5257   movq(Address(rsp, wordSize), r14);
5258   movq(Address(rsp, 0), r15);
5259 }
5260 
5261 void Assembler::pushq(Address src) {
5262   InstructionMark im(this);
5263   prefixq(src);
5264   emit_byte(0xFF);
5265   emit_operand(rsi, src);
5266 }
5267 
5268 void Assembler::rclq(Register dst, int imm8) {
5269   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5270   int encode = prefixq_and_encode(dst->encoding());
5271   if (imm8 == 1) {
5272     emit_byte(0xD1);
5273     emit_byte(0xD0 | encode);
5274   } else {
5275     emit_byte(0xC1);
5276     emit_byte(0xD0 | encode);
5277     emit_byte(imm8);
5278   }
5279 }
5280 void Assembler::sarq(Register dst, int imm8) {
5281   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5282   int encode = prefixq_and_encode(dst->encoding());
5283   if (imm8 == 1) {
5284     emit_byte(0xD1);
5285     emit_byte(0xF8 | encode);
5286   } else {
5287     emit_byte(0xC1);
5288     emit_byte(0xF8 | encode);
5289     emit_byte(imm8);
5290   }
5291 }
5292 
5293 void Assembler::sarq(Register dst) {
5294   int encode = prefixq_and_encode(dst->encoding());
5295   emit_byte(0xD3);
5296   emit_byte(0xF8 | encode);
5297 }
5298 
5299 void Assembler::sbbq(Address dst, int32_t imm32) {
5300   InstructionMark im(this);
5301   prefixq(dst);
5302   emit_arith_operand(0x81, rbx, dst, imm32);
5303 }
5304 
5305 void Assembler::sbbq(Register dst, int32_t imm32) {
5306   (void) prefixq_and_encode(dst->encoding());
5307   emit_arith(0x81, 0xD8, dst, imm32);
5308 }
5309 
5310 void Assembler::sbbq(Register dst, Address src) {
5311   InstructionMark im(this);
5312   prefixq(src, dst);
5313   emit_byte(0x1B);
5314   emit_operand(dst, src);
5315 }
5316 
5317 void Assembler::sbbq(Register dst, Register src) {
5318   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5319   emit_arith(0x1B, 0xC0, dst, src);
5320 }
5321 
5322 void Assembler::shlq(Register dst, int imm8) {
5323   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5324   int encode = prefixq_and_encode(dst->encoding());
5325   if (imm8 == 1) {
5326     emit_byte(0xD1);
5327     emit_byte(0xE0 | encode);
5328   } else {
5329     emit_byte(0xC1);
5330     emit_byte(0xE0 | encode);
5331     emit_byte(imm8);
5332   }
5333 }
5334 
5335 void Assembler::shlq(Register dst) {
5336   int encode = prefixq_and_encode(dst->encoding());
5337   emit_byte(0xD3);
5338   emit_byte(0xE0 | encode);
5339 }
5340 
5341 void Assembler::shrq(Register dst, int imm8) {
5342   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5343   int encode = prefixq_and_encode(dst->encoding());
5344   emit_byte(0xC1);
5345   emit_byte(0xE8 | encode);
5346   emit_byte(imm8);
5347 }
5348 
5349 void Assembler::shrq(Register dst) {
5350   int encode = prefixq_and_encode(dst->encoding());
5351   emit_byte(0xD3);
5352   emit_byte(0xE8 | encode);
5353 }
5354 
5355 void Assembler::subq(Address dst, int32_t imm32) {
5356   InstructionMark im(this);
5357   prefixq(dst);
5358   emit_arith_operand(0x81, rbp, dst, imm32);
5359 }
5360 
5361 void Assembler::subq(Address dst, Register src) {
5362   InstructionMark im(this);
5363   prefixq(dst, src);
5364   emit_byte(0x29);
5365   emit_operand(src, dst);
5366 }
5367 
5368 void Assembler::subq(Register dst, int32_t imm32) {
5369   (void) prefixq_and_encode(dst->encoding());
5370   emit_arith(0x81, 0xE8, dst, imm32);
5371 }
5372 
5373 // Force generation of a 4 byte immediate value even if it fits into 8bit
5374 void Assembler::subq_imm32(Register dst, int32_t imm32) {
5375   (void) prefixq_and_encode(dst->encoding());
5376   emit_arith_imm32(0x81, 0xE8, dst, imm32);
5377 }
5378 
5379 void Assembler::subq(Register dst, Address src) {
5380   InstructionMark im(this);
5381   prefixq(src, dst);
5382   emit_byte(0x2B);
5383   emit_operand(dst, src);
5384 }
5385 
5386 void Assembler::subq(Register dst, Register src) {
5387   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5388   emit_arith(0x2B, 0xC0, dst, src);
5389 }
5390 
5391 void Assembler::testq(Register dst, int32_t imm32) {
5392   // not using emit_arith because test
5393   // doesn't support sign-extension of
5394   // 8bit operands
5395   int encode = dst->encoding();
5396   if (encode == 0) {
5397     prefix(REX_W);
5398     emit_byte(0xA9);
5399   } else {
5400     encode = prefixq_and_encode(encode);
5401     emit_byte(0xF7);
5402     emit_byte(0xC0 | encode);
5403   }
5404   emit_long(imm32);
5405 }
5406 
5407 void Assembler::testq(Register dst, Register src) {
5408   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5409   emit_arith(0x85, 0xC0, dst, src);
5410 }
5411 
5412 void Assembler::xaddq(Address dst, Register src) {
5413   InstructionMark im(this);
5414   prefixq(dst, src);
5415   emit_byte(0x0F);
5416   emit_byte(0xC1);
5417   emit_operand(src, dst);
5418 }
5419 
5420 void Assembler::xchgq(Register dst, Address src) {
5421   InstructionMark im(this);
5422   prefixq(src, dst);
5423   emit_byte(0x87);
5424   emit_operand(dst, src);
5425 }
5426 
5427 void Assembler::xchgq(Register dst, Register src) {
5428   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5429   emit_byte(0x87);
5430   emit_byte(0xc0 | encode);
5431 }
5432 
5433 void Assembler::xorq(Register dst, Register src) {
5434   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5435   emit_arith(0x33, 0xC0, dst, src);
5436 }
5437 
5438 void Assembler::xorq(Register dst, Address src) {
5439   InstructionMark im(this);
5440   prefixq(src, dst);
5441   emit_byte(0x33);
5442   emit_operand(dst, src);
5443 }
5444 
5445 #endif // !LP64