1 /*
   2  * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/cppInterpreter.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterGenerator.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/interfaceSupport.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/debug.hpp"
  48 #ifdef SHARK
  49 #include "shark/shark_globals.hpp"
  50 #endif
  51 
  52 #ifdef CC_INTERP
  53 
  54 // Routine exists to make tracebacks look decent in debugger
  55 // while "shadow" interpreter frames are on stack. It is also
  56 // used to distinguish interpreter frames.
  57 
  58 extern "C" void RecursiveInterpreterActivation(interpreterState istate) {
  59   ShouldNotReachHere();
  60 }
  61 
  62 bool CppInterpreter::contains(address pc) {
  63   return ( _code->contains(pc) ||
  64          ( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset)));
  65 }
  66 
  67 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
  68 #define __ _masm->
  69 
  70 Label frame_manager_entry;
  71 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
  72                                       // c++ interpreter entry point this holds that entry point label.
  73 
  74 static address unctrap_frame_manager_entry  = NULL;
  75 
  76 static address interpreter_return_address  = NULL;
  77 static address deopt_frame_manager_return_atos  = NULL;
  78 static address deopt_frame_manager_return_btos  = NULL;
  79 static address deopt_frame_manager_return_itos  = NULL;
  80 static address deopt_frame_manager_return_ltos  = NULL;
  81 static address deopt_frame_manager_return_ftos  = NULL;
  82 static address deopt_frame_manager_return_dtos  = NULL;
  83 static address deopt_frame_manager_return_vtos  = NULL;
  84 
  85 const Register prevState = G1_scratch;
  86 
  87 void InterpreterGenerator::save_native_result(void) {
  88   // result potentially in O0/O1: save it across calls
  89   __ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
  90 #ifdef _LP64
  91   __ stx(O0, STATE(_native_lresult));
  92 #else
  93   __ std(O0, STATE(_native_lresult));
  94 #endif
  95 }
  96 
  97 void InterpreterGenerator::restore_native_result(void) {
  98 
  99   // Restore any method result value
 100   __ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
 101 #ifdef _LP64
 102   __ ldx(STATE(_native_lresult), O0);
 103 #else
 104   __ ldd(STATE(_native_lresult), O0);
 105 #endif
 106 }
 107 
 108 // A result handler converts/unboxes a native call result into
 109 // a java interpreter/compiler result. The current frame is an
 110 // interpreter frame. The activation frame unwind code must be
 111 // consistent with that of TemplateTable::_return(...). In the
 112 // case of native methods, the caller's SP was not modified.
 113 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
 114   address entry = __ pc();
 115   Register Itos_i  = Otos_i ->after_save();
 116   Register Itos_l  = Otos_l ->after_save();
 117   Register Itos_l1 = Otos_l1->after_save();
 118   Register Itos_l2 = Otos_l2->after_save();
 119   switch (type) {
 120     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 121     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 122     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 123     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 124     case T_LONG   :
 125 #ifndef _LP64
 126                     __ mov(O1, Itos_l2);  // move other half of long
 127 #endif              // ifdef or no ifdef, fall through to the T_INT case
 128     case T_INT    : __ mov(O0, Itos_i);                         break;
 129     case T_VOID   : /* nothing to do */                         break;
 130     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 131     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 132     case T_OBJECT :
 133       __ ld_ptr(STATE(_oop_temp), Itos_i);
 134       __ verify_oop(Itos_i);
 135       break;
 136     default       : ShouldNotReachHere();
 137   }
 138   __ ret();                           // return from interpreter activation
 139   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 140   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
 141   return entry;
 142 }
 143 
 144 // tosca based result to c++ interpreter stack based result.
 145 // Result goes to address in L1_scratch
 146 
 147 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
 148   // A result is in the native abi result register from a native method call.
 149   // We need to return this result to the interpreter by pushing the result on the interpreter's
 150   // stack. This is relatively simple the destination is in L1_scratch
 151   // i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must
 152   // adjust L1_scratch
 153   address entry = __ pc();
 154   switch (type) {
 155     case T_BOOLEAN:
 156       // !0 => true; 0 => false
 157       __ subcc(G0, O0, G0);
 158       __ addc(G0, 0, O0);
 159       __ st(O0, L1_scratch, 0);
 160       __ sub(L1_scratch, wordSize, L1_scratch);
 161       break;
 162 
 163     // cannot use and3, 0xFFFF too big as immediate value!
 164     case T_CHAR   :
 165       __ sll(O0, 16, O0);
 166       __ srl(O0, 16, O0);
 167       __ st(O0, L1_scratch, 0);
 168       __ sub(L1_scratch, wordSize, L1_scratch);
 169       break;
 170 
 171     case T_BYTE   :
 172       __ sll(O0, 24, O0);
 173       __ sra(O0, 24, O0);
 174       __ st(O0, L1_scratch, 0);
 175       __ sub(L1_scratch, wordSize, L1_scratch);
 176       break;
 177 
 178     case T_SHORT  :
 179       __ sll(O0, 16, O0);
 180       __ sra(O0, 16, O0);
 181       __ st(O0, L1_scratch, 0);
 182       __ sub(L1_scratch, wordSize, L1_scratch);
 183       break;
 184     case T_LONG   :
 185 #ifndef _LP64
 186 #if defined(COMPILER2)
 187   // All return values are where we want them, except for Longs.  C2 returns
 188   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 189   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 190   // build even if we are returning from interpreted we just do a little
 191   // stupid shuffing.
 192   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 193   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 194   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 195       __ stx(G1, L1_scratch, -wordSize);
 196 #else
 197       // native result is in O0, O1
 198       __ st(O1, L1_scratch, 0);                      // Low order
 199       __ st(O0, L1_scratch, -wordSize);              // High order
 200 #endif /* COMPILER2 */
 201 #else
 202       __ stx(O0, L1_scratch, -wordSize);
 203 #endif
 204       __ sub(L1_scratch, 2*wordSize, L1_scratch);
 205       break;
 206 
 207     case T_INT    :
 208       __ st(O0, L1_scratch, 0);
 209       __ sub(L1_scratch, wordSize, L1_scratch);
 210       break;
 211 
 212     case T_VOID   : /* nothing to do */
 213       break;
 214 
 215     case T_FLOAT  :
 216       __ stf(FloatRegisterImpl::S, F0, L1_scratch, 0);
 217       __ sub(L1_scratch, wordSize, L1_scratch);
 218       break;
 219 
 220     case T_DOUBLE :
 221       // Every stack slot is aligned on 64 bit, However is this
 222       // the correct stack slot on 64bit?? QQQ
 223       __ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize);
 224       __ sub(L1_scratch, 2*wordSize, L1_scratch);
 225       break;
 226     case T_OBJECT :
 227       __ verify_oop(O0);
 228       __ st_ptr(O0, L1_scratch, 0);
 229       __ sub(L1_scratch, wordSize, L1_scratch);
 230       break;
 231     default       : ShouldNotReachHere();
 232   }
 233   __ retl();                          // return from interpreter activation
 234   __ delayed()->nop();                // schedule this better
 235   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
 236   return entry;
 237 }
 238 
 239 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
 240   // A result is in the java expression stack of the interpreted method that has just
 241   // returned. Place this result on the java expression stack of the caller.
 242   //
 243   // The current interpreter activation in Lstate is for the method just returning its
 244   // result. So we know that the result of this method is on the top of the current
 245   // execution stack (which is pre-pushed) and will be return to the top of the caller
 246   // stack. The top of the callers stack is the bottom of the locals of the current
 247   // activation.
 248   // Because of the way activation are managed by the frame manager the value of esp is
 249   // below both the stack top of the current activation and naturally the stack top
 250   // of the calling activation. This enable this routine to leave the return address
 251   // to the frame manager on the stack and do a vanilla return.
 252   //
 253   // On entry: O0 - points to source (callee stack top)
 254   //           O1 - points to destination (caller stack top [i.e. free location])
 255   // destroys O2, O3
 256   //
 257 
 258   address entry = __ pc();
 259   switch (type) {
 260     case T_VOID:  break;
 261       break;
 262     case T_FLOAT  :
 263     case T_BOOLEAN:
 264     case T_CHAR   :
 265     case T_BYTE   :
 266     case T_SHORT  :
 267     case T_INT    :
 268       // 1 word result
 269       __ ld(O0, 0, O2);
 270       __ st(O2, O1, 0);
 271       __ sub(O1, wordSize, O1);
 272       break;
 273     case T_DOUBLE  :
 274     case T_LONG    :
 275       // return top two words on current expression stack to caller's expression stack
 276       // The caller's expression stack is adjacent to the current frame manager's intepretState
 277       // except we allocated one extra word for this intepretState so we won't overwrite it
 278       // when we return a two word result.
 279 #ifdef _LP64
 280       __ ld_ptr(O0, 0, O2);
 281       __ st_ptr(O2, O1, -wordSize);
 282 #else
 283       __ ld(O0, 0, O2);
 284       __ ld(O0, wordSize, O3);
 285       __ st(O3, O1, 0);
 286       __ st(O2, O1, -wordSize);
 287 #endif
 288       __ sub(O1, 2*wordSize, O1);
 289       break;
 290     case T_OBJECT :
 291       __ ld_ptr(O0, 0, O2);
 292       __ verify_oop(O2);                                               // verify it
 293       __ st_ptr(O2, O1, 0);
 294       __ sub(O1, wordSize, O1);
 295       break;
 296     default       : ShouldNotReachHere();
 297   }
 298   __ retl();
 299   __ delayed()->nop(); // QQ schedule this better
 300   return entry;
 301 }
 302 
 303 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
 304   // A result is in the java expression stack of the interpreted method that has just
 305   // returned. Place this result in the native abi that the caller expects.
 306   // We are in a new frame registers we set must be in caller (i.e. callstub) frame.
 307   //
 308   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
 309   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
 310   // and so rather than return result onto caller's java expression stack we return the
 311   // result in the expected location based on the native abi.
 312   // On entry: O0 - source (stack top)
 313   // On exit result in expected output register
 314   // QQQ schedule this better
 315 
 316   address entry = __ pc();
 317   switch (type) {
 318     case T_VOID:  break;
 319       break;
 320     case T_FLOAT  :
 321       __ ldf(FloatRegisterImpl::S, O0, 0, F0);
 322       break;
 323     case T_BOOLEAN:
 324     case T_CHAR   :
 325     case T_BYTE   :
 326     case T_SHORT  :
 327     case T_INT    :
 328       // 1 word result
 329       __ ld(O0, 0, O0->after_save());
 330       break;
 331     case T_DOUBLE  :
 332       __ ldf(FloatRegisterImpl::D, O0, 0, F0);
 333       break;
 334     case T_LONG    :
 335       // return top two words on current expression stack to caller's expression stack
 336       // The caller's expression stack is adjacent to the current frame manager's interpretState
 337       // except we allocated one extra word for this intepretState so we won't overwrite it
 338       // when we return a two word result.
 339 #ifdef _LP64
 340       __ ld_ptr(O0, 0, O0->after_save());
 341 #else
 342       __ ld(O0, wordSize, O1->after_save());
 343       __ ld(O0, 0, O0->after_save());
 344 #endif
 345 #if defined(COMPILER2) && !defined(_LP64)
 346       // C2 expects long results in G1 we can't tell if we're returning to interpreted
 347       // or compiled so just be safe use G1 and O0/O1
 348 
 349       // Shift bits into high (msb) of G1
 350       __ sllx(Otos_l1->after_save(), 32, G1);
 351       // Zero extend low bits
 352       __ srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
 353       __ or3 (Otos_l2->after_save(), G1, G1);
 354 #endif /* COMPILER2 */
 355       break;
 356     case T_OBJECT :
 357       __ ld_ptr(O0, 0, O0->after_save());
 358       __ verify_oop(O0->after_save());                                               // verify it
 359       break;
 360     default       : ShouldNotReachHere();
 361   }
 362   __ retl();
 363   __ delayed()->nop();
 364   return entry;
 365 }
 366 
 367 address CppInterpreter::return_entry(TosState state, int length) {
 368   // make it look good in the debugger
 369   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset;
 370 }
 371 
 372 address CppInterpreter::deopt_entry(TosState state, int length) {
 373   address ret = NULL;
 374   if (length != 0) {
 375     switch (state) {
 376       case atos: ret = deopt_frame_manager_return_atos; break;
 377       case btos: ret = deopt_frame_manager_return_btos; break;
 378       case ctos:
 379       case stos:
 380       case itos: ret = deopt_frame_manager_return_itos; break;
 381       case ltos: ret = deopt_frame_manager_return_ltos; break;
 382       case ftos: ret = deopt_frame_manager_return_ftos; break;
 383       case dtos: ret = deopt_frame_manager_return_dtos; break;
 384       case vtos: ret = deopt_frame_manager_return_vtos; break;
 385     }
 386   } else {
 387     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
 388   }
 389   assert(ret != NULL, "Not initialized");
 390   return ret;
 391 }
 392 
 393 //
 394 // Helpers for commoning out cases in the various type of method entries.
 395 //
 396 
 397 // increment invocation count & check for overflow
 398 //
 399 // Note: checking for negative value instead of overflow
 400 //       so we have a 'sticky' overflow test
 401 //
 402 // Lmethod: method
 403 // ??: invocation counter
 404 //
 405 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 406   // Update standard invocation counters
 407   __ increment_invocation_counter(O0, G3_scratch);
 408   if (ProfileInterpreter) {  // %%% Merge this into MethodData*
 409     __ ld_ptr(STATE(_method), G3_scratch);
 410     Address interpreter_invocation_counter(G3_scratch, 0, in_bytes(Method::interpreter_invocation_counter_offset()));
 411     __ ld(interpreter_invocation_counter, G3_scratch);
 412     __ inc(G3_scratch);
 413     __ st(G3_scratch, interpreter_invocation_counter);
 414   }
 415 
 416   Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
 417   __ sethi(invocation_limit);
 418   __ ld(invocation_limit, G3_scratch);
 419   __ cmp(O0, G3_scratch);
 420   __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
 421   __ delayed()->nop();
 422 
 423 }
 424 
 425 address InterpreterGenerator::generate_empty_entry(void) {
 426 
 427   // A method that does nothing but return...
 428 
 429   address entry = __ pc();
 430   Label slow_path;
 431 
 432   // do nothing for empty methods (do not even increment invocation counter)
 433   if ( UseFastEmptyMethods) {
 434     // If we need a safepoint check, generate full interpreter entry.
 435     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
 436     __ load_contents(sync_state, G3_scratch);
 437     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 438     __ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry);
 439     __ delayed()->nop();
 440 
 441     // Code: _return
 442     __ retl();
 443     __ delayed()->mov(O5_savedSP, SP);
 444     return entry;
 445   }
 446   return NULL;
 447 }
 448 
 449 // Call an accessor method (assuming it is resolved, otherwise drop into
 450 // vanilla (slow path) entry
 451 
 452 // Generates code to elide accessor methods
 453 // Uses G3_scratch and G1_scratch as scratch
 454 address InterpreterGenerator::generate_accessor_entry(void) {
 455 
 456   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
 457   // parameter size = 1
 458   // Note: We can only use this code if the getfield has been resolved
 459   //       and if we don't have a null-pointer exception => check for
 460   //       these conditions first and use slow path if necessary.
 461   address entry = __ pc();
 462   Label slow_path;
 463 
 464   if ( UseFastAccessorMethods) {
 465     // Check if we need to reach a safepoint and generate full interpreter
 466     // frame if so.
 467     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
 468     __ load_contents(sync_state, G3_scratch);
 469     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 470     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
 471     __ delayed()->nop();
 472 
 473     // Check if local 0 != NULL
 474     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 475     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
 476     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
 477     __ delayed()->nop();
 478 
 479 
 480     // read first instruction word and extract bytecode @ 1 and index @ 2
 481     // get first 4 bytes of the bytecodes (big endian!)
 482     __ ld_ptr(Address(G5_method, 0, in_bytes(Method::const_offset())), G1_scratch);
 483     __ ld(Address(G1_scratch, 0, in_bytes(ConstMethod::codes_offset())), G1_scratch);
 484 
 485     // move index @ 2 far left then to the right most two bytes.
 486     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
 487     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
 488                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
 489 
 490     // get constant pool cache
 491     __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G3_scratch);
 492     __ ld_ptr(G3_scratch, in_bytes(ConstMethod::constants_offset()), G3_scratch);
 493     __ ld_ptr(G3_scratch, ConstantPool::cache_offset_in_bytes(), G3_scratch);
 494 
 495     // get specific constant pool cache entry
 496     __ add(G3_scratch, G1_scratch, G3_scratch);
 497 
 498     // Check the constant Pool cache entry to see if it has been resolved.
 499     // If not, need the slow path.
 500     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
 501     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
 502     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
 503     __ and3(G1_scratch, 0xFF, G1_scratch);
 504     __ cmp(G1_scratch, Bytecodes::_getfield);
 505     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
 506     __ delayed()->nop();
 507 
 508     // Get the type and return field offset from the constant pool cache
 509     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
 510     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
 511 
 512     Label xreturn_path;
 513     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 514     // because they are different sizes.
 515     // Get the type from the constant pool cache
 516     __ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
 517     // Make sure we don't need to mask G1_scratch after the above shift
 518     ConstantPoolCacheEntry::verify_tos_state_shift();
 519     __ cmp(G1_scratch, atos );
 520     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 521     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
 522     __ cmp(G1_scratch, itos);
 523     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 524     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
 525     __ cmp(G1_scratch, stos);
 526     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 527     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
 528     __ cmp(G1_scratch, ctos);
 529     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 530     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
 531 #ifdef ASSERT
 532     __ cmp(G1_scratch, btos);
 533     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 534     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
 535     __ should_not_reach_here();
 536 #endif
 537     __ ldsb(Otos_i, G3_scratch, Otos_i);
 538     __ bind(xreturn_path);
 539 
 540     // _ireturn/_areturn
 541     __ retl();                      // return from leaf routine
 542     __ delayed()->mov(O5_savedSP, SP);
 543 
 544     // Generate regular method entry
 545     __ bind(slow_path);
 546     __ ba(fast_accessor_slow_entry_path);
 547     __ delayed()->nop();
 548     return entry;
 549   }
 550   return NULL;
 551 }
 552 
 553 address InterpreterGenerator::generate_Reference_get_entry(void) {
 554 #ifndef SERIALGC
 555   if (UseG1GC) {
 556     // We need to generate have a routine that generates code to:
 557     //   * load the value in the referent field
 558     //   * passes that value to the pre-barrier.
 559     //
 560     // In the case of G1 this will record the value of the
 561     // referent in an SATB buffer if marking is active.
 562     // This will cause concurrent marking to mark the referent
 563     // field as live.
 564     Unimplemented();
 565   }
 566 #endif // SERIALGC
 567 
 568   // If G1 is not enabled then attempt to go through the accessor entry point
 569   // Reference.get is an accessor
 570   return generate_accessor_entry();
 571 }
 572 
 573 //
 574 // Interpreter stub for calling a native method. (C++ interpreter)
 575 // This sets up a somewhat different looking stack for calling the native method
 576 // than the typical interpreter frame setup.
 577 //
 578 
 579 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 580   address entry = __ pc();
 581 
 582   // the following temporary registers are used during frame creation
 583   const Register Gtmp1 = G3_scratch ;
 584   const Register Gtmp2 = G1_scratch;
 585   const Address size_of_parameters(G5_method, 0, in_bytes(Method::size_of_parameters_offset()));
 586 
 587   bool inc_counter  = UseCompiler || CountCompiledCalls;
 588 
 589   // make sure registers are different!
 590   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
 591 
 592   const Address access_flags      (G5_method, 0, in_bytes(Method::access_flags_offset()));
 593 
 594   Label Lentry;
 595   __ bind(Lentry);
 596 
 597   const Register Glocals_size = G3;
 598   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
 599 
 600   // make sure method is native & not abstract
 601   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
 602 #ifdef ASSERT
 603   __ ld(access_flags, Gtmp1);
 604   {
 605     Label L;
 606     __ btst(JVM_ACC_NATIVE, Gtmp1);
 607     __ br(Assembler::notZero, false, Assembler::pt, L);
 608     __ delayed()->nop();
 609     __ stop("tried to execute non-native method as native");
 610     __ bind(L);
 611   }
 612   { Label L;
 613     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
 614     __ br(Assembler::zero, false, Assembler::pt, L);
 615     __ delayed()->nop();
 616     __ stop("tried to execute abstract method as non-abstract");
 617     __ bind(L);
 618   }
 619 #endif // ASSERT
 620 
 621   __ lduh(size_of_parameters, Gtmp1);
 622   __ sll(Gtmp1, LogBytesPerWord, Gtmp2);       // parameter size in bytes
 623   __ add(Gargs, Gtmp2, Gargs);                 // points to first local + BytesPerWord
 624   // NEW
 625   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
 626   // generate the code to allocate the interpreter stack frame
 627   // NEW FRAME ALLOCATED HERE
 628   // save callers original sp
 629   // __ mov(SP, I5_savedSP->after_restore());
 630 
 631   generate_compute_interpreter_state(Lstate, G0, true);
 632 
 633   // At this point Lstate points to new interpreter state
 634   //
 635 
 636   const Address do_not_unlock_if_synchronized(G2_thread, 0,
 637       in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 638   // Since at this point in the method invocation the exception handler
 639   // would try to exit the monitor of synchronized methods which hasn't
 640   // been entered yet, we set the thread local variable
 641   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 642   // runtime, exception handling i.e. unlock_if_synchronized_method will
 643   // check this thread local flag.
 644   // This flag has two effects, one is to force an unwind in the topmost
 645   // interpreter frame and not perform an unlock while doing so.
 646 
 647   __ movbool(true, G3_scratch);
 648   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
 649 
 650 
 651   // increment invocation counter and check for overflow
 652   //
 653   // Note: checking for negative value instead of overflow
 654   //       so we have a 'sticky' overflow test (may be of
 655   //       importance as soon as we have true MT/MP)
 656   Label invocation_counter_overflow;
 657   if (inc_counter) {
 658     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 659   }
 660   Label Lcontinue;
 661   __ bind(Lcontinue);
 662 
 663   bang_stack_shadow_pages(true);
 664   // reset the _do_not_unlock_if_synchronized flag
 665   __ stbool(G0, do_not_unlock_if_synchronized);
 666 
 667   // check for synchronized methods
 668   // Must happen AFTER invocation_counter check, so method is not locked
 669   // if counter overflows.
 670 
 671   if (synchronized) {
 672     lock_method();
 673     // Don't see how G2_thread is preserved here...
 674     // __ verify_thread(); QQQ destroys L0,L1 can't use
 675   } else {
 676 #ifdef ASSERT
 677     { Label ok;
 678       __ ld_ptr(STATE(_method), G5_method);
 679       __ ld(access_flags, O0);
 680       __ btst(JVM_ACC_SYNCHRONIZED, O0);
 681       __ br( Assembler::zero, false, Assembler::pt, ok);
 682       __ delayed()->nop();
 683       __ stop("method needs synchronization");
 684       __ bind(ok);
 685     }
 686 #endif // ASSERT
 687   }
 688 
 689   // start execution
 690 
 691 //   __ verify_thread(); kills L1,L2 can't  use at the moment
 692 
 693   // jvmti/jvmpi support
 694   __ notify_method_entry();
 695 
 696   // native call
 697 
 698   // (note that O0 is never an oop--at most it is a handle)
 699   // It is important not to smash any handles created by this call,
 700   // until any oop handle in O0 is dereferenced.
 701 
 702   // (note that the space for outgoing params is preallocated)
 703 
 704   // get signature handler
 705 
 706   Label pending_exception_present;
 707 
 708   { Label L;
 709     __ ld_ptr(STATE(_method), G5_method);
 710     __ ld_ptr(Address(G5_method, 0, in_bytes(Method::signature_handler_offset())), G3_scratch);
 711     __ tst(G3_scratch);
 712     __ brx(Assembler::notZero, false, Assembler::pt, L);
 713     __ delayed()->nop();
 714     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false);
 715     __ ld_ptr(STATE(_method), G5_method);
 716 
 717     Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
 718     __ ld_ptr(exception_addr, G3_scratch);
 719     __ br_notnull_short(G3_scratch, Assembler::pn, pending_exception_present);
 720     __ ld_ptr(Address(G5_method, 0, in_bytes(Method::signature_handler_offset())), G3_scratch);
 721     __ bind(L);
 722   }
 723 
 724   // Push a new frame so that the args will really be stored in
 725   // Copy a few locals across so the new frame has the variables
 726   // we need but these values will be dead at the jni call and
 727   // therefore not gc volatile like the values in the current
 728   // frame (Lstate in particular)
 729 
 730   // Flush the state pointer to the register save area
 731   // Which is the only register we need for a stack walk.
 732   __ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
 733 
 734   __ mov(Lstate, O1);         // Need to pass the state pointer across the frame
 735 
 736   // Calculate current frame size
 737   __ sub(SP, FP, O3);         // Calculate negative of current frame size
 738   __ save(SP, O3, SP);        // Allocate an identical sized frame
 739 
 740   __ mov(I1, Lstate);          // In the "natural" register.
 741 
 742   // Note I7 has leftover trash. Slow signature handler will fill it in
 743   // should we get there. Normal jni call will set reasonable last_Java_pc
 744   // below (and fix I7 so the stack trace doesn't have a meaningless frame
 745   // in it).
 746 
 747 
 748   // call signature handler
 749   __ ld_ptr(STATE(_method), Lmethod);
 750   __ ld_ptr(STATE(_locals), Llocals);
 751 
 752   __ callr(G3_scratch, 0);
 753   __ delayed()->nop();
 754   __ ld_ptr(STATE(_thread), G2_thread);        // restore thread (shouldn't be needed)
 755 
 756   { Label not_static;
 757 
 758     __ ld_ptr(STATE(_method), G5_method);
 759     __ ld(access_flags, O0);
 760     __ btst(JVM_ACC_STATIC, O0);
 761     __ br( Assembler::zero, false, Assembler::pt, not_static);
 762     __ delayed()->
 763       // get native function entry point(O0 is a good temp until the very end)
 764        ld_ptr(Address(G5_method, 0, in_bytes(Method::native_function_offset())), O0);
 765     // for static methods insert the mirror argument
 766     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 767 
 768     __ ld_ptr(Address(G5_method, 0, in_bytes(Method:: const_offset())), O1);
 769     __ ld_ptr(Address(O1, 0, in_bytes(ConstMethod::constants_offset())), O1);
 770     __ ld_ptr(Address(O1, 0, ConstantPool::pool_holder_offset_in_bytes()), O1);
 771     __ ld_ptr(O1, mirror_offset, O1);
 772     // where the mirror handle body is allocated:
 773 #ifdef ASSERT
 774     if (!PrintSignatureHandlers)  // do not dirty the output with this
 775     { Label L;
 776       __ tst(O1);
 777       __ brx(Assembler::notZero, false, Assembler::pt, L);
 778       __ delayed()->nop();
 779       __ stop("mirror is missing");
 780       __ bind(L);
 781     }
 782 #endif // ASSERT
 783     __ st_ptr(O1, STATE(_oop_temp));
 784     __ add(STATE(_oop_temp), O1);            // this is really an LEA not an add
 785     __ bind(not_static);
 786   }
 787 
 788   // At this point, arguments have been copied off of stack into
 789   // their JNI positions, which are O1..O5 and SP[68..].
 790   // Oops are boxed in-place on the stack, with handles copied to arguments.
 791   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
 792 
 793 #ifdef ASSERT
 794   { Label L;
 795     __ tst(O0);
 796     __ brx(Assembler::notZero, false, Assembler::pt, L);
 797     __ delayed()->nop();
 798     __ stop("native entry point is missing");
 799     __ bind(L);
 800   }
 801 #endif // ASSERT
 802 
 803   //
 804   // setup the java frame anchor
 805   //
 806   // The scavenge function only needs to know that the PC of this frame is
 807   // in the interpreter method entry code, it doesn't need to know the exact
 808   // PC and hence we can use O7 which points to the return address from the
 809   // previous call in the code stream (signature handler function)
 810   //
 811   // The other trick is we set last_Java_sp to FP instead of the usual SP because
 812   // we have pushed the extra frame in order to protect the volatile register(s)
 813   // in that frame when we return from the jni call
 814   //
 815 
 816 
 817   __ set_last_Java_frame(FP, O7);
 818   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
 819                    // not meaningless information that'll confuse me.
 820 
 821   // flush the windows now. We don't care about the current (protection) frame
 822   // only the outer frames
 823 
 824   __ flush_windows();
 825 
 826   // mark windows as flushed
 827   Address flags(G2_thread,
 828                 0,
 829                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
 830   __ set(JavaFrameAnchor::flushed, G3_scratch);
 831   __ st(G3_scratch, flags);
 832 
 833   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
 834 
 835   Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
 836 #ifdef ASSERT
 837   { Label L;
 838     __ ld(thread_state, G3_scratch);
 839     __ cmp(G3_scratch, _thread_in_Java);
 840     __ br(Assembler::equal, false, Assembler::pt, L);
 841     __ delayed()->nop();
 842     __ stop("Wrong thread state in native stub");
 843     __ bind(L);
 844   }
 845 #endif // ASSERT
 846   __ set(_thread_in_native, G3_scratch);
 847   __ st(G3_scratch, thread_state);
 848 
 849   // Call the jni method, using the delay slot to set the JNIEnv* argument.
 850   __ callr(O0, 0);
 851   __ delayed()->
 852      add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
 853   __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
 854 
 855   // must we block?
 856 
 857   // Block, if necessary, before resuming in _thread_in_Java state.
 858   // In order for GC to work, don't clear the last_Java_sp until after blocking.
 859   { Label no_block;
 860     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
 861 
 862     // Switch thread to "native transition" state before reading the synchronization state.
 863     // This additional state is necessary because reading and testing the synchronization
 864     // state is not atomic w.r.t. GC, as this scenario demonstrates:
 865     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
 866     //     VM thread changes sync state to synchronizing and suspends threads for GC.
 867     //     Thread A is resumed to finish this native method, but doesn't block here since it
 868     //     didn't see any synchronization is progress, and escapes.
 869     __ set(_thread_in_native_trans, G3_scratch);
 870     __ st(G3_scratch, thread_state);
 871     if(os::is_MP()) {
 872       // Write serialization page so VM thread can do a pseudo remote membar.
 873       // We use the current thread pointer to calculate a thread specific
 874       // offset to write to within the page. This minimizes bus traffic
 875       // due to cache line collision.
 876       __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
 877     }
 878     __ load_contents(sync_state, G3_scratch);
 879     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 880 
 881 
 882     Label L;
 883     Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
 884     __ br(Assembler::notEqual, false, Assembler::pn, L);
 885     __ delayed()->
 886       ld(suspend_state, G3_scratch);
 887     __ cmp(G3_scratch, 0);
 888     __ br(Assembler::equal, false, Assembler::pt, no_block);
 889     __ delayed()->nop();
 890     __ bind(L);
 891 
 892     // Block.  Save any potential method result value before the operation and
 893     // use a leaf call to leave the last_Java_frame setup undisturbed.
 894     save_native_result();
 895     __ call_VM_leaf(noreg,
 896                     CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans),
 897                     G2_thread);
 898     __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
 899     // Restore any method result value
 900     restore_native_result();
 901     __ bind(no_block);
 902   }
 903 
 904   // Clear the frame anchor now
 905 
 906   __ reset_last_Java_frame();
 907 
 908   // Move the result handler address
 909   __ mov(Lscratch, G3_scratch);
 910   // return possible result to the outer frame
 911 #ifndef __LP64
 912   __ mov(O0, I0);
 913   __ restore(O1, G0, O1);
 914 #else
 915   __ restore(O0, G0, O0);
 916 #endif /* __LP64 */
 917 
 918   // Move result handler to expected register
 919   __ mov(G3_scratch, Lscratch);
 920 
 921 
 922   // thread state is thread_in_native_trans. Any safepoint blocking has
 923   // happened in the trampoline we are ready to switch to thread_in_Java.
 924 
 925   __ set(_thread_in_Java, G3_scratch);
 926   __ st(G3_scratch, thread_state);
 927 
 928   // If we have an oop result store it where it will be safe for any further gc
 929   // until we return now that we've released the handle it might be protected by
 930 
 931   {
 932     Label no_oop, store_result;
 933 
 934     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
 935     __ cmp(G3_scratch, Lscratch);
 936     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
 937     __ delayed()->nop();
 938     __ addcc(G0, O0, O0);
 939     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
 940     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
 941     __ mov(G0, O0);
 942 
 943     __ bind(store_result);
 944     // Store it where gc will look for it and result handler expects it.
 945     __ st_ptr(O0, STATE(_oop_temp));
 946 
 947     __ bind(no_oop);
 948 
 949   }
 950 
 951   // reset handle block
 952   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
 953   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
 954 
 955 
 956   // handle exceptions (exception handling will handle unlocking!)
 957   { Label L;
 958     Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
 959 
 960     __ ld_ptr(exception_addr, Gtemp);
 961     __ tst(Gtemp);
 962     __ brx(Assembler::equal, false, Assembler::pt, L);
 963     __ delayed()->nop();
 964     __ bind(pending_exception_present);
 965     // With c++ interpreter we just leave it pending caller will do the correct thing. However...
 966     // Like x86 we ignore the result of the native call and leave the method locked. This
 967     // seems wrong to leave things locked.
 968 
 969     __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
 970     __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 971 
 972     __ bind(L);
 973   }
 974 
 975   // jvmdi/jvmpi support (preserves thread register)
 976   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
 977 
 978   if (synchronized) {
 979     // save and restore any potential method result value around the unlocking operation
 980     save_native_result();
 981 
 982     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 983     // Get the initial monitor we allocated
 984     __ sub(Lstate, entry_size, O1);                        // initial monitor
 985     __ unlock_object(O1);
 986     restore_native_result();
 987   }
 988 
 989 #if defined(COMPILER2) && !defined(_LP64)
 990 
 991   // C2 expects long results in G1 we can't tell if we're returning to interpreted
 992   // or compiled so just be safe.
 993 
 994   __ sllx(O0, 32, G1);          // Shift bits into high G1
 995   __ srl (O1, 0, O1);           // Zero extend O1
 996   __ or3 (O1, G1, G1);          // OR 64 bits into G1
 997 
 998 #endif /* COMPILER2 && !_LP64 */
 999 
1000 #ifdef ASSERT
1001   {
1002     Label ok;
1003     __ cmp(I5_savedSP, FP);
1004     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
1005     __ delayed()->nop();
1006     __ stop("bad I5_savedSP value");
1007     __ should_not_reach_here();
1008     __ bind(ok);
1009   }
1010 #endif
1011   // Calls result handler which POPS FRAME
1012   if (TraceJumps) {
1013     // Move target to register that is recordable
1014     __ mov(Lscratch, G3_scratch);
1015     __ JMP(G3_scratch, 0);
1016   } else {
1017     __ jmp(Lscratch, 0);
1018   }
1019   __ delayed()->nop();
1020 
1021   if (inc_counter) {
1022     // handle invocation counter overflow
1023     __ bind(invocation_counter_overflow);
1024     generate_counter_overflow(Lcontinue);
1025   }
1026 
1027 
1028   return entry;
1029 }
1030 
1031 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
1032                                                               const Register prev_state,
1033                                                               bool native) {
1034 
1035   // On entry
1036   // G5_method - caller's method
1037   // Gargs - points to initial parameters (i.e. locals[0])
1038   // G2_thread - valid? (C1 only??)
1039   // "prev_state" - contains any previous frame manager state which we must save a link
1040   //
1041   // On return
1042   // "state" is a pointer to the newly allocated  state object. We must allocate and initialize
1043   // a new interpretState object and the method expression stack.
1044 
1045   assert_different_registers(state, prev_state);
1046   assert_different_registers(prev_state, G3_scratch);
1047   const Register Gtmp = G3_scratch;
1048   const Address constMethod       (G5_method, 0, in_bytes(Method::const_offset()));
1049   const Address access_flags      (G5_method, 0, in_bytes(Method::access_flags_offset()));
1050   const Address size_of_parameters(G5_method, 0, in_bytes(Method::size_of_parameters_offset()));
1051   const Address size_of_locals    (G5_method, 0, in_bytes(Method::size_of_locals_offset()));
1052 
1053   // slop factor is two extra slots on the expression stack so that
1054   // we always have room to store a result when returning from a call without parameters
1055   // that returns a result.
1056 
1057   const int slop_factor = 2*wordSize;
1058 
1059   const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor?
1060                          //6815692//Method::extra_stack_words() +  // extra push slots for MH adapters
1061                          frame::memory_parameter_word_sp_offset +  // register save area + param window
1062                          (native ?  frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class
1063 
1064   // XXX G5_method valid
1065 
1066   // Now compute new frame size
1067 
1068   if (native) {
1069     __ lduh( size_of_parameters, Gtmp );
1070     __ calc_mem_param_words(Gtmp, Gtmp);     // space for native call parameters passed on the stack in words
1071   } else {
1072     // Full size expression stack
1073     __ ld_ptr(constMethod, Gtmp);
1074     __ lduh(Gtmp, in_bytes(ConstMethod::max_stack_offset()), Gtmp);
1075   }
1076   __ add(Gtmp, fixed_size, Gtmp);           // plus the fixed portion
1077 
1078   __ neg(Gtmp);                               // negative space for stack/parameters in words
1079   __ and3(Gtmp, -WordsPerLong, Gtmp);        // make multiple of 2 (SP must be 2-word aligned)
1080   __ sll(Gtmp, LogBytesPerWord, Gtmp);       // negative space for frame in bytes
1081 
1082   // Need to do stack size check here before we fault on large frames
1083 
1084   Label stack_ok;
1085 
1086   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
1087                                                                               (StackRedPages+StackYellowPages);
1088 
1089 
1090   __ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0);
1091   __ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1);
1092   // compute stack bottom
1093   __ sub(O0, O1, O0);
1094 
1095   // Avoid touching the guard pages
1096   // Also a fudge for frame size of BytecodeInterpreter::run
1097   // It varies from 1k->4k depending on build type
1098   const int fudge = 6 * K;
1099 
1100   __ set(fudge + (max_pages * os::vm_page_size()), O1);
1101 
1102   __ add(O0, O1, O0);
1103   __ sub(O0, Gtmp, O0);
1104   __ cmp(SP, O0);
1105   __ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok);
1106   __ delayed()->nop();
1107 
1108      // throw exception return address becomes throwing pc
1109 
1110   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
1111   __ stop("never reached");
1112 
1113   __ bind(stack_ok);
1114 
1115   __ save(SP, Gtmp, SP);                      // setup new frame and register window
1116 
1117   // New window I7 call_stub or previous activation
1118   // O6 - register save area, BytecodeInterpreter just below it, args/locals just above that
1119   //
1120   __ sub(FP, sizeof(BytecodeInterpreter), state);        // Point to new Interpreter state
1121   __ add(state, STACK_BIAS, state );         // Account for 64bit bias
1122 
1123 #define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
1124 
1125   // Initialize a new Interpreter state
1126   // orig_sp - caller's original sp
1127   // G2_thread - thread
1128   // Gargs - &locals[0] (unbiased?)
1129   // G5_method - method
1130   // SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window
1131 
1132 
1133   __ set(0xdead0004, O1);
1134 
1135 
1136   __ st_ptr(Gargs, XXX_STATE(_locals));
1137   __ st_ptr(G0, XXX_STATE(_oop_temp));
1138 
1139   __ st_ptr(state, XXX_STATE(_self_link));                // point to self
1140   __ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states
1141   __ st_ptr(G2_thread, XXX_STATE(_thread));               // Store javathread
1142 
1143   if (native) {
1144     __ st_ptr(G0, XXX_STATE(_bcp));
1145   } else {
1146     __ ld_ptr(G5_method, in_bytes(Method::const_offset()), O2); // get ConstMethod*
1147     __ add(O2, in_bytes(ConstMethod::codes_offset()), O2);        // get bcp
1148     __ st_ptr(O2, XXX_STATE(_bcp));
1149   }
1150 
1151   __ st_ptr(G0, XXX_STATE(_mdx));
1152   __ st_ptr(G5_method, XXX_STATE(_method));
1153 
1154   __ set((int) BytecodeInterpreter::method_entry, O1);
1155   __ st(O1, XXX_STATE(_msg));
1156 
1157   __ ld_ptr(constMethod, O3);
1158   __ ld_ptr(O3, in_bytes(ConstMethod::constants_offset()), O3);
1159   __ ld_ptr(O3, ConstantPool::cache_offset_in_bytes(), O2);
1160   __ st_ptr(O2, XXX_STATE(_constants));
1161 
1162   __ st_ptr(G0, XXX_STATE(_result._to_call._callee));
1163 
1164   // Monitor base is just start of BytecodeInterpreter object;
1165   __ mov(state, O2);
1166   __ st_ptr(O2, XXX_STATE(_monitor_base));
1167 
1168   // Do we need a monitor for synchonized method?
1169   {
1170     __ ld(access_flags, O1);
1171     Label done;
1172     Label got_obj;
1173     __ btst(JVM_ACC_SYNCHRONIZED, O1);
1174     __ br( Assembler::zero, false, Assembler::pt, done);
1175 
1176     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1177     __ delayed()->btst(JVM_ACC_STATIC, O1);
1178     __ ld_ptr(XXX_STATE(_locals), O1);
1179     __ br( Assembler::zero, true, Assembler::pt, got_obj);
1180     __ delayed()->ld_ptr(O1, 0, O1);                  // get receiver for not-static case
1181     __ ld_ptr(constMethod, O1);
1182     __ ld_ptr( O1, in_bytes(ConstMethod::constants_offset()), O1);
1183     __ ld_ptr( O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
1184     // lock the mirror, not the Klass*
1185     __ ld_ptr( O1, mirror_offset, O1);
1186 
1187     __ bind(got_obj);
1188 
1189   #ifdef ASSERT
1190     __ tst(O1);
1191     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
1192   #endif // ASSERT
1193 
1194     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
1195     __ sub(SP, entry_size, SP);                         // account for initial monitor
1196     __ sub(O2, entry_size, O2);                        // initial monitor
1197     __ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use
1198     __ bind(done);
1199   }
1200 
1201   // Remember initial frame bottom
1202 
1203   __ st_ptr(SP, XXX_STATE(_frame_bottom));
1204 
1205   __ st_ptr(O2, XXX_STATE(_stack_base));
1206 
1207   __ sub(O2, wordSize, O2);                    // prepush
1208   __ st_ptr(O2, XXX_STATE(_stack));                // PREPUSH
1209 
1210   // Full size expression stack
1211   __ ld_ptr(constMethod, O3);
1212   __ lduh(O3, in_bytes(ConstMethod::max_stack_offset()), O3);
1213   guarantee(!EnableInvokeDynamic, "no support yet for java.lang.invoke.MethodHandle"); //6815692
1214   //6815692//if (EnableInvokeDynamic)
1215   //6815692//  __ inc(O3, Method::extra_stack_entries());
1216   __ sll(O3, LogBytesPerWord, O3);
1217   __ sub(O2, O3, O3);
1218 //  __ sub(O3, wordSize, O3);                    // so prepush doesn't look out of bounds
1219   __ st_ptr(O3, XXX_STATE(_stack_limit));
1220 
1221   if (!native) {
1222     //
1223     // Code to initialize locals
1224     //
1225     Register init_value = noreg;    // will be G0 if we must clear locals
1226     // Now zero locals
1227     if (true /* zerolocals */ || ClearInterpreterLocals) {
1228       // explicitly initialize locals
1229       init_value = G0;
1230     } else {
1231     #ifdef ASSERT
1232       // initialize locals to a garbage pattern for better debugging
1233       init_value = O3;
1234       __ set( 0x0F0F0F0F, init_value );
1235     #endif // ASSERT
1236     }
1237     if (init_value != noreg) {
1238       Label clear_loop;
1239 
1240       // NOTE: If you change the frame layout, this code will need to
1241       // be updated!
1242       __ lduh( size_of_locals, O2 );
1243       __ lduh( size_of_parameters, O1 );
1244       __ sll( O2, LogBytesPerWord, O2);
1245       __ sll( O1, LogBytesPerWord, O1 );
1246       __ ld_ptr(XXX_STATE(_locals), L2_scratch);
1247       __ sub( L2_scratch, O2, O2 );
1248       __ sub( L2_scratch, O1, O1 );
1249 
1250       __ bind( clear_loop );
1251       __ inc( O2, wordSize );
1252 
1253       __ cmp( O2, O1 );
1254       __ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1255       __ delayed()->st_ptr( init_value, O2, 0 );
1256     }
1257   }
1258 }
1259 // Find preallocated  monitor and lock method (C++ interpreter)
1260 //
1261 void InterpreterGenerator::lock_method(void) {
1262 // Lock the current method.
1263 // Destroys registers L2_scratch, L3_scratch, O0
1264 //
1265 // Find everything relative to Lstate
1266 
1267 #ifdef ASSERT
1268   __ ld_ptr(STATE(_method), L2_scratch);
1269   __ ld(L2_scratch, in_bytes(Method::access_flags_offset()), O0);
1270 
1271  { Label ok;
1272    __ btst(JVM_ACC_SYNCHRONIZED, O0);
1273    __ br( Assembler::notZero, false, Assembler::pt, ok);
1274    __ delayed()->nop();
1275    __ stop("method doesn't need synchronization");
1276    __ bind(ok);
1277   }
1278 #endif // ASSERT
1279 
1280   // monitor is already allocated at stack base
1281   // and the lockee is already present
1282   __ ld_ptr(STATE(_stack_base), L2_scratch);
1283   __ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0);   // get object
1284   __ lock_object(L2_scratch, O0);
1285 
1286 }
1287 
1288 //  Generate code for handling resuming a deopted method
1289 void CppInterpreterGenerator::generate_deopt_handling() {
1290 
1291   Label return_from_deopt_common;
1292 
1293   // deopt needs to jump to here to enter the interpreter (return a result)
1294   deopt_frame_manager_return_atos  = __ pc();
1295 
1296   // O0/O1 live
1297   __ ba(return_from_deopt_common);
1298   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch);    // Result stub address array index
1299 
1300 
1301   // deopt needs to jump to here to enter the interpreter (return a result)
1302   deopt_frame_manager_return_btos  = __ pc();
1303 
1304   // O0/O1 live
1305   __ ba(return_from_deopt_common);
1306   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch);    // Result stub address array index
1307 
1308   // deopt needs to jump to here to enter the interpreter (return a result)
1309   deopt_frame_manager_return_itos  = __ pc();
1310 
1311   // O0/O1 live
1312   __ ba(return_from_deopt_common);
1313   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch);    // Result stub address array index
1314 
1315   // deopt needs to jump to here to enter the interpreter (return a result)
1316 
1317   deopt_frame_manager_return_ltos  = __ pc();
1318 #if !defined(_LP64) && defined(COMPILER2)
1319   // All return values are where we want them, except for Longs.  C2 returns
1320   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
1321   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
1322   // build even if we are returning from interpreted we just do a little
1323   // stupid shuffing.
1324   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
1325   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
1326   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
1327 
1328   __ srl (G1, 0,O1);
1329   __ srlx(G1,32,O0);
1330 #endif /* !_LP64 && COMPILER2 */
1331   // O0/O1 live
1332   __ ba(return_from_deopt_common);
1333   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch);    // Result stub address array index
1334 
1335   // deopt needs to jump to here to enter the interpreter (return a result)
1336 
1337   deopt_frame_manager_return_ftos  = __ pc();
1338   // O0/O1 live
1339   __ ba(return_from_deopt_common);
1340   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch);    // Result stub address array index
1341 
1342   // deopt needs to jump to here to enter the interpreter (return a result)
1343   deopt_frame_manager_return_dtos  = __ pc();
1344 
1345   // O0/O1 live
1346   __ ba(return_from_deopt_common);
1347   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch);    // Result stub address array index
1348 
1349   // deopt needs to jump to here to enter the interpreter (return a result)
1350   deopt_frame_manager_return_vtos  = __ pc();
1351 
1352   // O0/O1 live
1353   __ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch);
1354 
1355   // Deopt return common
1356   // an index is present that lets us move any possible result being
1357   // return to the interpreter's stack
1358   //
1359   __ bind(return_from_deopt_common);
1360 
1361   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
1362   // stack is in the state that the  calling convention left it.
1363   // Copy the result from native abi result and place it on java expression stack.
1364 
1365   // Current interpreter state is present in Lstate
1366 
1367   // Get current pre-pushed top of interpreter stack
1368   // Any result (if any) is in native abi
1369   // result type index is in L3_scratch
1370 
1371   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
1372 
1373   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
1374   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
1375   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
1376   __ jmpl(Lscratch, G0, O7);                                         // and convert it
1377   __ delayed()->nop();
1378 
1379   // L1_scratch points to top of stack (prepushed)
1380   __ st_ptr(L1_scratch, STATE(_stack));
1381 }
1382 
1383 // Generate the code to handle a more_monitors message from the c++ interpreter
1384 void CppInterpreterGenerator::generate_more_monitors() {
1385 
1386   Label entry, loop;
1387   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1388   // 1. compute new pointers                                // esp: old expression stack top
1389   __ delayed()->ld_ptr(STATE(_stack_base), L4_scratch);            // current expression stack bottom
1390   __ sub(L4_scratch, entry_size, L4_scratch);
1391   __ st_ptr(L4_scratch, STATE(_stack_base));
1392 
1393   __ sub(SP, entry_size, SP);                  // Grow stack
1394   __ st_ptr(SP, STATE(_frame_bottom));
1395 
1396   __ ld_ptr(STATE(_stack_limit), L2_scratch);
1397   __ sub(L2_scratch, entry_size, L2_scratch);
1398   __ st_ptr(L2_scratch, STATE(_stack_limit));
1399 
1400   __ ld_ptr(STATE(_stack), L1_scratch);                // Get current stack top
1401   __ sub(L1_scratch, entry_size, L1_scratch);
1402   __ st_ptr(L1_scratch, STATE(_stack));
1403   __ ba(entry);
1404   __ delayed()->add(L1_scratch, wordSize, L1_scratch);        // first real entry (undo prepush)
1405 
1406   // 2. move expression stack
1407 
1408   __ bind(loop);
1409   __ st_ptr(L3_scratch, Address(L1_scratch, 0));
1410   __ add(L1_scratch, wordSize, L1_scratch);
1411   __ bind(entry);
1412   __ cmp(L1_scratch, L4_scratch);
1413   __ br(Assembler::notEqual, false, Assembler::pt, loop);
1414   __ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch);
1415 
1416   // now zero the slot so we can find it.
1417   __ st_ptr(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes());
1418 
1419 }
1420 
1421 // Initial entry to C++ interpreter from the call_stub.
1422 // This entry point is called the frame manager since it handles the generation
1423 // of interpreter activation frames via requests directly from the vm (via call_stub)
1424 // and via requests from the interpreter. The requests from the call_stub happen
1425 // directly thru the entry point. Requests from the interpreter happen via returning
1426 // from the interpreter and examining the message the interpreter has returned to
1427 // the frame manager. The frame manager can take the following requests:
1428 
1429 // NO_REQUEST - error, should never happen.
1430 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
1431 //                 allocate a new monitor.
1432 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
1433 //               happens during entry during the entry via the call stub.
1434 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
1435 //
1436 // Arguments:
1437 //
1438 // ebx: Method*
1439 // ecx: receiver - unused (retrieved from stack as needed)
1440 // esi: previous frame manager state (NULL from the call_stub/c1/c2)
1441 //
1442 //
1443 // Stack layout at entry
1444 //
1445 // [ return address     ] <--- esp
1446 // [ parameter n        ]
1447 //   ...
1448 // [ parameter 1        ]
1449 // [ expression stack   ]
1450 //
1451 //
1452 // We are free to blow any registers we like because the call_stub which brought us here
1453 // initially has preserved the callee save registers already.
1454 //
1455 //
1456 
1457 static address interpreter_frame_manager = NULL;
1458 
1459 #ifdef ASSERT
1460   #define VALIDATE_STATE(scratch, marker)                         \
1461   {                                                               \
1462     Label skip;                                                   \
1463     __ ld_ptr(STATE(_self_link), scratch);                        \
1464     __ cmp(Lstate, scratch);                                      \
1465     __ brx(Assembler::equal, false, Assembler::pt, skip);         \
1466     __ delayed()->nop();                                          \
1467     __ breakpoint_trap();                                         \
1468     __ emit_int32(marker);                                         \
1469     __ bind(skip);                                                \
1470   }
1471 #else
1472   #define VALIDATE_STATE(scratch, marker)
1473 #endif /* ASSERT */
1474 
1475 void CppInterpreterGenerator::adjust_callers_stack(Register args) {
1476 //
1477 // Adjust caller's stack so that all the locals can be contiguous with
1478 // the parameters.
1479 // Worries about stack overflow make this a pain.
1480 //
1481 // Destroys args, G3_scratch, G3_scratch
1482 // In/Out O5_savedSP (sender's original SP)
1483 //
1484 //  assert_different_registers(state, prev_state);
1485   const Register Gtmp = G3_scratch;
1486   const Register tmp = O2;
1487   const Address size_of_parameters(G5_method, 0, in_bytes(Method::size_of_parameters_offset()));
1488   const Address size_of_locals    (G5_method, 0, in_bytes(Method::size_of_locals_offset()));
1489 
1490   __ lduh(size_of_parameters, tmp);
1491   __ sll(tmp, LogBytesPerWord, Gtmp);       // parameter size in bytes
1492   __ add(args, Gtmp, Gargs);                // points to first local + BytesPerWord
1493   // NEW
1494   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
1495   // determine extra space for non-argument locals & adjust caller's SP
1496   // Gtmp1: parameter size in words
1497   __ lduh(size_of_locals, Gtmp);
1498   __ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp);
1499 
1500 #if 1
1501   // c2i adapters place the final interpreter argument in the register save area for O0/I0
1502   // the call_stub will place the final interpreter argument at
1503   // frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm
1504   // or c++ interpreter. However with the c++ interpreter when we do a recursive call
1505   // and try to make it look good in the debugger we will store the argument to
1506   // RecursiveInterpreterActivation in the register argument save area. Without allocating
1507   // extra space for the compiler this will overwrite locals in the local array of the
1508   // interpreter.
1509   // QQQ still needed with frameless adapters???
1510 
1511   const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset;
1512 
1513   __ add(Gtmp, c2i_adjust_words*wordSize, Gtmp);
1514 #endif // 1
1515 
1516 
1517   __ sub(SP, Gtmp, SP);                      // just caller's frame for the additional space we need.
1518 }
1519 
1520 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1521 
1522   // G5_method: Method*
1523   // G2_thread: thread (unused)
1524   // Gargs:   bottom of args (sender_sp)
1525   // O5: sender's sp
1526 
1527   // A single frame manager is plenty as we don't specialize for synchronized. We could and
1528   // the code is pretty much ready. Would need to change the test below and for good measure
1529   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
1530   // routines. Not clear this is worth it yet.
1531 
1532   if (interpreter_frame_manager) {
1533     return interpreter_frame_manager;
1534   }
1535 
1536   __ bind(frame_manager_entry);
1537 
1538   // the following temporary registers are used during frame creation
1539   const Register Gtmp1 = G3_scratch;
1540   // const Register Lmirror = L1;     // native mirror (native calls only)
1541 
1542   const Address constMethod       (G5_method, 0, in_bytes(Method::const_offset()));
1543   const Address access_flags      (G5_method, 0, in_bytes(Method::access_flags_offset()));
1544   const Address size_of_parameters(G5_method, 0, in_bytes(Method::size_of_parameters_offset()));
1545   const Address size_of_locals    (G5_method, 0, in_bytes(Method::size_of_locals_offset()));
1546 
1547   address entry_point = __ pc();
1548   __ mov(G0, prevState);                                                 // no current activation
1549 
1550 
1551   Label re_dispatch;
1552 
1553   __ bind(re_dispatch);
1554 
1555   // Interpreter needs to have locals completely contiguous. In order to do that
1556   // We must adjust the caller's stack pointer for any locals beyond just the
1557   // parameters
1558   adjust_callers_stack(Gargs);
1559 
1560   // O5_savedSP still contains sender's sp
1561 
1562   // NEW FRAME
1563 
1564   generate_compute_interpreter_state(Lstate, prevState, false);
1565 
1566   // At this point a new interpreter frame and state object are created and initialized
1567   // Lstate has the pointer to the new activation
1568   // Any stack banging or limit check should already be done.
1569 
1570   Label call_interpreter;
1571 
1572   __ bind(call_interpreter);
1573 
1574 
1575 #if 1
1576   __ set(0xdead002, Lmirror);
1577   __ set(0xdead002, L2_scratch);
1578   __ set(0xdead003, L3_scratch);
1579   __ set(0xdead004, L4_scratch);
1580   __ set(0xdead005, Lscratch);
1581   __ set(0xdead006, Lscratch2);
1582   __ set(0xdead007, L7_scratch);
1583 
1584   __ set(0xdeaf002, O2);
1585   __ set(0xdeaf003, O3);
1586   __ set(0xdeaf004, O4);
1587   __ set(0xdeaf005, O5);
1588 #endif
1589 
1590   // Call interpreter (stack bang complete) enter here if message is
1591   // set and we know stack size is valid
1592 
1593   Label call_interpreter_2;
1594 
1595   __ bind(call_interpreter_2);
1596 
1597 #ifdef ASSERT
1598   {
1599     Label skip;
1600     __ ld_ptr(STATE(_frame_bottom), G3_scratch);
1601     __ cmp(G3_scratch, SP);
1602     __ brx(Assembler::equal, false, Assembler::pt, skip);
1603     __ delayed()->nop();
1604     __ stop("SP not restored to frame bottom");
1605     __ bind(skip);
1606   }
1607 #endif
1608 
1609   VALIDATE_STATE(G3_scratch, 4);
1610   __ set_last_Java_frame(SP, noreg);
1611   __ mov(Lstate, O0);                 // (arg) pointer to current state
1612 
1613   __ call(CAST_FROM_FN_PTR(address,
1614                            JvmtiExport::can_post_interpreter_events() ?
1615                                                                   BytecodeInterpreter::runWithChecks
1616                                                                 : BytecodeInterpreter::run),
1617          relocInfo::runtime_call_type);
1618 
1619   __ delayed()->nop();
1620 
1621   __ ld_ptr(STATE(_thread), G2_thread);
1622   __ reset_last_Java_frame();
1623 
1624   // examine msg from interpreter to determine next action
1625   __ ld_ptr(STATE(_thread), G2_thread);                                  // restore G2_thread
1626 
1627   __ ld(STATE(_msg), L1_scratch);                                       // Get new message
1628 
1629   Label call_method;
1630   Label return_from_interpreted_method;
1631   Label throw_exception;
1632   Label do_OSR;
1633   Label bad_msg;
1634   Label resume_interpreter;
1635 
1636   __ cmp(L1_scratch, (int)BytecodeInterpreter::call_method);
1637   __ br(Assembler::equal, false, Assembler::pt, call_method);
1638   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method);
1639   __ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method);
1640   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception);
1641   __ br(Assembler::equal, false, Assembler::pt, throw_exception);
1642   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr);
1643   __ br(Assembler::equal, false, Assembler::pt, do_OSR);
1644   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors);
1645   __ br(Assembler::notEqual, false, Assembler::pt, bad_msg);
1646 
1647   // Allocate more monitor space, shuffle expression stack....
1648 
1649   generate_more_monitors();
1650 
1651   // new monitor slot allocated, resume the interpreter.
1652 
1653   __ set((int)BytecodeInterpreter::got_monitors, L1_scratch);
1654   VALIDATE_STATE(G3_scratch, 5);
1655   __ ba(call_interpreter);
1656   __ delayed()->st(L1_scratch, STATE(_msg));
1657 
1658   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
1659   unctrap_frame_manager_entry  = __ pc();
1660 
1661   // QQQ what message do we send
1662 
1663   __ ba(call_interpreter);
1664   __ delayed()->ld_ptr(STATE(_frame_bottom), SP);                  // restore to full stack frame
1665 
1666   //=============================================================================
1667   // Returning from a compiled method into a deopted method. The bytecode at the
1668   // bcp has completed. The result of the bytecode is in the native abi (the tosca
1669   // for the template based interpreter). Any stack space that was used by the
1670   // bytecode that has completed has been removed (e.g. parameters for an invoke)
1671   // so all that we have to do is place any pending result on the expression stack
1672   // and resume execution on the next bytecode.
1673 
1674   generate_deopt_handling();
1675 
1676   // ready to resume the interpreter
1677 
1678   __ set((int)BytecodeInterpreter::deopt_resume, L1_scratch);
1679   __ ba(call_interpreter);
1680   __ delayed()->st(L1_scratch, STATE(_msg));
1681 
1682   // Current frame has caught an exception we need to dispatch to the
1683   // handler. We can get here because a native interpreter frame caught
1684   // an exception in which case there is no handler and we must rethrow
1685   // If it is a vanilla interpreted frame the we simply drop into the
1686   // interpreter and let it do the lookup.
1687 
1688   Interpreter::_rethrow_exception_entry = __ pc();
1689 
1690   Label return_with_exception;
1691   Label unwind_and_forward;
1692 
1693   // O0: exception
1694   // O7: throwing pc
1695 
1696   // We want exception in the thread no matter what we ultimately decide about frame type.
1697 
1698   Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
1699   __ verify_thread();
1700   __ st_ptr(O0, exception_addr);
1701 
1702   // get the Method*
1703   __ ld_ptr(STATE(_method), G5_method);
1704 
1705   // if this current frame vanilla or native?
1706 
1707   __ ld(access_flags, Gtmp1);
1708   __ btst(JVM_ACC_NATIVE, Gtmp1);
1709   __ br(Assembler::zero, false, Assembler::pt, return_with_exception);  // vanilla interpreted frame handle directly
1710   __ delayed()->nop();
1711 
1712   // We drop thru to unwind a native interpreted frame with a pending exception
1713   // We jump here for the initial interpreter frame with exception pending
1714   // We unwind the current acivation and forward it to our caller.
1715 
1716   __ bind(unwind_and_forward);
1717 
1718   // Unwind frame and jump to forward exception. unwinding will place throwing pc in O7
1719   // as expected by forward_exception.
1720 
1721   __ restore(FP, G0, SP);                  // unwind interpreter state frame
1722   __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1723   __ delayed()->mov(I5_savedSP->after_restore(), SP);
1724 
1725   // Return point from a call which returns a result in the native abi
1726   // (c1/c2/jni-native). This result must be processed onto the java
1727   // expression stack.
1728   //
1729   // A pending exception may be present in which case there is no result present
1730 
1731   address return_from_native_method = __ pc();
1732 
1733   VALIDATE_STATE(G3_scratch, 6);
1734 
1735   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
1736   // stack is in the state that the  calling convention left it.
1737   // Copy the result from native abi result and place it on java expression stack.
1738 
1739   // Current interpreter state is present in Lstate
1740 
1741   // Exception pending?
1742 
1743   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
1744   __ ld_ptr(exception_addr, Lscratch);                                         // get any pending exception
1745   __ tst(Lscratch);                                                            // exception pending?
1746   __ brx(Assembler::notZero, false, Assembler::pt, return_with_exception);
1747   __ delayed()->nop();
1748 
1749   // Process the native abi result to java expression stack
1750 
1751   __ ld_ptr(STATE(_result._to_call._callee), L4_scratch);                        // called method
1752   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
1753   __ lduh(L4_scratch, in_bytes(Method::size_of_parameters_offset()), L2_scratch); // get parameter size
1754   __ sll(L2_scratch, LogBytesPerWord, L2_scratch     );                           // parameter size in bytes
1755   __ add(L1_scratch, L2_scratch, L1_scratch);                                      // stack destination for result
1756   __ ld(L4_scratch, in_bytes(Method::result_index_offset()), L3_scratch); // called method result type index
1757 
1758   // tosca is really just native abi
1759   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
1760   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
1761   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
1762   __ jmpl(Lscratch, G0, O7);                                                   // and convert it
1763   __ delayed()->nop();
1764 
1765   // L1_scratch points to top of stack (prepushed)
1766 
1767   __ ba(resume_interpreter);
1768   __ delayed()->mov(L1_scratch, O1);
1769 
1770   // An exception is being caught on return to a vanilla interpreter frame.
1771   // Empty the stack and resume interpreter
1772 
1773   __ bind(return_with_exception);
1774 
1775   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
1776   __ ld_ptr(STATE(_stack_base), O1);                               // empty java expression stack
1777   __ ba(resume_interpreter);
1778   __ delayed()->sub(O1, wordSize, O1);                             // account for prepush
1779 
1780   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
1781   // interpreter call, or native) and unwind this interpreter activation.
1782   // All monitors should be unlocked.
1783 
1784   __ bind(return_from_interpreted_method);
1785 
1786   VALIDATE_STATE(G3_scratch, 7);
1787 
1788   Label return_to_initial_caller;
1789 
1790   // Interpreted result is on the top of the completed activation expression stack.
1791   // We must return it to the top of the callers stack if caller was interpreted
1792   // otherwise we convert to native abi result and return to call_stub/c1/c2
1793   // The caller's expression stack was truncated by the call however the current activation
1794   // has enough stuff on the stack that we have usable space there no matter what. The
1795   // other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals)
1796   // for the current activation
1797 
1798   __ ld_ptr(STATE(_prev_link), L1_scratch);
1799   __ ld_ptr(STATE(_method), L2_scratch);                               // get method just executed
1800   __ ld(L2_scratch, in_bytes(Method::result_index_offset()), L2_scratch);
1801   __ tst(L1_scratch);
1802   __ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller);
1803   __ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch);
1804 
1805   // Copy result to callers java stack
1806 
1807   __ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch);
1808   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                          // get typed result converter address
1809   __ ld_ptr(STATE(_stack), O0);                                       // current top (prepushed)
1810   __ ld_ptr(STATE(_locals), O1);                                      // stack destination
1811 
1812   // O0 - will be source, O1 - will be destination (preserved)
1813   __ jmpl(Lscratch, G0, O7);                                          // and convert it
1814   __ delayed()->add(O0, wordSize, O0);                                // get source (top of current expr stack)
1815 
1816   // O1 == &locals[0]
1817 
1818   // Result is now on caller's stack. Just unwind current activation and resume
1819 
1820   Label unwind_recursive_activation;
1821 
1822 
1823   __ bind(unwind_recursive_activation);
1824 
1825   // O1 == &locals[0] (really callers stacktop) for activation now returning
1826   // returning to interpreter method from "recursive" interpreter call
1827   // result converter left O1 pointing to top of the( prepushed) java stack for method we are returning
1828   // to. Now all we must do is unwind the state from the completed call
1829 
1830   // Must restore stack
1831   VALIDATE_STATE(G3_scratch, 8);
1832 
1833   // Return to interpreter method after a method call (interpreted/native/c1/c2) has completed.
1834   // Result if any is already on the caller's stack. All we must do now is remove the now dead
1835   // frame and tell interpreter to resume.
1836 
1837 
1838   __ mov(O1, I1);                                                     // pass back new stack top across activation
1839   // POP FRAME HERE ==================================
1840   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
1841   __ ld_ptr(STATE(_frame_bottom), SP);                                // restore to full stack frame
1842 
1843 
1844   // Resume the interpreter. The current frame contains the current interpreter
1845   // state object.
1846   //
1847   // O1 == new java stack pointer
1848 
1849   __ bind(resume_interpreter);
1850   VALIDATE_STATE(G3_scratch, 10);
1851 
1852   // A frame we have already used before so no need to bang stack so use call_interpreter_2 entry
1853 
1854   __ set((int)BytecodeInterpreter::method_resume, L1_scratch);
1855   __ st(L1_scratch, STATE(_msg));
1856   __ ba(call_interpreter_2);
1857   __ delayed()->st_ptr(O1, STATE(_stack));
1858 
1859 
1860   // Fast accessor methods share this entry point.
1861   // This works because frame manager is in the same codelet
1862   // This can either be an entry via call_stub/c1/c2 or a recursive interpreter call
1863   // we need to do a little register fixup here once we distinguish the two of them
1864   if (UseFastAccessorMethods && !synchronized) {
1865   // Call stub_return address still in O7
1866     __ bind(fast_accessor_slow_entry_path);
1867     __ set((intptr_t)return_from_native_method - 8, Gtmp1);
1868     __ cmp(Gtmp1, O7);                                                // returning to interpreter?
1869     __ brx(Assembler::equal, true, Assembler::pt, re_dispatch);       // yep
1870     __ delayed()->nop();
1871     __ ba(re_dispatch);
1872     __ delayed()->mov(G0, prevState);                                 // initial entry
1873 
1874   }
1875 
1876   // interpreter returning to native code (call_stub/c1/c2)
1877   // convert result and unwind initial activation
1878   // L2_scratch - scaled result type index
1879 
1880   __ bind(return_to_initial_caller);
1881 
1882   __ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch);
1883   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                           // get typed result converter address
1884   __ ld_ptr(STATE(_stack), O0);                                        // current top (prepushed)
1885   __ jmpl(Lscratch, G0, O7);                                           // and convert it
1886   __ delayed()->add(O0, wordSize, O0);                                 // get source (top of current expr stack)
1887 
1888   Label unwind_initial_activation;
1889   __ bind(unwind_initial_activation);
1890 
1891   // RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1)
1892   // we can return here with an exception that wasn't handled by interpreted code
1893   // how does c1/c2 see it on return?
1894 
1895   // compute resulting sp before/after args popped depending upon calling convention
1896   // __ ld_ptr(STATE(_saved_sp), Gtmp1);
1897   //
1898   // POP FRAME HERE ==================================
1899   __ restore(FP, G0, SP);
1900   __ retl();
1901   __ delayed()->mov(I5_savedSP->after_restore(), SP);
1902 
1903   // OSR request, unwind the current frame and transfer to the OSR entry
1904   // and enter OSR nmethod
1905 
1906   __ bind(do_OSR);
1907   Label remove_initial_frame;
1908   __ ld_ptr(STATE(_prev_link), L1_scratch);
1909   __ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch);
1910 
1911   // We are going to pop this frame. Is there another interpreter frame underneath
1912   // it or is it callstub/compiled?
1913 
1914   __ tst(L1_scratch);
1915   __ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame);
1916   __ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch);
1917 
1918   // Frame underneath is an interpreter frame simply unwind
1919   // POP FRAME HERE ==================================
1920   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
1921   __ mov(I5_savedSP->after_restore(), SP);
1922 
1923   // Since we are now calling native need to change our "return address" from the
1924   // dummy RecursiveInterpreterActivation to a return from native
1925 
1926   __ set((intptr_t)return_from_native_method - 8, O7);
1927 
1928   __ jmpl(G3_scratch, G0, G0);
1929   __ delayed()->mov(G1_scratch, O0);
1930 
1931   __ bind(remove_initial_frame);
1932 
1933   // POP FRAME HERE ==================================
1934   __ restore(FP, G0, SP);
1935   __ mov(I5_savedSP->after_restore(), SP);
1936   __ jmpl(G3_scratch, G0, G0);
1937   __ delayed()->mov(G1_scratch, O0);
1938 
1939   // Call a new method. All we do is (temporarily) trim the expression stack
1940   // push a return address to bring us back to here and leap to the new entry.
1941   // At this point we have a topmost frame that was allocated by the frame manager
1942   // which contains the current method interpreted state. We trim this frame
1943   // of excess java expression stack entries and then recurse.
1944 
1945   __ bind(call_method);
1946 
1947   // stack points to next free location and not top element on expression stack
1948   // method expects sp to be pointing to topmost element
1949 
1950   __ ld_ptr(STATE(_thread), G2_thread);
1951   __ ld_ptr(STATE(_result._to_call._callee), G5_method);
1952 
1953 
1954   // SP already takes in to account the 2 extra words we use for slop
1955   // when we call a "static long no_params()" method. So if
1956   // we trim back sp by the amount of unused java expression stack
1957   // there will be automagically the 2 extra words we need.
1958   // We also have to worry about keeping SP aligned.
1959 
1960   __ ld_ptr(STATE(_stack), Gargs);
1961   __ ld_ptr(STATE(_stack_limit), L1_scratch);
1962 
1963   // compute the unused java stack size
1964   __ sub(Gargs, L1_scratch, L2_scratch);                       // compute unused space
1965 
1966   // Round down the unused space to that stack is always 16-byte aligned
1967   // by making the unused space a multiple of the size of two longs.
1968 
1969   __ and3(L2_scratch, -2*BytesPerLong, L2_scratch);
1970 
1971   // Now trim the stack
1972   __ add(SP, L2_scratch, SP);
1973 
1974 
1975   // Now point to the final argument (account for prepush)
1976   __ add(Gargs, wordSize, Gargs);
1977 #ifdef ASSERT
1978   // Make sure we have space for the window
1979   __ sub(Gargs, SP, L1_scratch);
1980   __ cmp(L1_scratch, 16*wordSize);
1981   {
1982     Label skip;
1983     __ brx(Assembler::greaterEqual, false, Assembler::pt, skip);
1984     __ delayed()->nop();
1985     __ stop("killed stack");
1986     __ bind(skip);
1987   }
1988 #endif // ASSERT
1989 
1990   // Create a new frame where we can store values that make it look like the interpreter
1991   // really recursed.
1992 
1993   // prepare to recurse or call specialized entry
1994 
1995   // First link the registers we need
1996 
1997   // make the pc look good in debugger
1998   __ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7);
1999   // argument too
2000   __ mov(Lstate, I0);
2001 
2002   // Record our sending SP
2003   __ mov(SP, O5_savedSP);
2004 
2005   __ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch);
2006   __ set((intptr_t) entry_point, L1_scratch);
2007   __ cmp(L1_scratch, L2_scratch);
2008   __ brx(Assembler::equal, false, Assembler::pt, re_dispatch);
2009   __ delayed()->mov(Lstate, prevState);                                // link activations
2010 
2011   // method uses specialized entry, push a return so we look like call stub setup
2012   // this path will handle fact that result is returned in registers and not
2013   // on the java stack.
2014 
2015   __ set((intptr_t)return_from_native_method - 8, O7);
2016   __ jmpl(L2_scratch, G0, G0);                               // Do specialized entry
2017   __ delayed()->nop();
2018 
2019   //
2020   // Bad Message from interpreter
2021   //
2022   __ bind(bad_msg);
2023   __ stop("Bad message from interpreter");
2024 
2025   // Interpreted method "returned" with an exception pass it on...
2026   // Pass result, unwind activation and continue/return to interpreter/call_stub
2027   // We handle result (if any) differently based on return to interpreter or call_stub
2028 
2029   __ bind(throw_exception);
2030   __ ld_ptr(STATE(_prev_link), L1_scratch);
2031   __ tst(L1_scratch);
2032   __ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward);
2033   __ delayed()->nop();
2034 
2035   __ ld_ptr(STATE(_locals), O1); // get result of popping callee's args
2036   __ ba(unwind_recursive_activation);
2037   __ delayed()->nop();
2038 
2039   interpreter_frame_manager = entry_point;
2040   return entry_point;
2041 }
2042 
2043 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
2044  : CppInterpreterGenerator(code) {
2045    generate_all(); // down here so it can be "virtual"
2046 }
2047 
2048 
2049 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
2050 
2051   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
2052   // expression stack, the callee will have callee_extra_locals (so we can account for
2053   // frame extension) and monitor_size for monitors. Basically we need to calculate
2054   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
2055   //
2056   //
2057   // The big complicating thing here is that we must ensure that the stack stays properly
2058   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
2059   // needs to be aligned for). We are given that the sp (fp) is already aligned by
2060   // the caller so we must ensure that it is properly aligned for our callee.
2061   //
2062   // Ths c++ interpreter always makes sure that we have a enough extra space on the
2063   // stack at all times to deal with the "stack long no_params()" method issue. This
2064   // is "slop_factor" here.
2065   const int slop_factor = 2;
2066 
2067   const int fixed_size = sizeof(BytecodeInterpreter)/wordSize +           // interpreter state object
2068                          frame::memory_parameter_word_sp_offset;   // register save area + param window
2069   const int extra_stack = 0; //6815692//Method::extra_stack_entries();
2070   return (round_to(max_stack +
2071                    extra_stack +
2072                    slop_factor +
2073                    fixed_size +
2074                    monitor_size +
2075                    (callee_extra_locals * Interpreter::stackElementWords), WordsPerLong));
2076 
2077 }
2078 
2079 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
2080 
2081   // See call_stub code
2082   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
2083                                  WordsPerLong);    // 7 + register save area
2084 
2085   // Save space for one monitor to get into the interpreted method in case
2086   // the method is synchronized
2087   int monitor_size    = method->is_synchronized() ?
2088                                 1*frame::interpreter_frame_monitor_size() : 0;
2089   return size_activation_helper(method->max_locals(), method->max_stack(),
2090                                  monitor_size) + call_stub_size;
2091 }
2092 
2093 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
2094                                            frame* caller,
2095                                            frame* current,
2096                                            Method* method,
2097                                            intptr_t* locals,
2098                                            intptr_t* stack,
2099                                            intptr_t* stack_base,
2100                                            intptr_t* monitor_base,
2101                                            intptr_t* frame_bottom,
2102                                            bool is_top_frame
2103                                            )
2104 {
2105   // What about any vtable?
2106   //
2107   to_fill->_thread = JavaThread::current();
2108   // This gets filled in later but make it something recognizable for now
2109   to_fill->_bcp = method->code_base();
2110   to_fill->_locals = locals;
2111   to_fill->_constants = method->constants()->cache();
2112   to_fill->_method = method;
2113   to_fill->_mdx = NULL;
2114   to_fill->_stack = stack;
2115   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
2116     to_fill->_msg = deopt_resume2;
2117   } else {
2118     to_fill->_msg = method_resume;
2119   }
2120   to_fill->_result._to_call._bcp_advance = 0;
2121   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
2122   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
2123   to_fill->_prev_link = NULL;
2124 
2125   // Fill in the registers for the frame
2126 
2127   // Need to install _sender_sp. Actually not too hard in C++!
2128   // When the skeletal frames are layed out we fill in a value
2129   // for _sender_sp. That value is only correct for the oldest
2130   // skeletal frame constructed (because there is only a single
2131   // entry for "caller_adjustment". While the skeletal frames
2132   // exist that is good enough. We correct that calculation
2133   // here and get all the frames correct.
2134 
2135   // to_fill->_sender_sp = locals - (method->size_of_parameters() - 1);
2136 
2137   *current->register_addr(Lstate) = (intptr_t) to_fill;
2138   // skeletal already places a useful value here and this doesn't account
2139   // for alignment so don't bother.
2140   // *current->register_addr(I5_savedSP) =     (intptr_t) locals - (method->size_of_parameters() - 1);
2141 
2142   if (caller->is_interpreted_frame()) {
2143     interpreterState prev  = caller->get_interpreterState();
2144     to_fill->_prev_link = prev;
2145     // Make the prev callee look proper
2146     prev->_result._to_call._callee = method;
2147     if (*prev->_bcp == Bytecodes::_invokeinterface) {
2148       prev->_result._to_call._bcp_advance = 5;
2149     } else {
2150       prev->_result._to_call._bcp_advance = 3;
2151     }
2152   }
2153   to_fill->_oop_temp = NULL;
2154   to_fill->_stack_base = stack_base;
2155   // Need +1 here because stack_base points to the word just above the first expr stack entry
2156   // and stack_limit is supposed to point to the word just below the last expr stack entry.
2157   // See generate_compute_interpreter_state.
2158   int extra_stack = 0; //6815692//Method::extra_stack_entries();
2159   to_fill->_stack_limit = stack_base - (method->max_stack() + 1 + extra_stack);
2160   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
2161 
2162   // sparc specific
2163   to_fill->_frame_bottom = frame_bottom;
2164   to_fill->_self_link = to_fill;
2165 #ifdef ASSERT
2166   to_fill->_native_fresult = 123456.789;
2167   to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe);
2168 #endif
2169 }
2170 
2171 void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t* last_Java_fp) {
2172   istate->_last_Java_pc = (intptr_t*) last_Java_pc;
2173 }
2174 
2175 
2176 int AbstractInterpreter::layout_activation(Method* method,
2177                                            int tempcount, // Number of slots on java expression stack in use
2178                                            int popframe_extra_args,
2179                                            int moncount,  // Number of active monitors
2180                                            int caller_actual_parameters,
2181                                            int callee_param_size,
2182                                            int callee_locals_size,
2183                                            frame* caller,
2184                                            frame* interpreter_frame,
2185                                            bool is_top_frame) {
2186 
2187   assert(popframe_extra_args == 0, "NEED TO FIX");
2188   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
2189   // does as far as allocating an interpreter frame.
2190   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
2191   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
2192   // as determined by a previous call to this method.
2193   // It is also guaranteed to be walkable even though it is in a skeletal state
2194   // NOTE: return size is in words not bytes
2195   // NOTE: tempcount is the current size of the java expression stack. For top most
2196   //       frames we will allocate a full sized expression stack and not the curback
2197   //       version that non-top frames have.
2198 
2199   // Calculate the amount our frame will be adjust by the callee. For top frame
2200   // this is zero.
2201 
2202   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
2203   // calculates the extra locals based on itself. Not what the callee does
2204   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
2205   // as getting sender_sp correct.
2206 
2207   int extra_locals_size = callee_locals_size - callee_param_size;
2208   int monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize;
2209   int full_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
2210   int short_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
2211   int frame_words = is_top_frame ? full_frame_words : short_frame_words;
2212 
2213 
2214   /*
2215     if we actually have a frame to layout we must now fill in all the pieces. This means both
2216     the interpreterState and the registers.
2217   */
2218   if (interpreter_frame != NULL) {
2219 
2220     // MUCHO HACK
2221 
2222     intptr_t* frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words);
2223     // 'interpreter_frame->sp()' is unbiased while 'frame_bottom' must be a biased value in 64bit mode.
2224     assert(((intptr_t)frame_bottom & 0xf) == 0, "SP biased in layout_activation");
2225     frame_bottom = (intptr_t*)((intptr_t)frame_bottom - STACK_BIAS);
2226 
2227     /* Now fillin the interpreterState object */
2228 
2229     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() -  sizeof(BytecodeInterpreter));
2230 
2231 
2232     intptr_t* locals;
2233 
2234     // Calculate the postion of locals[0]. This is painful because of
2235     // stack alignment (same as ia64). The problem is that we can
2236     // not compute the location of locals from fp(). fp() will account
2237     // for the extra locals but it also accounts for aligning the stack
2238     // and we can't determine if the locals[0] was misaligned but max_locals
2239     // was enough to have the
2240     // calculate postion of locals. fp already accounts for extra locals.
2241     // +2 for the static long no_params() issue.
2242 
2243     if (caller->is_interpreted_frame()) {
2244       // locals must agree with the caller because it will be used to set the
2245       // caller's tos when we return.
2246       interpreterState prev  = caller->get_interpreterState();
2247       // stack() is prepushed.
2248       locals = prev->stack() + method->size_of_parameters();
2249     } else {
2250       // Lay out locals block in the caller adjacent to the register window save area.
2251       //
2252       // Compiled frames do not allocate a varargs area which is why this if
2253       // statement is needed.
2254       //
2255       intptr_t* fp = interpreter_frame->fp();
2256       int local_words = method->max_locals() * Interpreter::stackElementWords;
2257 
2258       if (caller->is_compiled_frame()) {
2259         locals = fp + frame::register_save_words + local_words - 1;
2260       } else {
2261         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
2262       }
2263 
2264     }
2265     // END MUCHO HACK
2266 
2267     intptr_t* monitor_base = (intptr_t*) cur_state;
2268     intptr_t* stack_base =  monitor_base - monitor_size;
2269     /* +1 because stack is always prepushed */
2270     intptr_t* stack = stack_base - (tempcount + 1);
2271 
2272 
2273     BytecodeInterpreter::layout_interpreterState(cur_state,
2274                                           caller,
2275                                           interpreter_frame,
2276                                           method,
2277                                           locals,
2278                                           stack,
2279                                           stack_base,
2280                                           monitor_base,
2281                                           frame_bottom,
2282                                           is_top_frame);
2283 
2284     BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
2285 
2286   }
2287   return frame_words;
2288 }
2289 
2290 #endif // CC_INTERP