1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "compiler/disassembler.hpp"
  28 #include "gc_interface/collectedHeap.inline.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/cardTableModRefBS.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #ifndef SERIALGC
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  42 #include "gc_implementation/g1/heapRegion.hpp"
  43 #endif
  44 
  45 #ifdef PRODUCT
  46 #define BLOCK_COMMENT(str) /* nothing */
  47 #define STOP(error) stop(error)
  48 #else
  49 #define BLOCK_COMMENT(str) block_comment(str)
  50 #define STOP(error) block_comment(error); stop(error)
  51 #endif
  52 
  53 // Convert the raw encoding form into the form expected by the
  54 // constructor for Address.
  55 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
  56   assert(scale == 0, "not supported");
  57   RelocationHolder rspec;
  58   if (disp_reloc != relocInfo::none) {
  59     rspec = Relocation::spec_simple(disp_reloc);
  60   }
  61 
  62   Register rindex = as_Register(index);
  63   if (rindex != G0) {
  64     Address madr(as_Register(base), rindex);
  65     madr._rspec = rspec;
  66     return madr;
  67   } else {
  68     Address madr(as_Register(base), disp);
  69     madr._rspec = rspec;
  70     return madr;
  71   }
  72 }
  73 
  74 Address Argument::address_in_frame() const {
  75   // Warning: In LP64 mode disp will occupy more than 10 bits, but
  76   //          op codes such as ld or ldx, only access disp() to get
  77   //          their simm13 argument.
  78   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
  79   if (is_in())
  80     return Address(FP, disp); // In argument.
  81   else
  82     return Address(SP, disp); // Out argument.
  83 }
  84 
  85 static const char* argumentNames[][2] = {
  86   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
  87   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
  88   {"A(n>9)","P(n>9)"}
  89 };
  90 
  91 const char* Argument::name() const {
  92   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
  93   int num = number();
  94   if (num >= nofArgs)  num = nofArgs - 1;
  95   return argumentNames[num][is_in() ? 1 : 0];
  96 }
  97 
  98 #ifdef ASSERT
  99 // On RISC, there's no benefit to verifying instruction boundaries.
 100 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
 101 #endif
 102 
 103 // Patch instruction inst at offset inst_pos to refer to dest_pos
 104 // and return the resulting instruction.
 105 // We should have pcs, not offsets, but since all is relative, it will work out
 106 // OK.
 107 int MacroAssembler::patched_branch(int dest_pos, int inst, int inst_pos) {
 108   int m; // mask for displacement field
 109   int v; // new value for displacement field
 110   const int word_aligned_ones = -4;
 111   switch (inv_op(inst)) {
 112   default: ShouldNotReachHere();
 113   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
 114   case branch_op:
 115     switch (inv_op2(inst)) {
 116       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
 117       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
 118       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 119       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 120       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 121       case bpr_op2: {
 122         if (is_cbcond(inst)) {
 123           m = wdisp10(word_aligned_ones, 0);
 124           v = wdisp10(dest_pos, inst_pos);
 125         } else {
 126           m = wdisp16(word_aligned_ones, 0);
 127           v = wdisp16(dest_pos, inst_pos);
 128         }
 129         break;
 130       }
 131       default: ShouldNotReachHere();
 132     }
 133   }
 134   return  inst & ~m  |  v;
 135 }
 136 
 137 // Return the offset of the branch destionation of instruction inst
 138 // at offset pos.
 139 // Should have pcs, but since all is relative, it works out.
 140 int MacroAssembler::branch_destination(int inst, int pos) {
 141   int r;
 142   switch (inv_op(inst)) {
 143   default: ShouldNotReachHere();
 144   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
 145   case branch_op:
 146     switch (inv_op2(inst)) {
 147       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
 148       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
 149       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 150       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 151       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 152       case bpr_op2: {
 153         if (is_cbcond(inst)) {
 154           r = inv_wdisp10(inst, pos);
 155         } else {
 156           r = inv_wdisp16(inst, pos);
 157         }
 158         break;
 159       }
 160       default: ShouldNotReachHere();
 161     }
 162   }
 163   return r;
 164 }
 165 
 166 void MacroAssembler::null_check(Register reg, int offset) {
 167   if (needs_explicit_null_check((intptr_t)offset)) {
 168     // provoke OS NULL exception if reg = NULL by
 169     // accessing M[reg] w/o changing any registers
 170     ld_ptr(reg, 0, G0);
 171   }
 172   else {
 173     // nothing to do, (later) access of M[reg + offset]
 174     // will provoke OS NULL exception if reg = NULL
 175   }
 176 }
 177 
 178 // Ring buffer jumps
 179 
 180 #ifndef PRODUCT
 181 void MacroAssembler::ret(  bool trace )   { if (trace) {
 182                                                     mov(I7, O7); // traceable register
 183                                                     JMP(O7, 2 * BytesPerInstWord);
 184                                                   } else {
 185                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
 186                                                   }
 187                                                 }
 188 
 189 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
 190                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
 191 #endif /* PRODUCT */
 192 
 193 
 194 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
 195   assert_not_delayed();
 196   // This can only be traceable if r1 & r2 are visible after a window save
 197   if (TraceJumps) {
 198 #ifndef PRODUCT
 199     save_frame(0);
 200     verify_thread();
 201     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 202     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 203     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 204     add(O2, O1, O1);
 205 
 206     add(r1->after_save(), r2->after_save(), O2);
 207     set((intptr_t)file, O3);
 208     set(line, O4);
 209     Label L;
 210     // get nearby pc, store jmp target
 211     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 212     delayed()->st(O2, O1, 0);
 213     bind(L);
 214 
 215     // store nearby pc
 216     st(O7, O1, sizeof(intptr_t));
 217     // store file
 218     st(O3, O1, 2*sizeof(intptr_t));
 219     // store line
 220     st(O4, O1, 3*sizeof(intptr_t));
 221     add(O0, 1, O0);
 222     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 223     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 224     restore();
 225 #endif /* PRODUCT */
 226   }
 227   jmpl(r1, r2, G0);
 228 }
 229 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
 230   assert_not_delayed();
 231   // This can only be traceable if r1 is visible after a window save
 232   if (TraceJumps) {
 233 #ifndef PRODUCT
 234     save_frame(0);
 235     verify_thread();
 236     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 237     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 238     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 239     add(O2, O1, O1);
 240 
 241     add(r1->after_save(), offset, O2);
 242     set((intptr_t)file, O3);
 243     set(line, O4);
 244     Label L;
 245     // get nearby pc, store jmp target
 246     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 247     delayed()->st(O2, O1, 0);
 248     bind(L);
 249 
 250     // store nearby pc
 251     st(O7, O1, sizeof(intptr_t));
 252     // store file
 253     st(O3, O1, 2*sizeof(intptr_t));
 254     // store line
 255     st(O4, O1, 3*sizeof(intptr_t));
 256     add(O0, 1, O0);
 257     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 258     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 259     restore();
 260 #endif /* PRODUCT */
 261   }
 262   jmp(r1, offset);
 263 }
 264 
 265 // This code sequence is relocatable to any address, even on LP64.
 266 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
 267   assert_not_delayed();
 268   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
 269   // variable length instruction streams.
 270   patchable_sethi(addrlit, temp);
 271   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
 272   if (TraceJumps) {
 273 #ifndef PRODUCT
 274     // Must do the add here so relocation can find the remainder of the
 275     // value to be relocated.
 276     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
 277     save_frame(0);
 278     verify_thread();
 279     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 280     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 281     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 282     add(O2, O1, O1);
 283 
 284     set((intptr_t)file, O3);
 285     set(line, O4);
 286     Label L;
 287 
 288     // get nearby pc, store jmp target
 289     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 290     delayed()->st(a.base()->after_save(), O1, 0);
 291     bind(L);
 292 
 293     // store nearby pc
 294     st(O7, O1, sizeof(intptr_t));
 295     // store file
 296     st(O3, O1, 2*sizeof(intptr_t));
 297     // store line
 298     st(O4, O1, 3*sizeof(intptr_t));
 299     add(O0, 1, O0);
 300     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 301     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 302     restore();
 303     jmpl(a.base(), G0, d);
 304 #else
 305     jmpl(a.base(), a.disp(), d);
 306 #endif /* PRODUCT */
 307   } else {
 308     jmpl(a.base(), a.disp(), d);
 309   }
 310 }
 311 
 312 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
 313   jumpl(addrlit, temp, G0, offset, file, line);
 314 }
 315 
 316 
 317 // Conditional breakpoint (for assertion checks in assembly code)
 318 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
 319   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
 320 }
 321 
 322 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
 323 void MacroAssembler::breakpoint_trap() {
 324   trap(ST_RESERVED_FOR_USER_0);
 325 }
 326 
 327 // flush windows (except current) using flushw instruction if avail.
 328 void MacroAssembler::flush_windows() {
 329   if (VM_Version::v9_instructions_work())  flushw();
 330   else                                     flush_windows_trap();
 331 }
 332 
 333 // Write serialization page so VM thread can do a pseudo remote membar
 334 // We use the current thread pointer to calculate a thread specific
 335 // offset to write to within the page. This minimizes bus traffic
 336 // due to cache line collision.
 337 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
 338   srl(thread, os::get_serialize_page_shift_count(), tmp2);
 339   if (Assembler::is_simm13(os::vm_page_size())) {
 340     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
 341   }
 342   else {
 343     set((os::vm_page_size() - sizeof(int)), tmp1);
 344     and3(tmp2, tmp1, tmp2);
 345   }
 346   set(os::get_memory_serialize_page(), tmp1);
 347   st(G0, tmp1, tmp2);
 348 }
 349 
 350 
 351 
 352 void MacroAssembler::enter() {
 353   Unimplemented();
 354 }
 355 
 356 void MacroAssembler::leave() {
 357   Unimplemented();
 358 }
 359 
 360 void MacroAssembler::mult(Register s1, Register s2, Register d) {
 361   if(VM_Version::v9_instructions_work()) {
 362     mulx (s1, s2, d);
 363   } else {
 364     smul (s1, s2, d);
 365   }
 366 }
 367 
 368 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
 369   if(VM_Version::v9_instructions_work()) {
 370     mulx (s1, simm13a, d);
 371   } else {
 372     smul (s1, simm13a, d);
 373   }
 374 }
 375 
 376 
 377 #ifdef ASSERT
 378 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
 379   const Register s1 = G3_scratch;
 380   const Register s2 = G4_scratch;
 381   Label get_psr_test;
 382   // Get the condition codes the V8 way.
 383   read_ccr_trap(s1);
 384   mov(ccr_save, s2);
 385   // This is a test of V8 which has icc but not xcc
 386   // so mask off the xcc bits
 387   and3(s2, 0xf, s2);
 388   // Compare condition codes from the V8 and V9 ways.
 389   subcc(s2, s1, G0);
 390   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
 391   delayed()->breakpoint_trap();
 392   bind(get_psr_test);
 393 }
 394 
 395 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
 396   const Register s1 = G3_scratch;
 397   const Register s2 = G4_scratch;
 398   Label set_psr_test;
 399   // Write out the saved condition codes the V8 way
 400   write_ccr_trap(ccr_save, s1, s2);
 401   // Read back the condition codes using the V9 instruction
 402   rdccr(s1);
 403   mov(ccr_save, s2);
 404   // This is a test of V8 which has icc but not xcc
 405   // so mask off the xcc bits
 406   and3(s2, 0xf, s2);
 407   and3(s1, 0xf, s1);
 408   // Compare the V8 way with the V9 way.
 409   subcc(s2, s1, G0);
 410   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
 411   delayed()->breakpoint_trap();
 412   bind(set_psr_test);
 413 }
 414 #else
 415 #define read_ccr_v8_assert(x)
 416 #define write_ccr_v8_assert(x)
 417 #endif // ASSERT
 418 
 419 void MacroAssembler::read_ccr(Register ccr_save) {
 420   if (VM_Version::v9_instructions_work()) {
 421     rdccr(ccr_save);
 422     // Test code sequence used on V8.  Do not move above rdccr.
 423     read_ccr_v8_assert(ccr_save);
 424   } else {
 425     read_ccr_trap(ccr_save);
 426   }
 427 }
 428 
 429 void MacroAssembler::write_ccr(Register ccr_save) {
 430   if (VM_Version::v9_instructions_work()) {
 431     // Test code sequence used on V8.  Do not move below wrccr.
 432     write_ccr_v8_assert(ccr_save);
 433     wrccr(ccr_save);
 434   } else {
 435     const Register temp_reg1 = G3_scratch;
 436     const Register temp_reg2 = G4_scratch;
 437     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
 438   }
 439 }
 440 
 441 
 442 // Calls to C land
 443 
 444 #ifdef ASSERT
 445 // a hook for debugging
 446 static Thread* reinitialize_thread() {
 447   return ThreadLocalStorage::thread();
 448 }
 449 #else
 450 #define reinitialize_thread ThreadLocalStorage::thread
 451 #endif
 452 
 453 #ifdef ASSERT
 454 address last_get_thread = NULL;
 455 #endif
 456 
 457 // call this when G2_thread is not known to be valid
 458 void MacroAssembler::get_thread() {
 459   save_frame(0);                // to avoid clobbering O0
 460   mov(G1, L0);                  // avoid clobbering G1
 461   mov(G5_method, L1);           // avoid clobbering G5
 462   mov(G3, L2);                  // avoid clobbering G3 also
 463   mov(G4, L5);                  // avoid clobbering G4
 464 #ifdef ASSERT
 465   AddressLiteral last_get_thread_addrlit(&last_get_thread);
 466   set(last_get_thread_addrlit, L3);
 467   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
 468   st_ptr(L4, L3, 0);
 469 #endif
 470   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
 471   delayed()->nop();
 472   mov(L0, G1);
 473   mov(L1, G5_method);
 474   mov(L2, G3);
 475   mov(L5, G4);
 476   restore(O0, 0, G2_thread);
 477 }
 478 
 479 static Thread* verify_thread_subroutine(Thread* gthread_value) {
 480   Thread* correct_value = ThreadLocalStorage::thread();
 481   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
 482   return correct_value;
 483 }
 484 
 485 void MacroAssembler::verify_thread() {
 486   if (VerifyThread) {
 487     // NOTE: this chops off the heads of the 64-bit O registers.
 488 #ifdef CC_INTERP
 489     save_frame(0);
 490 #else
 491     // make sure G2_thread contains the right value
 492     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
 493     mov(G1, L1);                // avoid clobbering G1
 494     // G2 saved below
 495     mov(G3, L3);                // avoid clobbering G3
 496     mov(G4, L4);                // avoid clobbering G4
 497     mov(G5_method, L5);         // avoid clobbering G5_method
 498 #endif /* CC_INTERP */
 499 #if defined(COMPILER2) && !defined(_LP64)
 500     // Save & restore possible 64-bit Long arguments in G-regs
 501     srlx(G1,32,L0);
 502     srlx(G4,32,L6);
 503 #endif
 504     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
 505     delayed()->mov(G2_thread, O0);
 506 
 507     mov(L1, G1);                // Restore G1
 508     // G2 restored below
 509     mov(L3, G3);                // restore G3
 510     mov(L4, G4);                // restore G4
 511     mov(L5, G5_method);         // restore G5_method
 512 #if defined(COMPILER2) && !defined(_LP64)
 513     // Save & restore possible 64-bit Long arguments in G-regs
 514     sllx(L0,32,G2);             // Move old high G1 bits high in G2
 515     srl(G1, 0,G1);              // Clear current high G1 bits
 516     or3 (G1,G2,G1);             // Recover 64-bit G1
 517     sllx(L6,32,G2);             // Move old high G4 bits high in G2
 518     srl(G4, 0,G4);              // Clear current high G4 bits
 519     or3 (G4,G2,G4);             // Recover 64-bit G4
 520 #endif
 521     restore(O0, 0, G2_thread);
 522   }
 523 }
 524 
 525 
 526 void MacroAssembler::save_thread(const Register thread_cache) {
 527   verify_thread();
 528   if (thread_cache->is_valid()) {
 529     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
 530     mov(G2_thread, thread_cache);
 531   }
 532   if (VerifyThread) {
 533     // smash G2_thread, as if the VM were about to anyway
 534     set(0x67676767, G2_thread);
 535   }
 536 }
 537 
 538 
 539 void MacroAssembler::restore_thread(const Register thread_cache) {
 540   if (thread_cache->is_valid()) {
 541     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
 542     mov(thread_cache, G2_thread);
 543     verify_thread();
 544   } else {
 545     // do it the slow way
 546     get_thread();
 547   }
 548 }
 549 
 550 
 551 // %%% maybe get rid of [re]set_last_Java_frame
 552 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
 553   assert_not_delayed();
 554   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
 555                            JavaFrameAnchor::flags_offset());
 556   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
 557 
 558   // Always set last_Java_pc and flags first because once last_Java_sp is visible
 559   // has_last_Java_frame is true and users will look at the rest of the fields.
 560   // (Note: flags should always be zero before we get here so doesn't need to be set.)
 561 
 562 #ifdef ASSERT
 563   // Verify that flags was zeroed on return to Java
 564   Label PcOk;
 565   save_frame(0);                // to avoid clobbering O0
 566   ld_ptr(pc_addr, L0);
 567   br_null_short(L0, Assembler::pt, PcOk);
 568   STOP("last_Java_pc not zeroed before leaving Java");
 569   bind(PcOk);
 570 
 571   // Verify that flags was zeroed on return to Java
 572   Label FlagsOk;
 573   ld(flags, L0);
 574   tst(L0);
 575   br(Assembler::zero, false, Assembler::pt, FlagsOk);
 576   delayed() -> restore();
 577   STOP("flags not zeroed before leaving Java");
 578   bind(FlagsOk);
 579 #endif /* ASSERT */
 580   //
 581   // When returning from calling out from Java mode the frame anchor's last_Java_pc
 582   // will always be set to NULL. It is set here so that if we are doing a call to
 583   // native (not VM) that we capture the known pc and don't have to rely on the
 584   // native call having a standard frame linkage where we can find the pc.
 585 
 586   if (last_Java_pc->is_valid()) {
 587     st_ptr(last_Java_pc, pc_addr);
 588   }
 589 
 590 #ifdef _LP64
 591 #ifdef ASSERT
 592   // Make sure that we have an odd stack
 593   Label StackOk;
 594   andcc(last_java_sp, 0x01, G0);
 595   br(Assembler::notZero, false, Assembler::pt, StackOk);
 596   delayed()->nop();
 597   STOP("Stack Not Biased in set_last_Java_frame");
 598   bind(StackOk);
 599 #endif // ASSERT
 600   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
 601   add( last_java_sp, STACK_BIAS, G4_scratch );
 602   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
 603 #else
 604   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
 605 #endif // _LP64
 606 }
 607 
 608 void MacroAssembler::reset_last_Java_frame(void) {
 609   assert_not_delayed();
 610 
 611   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
 612   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 613   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
 614 
 615 #ifdef ASSERT
 616   // check that it WAS previously set
 617 #ifdef CC_INTERP
 618     save_frame(0);
 619 #else
 620     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
 621 #endif /* CC_INTERP */
 622     ld_ptr(sp_addr, L0);
 623     tst(L0);
 624     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
 625     restore();
 626 #endif // ASSERT
 627 
 628   st_ptr(G0, sp_addr);
 629   // Always return last_Java_pc to zero
 630   st_ptr(G0, pc_addr);
 631   // Always null flags after return to Java
 632   st(G0, flags);
 633 }
 634 
 635 
 636 void MacroAssembler::call_VM_base(
 637   Register        oop_result,
 638   Register        thread_cache,
 639   Register        last_java_sp,
 640   address         entry_point,
 641   int             number_of_arguments,
 642   bool            check_exceptions)
 643 {
 644   assert_not_delayed();
 645 
 646   // determine last_java_sp register
 647   if (!last_java_sp->is_valid()) {
 648     last_java_sp = SP;
 649   }
 650   // debugging support
 651   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
 652 
 653   // 64-bit last_java_sp is biased!
 654   set_last_Java_frame(last_java_sp, noreg);
 655   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
 656   save_thread(thread_cache);
 657   // do the call
 658   call(entry_point, relocInfo::runtime_call_type);
 659   if (!VerifyThread)
 660     delayed()->mov(G2_thread, O0);  // pass thread as first argument
 661   else
 662     delayed()->nop();             // (thread already passed)
 663   restore_thread(thread_cache);
 664   reset_last_Java_frame();
 665 
 666   // check for pending exceptions. use Gtemp as scratch register.
 667   if (check_exceptions) {
 668     check_and_forward_exception(Gtemp);
 669   }
 670 
 671 #ifdef ASSERT
 672   set(badHeapWordVal, G3);
 673   set(badHeapWordVal, G4);
 674   set(badHeapWordVal, G5);
 675 #endif
 676 
 677   // get oop result if there is one and reset the value in the thread
 678   if (oop_result->is_valid()) {
 679     get_vm_result(oop_result);
 680   }
 681 }
 682 
 683 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
 684 {
 685   Label L;
 686 
 687   check_and_handle_popframe(scratch_reg);
 688   check_and_handle_earlyret(scratch_reg);
 689 
 690   Address exception_addr(G2_thread, Thread::pending_exception_offset());
 691   ld_ptr(exception_addr, scratch_reg);
 692   br_null_short(scratch_reg, pt, L);
 693   // we use O7 linkage so that forward_exception_entry has the issuing PC
 694   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
 695   delayed()->nop();
 696   bind(L);
 697 }
 698 
 699 
 700 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 701 }
 702 
 703 
 704 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 705 }
 706 
 707 
 708 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 709   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
 710 }
 711 
 712 
 713 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
 714   // O0 is reserved for the thread
 715   mov(arg_1, O1);
 716   call_VM(oop_result, entry_point, 1, check_exceptions);
 717 }
 718 
 719 
 720 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
 721   // O0 is reserved for the thread
 722   mov(arg_1, O1);
 723   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
 724   call_VM(oop_result, entry_point, 2, check_exceptions);
 725 }
 726 
 727 
 728 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
 729   // O0 is reserved for the thread
 730   mov(arg_1, O1);
 731   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
 732   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
 733   call_VM(oop_result, entry_point, 3, check_exceptions);
 734 }
 735 
 736 
 737 
 738 // Note: The following call_VM overloadings are useful when a "save"
 739 // has already been performed by a stub, and the last Java frame is
 740 // the previous one.  In that case, last_java_sp must be passed as FP
 741 // instead of SP.
 742 
 743 
 744 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
 745   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 746 }
 747 
 748 
 749 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
 750   // O0 is reserved for the thread
 751   mov(arg_1, O1);
 752   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 753 }
 754 
 755 
 756 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
 757   // O0 is reserved for the thread
 758   mov(arg_1, O1);
 759   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
 760   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 761 }
 762 
 763 
 764 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
 765   // O0 is reserved for the thread
 766   mov(arg_1, O1);
 767   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
 768   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
 769   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 770 }
 771 
 772 
 773 
 774 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
 775   assert_not_delayed();
 776   save_thread(thread_cache);
 777   // do the call
 778   call(entry_point, relocInfo::runtime_call_type);
 779   delayed()->nop();
 780   restore_thread(thread_cache);
 781 #ifdef ASSERT
 782   set(badHeapWordVal, G3);
 783   set(badHeapWordVal, G4);
 784   set(badHeapWordVal, G5);
 785 #endif
 786 }
 787 
 788 
 789 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
 790   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
 791 }
 792 
 793 
 794 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
 795   mov(arg_1, O0);
 796   call_VM_leaf(thread_cache, entry_point, 1);
 797 }
 798 
 799 
 800 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
 801   mov(arg_1, O0);
 802   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
 803   call_VM_leaf(thread_cache, entry_point, 2);
 804 }
 805 
 806 
 807 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
 808   mov(arg_1, O0);
 809   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
 810   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
 811   call_VM_leaf(thread_cache, entry_point, 3);
 812 }
 813 
 814 
 815 void MacroAssembler::get_vm_result(Register oop_result) {
 816   verify_thread();
 817   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
 818   ld_ptr(    vm_result_addr, oop_result);
 819   st_ptr(G0, vm_result_addr);
 820   verify_oop(oop_result);
 821 }
 822 
 823 
 824 void MacroAssembler::get_vm_result_2(Register metadata_result) {
 825   verify_thread();
 826   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
 827   ld_ptr(vm_result_addr_2, metadata_result);
 828   st_ptr(G0, vm_result_addr_2);
 829 }
 830 
 831 
 832 // We require that C code which does not return a value in vm_result will
 833 // leave it undisturbed.
 834 void MacroAssembler::set_vm_result(Register oop_result) {
 835   verify_thread();
 836   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
 837   verify_oop(oop_result);
 838 
 839 # ifdef ASSERT
 840     // Check that we are not overwriting any other oop.
 841 #ifdef CC_INTERP
 842     save_frame(0);
 843 #else
 844     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
 845 #endif /* CC_INTERP */
 846     ld_ptr(vm_result_addr, L0);
 847     tst(L0);
 848     restore();
 849     breakpoint_trap(notZero, Assembler::ptr_cc);
 850     // }
 851 # endif
 852 
 853   st_ptr(oop_result, vm_result_addr);
 854 }
 855 
 856 
 857 void MacroAssembler::ic_call(address entry, bool emit_delay) {
 858   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
 859   patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
 860   relocate(rspec);
 861   call(entry, relocInfo::none);
 862   if (emit_delay) {
 863     delayed()->nop();
 864   }
 865 }
 866 
 867 
 868 void MacroAssembler::card_table_write(jbyte* byte_map_base,
 869                                       Register tmp, Register obj) {
 870 #ifdef _LP64
 871   srlx(obj, CardTableModRefBS::card_shift, obj);
 872 #else
 873   srl(obj, CardTableModRefBS::card_shift, obj);
 874 #endif
 875   assert(tmp != obj, "need separate temp reg");
 876   set((address) byte_map_base, tmp);
 877   stb(G0, tmp, obj);
 878 }
 879 
 880 
 881 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
 882   address save_pc;
 883   int shiftcnt;
 884 #ifdef _LP64
 885 # ifdef CHECK_DELAY
 886   assert_not_delayed((char*) "cannot put two instructions in delay slot");
 887 # endif
 888   v9_dep();
 889   save_pc = pc();
 890 
 891   int msb32 = (int) (addrlit.value() >> 32);
 892   int lsb32 = (int) (addrlit.value());
 893 
 894   if (msb32 == 0 && lsb32 >= 0) {
 895     Assembler::sethi(lsb32, d, addrlit.rspec());
 896   }
 897   else if (msb32 == -1) {
 898     Assembler::sethi(~lsb32, d, addrlit.rspec());
 899     xor3(d, ~low10(~0), d);
 900   }
 901   else {
 902     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
 903     if (msb32 & 0x3ff)                            // Any bits?
 904       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
 905     if (lsb32 & 0xFFFFFC00) {                     // done?
 906       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
 907         sllx(d, 12, d);                           // Make room for next 12 bits
 908         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
 909         shiftcnt = 0;                             // We already shifted
 910       }
 911       else
 912         shiftcnt = 12;
 913       if ((lsb32 >> 10) & 0x3ff) {
 914         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
 915         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
 916         shiftcnt = 0;
 917       }
 918       else
 919         shiftcnt = 10;
 920       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
 921     }
 922     else
 923       sllx(d, 32, d);
 924   }
 925   // Pad out the instruction sequence so it can be patched later.
 926   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
 927                            addrlit.rtype() != relocInfo::runtime_call_type)) {
 928     while (pc() < (save_pc + (7 * BytesPerInstWord)))
 929       nop();
 930   }
 931 #else
 932   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
 933 #endif
 934 }
 935 
 936 
 937 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
 938   internal_sethi(addrlit, d, false);
 939 }
 940 
 941 
 942 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
 943   internal_sethi(addrlit, d, true);
 944 }
 945 
 946 
 947 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
 948 #ifdef _LP64
 949   if (worst_case)  return 7;
 950   intptr_t iaddr = (intptr_t) a;
 951   int msb32 = (int) (iaddr >> 32);
 952   int lsb32 = (int) (iaddr);
 953   int count;
 954   if (msb32 == 0 && lsb32 >= 0)
 955     count = 1;
 956   else if (msb32 == -1)
 957     count = 2;
 958   else {
 959     count = 2;
 960     if (msb32 & 0x3ff)
 961       count++;
 962     if (lsb32 & 0xFFFFFC00 ) {
 963       if ((lsb32 >> 20) & 0xfff)  count += 2;
 964       if ((lsb32 >> 10) & 0x3ff)  count += 2;
 965     }
 966   }
 967   return count;
 968 #else
 969   return 1;
 970 #endif
 971 }
 972 
 973 int MacroAssembler::worst_case_insts_for_set() {
 974   return insts_for_sethi(NULL, true) + 1;
 975 }
 976 
 977 
 978 // Keep in sync with MacroAssembler::insts_for_internal_set
 979 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
 980   intptr_t value = addrlit.value();
 981 
 982   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
 983     // can optimize
 984     if (-4096 <= value && value <= 4095) {
 985       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
 986       return;
 987     }
 988     if (inv_hi22(hi22(value)) == value) {
 989       sethi(addrlit, d);
 990       return;
 991     }
 992   }
 993   assert_not_delayed((char*) "cannot put two instructions in delay slot");
 994   internal_sethi(addrlit, d, ForceRelocatable);
 995   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
 996     add(d, addrlit.low10(), d, addrlit.rspec());
 997   }
 998 }
 999 
1000 // Keep in sync with MacroAssembler::internal_set
1001 int MacroAssembler::insts_for_internal_set(intptr_t value) {
1002   // can optimize
1003   if (-4096 <= value && value <= 4095) {
1004     return 1;
1005   }
1006   if (inv_hi22(hi22(value)) == value) {
1007     return insts_for_sethi((address) value);
1008   }
1009   int count = insts_for_sethi((address) value);
1010   AddressLiteral al(value);
1011   if (al.low10() != 0) {
1012     count++;
1013   }
1014   return count;
1015 }
1016 
1017 void MacroAssembler::set(const AddressLiteral& al, Register d) {
1018   internal_set(al, d, false);
1019 }
1020 
1021 void MacroAssembler::set(intptr_t value, Register d) {
1022   AddressLiteral al(value);
1023   internal_set(al, d, false);
1024 }
1025 
1026 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
1027   AddressLiteral al(addr, rspec);
1028   internal_set(al, d, false);
1029 }
1030 
1031 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
1032   internal_set(al, d, true);
1033 }
1034 
1035 void MacroAssembler::patchable_set(intptr_t value, Register d) {
1036   AddressLiteral al(value);
1037   internal_set(al, d, true);
1038 }
1039 
1040 
1041 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
1042   assert_not_delayed();
1043   v9_dep();
1044 
1045   int hi = (int)(value >> 32);
1046   int lo = (int)(value & ~0);
1047   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1048   if (Assembler::is_simm13(lo) && value == lo) {
1049     or3(G0, lo, d);
1050   } else if (hi == 0) {
1051     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
1052     if (low10(lo) != 0)
1053       or3(d, low10(lo), d);
1054   }
1055   else if (hi == -1) {
1056     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
1057     xor3(d, low10(lo) ^ ~low10(~0), d);
1058   }
1059   else if (lo == 0) {
1060     if (Assembler::is_simm13(hi)) {
1061       or3(G0, hi, d);
1062     } else {
1063       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
1064       if (low10(hi) != 0)
1065         or3(d, low10(hi), d);
1066     }
1067     sllx(d, 32, d);
1068   }
1069   else {
1070     Assembler::sethi(hi, tmp);
1071     Assembler::sethi(lo,   d); // macro assembler version sign-extends
1072     if (low10(hi) != 0)
1073       or3 (tmp, low10(hi), tmp);
1074     if (low10(lo) != 0)
1075       or3 (  d, low10(lo),   d);
1076     sllx(tmp, 32, tmp);
1077     or3 (d, tmp, d);
1078   }
1079 }
1080 
1081 int MacroAssembler::insts_for_set64(jlong value) {
1082   v9_dep();
1083 
1084   int hi = (int) (value >> 32);
1085   int lo = (int) (value & ~0);
1086   int count = 0;
1087 
1088   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1089   if (Assembler::is_simm13(lo) && value == lo) {
1090     count++;
1091   } else if (hi == 0) {
1092     count++;
1093     if (low10(lo) != 0)
1094       count++;
1095   }
1096   else if (hi == -1) {
1097     count += 2;
1098   }
1099   else if (lo == 0) {
1100     if (Assembler::is_simm13(hi)) {
1101       count++;
1102     } else {
1103       count++;
1104       if (low10(hi) != 0)
1105         count++;
1106     }
1107     count++;
1108   }
1109   else {
1110     count += 2;
1111     if (low10(hi) != 0)
1112       count++;
1113     if (low10(lo) != 0)
1114       count++;
1115     count += 2;
1116   }
1117   return count;
1118 }
1119 
1120 // compute size in bytes of sparc frame, given
1121 // number of extraWords
1122 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
1123 
1124   int nWords = frame::memory_parameter_word_sp_offset;
1125 
1126   nWords += extraWords;
1127 
1128   if (nWords & 1) ++nWords; // round up to double-word
1129 
1130   return nWords * BytesPerWord;
1131 }
1132 
1133 
1134 // save_frame: given number of "extra" words in frame,
1135 // issue approp. save instruction (p 200, v8 manual)
1136 
1137 void MacroAssembler::save_frame(int extraWords) {
1138   int delta = -total_frame_size_in_bytes(extraWords);
1139   if (is_simm13(delta)) {
1140     save(SP, delta, SP);
1141   } else {
1142     set(delta, G3_scratch);
1143     save(SP, G3_scratch, SP);
1144   }
1145 }
1146 
1147 
1148 void MacroAssembler::save_frame_c1(int size_in_bytes) {
1149   if (is_simm13(-size_in_bytes)) {
1150     save(SP, -size_in_bytes, SP);
1151   } else {
1152     set(-size_in_bytes, G3_scratch);
1153     save(SP, G3_scratch, SP);
1154   }
1155 }
1156 
1157 
1158 void MacroAssembler::save_frame_and_mov(int extraWords,
1159                                         Register s1, Register d1,
1160                                         Register s2, Register d2) {
1161   assert_not_delayed();
1162 
1163   // The trick here is to use precisely the same memory word
1164   // that trap handlers also use to save the register.
1165   // This word cannot be used for any other purpose, but
1166   // it works fine to save the register's value, whether or not
1167   // an interrupt flushes register windows at any given moment!
1168   Address s1_addr;
1169   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
1170     s1_addr = s1->address_in_saved_window();
1171     st_ptr(s1, s1_addr);
1172   }
1173 
1174   Address s2_addr;
1175   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
1176     s2_addr = s2->address_in_saved_window();
1177     st_ptr(s2, s2_addr);
1178   }
1179 
1180   save_frame(extraWords);
1181 
1182   if (s1_addr.base() == SP) {
1183     ld_ptr(s1_addr.after_save(), d1);
1184   } else if (s1->is_valid()) {
1185     mov(s1->after_save(), d1);
1186   }
1187 
1188   if (s2_addr.base() == SP) {
1189     ld_ptr(s2_addr.after_save(), d2);
1190   } else if (s2->is_valid()) {
1191     mov(s2->after_save(), d2);
1192   }
1193 }
1194 
1195 
1196 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
1197   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
1198   int index = oop_recorder()->allocate_metadata_index(obj);
1199   RelocationHolder rspec = metadata_Relocation::spec(index);
1200   return AddressLiteral((address)obj, rspec);
1201 }
1202 
1203 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
1204   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
1205   int index = oop_recorder()->find_index(obj);
1206   RelocationHolder rspec = metadata_Relocation::spec(index);
1207   return AddressLiteral((address)obj, rspec);
1208 }
1209 
1210 
1211 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1212   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1213   assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
1214   int oop_index = oop_recorder()->find_index(obj);
1215   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
1216 }
1217 
1218 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
1219   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1220   int oop_index = oop_recorder()->find_index(obj);
1221   RelocationHolder rspec = oop_Relocation::spec(oop_index);
1222 
1223   assert_not_delayed();
1224   // Relocation with special format (see relocInfo_sparc.hpp).
1225   relocate(rspec, 1);
1226   // Assembler::sethi(0x3fffff, d);
1227   emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
1228   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1229   add(d, 0x3ff, d);
1230 
1231 }
1232 
1233 void  MacroAssembler::set_narrow_klass(Klass* k, Register d) {
1234   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1235   int klass_index = oop_recorder()->find_index(k);
1236   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
1237   narrowOop encoded_k = oopDesc::encode_klass(k);
1238 
1239   assert_not_delayed();
1240   // Relocation with special format (see relocInfo_sparc.hpp).
1241   relocate(rspec, 1);
1242   // Assembler::sethi(encoded_k, d);
1243   emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
1244   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1245   add(d, low10(encoded_k), d);
1246 
1247 }
1248 
1249 void MacroAssembler::align(int modulus) {
1250   while (offset() % modulus != 0) nop();
1251 }
1252 
1253 
1254 void MacroAssembler::safepoint() {
1255   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
1256 }
1257 
1258 
1259 void RegistersForDebugging::print(outputStream* s) {
1260   FlagSetting fs(Debugging, true);
1261   int j;
1262   for (j = 0; j < 8; ++j) {
1263     if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
1264     else        { s->print( "fp = "   ); os::print_location(s, i[j]); }
1265   }
1266   s->cr();
1267 
1268   for (j = 0;  j < 8;  ++j) {
1269     s->print("l%d = ", j); os::print_location(s, l[j]);
1270   }
1271   s->cr();
1272 
1273   for (j = 0; j < 8; ++j) {
1274     if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
1275     else        { s->print( "sp = "   ); os::print_location(s, o[j]); }
1276   }
1277   s->cr();
1278 
1279   for (j = 0; j < 8; ++j) {
1280     s->print("g%d = ", j); os::print_location(s, g[j]);
1281   }
1282   s->cr();
1283 
1284   // print out floats with compression
1285   for (j = 0; j < 32; ) {
1286     jfloat val = f[j];
1287     int last = j;
1288     for ( ;  last+1 < 32;  ++last ) {
1289       char b1[1024], b2[1024];
1290       sprintf(b1, "%f", val);
1291       sprintf(b2, "%f", f[last+1]);
1292       if (strcmp(b1, b2))
1293         break;
1294     }
1295     s->print("f%d", j);
1296     if ( j != last )  s->print(" - f%d", last);
1297     s->print(" = %f", val);
1298     s->fill_to(25);
1299     s->print_cr(" (0x%x)", val);
1300     j = last + 1;
1301   }
1302   s->cr();
1303 
1304   // and doubles (evens only)
1305   for (j = 0; j < 32; ) {
1306     jdouble val = d[j];
1307     int last = j;
1308     for ( ;  last+1 < 32;  ++last ) {
1309       char b1[1024], b2[1024];
1310       sprintf(b1, "%f", val);
1311       sprintf(b2, "%f", d[last+1]);
1312       if (strcmp(b1, b2))
1313         break;
1314     }
1315     s->print("d%d", 2 * j);
1316     if ( j != last )  s->print(" - d%d", last);
1317     s->print(" = %f", val);
1318     s->fill_to(30);
1319     s->print("(0x%x)", *(int*)&val);
1320     s->fill_to(42);
1321     s->print_cr("(0x%x)", *(1 + (int*)&val));
1322     j = last + 1;
1323   }
1324   s->cr();
1325 }
1326 
1327 void RegistersForDebugging::save_registers(MacroAssembler* a) {
1328   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1329   a->flush_windows();
1330   int i;
1331   for (i = 0; i < 8; ++i) {
1332     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
1333     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
1334     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1335     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1336   }
1337   for (i = 0;  i < 32; ++i) {
1338     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1339   }
1340   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
1341     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1342   }
1343 }
1344 
1345 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1346   for (int i = 1; i < 8;  ++i) {
1347     a->ld_ptr(r, g_offset(i), as_gRegister(i));
1348   }
1349   for (int j = 0; j < 32; ++j) {
1350     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1351   }
1352   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
1353     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1354   }
1355 }
1356 
1357 
1358 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1359 void MacroAssembler::push_fTOS() {
1360   // %%%%%% need to implement this
1361 }
1362 
1363 // pops double TOS element from CPU stack and pushes on FPU stack
1364 void MacroAssembler::pop_fTOS() {
1365   // %%%%%% need to implement this
1366 }
1367 
1368 void MacroAssembler::empty_FPU_stack() {
1369   // %%%%%% need to implement this
1370 }
1371 
1372 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1373   // plausibility check for oops
1374   if (!VerifyOops) return;
1375 
1376   if (reg == G0)  return;       // always NULL, which is always an oop
1377 
1378   BLOCK_COMMENT("verify_oop {");
1379   char buffer[64];
1380 #ifdef COMPILER1
1381   if (CommentedAssembly) {
1382     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
1383     block_comment(buffer);
1384   }
1385 #endif
1386 
1387   int len = strlen(file) + strlen(msg) + 1 + 4;
1388   sprintf(buffer, "%d", line);
1389   len += strlen(buffer);
1390   sprintf(buffer, " at offset %d ", offset());
1391   len += strlen(buffer);
1392   char * real_msg = new char[len];
1393   sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
1394 
1395   // Call indirectly to solve generation ordering problem
1396   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1397 
1398   // Make some space on stack above the current register window.
1399   // Enough to hold 8 64-bit registers.
1400   add(SP,-8*8,SP);
1401 
1402   // Save some 64-bit registers; a normal 'save' chops the heads off
1403   // of 64-bit longs in the 32-bit build.
1404   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1405   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1406   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1407   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1408 
1409   // Size of set() should stay the same
1410   patchable_set((intptr_t)real_msg, O1);
1411   // Load address to call to into O7
1412   load_ptr_contents(a, O7);
1413   // Register call to verify_oop_subroutine
1414   callr(O7, G0);
1415   delayed()->nop();
1416   // recover frame size
1417   add(SP, 8*8,SP);
1418   BLOCK_COMMENT("} verify_oop");
1419 }
1420 
1421 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1422   // plausibility check for oops
1423   if (!VerifyOops) return;
1424 
1425   char buffer[64];
1426   sprintf(buffer, "%d", line);
1427   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
1428   sprintf(buffer, " at SP+%d ", addr.disp());
1429   len += strlen(buffer);
1430   char * real_msg = new char[len];
1431   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1432 
1433   // Call indirectly to solve generation ordering problem
1434   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1435 
1436   // Make some space on stack above the current register window.
1437   // Enough to hold 8 64-bit registers.
1438   add(SP,-8*8,SP);
1439 
1440   // Save some 64-bit registers; a normal 'save' chops the heads off
1441   // of 64-bit longs in the 32-bit build.
1442   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1443   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1444   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1445   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1446 
1447   // Size of set() should stay the same
1448   patchable_set((intptr_t)real_msg, O1);
1449   // Load address to call to into O7
1450   load_ptr_contents(a, O7);
1451   // Register call to verify_oop_subroutine
1452   callr(O7, G0);
1453   delayed()->nop();
1454   // recover frame size
1455   add(SP, 8*8,SP);
1456 }
1457 
1458 // side-door communication with signalHandler in os_solaris.cpp
1459 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1460 
1461 // This macro is expanded just once; it creates shared code.  Contract:
1462 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
1463 // registers, including flags.  May not use a register 'save', as this blows
1464 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
1465 // call.
1466 void MacroAssembler::verify_oop_subroutine() {
1467   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
1468 
1469   // Leaf call; no frame.
1470   Label succeed, fail, null_or_fail;
1471 
1472   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1473   // O0 is now the oop to be checked.  O7 is the return address.
1474   Register O0_obj = O0;
1475 
1476   // Save some more registers for temps.
1477   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1478   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1479   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1480   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1481 
1482   // Save flags
1483   Register O5_save_flags = O5;
1484   rdccr( O5_save_flags );
1485 
1486   { // count number of verifies
1487     Register O2_adr   = O2;
1488     Register O3_accum = O3;
1489     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
1490   }
1491 
1492   Register O2_mask = O2;
1493   Register O3_bits = O3;
1494   Register O4_temp = O4;
1495 
1496   // mark lower end of faulting range
1497   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1498   _verify_oop_implicit_branch[0] = pc();
1499 
1500   // We can't check the mark oop because it could be in the process of
1501   // locking or unlocking while this is running.
1502   set(Universe::verify_oop_mask (), O2_mask);
1503   set(Universe::verify_oop_bits (), O3_bits);
1504 
1505   // assert((obj & oop_mask) == oop_bits);
1506   and3(O0_obj, O2_mask, O4_temp);
1507   cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
1508 
1509   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1510     // the null_or_fail case is useless; must test for null separately
1511     br_null_short(O0_obj, pn, succeed);
1512   }
1513 
1514   // Check the Klass* of this object for being in the right area of memory.
1515   // Cannot do the load in the delay above slot in case O0 is null
1516   load_klass(O0_obj, O0_obj);
1517   // assert((klass != NULL)
1518   br_null_short(O0_obj, pn, fail);
1519   // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
1520 
1521   wrccr( O5_save_flags ); // Restore CCR's
1522 
1523   // mark upper end of faulting range
1524   _verify_oop_implicit_branch[1] = pc();
1525 
1526   //-----------------------
1527   // all tests pass
1528   bind(succeed);
1529 
1530   // Restore prior 64-bit registers
1531   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1532   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1533   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1534   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1535   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1536   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1537 
1538   retl();                       // Leaf return; restore prior O7 in delay slot
1539   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1540 
1541   //-----------------------
1542   bind(null_or_fail);           // nulls are less common but OK
1543   br_null(O0_obj, false, pt, succeed);
1544   delayed()->wrccr( O5_save_flags ); // Restore CCR's
1545 
1546   //-----------------------
1547   // report failure:
1548   bind(fail);
1549   _verify_oop_implicit_branch[2] = pc();
1550 
1551   wrccr( O5_save_flags ); // Restore CCR's
1552 
1553   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1554 
1555   // stop_subroutine expects message pointer in I1.
1556   mov(I1, O1);
1557 
1558   // Restore prior 64-bit registers
1559   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1560   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1561   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1562   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1563   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1564   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1565 
1566   // factor long stop-sequence into subroutine to save space
1567   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1568 
1569   // call indirectly to solve generation ordering problem
1570   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
1571   load_ptr_contents(al, O5);
1572   jmpl(O5, 0, O7);
1573   delayed()->nop();
1574 }
1575 
1576 
1577 void MacroAssembler::stop(const char* msg) {
1578   // save frame first to get O7 for return address
1579   // add one word to size in case struct is odd number of words long
1580   // It must be doubleword-aligned for storing doubles into it.
1581 
1582     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1583 
1584     // stop_subroutine expects message pointer in I1.
1585     // Size of set() should stay the same
1586     patchable_set((intptr_t)msg, O1);
1587 
1588     // factor long stop-sequence into subroutine to save space
1589     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1590 
1591     // call indirectly to solve generation ordering problem
1592     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
1593     load_ptr_contents(a, O5);
1594     jmpl(O5, 0, O7);
1595     delayed()->nop();
1596 
1597     breakpoint_trap();   // make stop actually stop rather than writing
1598                          // unnoticeable results in the output files.
1599 
1600     // restore(); done in callee to save space!
1601 }
1602 
1603 
1604 void MacroAssembler::warn(const char* msg) {
1605   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1606   RegistersForDebugging::save_registers(this);
1607   mov(O0, L0);
1608   // Size of set() should stay the same
1609   patchable_set((intptr_t)msg, O0);
1610   call( CAST_FROM_FN_PTR(address, warning) );
1611   delayed()->nop();
1612 //  ret();
1613 //  delayed()->restore();
1614   RegistersForDebugging::restore_registers(this, L0);
1615   restore();
1616 }
1617 
1618 
1619 void MacroAssembler::untested(const char* what) {
1620   // We must be able to turn interactive prompting off
1621   // in order to run automated test scripts on the VM
1622   // Use the flag ShowMessageBoxOnError
1623 
1624   char* b = new char[1024];
1625   sprintf(b, "untested: %s", what);
1626 
1627   if (ShowMessageBoxOnError) { STOP(b); }
1628   else                       { warn(b); }
1629 }
1630 
1631 
1632 void MacroAssembler::stop_subroutine() {
1633   RegistersForDebugging::save_registers(this);
1634 
1635   // for the sake of the debugger, stick a PC on the current frame
1636   // (this assumes that the caller has performed an extra "save")
1637   mov(I7, L7);
1638   add(O7, -7 * BytesPerInt, I7);
1639 
1640   save_frame(); // one more save to free up another O7 register
1641   mov(I0, O1); // addr of reg save area
1642 
1643   // We expect pointer to message in I1. Caller must set it up in O1
1644   mov(I1, O0); // get msg
1645   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
1646   delayed()->nop();
1647 
1648   restore();
1649 
1650   RegistersForDebugging::restore_registers(this, O0);
1651 
1652   save_frame(0);
1653   call(CAST_FROM_FN_PTR(address,breakpoint));
1654   delayed()->nop();
1655   restore();
1656 
1657   mov(L7, I7);
1658   retl();
1659   delayed()->restore(); // see stop above
1660 }
1661 
1662 
1663 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
1664   if ( ShowMessageBoxOnError ) {
1665     JavaThread* thread = JavaThread::current();
1666     JavaThreadState saved_state = thread->thread_state();
1667     thread->set_thread_state(_thread_in_vm);
1668       {
1669         // In order to get locks work, we need to fake a in_VM state
1670         ttyLocker ttyl;
1671         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
1672         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
1673         BytecodeCounter::print();
1674         }
1675         if (os::message_box(msg, "Execution stopped, print registers?"))
1676           regs->print(::tty);
1677       }
1678     BREAKPOINT;
1679       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
1680   }
1681   else {
1682      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
1683   }
1684   assert(false, err_msg("DEBUG MESSAGE: %s", msg));
1685 }
1686 
1687 
1688 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
1689   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
1690   Label no_extras;
1691   br( negative, true, pt, no_extras ); // if neg, clear reg
1692   delayed()->set(0, Rresult);          // annuled, so only if taken
1693   bind( no_extras );
1694 }
1695 
1696 
1697 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
1698 #ifdef _LP64
1699   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
1700 #else
1701   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
1702 #endif
1703   bclr(1, Rresult);
1704   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
1705 }
1706 
1707 
1708 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
1709   calc_frame_size(Rextra_words, Rresult);
1710   neg(Rresult);
1711   save(SP, Rresult, SP);
1712 }
1713 
1714 
1715 // ---------------------------------------------------------
1716 Assembler::RCondition cond2rcond(Assembler::Condition c) {
1717   switch (c) {
1718     /*case zero: */
1719     case Assembler::equal:        return Assembler::rc_z;
1720     case Assembler::lessEqual:    return Assembler::rc_lez;
1721     case Assembler::less:         return Assembler::rc_lz;
1722     /*case notZero:*/
1723     case Assembler::notEqual:     return Assembler::rc_nz;
1724     case Assembler::greater:      return Assembler::rc_gz;
1725     case Assembler::greaterEqual: return Assembler::rc_gez;
1726   }
1727   ShouldNotReachHere();
1728   return Assembler::rc_z;
1729 }
1730 
1731 // compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
1732 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
1733   tst(s1);
1734   br (c, a, p, L);
1735 }
1736 
1737 // Compares a pointer register with zero and branches on null.
1738 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
1739 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
1740   assert_not_delayed();
1741 #ifdef _LP64
1742   bpr( rc_z, a, p, s1, L );
1743 #else
1744   tst(s1);
1745   br ( zero, a, p, L );
1746 #endif
1747 }
1748 
1749 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
1750   assert_not_delayed();
1751 #ifdef _LP64
1752   bpr( rc_nz, a, p, s1, L );
1753 #else
1754   tst(s1);
1755   br ( notZero, a, p, L );
1756 #endif
1757 }
1758 
1759 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
1760 
1761 // Compare integer (32 bit) values (icc only).
1762 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
1763                                       Predict p, Label& L) {
1764   assert_not_delayed();
1765   if (use_cbcond(L)) {
1766     Assembler::cbcond(c, icc, s1, s2, L);
1767   } else {
1768     cmp(s1, s2);
1769     br(c, false, p, L);
1770     delayed()->nop();
1771   }
1772 }
1773 
1774 // Compare integer (32 bit) values (icc only).
1775 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
1776                                       Predict p, Label& L) {
1777   assert_not_delayed();
1778   if (is_simm(simm13a,5) && use_cbcond(L)) {
1779     Assembler::cbcond(c, icc, s1, simm13a, L);
1780   } else {
1781     cmp(s1, simm13a);
1782     br(c, false, p, L);
1783     delayed()->nop();
1784   }
1785 }
1786 
1787 // Branch that tests xcc in LP64 and icc in !LP64
1788 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
1789                                        Predict p, Label& L) {
1790   assert_not_delayed();
1791   if (use_cbcond(L)) {
1792     Assembler::cbcond(c, ptr_cc, s1, s2, L);
1793   } else {
1794     cmp(s1, s2);
1795     brx(c, false, p, L);
1796     delayed()->nop();
1797   }
1798 }
1799 
1800 // Branch that tests xcc in LP64 and icc in !LP64
1801 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
1802                                        Predict p, Label& L) {
1803   assert_not_delayed();
1804   if (is_simm(simm13a,5) && use_cbcond(L)) {
1805     Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
1806   } else {
1807     cmp(s1, simm13a);
1808     brx(c, false, p, L);
1809     delayed()->nop();
1810   }
1811 }
1812 
1813 // Short branch version for compares a pointer with zero.
1814 
1815 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
1816   assert_not_delayed();
1817   if (use_cbcond(L)) {
1818     Assembler::cbcond(zero, ptr_cc, s1, 0, L);
1819     return;
1820   }
1821   br_null(s1, false, p, L);
1822   delayed()->nop();
1823 }
1824 
1825 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
1826   assert_not_delayed();
1827   if (use_cbcond(L)) {
1828     Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
1829     return;
1830   }
1831   br_notnull(s1, false, p, L);
1832   delayed()->nop();
1833 }
1834 
1835 // Unconditional short branch
1836 void MacroAssembler::ba_short(Label& L) {
1837   if (use_cbcond(L)) {
1838     Assembler::cbcond(equal, icc, G0, G0, L);
1839     return;
1840   }
1841   br(always, false, pt, L);
1842   delayed()->nop();
1843 }
1844 
1845 // instruction sequences factored across compiler & interpreter
1846 
1847 
1848 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
1849                            Register Rb_hi, Register Rb_low,
1850                            Register Rresult) {
1851 
1852   Label check_low_parts, done;
1853 
1854   cmp(Ra_hi, Rb_hi );  // compare hi parts
1855   br(equal, true, pt, check_low_parts);
1856   delayed()->cmp(Ra_low, Rb_low); // test low parts
1857 
1858   // And, with an unsigned comparison, it does not matter if the numbers
1859   // are negative or not.
1860   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
1861   // The second one is bigger (unsignedly).
1862 
1863   // Other notes:  The first move in each triplet can be unconditional
1864   // (and therefore probably prefetchable).
1865   // And the equals case for the high part does not need testing,
1866   // since that triplet is reached only after finding the high halves differ.
1867 
1868   if (VM_Version::v9_instructions_work()) {
1869     mov(-1, Rresult);
1870     ba(done);  delayed()-> movcc(greater, false, icc,  1, Rresult);
1871   } else {
1872     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
1873     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
1874   }
1875 
1876   bind( check_low_parts );
1877 
1878   if (VM_Version::v9_instructions_work()) {
1879     mov(                               -1, Rresult);
1880     movcc(equal,           false, icc,  0, Rresult);
1881     movcc(greaterUnsigned, false, icc,  1, Rresult);
1882   } else {
1883     set(-1, Rresult);
1884     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
1885     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
1886   }
1887   bind( done );
1888 }
1889 
1890 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
1891   subcc(  G0, Rlow, Rlow );
1892   subc(   G0, Rhi,  Rhi  );
1893 }
1894 
1895 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
1896                            Register Rcount,
1897                            Register Rout_high, Register Rout_low,
1898                            Register Rtemp ) {
1899 
1900 
1901   Register Ralt_count = Rtemp;
1902   Register Rxfer_bits = Rtemp;
1903 
1904   assert( Ralt_count != Rin_high
1905       &&  Ralt_count != Rin_low
1906       &&  Ralt_count != Rcount
1907       &&  Rxfer_bits != Rin_low
1908       &&  Rxfer_bits != Rin_high
1909       &&  Rxfer_bits != Rcount
1910       &&  Rxfer_bits != Rout_low
1911       &&  Rout_low   != Rin_high,
1912         "register alias checks");
1913 
1914   Label big_shift, done;
1915 
1916   // This code can be optimized to use the 64 bit shifts in V9.
1917   // Here we use the 32 bit shifts.
1918 
1919   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1920   subcc(Rcount,   31, Ralt_count);
1921   br(greater, true, pn, big_shift);
1922   delayed()->dec(Ralt_count);
1923 
1924   // shift < 32 bits, Ralt_count = Rcount-31
1925 
1926   // We get the transfer bits by shifting right by 32-count the low
1927   // register. This is done by shifting right by 31-count and then by one
1928   // more to take care of the special (rare) case where count is zero
1929   // (shifting by 32 would not work).
1930 
1931   neg(Ralt_count);
1932 
1933   // The order of the next two instructions is critical in the case where
1934   // Rin and Rout are the same and should not be reversed.
1935 
1936   srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
1937   if (Rcount != Rout_low) {
1938     sll(Rin_low, Rcount, Rout_low); // low half
1939   }
1940   sll(Rin_high, Rcount, Rout_high);
1941   if (Rcount == Rout_low) {
1942     sll(Rin_low, Rcount, Rout_low); // low half
1943   }
1944   srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
1945   ba(done);
1946   delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
1947 
1948   // shift >= 32 bits, Ralt_count = Rcount-32
1949   bind(big_shift);
1950   sll(Rin_low, Ralt_count, Rout_high  );
1951   clr(Rout_low);
1952 
1953   bind(done);
1954 }
1955 
1956 
1957 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
1958                            Register Rcount,
1959                            Register Rout_high, Register Rout_low,
1960                            Register Rtemp ) {
1961 
1962   Register Ralt_count = Rtemp;
1963   Register Rxfer_bits = Rtemp;
1964 
1965   assert( Ralt_count != Rin_high
1966       &&  Ralt_count != Rin_low
1967       &&  Ralt_count != Rcount
1968       &&  Rxfer_bits != Rin_low
1969       &&  Rxfer_bits != Rin_high
1970       &&  Rxfer_bits != Rcount
1971       &&  Rxfer_bits != Rout_high
1972       &&  Rout_high  != Rin_low,
1973         "register alias checks");
1974 
1975   Label big_shift, done;
1976 
1977   // This code can be optimized to use the 64 bit shifts in V9.
1978   // Here we use the 32 bit shifts.
1979 
1980   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1981   subcc(Rcount,   31, Ralt_count);
1982   br(greater, true, pn, big_shift);
1983   delayed()->dec(Ralt_count);
1984 
1985   // shift < 32 bits, Ralt_count = Rcount-31
1986 
1987   // We get the transfer bits by shifting left by 32-count the high
1988   // register. This is done by shifting left by 31-count and then by one
1989   // more to take care of the special (rare) case where count is zero
1990   // (shifting by 32 would not work).
1991 
1992   neg(Ralt_count);
1993   if (Rcount != Rout_low) {
1994     srl(Rin_low, Rcount, Rout_low);
1995   }
1996 
1997   // The order of the next two instructions is critical in the case where
1998   // Rin and Rout are the same and should not be reversed.
1999 
2000   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
2001   sra(Rin_high,     Rcount, Rout_high ); // high half
2002   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
2003   if (Rcount == Rout_low) {
2004     srl(Rin_low, Rcount, Rout_low);
2005   }
2006   ba(done);
2007   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
2008 
2009   // shift >= 32 bits, Ralt_count = Rcount-32
2010   bind(big_shift);
2011 
2012   sra(Rin_high, Ralt_count, Rout_low);
2013   sra(Rin_high,         31, Rout_high); // sign into hi
2014 
2015   bind( done );
2016 }
2017 
2018 
2019 
2020 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
2021                             Register Rcount,
2022                             Register Rout_high, Register Rout_low,
2023                             Register Rtemp ) {
2024 
2025   Register Ralt_count = Rtemp;
2026   Register Rxfer_bits = Rtemp;
2027 
2028   assert( Ralt_count != Rin_high
2029       &&  Ralt_count != Rin_low
2030       &&  Ralt_count != Rcount
2031       &&  Rxfer_bits != Rin_low
2032       &&  Rxfer_bits != Rin_high
2033       &&  Rxfer_bits != Rcount
2034       &&  Rxfer_bits != Rout_high
2035       &&  Rout_high  != Rin_low,
2036         "register alias checks");
2037 
2038   Label big_shift, done;
2039 
2040   // This code can be optimized to use the 64 bit shifts in V9.
2041   // Here we use the 32 bit shifts.
2042 
2043   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
2044   subcc(Rcount,   31, Ralt_count);
2045   br(greater, true, pn, big_shift);
2046   delayed()->dec(Ralt_count);
2047 
2048   // shift < 32 bits, Ralt_count = Rcount-31
2049 
2050   // We get the transfer bits by shifting left by 32-count the high
2051   // register. This is done by shifting left by 31-count and then by one
2052   // more to take care of the special (rare) case where count is zero
2053   // (shifting by 32 would not work).
2054 
2055   neg(Ralt_count);
2056   if (Rcount != Rout_low) {
2057     srl(Rin_low, Rcount, Rout_low);
2058   }
2059 
2060   // The order of the next two instructions is critical in the case where
2061   // Rin and Rout are the same and should not be reversed.
2062 
2063   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
2064   srl(Rin_high,     Rcount, Rout_high ); // high half
2065   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
2066   if (Rcount == Rout_low) {
2067     srl(Rin_low, Rcount, Rout_low);
2068   }
2069   ba(done);
2070   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
2071 
2072   // shift >= 32 bits, Ralt_count = Rcount-32
2073   bind(big_shift);
2074 
2075   srl(Rin_high, Ralt_count, Rout_low);
2076   clr(Rout_high);
2077 
2078   bind( done );
2079 }
2080 
2081 #ifdef _LP64
2082 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
2083   cmp(Ra, Rb);
2084   mov(-1, Rresult);
2085   movcc(equal,   false, xcc,  0, Rresult);
2086   movcc(greater, false, xcc,  1, Rresult);
2087 }
2088 #endif
2089 
2090 
2091 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
2092   switch (size_in_bytes) {
2093   case  8:  ld_long(src, dst); break;
2094   case  4:  ld(     src, dst); break;
2095   case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
2096   case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
2097   default:  ShouldNotReachHere();
2098   }
2099 }
2100 
2101 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
2102   switch (size_in_bytes) {
2103   case  8:  st_long(src, dst); break;
2104   case  4:  st(     src, dst); break;
2105   case  2:  sth(    src, dst); break;
2106   case  1:  stb(    src, dst); break;
2107   default:  ShouldNotReachHere();
2108   }
2109 }
2110 
2111 
2112 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
2113                                 FloatRegister Fa, FloatRegister Fb,
2114                                 Register Rresult) {
2115 
2116   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
2117 
2118   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
2119   Condition eq =                          f_equal;
2120   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
2121 
2122   if (VM_Version::v9_instructions_work()) {
2123 
2124     mov(-1, Rresult);
2125     movcc(eq, true, fcc0, 0, Rresult);
2126     movcc(gt, true, fcc0, 1, Rresult);
2127 
2128   } else {
2129     Label done;
2130 
2131     set( -1, Rresult );
2132     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
2133     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
2134     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
2135 
2136     bind (done);
2137   }
2138 }
2139 
2140 
2141 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2142 {
2143   if (VM_Version::v9_instructions_work()) {
2144     Assembler::fneg(w, s, d);
2145   } else {
2146     if (w == FloatRegisterImpl::S) {
2147       Assembler::fneg(w, s, d);
2148     } else if (w == FloatRegisterImpl::D) {
2149       // number() does a sanity check on the alignment.
2150       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2151         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2152 
2153       Assembler::fneg(FloatRegisterImpl::S, s, d);
2154       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2155     } else {
2156       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2157 
2158       // number() does a sanity check on the alignment.
2159       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2160         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2161 
2162       Assembler::fneg(FloatRegisterImpl::S, s, d);
2163       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2164       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2165       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2166     }
2167   }
2168 }
2169 
2170 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2171 {
2172   if (VM_Version::v9_instructions_work()) {
2173     Assembler::fmov(w, s, d);
2174   } else {
2175     if (w == FloatRegisterImpl::S) {
2176       Assembler::fmov(w, s, d);
2177     } else if (w == FloatRegisterImpl::D) {
2178       // number() does a sanity check on the alignment.
2179       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2180         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2181 
2182       Assembler::fmov(FloatRegisterImpl::S, s, d);
2183       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2184     } else {
2185       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2186 
2187       // number() does a sanity check on the alignment.
2188       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2189         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2190 
2191       Assembler::fmov(FloatRegisterImpl::S, s, d);
2192       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2193       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2194       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2195     }
2196   }
2197 }
2198 
2199 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2200 {
2201   if (VM_Version::v9_instructions_work()) {
2202     Assembler::fabs(w, s, d);
2203   } else {
2204     if (w == FloatRegisterImpl::S) {
2205       Assembler::fabs(w, s, d);
2206     } else if (w == FloatRegisterImpl::D) {
2207       // number() does a sanity check on the alignment.
2208       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2209         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2210 
2211       Assembler::fabs(FloatRegisterImpl::S, s, d);
2212       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2213     } else {
2214       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2215 
2216       // number() does a sanity check on the alignment.
2217       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2218        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2219 
2220       Assembler::fabs(FloatRegisterImpl::S, s, d);
2221       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2222       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2223       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2224     }
2225   }
2226 }
2227 
2228 void MacroAssembler::save_all_globals_into_locals() {
2229   mov(G1,L1);
2230   mov(G2,L2);
2231   mov(G3,L3);
2232   mov(G4,L4);
2233   mov(G5,L5);
2234   mov(G6,L6);
2235   mov(G7,L7);
2236 }
2237 
2238 void MacroAssembler::restore_globals_from_locals() {
2239   mov(L1,G1);
2240   mov(L2,G2);
2241   mov(L3,G3);
2242   mov(L4,G4);
2243   mov(L5,G5);
2244   mov(L6,G6);
2245   mov(L7,G7);
2246 }
2247 
2248 // Use for 64 bit operation.
2249 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2250 {
2251   // store ptr_reg as the new top value
2252 #ifdef _LP64
2253   casx(top_ptr_reg, top_reg, ptr_reg);
2254 #else
2255   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
2256 #endif // _LP64
2257 }
2258 
2259 // [RGV] This routine does not handle 64 bit operations.
2260 //       use casx_under_lock() or casx directly!!!
2261 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2262 {
2263   // store ptr_reg as the new top value
2264   if (VM_Version::v9_instructions_work()) {
2265     cas(top_ptr_reg, top_reg, ptr_reg);
2266   } else {
2267 
2268     // If the register is not an out nor global, it is not visible
2269     // after the save.  Allocate a register for it, save its
2270     // value in the register save area (the save may not flush
2271     // registers to the save area).
2272 
2273     Register top_ptr_reg_after_save;
2274     Register top_reg_after_save;
2275     Register ptr_reg_after_save;
2276 
2277     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
2278       top_ptr_reg_after_save = top_ptr_reg->after_save();
2279     } else {
2280       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
2281       top_ptr_reg_after_save = L0;
2282       st(top_ptr_reg, reg_save_addr);
2283     }
2284 
2285     if (top_reg->is_out() || top_reg->is_global()) {
2286       top_reg_after_save = top_reg->after_save();
2287     } else {
2288       Address reg_save_addr = top_reg->address_in_saved_window();
2289       top_reg_after_save = L1;
2290       st(top_reg, reg_save_addr);
2291     }
2292 
2293     if (ptr_reg->is_out() || ptr_reg->is_global()) {
2294       ptr_reg_after_save = ptr_reg->after_save();
2295     } else {
2296       Address reg_save_addr = ptr_reg->address_in_saved_window();
2297       ptr_reg_after_save = L2;
2298       st(ptr_reg, reg_save_addr);
2299     }
2300 
2301     const Register& lock_reg = L3;
2302     const Register& lock_ptr_reg = L4;
2303     const Register& value_reg = L5;
2304     const Register& yield_reg = L6;
2305     const Register& yieldall_reg = L7;
2306 
2307     save_frame();
2308 
2309     if (top_ptr_reg_after_save == L0) {
2310       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
2311     }
2312 
2313     if (top_reg_after_save == L1) {
2314       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
2315     }
2316 
2317     if (ptr_reg_after_save == L2) {
2318       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
2319     }
2320 
2321     Label(retry_get_lock);
2322     Label(not_same);
2323     Label(dont_yield);
2324 
2325     assert(lock_addr, "lock_address should be non null for v8");
2326     set((intptr_t)lock_addr, lock_ptr_reg);
2327     // Initialize yield counter
2328     mov(G0,yield_reg);
2329     mov(G0, yieldall_reg);
2330     set(StubRoutines::Sparc::locked, lock_reg);
2331 
2332     bind(retry_get_lock);
2333     cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
2334 
2335     if(use_call_vm) {
2336       Untested("Need to verify global reg consistancy");
2337       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
2338     } else {
2339       // Save the regs and make space for a C call
2340       save(SP, -96, SP);
2341       save_all_globals_into_locals();
2342       call(CAST_FROM_FN_PTR(address,os::yield_all));
2343       delayed()->mov(yieldall_reg, O0);
2344       restore_globals_from_locals();
2345       restore();
2346     }
2347 
2348     // reset the counter
2349     mov(G0,yield_reg);
2350     add(yieldall_reg, 1, yieldall_reg);
2351 
2352     bind(dont_yield);
2353     // try to get lock
2354     Assembler::swap(lock_ptr_reg, 0, lock_reg);
2355 
2356     // did we get the lock?
2357     cmp(lock_reg, StubRoutines::Sparc::unlocked);
2358     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
2359     delayed()->add(yield_reg,1,yield_reg);
2360 
2361     // yes, got lock.  do we have the same top?
2362     ld(top_ptr_reg_after_save, 0, value_reg);
2363     cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
2364 
2365     // yes, same top.
2366     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
2367     membar(Assembler::StoreStore);
2368 
2369     bind(not_same);
2370     mov(value_reg, ptr_reg_after_save);
2371     st(lock_reg, lock_ptr_reg, 0); // unlock
2372 
2373     restore();
2374   }
2375 }
2376 
2377 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
2378                                                       Register tmp,
2379                                                       int offset) {
2380   intptr_t value = *delayed_value_addr;
2381   if (value != 0)
2382     return RegisterOrConstant(value + offset);
2383 
2384   // load indirectly to solve generation ordering problem
2385   AddressLiteral a(delayed_value_addr);
2386   load_ptr_contents(a, tmp);
2387 
2388 #ifdef ASSERT
2389   tst(tmp);
2390   breakpoint_trap(zero, xcc);
2391 #endif
2392 
2393   if (offset != 0)
2394     add(tmp, offset, tmp);
2395 
2396   return RegisterOrConstant(tmp);
2397 }
2398 
2399 
2400 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2401   assert(d.register_or_noreg() != G0, "lost side effect");
2402   if ((s2.is_constant() && s2.as_constant() == 0) ||
2403       (s2.is_register() && s2.as_register() == G0)) {
2404     // Do nothing, just move value.
2405     if (s1.is_register()) {
2406       if (d.is_constant())  d = temp;
2407       mov(s1.as_register(), d.as_register());
2408       return d;
2409     } else {
2410       return s1;
2411     }
2412   }
2413 
2414   if (s1.is_register()) {
2415     assert_different_registers(s1.as_register(), temp);
2416     if (d.is_constant())  d = temp;
2417     andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2418     return d;
2419   } else {
2420     if (s2.is_register()) {
2421       assert_different_registers(s2.as_register(), temp);
2422       if (d.is_constant())  d = temp;
2423       set(s1.as_constant(), temp);
2424       andn(temp, s2.as_register(), d.as_register());
2425       return d;
2426     } else {
2427       intptr_t res = s1.as_constant() & ~s2.as_constant();
2428       return res;
2429     }
2430   }
2431 }
2432 
2433 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2434   assert(d.register_or_noreg() != G0, "lost side effect");
2435   if ((s2.is_constant() && s2.as_constant() == 0) ||
2436       (s2.is_register() && s2.as_register() == G0)) {
2437     // Do nothing, just move value.
2438     if (s1.is_register()) {
2439       if (d.is_constant())  d = temp;
2440       mov(s1.as_register(), d.as_register());
2441       return d;
2442     } else {
2443       return s1;
2444     }
2445   }
2446 
2447   if (s1.is_register()) {
2448     assert_different_registers(s1.as_register(), temp);
2449     if (d.is_constant())  d = temp;
2450     add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2451     return d;
2452   } else {
2453     if (s2.is_register()) {
2454       assert_different_registers(s2.as_register(), temp);
2455       if (d.is_constant())  d = temp;
2456       add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
2457       return d;
2458     } else {
2459       intptr_t res = s1.as_constant() + s2.as_constant();
2460       return res;
2461     }
2462   }
2463 }
2464 
2465 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2466   assert(d.register_or_noreg() != G0, "lost side effect");
2467   if (!is_simm13(s2.constant_or_zero()))
2468     s2 = (s2.as_constant() & 0xFF);
2469   if ((s2.is_constant() && s2.as_constant() == 0) ||
2470       (s2.is_register() && s2.as_register() == G0)) {
2471     // Do nothing, just move value.
2472     if (s1.is_register()) {
2473       if (d.is_constant())  d = temp;
2474       mov(s1.as_register(), d.as_register());
2475       return d;
2476     } else {
2477       return s1;
2478     }
2479   }
2480 
2481   if (s1.is_register()) {
2482     assert_different_registers(s1.as_register(), temp);
2483     if (d.is_constant())  d = temp;
2484     sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2485     return d;
2486   } else {
2487     if (s2.is_register()) {
2488       assert_different_registers(s2.as_register(), temp);
2489       if (d.is_constant())  d = temp;
2490       set(s1.as_constant(), temp);
2491       sll_ptr(temp, s2.as_register(), d.as_register());
2492       return d;
2493     } else {
2494       intptr_t res = s1.as_constant() << s2.as_constant();
2495       return res;
2496     }
2497   }
2498 }
2499 
2500 
2501 // Look up the method for a megamorphic invokeinterface call.
2502 // The target method is determined by <intf_klass, itable_index>.
2503 // The receiver klass is in recv_klass.
2504 // On success, the result will be in method_result, and execution falls through.
2505 // On failure, execution transfers to the given label.
2506 void MacroAssembler::lookup_interface_method(Register recv_klass,
2507                                              Register intf_klass,
2508                                              RegisterOrConstant itable_index,
2509                                              Register method_result,
2510                                              Register scan_temp,
2511                                              Register sethi_temp,
2512                                              Label& L_no_such_interface) {
2513   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
2514   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
2515          "caller must use same register for non-constant itable index as for method");
2516 
2517   Label L_no_such_interface_restore;
2518   bool did_save = false;
2519   if (scan_temp == noreg || sethi_temp == noreg) {
2520     Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
2521     Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
2522     assert(method_result->is_global(), "must be able to return value");
2523     scan_temp  = L2;
2524     sethi_temp = L3;
2525     save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
2526     recv_klass = recv_2;
2527     intf_klass = intf_2;
2528     did_save = true;
2529   }
2530 
2531   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
2532   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
2533   int scan_step   = itableOffsetEntry::size() * wordSize;
2534   int vte_size    = vtableEntry::size() * wordSize;
2535 
2536   lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp);
2537   // %%% We should store the aligned, prescaled offset in the klassoop.
2538   // Then the next several instructions would fold away.
2539 
2540   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
2541   int itb_offset = vtable_base;
2542   if (round_to_unit != 0) {
2543     // hoist first instruction of round_to(scan_temp, BytesPerLong):
2544     itb_offset += round_to_unit - wordSize;
2545   }
2546   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
2547   sll(scan_temp, itb_scale,  scan_temp);
2548   add(scan_temp, itb_offset, scan_temp);
2549   if (round_to_unit != 0) {
2550     // Round up to align_object_offset boundary
2551     // see code for InstanceKlass::start_of_itable!
2552     // Was: round_to(scan_temp, BytesPerLong);
2553     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
2554     and3(scan_temp, -round_to_unit, scan_temp);
2555   }
2556   add(recv_klass, scan_temp, scan_temp);
2557 
2558   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
2559   RegisterOrConstant itable_offset = itable_index;
2560   itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
2561   itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
2562   add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
2563 
2564   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
2565   //   if (scan->interface() == intf) {
2566   //     result = (klass + scan->offset() + itable_index);
2567   //   }
2568   // }
2569   Label L_search, L_found_method;
2570 
2571   for (int peel = 1; peel >= 0; peel--) {
2572     // %%%% Could load both offset and interface in one ldx, if they were
2573     // in the opposite order.  This would save a load.
2574     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
2575 
2576     // Check that this entry is non-null.  A null entry means that
2577     // the receiver class doesn't implement the interface, and wasn't the
2578     // same as when the caller was compiled.
2579     bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
2580     delayed()->cmp(method_result, intf_klass);
2581 
2582     if (peel) {
2583       brx(Assembler::equal,    false, Assembler::pt, L_found_method);
2584     } else {
2585       brx(Assembler::notEqual, false, Assembler::pn, L_search);
2586       // (invert the test to fall through to found_method...)
2587     }
2588     delayed()->add(scan_temp, scan_step, scan_temp);
2589 
2590     if (!peel)  break;
2591 
2592     bind(L_search);
2593   }
2594 
2595   bind(L_found_method);
2596 
2597   // Got a hit.
2598   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
2599   // scan_temp[-scan_step] points to the vtable offset we need
2600   ito_offset -= scan_step;
2601   lduw(scan_temp, ito_offset, scan_temp);
2602   ld_ptr(recv_klass, scan_temp, method_result);
2603 
2604   if (did_save) {
2605     Label L_done;
2606     ba(L_done);
2607     delayed()->restore();
2608 
2609     bind(L_no_such_interface_restore);
2610     ba(L_no_such_interface);
2611     delayed()->restore();
2612 
2613     bind(L_done);
2614   }
2615 }
2616 
2617 
2618 // virtual method calling
2619 void MacroAssembler::lookup_virtual_method(Register recv_klass,
2620                                            RegisterOrConstant vtable_index,
2621                                            Register method_result) {
2622   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
2623   Register sethi_temp = method_result;
2624   const int base = (InstanceKlass::vtable_start_offset() * wordSize +
2625                     // method pointer offset within the vtable entry:
2626                     vtableEntry::method_offset_in_bytes());
2627   RegisterOrConstant vtable_offset = vtable_index;
2628   // Each of the following three lines potentially generates an instruction.
2629   // But the total number of address formation instructions will always be
2630   // at most two, and will often be zero.  In any case, it will be optimal.
2631   // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
2632   // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
2633   vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
2634   vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
2635   Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
2636   ld_ptr(vtable_entry_addr, method_result);
2637 }
2638 
2639 
2640 void MacroAssembler::check_klass_subtype(Register sub_klass,
2641                                          Register super_klass,
2642                                          Register temp_reg,
2643                                          Register temp2_reg,
2644                                          Label& L_success) {
2645   Register sub_2 = sub_klass;
2646   Register sup_2 = super_klass;
2647   if (!sub_2->is_global())  sub_2 = L0;
2648   if (!sup_2->is_global())  sup_2 = L1;
2649   bool did_save = false;
2650   if (temp_reg == noreg || temp2_reg == noreg) {
2651     temp_reg = L2;
2652     temp2_reg = L3;
2653     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
2654     sub_klass = sub_2;
2655     super_klass = sup_2;
2656     did_save = true;
2657   }
2658   Label L_failure, L_pop_to_failure, L_pop_to_success;
2659   check_klass_subtype_fast_path(sub_klass, super_klass,
2660                                 temp_reg, temp2_reg,
2661                                 (did_save ? &L_pop_to_success : &L_success),
2662                                 (did_save ? &L_pop_to_failure : &L_failure), NULL);
2663 
2664   if (!did_save)
2665     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
2666   check_klass_subtype_slow_path(sub_2, sup_2,
2667                                 L2, L3, L4, L5,
2668                                 NULL, &L_pop_to_failure);
2669 
2670   // on success:
2671   bind(L_pop_to_success);
2672   restore();
2673   ba_short(L_success);
2674 
2675   // on failure:
2676   bind(L_pop_to_failure);
2677   restore();
2678   bind(L_failure);
2679 }
2680 
2681 
2682 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
2683                                                    Register super_klass,
2684                                                    Register temp_reg,
2685                                                    Register temp2_reg,
2686                                                    Label* L_success,
2687                                                    Label* L_failure,
2688                                                    Label* L_slow_path,
2689                                         RegisterOrConstant super_check_offset) {
2690   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
2691   int sco_offset = in_bytes(Klass::super_check_offset_offset());
2692 
2693   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
2694   bool need_slow_path = (must_load_sco ||
2695                          super_check_offset.constant_or_zero() == sco_offset);
2696 
2697   assert_different_registers(sub_klass, super_klass, temp_reg);
2698   if (super_check_offset.is_register()) {
2699     assert_different_registers(sub_klass, super_klass, temp_reg,
2700                                super_check_offset.as_register());
2701   } else if (must_load_sco) {
2702     assert(temp2_reg != noreg, "supply either a temp or a register offset");
2703   }
2704 
2705   Label L_fallthrough;
2706   int label_nulls = 0;
2707   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2708   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2709   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
2710   assert(label_nulls <= 1 ||
2711          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
2712          "at most one NULL in the batch, usually");
2713 
2714   // If the pointers are equal, we are done (e.g., String[] elements).
2715   // This self-check enables sharing of secondary supertype arrays among
2716   // non-primary types such as array-of-interface.  Otherwise, each such
2717   // type would need its own customized SSA.
2718   // We move this check to the front of the fast path because many
2719   // type checks are in fact trivially successful in this manner,
2720   // so we get a nicely predicted branch right at the start of the check.
2721   cmp(super_klass, sub_klass);
2722   brx(Assembler::equal, false, Assembler::pn, *L_success);
2723   delayed()->nop();
2724 
2725   // Check the supertype display:
2726   if (must_load_sco) {
2727     // The super check offset is always positive...
2728     lduw(super_klass, sco_offset, temp2_reg);
2729     super_check_offset = RegisterOrConstant(temp2_reg);
2730     // super_check_offset is register.
2731     assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
2732   }
2733   ld_ptr(sub_klass, super_check_offset, temp_reg);
2734   cmp(super_klass, temp_reg);
2735 
2736   // This check has worked decisively for primary supers.
2737   // Secondary supers are sought in the super_cache ('super_cache_addr').
2738   // (Secondary supers are interfaces and very deeply nested subtypes.)
2739   // This works in the same check above because of a tricky aliasing
2740   // between the super_cache and the primary super display elements.
2741   // (The 'super_check_addr' can address either, as the case requires.)
2742   // Note that the cache is updated below if it does not help us find
2743   // what we need immediately.
2744   // So if it was a primary super, we can just fail immediately.
2745   // Otherwise, it's the slow path for us (no success at this point).
2746 
2747   // Hacked ba(), which may only be used just before L_fallthrough.
2748 #define FINAL_JUMP(label)            \
2749   if (&(label) != &L_fallthrough) {  \
2750     ba(label);  delayed()->nop();    \
2751   }
2752 
2753   if (super_check_offset.is_register()) {
2754     brx(Assembler::equal, false, Assembler::pn, *L_success);
2755     delayed()->cmp(super_check_offset.as_register(), sc_offset);
2756 
2757     if (L_failure == &L_fallthrough) {
2758       brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
2759       delayed()->nop();
2760     } else {
2761       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
2762       delayed()->nop();
2763       FINAL_JUMP(*L_slow_path);
2764     }
2765   } else if (super_check_offset.as_constant() == sc_offset) {
2766     // Need a slow path; fast failure is impossible.
2767     if (L_slow_path == &L_fallthrough) {
2768       brx(Assembler::equal, false, Assembler::pt, *L_success);
2769       delayed()->nop();
2770     } else {
2771       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
2772       delayed()->nop();
2773       FINAL_JUMP(*L_success);
2774     }
2775   } else {
2776     // No slow path; it's a fast decision.
2777     if (L_failure == &L_fallthrough) {
2778       brx(Assembler::equal, false, Assembler::pt, *L_success);
2779       delayed()->nop();
2780     } else {
2781       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
2782       delayed()->nop();
2783       FINAL_JUMP(*L_success);
2784     }
2785   }
2786 
2787   bind(L_fallthrough);
2788 
2789 #undef FINAL_JUMP
2790 }
2791 
2792 
2793 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
2794                                                    Register super_klass,
2795                                                    Register count_temp,
2796                                                    Register scan_temp,
2797                                                    Register scratch_reg,
2798                                                    Register coop_reg,
2799                                                    Label* L_success,
2800                                                    Label* L_failure) {
2801   assert_different_registers(sub_klass, super_klass,
2802                              count_temp, scan_temp, scratch_reg, coop_reg);
2803 
2804   Label L_fallthrough, L_loop;
2805   int label_nulls = 0;
2806   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2807   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2808   assert(label_nulls <= 1, "at most one NULL in the batch");
2809 
2810   // a couple of useful fields in sub_klass:
2811   int ss_offset = in_bytes(Klass::secondary_supers_offset());
2812   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
2813 
2814   // Do a linear scan of the secondary super-klass chain.
2815   // This code is rarely used, so simplicity is a virtue here.
2816 
2817 #ifndef PRODUCT
2818   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
2819   inc_counter((address) pst_counter, count_temp, scan_temp);
2820 #endif
2821 
2822   // We will consult the secondary-super array.
2823   ld_ptr(sub_klass, ss_offset, scan_temp);
2824 
2825   Register search_key = super_klass;
2826 
2827   // Load the array length.  (Positive movl does right thing on LP64.)
2828   lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
2829 
2830   // Check for empty secondary super list
2831   tst(count_temp);
2832 
2833   // In the array of super classes elements are pointer sized.
2834   int element_size = wordSize;
2835 
2836   // Top of search loop
2837   bind(L_loop);
2838   br(Assembler::equal, false, Assembler::pn, *L_failure);
2839   delayed()->add(scan_temp, element_size, scan_temp);
2840 
2841   // Skip the array header in all array accesses.
2842   int elem_offset = Array<Klass*>::base_offset_in_bytes();
2843   elem_offset -= element_size;   // the scan pointer was pre-incremented also
2844 
2845   // Load next super to check
2846     ld_ptr( scan_temp, elem_offset, scratch_reg );
2847 
2848   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
2849   cmp(scratch_reg, search_key);
2850 
2851   // A miss means we are NOT a subtype and need to keep looping
2852   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
2853   delayed()->deccc(count_temp); // decrement trip counter in delay slot
2854 
2855   // Success.  Cache the super we found and proceed in triumph.
2856   st_ptr(super_klass, sub_klass, sc_offset);
2857 
2858   if (L_success != &L_fallthrough) {
2859     ba(*L_success);
2860     delayed()->nop();
2861   }
2862 
2863   bind(L_fallthrough);
2864 }
2865 
2866 
2867 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
2868                                                    Register temp_reg,
2869                                                    int extra_slot_offset) {
2870   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
2871   int stackElementSize = Interpreter::stackElementSize;
2872   int offset = extra_slot_offset * stackElementSize;
2873   if (arg_slot.is_constant()) {
2874     offset += arg_slot.as_constant() * stackElementSize;
2875     return offset;
2876   } else {
2877     assert(temp_reg != noreg, "must specify");
2878     sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
2879     if (offset != 0)
2880       add(temp_reg, offset, temp_reg);
2881     return temp_reg;
2882   }
2883 }
2884 
2885 
2886 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
2887                                          Register temp_reg,
2888                                          int extra_slot_offset) {
2889   return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
2890 }
2891 
2892 
2893 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
2894                                           Register temp_reg,
2895                                           Label& done, Label* slow_case,
2896                                           BiasedLockingCounters* counters) {
2897   assert(UseBiasedLocking, "why call this otherwise?");
2898 
2899   if (PrintBiasedLockingStatistics) {
2900     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
2901     if (counters == NULL)
2902       counters = BiasedLocking::counters();
2903   }
2904 
2905   Label cas_label;
2906 
2907   // Biased locking
2908   // See whether the lock is currently biased toward our thread and
2909   // whether the epoch is still valid
2910   // Note that the runtime guarantees sufficient alignment of JavaThread
2911   // pointers to allow age to be placed into low bits
2912   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
2913   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2914   cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
2915 
2916   load_klass(obj_reg, temp_reg);
2917   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2918   or3(G2_thread, temp_reg, temp_reg);
2919   xor3(mark_reg, temp_reg, temp_reg);
2920   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
2921   if (counters != NULL) {
2922     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
2923     // Reload mark_reg as we may need it later
2924     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
2925   }
2926   brx(Assembler::equal, true, Assembler::pt, done);
2927   delayed()->nop();
2928 
2929   Label try_revoke_bias;
2930   Label try_rebias;
2931   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
2932   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2933 
2934   // At this point we know that the header has the bias pattern and
2935   // that we are not the bias owner in the current epoch. We need to
2936   // figure out more details about the state of the header in order to
2937   // know what operations can be legally performed on the object's
2938   // header.
2939 
2940   // If the low three bits in the xor result aren't clear, that means
2941   // the prototype header is no longer biased and we have to revoke
2942   // the bias on this object.
2943   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
2944   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
2945 
2946   // Biasing is still enabled for this data type. See whether the
2947   // epoch of the current bias is still valid, meaning that the epoch
2948   // bits of the mark word are equal to the epoch bits of the
2949   // prototype header. (Note that the prototype header's epoch bits
2950   // only change at a safepoint.) If not, attempt to rebias the object
2951   // toward the current thread. Note that we must be absolutely sure
2952   // that the current epoch is invalid in order to do this because
2953   // otherwise the manipulations it performs on the mark word are
2954   // illegal.
2955   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
2956   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
2957 
2958   // The epoch of the current bias is still valid but we know nothing
2959   // about the owner; it might be set or it might be clear. Try to
2960   // acquire the bias of the object using an atomic operation. If this
2961   // fails we will go in to the runtime to revoke the object's bias.
2962   // Note that we first construct the presumed unbiased header so we
2963   // don't accidentally blow away another thread's valid bias.
2964   delayed()->and3(mark_reg,
2965                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
2966                   mark_reg);
2967   or3(G2_thread, mark_reg, temp_reg);
2968   casn(mark_addr.base(), mark_reg, temp_reg);
2969   // If the biasing toward our thread failed, this means that
2970   // another thread succeeded in biasing it toward itself and we
2971   // need to revoke that bias. The revocation will occur in the
2972   // interpreter runtime in the slow case.
2973   cmp(mark_reg, temp_reg);
2974   if (counters != NULL) {
2975     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
2976   }
2977   if (slow_case != NULL) {
2978     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2979     delayed()->nop();
2980   }
2981   ba_short(done);
2982 
2983   bind(try_rebias);
2984   // At this point we know the epoch has expired, meaning that the
2985   // current "bias owner", if any, is actually invalid. Under these
2986   // circumstances _only_, we are allowed to use the current header's
2987   // value as the comparison value when doing the cas to acquire the
2988   // bias in the current epoch. In other words, we allow transfer of
2989   // the bias from one thread to another directly in this situation.
2990   //
2991   // FIXME: due to a lack of registers we currently blow away the age
2992   // bits in this situation. Should attempt to preserve them.
2993   load_klass(obj_reg, temp_reg);
2994   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2995   or3(G2_thread, temp_reg, temp_reg);
2996   casn(mark_addr.base(), mark_reg, temp_reg);
2997   // If the biasing toward our thread failed, this means that
2998   // another thread succeeded in biasing it toward itself and we
2999   // need to revoke that bias. The revocation will occur in the
3000   // interpreter runtime in the slow case.
3001   cmp(mark_reg, temp_reg);
3002   if (counters != NULL) {
3003     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
3004   }
3005   if (slow_case != NULL) {
3006     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
3007     delayed()->nop();
3008   }
3009   ba_short(done);
3010 
3011   bind(try_revoke_bias);
3012   // The prototype mark in the klass doesn't have the bias bit set any
3013   // more, indicating that objects of this data type are not supposed
3014   // to be biased any more. We are going to try to reset the mark of
3015   // this object to the prototype value and fall through to the
3016   // CAS-based locking scheme. Note that if our CAS fails, it means
3017   // that another thread raced us for the privilege of revoking the
3018   // bias of this particular object, so it's okay to continue in the
3019   // normal locking code.
3020   //
3021   // FIXME: due to a lack of registers we currently blow away the age
3022   // bits in this situation. Should attempt to preserve them.
3023   load_klass(obj_reg, temp_reg);
3024   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
3025   casn(mark_addr.base(), mark_reg, temp_reg);
3026   // Fall through to the normal CAS-based lock, because no matter what
3027   // the result of the above CAS, some thread must have succeeded in
3028   // removing the bias bit from the object's header.
3029   if (counters != NULL) {
3030     cmp(mark_reg, temp_reg);
3031     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
3032   }
3033 
3034   bind(cas_label);
3035 }
3036 
3037 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
3038                                           bool allow_delay_slot_filling) {
3039   // Check for biased locking unlock case, which is a no-op
3040   // Note: we do not have to check the thread ID for two reasons.
3041   // First, the interpreter checks for IllegalMonitorStateException at
3042   // a higher level. Second, if the bias was revoked while we held the
3043   // lock, the object could not be rebiased toward another thread, so
3044   // the bias bit would be clear.
3045   ld_ptr(mark_addr, temp_reg);
3046   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
3047   cmp(temp_reg, markOopDesc::biased_lock_pattern);
3048   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
3049   delayed();
3050   if (!allow_delay_slot_filling) {
3051     nop();
3052   }
3053 }
3054 
3055 
3056 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
3057 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
3058 
3059 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
3060   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3061 }
3062 
3063 
3064 
3065 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
3066 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
3067 // The code could be tightened up considerably.
3068 //
3069 // box->dhw disposition - post-conditions at DONE_LABEL.
3070 // -   Successful inflated lock:  box->dhw != 0.
3071 //     Any non-zero value suffices.
3072 //     Consider G2_thread, rsp, boxReg, or unused_mark()
3073 // -   Successful Stack-lock: box->dhw == mark.
3074 //     box->dhw must contain the displaced mark word value
3075 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
3076 //     The slow-path fast_enter() and slow_enter() operators
3077 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
3078 // -   Biased: box->dhw is undefined
3079 //
3080 // SPARC refworkload performance - specifically jetstream and scimark - are
3081 // extremely sensitive to the size of the code emitted by compiler_lock_object
3082 // and compiler_unlock_object.  Critically, the key factor is code size, not path
3083 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
3084 // effect).
3085 
3086 
3087 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
3088                                           Register Rbox, Register Rscratch,
3089                                           BiasedLockingCounters* counters,
3090                                           bool try_bias) {
3091    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
3092 
3093    verify_oop(Roop);
3094    Label done ;
3095 
3096    if (counters != NULL) {
3097      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
3098    }
3099 
3100    if (EmitSync & 1) {
3101      mov(3, Rscratch);
3102      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3103      cmp(SP, G0);
3104      return ;
3105    }
3106 
3107    if (EmitSync & 2) {
3108 
3109      // Fetch object's markword
3110      ld_ptr(mark_addr, Rmark);
3111 
3112      if (try_bias) {
3113         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3114      }
3115 
3116      // Save Rbox in Rscratch to be used for the cas operation
3117      mov(Rbox, Rscratch);
3118 
3119      // set Rmark to markOop | markOopDesc::unlocked_value
3120      or3(Rmark, markOopDesc::unlocked_value, Rmark);
3121 
3122      // Initialize the box.  (Must happen before we update the object mark!)
3123      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3124 
3125      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
3126      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3127      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
3128         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3129 
3130      // if compare/exchange succeeded we found an unlocked object and we now have locked it
3131      // hence we are done
3132      cmp(Rmark, Rscratch);
3133 #ifdef _LP64
3134      sub(Rscratch, STACK_BIAS, Rscratch);
3135 #endif
3136      brx(Assembler::equal, false, Assembler::pt, done);
3137      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
3138 
3139      // we did not find an unlocked object so see if this is a recursive case
3140      // sub(Rscratch, SP, Rscratch);
3141      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3142      andcc(Rscratch, 0xfffff003, Rscratch);
3143      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3144      bind (done);
3145      return ;
3146    }
3147 
3148    Label Egress ;
3149 
3150    if (EmitSync & 256) {
3151       Label IsInflated ;
3152 
3153       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
3154       // Triage: biased, stack-locked, neutral, inflated
3155       if (try_bias) {
3156         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3157         // Invariant: if control reaches this point in the emitted stream
3158         // then Rmark has not been modified.
3159       }
3160 
3161       // Store mark into displaced mark field in the on-stack basic-lock "box"
3162       // Critically, this must happen before the CAS
3163       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
3164       st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3165       andcc(Rmark, 2, G0);
3166       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
3167       delayed()->
3168 
3169       // Try stack-lock acquisition.
3170       // Beware: the 1st instruction is in a delay slot
3171       mov(Rbox,  Rscratch);
3172       or3(Rmark, markOopDesc::unlocked_value, Rmark);
3173       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3174       casn(mark_addr.base(), Rmark, Rscratch);
3175       cmp(Rmark, Rscratch);
3176       brx(Assembler::equal, false, Assembler::pt, done);
3177       delayed()->sub(Rscratch, SP, Rscratch);
3178 
3179       // Stack-lock attempt failed - check for recursive stack-lock.
3180       // See the comments below about how we might remove this case.
3181 #ifdef _LP64
3182       sub(Rscratch, STACK_BIAS, Rscratch);
3183 #endif
3184       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3185       andcc(Rscratch, 0xfffff003, Rscratch);
3186       br(Assembler::always, false, Assembler::pt, done);
3187       delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3188 
3189       bind(IsInflated);
3190       if (EmitSync & 64) {
3191          // If m->owner != null goto IsLocked
3192          // Pessimistic form: Test-and-CAS vs CAS
3193          // The optimistic form avoids RTS->RTO cache line upgrades.
3194          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3195          andcc(Rscratch, Rscratch, G0);
3196          brx(Assembler::notZero, false, Assembler::pn, done);
3197          delayed()->nop();
3198          // m->owner == null : it's unlocked.
3199       }
3200 
3201       // Try to CAS m->owner from null to Self
3202       // Invariant: if we acquire the lock then _recursions should be 0.
3203       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
3204       mov(G2_thread, Rscratch);
3205       casn(Rmark, G0, Rscratch);
3206       cmp(Rscratch, G0);
3207       // Intentional fall-through into done
3208    } else {
3209       // Aggressively avoid the Store-before-CAS penalty
3210       // Defer the store into box->dhw until after the CAS
3211       Label IsInflated, Recursive ;
3212 
3213 // Anticipate CAS -- Avoid RTS->RTO upgrade
3214 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
3215 
3216       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
3217       // Triage: biased, stack-locked, neutral, inflated
3218 
3219       if (try_bias) {
3220         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3221         // Invariant: if control reaches this point in the emitted stream
3222         // then Rmark has not been modified.
3223       }
3224       andcc(Rmark, 2, G0);
3225       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
3226       delayed()->                         // Beware - dangling delay-slot
3227 
3228       // Try stack-lock acquisition.
3229       // Transiently install BUSY (0) encoding in the mark word.
3230       // if the CAS of 0 into the mark was successful then we execute:
3231       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
3232       //   ST obj->mark = box    -- overwrite transient 0 value
3233       // This presumes TSO, of course.
3234 
3235       mov(0, Rscratch);
3236       or3(Rmark, markOopDesc::unlocked_value, Rmark);
3237       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3238       casn(mark_addr.base(), Rmark, Rscratch);
3239 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
3240       cmp(Rscratch, Rmark);
3241       brx(Assembler::notZero, false, Assembler::pn, Recursive);
3242       delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3243       if (counters != NULL) {
3244         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3245       }
3246       ba(done);
3247       delayed()->st_ptr(Rbox, mark_addr);
3248 
3249       bind(Recursive);
3250       // Stack-lock attempt failed - check for recursive stack-lock.
3251       // Tests show that we can remove the recursive case with no impact
3252       // on refworkload 0.83.  If we need to reduce the size of the code
3253       // emitted by compiler_lock_object() the recursive case is perfect
3254       // candidate.
3255       //
3256       // A more extreme idea is to always inflate on stack-lock recursion.
3257       // This lets us eliminate the recursive checks in compiler_lock_object
3258       // and compiler_unlock_object and the (box->dhw == 0) encoding.
3259       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
3260       // and showed a performance *increase*.  In the same experiment I eliminated
3261       // the fast-path stack-lock code from the interpreter and always passed
3262       // control to the "slow" operators in synchronizer.cpp.
3263 
3264       // RScratch contains the fetched obj->mark value from the failed CASN.
3265 #ifdef _LP64
3266       sub(Rscratch, STACK_BIAS, Rscratch);
3267 #endif
3268       sub(Rscratch, SP, Rscratch);
3269       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3270       andcc(Rscratch, 0xfffff003, Rscratch);
3271       if (counters != NULL) {
3272         // Accounting needs the Rscratch register
3273         st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3274         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3275         ba_short(done);
3276       } else {
3277         ba(done);
3278         delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3279       }
3280 
3281       bind   (IsInflated);
3282       if (EmitSync & 64) {
3283          // If m->owner != null goto IsLocked
3284          // Test-and-CAS vs CAS
3285          // Pessimistic form avoids futile (doomed) CAS attempts
3286          // The optimistic form avoids RTS->RTO cache line upgrades.
3287          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3288          andcc(Rscratch, Rscratch, G0);
3289          brx(Assembler::notZero, false, Assembler::pn, done);
3290          delayed()->nop();
3291          // m->owner == null : it's unlocked.
3292       }
3293 
3294       // Try to CAS m->owner from null to Self
3295       // Invariant: if we acquire the lock then _recursions should be 0.
3296       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
3297       mov(G2_thread, Rscratch);
3298       casn(Rmark, G0, Rscratch);
3299       cmp(Rscratch, G0);
3300       // ST box->displaced_header = NonZero.
3301       // Any non-zero value suffices:
3302       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
3303       st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
3304       // Intentional fall-through into done
3305    }
3306 
3307    bind   (done);
3308 }
3309 
3310 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
3311                                             Register Rbox, Register Rscratch,
3312                                             bool try_bias) {
3313    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
3314 
3315    Label done ;
3316 
3317    if (EmitSync & 4) {
3318      cmp(SP, G0);
3319      return ;
3320    }
3321 
3322    if (EmitSync & 8) {
3323      if (try_bias) {
3324         biased_locking_exit(mark_addr, Rscratch, done);
3325      }
3326 
3327      // Test first if it is a fast recursive unlock
3328      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
3329      br_null_short(Rmark, Assembler::pt, done);
3330 
3331      // Check if it is still a light weight lock, this is is true if we see
3332      // the stack address of the basicLock in the markOop of the object
3333      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3334      casx_under_lock(mark_addr.base(), Rbox, Rmark,
3335        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3336      ba(done);
3337      delayed()->cmp(Rbox, Rmark);
3338      bind(done);
3339      return ;
3340    }
3341 
3342    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
3343    // is too large performance rolls abruptly off a cliff.
3344    // This could be related to inlining policies, code cache management, or
3345    // I$ effects.
3346    Label LStacked ;
3347 
3348    if (try_bias) {
3349       // TODO: eliminate redundant LDs of obj->mark
3350       biased_locking_exit(mark_addr, Rscratch, done);
3351    }
3352 
3353    ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
3354    ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
3355    andcc(Rscratch, Rscratch, G0);
3356    brx(Assembler::zero, false, Assembler::pn, done);
3357    delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
3358    andcc(Rmark, 2, G0);
3359    brx(Assembler::zero, false, Assembler::pt, LStacked);
3360    delayed()->nop();
3361 
3362    // It's inflated
3363    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3364    // the ST of 0 into _owner which releases the lock.  This prevents loads
3365    // and stores within the critical section from reordering (floating)
3366    // past the store that releases the lock.  But TSO is a strong memory model
3367    // and that particular flavor of barrier is a noop, so we can safely elide it.
3368    // Note that we use 1-0 locking by default for the inflated case.  We
3369    // close the resultant (and rare) race by having contented threads in
3370    // monitorenter periodically poll _owner.
3371    ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3372    ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
3373    xor3(Rscratch, G2_thread, Rscratch);
3374    orcc(Rbox, Rscratch, Rbox);
3375    brx(Assembler::notZero, false, Assembler::pn, done);
3376    delayed()->
3377    ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
3378    ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
3379    orcc(Rbox, Rscratch, G0);
3380    if (EmitSync & 65536) {
3381       Label LSucc ;
3382       brx(Assembler::notZero, false, Assembler::pn, LSucc);
3383       delayed()->nop();
3384       ba(done);
3385       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3386 
3387       bind(LSucc);
3388       st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3389       if (os::is_MP()) { membar (StoreLoad); }
3390       ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
3391       andcc(Rscratch, Rscratch, G0);
3392       brx(Assembler::notZero, false, Assembler::pt, done);
3393       delayed()->andcc(G0, G0, G0);
3394       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
3395       mov(G2_thread, Rscratch);
3396       casn(Rmark, G0, Rscratch);
3397       // invert icc.zf and goto done
3398       br_notnull(Rscratch, false, Assembler::pt, done);
3399       delayed()->cmp(G0, G0);
3400       ba(done);
3401       delayed()->cmp(G0, 1);
3402    } else {
3403       brx(Assembler::notZero, false, Assembler::pn, done);
3404       delayed()->nop();
3405       ba(done);
3406       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3407    }
3408 
3409    bind   (LStacked);
3410    // Consider: we could replace the expensive CAS in the exit
3411    // path with a simple ST of the displaced mark value fetched from
3412    // the on-stack basiclock box.  That admits a race where a thread T2
3413    // in the slow lock path -- inflating with monitor M -- could race a
3414    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
3415    // More precisely T1 in the stack-lock unlock path could "stomp" the
3416    // inflated mark value M installed by T2, resulting in an orphan
3417    // object monitor M and T2 becoming stranded.  We can remedy that situation
3418    // by having T2 periodically poll the object's mark word using timed wait
3419    // operations.  If T2 discovers that a stomp has occurred it vacates
3420    // the monitor M and wakes any other threads stranded on the now-orphan M.
3421    // In addition the monitor scavenger, which performs deflation,
3422    // would also need to check for orpan monitors and stranded threads.
3423    //
3424    // Finally, inflation is also used when T2 needs to assign a hashCode
3425    // to O and O is stack-locked by T1.  The "stomp" race could cause
3426    // an assigned hashCode value to be lost.  We can avoid that condition
3427    // and provide the necessary hashCode stability invariants by ensuring
3428    // that hashCode generation is idempotent between copying GCs.
3429    // For example we could compute the hashCode of an object O as
3430    // O's heap address XOR some high quality RNG value that is refreshed
3431    // at GC-time.  The monitor scavenger would install the hashCode
3432    // found in any orphan monitors.  Again, the mechanism admits a
3433    // lost-update "stomp" WAW race but detects and recovers as needed.
3434    //
3435    // A prototype implementation showed excellent results, although
3436    // the scavenger and timeout code was rather involved.
3437 
3438    casn(mark_addr.base(), Rbox, Rscratch);
3439    cmp(Rbox, Rscratch);
3440    // Intentional fall through into done ...
3441 
3442    bind(done);
3443 }
3444 
3445 
3446 
3447 void MacroAssembler::print_CPU_state() {
3448   // %%%%% need to implement this
3449 }
3450 
3451 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
3452   // %%%%% need to implement this
3453 }
3454 
3455 void MacroAssembler::push_IU_state() {
3456   // %%%%% need to implement this
3457 }
3458 
3459 
3460 void MacroAssembler::pop_IU_state() {
3461   // %%%%% need to implement this
3462 }
3463 
3464 
3465 void MacroAssembler::push_FPU_state() {
3466   // %%%%% need to implement this
3467 }
3468 
3469 
3470 void MacroAssembler::pop_FPU_state() {
3471   // %%%%% need to implement this
3472 }
3473 
3474 
3475 void MacroAssembler::push_CPU_state() {
3476   // %%%%% need to implement this
3477 }
3478 
3479 
3480 void MacroAssembler::pop_CPU_state() {
3481   // %%%%% need to implement this
3482 }
3483 
3484 
3485 
3486 void MacroAssembler::verify_tlab() {
3487 #ifdef ASSERT
3488   if (UseTLAB && VerifyOops) {
3489     Label next, next2, ok;
3490     Register t1 = L0;
3491     Register t2 = L1;
3492     Register t3 = L2;
3493 
3494     save_frame(0);
3495     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3496     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3497     or3(t1, t2, t3);
3498     cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
3499     STOP("assert(top >= start)");
3500     should_not_reach_here();
3501 
3502     bind(next);
3503     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3504     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3505     or3(t3, t2, t3);
3506     cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
3507     STOP("assert(top <= end)");
3508     should_not_reach_here();
3509 
3510     bind(next2);
3511     and3(t3, MinObjAlignmentInBytesMask, t3);
3512     cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
3513     STOP("assert(aligned)");
3514     should_not_reach_here();
3515 
3516     bind(ok);
3517     restore();
3518   }
3519 #endif
3520 }
3521 
3522 
3523 void MacroAssembler::eden_allocate(
3524   Register obj,                        // result: pointer to object after successful allocation
3525   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3526   int      con_size_in_bytes,          // object size in bytes if   known at compile time
3527   Register t1,                         // temp register
3528   Register t2,                         // temp register
3529   Label&   slow_case                   // continuation point if fast allocation fails
3530 ){
3531   // make sure arguments make sense
3532   assert_different_registers(obj, var_size_in_bytes, t1, t2);
3533   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3534   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3535 
3536   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3537     // No allocation in the shared eden.
3538     ba_short(slow_case);
3539   } else {
3540     // get eden boundaries
3541     // note: we need both top & top_addr!
3542     const Register top_addr = t1;
3543     const Register end      = t2;
3544 
3545     CollectedHeap* ch = Universe::heap();
3546     set((intx)ch->top_addr(), top_addr);
3547     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3548     ld_ptr(top_addr, delta, end);
3549     ld_ptr(top_addr, 0, obj);
3550 
3551     // try to allocate
3552     Label retry;
3553     bind(retry);
3554 #ifdef ASSERT
3555     // make sure eden top is properly aligned
3556     {
3557       Label L;
3558       btst(MinObjAlignmentInBytesMask, obj);
3559       br(Assembler::zero, false, Assembler::pt, L);
3560       delayed()->nop();
3561       STOP("eden top is not properly aligned");
3562       bind(L);
3563     }
3564 #endif // ASSERT
3565     const Register free = end;
3566     sub(end, obj, free);                                   // compute amount of free space
3567     if (var_size_in_bytes->is_valid()) {
3568       // size is unknown at compile time
3569       cmp(free, var_size_in_bytes);
3570       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3571       delayed()->add(obj, var_size_in_bytes, end);
3572     } else {
3573       // size is known at compile time
3574       cmp(free, con_size_in_bytes);
3575       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3576       delayed()->add(obj, con_size_in_bytes, end);
3577     }
3578     // Compare obj with the value at top_addr; if still equal, swap the value of
3579     // end with the value at top_addr. If not equal, read the value at top_addr
3580     // into end.
3581     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3582     // if someone beat us on the allocation, try again, otherwise continue
3583     cmp(obj, end);
3584     brx(Assembler::notEqual, false, Assembler::pn, retry);
3585     delayed()->mov(end, obj);                              // nop if successfull since obj == end
3586 
3587 #ifdef ASSERT
3588     // make sure eden top is properly aligned
3589     {
3590       Label L;
3591       const Register top_addr = t1;
3592 
3593       set((intx)ch->top_addr(), top_addr);
3594       ld_ptr(top_addr, 0, top_addr);
3595       btst(MinObjAlignmentInBytesMask, top_addr);
3596       br(Assembler::zero, false, Assembler::pt, L);
3597       delayed()->nop();
3598       STOP("eden top is not properly aligned");
3599       bind(L);
3600     }
3601 #endif // ASSERT
3602   }
3603 }
3604 
3605 
3606 void MacroAssembler::tlab_allocate(
3607   Register obj,                        // result: pointer to object after successful allocation
3608   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3609   int      con_size_in_bytes,          // object size in bytes if   known at compile time
3610   Register t1,                         // temp register
3611   Label&   slow_case                   // continuation point if fast allocation fails
3612 ){
3613   // make sure arguments make sense
3614   assert_different_registers(obj, var_size_in_bytes, t1);
3615   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
3616   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3617 
3618   const Register free  = t1;
3619 
3620   verify_tlab();
3621 
3622   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
3623 
3624   // calculate amount of free space
3625   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
3626   sub(free, obj, free);
3627 
3628   Label done;
3629   if (var_size_in_bytes == noreg) {
3630     cmp(free, con_size_in_bytes);
3631   } else {
3632     cmp(free, var_size_in_bytes);
3633   }
3634   br(Assembler::less, false, Assembler::pn, slow_case);
3635   // calculate the new top pointer
3636   if (var_size_in_bytes == noreg) {
3637     delayed()->add(obj, con_size_in_bytes, free);
3638   } else {
3639     delayed()->add(obj, var_size_in_bytes, free);
3640   }
3641 
3642   bind(done);
3643 
3644 #ifdef ASSERT
3645   // make sure new free pointer is properly aligned
3646   {
3647     Label L;
3648     btst(MinObjAlignmentInBytesMask, free);
3649     br(Assembler::zero, false, Assembler::pt, L);
3650     delayed()->nop();
3651     STOP("updated TLAB free is not properly aligned");
3652     bind(L);
3653   }
3654 #endif // ASSERT
3655 
3656   // update the tlab top pointer
3657   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3658   verify_tlab();
3659 }
3660 
3661 
3662 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
3663   Register top = O0;
3664   Register t1 = G1;
3665   Register t2 = G3;
3666   Register t3 = O1;
3667   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
3668   Label do_refill, discard_tlab;
3669 
3670   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3671     // No allocation in the shared eden.
3672     ba_short(slow_case);
3673   }
3674 
3675   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
3676   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
3677   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
3678 
3679   // calculate amount of free space
3680   sub(t1, top, t1);
3681   srl_ptr(t1, LogHeapWordSize, t1);
3682 
3683   // Retain tlab and allocate object in shared space if
3684   // the amount free in the tlab is too large to discard.
3685   cmp(t1, t2);
3686   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
3687 
3688   // increment waste limit to prevent getting stuck on this slow path
3689   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
3690   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3691   if (TLABStats) {
3692     // increment number of slow_allocations
3693     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
3694     add(t2, 1, t2);
3695     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
3696   }
3697   ba_short(try_eden);
3698 
3699   bind(discard_tlab);
3700   if (TLABStats) {
3701     // increment number of refills
3702     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
3703     add(t2, 1, t2);
3704     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
3705     // accumulate wastage
3706     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
3707     add(t2, t1, t2);
3708     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
3709   }
3710 
3711   // if tlab is currently allocated (top or end != null) then
3712   // fill [top, end + alignment_reserve) with array object
3713   br_null_short(top, Assembler::pn, do_refill);
3714 
3715   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
3716   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
3717   // set klass to intArrayKlass
3718   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
3719   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
3720   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
3721   st(t1, top, arrayOopDesc::length_offset_in_bytes());
3722   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
3723   ld_ptr(t2, 0, t2);
3724   // store klass last.  concurrent gcs assumes klass length is valid if
3725   // klass field is not null.
3726   store_klass(t2, top);
3727   verify_oop(top);
3728 
3729   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
3730   sub(top, t1, t1); // size of tlab's allocated portion
3731   incr_allocated_bytes(t1, t2, t3);
3732 
3733   // refill the tlab with an eden allocation
3734   bind(do_refill);
3735   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
3736   sll_ptr(t1, LogHeapWordSize, t1);
3737   // allocate new tlab, address returned in top
3738   eden_allocate(top, t1, 0, t2, t3, slow_case);
3739 
3740   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
3741   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3742 #ifdef ASSERT
3743   // check that tlab_size (t1) is still valid
3744   {
3745     Label ok;
3746     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
3747     sll_ptr(t2, LogHeapWordSize, t2);
3748     cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
3749     STOP("assert(t1 == tlab_size)");
3750     should_not_reach_here();
3751 
3752     bind(ok);
3753   }
3754 #endif // ASSERT
3755   add(top, t1, top); // t1 is tlab_size
3756   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
3757   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
3758   verify_tlab();
3759   ba_short(retry);
3760 }
3761 
3762 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
3763                                           Register t1, Register t2) {
3764   // Bump total bytes allocated by this thread
3765   assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
3766   assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
3767   // v8 support has gone the way of the dodo
3768   ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
3769   add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
3770   stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
3771 }
3772 
3773 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
3774   switch (cond) {
3775     // Note some conditions are synonyms for others
3776     case Assembler::never:                return Assembler::always;
3777     case Assembler::zero:                 return Assembler::notZero;
3778     case Assembler::lessEqual:            return Assembler::greater;
3779     case Assembler::less:                 return Assembler::greaterEqual;
3780     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
3781     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
3782     case Assembler::negative:             return Assembler::positive;
3783     case Assembler::overflowSet:          return Assembler::overflowClear;
3784     case Assembler::always:               return Assembler::never;
3785     case Assembler::notZero:              return Assembler::zero;
3786     case Assembler::greater:              return Assembler::lessEqual;
3787     case Assembler::greaterEqual:         return Assembler::less;
3788     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
3789     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
3790     case Assembler::positive:             return Assembler::negative;
3791     case Assembler::overflowClear:        return Assembler::overflowSet;
3792   }
3793 
3794   ShouldNotReachHere(); return Assembler::overflowClear;
3795 }
3796 
3797 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
3798                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
3799   Condition negated_cond = negate_condition(cond);
3800   Label L;
3801   brx(negated_cond, false, Assembler::pt, L);
3802   delayed()->nop();
3803   inc_counter(counter_ptr, Rtmp1, Rtmp2);
3804   bind(L);
3805 }
3806 
3807 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
3808   AddressLiteral addrlit(counter_addr);
3809   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
3810   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
3811   ld(addr, Rtmp2);
3812   inc(Rtmp2);
3813   st(Rtmp2, addr);
3814 }
3815 
3816 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
3817   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
3818 }
3819 
3820 SkipIfEqual::SkipIfEqual(
3821     MacroAssembler* masm, Register temp, const bool* flag_addr,
3822     Assembler::Condition condition) {
3823   _masm = masm;
3824   AddressLiteral flag(flag_addr);
3825   _masm->sethi(flag, temp);
3826   _masm->ldub(temp, flag.low10(), temp);
3827   _masm->tst(temp);
3828   _masm->br(condition, false, Assembler::pt, _label);
3829   _masm->delayed()->nop();
3830 }
3831 
3832 SkipIfEqual::~SkipIfEqual() {
3833   _masm->bind(_label);
3834 }
3835 
3836 
3837 // Writes to stack successive pages until offset reached to check for
3838 // stack overflow + shadow pages.  This clobbers tsp and scratch.
3839 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
3840                                      Register Rscratch) {
3841   // Use stack pointer in temp stack pointer
3842   mov(SP, Rtsp);
3843 
3844   // Bang stack for total size given plus stack shadow page size.
3845   // Bang one page at a time because a large size can overflow yellow and
3846   // red zones (the bang will fail but stack overflow handling can't tell that
3847   // it was a stack overflow bang vs a regular segv).
3848   int offset = os::vm_page_size();
3849   Register Roffset = Rscratch;
3850 
3851   Label loop;
3852   bind(loop);
3853   set((-offset)+STACK_BIAS, Rscratch);
3854   st(G0, Rtsp, Rscratch);
3855   set(offset, Roffset);
3856   sub(Rsize, Roffset, Rsize);
3857   cmp(Rsize, G0);
3858   br(Assembler::greater, false, Assembler::pn, loop);
3859   delayed()->sub(Rtsp, Roffset, Rtsp);
3860 
3861   // Bang down shadow pages too.
3862   // The -1 because we already subtracted 1 page.
3863   for (int i = 0; i< StackShadowPages-1; i++) {
3864     set((-i*offset)+STACK_BIAS, Rscratch);
3865     st(G0, Rtsp, Rscratch);
3866   }
3867 }
3868 
3869 ///////////////////////////////////////////////////////////////////////////////////
3870 #ifndef SERIALGC
3871 
3872 static address satb_log_enqueue_with_frame = NULL;
3873 static u_char* satb_log_enqueue_with_frame_end = NULL;
3874 
3875 static address satb_log_enqueue_frameless = NULL;
3876 static u_char* satb_log_enqueue_frameless_end = NULL;
3877 
3878 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
3879 
3880 static void generate_satb_log_enqueue(bool with_frame) {
3881   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
3882   CodeBuffer buf(bb);
3883   MacroAssembler masm(&buf);
3884 
3885 #define __ masm.
3886 
3887   address start = __ pc();
3888   Register pre_val;
3889 
3890   Label refill, restart;
3891   if (with_frame) {
3892     __ save_frame(0);
3893     pre_val = I0;  // Was O0 before the save.
3894   } else {
3895     pre_val = O0;
3896   }
3897 
3898   int satb_q_index_byte_offset =
3899     in_bytes(JavaThread::satb_mark_queue_offset() +
3900              PtrQueue::byte_offset_of_index());
3901 
3902   int satb_q_buf_byte_offset =
3903     in_bytes(JavaThread::satb_mark_queue_offset() +
3904              PtrQueue::byte_offset_of_buf());
3905 
3906   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
3907          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
3908          "check sizes in assembly below");
3909 
3910   __ bind(restart);
3911 
3912   // Load the index into the SATB buffer. PtrQueue::_index is a size_t
3913   // so ld_ptr is appropriate.
3914   __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
3915 
3916   // index == 0?
3917   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
3918 
3919   __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
3920   __ sub(L0, oopSize, L0);
3921 
3922   __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
3923   if (!with_frame) {
3924     // Use return-from-leaf
3925     __ retl();
3926     __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
3927   } else {
3928     // Not delayed.
3929     __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
3930   }
3931   if (with_frame) {
3932     __ ret();
3933     __ delayed()->restore();
3934   }
3935   __ bind(refill);
3936 
3937   address handle_zero =
3938     CAST_FROM_FN_PTR(address,
3939                      &SATBMarkQueueSet::handle_zero_index_for_thread);
3940   // This should be rare enough that we can afford to save all the
3941   // scratch registers that the calling context might be using.
3942   __ mov(G1_scratch, L0);
3943   __ mov(G3_scratch, L1);
3944   __ mov(G4, L2);
3945   // We need the value of O0 above (for the write into the buffer), so we
3946   // save and restore it.
3947   __ mov(O0, L3);
3948   // Since the call will overwrite O7, we save and restore that, as well.
3949   __ mov(O7, L4);
3950   __ call_VM_leaf(L5, handle_zero, G2_thread);
3951   __ mov(L0, G1_scratch);
3952   __ mov(L1, G3_scratch);
3953   __ mov(L2, G4);
3954   __ mov(L3, O0);
3955   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
3956   __ delayed()->mov(L4, O7);
3957 
3958   if (with_frame) {
3959     satb_log_enqueue_with_frame = start;
3960     satb_log_enqueue_with_frame_end = __ pc();
3961   } else {
3962     satb_log_enqueue_frameless = start;
3963     satb_log_enqueue_frameless_end = __ pc();
3964   }
3965 
3966 #undef __
3967 }
3968 
3969 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
3970   if (with_frame) {
3971     if (satb_log_enqueue_with_frame == 0) {
3972       generate_satb_log_enqueue(with_frame);
3973       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
3974       if (G1SATBPrintStubs) {
3975         tty->print_cr("Generated with-frame satb enqueue:");
3976         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
3977                              satb_log_enqueue_with_frame_end,
3978                              tty);
3979       }
3980     }
3981   } else {
3982     if (satb_log_enqueue_frameless == 0) {
3983       generate_satb_log_enqueue(with_frame);
3984       assert(satb_log_enqueue_frameless != 0, "postcondition.");
3985       if (G1SATBPrintStubs) {
3986         tty->print_cr("Generated frameless satb enqueue:");
3987         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
3988                              satb_log_enqueue_frameless_end,
3989                              tty);
3990       }
3991     }
3992   }
3993 }
3994 
3995 void MacroAssembler::g1_write_barrier_pre(Register obj,
3996                                           Register index,
3997                                           int offset,
3998                                           Register pre_val,
3999                                           Register tmp,
4000                                           bool preserve_o_regs) {
4001   Label filtered;
4002 
4003   if (obj == noreg) {
4004     // We are not loading the previous value so make
4005     // sure that we don't trash the value in pre_val
4006     // with the code below.
4007     assert_different_registers(pre_val, tmp);
4008   } else {
4009     // We will be loading the previous value
4010     // in this code so...
4011     assert(offset == 0 || index == noreg, "choose one");
4012     assert(pre_val == noreg, "check this code");
4013   }
4014 
4015   // Is marking active?
4016   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4017     ld(G2,
4018        in_bytes(JavaThread::satb_mark_queue_offset() +
4019                 PtrQueue::byte_offset_of_active()),
4020        tmp);
4021   } else {
4022     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
4023               "Assumption");
4024     ldsb(G2,
4025          in_bytes(JavaThread::satb_mark_queue_offset() +
4026                   PtrQueue::byte_offset_of_active()),
4027          tmp);
4028   }
4029 
4030   // Is marking active?
4031   cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
4032 
4033   // Do we need to load the previous value?
4034   if (obj != noreg) {
4035     // Load the previous value...
4036     if (index == noreg) {
4037       if (Assembler::is_simm13(offset)) {
4038         load_heap_oop(obj, offset, tmp);
4039       } else {
4040         set(offset, tmp);
4041         load_heap_oop(obj, tmp, tmp);
4042       }
4043     } else {
4044       load_heap_oop(obj, index, tmp);
4045     }
4046     // Previous value has been loaded into tmp
4047     pre_val = tmp;
4048   }
4049 
4050   assert(pre_val != noreg, "must have a real register");
4051 
4052   // Is the previous value null?
4053   cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
4054 
4055   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
4056   // case, pre_val will be a scratch G-reg, but there are some cases in
4057   // which it's an O-reg.  In the first case, do a normal call.  In the
4058   // latter, do a save here and call the frameless version.
4059 
4060   guarantee(pre_val->is_global() || pre_val->is_out(),
4061             "Or we need to think harder.");
4062 
4063   if (pre_val->is_global() && !preserve_o_regs) {
4064     generate_satb_log_enqueue_if_necessary(true); // with frame
4065 
4066     call(satb_log_enqueue_with_frame);
4067     delayed()->mov(pre_val, O0);
4068   } else {
4069     generate_satb_log_enqueue_if_necessary(false); // frameless
4070 
4071     save_frame(0);
4072     call(satb_log_enqueue_frameless);
4073     delayed()->mov(pre_val->after_save(), O0);
4074     restore();
4075   }
4076 
4077   bind(filtered);
4078 }
4079 
4080 static address dirty_card_log_enqueue = 0;
4081 static u_char* dirty_card_log_enqueue_end = 0;
4082 
4083 // This gets to assume that o0 contains the object address.
4084 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
4085   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
4086   CodeBuffer buf(bb);
4087   MacroAssembler masm(&buf);
4088 #define __ masm.
4089   address start = __ pc();
4090 
4091   Label not_already_dirty, restart, refill;
4092 
4093 #ifdef _LP64
4094   __ srlx(O0, CardTableModRefBS::card_shift, O0);
4095 #else
4096   __ srl(O0, CardTableModRefBS::card_shift, O0);
4097 #endif
4098   AddressLiteral addrlit(byte_map_base);
4099   __ set(addrlit, O1); // O1 := <card table base>
4100   __ ldub(O0, O1, O2); // O2 := [O0 + O1]
4101 
4102   assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
4103   __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
4104 
4105   // We didn't take the branch, so we're already dirty: return.
4106   // Use return-from-leaf
4107   __ retl();
4108   __ delayed()->nop();
4109 
4110   // Not dirty.
4111   __ bind(not_already_dirty);
4112 
4113   // Get O0 + O1 into a reg by itself
4114   __ add(O0, O1, O3);
4115 
4116   // First, dirty it.
4117   __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
4118 
4119   int dirty_card_q_index_byte_offset =
4120     in_bytes(JavaThread::dirty_card_queue_offset() +
4121              PtrQueue::byte_offset_of_index());
4122   int dirty_card_q_buf_byte_offset =
4123     in_bytes(JavaThread::dirty_card_queue_offset() +
4124              PtrQueue::byte_offset_of_buf());
4125   __ bind(restart);
4126 
4127   // Load the index into the update buffer. PtrQueue::_index is
4128   // a size_t so ld_ptr is appropriate here.
4129   __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
4130 
4131   // index == 0?
4132   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
4133 
4134   __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
4135   __ sub(L0, oopSize, L0);
4136 
4137   __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
4138   // Use return-from-leaf
4139   __ retl();
4140   __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
4141 
4142   __ bind(refill);
4143   address handle_zero =
4144     CAST_FROM_FN_PTR(address,
4145                      &DirtyCardQueueSet::handle_zero_index_for_thread);
4146   // This should be rare enough that we can afford to save all the
4147   // scratch registers that the calling context might be using.
4148   __ mov(G1_scratch, L3);
4149   __ mov(G3_scratch, L5);
4150   // We need the value of O3 above (for the write into the buffer), so we
4151   // save and restore it.
4152   __ mov(O3, L6);
4153   // Since the call will overwrite O7, we save and restore that, as well.
4154   __ mov(O7, L4);
4155 
4156   __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
4157   __ mov(L3, G1_scratch);
4158   __ mov(L5, G3_scratch);
4159   __ mov(L6, O3);
4160   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
4161   __ delayed()->mov(L4, O7);
4162 
4163   dirty_card_log_enqueue = start;
4164   dirty_card_log_enqueue_end = __ pc();
4165   // XXX Should have a guarantee here about not going off the end!
4166   // Does it already do so?  Do an experiment...
4167 
4168 #undef __
4169 
4170 }
4171 
4172 static inline void
4173 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
4174   if (dirty_card_log_enqueue == 0) {
4175     generate_dirty_card_log_enqueue(byte_map_base);
4176     assert(dirty_card_log_enqueue != 0, "postcondition.");
4177     if (G1SATBPrintStubs) {
4178       tty->print_cr("Generated dirty_card enqueue:");
4179       Disassembler::decode((u_char*)dirty_card_log_enqueue,
4180                            dirty_card_log_enqueue_end,
4181                            tty);
4182     }
4183   }
4184 }
4185 
4186 
4187 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4188 
4189   Label filtered;
4190   MacroAssembler* post_filter_masm = this;
4191 
4192   if (new_val == G0) return;
4193 
4194   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
4195   assert(bs->kind() == BarrierSet::G1SATBCT ||
4196          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
4197 
4198   if (G1RSBarrierRegionFilter) {
4199     xor3(store_addr, new_val, tmp);
4200 #ifdef _LP64
4201     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4202 #else
4203     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4204 #endif
4205 
4206     // XXX Should I predict this taken or not?  Does it matter?
4207     cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
4208   }
4209 
4210   // If the "store_addr" register is an "in" or "local" register, move it to
4211   // a scratch reg so we can pass it as an argument.
4212   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
4213   // Pick a scratch register different from "tmp".
4214   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
4215   // Make sure we use up the delay slot!
4216   if (use_scr) {
4217     post_filter_masm->mov(store_addr, scr);
4218   } else {
4219     post_filter_masm->nop();
4220   }
4221   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
4222   save_frame(0);
4223   call(dirty_card_log_enqueue);
4224   if (use_scr) {
4225     delayed()->mov(scr, O0);
4226   } else {
4227     delayed()->mov(store_addr->after_save(), O0);
4228   }
4229   restore();
4230 
4231   bind(filtered);
4232 }
4233 
4234 #endif  // SERIALGC
4235 ///////////////////////////////////////////////////////////////////////////////////
4236 
4237 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4238   // If we're writing constant NULL, we can skip the write barrier.
4239   if (new_val == G0) return;
4240   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
4241   assert(bs->kind() == BarrierSet::CardTableModRef ||
4242          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
4243   card_table_write(bs->byte_map_base, tmp, store_addr);
4244 }
4245 
4246 void MacroAssembler::load_klass(Register src_oop, Register klass) {
4247   // The number of bytes in this code is used by
4248   // MachCallDynamicJavaNode::ret_addr_offset()
4249   // if this changes, change that.
4250   if (UseCompressedKlassPointers) {
4251     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4252     decode_klass_not_null(klass);
4253   } else {
4254     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4255   }
4256 }
4257 
4258 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
4259   if (UseCompressedKlassPointers) {
4260     assert(dst_oop != klass, "not enough registers");
4261     encode_klass_not_null(klass);
4262     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4263   } else {
4264     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4265   }
4266 }
4267 
4268 void MacroAssembler::store_klass_gap(Register s, Register d) {
4269   if (UseCompressedKlassPointers) {
4270     assert(s != d, "not enough registers");
4271     st(s, d, oopDesc::klass_gap_offset_in_bytes());
4272   }
4273 }
4274 
4275 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
4276   if (UseCompressedOops) {
4277     lduw(s, d);
4278     decode_heap_oop(d);
4279   } else {
4280     ld_ptr(s, d);
4281   }
4282 }
4283 
4284 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
4285    if (UseCompressedOops) {
4286     lduw(s1, s2, d);
4287     decode_heap_oop(d, d);
4288   } else {
4289     ld_ptr(s1, s2, d);
4290   }
4291 }
4292 
4293 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
4294    if (UseCompressedOops) {
4295     lduw(s1, simm13a, d);
4296     decode_heap_oop(d, d);
4297   } else {
4298     ld_ptr(s1, simm13a, d);
4299   }
4300 }
4301 
4302 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
4303   if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
4304   else                   load_heap_oop(s1, s2.as_register(), d);
4305 }
4306 
4307 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
4308   if (UseCompressedOops) {
4309     assert(s1 != d && s2 != d, "not enough registers");
4310     encode_heap_oop(d);
4311     st(d, s1, s2);
4312   } else {
4313     st_ptr(d, s1, s2);
4314   }
4315 }
4316 
4317 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
4318   if (UseCompressedOops) {
4319     assert(s1 != d, "not enough registers");
4320     encode_heap_oop(d);
4321     st(d, s1, simm13a);
4322   } else {
4323     st_ptr(d, s1, simm13a);
4324   }
4325 }
4326 
4327 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
4328   if (UseCompressedOops) {
4329     assert(a.base() != d, "not enough registers");
4330     encode_heap_oop(d);
4331     st(d, a, offset);
4332   } else {
4333     st_ptr(d, a, offset);
4334   }
4335 }
4336 
4337 
4338 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
4339   assert (UseCompressedOops, "must be compressed");
4340   assert (Universe::heap() != NULL, "java heap should be initialized");
4341   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4342   verify_oop(src);
4343   if (Universe::narrow_oop_base() == NULL) {
4344     srlx(src, LogMinObjAlignmentInBytes, dst);
4345     return;
4346   }
4347   Label done;
4348   if (src == dst) {
4349     // optimize for frequent case src == dst
4350     bpr(rc_nz, true, Assembler::pt, src, done);
4351     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
4352     bind(done);
4353     srlx(src, LogMinObjAlignmentInBytes, dst);
4354   } else {
4355     bpr(rc_z, false, Assembler::pn, src, done);
4356     delayed() -> mov(G0, dst);
4357     // could be moved before branch, and annulate delay,
4358     // but may add some unneeded work decoding null
4359     sub(src, G6_heapbase, dst);
4360     srlx(dst, LogMinObjAlignmentInBytes, dst);
4361     bind(done);
4362   }
4363 }
4364 
4365 
4366 void MacroAssembler::encode_heap_oop_not_null(Register r) {
4367   assert (UseCompressedOops, "must be compressed");
4368   assert (Universe::heap() != NULL, "java heap should be initialized");
4369   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4370   verify_oop(r);
4371   if (Universe::narrow_oop_base() != NULL)
4372     sub(r, G6_heapbase, r);
4373   srlx(r, LogMinObjAlignmentInBytes, r);
4374 }
4375 
4376 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
4377   assert (UseCompressedOops, "must be compressed");
4378   assert (Universe::heap() != NULL, "java heap should be initialized");
4379   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4380   verify_oop(src);
4381   if (Universe::narrow_oop_base() == NULL) {
4382     srlx(src, LogMinObjAlignmentInBytes, dst);
4383   } else {
4384     sub(src, G6_heapbase, dst);
4385     srlx(dst, LogMinObjAlignmentInBytes, dst);
4386   }
4387 }
4388 
4389 // Same algorithm as oops.inline.hpp decode_heap_oop.
4390 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
4391   assert (UseCompressedOops, "must be compressed");
4392   assert (Universe::heap() != NULL, "java heap should be initialized");
4393   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4394   sllx(src, LogMinObjAlignmentInBytes, dst);
4395   if (Universe::narrow_oop_base() != NULL) {
4396     Label done;
4397     bpr(rc_nz, true, Assembler::pt, dst, done);
4398     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
4399     bind(done);
4400   }
4401   verify_oop(dst);
4402 }
4403 
4404 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
4405   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4406   // pd_code_size_limit.
4407   // Also do not verify_oop as this is called by verify_oop.
4408   assert (UseCompressedOops, "must be compressed");
4409   assert (Universe::heap() != NULL, "java heap should be initialized");
4410   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4411   sllx(r, LogMinObjAlignmentInBytes, r);
4412   if (Universe::narrow_oop_base() != NULL)
4413     add(r, G6_heapbase, r);
4414 }
4415 
4416 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
4417   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4418   // pd_code_size_limit.
4419   // Also do not verify_oop as this is called by verify_oop.
4420   assert (UseCompressedOops, "must be compressed");
4421   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4422   sllx(src, LogMinObjAlignmentInBytes, dst);
4423   if (Universe::narrow_oop_base() != NULL)
4424     add(dst, G6_heapbase, dst);
4425 }
4426 
4427 void MacroAssembler::encode_klass_not_null(Register r) {
4428   assert(Metaspace::is_initialized(), "metaspace should be initialized");
4429   assert (UseCompressedKlassPointers, "must be compressed");
4430   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4431   if (Universe::narrow_klass_base() != NULL)
4432     sub(r, G6_heapbase, r);
4433   srlx(r, LogKlassAlignmentInBytes, r);
4434 }
4435 
4436 void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
4437   assert(Metaspace::is_initialized(), "metaspace should be initialized");
4438   assert (UseCompressedKlassPointers, "must be compressed");
4439   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4440   if (Universe::narrow_klass_base() == NULL) {
4441     srlx(src, LogKlassAlignmentInBytes, dst);
4442   } else {
4443     sub(src, G6_heapbase, dst);
4444     srlx(dst, LogKlassAlignmentInBytes, dst);
4445   }
4446 }
4447 
4448 void  MacroAssembler::decode_klass_not_null(Register r) {
4449   assert(Metaspace::is_initialized(), "metaspace should be initialized");
4450   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4451   // pd_code_size_limit.
4452   assert (UseCompressedKlassPointers, "must be compressed");
4453   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4454   sllx(r, LogKlassAlignmentInBytes, r);
4455   if (Universe::narrow_klass_base() != NULL)
4456     add(r, G6_heapbase, r);
4457 }
4458 
4459 void  MacroAssembler::decode_klass_not_null(Register src, Register dst) {
4460   assert(Metaspace::is_initialized(), "metaspace should be initialized");
4461   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4462   // pd_code_size_limit.
4463   assert (UseCompressedKlassPointers, "must be compressed");
4464   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4465   sllx(src, LogKlassAlignmentInBytes, dst);
4466   if (Universe::narrow_klass_base() != NULL)
4467     add(dst, G6_heapbase, dst);
4468 }
4469 
4470 void MacroAssembler::reinit_heapbase() {
4471   if (UseCompressedOops || UseCompressedKlassPointers) {
4472     AddressLiteral base(Universe::narrow_ptrs_base_addr());
4473     load_ptr_contents(base, G6_heapbase);
4474   }
4475 }
4476 
4477 // Compare char[] arrays aligned to 4 bytes.
4478 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
4479                                         Register limit, Register result,
4480                                         Register chr1, Register chr2, Label& Ldone) {
4481   Label Lvector, Lloop;
4482   assert(chr1 == result, "should be the same");
4483 
4484   // Note: limit contains number of bytes (2*char_elements) != 0.
4485   andcc(limit, 0x2, chr1); // trailing character ?
4486   br(Assembler::zero, false, Assembler::pt, Lvector);
4487   delayed()->nop();
4488 
4489   // compare the trailing char
4490   sub(limit, sizeof(jchar), limit);
4491   lduh(ary1, limit, chr1);
4492   lduh(ary2, limit, chr2);
4493   cmp(chr1, chr2);
4494   br(Assembler::notEqual, true, Assembler::pt, Ldone);
4495   delayed()->mov(G0, result);     // not equal
4496 
4497   // only one char ?
4498   cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
4499   delayed()->add(G0, 1, result); // zero-length arrays are equal
4500 
4501   // word by word compare, dont't need alignment check
4502   bind(Lvector);
4503   // Shift ary1 and ary2 to the end of the arrays, negate limit
4504   add(ary1, limit, ary1);
4505   add(ary2, limit, ary2);
4506   neg(limit, limit);
4507 
4508   lduw(ary1, limit, chr1);
4509   bind(Lloop);
4510   lduw(ary2, limit, chr2);
4511   cmp(chr1, chr2);
4512   br(Assembler::notEqual, true, Assembler::pt, Ldone);
4513   delayed()->mov(G0, result);     // not equal
4514   inccc(limit, 2*sizeof(jchar));
4515   // annul LDUW if branch is not taken to prevent access past end of array
4516   br(Assembler::notZero, true, Assembler::pt, Lloop);
4517   delayed()->lduw(ary1, limit, chr1); // hoisted
4518 
4519   // Caller should set it:
4520   // add(G0, 1, result); // equals
4521 }
4522 
4523 // Use BIS for zeroing (count is in bytes).
4524 void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
4525   assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
4526   Register end = count;
4527   int cache_line_size = VM_Version::prefetch_data_size();
4528   // Minimum count when BIS zeroing can be used since
4529   // it needs membar which is expensive.
4530   int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
4531 
4532   Label small_loop;
4533   // Check if count is negative (dead code) or zero.
4534   // Note, count uses 64bit in 64 bit VM.
4535   cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
4536 
4537   // Use BIS zeroing only for big arrays since it requires membar.
4538   if (Assembler::is_simm13(block_zero_size)) { // < 4096
4539     cmp(count, block_zero_size);
4540   } else {
4541     set(block_zero_size, temp);
4542     cmp(count, temp);
4543   }
4544   br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
4545   delayed()->add(to, count, end);
4546 
4547   // Note: size is >= three (32 bytes) cache lines.
4548 
4549   // Clean the beginning of space up to next cache line.
4550   for (int offs = 0; offs < cache_line_size; offs += 8) {
4551     stx(G0, to, offs);
4552   }
4553 
4554   // align to next cache line
4555   add(to, cache_line_size, to);
4556   and3(to, -cache_line_size, to);
4557 
4558   // Note: size left >= two (32 bytes) cache lines.
4559 
4560   // BIS should not be used to zero tail (64 bytes)
4561   // to avoid zeroing a header of the following object.
4562   sub(end, (cache_line_size*2)-8, end);
4563 
4564   Label bis_loop;
4565   bind(bis_loop);
4566   stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
4567   add(to, cache_line_size, to);
4568   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
4569 
4570   // BIS needs membar.
4571   membar(Assembler::StoreLoad);
4572 
4573   add(end, (cache_line_size*2)-8, end); // restore end
4574   cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
4575 
4576   // Clean the tail.
4577   bind(small_loop);
4578   stx(G0, to, 0);
4579   add(to, 8, to);
4580   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
4581   nop(); // Separate short branches
4582 }