1 /*
   2  * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/cppInterpreter.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterGenerator.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/interfaceSupport.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/debug.hpp"
  48 #include "utilities/macros.hpp"
  49 #ifdef SHARK
  50 #include "shark/shark_globals.hpp"
  51 #endif
  52 
  53 #ifdef CC_INTERP
  54 
  55 // Routine exists to make tracebacks look decent in debugger
  56 // while "shadow" interpreter frames are on stack. It is also
  57 // used to distinguish interpreter frames.
  58 
  59 extern "C" void RecursiveInterpreterActivation(interpreterState istate) {
  60   ShouldNotReachHere();
  61 }
  62 
  63 bool CppInterpreter::contains(address pc) {
  64   return ( _code->contains(pc) ||
  65          ( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset)));
  66 }
  67 
  68 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
  69 #define __ _masm->
  70 
  71 Label frame_manager_entry;
  72 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
  73                                       // c++ interpreter entry point this holds that entry point label.
  74 
  75 static address unctrap_frame_manager_entry  = NULL;
  76 
  77 static address interpreter_return_address  = NULL;
  78 static address deopt_frame_manager_return_atos  = NULL;
  79 static address deopt_frame_manager_return_btos  = NULL;
  80 static address deopt_frame_manager_return_itos  = NULL;
  81 static address deopt_frame_manager_return_ltos  = NULL;
  82 static address deopt_frame_manager_return_ftos  = NULL;
  83 static address deopt_frame_manager_return_dtos  = NULL;
  84 static address deopt_frame_manager_return_vtos  = NULL;
  85 
  86 const Register prevState = G1_scratch;
  87 
  88 void InterpreterGenerator::save_native_result(void) {
  89   // result potentially in O0/O1: save it across calls
  90   __ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
  91 #ifdef _LP64
  92   __ stx(O0, STATE(_native_lresult));
  93 #else
  94   __ std(O0, STATE(_native_lresult));
  95 #endif
  96 }
  97 
  98 void InterpreterGenerator::restore_native_result(void) {
  99 
 100   // Restore any method result value
 101   __ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
 102 #ifdef _LP64
 103   __ ldx(STATE(_native_lresult), O0);
 104 #else
 105   __ ldd(STATE(_native_lresult), O0);
 106 #endif
 107 }
 108 
 109 // A result handler converts/unboxes a native call result into
 110 // a java interpreter/compiler result. The current frame is an
 111 // interpreter frame. The activation frame unwind code must be
 112 // consistent with that of TemplateTable::_return(...). In the
 113 // case of native methods, the caller's SP was not modified.
 114 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
 115   address entry = __ pc();
 116   Register Itos_i  = Otos_i ->after_save();
 117   Register Itos_l  = Otos_l ->after_save();
 118   Register Itos_l1 = Otos_l1->after_save();
 119   Register Itos_l2 = Otos_l2->after_save();
 120   switch (type) {
 121     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 122     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 123     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 124     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 125     case T_LONG   :
 126 #ifndef _LP64
 127                     __ mov(O1, Itos_l2);  // move other half of long
 128 #endif              // ifdef or no ifdef, fall through to the T_INT case
 129     case T_INT    : __ mov(O0, Itos_i);                         break;
 130     case T_VOID   : /* nothing to do */                         break;
 131     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 132     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 133     case T_OBJECT :
 134       __ ld_ptr(STATE(_oop_temp), Itos_i);
 135       __ verify_oop(Itos_i);
 136       break;
 137     default       : ShouldNotReachHere();
 138   }
 139   __ ret();                           // return from interpreter activation
 140   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 141   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
 142   return entry;
 143 }
 144 
 145 // tosca based result to c++ interpreter stack based result.
 146 // Result goes to address in L1_scratch
 147 
 148 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
 149   // A result is in the native abi result register from a native method call.
 150   // We need to return this result to the interpreter by pushing the result on the interpreter's
 151   // stack. This is relatively simple the destination is in L1_scratch
 152   // i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must
 153   // adjust L1_scratch
 154   address entry = __ pc();
 155   switch (type) {
 156     case T_BOOLEAN:
 157       // !0 => true; 0 => false
 158       __ subcc(G0, O0, G0);
 159       __ addc(G0, 0, O0);
 160       __ st(O0, L1_scratch, 0);
 161       __ sub(L1_scratch, wordSize, L1_scratch);
 162       break;
 163 
 164     // cannot use and3, 0xFFFF too big as immediate value!
 165     case T_CHAR   :
 166       __ sll(O0, 16, O0);
 167       __ srl(O0, 16, O0);
 168       __ st(O0, L1_scratch, 0);
 169       __ sub(L1_scratch, wordSize, L1_scratch);
 170       break;
 171 
 172     case T_BYTE   :
 173       __ sll(O0, 24, O0);
 174       __ sra(O0, 24, O0);
 175       __ st(O0, L1_scratch, 0);
 176       __ sub(L1_scratch, wordSize, L1_scratch);
 177       break;
 178 
 179     case T_SHORT  :
 180       __ sll(O0, 16, O0);
 181       __ sra(O0, 16, O0);
 182       __ st(O0, L1_scratch, 0);
 183       __ sub(L1_scratch, wordSize, L1_scratch);
 184       break;
 185     case T_LONG   :
 186 #ifndef _LP64
 187 #if defined(COMPILER2)
 188   // All return values are where we want them, except for Longs.  C2 returns
 189   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 190   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 191   // build even if we are returning from interpreted we just do a little
 192   // stupid shuffing.
 193   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 194   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 195   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 196       __ stx(G1, L1_scratch, -wordSize);
 197 #else
 198       // native result is in O0, O1
 199       __ st(O1, L1_scratch, 0);                      // Low order
 200       __ st(O0, L1_scratch, -wordSize);              // High order
 201 #endif /* COMPILER2 */
 202 #else
 203       __ stx(O0, L1_scratch, -wordSize);
 204 #endif
 205       __ sub(L1_scratch, 2*wordSize, L1_scratch);
 206       break;
 207 
 208     case T_INT    :
 209       __ st(O0, L1_scratch, 0);
 210       __ sub(L1_scratch, wordSize, L1_scratch);
 211       break;
 212 
 213     case T_VOID   : /* nothing to do */
 214       break;
 215 
 216     case T_FLOAT  :
 217       __ stf(FloatRegisterImpl::S, F0, L1_scratch, 0);
 218       __ sub(L1_scratch, wordSize, L1_scratch);
 219       break;
 220 
 221     case T_DOUBLE :
 222       // Every stack slot is aligned on 64 bit, However is this
 223       // the correct stack slot on 64bit?? QQQ
 224       __ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize);
 225       __ sub(L1_scratch, 2*wordSize, L1_scratch);
 226       break;
 227     case T_OBJECT :
 228       __ verify_oop(O0);
 229       __ st_ptr(O0, L1_scratch, 0);
 230       __ sub(L1_scratch, wordSize, L1_scratch);
 231       break;
 232     default       : ShouldNotReachHere();
 233   }
 234   __ retl();                          // return from interpreter activation
 235   __ delayed()->nop();                // schedule this better
 236   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
 237   return entry;
 238 }
 239 
 240 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
 241   // A result is in the java expression stack of the interpreted method that has just
 242   // returned. Place this result on the java expression stack of the caller.
 243   //
 244   // The current interpreter activation in Lstate is for the method just returning its
 245   // result. So we know that the result of this method is on the top of the current
 246   // execution stack (which is pre-pushed) and will be return to the top of the caller
 247   // stack. The top of the callers stack is the bottom of the locals of the current
 248   // activation.
 249   // Because of the way activation are managed by the frame manager the value of esp is
 250   // below both the stack top of the current activation and naturally the stack top
 251   // of the calling activation. This enable this routine to leave the return address
 252   // to the frame manager on the stack and do a vanilla return.
 253   //
 254   // On entry: O0 - points to source (callee stack top)
 255   //           O1 - points to destination (caller stack top [i.e. free location])
 256   // destroys O2, O3
 257   //
 258 
 259   address entry = __ pc();
 260   switch (type) {
 261     case T_VOID:  break;
 262       break;
 263     case T_FLOAT  :
 264     case T_BOOLEAN:
 265     case T_CHAR   :
 266     case T_BYTE   :
 267     case T_SHORT  :
 268     case T_INT    :
 269       // 1 word result
 270       __ ld(O0, 0, O2);
 271       __ st(O2, O1, 0);
 272       __ sub(O1, wordSize, O1);
 273       break;
 274     case T_DOUBLE  :
 275     case T_LONG    :
 276       // return top two words on current expression stack to caller's expression stack
 277       // The caller's expression stack is adjacent to the current frame manager's intepretState
 278       // except we allocated one extra word for this intepretState so we won't overwrite it
 279       // when we return a two word result.
 280 #ifdef _LP64
 281       __ ld_ptr(O0, 0, O2);
 282       __ st_ptr(O2, O1, -wordSize);
 283 #else
 284       __ ld(O0, 0, O2);
 285       __ ld(O0, wordSize, O3);
 286       __ st(O3, O1, 0);
 287       __ st(O2, O1, -wordSize);
 288 #endif
 289       __ sub(O1, 2*wordSize, O1);
 290       break;
 291     case T_OBJECT :
 292       __ ld_ptr(O0, 0, O2);
 293       __ verify_oop(O2);                                               // verify it
 294       __ st_ptr(O2, O1, 0);
 295       __ sub(O1, wordSize, O1);
 296       break;
 297     default       : ShouldNotReachHere();
 298   }
 299   __ retl();
 300   __ delayed()->nop(); // QQ schedule this better
 301   return entry;
 302 }
 303 
 304 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
 305   // A result is in the java expression stack of the interpreted method that has just
 306   // returned. Place this result in the native abi that the caller expects.
 307   // We are in a new frame registers we set must be in caller (i.e. callstub) frame.
 308   //
 309   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
 310   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
 311   // and so rather than return result onto caller's java expression stack we return the
 312   // result in the expected location based on the native abi.
 313   // On entry: O0 - source (stack top)
 314   // On exit result in expected output register
 315   // QQQ schedule this better
 316 
 317   address entry = __ pc();
 318   switch (type) {
 319     case T_VOID:  break;
 320       break;
 321     case T_FLOAT  :
 322       __ ldf(FloatRegisterImpl::S, O0, 0, F0);
 323       break;
 324     case T_BOOLEAN:
 325     case T_CHAR   :
 326     case T_BYTE   :
 327     case T_SHORT  :
 328     case T_INT    :
 329       // 1 word result
 330       __ ld(O0, 0, O0->after_save());
 331       break;
 332     case T_DOUBLE  :
 333       __ ldf(FloatRegisterImpl::D, O0, 0, F0);
 334       break;
 335     case T_LONG    :
 336       // return top two words on current expression stack to caller's expression stack
 337       // The caller's expression stack is adjacent to the current frame manager's interpretState
 338       // except we allocated one extra word for this intepretState so we won't overwrite it
 339       // when we return a two word result.
 340 #ifdef _LP64
 341       __ ld_ptr(O0, 0, O0->after_save());
 342 #else
 343       __ ld(O0, wordSize, O1->after_save());
 344       __ ld(O0, 0, O0->after_save());
 345 #endif
 346 #if defined(COMPILER2) && !defined(_LP64)
 347       // C2 expects long results in G1 we can't tell if we're returning to interpreted
 348       // or compiled so just be safe use G1 and O0/O1
 349 
 350       // Shift bits into high (msb) of G1
 351       __ sllx(Otos_l1->after_save(), 32, G1);
 352       // Zero extend low bits
 353       __ srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
 354       __ or3 (Otos_l2->after_save(), G1, G1);
 355 #endif /* COMPILER2 */
 356       break;
 357     case T_OBJECT :
 358       __ ld_ptr(O0, 0, O0->after_save());
 359       __ verify_oop(O0->after_save());                                               // verify it
 360       break;
 361     default       : ShouldNotReachHere();
 362   }
 363   __ retl();
 364   __ delayed()->nop();
 365   return entry;
 366 }
 367 
 368 address CppInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
 369   // make it look good in the debugger
 370   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset;
 371 }
 372 
 373 address CppInterpreter::deopt_entry(TosState state, int length) {
 374   address ret = NULL;
 375   if (length != 0) {
 376     switch (state) {
 377       case atos: ret = deopt_frame_manager_return_atos; break;
 378       case btos: ret = deopt_frame_manager_return_btos; break;
 379       case ctos:
 380       case stos:
 381       case itos: ret = deopt_frame_manager_return_itos; break;
 382       case ltos: ret = deopt_frame_manager_return_ltos; break;
 383       case ftos: ret = deopt_frame_manager_return_ftos; break;
 384       case dtos: ret = deopt_frame_manager_return_dtos; break;
 385       case vtos: ret = deopt_frame_manager_return_vtos; break;
 386     }
 387   } else {
 388     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
 389   }
 390   assert(ret != NULL, "Not initialized");
 391   return ret;
 392 }
 393 
 394 //
 395 // Helpers for commoning out cases in the various type of method entries.
 396 //
 397 
 398 // increment invocation count & check for overflow
 399 //
 400 // Note: checking for negative value instead of overflow
 401 //       so we have a 'sticky' overflow test
 402 //
 403 // Lmethod: method
 404 // ??: invocation counter
 405 //
 406 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 407   Label done;
 408   const Register Rcounters = G3_scratch;
 409 
 410   __ ld_ptr(STATE(_method), G5_method);
 411   __ get_method_counters(G5_method, Rcounters, done);
 412 
 413   // Update standard invocation counters
 414   __ increment_invocation_counter(Rcounters, O0, G4_scratch);
 415   if (ProfileInterpreter) {
 416     Address interpreter_invocation_counter(Rcounters, 0,
 417             in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
 418     __ ld(interpreter_invocation_counter, G4_scratch);
 419     __ inc(G4_scratch);
 420     __ st(G4_scratch, interpreter_invocation_counter);
 421   }
 422 
 423   Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
 424   __ sethi(invocation_limit);
 425   __ ld(invocation_limit, G3_scratch);
 426   __ cmp(O0, G3_scratch);
 427   __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
 428   __ delayed()->nop();
 429   __ bind(done);
 430 }
 431 
 432 address InterpreterGenerator::generate_empty_entry(void) {
 433 
 434   // A method that does nothing but return...
 435 
 436   address entry = __ pc();
 437   Label slow_path;
 438 
 439   // do nothing for empty methods (do not even increment invocation counter)
 440   if ( UseFastEmptyMethods) {
 441     // If we need a safepoint check, generate full interpreter entry.
 442     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
 443     __ load_contents(sync_state, G3_scratch);
 444     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 445     __ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry);
 446     __ delayed()->nop();
 447 
 448     // Code: _return
 449     __ retl();
 450     __ delayed()->mov(O5_savedSP, SP);
 451     return entry;
 452   }
 453   return NULL;
 454 }
 455 
 456 // Call an accessor method (assuming it is resolved, otherwise drop into
 457 // vanilla (slow path) entry
 458 
 459 // Generates code to elide accessor methods
 460 // Uses G3_scratch and G1_scratch as scratch
 461 address InterpreterGenerator::generate_accessor_entry(void) {
 462 
 463   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
 464   // parameter size = 1
 465   // Note: We can only use this code if the getfield has been resolved
 466   //       and if we don't have a null-pointer exception => check for
 467   //       these conditions first and use slow path if necessary.
 468   address entry = __ pc();
 469   Label slow_path;
 470 
 471   if ( UseFastAccessorMethods) {
 472     // Check if we need to reach a safepoint and generate full interpreter
 473     // frame if so.
 474     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
 475     __ load_contents(sync_state, G3_scratch);
 476     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 477     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
 478     __ delayed()->nop();
 479 
 480     // Check if local 0 != NULL
 481     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 482     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
 483     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
 484     __ delayed()->nop();
 485 
 486 
 487     // read first instruction word and extract bytecode @ 1 and index @ 2
 488     // get first 4 bytes of the bytecodes (big endian!)
 489     __ ld_ptr(Address(G5_method, 0, in_bytes(Method::const_offset())), G1_scratch);
 490     __ ld(Address(G1_scratch, 0, in_bytes(ConstMethod::codes_offset())), G1_scratch);
 491 
 492     // move index @ 2 far left then to the right most two bytes.
 493     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
 494     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
 495                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
 496 
 497     // get constant pool cache
 498     __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G3_scratch);
 499     __ ld_ptr(G3_scratch, in_bytes(ConstMethod::constants_offset()), G3_scratch);
 500     __ ld_ptr(G3_scratch, ConstantPool::cache_offset_in_bytes(), G3_scratch);
 501 
 502     // get specific constant pool cache entry
 503     __ add(G3_scratch, G1_scratch, G3_scratch);
 504 
 505     // Check the constant Pool cache entry to see if it has been resolved.
 506     // If not, need the slow path.
 507     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
 508     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
 509     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
 510     __ and3(G1_scratch, 0xFF, G1_scratch);
 511     __ cmp(G1_scratch, Bytecodes::_getfield);
 512     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
 513     __ delayed()->nop();
 514 
 515     // Get the type and return field offset from the constant pool cache
 516     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
 517     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
 518 
 519     Label xreturn_path;
 520     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 521     // because they are different sizes.
 522     // Get the type from the constant pool cache
 523     __ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
 524     // Make sure we don't need to mask G1_scratch after the above shift
 525     ConstantPoolCacheEntry::verify_tos_state_shift();
 526     __ cmp(G1_scratch, atos );
 527     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 528     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
 529     __ cmp(G1_scratch, itos);
 530     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 531     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
 532     __ cmp(G1_scratch, stos);
 533     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 534     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
 535     __ cmp(G1_scratch, ctos);
 536     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 537     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
 538 #ifdef ASSERT
 539     __ cmp(G1_scratch, btos);
 540     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 541     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
 542     __ should_not_reach_here();
 543 #endif
 544     __ ldsb(Otos_i, G3_scratch, Otos_i);
 545     __ bind(xreturn_path);
 546 
 547     // _ireturn/_areturn
 548     __ retl();                      // return from leaf routine
 549     __ delayed()->mov(O5_savedSP, SP);
 550 
 551     // Generate regular method entry
 552     __ bind(slow_path);
 553     __ ba(fast_accessor_slow_entry_path);
 554     __ delayed()->nop();
 555     return entry;
 556   }
 557   return NULL;
 558 }
 559 
 560 address InterpreterGenerator::generate_Reference_get_entry(void) {
 561 #if INCLUDE_ALL_GCS
 562   if (UseG1GC) {
 563     // We need to generate have a routine that generates code to:
 564     //   * load the value in the referent field
 565     //   * passes that value to the pre-barrier.
 566     //
 567     // In the case of G1 this will record the value of the
 568     // referent in an SATB buffer if marking is active.
 569     // This will cause concurrent marking to mark the referent
 570     // field as live.
 571     Unimplemented();
 572   }
 573 #endif // INCLUDE_ALL_GCS
 574 
 575   // If G1 is not enabled then attempt to go through the accessor entry point
 576   // Reference.get is an accessor
 577   return generate_accessor_entry();
 578 }
 579 
 580 //
 581 // Interpreter stub for calling a native method. (C++ interpreter)
 582 // This sets up a somewhat different looking stack for calling the native method
 583 // than the typical interpreter frame setup.
 584 //
 585 
 586 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 587   address entry = __ pc();
 588 
 589   // the following temporary registers are used during frame creation
 590   const Register Gtmp1 = G3_scratch ;
 591   const Register Gtmp2 = G1_scratch;
 592   const Register RconstMethod = Gtmp1;
 593   const Address constMethod(G5_method, 0, in_bytes(Method::const_offset()));
 594   const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
 595 
 596   bool inc_counter  = UseCompiler || CountCompiledCalls;
 597 
 598   // make sure registers are different!
 599   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
 600 
 601   const Address access_flags      (G5_method, 0, in_bytes(Method::access_flags_offset()));
 602 
 603   Label Lentry;
 604   __ bind(Lentry);
 605 
 606   const Register Glocals_size = G3;
 607   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
 608 
 609   // make sure method is native & not abstract
 610   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
 611 #ifdef ASSERT
 612   __ ld(access_flags, Gtmp1);
 613   {
 614     Label L;
 615     __ btst(JVM_ACC_NATIVE, Gtmp1);
 616     __ br(Assembler::notZero, false, Assembler::pt, L);
 617     __ delayed()->nop();
 618     __ stop("tried to execute non-native method as native");
 619     __ bind(L);
 620   }
 621   { Label L;
 622     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
 623     __ br(Assembler::zero, false, Assembler::pt, L);
 624     __ delayed()->nop();
 625     __ stop("tried to execute abstract method as non-abstract");
 626     __ bind(L);
 627   }
 628 #endif // ASSERT
 629 
 630   __ ld_ptr(constMethod, RconstMethod);
 631   __ lduh(size_of_parameters, Gtmp1);
 632   __ sll(Gtmp1, LogBytesPerWord, Gtmp2);       // parameter size in bytes
 633   __ add(Gargs, Gtmp2, Gargs);                 // points to first local + BytesPerWord
 634   // NEW
 635   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
 636   // generate the code to allocate the interpreter stack frame
 637   // NEW FRAME ALLOCATED HERE
 638   // save callers original sp
 639   // __ mov(SP, I5_savedSP->after_restore());
 640 
 641   generate_compute_interpreter_state(Lstate, G0, true);
 642 
 643   // At this point Lstate points to new interpreter state
 644   //
 645 
 646   const Address do_not_unlock_if_synchronized(G2_thread, 0,
 647       in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 648   // Since at this point in the method invocation the exception handler
 649   // would try to exit the monitor of synchronized methods which hasn't
 650   // been entered yet, we set the thread local variable
 651   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 652   // runtime, exception handling i.e. unlock_if_synchronized_method will
 653   // check this thread local flag.
 654   // This flag has two effects, one is to force an unwind in the topmost
 655   // interpreter frame and not perform an unlock while doing so.
 656 
 657   __ movbool(true, G3_scratch);
 658   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
 659 
 660 
 661   // increment invocation counter and check for overflow
 662   //
 663   // Note: checking for negative value instead of overflow
 664   //       so we have a 'sticky' overflow test (may be of
 665   //       importance as soon as we have true MT/MP)
 666   Label invocation_counter_overflow;
 667   if (inc_counter) {
 668     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 669   }
 670   Label Lcontinue;
 671   __ bind(Lcontinue);
 672 
 673   bang_stack_shadow_pages(true);
 674   // reset the _do_not_unlock_if_synchronized flag
 675   __ stbool(G0, do_not_unlock_if_synchronized);
 676 
 677   // check for synchronized methods
 678   // Must happen AFTER invocation_counter check, so method is not locked
 679   // if counter overflows.
 680 
 681   if (synchronized) {
 682     lock_method();
 683     // Don't see how G2_thread is preserved here...
 684     // __ verify_thread(); QQQ destroys L0,L1 can't use
 685   } else {
 686 #ifdef ASSERT
 687     { Label ok;
 688       __ ld_ptr(STATE(_method), G5_method);
 689       __ ld(access_flags, O0);
 690       __ btst(JVM_ACC_SYNCHRONIZED, O0);
 691       __ br( Assembler::zero, false, Assembler::pt, ok);
 692       __ delayed()->nop();
 693       __ stop("method needs synchronization");
 694       __ bind(ok);
 695     }
 696 #endif // ASSERT
 697   }
 698 
 699   // start execution
 700 
 701 //   __ verify_thread(); kills L1,L2 can't  use at the moment
 702 
 703   // jvmti/jvmpi support
 704   __ notify_method_entry();
 705 
 706   // native call
 707 
 708   // (note that O0 is never an oop--at most it is a handle)
 709   // It is important not to smash any handles created by this call,
 710   // until any oop handle in O0 is dereferenced.
 711 
 712   // (note that the space for outgoing params is preallocated)
 713 
 714   // get signature handler
 715 
 716   Label pending_exception_present;
 717 
 718   { Label L;
 719     __ ld_ptr(STATE(_method), G5_method);
 720     __ ld_ptr(Address(G5_method, 0, in_bytes(Method::signature_handler_offset())), G3_scratch);
 721     __ tst(G3_scratch);
 722     __ brx(Assembler::notZero, false, Assembler::pt, L);
 723     __ delayed()->nop();
 724     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false);
 725     __ ld_ptr(STATE(_method), G5_method);
 726 
 727     Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
 728     __ ld_ptr(exception_addr, G3_scratch);
 729     __ br_notnull_short(G3_scratch, Assembler::pn, pending_exception_present);
 730     __ ld_ptr(Address(G5_method, 0, in_bytes(Method::signature_handler_offset())), G3_scratch);
 731     __ bind(L);
 732   }
 733 
 734   // Push a new frame so that the args will really be stored in
 735   // Copy a few locals across so the new frame has the variables
 736   // we need but these values will be dead at the jni call and
 737   // therefore not gc volatile like the values in the current
 738   // frame (Lstate in particular)
 739 
 740   // Flush the state pointer to the register save area
 741   // Which is the only register we need for a stack walk.
 742   __ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
 743 
 744   __ mov(Lstate, O1);         // Need to pass the state pointer across the frame
 745 
 746   // Calculate current frame size
 747   __ sub(SP, FP, O3);         // Calculate negative of current frame size
 748   __ save(SP, O3, SP);        // Allocate an identical sized frame
 749 
 750   __ mov(I1, Lstate);          // In the "natural" register.
 751 
 752   // Note I7 has leftover trash. Slow signature handler will fill it in
 753   // should we get there. Normal jni call will set reasonable last_Java_pc
 754   // below (and fix I7 so the stack trace doesn't have a meaningless frame
 755   // in it).
 756 
 757 
 758   // call signature handler
 759   __ ld_ptr(STATE(_method), Lmethod);
 760   __ ld_ptr(STATE(_locals), Llocals);
 761 
 762   __ callr(G3_scratch, 0);
 763   __ delayed()->nop();
 764   __ ld_ptr(STATE(_thread), G2_thread);        // restore thread (shouldn't be needed)
 765 
 766   { Label not_static;
 767 
 768     __ ld_ptr(STATE(_method), G5_method);
 769     __ ld(access_flags, O0);
 770     __ btst(JVM_ACC_STATIC, O0);
 771     __ br( Assembler::zero, false, Assembler::pt, not_static);
 772     __ delayed()->
 773       // get native function entry point(O0 is a good temp until the very end)
 774        ld_ptr(Address(G5_method, 0, in_bytes(Method::native_function_offset())), O0);
 775     // for static methods insert the mirror argument
 776     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 777 
 778     __ ld_ptr(Address(G5_method, 0, in_bytes(Method:: const_offset())), O1);
 779     __ ld_ptr(Address(O1, 0, in_bytes(ConstMethod::constants_offset())), O1);
 780     __ ld_ptr(Address(O1, 0, ConstantPool::pool_holder_offset_in_bytes()), O1);
 781     __ ld_ptr(O1, mirror_offset, O1);
 782     // where the mirror handle body is allocated:
 783 #ifdef ASSERT
 784     if (!PrintSignatureHandlers)  // do not dirty the output with this
 785     { Label L;
 786       __ tst(O1);
 787       __ brx(Assembler::notZero, false, Assembler::pt, L);
 788       __ delayed()->nop();
 789       __ stop("mirror is missing");
 790       __ bind(L);
 791     }
 792 #endif // ASSERT
 793     __ st_ptr(O1, STATE(_oop_temp));
 794     __ add(STATE(_oop_temp), O1);            // this is really an LEA not an add
 795     __ bind(not_static);
 796   }
 797 
 798   // At this point, arguments have been copied off of stack into
 799   // their JNI positions, which are O1..O5 and SP[68..].
 800   // Oops are boxed in-place on the stack, with handles copied to arguments.
 801   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
 802 
 803 #ifdef ASSERT
 804   { Label L;
 805     __ tst(O0);
 806     __ brx(Assembler::notZero, false, Assembler::pt, L);
 807     __ delayed()->nop();
 808     __ stop("native entry point is missing");
 809     __ bind(L);
 810   }
 811 #endif // ASSERT
 812 
 813   //
 814   // setup the java frame anchor
 815   //
 816   // The scavenge function only needs to know that the PC of this frame is
 817   // in the interpreter method entry code, it doesn't need to know the exact
 818   // PC and hence we can use O7 which points to the return address from the
 819   // previous call in the code stream (signature handler function)
 820   //
 821   // The other trick is we set last_Java_sp to FP instead of the usual SP because
 822   // we have pushed the extra frame in order to protect the volatile register(s)
 823   // in that frame when we return from the jni call
 824   //
 825 
 826 
 827   __ set_last_Java_frame(FP, O7);
 828   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
 829                    // not meaningless information that'll confuse me.
 830 
 831   // flush the windows now. We don't care about the current (protection) frame
 832   // only the outer frames
 833 
 834   __ flush_windows();
 835 
 836   // mark windows as flushed
 837   Address flags(G2_thread,
 838                 0,
 839                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
 840   __ set(JavaFrameAnchor::flushed, G3_scratch);
 841   __ st(G3_scratch, flags);
 842 
 843   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
 844 
 845   Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
 846 #ifdef ASSERT
 847   { Label L;
 848     __ ld(thread_state, G3_scratch);
 849     __ cmp(G3_scratch, _thread_in_Java);
 850     __ br(Assembler::equal, false, Assembler::pt, L);
 851     __ delayed()->nop();
 852     __ stop("Wrong thread state in native stub");
 853     __ bind(L);
 854   }
 855 #endif // ASSERT
 856   __ set(_thread_in_native, G3_scratch);
 857   __ st(G3_scratch, thread_state);
 858 
 859   // Call the jni method, using the delay slot to set the JNIEnv* argument.
 860   __ callr(O0, 0);
 861   __ delayed()->
 862      add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
 863   __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
 864 
 865   // must we block?
 866 
 867   // Block, if necessary, before resuming in _thread_in_Java state.
 868   // In order for GC to work, don't clear the last_Java_sp until after blocking.
 869   { Label no_block;
 870     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
 871 
 872     // Switch thread to "native transition" state before reading the synchronization state.
 873     // This additional state is necessary because reading and testing the synchronization
 874     // state is not atomic w.r.t. GC, as this scenario demonstrates:
 875     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
 876     //     VM thread changes sync state to synchronizing and suspends threads for GC.
 877     //     Thread A is resumed to finish this native method, but doesn't block here since it
 878     //     didn't see any synchronization is progress, and escapes.
 879     __ set(_thread_in_native_trans, G3_scratch);
 880     __ st(G3_scratch, thread_state);
 881     if(os::is_MP()) {
 882       // Write serialization page so VM thread can do a pseudo remote membar.
 883       // We use the current thread pointer to calculate a thread specific
 884       // offset to write to within the page. This minimizes bus traffic
 885       // due to cache line collision.
 886       __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
 887     }
 888     __ load_contents(sync_state, G3_scratch);
 889     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 890 
 891 
 892     Label L;
 893     Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
 894     __ br(Assembler::notEqual, false, Assembler::pn, L);
 895     __ delayed()->
 896       ld(suspend_state, G3_scratch);
 897     __ cmp(G3_scratch, 0);
 898     __ br(Assembler::equal, false, Assembler::pt, no_block);
 899     __ delayed()->nop();
 900     __ bind(L);
 901 
 902     // Block.  Save any potential method result value before the operation and
 903     // use a leaf call to leave the last_Java_frame setup undisturbed.
 904     save_native_result();
 905     __ call_VM_leaf(noreg,
 906                     CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans),
 907                     G2_thread);
 908     __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
 909     // Restore any method result value
 910     restore_native_result();
 911     __ bind(no_block);
 912   }
 913 
 914   // Clear the frame anchor now
 915 
 916   __ reset_last_Java_frame();
 917 
 918   // Move the result handler address
 919   __ mov(Lscratch, G3_scratch);
 920   // return possible result to the outer frame
 921 #ifndef __LP64
 922   __ mov(O0, I0);
 923   __ restore(O1, G0, O1);
 924 #else
 925   __ restore(O0, G0, O0);
 926 #endif /* __LP64 */
 927 
 928   // Move result handler to expected register
 929   __ mov(G3_scratch, Lscratch);
 930 
 931 
 932   // thread state is thread_in_native_trans. Any safepoint blocking has
 933   // happened in the trampoline we are ready to switch to thread_in_Java.
 934 
 935   __ set(_thread_in_Java, G3_scratch);
 936   __ st(G3_scratch, thread_state);
 937 
 938   // If we have an oop result store it where it will be safe for any further gc
 939   // until we return now that we've released the handle it might be protected by
 940 
 941   {
 942     Label no_oop, store_result;
 943 
 944     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
 945     __ cmp(G3_scratch, Lscratch);
 946     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
 947     __ delayed()->nop();
 948     __ addcc(G0, O0, O0);
 949     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
 950     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
 951     __ mov(G0, O0);
 952 
 953     __ bind(store_result);
 954     // Store it where gc will look for it and result handler expects it.
 955     __ st_ptr(O0, STATE(_oop_temp));
 956 
 957     __ bind(no_oop);
 958 
 959   }
 960 
 961   // reset handle block
 962   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
 963   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
 964 
 965 
 966   // handle exceptions (exception handling will handle unlocking!)
 967   { Label L;
 968     Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
 969 
 970     __ ld_ptr(exception_addr, Gtemp);
 971     __ tst(Gtemp);
 972     __ brx(Assembler::equal, false, Assembler::pt, L);
 973     __ delayed()->nop();
 974     __ bind(pending_exception_present);
 975     // With c++ interpreter we just leave it pending caller will do the correct thing. However...
 976     // Like x86 we ignore the result of the native call and leave the method locked. This
 977     // seems wrong to leave things locked.
 978 
 979     __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
 980     __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 981 
 982     __ bind(L);
 983   }
 984 
 985   // jvmdi/jvmpi support (preserves thread register)
 986   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
 987 
 988   if (synchronized) {
 989     // save and restore any potential method result value around the unlocking operation
 990     save_native_result();
 991 
 992     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 993     // Get the initial monitor we allocated
 994     __ sub(Lstate, entry_size, O1);                        // initial monitor
 995     __ unlock_object(O1);
 996     restore_native_result();
 997   }
 998 
 999 #if defined(COMPILER2) && !defined(_LP64)
1000 
1001   // C2 expects long results in G1 we can't tell if we're returning to interpreted
1002   // or compiled so just be safe.
1003 
1004   __ sllx(O0, 32, G1);          // Shift bits into high G1
1005   __ srl (O1, 0, O1);           // Zero extend O1
1006   __ or3 (O1, G1, G1);          // OR 64 bits into G1
1007 
1008 #endif /* COMPILER2 && !_LP64 */
1009 
1010 #ifdef ASSERT
1011   {
1012     Label ok;
1013     __ cmp(I5_savedSP, FP);
1014     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
1015     __ delayed()->nop();
1016     __ stop("bad I5_savedSP value");
1017     __ should_not_reach_here();
1018     __ bind(ok);
1019   }
1020 #endif
1021   // Calls result handler which POPS FRAME
1022   if (TraceJumps) {
1023     // Move target to register that is recordable
1024     __ mov(Lscratch, G3_scratch);
1025     __ JMP(G3_scratch, 0);
1026   } else {
1027     __ jmp(Lscratch, 0);
1028   }
1029   __ delayed()->nop();
1030 
1031   if (inc_counter) {
1032     // handle invocation counter overflow
1033     __ bind(invocation_counter_overflow);
1034     generate_counter_overflow(Lcontinue);
1035   }
1036 
1037 
1038   return entry;
1039 }
1040 
1041 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
1042                                                               const Register prev_state,
1043                                                               bool native) {
1044 
1045   // On entry
1046   // G5_method - caller's method
1047   // Gargs - points to initial parameters (i.e. locals[0])
1048   // G2_thread - valid? (C1 only??)
1049   // "prev_state" - contains any previous frame manager state which we must save a link
1050   //
1051   // On return
1052   // "state" is a pointer to the newly allocated  state object. We must allocate and initialize
1053   // a new interpretState object and the method expression stack.
1054 
1055   assert_different_registers(state, prev_state);
1056   assert_different_registers(prev_state, G3_scratch);
1057   const Register Gtmp = G3_scratch;
1058   const Address constMethod       (G5_method, 0, in_bytes(Method::const_offset()));
1059   const Address access_flags      (G5_method, 0, in_bytes(Method::access_flags_offset()));
1060 
1061   // slop factor is two extra slots on the expression stack so that
1062   // we always have room to store a result when returning from a call without parameters
1063   // that returns a result.
1064 
1065   const int slop_factor = 2*wordSize;
1066 
1067   const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor?
1068                          Method::extra_stack_entries() + // extra stack for jsr 292
1069                          frame::memory_parameter_word_sp_offset +  // register save area + param window
1070                          (native ?  frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class
1071 
1072   // XXX G5_method valid
1073 
1074   // Now compute new frame size
1075 
1076   if (native) {
1077     const Register RconstMethod = Gtmp;
1078     const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
1079     __ ld_ptr(constMethod, RconstMethod);
1080     __ lduh( size_of_parameters, Gtmp );
1081     __ calc_mem_param_words(Gtmp, Gtmp);     // space for native call parameters passed on the stack in words
1082   } else {
1083     // Full size expression stack
1084     __ ld_ptr(constMethod, Gtmp);
1085     __ lduh(Gtmp, in_bytes(ConstMethod::max_stack_offset()), Gtmp);
1086   }
1087   __ add(Gtmp, fixed_size, Gtmp);           // plus the fixed portion
1088 
1089   __ neg(Gtmp);                               // negative space for stack/parameters in words
1090   __ and3(Gtmp, -WordsPerLong, Gtmp);        // make multiple of 2 (SP must be 2-word aligned)
1091   __ sll(Gtmp, LogBytesPerWord, Gtmp);       // negative space for frame in bytes
1092 
1093   // Need to do stack size check here before we fault on large frames
1094 
1095   Label stack_ok;
1096 
1097   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
1098                                                                               (StackRedPages+StackYellowPages);
1099 
1100 
1101   __ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0);
1102   __ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1);
1103   // compute stack bottom
1104   __ sub(O0, O1, O0);
1105 
1106   // Avoid touching the guard pages
1107   // Also a fudge for frame size of BytecodeInterpreter::run
1108   // It varies from 1k->4k depending on build type
1109   const int fudge = 6 * K;
1110 
1111   __ set(fudge + (max_pages * os::vm_page_size()), O1);
1112 
1113   __ add(O0, O1, O0);
1114   __ sub(O0, Gtmp, O0);
1115   __ cmp(SP, O0);
1116   __ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok);
1117   __ delayed()->nop();
1118 
1119      // throw exception return address becomes throwing pc
1120 
1121   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
1122   __ stop("never reached");
1123 
1124   __ bind(stack_ok);
1125 
1126   __ save(SP, Gtmp, SP);                      // setup new frame and register window
1127 
1128   // New window I7 call_stub or previous activation
1129   // O6 - register save area, BytecodeInterpreter just below it, args/locals just above that
1130   //
1131   __ sub(FP, sizeof(BytecodeInterpreter), state);        // Point to new Interpreter state
1132   __ add(state, STACK_BIAS, state );         // Account for 64bit bias
1133 
1134 #define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
1135 
1136   // Initialize a new Interpreter state
1137   // orig_sp - caller's original sp
1138   // G2_thread - thread
1139   // Gargs - &locals[0] (unbiased?)
1140   // G5_method - method
1141   // SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window
1142 
1143 
1144   __ set(0xdead0004, O1);
1145 
1146 
1147   __ st_ptr(Gargs, XXX_STATE(_locals));
1148   __ st_ptr(G0, XXX_STATE(_oop_temp));
1149 
1150   __ st_ptr(state, XXX_STATE(_self_link));                // point to self
1151   __ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states
1152   __ st_ptr(G2_thread, XXX_STATE(_thread));               // Store javathread
1153 
1154   if (native) {
1155     __ st_ptr(G0, XXX_STATE(_bcp));
1156   } else {
1157     __ ld_ptr(G5_method, in_bytes(Method::const_offset()), O2); // get ConstMethod*
1158     __ add(O2, in_bytes(ConstMethod::codes_offset()), O2);        // get bcp
1159     __ st_ptr(O2, XXX_STATE(_bcp));
1160   }
1161 
1162   __ st_ptr(G0, XXX_STATE(_mdx));
1163   __ st_ptr(G5_method, XXX_STATE(_method));
1164 
1165   __ set((int) BytecodeInterpreter::method_entry, O1);
1166   __ st(O1, XXX_STATE(_msg));
1167 
1168   __ ld_ptr(constMethod, O3);
1169   __ ld_ptr(O3, in_bytes(ConstMethod::constants_offset()), O3);
1170   __ ld_ptr(O3, ConstantPool::cache_offset_in_bytes(), O2);
1171   __ st_ptr(O2, XXX_STATE(_constants));
1172 
1173   __ st_ptr(G0, XXX_STATE(_result._to_call._callee));
1174 
1175   // Monitor base is just start of BytecodeInterpreter object;
1176   __ mov(state, O2);
1177   __ st_ptr(O2, XXX_STATE(_monitor_base));
1178 
1179   // Do we need a monitor for synchonized method?
1180   {
1181     __ ld(access_flags, O1);
1182     Label done;
1183     Label got_obj;
1184     __ btst(JVM_ACC_SYNCHRONIZED, O1);
1185     __ br( Assembler::zero, false, Assembler::pt, done);
1186 
1187     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1188     __ delayed()->btst(JVM_ACC_STATIC, O1);
1189     __ ld_ptr(XXX_STATE(_locals), O1);
1190     __ br( Assembler::zero, true, Assembler::pt, got_obj);
1191     __ delayed()->ld_ptr(O1, 0, O1);                  // get receiver for not-static case
1192     __ ld_ptr(constMethod, O1);
1193     __ ld_ptr( O1, in_bytes(ConstMethod::constants_offset()), O1);
1194     __ ld_ptr( O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
1195     // lock the mirror, not the Klass*
1196     __ ld_ptr( O1, mirror_offset, O1);
1197 
1198     __ bind(got_obj);
1199 
1200   #ifdef ASSERT
1201     __ tst(O1);
1202     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
1203   #endif // ASSERT
1204 
1205     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
1206     __ sub(SP, entry_size, SP);                         // account for initial monitor
1207     __ sub(O2, entry_size, O2);                        // initial monitor
1208     __ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use
1209     __ bind(done);
1210   }
1211 
1212   // Remember initial frame bottom
1213 
1214   __ st_ptr(SP, XXX_STATE(_frame_bottom));
1215 
1216   __ st_ptr(O2, XXX_STATE(_stack_base));
1217 
1218   __ sub(O2, wordSize, O2);                    // prepush
1219   __ st_ptr(O2, XXX_STATE(_stack));                // PREPUSH
1220 
1221   // Full size expression stack
1222   __ ld_ptr(constMethod, O3);
1223   __ lduh(O3, in_bytes(ConstMethod::max_stack_offset()), O3);
1224   __ inc(O3, Method::extra_stack_entries());
1225   __ sll(O3, LogBytesPerWord, O3);
1226   __ sub(O2, O3, O3);
1227 //  __ sub(O3, wordSize, O3);                    // so prepush doesn't look out of bounds
1228   __ st_ptr(O3, XXX_STATE(_stack_limit));
1229 
1230   if (!native) {
1231     //
1232     // Code to initialize locals
1233     //
1234     Register init_value = noreg;    // will be G0 if we must clear locals
1235     // Now zero locals
1236     if (true /* zerolocals */ || ClearInterpreterLocals) {
1237       // explicitly initialize locals
1238       init_value = G0;
1239     } else {
1240     #ifdef ASSERT
1241       // initialize locals to a garbage pattern for better debugging
1242       init_value = O3;
1243       __ set( 0x0F0F0F0F, init_value );
1244     #endif // ASSERT
1245     }
1246     if (init_value != noreg) {
1247       Label clear_loop;
1248       const Register RconstMethod = O1;
1249       const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
1250       const Address size_of_locals    (RconstMethod, 0, in_bytes(ConstMethod::size_of_locals_offset()));
1251 
1252       // NOTE: If you change the frame layout, this code will need to
1253       // be updated!
1254       __ ld_ptr( constMethod, RconstMethod );
1255       __ lduh( size_of_locals, O2 );
1256       __ lduh( size_of_parameters, O1 );
1257       __ sll( O2, LogBytesPerWord, O2);
1258       __ sll( O1, LogBytesPerWord, O1 );
1259       __ ld_ptr(XXX_STATE(_locals), L2_scratch);
1260       __ sub( L2_scratch, O2, O2 );
1261       __ sub( L2_scratch, O1, O1 );
1262 
1263       __ bind( clear_loop );
1264       __ inc( O2, wordSize );
1265 
1266       __ cmp( O2, O1 );
1267       __ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1268       __ delayed()->st_ptr( init_value, O2, 0 );
1269     }
1270   }
1271 }
1272 // Find preallocated  monitor and lock method (C++ interpreter)
1273 //
1274 void InterpreterGenerator::lock_method(void) {
1275 // Lock the current method.
1276 // Destroys registers L2_scratch, L3_scratch, O0
1277 //
1278 // Find everything relative to Lstate
1279 
1280 #ifdef ASSERT
1281   __ ld_ptr(STATE(_method), L2_scratch);
1282   __ ld(L2_scratch, in_bytes(Method::access_flags_offset()), O0);
1283 
1284  { Label ok;
1285    __ btst(JVM_ACC_SYNCHRONIZED, O0);
1286    __ br( Assembler::notZero, false, Assembler::pt, ok);
1287    __ delayed()->nop();
1288    __ stop("method doesn't need synchronization");
1289    __ bind(ok);
1290   }
1291 #endif // ASSERT
1292 
1293   // monitor is already allocated at stack base
1294   // and the lockee is already present
1295   __ ld_ptr(STATE(_stack_base), L2_scratch);
1296   __ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0);   // get object
1297   __ lock_object(L2_scratch, O0);
1298 
1299 }
1300 
1301 //  Generate code for handling resuming a deopted method
1302 void CppInterpreterGenerator::generate_deopt_handling() {
1303 
1304   Label return_from_deopt_common;
1305 
1306   // deopt needs to jump to here to enter the interpreter (return a result)
1307   deopt_frame_manager_return_atos  = __ pc();
1308 
1309   // O0/O1 live
1310   __ ba(return_from_deopt_common);
1311   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch);    // Result stub address array index
1312 
1313 
1314   // deopt needs to jump to here to enter the interpreter (return a result)
1315   deopt_frame_manager_return_btos  = __ pc();
1316 
1317   // O0/O1 live
1318   __ ba(return_from_deopt_common);
1319   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch);    // Result stub address array index
1320 
1321   // deopt needs to jump to here to enter the interpreter (return a result)
1322   deopt_frame_manager_return_itos  = __ pc();
1323 
1324   // O0/O1 live
1325   __ ba(return_from_deopt_common);
1326   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch);    // Result stub address array index
1327 
1328   // deopt needs to jump to here to enter the interpreter (return a result)
1329 
1330   deopt_frame_manager_return_ltos  = __ pc();
1331 #if !defined(_LP64) && defined(COMPILER2)
1332   // All return values are where we want them, except for Longs.  C2 returns
1333   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
1334   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
1335   // build even if we are returning from interpreted we just do a little
1336   // stupid shuffing.
1337   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
1338   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
1339   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
1340 
1341   __ srl (G1, 0,O1);
1342   __ srlx(G1,32,O0);
1343 #endif /* !_LP64 && COMPILER2 */
1344   // O0/O1 live
1345   __ ba(return_from_deopt_common);
1346   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch);    // Result stub address array index
1347 
1348   // deopt needs to jump to here to enter the interpreter (return a result)
1349 
1350   deopt_frame_manager_return_ftos  = __ pc();
1351   // O0/O1 live
1352   __ ba(return_from_deopt_common);
1353   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch);    // Result stub address array index
1354 
1355   // deopt needs to jump to here to enter the interpreter (return a result)
1356   deopt_frame_manager_return_dtos  = __ pc();
1357 
1358   // O0/O1 live
1359   __ ba(return_from_deopt_common);
1360   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch);    // Result stub address array index
1361 
1362   // deopt needs to jump to here to enter the interpreter (return a result)
1363   deopt_frame_manager_return_vtos  = __ pc();
1364 
1365   // O0/O1 live
1366   __ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch);
1367 
1368   // Deopt return common
1369   // an index is present that lets us move any possible result being
1370   // return to the interpreter's stack
1371   //
1372   __ bind(return_from_deopt_common);
1373 
1374   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
1375   // stack is in the state that the  calling convention left it.
1376   // Copy the result from native abi result and place it on java expression stack.
1377 
1378   // Current interpreter state is present in Lstate
1379 
1380   // Get current pre-pushed top of interpreter stack
1381   // Any result (if any) is in native abi
1382   // result type index is in L3_scratch
1383 
1384   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
1385 
1386   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
1387   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
1388   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
1389   __ jmpl(Lscratch, G0, O7);                                         // and convert it
1390   __ delayed()->nop();
1391 
1392   // L1_scratch points to top of stack (prepushed)
1393   __ st_ptr(L1_scratch, STATE(_stack));
1394 }
1395 
1396 // Generate the code to handle a more_monitors message from the c++ interpreter
1397 void CppInterpreterGenerator::generate_more_monitors() {
1398 
1399   Label entry, loop;
1400   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1401   // 1. compute new pointers                                // esp: old expression stack top
1402   __ delayed()->ld_ptr(STATE(_stack_base), L4_scratch);            // current expression stack bottom
1403   __ sub(L4_scratch, entry_size, L4_scratch);
1404   __ st_ptr(L4_scratch, STATE(_stack_base));
1405 
1406   __ sub(SP, entry_size, SP);                  // Grow stack
1407   __ st_ptr(SP, STATE(_frame_bottom));
1408 
1409   __ ld_ptr(STATE(_stack_limit), L2_scratch);
1410   __ sub(L2_scratch, entry_size, L2_scratch);
1411   __ st_ptr(L2_scratch, STATE(_stack_limit));
1412 
1413   __ ld_ptr(STATE(_stack), L1_scratch);                // Get current stack top
1414   __ sub(L1_scratch, entry_size, L1_scratch);
1415   __ st_ptr(L1_scratch, STATE(_stack));
1416   __ ba(entry);
1417   __ delayed()->add(L1_scratch, wordSize, L1_scratch);        // first real entry (undo prepush)
1418 
1419   // 2. move expression stack
1420 
1421   __ bind(loop);
1422   __ st_ptr(L3_scratch, Address(L1_scratch, 0));
1423   __ add(L1_scratch, wordSize, L1_scratch);
1424   __ bind(entry);
1425   __ cmp(L1_scratch, L4_scratch);
1426   __ br(Assembler::notEqual, false, Assembler::pt, loop);
1427   __ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch);
1428 
1429   // now zero the slot so we can find it.
1430   __ st_ptr(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes());
1431 
1432 }
1433 
1434 // Initial entry to C++ interpreter from the call_stub.
1435 // This entry point is called the frame manager since it handles the generation
1436 // of interpreter activation frames via requests directly from the vm (via call_stub)
1437 // and via requests from the interpreter. The requests from the call_stub happen
1438 // directly thru the entry point. Requests from the interpreter happen via returning
1439 // from the interpreter and examining the message the interpreter has returned to
1440 // the frame manager. The frame manager can take the following requests:
1441 
1442 // NO_REQUEST - error, should never happen.
1443 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
1444 //                 allocate a new monitor.
1445 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
1446 //               happens during entry during the entry via the call stub.
1447 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
1448 //
1449 // Arguments:
1450 //
1451 // ebx: Method*
1452 // ecx: receiver - unused (retrieved from stack as needed)
1453 // esi: previous frame manager state (NULL from the call_stub/c1/c2)
1454 //
1455 //
1456 // Stack layout at entry
1457 //
1458 // [ return address     ] <--- esp
1459 // [ parameter n        ]
1460 //   ...
1461 // [ parameter 1        ]
1462 // [ expression stack   ]
1463 //
1464 //
1465 // We are free to blow any registers we like because the call_stub which brought us here
1466 // initially has preserved the callee save registers already.
1467 //
1468 //
1469 
1470 static address interpreter_frame_manager = NULL;
1471 
1472 #ifdef ASSERT
1473   #define VALIDATE_STATE(scratch, marker)                         \
1474   {                                                               \
1475     Label skip;                                                   \
1476     __ ld_ptr(STATE(_self_link), scratch);                        \
1477     __ cmp(Lstate, scratch);                                      \
1478     __ brx(Assembler::equal, false, Assembler::pt, skip);         \
1479     __ delayed()->nop();                                          \
1480     __ breakpoint_trap();                                         \
1481     __ emit_int32(marker);                                         \
1482     __ bind(skip);                                                \
1483   }
1484 #else
1485   #define VALIDATE_STATE(scratch, marker)
1486 #endif /* ASSERT */
1487 
1488 void CppInterpreterGenerator::adjust_callers_stack(Register args) {
1489 //
1490 // Adjust caller's stack so that all the locals can be contiguous with
1491 // the parameters.
1492 // Worries about stack overflow make this a pain.
1493 //
1494 // Destroys args, G3_scratch, G3_scratch
1495 // In/Out O5_savedSP (sender's original SP)
1496 //
1497 //  assert_different_registers(state, prev_state);
1498   const Register Gtmp = G3_scratch;
1499   const RconstMethod = G3_scratch;
1500   const Register tmp = O2;
1501   const Address constMethod(G5_method, 0, in_bytes(Method::const_offset()));
1502   const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
1503   const Address size_of_locals    (RconstMethod, 0, in_bytes(ConstMethod::size_of_locals_offset()));
1504 
1505   __ ld_ptr(constMethod, RconstMethod);
1506   __ lduh(size_of_parameters, tmp);
1507   __ sll(tmp, LogBytesPerWord, Gargs);       // parameter size in bytes
1508   __ add(args, Gargs, Gargs);                // points to first local + BytesPerWord
1509   // NEW
1510   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
1511   // determine extra space for non-argument locals & adjust caller's SP
1512   // Gtmp1: parameter size in words
1513   __ lduh(size_of_locals, Gtmp);
1514   __ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp);
1515 
1516 #if 1
1517   // c2i adapters place the final interpreter argument in the register save area for O0/I0
1518   // the call_stub will place the final interpreter argument at
1519   // frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm
1520   // or c++ interpreter. However with the c++ interpreter when we do a recursive call
1521   // and try to make it look good in the debugger we will store the argument to
1522   // RecursiveInterpreterActivation in the register argument save area. Without allocating
1523   // extra space for the compiler this will overwrite locals in the local array of the
1524   // interpreter.
1525   // QQQ still needed with frameless adapters???
1526 
1527   const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset;
1528 
1529   __ add(Gtmp, c2i_adjust_words*wordSize, Gtmp);
1530 #endif // 1
1531 
1532 
1533   __ sub(SP, Gtmp, SP);                      // just caller's frame for the additional space we need.
1534 }
1535 
1536 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1537 
1538   // G5_method: Method*
1539   // G2_thread: thread (unused)
1540   // Gargs:   bottom of args (sender_sp)
1541   // O5: sender's sp
1542 
1543   // A single frame manager is plenty as we don't specialize for synchronized. We could and
1544   // the code is pretty much ready. Would need to change the test below and for good measure
1545   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
1546   // routines. Not clear this is worth it yet.
1547 
1548   if (interpreter_frame_manager) {
1549     return interpreter_frame_manager;
1550   }
1551 
1552   __ bind(frame_manager_entry);
1553 
1554   // the following temporary registers are used during frame creation
1555   const Register Gtmp1 = G3_scratch;
1556   // const Register Lmirror = L1;     // native mirror (native calls only)
1557 
1558   const Address constMethod       (G5_method, 0, in_bytes(Method::const_offset()));
1559   const Address access_flags      (G5_method, 0, in_bytes(Method::access_flags_offset()));
1560 
1561   address entry_point = __ pc();
1562   __ mov(G0, prevState);                                                 // no current activation
1563 
1564 
1565   Label re_dispatch;
1566 
1567   __ bind(re_dispatch);
1568 
1569   // Interpreter needs to have locals completely contiguous. In order to do that
1570   // We must adjust the caller's stack pointer for any locals beyond just the
1571   // parameters
1572   adjust_callers_stack(Gargs);
1573 
1574   // O5_savedSP still contains sender's sp
1575 
1576   // NEW FRAME
1577 
1578   generate_compute_interpreter_state(Lstate, prevState, false);
1579 
1580   // At this point a new interpreter frame and state object are created and initialized
1581   // Lstate has the pointer to the new activation
1582   // Any stack banging or limit check should already be done.
1583 
1584   Label call_interpreter;
1585 
1586   __ bind(call_interpreter);
1587 
1588 
1589 #if 1
1590   __ set(0xdead002, Lmirror);
1591   __ set(0xdead002, L2_scratch);
1592   __ set(0xdead003, L3_scratch);
1593   __ set(0xdead004, L4_scratch);
1594   __ set(0xdead005, Lscratch);
1595   __ set(0xdead006, Lscratch2);
1596   __ set(0xdead007, L7_scratch);
1597 
1598   __ set(0xdeaf002, O2);
1599   __ set(0xdeaf003, O3);
1600   __ set(0xdeaf004, O4);
1601   __ set(0xdeaf005, O5);
1602 #endif
1603 
1604   // Call interpreter (stack bang complete) enter here if message is
1605   // set and we know stack size is valid
1606 
1607   Label call_interpreter_2;
1608 
1609   __ bind(call_interpreter_2);
1610 
1611 #ifdef ASSERT
1612   {
1613     Label skip;
1614     __ ld_ptr(STATE(_frame_bottom), G3_scratch);
1615     __ cmp(G3_scratch, SP);
1616     __ brx(Assembler::equal, false, Assembler::pt, skip);
1617     __ delayed()->nop();
1618     __ stop("SP not restored to frame bottom");
1619     __ bind(skip);
1620   }
1621 #endif
1622 
1623   VALIDATE_STATE(G3_scratch, 4);
1624   __ set_last_Java_frame(SP, noreg);
1625   __ mov(Lstate, O0);                 // (arg) pointer to current state
1626 
1627   __ call(CAST_FROM_FN_PTR(address,
1628                            JvmtiExport::can_post_interpreter_events() ?
1629                                                                   BytecodeInterpreter::runWithChecks
1630                                                                 : BytecodeInterpreter::run),
1631          relocInfo::runtime_call_type);
1632 
1633   __ delayed()->nop();
1634 
1635   __ ld_ptr(STATE(_thread), G2_thread);
1636   __ reset_last_Java_frame();
1637 
1638   // examine msg from interpreter to determine next action
1639   __ ld_ptr(STATE(_thread), G2_thread);                                  // restore G2_thread
1640 
1641   __ ld(STATE(_msg), L1_scratch);                                       // Get new message
1642 
1643   Label call_method;
1644   Label return_from_interpreted_method;
1645   Label throw_exception;
1646   Label do_OSR;
1647   Label bad_msg;
1648   Label resume_interpreter;
1649 
1650   __ cmp(L1_scratch, (int)BytecodeInterpreter::call_method);
1651   __ br(Assembler::equal, false, Assembler::pt, call_method);
1652   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method);
1653   __ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method);
1654   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception);
1655   __ br(Assembler::equal, false, Assembler::pt, throw_exception);
1656   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr);
1657   __ br(Assembler::equal, false, Assembler::pt, do_OSR);
1658   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors);
1659   __ br(Assembler::notEqual, false, Assembler::pt, bad_msg);
1660 
1661   // Allocate more monitor space, shuffle expression stack....
1662 
1663   generate_more_monitors();
1664 
1665   // new monitor slot allocated, resume the interpreter.
1666 
1667   __ set((int)BytecodeInterpreter::got_monitors, L1_scratch);
1668   VALIDATE_STATE(G3_scratch, 5);
1669   __ ba(call_interpreter);
1670   __ delayed()->st(L1_scratch, STATE(_msg));
1671 
1672   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
1673   unctrap_frame_manager_entry  = __ pc();
1674 
1675   // QQQ what message do we send
1676 
1677   __ ba(call_interpreter);
1678   __ delayed()->ld_ptr(STATE(_frame_bottom), SP);                  // restore to full stack frame
1679 
1680   //=============================================================================
1681   // Returning from a compiled method into a deopted method. The bytecode at the
1682   // bcp has completed. The result of the bytecode is in the native abi (the tosca
1683   // for the template based interpreter). Any stack space that was used by the
1684   // bytecode that has completed has been removed (e.g. parameters for an invoke)
1685   // so all that we have to do is place any pending result on the expression stack
1686   // and resume execution on the next bytecode.
1687 
1688   generate_deopt_handling();
1689 
1690   // ready to resume the interpreter
1691 
1692   __ set((int)BytecodeInterpreter::deopt_resume, L1_scratch);
1693   __ ba(call_interpreter);
1694   __ delayed()->st(L1_scratch, STATE(_msg));
1695 
1696   // Current frame has caught an exception we need to dispatch to the
1697   // handler. We can get here because a native interpreter frame caught
1698   // an exception in which case there is no handler and we must rethrow
1699   // If it is a vanilla interpreted frame the we simply drop into the
1700   // interpreter and let it do the lookup.
1701 
1702   Interpreter::_rethrow_exception_entry = __ pc();
1703 
1704   Label return_with_exception;
1705   Label unwind_and_forward;
1706 
1707   // O0: exception
1708   // O7: throwing pc
1709 
1710   // We want exception in the thread no matter what we ultimately decide about frame type.
1711 
1712   Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
1713   __ verify_thread();
1714   __ st_ptr(O0, exception_addr);
1715 
1716   // get the Method*
1717   __ ld_ptr(STATE(_method), G5_method);
1718 
1719   // if this current frame vanilla or native?
1720 
1721   __ ld(access_flags, Gtmp1);
1722   __ btst(JVM_ACC_NATIVE, Gtmp1);
1723   __ br(Assembler::zero, false, Assembler::pt, return_with_exception);  // vanilla interpreted frame handle directly
1724   __ delayed()->nop();
1725 
1726   // We drop thru to unwind a native interpreted frame with a pending exception
1727   // We jump here for the initial interpreter frame with exception pending
1728   // We unwind the current acivation and forward it to our caller.
1729 
1730   __ bind(unwind_and_forward);
1731 
1732   // Unwind frame and jump to forward exception. unwinding will place throwing pc in O7
1733   // as expected by forward_exception.
1734 
1735   __ restore(FP, G0, SP);                  // unwind interpreter state frame
1736   __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1737   __ delayed()->mov(I5_savedSP->after_restore(), SP);
1738 
1739   // Return point from a call which returns a result in the native abi
1740   // (c1/c2/jni-native). This result must be processed onto the java
1741   // expression stack.
1742   //
1743   // A pending exception may be present in which case there is no result present
1744 
1745   address return_from_native_method = __ pc();
1746 
1747   VALIDATE_STATE(G3_scratch, 6);
1748 
1749   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
1750   // stack is in the state that the  calling convention left it.
1751   // Copy the result from native abi result and place it on java expression stack.
1752 
1753   // Current interpreter state is present in Lstate
1754 
1755   // Exception pending?
1756 
1757   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
1758   __ ld_ptr(exception_addr, Lscratch);                                         // get any pending exception
1759   __ tst(Lscratch);                                                            // exception pending?
1760   __ brx(Assembler::notZero, false, Assembler::pt, return_with_exception);
1761   __ delayed()->nop();
1762 
1763   // Process the native abi result to java expression stack
1764 
1765   __ ld_ptr(STATE(_result._to_call._callee), L4_scratch);                        // called method
1766   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
1767   // get parameter size
1768   __ ld_ptr(L4_scratch, in_bytes(Method::const_offset()), L2_scratch);
1769   __ lduh(L2_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), L2_scratch);
1770   __ sll(L2_scratch, LogBytesPerWord, L2_scratch     );                           // parameter size in bytes
1771   __ add(L1_scratch, L2_scratch, L1_scratch);                                      // stack destination for result
1772   __ ld(L4_scratch, in_bytes(Method::result_index_offset()), L3_scratch); // called method result type index
1773 
1774   // tosca is really just native abi
1775   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
1776   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
1777   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
1778   __ jmpl(Lscratch, G0, O7);                                                   // and convert it
1779   __ delayed()->nop();
1780 
1781   // L1_scratch points to top of stack (prepushed)
1782 
1783   __ ba(resume_interpreter);
1784   __ delayed()->mov(L1_scratch, O1);
1785 
1786   // An exception is being caught on return to a vanilla interpreter frame.
1787   // Empty the stack and resume interpreter
1788 
1789   __ bind(return_with_exception);
1790 
1791   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
1792   __ ld_ptr(STATE(_stack_base), O1);                               // empty java expression stack
1793   __ ba(resume_interpreter);
1794   __ delayed()->sub(O1, wordSize, O1);                             // account for prepush
1795 
1796   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
1797   // interpreter call, or native) and unwind this interpreter activation.
1798   // All monitors should be unlocked.
1799 
1800   __ bind(return_from_interpreted_method);
1801 
1802   VALIDATE_STATE(G3_scratch, 7);
1803 
1804   Label return_to_initial_caller;
1805 
1806   // Interpreted result is on the top of the completed activation expression stack.
1807   // We must return it to the top of the callers stack if caller was interpreted
1808   // otherwise we convert to native abi result and return to call_stub/c1/c2
1809   // The caller's expression stack was truncated by the call however the current activation
1810   // has enough stuff on the stack that we have usable space there no matter what. The
1811   // other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals)
1812   // for the current activation
1813 
1814   __ ld_ptr(STATE(_prev_link), L1_scratch);
1815   __ ld_ptr(STATE(_method), L2_scratch);                               // get method just executed
1816   __ ld(L2_scratch, in_bytes(Method::result_index_offset()), L2_scratch);
1817   __ tst(L1_scratch);
1818   __ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller);
1819   __ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch);
1820 
1821   // Copy result to callers java stack
1822 
1823   __ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch);
1824   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                          // get typed result converter address
1825   __ ld_ptr(STATE(_stack), O0);                                       // current top (prepushed)
1826   __ ld_ptr(STATE(_locals), O1);                                      // stack destination
1827 
1828   // O0 - will be source, O1 - will be destination (preserved)
1829   __ jmpl(Lscratch, G0, O7);                                          // and convert it
1830   __ delayed()->add(O0, wordSize, O0);                                // get source (top of current expr stack)
1831 
1832   // O1 == &locals[0]
1833 
1834   // Result is now on caller's stack. Just unwind current activation and resume
1835 
1836   Label unwind_recursive_activation;
1837 
1838 
1839   __ bind(unwind_recursive_activation);
1840 
1841   // O1 == &locals[0] (really callers stacktop) for activation now returning
1842   // returning to interpreter method from "recursive" interpreter call
1843   // result converter left O1 pointing to top of the( prepushed) java stack for method we are returning
1844   // to. Now all we must do is unwind the state from the completed call
1845 
1846   // Must restore stack
1847   VALIDATE_STATE(G3_scratch, 8);
1848 
1849   // Return to interpreter method after a method call (interpreted/native/c1/c2) has completed.
1850   // Result if any is already on the caller's stack. All we must do now is remove the now dead
1851   // frame and tell interpreter to resume.
1852 
1853 
1854   __ mov(O1, I1);                                                     // pass back new stack top across activation
1855   // POP FRAME HERE ==================================
1856   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
1857   __ ld_ptr(STATE(_frame_bottom), SP);                                // restore to full stack frame
1858 
1859 
1860   // Resume the interpreter. The current frame contains the current interpreter
1861   // state object.
1862   //
1863   // O1 == new java stack pointer
1864 
1865   __ bind(resume_interpreter);
1866   VALIDATE_STATE(G3_scratch, 10);
1867 
1868   // A frame we have already used before so no need to bang stack so use call_interpreter_2 entry
1869 
1870   __ set((int)BytecodeInterpreter::method_resume, L1_scratch);
1871   __ st(L1_scratch, STATE(_msg));
1872   __ ba(call_interpreter_2);
1873   __ delayed()->st_ptr(O1, STATE(_stack));
1874 
1875 
1876   // Fast accessor methods share this entry point.
1877   // This works because frame manager is in the same codelet
1878   // This can either be an entry via call_stub/c1/c2 or a recursive interpreter call
1879   // we need to do a little register fixup here once we distinguish the two of them
1880   if (UseFastAccessorMethods && !synchronized) {
1881   // Call stub_return address still in O7
1882     __ bind(fast_accessor_slow_entry_path);
1883     __ set((intptr_t)return_from_native_method - 8, Gtmp1);
1884     __ cmp(Gtmp1, O7);                                                // returning to interpreter?
1885     __ brx(Assembler::equal, true, Assembler::pt, re_dispatch);       // yep
1886     __ delayed()->nop();
1887     __ ba(re_dispatch);
1888     __ delayed()->mov(G0, prevState);                                 // initial entry
1889 
1890   }
1891 
1892   // interpreter returning to native code (call_stub/c1/c2)
1893   // convert result and unwind initial activation
1894   // L2_scratch - scaled result type index
1895 
1896   __ bind(return_to_initial_caller);
1897 
1898   __ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch);
1899   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                           // get typed result converter address
1900   __ ld_ptr(STATE(_stack), O0);                                        // current top (prepushed)
1901   __ jmpl(Lscratch, G0, O7);                                           // and convert it
1902   __ delayed()->add(O0, wordSize, O0);                                 // get source (top of current expr stack)
1903 
1904   Label unwind_initial_activation;
1905   __ bind(unwind_initial_activation);
1906 
1907   // RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1)
1908   // we can return here with an exception that wasn't handled by interpreted code
1909   // how does c1/c2 see it on return?
1910 
1911   // compute resulting sp before/after args popped depending upon calling convention
1912   // __ ld_ptr(STATE(_saved_sp), Gtmp1);
1913   //
1914   // POP FRAME HERE ==================================
1915   __ restore(FP, G0, SP);
1916   __ retl();
1917   __ delayed()->mov(I5_savedSP->after_restore(), SP);
1918 
1919   // OSR request, unwind the current frame and transfer to the OSR entry
1920   // and enter OSR nmethod
1921 
1922   __ bind(do_OSR);
1923   Label remove_initial_frame;
1924   __ ld_ptr(STATE(_prev_link), L1_scratch);
1925   __ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch);
1926 
1927   // We are going to pop this frame. Is there another interpreter frame underneath
1928   // it or is it callstub/compiled?
1929 
1930   __ tst(L1_scratch);
1931   __ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame);
1932   __ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch);
1933 
1934   // Frame underneath is an interpreter frame simply unwind
1935   // POP FRAME HERE ==================================
1936   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
1937   __ mov(I5_savedSP->after_restore(), SP);
1938 
1939   // Since we are now calling native need to change our "return address" from the
1940   // dummy RecursiveInterpreterActivation to a return from native
1941 
1942   __ set((intptr_t)return_from_native_method - 8, O7);
1943 
1944   __ jmpl(G3_scratch, G0, G0);
1945   __ delayed()->mov(G1_scratch, O0);
1946 
1947   __ bind(remove_initial_frame);
1948 
1949   // POP FRAME HERE ==================================
1950   __ restore(FP, G0, SP);
1951   __ mov(I5_savedSP->after_restore(), SP);
1952   __ jmpl(G3_scratch, G0, G0);
1953   __ delayed()->mov(G1_scratch, O0);
1954 
1955   // Call a new method. All we do is (temporarily) trim the expression stack
1956   // push a return address to bring us back to here and leap to the new entry.
1957   // At this point we have a topmost frame that was allocated by the frame manager
1958   // which contains the current method interpreted state. We trim this frame
1959   // of excess java expression stack entries and then recurse.
1960 
1961   __ bind(call_method);
1962 
1963   // stack points to next free location and not top element on expression stack
1964   // method expects sp to be pointing to topmost element
1965 
1966   __ ld_ptr(STATE(_thread), G2_thread);
1967   __ ld_ptr(STATE(_result._to_call._callee), G5_method);
1968 
1969 
1970   // SP already takes in to account the 2 extra words we use for slop
1971   // when we call a "static long no_params()" method. So if
1972   // we trim back sp by the amount of unused java expression stack
1973   // there will be automagically the 2 extra words we need.
1974   // We also have to worry about keeping SP aligned.
1975 
1976   __ ld_ptr(STATE(_stack), Gargs);
1977   __ ld_ptr(STATE(_stack_limit), L1_scratch);
1978 
1979   // compute the unused java stack size
1980   __ sub(Gargs, L1_scratch, L2_scratch);                       // compute unused space
1981 
1982   // Round down the unused space to that stack is always 16-byte aligned
1983   // by making the unused space a multiple of the size of two longs.
1984 
1985   __ and3(L2_scratch, -2*BytesPerLong, L2_scratch);
1986 
1987   // Now trim the stack
1988   __ add(SP, L2_scratch, SP);
1989 
1990 
1991   // Now point to the final argument (account for prepush)
1992   __ add(Gargs, wordSize, Gargs);
1993 #ifdef ASSERT
1994   // Make sure we have space for the window
1995   __ sub(Gargs, SP, L1_scratch);
1996   __ cmp(L1_scratch, 16*wordSize);
1997   {
1998     Label skip;
1999     __ brx(Assembler::greaterEqual, false, Assembler::pt, skip);
2000     __ delayed()->nop();
2001     __ stop("killed stack");
2002     __ bind(skip);
2003   }
2004 #endif // ASSERT
2005 
2006   // Create a new frame where we can store values that make it look like the interpreter
2007   // really recursed.
2008 
2009   // prepare to recurse or call specialized entry
2010 
2011   // First link the registers we need
2012 
2013   // make the pc look good in debugger
2014   __ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7);
2015   // argument too
2016   __ mov(Lstate, I0);
2017 
2018   // Record our sending SP
2019   __ mov(SP, O5_savedSP);
2020 
2021   __ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch);
2022   __ set((intptr_t) entry_point, L1_scratch);
2023   __ cmp(L1_scratch, L2_scratch);
2024   __ brx(Assembler::equal, false, Assembler::pt, re_dispatch);
2025   __ delayed()->mov(Lstate, prevState);                                // link activations
2026 
2027   // method uses specialized entry, push a return so we look like call stub setup
2028   // this path will handle fact that result is returned in registers and not
2029   // on the java stack.
2030 
2031   __ set((intptr_t)return_from_native_method - 8, O7);
2032   __ jmpl(L2_scratch, G0, G0);                               // Do specialized entry
2033   __ delayed()->nop();
2034 
2035   //
2036   // Bad Message from interpreter
2037   //
2038   __ bind(bad_msg);
2039   __ stop("Bad message from interpreter");
2040 
2041   // Interpreted method "returned" with an exception pass it on...
2042   // Pass result, unwind activation and continue/return to interpreter/call_stub
2043   // We handle result (if any) differently based on return to interpreter or call_stub
2044 
2045   __ bind(throw_exception);
2046   __ ld_ptr(STATE(_prev_link), L1_scratch);
2047   __ tst(L1_scratch);
2048   __ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward);
2049   __ delayed()->nop();
2050 
2051   __ ld_ptr(STATE(_locals), O1); // get result of popping callee's args
2052   __ ba(unwind_recursive_activation);
2053   __ delayed()->nop();
2054 
2055   interpreter_frame_manager = entry_point;
2056   return entry_point;
2057 }
2058 
2059 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
2060  : CppInterpreterGenerator(code) {
2061    generate_all(); // down here so it can be "virtual"
2062 }
2063 
2064 
2065 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
2066 
2067   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
2068   // expression stack, the callee will have callee_extra_locals (so we can account for
2069   // frame extension) and monitor_size for monitors. Basically we need to calculate
2070   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
2071   //
2072   //
2073   // The big complicating thing here is that we must ensure that the stack stays properly
2074   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
2075   // needs to be aligned for). We are given that the sp (fp) is already aligned by
2076   // the caller so we must ensure that it is properly aligned for our callee.
2077   //
2078   // Ths c++ interpreter always makes sure that we have a enough extra space on the
2079   // stack at all times to deal with the "stack long no_params()" method issue. This
2080   // is "slop_factor" here.
2081   const int slop_factor = 2;
2082 
2083   const int fixed_size = sizeof(BytecodeInterpreter)/wordSize +           // interpreter state object
2084                          frame::memory_parameter_word_sp_offset;   // register save area + param window
2085   return (round_to(max_stack +
2086                    slop_factor +
2087                    fixed_size +
2088                    monitor_size +
2089                    (callee_extra_locals * Interpreter::stackElementWords), WordsPerLong));
2090 
2091 }
2092 
2093 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
2094 
2095   // See call_stub code
2096   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
2097                                  WordsPerLong);    // 7 + register save area
2098 
2099   // Save space for one monitor to get into the interpreted method in case
2100   // the method is synchronized
2101   int monitor_size    = method->is_synchronized() ?
2102                                 1*frame::interpreter_frame_monitor_size() : 0;
2103   return size_activation_helper(method->max_locals(), method->max_stack(),
2104                                  monitor_size) + call_stub_size;
2105 }
2106 
2107 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
2108                                            frame* caller,
2109                                            frame* current,
2110                                            Method* method,
2111                                            intptr_t* locals,
2112                                            intptr_t* stack,
2113                                            intptr_t* stack_base,
2114                                            intptr_t* monitor_base,
2115                                            intptr_t* frame_bottom,
2116                                            bool is_top_frame
2117                                            )
2118 {
2119   // What about any vtable?
2120   //
2121   to_fill->_thread = JavaThread::current();
2122   // This gets filled in later but make it something recognizable for now
2123   to_fill->_bcp = method->code_base();
2124   to_fill->_locals = locals;
2125   to_fill->_constants = method->constants()->cache();
2126   to_fill->_method = method;
2127   to_fill->_mdx = NULL;
2128   to_fill->_stack = stack;
2129   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
2130     to_fill->_msg = deopt_resume2;
2131   } else {
2132     to_fill->_msg = method_resume;
2133   }
2134   to_fill->_result._to_call._bcp_advance = 0;
2135   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
2136   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
2137   to_fill->_prev_link = NULL;
2138 
2139   // Fill in the registers for the frame
2140 
2141   // Need to install _sender_sp. Actually not too hard in C++!
2142   // When the skeletal frames are layed out we fill in a value
2143   // for _sender_sp. That value is only correct for the oldest
2144   // skeletal frame constructed (because there is only a single
2145   // entry for "caller_adjustment". While the skeletal frames
2146   // exist that is good enough. We correct that calculation
2147   // here and get all the frames correct.
2148 
2149   // to_fill->_sender_sp = locals - (method->size_of_parameters() - 1);
2150 
2151   *current->register_addr(Lstate) = (intptr_t) to_fill;
2152   // skeletal already places a useful value here and this doesn't account
2153   // for alignment so don't bother.
2154   // *current->register_addr(I5_savedSP) =     (intptr_t) locals - (method->size_of_parameters() - 1);
2155 
2156   if (caller->is_interpreted_frame()) {
2157     interpreterState prev  = caller->get_interpreterState();
2158     to_fill->_prev_link = prev;
2159     // Make the prev callee look proper
2160     prev->_result._to_call._callee = method;
2161     if (*prev->_bcp == Bytecodes::_invokeinterface) {
2162       prev->_result._to_call._bcp_advance = 5;
2163     } else {
2164       prev->_result._to_call._bcp_advance = 3;
2165     }
2166   }
2167   to_fill->_oop_temp = NULL;
2168   to_fill->_stack_base = stack_base;
2169   // Need +1 here because stack_base points to the word just above the first expr stack entry
2170   // and stack_limit is supposed to point to the word just below the last expr stack entry.
2171   // See generate_compute_interpreter_state.
2172   to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
2173   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
2174 
2175   // sparc specific
2176   to_fill->_frame_bottom = frame_bottom;
2177   to_fill->_self_link = to_fill;
2178 #ifdef ASSERT
2179   to_fill->_native_fresult = 123456.789;
2180   to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe);
2181 #endif
2182 }
2183 
2184 void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t* last_Java_fp) {
2185   istate->_last_Java_pc = (intptr_t*) last_Java_pc;
2186 }
2187 
2188 
2189 int AbstractInterpreter::layout_activation(Method* method,
2190                                            int tempcount, // Number of slots on java expression stack in use
2191                                            int popframe_extra_args,
2192                                            int moncount,  // Number of active monitors
2193                                            int caller_actual_parameters,
2194                                            int callee_param_size,
2195                                            int callee_locals_size,
2196                                            frame* caller,
2197                                            frame* interpreter_frame,
2198                                            bool is_top_frame,
2199                                            bool is_bottom_frame) {
2200 
2201   assert(popframe_extra_args == 0, "NEED TO FIX");
2202   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
2203   // does as far as allocating an interpreter frame.
2204   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
2205   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
2206   // as determined by a previous call to this method.
2207   // It is also guaranteed to be walkable even though it is in a skeletal state
2208   // NOTE: return size is in words not bytes
2209   // NOTE: tempcount is the current size of the java expression stack. For top most
2210   //       frames we will allocate a full sized expression stack and not the curback
2211   //       version that non-top frames have.
2212 
2213   // Calculate the amount our frame will be adjust by the callee. For top frame
2214   // this is zero.
2215 
2216   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
2217   // calculates the extra locals based on itself. Not what the callee does
2218   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
2219   // as getting sender_sp correct.
2220 
2221   int extra_locals_size = callee_locals_size - callee_param_size;
2222   int monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize;
2223   int full_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
2224   int short_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
2225   int frame_words = is_top_frame ? full_frame_words : short_frame_words;
2226 
2227 
2228   /*
2229     if we actually have a frame to layout we must now fill in all the pieces. This means both
2230     the interpreterState and the registers.
2231   */
2232   if (interpreter_frame != NULL) {
2233 
2234     // MUCHO HACK
2235 
2236     intptr_t* frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words);
2237     // 'interpreter_frame->sp()' is unbiased while 'frame_bottom' must be a biased value in 64bit mode.
2238     assert(((intptr_t)frame_bottom & 0xf) == 0, "SP biased in layout_activation");
2239     frame_bottom = (intptr_t*)((intptr_t)frame_bottom - STACK_BIAS);
2240 
2241     /* Now fillin the interpreterState object */
2242 
2243     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() -  sizeof(BytecodeInterpreter));
2244 
2245 
2246     intptr_t* locals;
2247 
2248     // Calculate the postion of locals[0]. This is painful because of
2249     // stack alignment (same as ia64). The problem is that we can
2250     // not compute the location of locals from fp(). fp() will account
2251     // for the extra locals but it also accounts for aligning the stack
2252     // and we can't determine if the locals[0] was misaligned but max_locals
2253     // was enough to have the
2254     // calculate postion of locals. fp already accounts for extra locals.
2255     // +2 for the static long no_params() issue.
2256 
2257     if (caller->is_interpreted_frame()) {
2258       // locals must agree with the caller because it will be used to set the
2259       // caller's tos when we return.
2260       interpreterState prev  = caller->get_interpreterState();
2261       // stack() is prepushed.
2262       locals = prev->stack() + method->size_of_parameters();
2263     } else {
2264       // Lay out locals block in the caller adjacent to the register window save area.
2265       //
2266       // Compiled frames do not allocate a varargs area which is why this if
2267       // statement is needed.
2268       //
2269       intptr_t* fp = interpreter_frame->fp();
2270       int local_words = method->max_locals() * Interpreter::stackElementWords;
2271 
2272       if (caller->is_compiled_frame()) {
2273         locals = fp + frame::register_save_words + local_words - 1;
2274       } else {
2275         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
2276       }
2277 
2278     }
2279     // END MUCHO HACK
2280 
2281     intptr_t* monitor_base = (intptr_t*) cur_state;
2282     intptr_t* stack_base =  monitor_base - monitor_size;
2283     /* +1 because stack is always prepushed */
2284     intptr_t* stack = stack_base - (tempcount + 1);
2285 
2286 
2287     BytecodeInterpreter::layout_interpreterState(cur_state,
2288                                           caller,
2289                                           interpreter_frame,
2290                                           method,
2291                                           locals,
2292                                           stack,
2293                                           stack_base,
2294                                           monitor_base,
2295                                           frame_bottom,
2296                                           is_top_frame);
2297 
2298     BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
2299 
2300   }
2301   return frame_words;
2302 }
2303 
2304 #endif // CC_INTERP