1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterGenerator.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/synchronizer.hpp"
  44 #include "runtime/timer.hpp"
  45 #include "runtime/vframeArray.hpp"
  46 #include "utilities/debug.hpp"
  47 
  48 #ifndef CC_INTERP
  49 #ifndef FAST_DISPATCH
  50 #define FAST_DISPATCH 1
  51 #endif
  52 #undef FAST_DISPATCH
  53 
  54 
  55 // Generation of Interpreter
  56 //
  57 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
  58 
  59 
  60 #define __ _masm->
  61 
  62 
  63 //----------------------------------------------------------------------------------------------------
  64 
  65 
  66 void InterpreterGenerator::save_native_result(void) {
  67   // result potentially in O0/O1: save it across calls
  68   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  69 
  70   // result potentially in F0/F1: save it across calls
  71   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  72 
  73   // save and restore any potential method result value around the unlocking operation
  74   __ stf(FloatRegisterImpl::D, F0, d_tmp);
  75 #ifdef _LP64
  76   __ stx(O0, l_tmp);
  77 #else
  78   __ std(O0, l_tmp);
  79 #endif
  80 }
  81 
  82 void InterpreterGenerator::restore_native_result(void) {
  83   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  84   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  85 
  86   // Restore any method result value
  87   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
  88 #ifdef _LP64
  89   __ ldx(l_tmp, O0);
  90 #else
  91   __ ldd(l_tmp, O0);
  92 #endif
  93 }
  94 
  95 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
  96   assert(!pass_oop || message == NULL, "either oop or message but not both");
  97   address entry = __ pc();
  98   // expression stack must be empty before entering the VM if an exception happened
  99   __ empty_expression_stack();
 100   // load exception object
 101   __ set((intptr_t)name, G3_scratch);
 102   if (pass_oop) {
 103     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
 104   } else {
 105     __ set((intptr_t)message, G4_scratch);
 106     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
 107   }
 108   // throw exception
 109   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
 110   AddressLiteral thrower(Interpreter::throw_exception_entry());
 111   __ jump_to(thrower, G3_scratch);
 112   __ delayed()->nop();
 113   return entry;
 114 }
 115 
 116 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 117   address entry = __ pc();
 118   // expression stack must be empty before entering the VM if an exception
 119   // happened
 120   __ empty_expression_stack();
 121   // load exception object
 122   __ call_VM(Oexception,
 123              CAST_FROM_FN_PTR(address,
 124                               InterpreterRuntime::throw_ClassCastException),
 125              Otos_i);
 126   __ should_not_reach_here();
 127   return entry;
 128 }
 129 
 130 
 131 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 132   address entry = __ pc();
 133   // expression stack must be empty before entering the VM if an exception happened
 134   __ empty_expression_stack();
 135   // convention: expect aberrant index in register G3_scratch, then shuffle the
 136   // index to G4_scratch for the VM call
 137   __ mov(G3_scratch, G4_scratch);
 138   __ set((intptr_t)name, G3_scratch);
 139   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
 140   __ should_not_reach_here();
 141   return entry;
 142 }
 143 
 144 
 145 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 146   address entry = __ pc();
 147   // expression stack must be empty before entering the VM if an exception happened
 148   __ empty_expression_stack();
 149   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 150   __ should_not_reach_here();
 151   return entry;
 152 }
 153 
 154 
 155 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
 156   TosState incoming_state = state;
 157 
 158   Label cont;
 159   address compiled_entry = __ pc();
 160 
 161   address entry = __ pc();
 162 #if !defined(_LP64) && defined(COMPILER2)
 163   // All return values are where we want them, except for Longs.  C2 returns
 164   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 165   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 166   // build even if we are returning from interpreted we just do a little
 167   // stupid shuffing.
 168   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 169   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 170   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 171 
 172   if (incoming_state == ltos) {
 173     __ srl (G1,  0, O1);
 174     __ srlx(G1, 32, O0);
 175   }
 176 #endif // !_LP64 && COMPILER2
 177 
 178   __ bind(cont);
 179 
 180   // The callee returns with the stack possibly adjusted by adapter transition
 181   // We remove that possible adjustment here.
 182   // All interpreter local registers are untouched. Any result is passed back
 183   // in the O0/O1 or float registers. Before continuing, the arguments must be
 184   // popped from the java expression stack; i.e., Lesp must be adjusted.
 185 
 186   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
 187 
 188   Label L_got_cache, L_giant_index;
 189   const Register cache = G3_scratch;
 190   const Register size  = G1_scratch;
 191   if (EnableInvokeDynamic) {
 192     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode.
 193     __ cmp_and_br_short(G1_scratch, Bytecodes::_invokedynamic, Assembler::equal, Assembler::pn, L_giant_index);
 194   }
 195   __ get_cache_and_index_at_bcp(cache, G1_scratch, 1);
 196   __ bind(L_got_cache);
 197   __ ld_ptr(cache, ConstantPoolCache::base_offset() +
 198                    ConstantPoolCacheEntry::flags_offset(), size);
 199   __ and3(size, 0xFF, size);                   // argument size in words
 200   __ sll(size, Interpreter::logStackElementSize, size); // each argument size in bytes
 201   __ add(Lesp, size, Lesp);                    // pop arguments
 202   __ dispatch_next(state, step);
 203 
 204   // out of the main line of code...
 205   if (EnableInvokeDynamic) {
 206     __ bind(L_giant_index);
 207     __ get_cache_and_index_at_bcp(cache, G1_scratch, 1, sizeof(u4));
 208     __ ba_short(L_got_cache);
 209   }
 210 
 211   return entry;
 212 }
 213 
 214 
 215 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 216   address entry = __ pc();
 217   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
 218   { Label L;
 219     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 220     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
 221     __ br_null_short(Gtemp, Assembler::pt, L);
 222     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 223     __ should_not_reach_here();
 224     __ bind(L);
 225   }
 226   __ dispatch_next(state, step);
 227   return entry;
 228 }
 229 
 230 // A result handler converts/unboxes a native call result into
 231 // a java interpreter/compiler result. The current frame is an
 232 // interpreter frame. The activation frame unwind code must be
 233 // consistent with that of TemplateTable::_return(...). In the
 234 // case of native methods, the caller's SP was not modified.
 235 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 236   address entry = __ pc();
 237   Register Itos_i  = Otos_i ->after_save();
 238   Register Itos_l  = Otos_l ->after_save();
 239   Register Itos_l1 = Otos_l1->after_save();
 240   Register Itos_l2 = Otos_l2->after_save();
 241   switch (type) {
 242     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 243     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 244     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 245     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 246     case T_LONG   :
 247 #ifndef _LP64
 248                     __ mov(O1, Itos_l2);  // move other half of long
 249 #endif              // ifdef or no ifdef, fall through to the T_INT case
 250     case T_INT    : __ mov(O0, Itos_i);                         break;
 251     case T_VOID   : /* nothing to do */                         break;
 252     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 253     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 254     case T_OBJECT :
 255       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
 256       __ verify_oop(Itos_i);
 257       break;
 258     default       : ShouldNotReachHere();
 259   }
 260   __ ret();                           // return from interpreter activation
 261   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 262   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
 263   return entry;
 264 }
 265 
 266 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 267   address entry = __ pc();
 268   __ push(state);
 269   __ call_VM(noreg, runtime_entry);
 270   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
 271   return entry;
 272 }
 273 
 274 
 275 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 276   address entry = __ pc();
 277   __ dispatch_next(state);
 278   return entry;
 279 }
 280 
 281 //
 282 // Helpers for commoning out cases in the various type of method entries.
 283 //
 284 
 285 // increment invocation count & check for overflow
 286 //
 287 // Note: checking for negative value instead of overflow
 288 //       so we have a 'sticky' overflow test
 289 //
 290 // Lmethod: method
 291 // ??: invocation counter
 292 //
 293 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 294   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
 295   if (TieredCompilation) {
 296     const int increment = InvocationCounter::count_increment;
 297     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
 298     Label no_mdo, done;
 299     if (ProfileInterpreter) {
 300       // If no method data exists, go to profile_continue.
 301       __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
 302       __ br_null_short(G4_scratch, Assembler::pn, no_mdo);
 303       // Increment counter
 304       Address mdo_invocation_counter(G4_scratch,
 305                                      in_bytes(MethodData::invocation_counter_offset()) +
 306                                      in_bytes(InvocationCounter::counter_offset()));
 307       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 308                                  G3_scratch, Lscratch,
 309                                  Assembler::zero, overflow);
 310       __ ba_short(done);
 311     }
 312 
 313     // Increment counter in Method*
 314     __ bind(no_mdo);
 315     Address invocation_counter(Lmethod,
 316                                in_bytes(Method::invocation_counter_offset()) +
 317                                in_bytes(InvocationCounter::counter_offset()));
 318     __ increment_mask_and_jump(invocation_counter, increment, mask,
 319                                G3_scratch, Lscratch,
 320                                Assembler::zero, overflow);
 321     __ bind(done);
 322   } else {
 323     // Update standard invocation counters
 324     __ increment_invocation_counter(O0, G3_scratch);
 325     if (ProfileInterpreter) {  // %%% Merge this into MethodData*
 326       Address interpreter_invocation_counter(Lmethod,in_bytes(Method::interpreter_invocation_counter_offset()));
 327       __ ld(interpreter_invocation_counter, G3_scratch);
 328       __ inc(G3_scratch);
 329       __ st(G3_scratch, interpreter_invocation_counter);
 330     }
 331 
 332     if (ProfileInterpreter && profile_method != NULL) {
 333       // Test to see if we should create a method data oop
 334       AddressLiteral profile_limit((address)&InvocationCounter::InterpreterProfileLimit);
 335       __ load_contents(profile_limit, G3_scratch);
 336       __ cmp_and_br_short(O0, G3_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue);
 337 
 338       // if no method data exists, go to profile_method
 339       __ test_method_data_pointer(*profile_method);
 340     }
 341 
 342     AddressLiteral invocation_limit((address)&InvocationCounter::InterpreterInvocationLimit);
 343     __ load_contents(invocation_limit, G3_scratch);
 344     __ cmp(O0, G3_scratch);
 345     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
 346     __ delayed()->nop();
 347   }
 348 
 349 }
 350 
 351 // Allocate monitor and lock method (asm interpreter)
 352 // ebx - Method*
 353 //
 354 void InterpreterGenerator::lock_method(void) {
 355   __ ld(Lmethod, in_bytes(Method::access_flags_offset()), O0);  // Load access flags.
 356 
 357 #ifdef ASSERT
 358  { Label ok;
 359    __ btst(JVM_ACC_SYNCHRONIZED, O0);
 360    __ br( Assembler::notZero, false, Assembler::pt, ok);
 361    __ delayed()->nop();
 362    __ stop("method doesn't need synchronization");
 363    __ bind(ok);
 364   }
 365 #endif // ASSERT
 366 
 367   // get synchronization object to O0
 368   { Label done;
 369     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 370     __ btst(JVM_ACC_STATIC, O0);
 371     __ br( Assembler::zero, true, Assembler::pt, done);
 372     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
 373 
 374     __ ld_ptr( Lmethod, in_bytes(Method::const_offset()), O0);
 375     __ ld_ptr( O0, in_bytes(ConstMethod::constants_offset()), O0);
 376     __ ld_ptr( O0, ConstantPool::pool_holder_offset_in_bytes(), O0);
 377 
 378     // lock the mirror, not the Klass*
 379     __ ld_ptr( O0, mirror_offset, O0);
 380 
 381 #ifdef ASSERT
 382     __ tst(O0);
 383     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
 384 #endif // ASSERT
 385 
 386     __ bind(done);
 387   }
 388 
 389   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
 390   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
 391   // __ untested("lock_object from method entry");
 392   __ lock_object(Lmonitors, O0);
 393 }
 394 
 395 
 396 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
 397                                                          Register Rscratch,
 398                                                          Register Rscratch2) {
 399   const int page_size = os::vm_page_size();
 400   Label after_frame_check;
 401 
 402   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
 403 
 404   __ set(page_size, Rscratch);
 405   __ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check);
 406 
 407   // get the stack base, and in debug, verify it is non-zero
 408   __ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch );
 409 #ifdef ASSERT
 410   Label base_not_zero;
 411   __ br_notnull_short(Rscratch, Assembler::pn, base_not_zero);
 412   __ stop("stack base is zero in generate_stack_overflow_check");
 413   __ bind(base_not_zero);
 414 #endif
 415 
 416   // get the stack size, and in debug, verify it is non-zero
 417   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
 418   __ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 );
 419 #ifdef ASSERT
 420   Label size_not_zero;
 421   __ br_notnull_short(Rscratch2, Assembler::pn, size_not_zero);
 422   __ stop("stack size is zero in generate_stack_overflow_check");
 423   __ bind(size_not_zero);
 424 #endif
 425 
 426   // compute the beginning of the protected zone minus the requested frame size
 427   __ sub( Rscratch, Rscratch2,   Rscratch );
 428   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
 429   __ add( Rscratch, Rscratch2,   Rscratch );
 430 
 431   // Add in the size of the frame (which is the same as subtracting it from the
 432   // SP, which would take another register
 433   __ add( Rscratch, Rframe_size, Rscratch );
 434 
 435   // the frame is greater than one page in size, so check against
 436   // the bottom of the stack
 437   __ cmp_and_brx_short(SP, Rscratch, Assembler::greaterUnsigned, Assembler::pt, after_frame_check);
 438 
 439   // the stack will overflow, throw an exception
 440 
 441   // Note that SP is restored to sender's sp (in the delay slot). This
 442   // is necessary if the sender's frame is an extended compiled frame
 443   // (see gen_c2i_adapter()) and safer anyway in case of JSR292
 444   // adaptations.
 445 
 446   // Note also that the restored frame is not necessarily interpreted.
 447   // Use the shared runtime version of the StackOverflowError.
 448   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 449   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
 450   __ jump_to(stub, Rscratch);
 451   __ delayed()->mov(O5_savedSP, SP);
 452 
 453   // if you get to here, then there is enough stack space
 454   __ bind( after_frame_check );
 455 }
 456 
 457 
 458 //
 459 // Generate a fixed interpreter frame. This is identical setup for interpreted
 460 // methods and for native methods hence the shared code.
 461 
 462 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 463   //
 464   //
 465   // The entry code sets up a new interpreter frame in 4 steps:
 466   //
 467   // 1) Increase caller's SP by for the extra local space needed:
 468   //    (check for overflow)
 469   //    Efficient implementation of xload/xstore bytecodes requires
 470   //    that arguments and non-argument locals are in a contigously
 471   //    addressable memory block => non-argument locals must be
 472   //    allocated in the caller's frame.
 473   //
 474   // 2) Create a new stack frame and register window:
 475   //    The new stack frame must provide space for the standard
 476   //    register save area, the maximum java expression stack size,
 477   //    the monitor slots (0 slots initially), and some frame local
 478   //    scratch locations.
 479   //
 480   // 3) The following interpreter activation registers must be setup:
 481   //    Lesp       : expression stack pointer
 482   //    Lbcp       : bytecode pointer
 483   //    Lmethod    : method
 484   //    Llocals    : locals pointer
 485   //    Lmonitors  : monitor pointer
 486   //    LcpoolCache: constant pool cache
 487   //
 488   // 4) Initialize the non-argument locals if necessary:
 489   //    Non-argument locals may need to be initialized to NULL
 490   //    for GC to work. If the oop-map information is accurate
 491   //    (in the absence of the JSR problem), no initialization
 492   //    is necessary.
 493   //
 494   // (gri - 2/25/2000)
 495 
 496 
 497   const Address size_of_parameters(G5_method, Method::size_of_parameters_offset());
 498   const Address size_of_locals    (G5_method, Method::size_of_locals_offset());
 499   const Address constMethod       (G5_method, Method::const_offset());
 500   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
 501 
 502   const int extra_space =
 503     rounded_vm_local_words +                   // frame local scratch space
 504     //6815692//Method::extra_stack_words() +       // extra push slots for MH adapters
 505     frame::memory_parameter_word_sp_offset +   // register save area
 506     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
 507 
 508   const Register Glocals_size = G3;
 509   const Register Otmp1 = O3;
 510   const Register Otmp2 = O4;
 511   // Lscratch can't be used as a temporary because the call_stub uses
 512   // it to assert that the stack frame was setup correctly.
 513 
 514   __ lduh( size_of_parameters, Glocals_size);
 515 
 516   // Gargs points to first local + BytesPerWord
 517   // Set the saved SP after the register window save
 518   //
 519   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
 520   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
 521   __ add(Gargs, Otmp1, Gargs);
 522 
 523   if (native_call) {
 524     __ calc_mem_param_words( Glocals_size, Gframe_size );
 525     __ add( Gframe_size,  extra_space, Gframe_size);
 526     __ round_to( Gframe_size, WordsPerLong );
 527     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
 528   } else {
 529 
 530     //
 531     // Compute number of locals in method apart from incoming parameters
 532     //
 533     __ lduh( size_of_locals, Otmp1 );
 534     __ sub( Otmp1, Glocals_size, Glocals_size );
 535     __ round_to( Glocals_size, WordsPerLong );
 536     __ sll( Glocals_size, Interpreter::logStackElementSize, Glocals_size );
 537 
 538     // see if the frame is greater than one page in size. If so,
 539     // then we need to verify there is enough stack space remaining
 540     // Frame_size = (max_stack + extra_space) * BytesPerWord;
 541     __ ld_ptr( constMethod, Gframe_size );
 542     __ lduh( Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size );
 543     __ add( Gframe_size, extra_space, Gframe_size );
 544     __ round_to( Gframe_size, WordsPerLong );
 545     __ sll( Gframe_size, Interpreter::logStackElementSize, Gframe_size);
 546 
 547     // Add in java locals size for stack overflow check only
 548     __ add( Gframe_size, Glocals_size, Gframe_size );
 549 
 550     const Register Otmp2 = O4;
 551     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
 552     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
 553 
 554     __ sub( Gframe_size, Glocals_size, Gframe_size);
 555 
 556     //
 557     // bump SP to accomodate the extra locals
 558     //
 559     __ sub( SP, Glocals_size, SP );
 560   }
 561 
 562   //
 563   // now set up a stack frame with the size computed above
 564   //
 565   __ neg( Gframe_size );
 566   __ save( SP, Gframe_size, SP );
 567 
 568   //
 569   // now set up all the local cache registers
 570   //
 571   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
 572   // that all present references to Lbyte_code initialize the register
 573   // immediately before use
 574   if (native_call) {
 575     __ mov(G0, Lbcp);
 576   } else {
 577     __ ld_ptr(G5_method, Method::const_offset(), Lbcp);
 578     __ add(Lbcp, in_bytes(ConstMethod::codes_offset()), Lbcp);
 579   }
 580   __ mov( G5_method, Lmethod);                 // set Lmethod
 581   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
 582   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
 583 #ifdef _LP64
 584   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
 585 #endif
 586   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
 587 
 588   // setup interpreter activation registers
 589   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
 590 
 591   if (ProfileInterpreter) {
 592 #ifdef FAST_DISPATCH
 593     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
 594     // they both use I2.
 595     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
 596 #endif // FAST_DISPATCH
 597     __ set_method_data_pointer();
 598   }
 599 
 600 }
 601 
 602 // Empty method, generate a very fast return.
 603 
 604 address InterpreterGenerator::generate_empty_entry(void) {
 605 
 606   // A method that does nother but return...
 607 
 608   address entry = __ pc();
 609   Label slow_path;
 610 
 611   // do nothing for empty methods (do not even increment invocation counter)
 612   if ( UseFastEmptyMethods) {
 613     // If we need a safepoint check, generate full interpreter entry.
 614     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
 615     __ set(sync_state, G3_scratch);
 616     __ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path);
 617 
 618     // Code: _return
 619     __ retl();
 620     __ delayed()->mov(O5_savedSP, SP);
 621 
 622     __ bind(slow_path);
 623     (void) generate_normal_entry(false);
 624 
 625     return entry;
 626   }
 627   return NULL;
 628 }
 629 
 630 // Call an accessor method (assuming it is resolved, otherwise drop into
 631 // vanilla (slow path) entry
 632 
 633 // Generates code to elide accessor methods
 634 // Uses G3_scratch and G1_scratch as scratch
 635 address InterpreterGenerator::generate_accessor_entry(void) {
 636 
 637   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
 638   // parameter size = 1
 639   // Note: We can only use this code if the getfield has been resolved
 640   //       and if we don't have a null-pointer exception => check for
 641   //       these conditions first and use slow path if necessary.
 642   address entry = __ pc();
 643   Label slow_path;
 644 
 645 
 646   // XXX: for compressed oops pointer loading and decoding doesn't fit in
 647   // delay slot and damages G1
 648   if ( UseFastAccessorMethods && !UseCompressedOops ) {
 649     // Check if we need to reach a safepoint and generate full interpreter
 650     // frame if so.
 651     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
 652     __ load_contents(sync_state, G3_scratch);
 653     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 654     __ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path);
 655 
 656     // Check if local 0 != NULL
 657     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 658     // check if local 0 == NULL and go the slow path
 659     __ br_null_short(Otos_i, Assembler::pn, slow_path);
 660 
 661 
 662     // read first instruction word and extract bytecode @ 1 and index @ 2
 663     // get first 4 bytes of the bytecodes (big endian!)
 664     __ ld_ptr(G5_method, Method::const_offset(), G1_scratch);
 665     __ ld(G1_scratch, ConstMethod::codes_offset(), G1_scratch);
 666 
 667     // move index @ 2 far left then to the right most two bytes.
 668     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
 669     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
 670                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
 671 
 672     // get constant pool cache
 673     __ ld_ptr(G5_method, Method::const_offset(), G3_scratch);
 674     __ ld_ptr(G3_scratch, ConstMethod::constants_offset(), G3_scratch);
 675     __ ld_ptr(G3_scratch, ConstantPool::cache_offset_in_bytes(), G3_scratch);
 676 
 677     // get specific constant pool cache entry
 678     __ add(G3_scratch, G1_scratch, G3_scratch);
 679 
 680     // Check the constant Pool cache entry to see if it has been resolved.
 681     // If not, need the slow path.
 682     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
 683     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::indices_offset(), G1_scratch);
 684     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
 685     __ and3(G1_scratch, 0xFF, G1_scratch);
 686     __ cmp_and_br_short(G1_scratch, Bytecodes::_getfield, Assembler::notEqual, Assembler::pn, slow_path);
 687 
 688     // Get the type and return field offset from the constant pool cache
 689     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), G1_scratch);
 690     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), G3_scratch);
 691 
 692     Label xreturn_path;
 693     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 694     // because they are different sizes.
 695     // Get the type from the constant pool cache
 696     __ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
 697     // Make sure we don't need to mask G1_scratch after the above shift
 698     ConstantPoolCacheEntry::verify_tos_state_shift();
 699     __ cmp(G1_scratch, atos );
 700     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 701     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
 702     __ cmp(G1_scratch, itos);
 703     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 704     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
 705     __ cmp(G1_scratch, stos);
 706     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 707     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
 708     __ cmp(G1_scratch, ctos);
 709     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 710     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
 711 #ifdef ASSERT
 712     __ cmp(G1_scratch, btos);
 713     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 714     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
 715     __ should_not_reach_here();
 716 #endif
 717     __ ldsb(Otos_i, G3_scratch, Otos_i);
 718     __ bind(xreturn_path);
 719 
 720     // _ireturn/_areturn
 721     __ retl();                      // return from leaf routine
 722     __ delayed()->mov(O5_savedSP, SP);
 723 
 724     // Generate regular method entry
 725     __ bind(slow_path);
 726     (void) generate_normal_entry(false);
 727     return entry;
 728   }
 729   return NULL;
 730 }
 731 
 732 // Method entry for java.lang.ref.Reference.get.
 733 address InterpreterGenerator::generate_Reference_get_entry(void) {
 734 #ifndef SERIALGC
 735   // Code: _aload_0, _getfield, _areturn
 736   // parameter size = 1
 737   //
 738   // The code that gets generated by this routine is split into 2 parts:
 739   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 740   //    2. The slow path - which is an expansion of the regular method entry.
 741   //
 742   // Notes:-
 743   // * In the G1 code we do not check whether we need to block for
 744   //   a safepoint. If G1 is enabled then we must execute the specialized
 745   //   code for Reference.get (except when the Reference object is null)
 746   //   so that we can log the value in the referent field with an SATB
 747   //   update buffer.
 748   //   If the code for the getfield template is modified so that the
 749   //   G1 pre-barrier code is executed when the current method is
 750   //   Reference.get() then going through the normal method entry
 751   //   will be fine.
 752   // * The G1 code can, however, check the receiver object (the instance
 753   //   of java.lang.Reference) and jump to the slow path if null. If the
 754   //   Reference object is null then we obviously cannot fetch the referent
 755   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 756   //   regular method entry code to generate the NPE.
 757   //
 758   // This code is based on generate_accessor_enty.
 759 
 760   address entry = __ pc();
 761 
 762   const int referent_offset = java_lang_ref_Reference::referent_offset;
 763   guarantee(referent_offset > 0, "referent offset not initialized");
 764 
 765   if (UseG1GC) {
 766      Label slow_path;
 767 
 768     // In the G1 code we don't check if we need to reach a safepoint. We
 769     // continue and the thread will safepoint at the next bytecode dispatch.
 770 
 771     // Check if local 0 != NULL
 772     // If the receiver is null then it is OK to jump to the slow path.
 773     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 774     // check if local 0 == NULL and go the slow path
 775     __ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
 776 
 777 
 778     // Load the value of the referent field.
 779     if (Assembler::is_simm13(referent_offset)) {
 780       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
 781     } else {
 782       __ set(referent_offset, G3_scratch);
 783       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
 784     }
 785 
 786     // Generate the G1 pre-barrier code to log the value of
 787     // the referent field in an SATB buffer. Note with
 788     // these parameters the pre-barrier does not generate
 789     // the load of the previous value
 790 
 791     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
 792                             Otos_i /* pre_val */,
 793                             G3_scratch /* tmp */,
 794                             true /* preserve_o_regs */);
 795 
 796     // _areturn
 797     __ retl();                      // return from leaf routine
 798     __ delayed()->mov(O5_savedSP, SP);
 799 
 800     // Generate regular method entry
 801     __ bind(slow_path);
 802     (void) generate_normal_entry(false);
 803     return entry;
 804   }
 805 #endif // SERIALGC
 806 
 807   // If G1 is not enabled then attempt to go through the accessor entry point
 808   // Reference.get is an accessor
 809   return generate_accessor_entry();
 810 }
 811 
 812 //
 813 // Interpreter stub for calling a native method. (asm interpreter)
 814 // This sets up a somewhat different looking stack for calling the native method
 815 // than the typical interpreter frame setup.
 816 //
 817 
 818 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 819   address entry = __ pc();
 820 
 821   // the following temporary registers are used during frame creation
 822   const Register Gtmp1 = G3_scratch ;
 823   const Register Gtmp2 = G1_scratch;
 824   bool inc_counter  = UseCompiler || CountCompiledCalls;
 825 
 826   // make sure registers are different!
 827   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
 828 
 829   const Address Laccess_flags(Lmethod, Method::access_flags_offset());
 830 
 831   const Register Glocals_size = G3;
 832   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
 833 
 834   // make sure method is native & not abstract
 835   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
 836 #ifdef ASSERT
 837   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
 838   {
 839     Label L;
 840     __ btst(JVM_ACC_NATIVE, Gtmp1);
 841     __ br(Assembler::notZero, false, Assembler::pt, L);
 842     __ delayed()->nop();
 843     __ stop("tried to execute non-native method as native");
 844     __ bind(L);
 845   }
 846   { Label L;
 847     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
 848     __ br(Assembler::zero, false, Assembler::pt, L);
 849     __ delayed()->nop();
 850     __ stop("tried to execute abstract method as non-abstract");
 851     __ bind(L);
 852   }
 853 #endif // ASSERT
 854 
 855  // generate the code to allocate the interpreter stack frame
 856   generate_fixed_frame(true);
 857 
 858   //
 859   // No locals to initialize for native method
 860   //
 861 
 862   // this slot will be set later, we initialize it to null here just in
 863   // case we get a GC before the actual value is stored later
 864   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
 865 
 866   const Address do_not_unlock_if_synchronized(G2_thread,
 867     JavaThread::do_not_unlock_if_synchronized_offset());
 868   // Since at this point in the method invocation the exception handler
 869   // would try to exit the monitor of synchronized methods which hasn't
 870   // been entered yet, we set the thread local variable
 871   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 872   // runtime, exception handling i.e. unlock_if_synchronized_method will
 873   // check this thread local flag.
 874   // This flag has two effects, one is to force an unwind in the topmost
 875   // interpreter frame and not perform an unlock while doing so.
 876 
 877   __ movbool(true, G3_scratch);
 878   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
 879 
 880   // increment invocation counter and check for overflow
 881   //
 882   // Note: checking for negative value instead of overflow
 883   //       so we have a 'sticky' overflow test (may be of
 884   //       importance as soon as we have true MT/MP)
 885   Label invocation_counter_overflow;
 886   Label Lcontinue;
 887   if (inc_counter) {
 888     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 889 
 890   }
 891   __ bind(Lcontinue);
 892 
 893   bang_stack_shadow_pages(true);
 894 
 895   // reset the _do_not_unlock_if_synchronized flag
 896   __ stbool(G0, do_not_unlock_if_synchronized);
 897 
 898   // check for synchronized methods
 899   // Must happen AFTER invocation_counter check and stack overflow check,
 900   // so method is not locked if overflows.
 901 
 902   if (synchronized) {
 903     lock_method();
 904   } else {
 905 #ifdef ASSERT
 906     { Label ok;
 907       __ ld(Laccess_flags, O0);
 908       __ btst(JVM_ACC_SYNCHRONIZED, O0);
 909       __ br( Assembler::zero, false, Assembler::pt, ok);
 910       __ delayed()->nop();
 911       __ stop("method needs synchronization");
 912       __ bind(ok);
 913     }
 914 #endif // ASSERT
 915   }
 916 
 917 
 918   // start execution
 919   __ verify_thread();
 920 
 921   // JVMTI support
 922   __ notify_method_entry();
 923 
 924   // native call
 925 
 926   // (note that O0 is never an oop--at most it is a handle)
 927   // It is important not to smash any handles created by this call,
 928   // until any oop handle in O0 is dereferenced.
 929 
 930   // (note that the space for outgoing params is preallocated)
 931 
 932   // get signature handler
 933   { Label L;
 934     Address signature_handler(Lmethod, Method::signature_handler_offset());
 935     __ ld_ptr(signature_handler, G3_scratch);
 936     __ br_notnull_short(G3_scratch, Assembler::pt, L);
 937     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
 938     __ ld_ptr(signature_handler, G3_scratch);
 939     __ bind(L);
 940   }
 941 
 942   // Push a new frame so that the args will really be stored in
 943   // Copy a few locals across so the new frame has the variables
 944   // we need but these values will be dead at the jni call and
 945   // therefore not gc volatile like the values in the current
 946   // frame (Lmethod in particular)
 947 
 948   // Flush the method pointer to the register save area
 949   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
 950   __ mov(Llocals, O1);
 951 
 952   // calculate where the mirror handle body is allocated in the interpreter frame:
 953   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
 954 
 955   // Calculate current frame size
 956   __ sub(SP, FP, O3);         // Calculate negative of current frame size
 957   __ save(SP, O3, SP);        // Allocate an identical sized frame
 958 
 959   // Note I7 has leftover trash. Slow signature handler will fill it in
 960   // should we get there. Normal jni call will set reasonable last_Java_pc
 961   // below (and fix I7 so the stack trace doesn't have a meaningless frame
 962   // in it).
 963 
 964   // Load interpreter frame's Lmethod into same register here
 965 
 966   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
 967 
 968   __ mov(I1, Llocals);
 969   __ mov(I2, Lscratch2);     // save the address of the mirror
 970 
 971 
 972   // ONLY Lmethod and Llocals are valid here!
 973 
 974   // call signature handler, It will move the arg properly since Llocals in current frame
 975   // matches that in outer frame
 976 
 977   __ callr(G3_scratch, 0);
 978   __ delayed()->nop();
 979 
 980   // Result handler is in Lscratch
 981 
 982   // Reload interpreter frame's Lmethod since slow signature handler may block
 983   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
 984 
 985   { Label not_static;
 986 
 987     __ ld(Laccess_flags, O0);
 988     __ btst(JVM_ACC_STATIC, O0);
 989     __ br( Assembler::zero, false, Assembler::pt, not_static);
 990     // get native function entry point(O0 is a good temp until the very end)
 991     __ delayed()->ld_ptr(Lmethod, in_bytes(Method::native_function_offset()), O0);
 992     // for static methods insert the mirror argument
 993     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 994 
 995     __ ld_ptr(Lmethod, Method:: const_offset(), O1);
 996     __ ld_ptr(O1, ConstMethod::constants_offset(), O1);
 997     __ ld_ptr(O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
 998     __ ld_ptr(O1, mirror_offset, O1);
 999 #ifdef ASSERT
1000     if (!PrintSignatureHandlers)  // do not dirty the output with this
1001     { Label L;
1002       __ br_notnull_short(O1, Assembler::pt, L);
1003       __ stop("mirror is missing");
1004       __ bind(L);
1005     }
1006 #endif // ASSERT
1007     __ st_ptr(O1, Lscratch2, 0);
1008     __ mov(Lscratch2, O1);
1009     __ bind(not_static);
1010   }
1011 
1012   // At this point, arguments have been copied off of stack into
1013   // their JNI positions, which are O1..O5 and SP[68..].
1014   // Oops are boxed in-place on the stack, with handles copied to arguments.
1015   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
1016 
1017 #ifdef ASSERT
1018   { Label L;
1019     __ br_notnull_short(O0, Assembler::pt, L);
1020     __ stop("native entry point is missing");
1021     __ bind(L);
1022   }
1023 #endif // ASSERT
1024 
1025   //
1026   // setup the frame anchor
1027   //
1028   // The scavenge function only needs to know that the PC of this frame is
1029   // in the interpreter method entry code, it doesn't need to know the exact
1030   // PC and hence we can use O7 which points to the return address from the
1031   // previous call in the code stream (signature handler function)
1032   //
1033   // The other trick is we set last_Java_sp to FP instead of the usual SP because
1034   // we have pushed the extra frame in order to protect the volatile register(s)
1035   // in that frame when we return from the jni call
1036   //
1037 
1038   __ set_last_Java_frame(FP, O7);
1039   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
1040                    // not meaningless information that'll confuse me.
1041 
1042   // flush the windows now. We don't care about the current (protection) frame
1043   // only the outer frames
1044 
1045   __ flush_windows();
1046 
1047   // mark windows as flushed
1048   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1049   __ set(JavaFrameAnchor::flushed, G3_scratch);
1050   __ st(G3_scratch, flags);
1051 
1052   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
1053 
1054   Address thread_state(G2_thread, JavaThread::thread_state_offset());
1055 #ifdef ASSERT
1056   { Label L;
1057     __ ld(thread_state, G3_scratch);
1058     __ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L);
1059     __ stop("Wrong thread state in native stub");
1060     __ bind(L);
1061   }
1062 #endif // ASSERT
1063   __ set(_thread_in_native, G3_scratch);
1064   __ st(G3_scratch, thread_state);
1065 
1066   // Call the jni method, using the delay slot to set the JNIEnv* argument.
1067   __ save_thread(L7_thread_cache); // save Gthread
1068   __ callr(O0, 0);
1069   __ delayed()->
1070      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
1071 
1072   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
1073 
1074   __ restore_thread(L7_thread_cache); // restore G2_thread
1075   __ reinit_heapbase();
1076 
1077   // must we block?
1078 
1079   // Block, if necessary, before resuming in _thread_in_Java state.
1080   // In order for GC to work, don't clear the last_Java_sp until after blocking.
1081   { Label no_block;
1082     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
1083 
1084     // Switch thread to "native transition" state before reading the synchronization state.
1085     // This additional state is necessary because reading and testing the synchronization
1086     // state is not atomic w.r.t. GC, as this scenario demonstrates:
1087     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1088     //     VM thread changes sync state to synchronizing and suspends threads for GC.
1089     //     Thread A is resumed to finish this native method, but doesn't block here since it
1090     //     didn't see any synchronization is progress, and escapes.
1091     __ set(_thread_in_native_trans, G3_scratch);
1092     __ st(G3_scratch, thread_state);
1093     if(os::is_MP()) {
1094       if (UseMembar) {
1095         // Force this write out before the read below
1096         __ membar(Assembler::StoreLoad);
1097       } else {
1098         // Write serialization page so VM thread can do a pseudo remote membar.
1099         // We use the current thread pointer to calculate a thread specific
1100         // offset to write to within the page. This minimizes bus traffic
1101         // due to cache line collision.
1102         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
1103       }
1104     }
1105     __ load_contents(sync_state, G3_scratch);
1106     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
1107 
1108     Label L;
1109     __ br(Assembler::notEqual, false, Assembler::pn, L);
1110     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
1111     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
1112     __ bind(L);
1113 
1114     // Block.  Save any potential method result value before the operation and
1115     // use a leaf call to leave the last_Java_frame setup undisturbed.
1116     save_native_result();
1117     __ call_VM_leaf(L7_thread_cache,
1118                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1119                     G2_thread);
1120 
1121     // Restore any method result value
1122     restore_native_result();
1123     __ bind(no_block);
1124   }
1125 
1126   // Clear the frame anchor now
1127 
1128   __ reset_last_Java_frame();
1129 
1130   // Move the result handler address
1131   __ mov(Lscratch, G3_scratch);
1132   // return possible result to the outer frame
1133 #ifndef __LP64
1134   __ mov(O0, I0);
1135   __ restore(O1, G0, O1);
1136 #else
1137   __ restore(O0, G0, O0);
1138 #endif /* __LP64 */
1139 
1140   // Move result handler to expected register
1141   __ mov(G3_scratch, Lscratch);
1142 
1143   // Back in normal (native) interpreter frame. State is thread_in_native_trans
1144   // switch to thread_in_Java.
1145 
1146   __ set(_thread_in_Java, G3_scratch);
1147   __ st(G3_scratch, thread_state);
1148 
1149   // reset handle block
1150   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
1151   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
1152 
1153   // If we have an oop result store it where it will be safe for any further gc
1154   // until we return now that we've released the handle it might be protected by
1155 
1156   {
1157     Label no_oop, store_result;
1158 
1159     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
1160     __ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
1161     __ addcc(G0, O0, O0);
1162     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
1163     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
1164     __ mov(G0, O0);
1165 
1166     __ bind(store_result);
1167     // Store it where gc will look for it and result handler expects it.
1168     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
1169 
1170     __ bind(no_oop);
1171 
1172   }
1173 
1174 
1175   // handle exceptions (exception handling will handle unlocking!)
1176   { Label L;
1177     Address exception_addr(G2_thread, Thread::pending_exception_offset());
1178     __ ld_ptr(exception_addr, Gtemp);
1179     __ br_null_short(Gtemp, Assembler::pt, L);
1180     // Note: This could be handled more efficiently since we know that the native
1181     //       method doesn't have an exception handler. We could directly return
1182     //       to the exception handler for the caller.
1183     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1184     __ should_not_reach_here();
1185     __ bind(L);
1186   }
1187 
1188   // JVMTI support (preserves thread register)
1189   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1190 
1191   if (synchronized) {
1192     // save and restore any potential method result value around the unlocking operation
1193     save_native_result();
1194 
1195     __ add( __ top_most_monitor(), O1);
1196     __ unlock_object(O1);
1197 
1198     restore_native_result();
1199   }
1200 
1201 #if defined(COMPILER2) && !defined(_LP64)
1202 
1203   // C2 expects long results in G1 we can't tell if we're returning to interpreted
1204   // or compiled so just be safe.
1205 
1206   __ sllx(O0, 32, G1);          // Shift bits into high G1
1207   __ srl (O1, 0, O1);           // Zero extend O1
1208   __ or3 (O1, G1, G1);          // OR 64 bits into G1
1209 
1210 #endif /* COMPILER2 && !_LP64 */
1211 
1212   // dispose of return address and remove activation
1213 #ifdef ASSERT
1214   {
1215     Label ok;
1216     __ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok);
1217     __ stop("bad I5_savedSP value");
1218     __ should_not_reach_here();
1219     __ bind(ok);
1220   }
1221 #endif
1222   if (TraceJumps) {
1223     // Move target to register that is recordable
1224     __ mov(Lscratch, G3_scratch);
1225     __ JMP(G3_scratch, 0);
1226   } else {
1227     __ jmp(Lscratch, 0);
1228   }
1229   __ delayed()->nop();
1230 
1231 
1232   if (inc_counter) {
1233     // handle invocation counter overflow
1234     __ bind(invocation_counter_overflow);
1235     generate_counter_overflow(Lcontinue);
1236   }
1237 
1238 
1239 
1240   return entry;
1241 }
1242 
1243 
1244 // Generic method entry to (asm) interpreter
1245 //------------------------------------------------------------------------------------------------------------------------
1246 //
1247 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1248   address entry = __ pc();
1249 
1250   bool inc_counter  = UseCompiler || CountCompiledCalls;
1251 
1252   // the following temporary registers are used during frame creation
1253   const Register Gtmp1 = G3_scratch ;
1254   const Register Gtmp2 = G1_scratch;
1255 
1256   // make sure registers are different!
1257   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1258 
1259   const Address size_of_parameters(G5_method, Method::size_of_parameters_offset());
1260   const Address size_of_locals    (G5_method, Method::size_of_locals_offset());
1261   // Seems like G5_method is live at the point this is used. So we could make this look consistent
1262   // and use in the asserts.
1263   const Address access_flags      (Lmethod,   Method::access_flags_offset());
1264 
1265   const Register Glocals_size = G3;
1266   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1267 
1268   // make sure method is not native & not abstract
1269   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1270 #ifdef ASSERT
1271   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1272   {
1273     Label L;
1274     __ btst(JVM_ACC_NATIVE, Gtmp1);
1275     __ br(Assembler::zero, false, Assembler::pt, L);
1276     __ delayed()->nop();
1277     __ stop("tried to execute native method as non-native");
1278     __ bind(L);
1279   }
1280   { Label L;
1281     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1282     __ br(Assembler::zero, false, Assembler::pt, L);
1283     __ delayed()->nop();
1284     __ stop("tried to execute abstract method as non-abstract");
1285     __ bind(L);
1286   }
1287 #endif // ASSERT
1288 
1289   // generate the code to allocate the interpreter stack frame
1290 
1291   generate_fixed_frame(false);
1292 
1293 #ifdef FAST_DISPATCH
1294   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
1295                                           // set bytecode dispatch table base
1296 #endif
1297 
1298   //
1299   // Code to initialize the extra (i.e. non-parm) locals
1300   //
1301   Register init_value = noreg;    // will be G0 if we must clear locals
1302   // The way the code was setup before zerolocals was always true for vanilla java entries.
1303   // It could only be false for the specialized entries like accessor or empty which have
1304   // no extra locals so the testing was a waste of time and the extra locals were always
1305   // initialized. We removed this extra complication to already over complicated code.
1306 
1307   init_value = G0;
1308   Label clear_loop;
1309 
1310   // NOTE: If you change the frame layout, this code will need to
1311   // be updated!
1312   __ lduh( size_of_locals, O2 );
1313   __ lduh( size_of_parameters, O1 );
1314   __ sll( O2, Interpreter::logStackElementSize, O2);
1315   __ sll( O1, Interpreter::logStackElementSize, O1 );
1316   __ sub( Llocals, O2, O2 );
1317   __ sub( Llocals, O1, O1 );
1318 
1319   __ bind( clear_loop );
1320   __ inc( O2, wordSize );
1321 
1322   __ cmp( O2, O1 );
1323   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1324   __ delayed()->st_ptr( init_value, O2, 0 );
1325 
1326   const Address do_not_unlock_if_synchronized(G2_thread,
1327     JavaThread::do_not_unlock_if_synchronized_offset());
1328   // Since at this point in the method invocation the exception handler
1329   // would try to exit the monitor of synchronized methods which hasn't
1330   // been entered yet, we set the thread local variable
1331   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1332   // runtime, exception handling i.e. unlock_if_synchronized_method will
1333   // check this thread local flag.
1334   __ movbool(true, G3_scratch);
1335   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1336 
1337   // increment invocation counter and check for overflow
1338   //
1339   // Note: checking for negative value instead of overflow
1340   //       so we have a 'sticky' overflow test (may be of
1341   //       importance as soon as we have true MT/MP)
1342   Label invocation_counter_overflow;
1343   Label profile_method;
1344   Label profile_method_continue;
1345   Label Lcontinue;
1346   if (inc_counter) {
1347     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1348     if (ProfileInterpreter) {
1349       __ bind(profile_method_continue);
1350     }
1351   }
1352   __ bind(Lcontinue);
1353 
1354   bang_stack_shadow_pages(false);
1355 
1356   // reset the _do_not_unlock_if_synchronized flag
1357   __ stbool(G0, do_not_unlock_if_synchronized);
1358 
1359   // check for synchronized methods
1360   // Must happen AFTER invocation_counter check and stack overflow check,
1361   // so method is not locked if overflows.
1362 
1363   if (synchronized) {
1364     lock_method();
1365   } else {
1366 #ifdef ASSERT
1367     { Label ok;
1368       __ ld(access_flags, O0);
1369       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1370       __ br( Assembler::zero, false, Assembler::pt, ok);
1371       __ delayed()->nop();
1372       __ stop("method needs synchronization");
1373       __ bind(ok);
1374     }
1375 #endif // ASSERT
1376   }
1377 
1378   // start execution
1379 
1380   __ verify_thread();
1381 
1382   // jvmti support
1383   __ notify_method_entry();
1384 
1385   // start executing instructions
1386   __ dispatch_next(vtos);
1387 
1388 
1389   if (inc_counter) {
1390     if (ProfileInterpreter) {
1391       // We have decided to profile this method in the interpreter
1392       __ bind(profile_method);
1393 
1394       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1395       __ set_method_data_pointer_for_bcp();
1396       __ ba_short(profile_method_continue);
1397     }
1398 
1399     // handle invocation counter overflow
1400     __ bind(invocation_counter_overflow);
1401     generate_counter_overflow(Lcontinue);
1402   }
1403 
1404 
1405   return entry;
1406 }
1407 
1408 
1409 //----------------------------------------------------------------------------------------------------
1410 // Entry points & stack frame layout
1411 //
1412 // Here we generate the various kind of entries into the interpreter.
1413 // The two main entry type are generic bytecode methods and native call method.
1414 // These both come in synchronized and non-synchronized versions but the
1415 // frame layout they create is very similar. The other method entry
1416 // types are really just special purpose entries that are really entry
1417 // and interpretation all in one. These are for trivial methods like
1418 // accessor, empty, or special math methods.
1419 //
1420 // When control flow reaches any of the entry types for the interpreter
1421 // the following holds ->
1422 //
1423 // C2 Calling Conventions:
1424 //
1425 // The entry code below assumes that the following registers are set
1426 // when coming in:
1427 //    G5_method: holds the Method* of the method to call
1428 //    Lesp:    points to the TOS of the callers expression stack
1429 //             after having pushed all the parameters
1430 //
1431 // The entry code does the following to setup an interpreter frame
1432 //   pop parameters from the callers stack by adjusting Lesp
1433 //   set O0 to Lesp
1434 //   compute X = (max_locals - num_parameters)
1435 //   bump SP up by X to accomadate the extra locals
1436 //   compute X = max_expression_stack
1437 //               + vm_local_words
1438 //               + 16 words of register save area
1439 //   save frame doing a save sp, -X, sp growing towards lower addresses
1440 //   set Lbcp, Lmethod, LcpoolCache
1441 //   set Llocals to i0
1442 //   set Lmonitors to FP - rounded_vm_local_words
1443 //   set Lesp to Lmonitors - 4
1444 //
1445 //  The frame has now been setup to do the rest of the entry code
1446 
1447 // Try this optimization:  Most method entries could live in a
1448 // "one size fits all" stack frame without all the dynamic size
1449 // calculations.  It might be profitable to do all this calculation
1450 // statically and approximately for "small enough" methods.
1451 
1452 //-----------------------------------------------------------------------------------------------
1453 
1454 // C1 Calling conventions
1455 //
1456 // Upon method entry, the following registers are setup:
1457 //
1458 // g2 G2_thread: current thread
1459 // g5 G5_method: method to activate
1460 // g4 Gargs  : pointer to last argument
1461 //
1462 //
1463 // Stack:
1464 //
1465 // +---------------+ <--- sp
1466 // |               |
1467 // : reg save area :
1468 // |               |
1469 // +---------------+ <--- sp + 0x40
1470 // |               |
1471 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1472 // |               |
1473 // +---------------+ <--- sp + 0x5c
1474 // |               |
1475 // :     free      :
1476 // |               |
1477 // +---------------+ <--- Gargs
1478 // |               |
1479 // :   arguments   :
1480 // |               |
1481 // +---------------+
1482 // |               |
1483 //
1484 //
1485 //
1486 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
1487 //
1488 // +---------------+ <--- sp
1489 // |               |
1490 // : reg save area :
1491 // |               |
1492 // +---------------+ <--- sp + 0x40
1493 // |               |
1494 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1495 // |               |
1496 // +---------------+ <--- sp + 0x5c
1497 // |               |
1498 // :               :
1499 // |               | <--- Lesp
1500 // +---------------+ <--- Lmonitors (fp - 0x18)
1501 // |   VM locals   |
1502 // +---------------+ <--- fp
1503 // |               |
1504 // : reg save area :
1505 // |               |
1506 // +---------------+ <--- fp + 0x40
1507 // |               |
1508 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1509 // |               |
1510 // +---------------+ <--- fp + 0x5c
1511 // |               |
1512 // :     free      :
1513 // |               |
1514 // +---------------+
1515 // |               |
1516 // : nonarg locals :
1517 // |               |
1518 // +---------------+
1519 // |               |
1520 // :   arguments   :
1521 // |               | <--- Llocals
1522 // +---------------+ <--- Gargs
1523 // |               |
1524 
1525 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
1526 
1527   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
1528   // expression stack, the callee will have callee_extra_locals (so we can account for
1529   // frame extension) and monitor_size for monitors. Basically we need to calculate
1530   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
1531   //
1532   //
1533   // The big complicating thing here is that we must ensure that the stack stays properly
1534   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
1535   // needs to be aligned for). We are given that the sp (fp) is already aligned by
1536   // the caller so we must ensure that it is properly aligned for our callee.
1537   //
1538   const int rounded_vm_local_words =
1539        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
1540   // callee_locals and max_stack are counts, not the size in frame.
1541   const int locals_size =
1542        round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
1543   const int max_stack_words = max_stack * Interpreter::stackElementWords;
1544   return (round_to((max_stack_words
1545                    //6815692//+ Method::extra_stack_words()
1546                    + rounded_vm_local_words
1547                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
1548                    // already rounded
1549                    + locals_size + monitor_size);
1550 }
1551 
1552 // How much stack a method top interpreter activation needs in words.
1553 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
1554 
1555   // See call_stub code
1556   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
1557                                  WordsPerLong);    // 7 + register save area
1558 
1559   // Save space for one monitor to get into the interpreted method in case
1560   // the method is synchronized
1561   int monitor_size    = method->is_synchronized() ?
1562                                 1*frame::interpreter_frame_monitor_size() : 0;
1563   return size_activation_helper(method->max_locals(), method->max_stack(),
1564                                  monitor_size) + call_stub_size;
1565 }
1566 
1567 int AbstractInterpreter::layout_activation(Method* method,
1568                                            int tempcount,
1569                                            int popframe_extra_args,
1570                                            int moncount,
1571                                            int caller_actual_parameters,
1572                                            int callee_param_count,
1573                                            int callee_local_count,
1574                                            frame* caller,
1575                                            frame* interpreter_frame,
1576                                            bool is_top_frame) {
1577   // Note: This calculation must exactly parallel the frame setup
1578   // in InterpreterGenerator::generate_fixed_frame.
1579   // If f!=NULL, set up the following variables:
1580   //   - Lmethod
1581   //   - Llocals
1582   //   - Lmonitors (to the indicated number of monitors)
1583   //   - Lesp (to the indicated number of temps)
1584   // The frame f (if not NULL) on entry is a description of the caller of the frame
1585   // we are about to layout. We are guaranteed that we will be able to fill in a
1586   // new interpreter frame as its callee (i.e. the stack space is allocated and
1587   // the amount was determined by an earlier call to this method with f == NULL).
1588   // On return f (if not NULL) while describe the interpreter frame we just layed out.
1589 
1590   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
1591   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
1592 
1593   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
1594   //
1595   // Note: if you look closely this appears to be doing something much different
1596   // than generate_fixed_frame. What is happening is this. On sparc we have to do
1597   // this dance with interpreter_sp_adjustment because the window save area would
1598   // appear just below the bottom (tos) of the caller's java expression stack. Because
1599   // the interpreter want to have the locals completely contiguous generate_fixed_frame
1600   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
1601   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
1602   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
1603   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
1604   // because the oldest frame would have adjust its callers frame and yet that frame
1605   // already exists and isn't part of this array of frames we are unpacking. So at first
1606   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
1607   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
1608   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
1609   // add up. It does seem like it simpler to account for the adjustment here (and remove the
1610   // callee... parameters here). However this would mean that this routine would have to take
1611   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
1612   // and run the calling loop in the reverse order. This would also would appear to mean making
1613   // this code aware of what the interactions are when that initial caller fram was an osr or
1614   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
1615   // there is no sense in messing working code.
1616   //
1617 
1618   int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong);
1619   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
1620 
1621   int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(),
1622                                               monitor_size);
1623 
1624   if (interpreter_frame != NULL) {
1625     // The skeleton frame must already look like an interpreter frame
1626     // even if not fully filled out.
1627     assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
1628 
1629     intptr_t* fp = interpreter_frame->fp();
1630 
1631     JavaThread* thread = JavaThread::current();
1632     RegisterMap map(thread, false);
1633     // More verification that skeleton frame is properly walkable
1634     assert(fp == caller->sp(), "fp must match");
1635 
1636     intptr_t* montop     = fp - rounded_vm_local_words;
1637 
1638     // preallocate monitors (cf. __ add_monitor_to_stack)
1639     intptr_t* monitors = montop - monitor_size;
1640 
1641     // preallocate stack space
1642     intptr_t*  esp = monitors - 1 -
1643                      (tempcount * Interpreter::stackElementWords) -
1644                      popframe_extra_args;
1645 
1646     int local_words = method->max_locals() * Interpreter::stackElementWords;
1647     NEEDS_CLEANUP;
1648     intptr_t* locals;
1649     if (caller->is_interpreted_frame()) {
1650       // Can force the locals area to end up properly overlapping the top of the expression stack.
1651       intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
1652       // Note that this computation means we replace size_of_parameters() values from the caller
1653       // interpreter frame's expression stack with our argument locals
1654       int parm_words  = caller_actual_parameters * Interpreter::stackElementWords;
1655       locals = Lesp_ptr + parm_words;
1656       int delta = local_words - parm_words;
1657       int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
1658       *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
1659     } else {
1660       assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
1661       // Don't have Lesp available; lay out locals block in the caller
1662       // adjacent to the register window save area.
1663       //
1664       // Compiled frames do not allocate a varargs area which is why this if
1665       // statement is needed.
1666       //
1667       if (caller->is_compiled_frame()) {
1668         locals = fp + frame::register_save_words + local_words - 1;
1669       } else {
1670         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
1671       }
1672       if (!caller->is_entry_frame()) {
1673         // Caller wants his own SP back
1674         int caller_frame_size = caller->cb()->frame_size();
1675         *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
1676       }
1677     }
1678     if (TraceDeoptimization) {
1679       if (caller->is_entry_frame()) {
1680         // make sure I5_savedSP and the entry frames notion of saved SP
1681         // agree.  This assertion duplicate a check in entry frame code
1682         // but catches the failure earlier.
1683         assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
1684                "would change callers SP");
1685       }
1686       if (caller->is_entry_frame()) {
1687         tty->print("entry ");
1688       }
1689       if (caller->is_compiled_frame()) {
1690         tty->print("compiled ");
1691         if (caller->is_deoptimized_frame()) {
1692           tty->print("(deopt) ");
1693         }
1694       }
1695       if (caller->is_interpreted_frame()) {
1696         tty->print("interpreted ");
1697       }
1698       tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
1699       tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
1700       tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
1701       tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
1702       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
1703       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
1704       tty->print_cr("Llocals = 0x%x", locals);
1705       tty->print_cr("Lesp = 0x%x", esp);
1706       tty->print_cr("Lmonitors = 0x%x", monitors);
1707     }
1708 
1709     if (method->max_locals() > 0) {
1710       assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
1711       assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
1712       assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
1713       assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
1714     }
1715 #ifdef _LP64
1716     assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
1717 #endif
1718 
1719     *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
1720     *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
1721     *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
1722     *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
1723     // Llast_SP will be same as SP as there is no adapter space
1724     *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
1725     *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
1726 #ifdef FAST_DISPATCH
1727     *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
1728 #endif
1729 
1730 
1731 #ifdef ASSERT
1732     BasicObjectLock* mp = (BasicObjectLock*)monitors;
1733 
1734     assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
1735     assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
1736     assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
1737     assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
1738     assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
1739 
1740     // check bounds
1741     intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
1742     intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
1743     assert(lo < monitors && montop <= hi, "monitors in bounds");
1744     assert(lo <= esp && esp < monitors, "esp in bounds");
1745 #endif // ASSERT
1746   }
1747 
1748   return raw_frame_size;
1749 }
1750 
1751 //----------------------------------------------------------------------------------------------------
1752 // Exceptions
1753 void TemplateInterpreterGenerator::generate_throw_exception() {
1754 
1755   // Entry point in previous activation (i.e., if the caller was interpreted)
1756   Interpreter::_rethrow_exception_entry = __ pc();
1757   // O0: exception
1758 
1759   // entry point for exceptions thrown within interpreter code
1760   Interpreter::_throw_exception_entry = __ pc();
1761   __ verify_thread();
1762   // expression stack is undefined here
1763   // O0: exception, i.e. Oexception
1764   // Lbcp: exception bcx
1765   __ verify_oop(Oexception);
1766 
1767 
1768   // expression stack must be empty before entering the VM in case of an exception
1769   __ empty_expression_stack();
1770   // find exception handler address and preserve exception oop
1771   // call C routine to find handler and jump to it
1772   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
1773   __ push_ptr(O1); // push exception for exception handler bytecodes
1774 
1775   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
1776   __ delayed()->nop();
1777 
1778 
1779   // if the exception is not handled in the current frame
1780   // the frame is removed and the exception is rethrown
1781   // (i.e. exception continuation is _rethrow_exception)
1782   //
1783   // Note: At this point the bci is still the bxi for the instruction which caused
1784   //       the exception and the expression stack is empty. Thus, for any VM calls
1785   //       at this point, GC will find a legal oop map (with empty expression stack).
1786 
1787   // in current activation
1788   // tos: exception
1789   // Lbcp: exception bcp
1790 
1791   //
1792   // JVMTI PopFrame support
1793   //
1794 
1795   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1796   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1797   // Set the popframe_processing bit in popframe_condition indicating that we are
1798   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1799   // popframe handling cycles.
1800 
1801   __ ld(popframe_condition_addr, G3_scratch);
1802   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
1803   __ stw(G3_scratch, popframe_condition_addr);
1804 
1805   // Empty the expression stack, as in normal exception handling
1806   __ empty_expression_stack();
1807   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1808 
1809   {
1810     // Check to see whether we are returning to a deoptimized frame.
1811     // (The PopFrame call ensures that the caller of the popped frame is
1812     // either interpreted or compiled and deoptimizes it if compiled.)
1813     // In this case, we can't call dispatch_next() after the frame is
1814     // popped, but instead must save the incoming arguments and restore
1815     // them after deoptimization has occurred.
1816     //
1817     // Note that we don't compare the return PC against the
1818     // deoptimization blob's unpack entry because of the presence of
1819     // adapter frames in C2.
1820     Label caller_not_deoptimized;
1821     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
1822     __ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized);
1823 
1824     const Register Gtmp1 = G3_scratch;
1825     const Register Gtmp2 = G1_scratch;
1826 
1827     // Compute size of arguments for saving when returning to deoptimized caller
1828     __ lduh(Lmethod, in_bytes(Method::size_of_parameters_offset()), Gtmp1);
1829     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
1830     __ sub(Llocals, Gtmp1, Gtmp2);
1831     __ add(Gtmp2, wordSize, Gtmp2);
1832     // Save these arguments
1833     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
1834     // Inform deoptimization that it is responsible for restoring these arguments
1835     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
1836     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1837     __ st(Gtmp1, popframe_condition_addr);
1838 
1839     // Return from the current method
1840     // The caller's SP was adjusted upon method entry to accomodate
1841     // the callee's non-argument locals. Undo that adjustment.
1842     __ ret();
1843     __ delayed()->restore(I5_savedSP, G0, SP);
1844 
1845     __ bind(caller_not_deoptimized);
1846   }
1847 
1848   // Clear the popframe condition flag
1849   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
1850 
1851   // Get out of the current method (how this is done depends on the particular compiler calling
1852   // convention that the interpreter currently follows)
1853   // The caller's SP was adjusted upon method entry to accomodate
1854   // the callee's non-argument locals. Undo that adjustment.
1855   __ restore(I5_savedSP, G0, SP);
1856   // The method data pointer was incremented already during
1857   // call profiling. We have to restore the mdp for the current bcp.
1858   if (ProfileInterpreter) {
1859     __ set_method_data_pointer_for_bcp();
1860   }
1861   // Resume bytecode interpretation at the current bcp
1862   __ dispatch_next(vtos);
1863   // end of JVMTI PopFrame support
1864 
1865   Interpreter::_remove_activation_entry = __ pc();
1866 
1867   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
1868   __ pop_ptr(Oexception);                                  // get exception
1869 
1870   // Intel has the following comment:
1871   //// remove the activation (without doing throws on illegalMonitorExceptions)
1872   // They remove the activation without checking for bad monitor state.
1873   // %%% We should make sure this is the right semantics before implementing.
1874 
1875   __ set_vm_result(Oexception);
1876   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
1877 
1878   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
1879 
1880   __ get_vm_result(Oexception);
1881   __ verify_oop(Oexception);
1882 
1883     const int return_reg_adjustment = frame::pc_return_offset;
1884   Address issuing_pc_addr(I7, return_reg_adjustment);
1885 
1886   // We are done with this activation frame; find out where to go next.
1887   // The continuation point will be an exception handler, which expects
1888   // the following registers set up:
1889   //
1890   // Oexception: exception
1891   // Oissuing_pc: the local call that threw exception
1892   // Other On: garbage
1893   // In/Ln:  the contents of the caller's register window
1894   //
1895   // We do the required restore at the last possible moment, because we
1896   // need to preserve some state across a runtime call.
1897   // (Remember that the caller activation is unknown--it might not be
1898   // interpreted, so things like Lscratch are useless in the caller.)
1899 
1900   // Although the Intel version uses call_C, we can use the more
1901   // compact call_VM.  (The only real difference on SPARC is a
1902   // harmlessly ignored [re]set_last_Java_frame, compared with
1903   // the Intel code which lacks this.)
1904   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
1905   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
1906   __ super_call_VM_leaf(L7_thread_cache,
1907                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1908                         G2_thread, Oissuing_pc->after_save());
1909 
1910   // The caller's SP was adjusted upon method entry to accomodate
1911   // the callee's non-argument locals. Undo that adjustment.
1912   __ JMP(O0, 0);                         // return exception handler in caller
1913   __ delayed()->restore(I5_savedSP, G0, SP);
1914 
1915   // (same old exception object is already in Oexception; see above)
1916   // Note that an "issuing PC" is actually the next PC after the call
1917 }
1918 
1919 
1920 //
1921 // JVMTI ForceEarlyReturn support
1922 //
1923 
1924 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1925   address entry = __ pc();
1926 
1927   __ empty_expression_stack();
1928   __ load_earlyret_value(state);
1929 
1930   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
1931   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
1932 
1933   // Clear the earlyret state
1934   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
1935 
1936   __ remove_activation(state,
1937                        /* throw_monitor_exception */ false,
1938                        /* install_monitor_exception */ false);
1939 
1940   // The caller's SP was adjusted upon method entry to accomodate
1941   // the callee's non-argument locals. Undo that adjustment.
1942   __ ret();                             // return to caller
1943   __ delayed()->restore(I5_savedSP, G0, SP);
1944 
1945   return entry;
1946 } // end of JVMTI ForceEarlyReturn support
1947 
1948 
1949 //------------------------------------------------------------------------------------------------------------------------
1950 // Helper for vtos entry point generation
1951 
1952 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1953   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1954   Label L;
1955   aep = __ pc(); __ push_ptr(); __ ba_short(L);
1956   fep = __ pc(); __ push_f();   __ ba_short(L);
1957   dep = __ pc(); __ push_d();   __ ba_short(L);
1958   lep = __ pc(); __ push_l();   __ ba_short(L);
1959   iep = __ pc(); __ push_i();
1960   bep = cep = sep = iep;                        // there aren't any
1961   vep = __ pc(); __ bind(L);                    // fall through
1962   generate_and_dispatch(t);
1963 }
1964 
1965 // --------------------------------------------------------------------------------
1966 
1967 
1968 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1969  : TemplateInterpreterGenerator(code) {
1970    generate_all(); // down here so it can be "virtual"
1971 }
1972 
1973 // --------------------------------------------------------------------------------
1974 
1975 // Non-product code
1976 #ifndef PRODUCT
1977 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1978   address entry = __ pc();
1979 
1980   __ push(state);
1981   __ mov(O7, Lscratch); // protect return address within interpreter
1982 
1983   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
1984   __ mov( Otos_l2, G3_scratch );
1985   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
1986   __ mov(Lscratch, O7); // restore return address
1987   __ pop(state);
1988   __ retl();
1989   __ delayed()->nop();
1990 
1991   return entry;
1992 }
1993 
1994 
1995 // helpers for generate_and_dispatch
1996 
1997 void TemplateInterpreterGenerator::count_bytecode() {
1998   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
1999 }
2000 
2001 
2002 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2003   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
2004 }
2005 
2006 
2007 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2008   AddressLiteral index   (&BytecodePairHistogram::_index);
2009   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
2010 
2011   // get index, shift out old bytecode, bring in new bytecode, and store it
2012   // _index = (_index >> log2_number_of_codes) |
2013   //          (bytecode << log2_number_of_codes);
2014 
2015   __ load_contents(index, G4_scratch);
2016   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
2017   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
2018   __ or3( G3_scratch,  G4_scratch, G4_scratch );
2019   __ store_contents(G4_scratch, index, G3_scratch);
2020 
2021   // bump bucket contents
2022   // _counters[_index] ++;
2023 
2024   __ set(counters, G3_scratch);                       // loads into G3_scratch
2025   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
2026   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
2027   __ ld (G3_scratch, 0, G4_scratch);
2028   __ inc (G4_scratch);
2029   __ st (G4_scratch, 0, G3_scratch);
2030 }
2031 
2032 
2033 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2034   // Call a little run-time stub to avoid blow-up for each bytecode.
2035   // The run-time runtime saves the right registers, depending on
2036   // the tosca in-state for the given template.
2037   address entry = Interpreter::trace_code(t->tos_in());
2038   guarantee(entry != NULL, "entry must have been generated");
2039   __ call(entry, relocInfo::none);
2040   __ delayed()->nop();
2041 }
2042 
2043 
2044 void TemplateInterpreterGenerator::stop_interpreter_at() {
2045   AddressLiteral counter(&BytecodeCounter::_counter_value);
2046   __ load_contents(counter, G3_scratch);
2047   AddressLiteral stop_at(&StopInterpreterAt);
2048   __ load_ptr_contents(stop_at, G4_scratch);
2049   __ cmp(G3_scratch, G4_scratch);
2050   __ breakpoint_trap(Assembler::equal, Assembler::icc);
2051 }
2052 #endif // not PRODUCT
2053 #endif // !CC_INTERP