1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
  27 
  28 #include "asm/register.hpp"
  29 
  30 class BiasedLockingCounters;
  31 
  32 // Contains all the definitions needed for x86 assembly code generation.
  33 
  34 // Address is an abstraction used to represent a memory location
  35 // using any of the amd64 addressing modes with one object.
  36 //
  37 // Note: A register location is represented via a Register, not
  38 //       via an address for efficiency & simplicity reasons.
  39 
  40 class ArrayAddress;
  41 
  42 class Address VALUE_OBJ_CLASS_SPEC {
  43  public:
  44   enum ScaleFactor {
  45     no_scale = -1,
  46     times_1  =  0,
  47     times_2  =  1,
  48     times_4  =  2,
  49     times_8  =  3,
  50     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
  51   };
  52   static ScaleFactor times(int size) {
  53     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
  54     if (size == 8)  return times_8;
  55     if (size == 4)  return times_4;
  56     if (size == 2)  return times_2;
  57     return times_1;
  58   }
  59   static int scale_size(ScaleFactor scale) {
  60     assert(scale != no_scale, "");
  61     assert(((1 << (int)times_1) == 1 &&
  62             (1 << (int)times_2) == 2 &&
  63             (1 << (int)times_4) == 4 &&
  64             (1 << (int)times_8) == 8), "");
  65     return (1 << (int)scale);
  66   }
  67 
  68  private:
  69   Register         _base;
  70   Register         _index;
  71   ScaleFactor      _scale;
  72   int              _disp;
  73   RelocationHolder _rspec;
  74 
  75   // Easily misused constructors make them private
  76   // %%% can we make these go away?
  77   NOT_LP64(Address(address loc, RelocationHolder spec);)
  78   Address(int disp, address loc, relocInfo::relocType rtype);
  79   Address(int disp, address loc, RelocationHolder spec);
  80 
  81  public:
  82 
  83  int disp() { return _disp; }
  84   // creation
  85   Address()
  86     : _base(noreg),
  87       _index(noreg),
  88       _scale(no_scale),
  89       _disp(0) {
  90   }
  91 
  92   // No default displacement otherwise Register can be implicitly
  93   // converted to 0(Register) which is quite a different animal.
  94 
  95   Address(Register base, int disp)
  96     : _base(base),
  97       _index(noreg),
  98       _scale(no_scale),
  99       _disp(disp) {
 100   }
 101 
 102   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
 103     : _base (base),
 104       _index(index),
 105       _scale(scale),
 106       _disp (disp) {
 107     assert(!index.is_valid() == (scale == Address::no_scale),
 108            "inconsistent address");
 109   }
 110 
 111   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
 112     : _base (base),
 113       _index(index.register_or_noreg()),
 114       _scale(scale),
 115       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
 116     if (!index.is_register())  scale = Address::no_scale;
 117     assert(!_index.is_valid() == (scale == Address::no_scale),
 118            "inconsistent address");
 119   }
 120 
 121   Address plus_disp(int disp) const {
 122     Address a = (*this);
 123     a._disp += disp;
 124     return a;
 125   }
 126   Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
 127     Address a = (*this);
 128     a._disp += disp.constant_or_zero() * scale_size(scale);
 129     if (disp.is_register()) {
 130       assert(!a.index().is_valid(), "competing indexes");
 131       a._index = disp.as_register();
 132       a._scale = scale;
 133     }
 134     return a;
 135   }
 136   bool is_same_address(Address a) const {
 137     // disregard _rspec
 138     return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
 139   }
 140 
 141   // The following two overloads are used in connection with the
 142   // ByteSize type (see sizes.hpp).  They simplify the use of
 143   // ByteSize'd arguments in assembly code. Note that their equivalent
 144   // for the optimized build are the member functions with int disp
 145   // argument since ByteSize is mapped to an int type in that case.
 146   //
 147   // Note: DO NOT introduce similar overloaded functions for WordSize
 148   // arguments as in the optimized mode, both ByteSize and WordSize
 149   // are mapped to the same type and thus the compiler cannot make a
 150   // distinction anymore (=> compiler errors).
 151 
 152 #ifdef ASSERT
 153   Address(Register base, ByteSize disp)
 154     : _base(base),
 155       _index(noreg),
 156       _scale(no_scale),
 157       _disp(in_bytes(disp)) {
 158   }
 159 
 160   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
 161     : _base(base),
 162       _index(index),
 163       _scale(scale),
 164       _disp(in_bytes(disp)) {
 165     assert(!index.is_valid() == (scale == Address::no_scale),
 166            "inconsistent address");
 167   }
 168 
 169   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
 170     : _base (base),
 171       _index(index.register_or_noreg()),
 172       _scale(scale),
 173       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
 174     if (!index.is_register())  scale = Address::no_scale;
 175     assert(!_index.is_valid() == (scale == Address::no_scale),
 176            "inconsistent address");
 177   }
 178 
 179 #endif // ASSERT
 180 
 181   // accessors
 182   bool        uses(Register reg) const { return _base == reg || _index == reg; }
 183   Register    base()             const { return _base;  }
 184   Register    index()            const { return _index; }
 185   ScaleFactor scale()            const { return _scale; }
 186   int         disp()             const { return _disp;  }
 187 
 188   // Convert the raw encoding form into the form expected by the constructor for
 189   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 190   // that to noreg for the Address constructor.
 191   static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
 192 
 193   static Address make_array(ArrayAddress);
 194 
 195  private:
 196   bool base_needs_rex() const {
 197     return _base != noreg && _base.encoding() >= 8;
 198   }
 199 
 200   bool index_needs_rex() const {
 201     return _index != noreg && _index.encoding() >= 8;
 202   }
 203 
 204   relocInfo::relocType reloc() const { return _rspec.type(); }
 205 
 206   friend class Assembler;
 207   friend class MacroAssembler;
 208   friend class LIR_Assembler; // base/index/scale/disp
 209 };
 210 
 211 //
 212 // AddressLiteral has been split out from Address because operands of this type
 213 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
 214 // the few instructions that need to deal with address literals are unique and the
 215 // MacroAssembler does not have to implement every instruction in the Assembler
 216 // in order to search for address literals that may need special handling depending
 217 // on the instruction and the platform. As small step on the way to merging i486/amd64
 218 // directories.
 219 //
 220 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 221   friend class ArrayAddress;
 222   RelocationHolder _rspec;
 223   // Typically we use AddressLiterals we want to use their rval
 224   // However in some situations we want the lval (effect address) of the item.
 225   // We provide a special factory for making those lvals.
 226   bool _is_lval;
 227 
 228   // If the target is far we'll need to load the ea of this to
 229   // a register to reach it. Otherwise if near we can do rip
 230   // relative addressing.
 231 
 232   address          _target;
 233 
 234  protected:
 235   // creation
 236   AddressLiteral()
 237     : _is_lval(false),
 238       _target(NULL)
 239   {}
 240 
 241   public:
 242 
 243 
 244   AddressLiteral(address target, relocInfo::relocType rtype);
 245 
 246   AddressLiteral(address target, RelocationHolder const& rspec)
 247     : _rspec(rspec),
 248       _is_lval(false),
 249       _target(target)
 250   {}
 251 
 252   AddressLiteral addr() {
 253     AddressLiteral ret = *this;
 254     ret._is_lval = true;
 255     return ret;
 256   }
 257 
 258 
 259  private:
 260 
 261   address target() { return _target; }
 262   bool is_lval() { return _is_lval; }
 263 
 264   relocInfo::relocType reloc() const { return _rspec.type(); }
 265   const RelocationHolder& rspec() const { return _rspec; }
 266 
 267   friend class Assembler;
 268   friend class MacroAssembler;
 269   friend class Address;
 270   friend class LIR_Assembler;
 271 };
 272 
 273 // Convience classes
 274 class RuntimeAddress: public AddressLiteral {
 275 
 276   public:
 277 
 278   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
 279 
 280 };
 281 
 282 class ExternalAddress: public AddressLiteral {
 283  private:
 284   static relocInfo::relocType reloc_for_target(address target) {
 285     // Sometimes ExternalAddress is used for values which aren't
 286     // exactly addresses, like the card table base.
 287     // external_word_type can't be used for values in the first page
 288     // so just skip the reloc in that case.
 289     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 290   }
 291 
 292  public:
 293 
 294   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
 295 
 296 };
 297 
 298 class InternalAddress: public AddressLiteral {
 299 
 300   public:
 301 
 302   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 303 
 304 };
 305 
 306 // x86 can do array addressing as a single operation since disp can be an absolute
 307 // address amd64 can't. We create a class that expresses the concept but does extra
 308 // magic on amd64 to get the final result
 309 
 310 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
 311   private:
 312 
 313   AddressLiteral _base;
 314   Address        _index;
 315 
 316   public:
 317 
 318   ArrayAddress() {};
 319   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
 320   AddressLiteral base() { return _base; }
 321   Address index() { return _index; }
 322 
 323 };
 324 
 325 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
 326 
 327 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 328 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
 329 // is what you get. The Assembler is generating code into a CodeBuffer.
 330 
 331 class Assembler : public AbstractAssembler  {
 332   friend class AbstractAssembler; // for the non-virtual hack
 333   friend class LIR_Assembler; // as_Address()
 334   friend class StubGenerator;
 335 
 336  public:
 337   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
 338     zero          = 0x4,
 339     notZero       = 0x5,
 340     equal         = 0x4,
 341     notEqual      = 0x5,
 342     less          = 0xc,
 343     lessEqual     = 0xe,
 344     greater       = 0xf,
 345     greaterEqual  = 0xd,
 346     below         = 0x2,
 347     belowEqual    = 0x6,
 348     above         = 0x7,
 349     aboveEqual    = 0x3,
 350     overflow      = 0x0,
 351     noOverflow    = 0x1,
 352     carrySet      = 0x2,
 353     carryClear    = 0x3,
 354     negative      = 0x8,
 355     positive      = 0x9,
 356     parity        = 0xa,
 357     noParity      = 0xb
 358   };
 359 
 360   enum Prefix {
 361     // segment overrides
 362     CS_segment = 0x2e,
 363     SS_segment = 0x36,
 364     DS_segment = 0x3e,
 365     ES_segment = 0x26,
 366     FS_segment = 0x64,
 367     GS_segment = 0x65,
 368 
 369     REX        = 0x40,
 370 
 371     REX_B      = 0x41,
 372     REX_X      = 0x42,
 373     REX_XB     = 0x43,
 374     REX_R      = 0x44,
 375     REX_RB     = 0x45,
 376     REX_RX     = 0x46,
 377     REX_RXB    = 0x47,
 378 
 379     REX_W      = 0x48,
 380 
 381     REX_WB     = 0x49,
 382     REX_WX     = 0x4A,
 383     REX_WXB    = 0x4B,
 384     REX_WR     = 0x4C,
 385     REX_WRB    = 0x4D,
 386     REX_WRX    = 0x4E,
 387     REX_WRXB   = 0x4F,
 388 
 389     VEX_3bytes = 0xC4,
 390     VEX_2bytes = 0xC5
 391   };
 392 
 393   enum VexPrefix {
 394     VEX_B = 0x20,
 395     VEX_X = 0x40,
 396     VEX_R = 0x80,
 397     VEX_W = 0x80
 398   };
 399 
 400   enum VexSimdPrefix {
 401     VEX_SIMD_NONE = 0x0,
 402     VEX_SIMD_66   = 0x1,
 403     VEX_SIMD_F3   = 0x2,
 404     VEX_SIMD_F2   = 0x3
 405   };
 406 
 407   enum VexOpcode {
 408     VEX_OPCODE_NONE  = 0x0,
 409     VEX_OPCODE_0F    = 0x1,
 410     VEX_OPCODE_0F_38 = 0x2,
 411     VEX_OPCODE_0F_3A = 0x3
 412   };
 413 
 414   enum WhichOperand {
 415     // input to locate_operand, and format code for relocations
 416     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
 417     disp32_operand = 1,          // embedded 32-bit displacement or address
 418     call32_operand = 2,          // embedded 32-bit self-relative displacement
 419 #ifndef _LP64
 420     _WhichOperand_limit = 3
 421 #else
 422      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
 423     _WhichOperand_limit = 4
 424 #endif
 425   };
 426 
 427 
 428 
 429   // NOTE: The general philopsophy of the declarations here is that 64bit versions
 430   // of instructions are freely declared without the need for wrapping them an ifdef.
 431   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
 432   // In the .cpp file the implementations are wrapped so that they are dropped out
 433   // of the resulting jvm. This is done mostly to keep the footprint of MINIMAL
 434   // to the size it was prior to merging up the 32bit and 64bit assemblers.
 435   //
 436   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
 437   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
 438 
 439 private:
 440 
 441 
 442   // 64bit prefixes
 443   int prefix_and_encode(int reg_enc, bool byteinst = false);
 444   int prefixq_and_encode(int reg_enc);
 445 
 446   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
 447   int prefixq_and_encode(int dst_enc, int src_enc);
 448 
 449   void prefix(Register reg);
 450   void prefix(Address adr);
 451   void prefixq(Address adr);
 452 
 453   void prefix(Address adr, Register reg,  bool byteinst = false);
 454   void prefix(Address adr, XMMRegister reg);
 455   void prefixq(Address adr, Register reg);
 456   void prefixq(Address adr, XMMRegister reg);
 457 
 458   void prefetch_prefix(Address src);
 459 
 460   void rex_prefix(Address adr, XMMRegister xreg,
 461                   VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 462   int  rex_prefix_and_encode(int dst_enc, int src_enc,
 463                              VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 464 
 465   void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
 466                   int nds_enc, VexSimdPrefix pre, VexOpcode opc,
 467                   bool vector256);
 468 
 469   void vex_prefix(Address adr, int nds_enc, int xreg_enc,
 470                   VexSimdPrefix pre, VexOpcode opc,
 471                   bool vex_w, bool vector256);
 472 
 473   void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
 474                   VexSimdPrefix pre, bool vector256 = false) {
 475     int dst_enc = dst.encoding();
 476     int nds_enc = nds.is_valid() ? nds.encoding() : 0;
 477     vex_prefix(src, nds_enc, dst_enc, pre, VEX_OPCODE_0F, false, vector256);
 478   }
 479 
 480   void vex_prefix_0F38(Register dst, Register nds, Address src) {
 481     bool vex_w = false;
 482     bool vector256 = false;
 483     vex_prefix(src, nds.encoding(), dst.encoding(),
 484                VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
 485   }
 486 
 487   void vex_prefix_0F38_q(Register dst, Register nds, Address src) {
 488     bool vex_w = true;
 489     bool vector256 = false;
 490     vex_prefix(src, nds.encoding(), dst.encoding(),
 491                VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
 492   }
 493   int  vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
 494                              VexSimdPrefix pre, VexOpcode opc,
 495                              bool vex_w, bool vector256);
 496 
 497   int  vex_prefix_0F38_and_encode(Register dst, Register nds, Register src) {
 498     bool vex_w = false;
 499     bool vector256 = false;
 500     return vex_prefix_and_encode(dst.encoding(), nds.encoding(), src.encoding(),
 501                                  VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
 502   }
 503   int  vex_prefix_0F38_and_encode_q(Register dst, Register nds, Register src) {
 504     bool vex_w = true;
 505     bool vector256 = false;
 506     return vex_prefix_and_encode(dst.encoding(), nds.encoding(), src.encoding(),
 507                                  VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
 508   }
 509   int  vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
 510                              VexSimdPrefix pre, bool vector256 = false,
 511                              VexOpcode opc = VEX_OPCODE_0F) {
 512     int src_enc = src.encoding();
 513     int dst_enc = dst.encoding();
 514     int nds_enc = nds.is_valid() ? nds.encoding() : 0;
 515     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, false, vector256);
 516   }
 517 
 518   void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
 519                    VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
 520                    bool rex_w = false, bool vector256 = false);
 521 
 522   void simd_prefix(XMMRegister dst, Address src,
 523                    VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 524     simd_prefix(dst, xnoreg, src, pre, opc);
 525   }
 526 
 527   void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre) {
 528     simd_prefix(src, dst, pre);
 529   }
 530   void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
 531                      VexSimdPrefix pre) {
 532     bool rex_w = true;
 533     simd_prefix(dst, nds, src, pre, VEX_OPCODE_0F, rex_w);
 534   }
 535 
 536   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
 537                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
 538                              bool rex_w = false, bool vector256 = false);
 539 
 540   // Move/convert 32-bit integer value.
 541   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
 542                              VexSimdPrefix pre) {
 543     // It is OK to cast from Register to XMMRegister to pass argument here
 544     // since only encoding is used in simd_prefix_and_encode() and number of
 545     // Gen and Xmm registers are the same.
 546     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src.encoding()), pre);
 547   }
 548   int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre) {
 549     return simd_prefix_and_encode(dst, xnoreg, src, pre);
 550   }
 551   int simd_prefix_and_encode(Register dst, XMMRegister src,
 552                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 553     return simd_prefix_and_encode(as_XMMRegister(dst.encoding()), xnoreg, src, pre, opc);
 554   }
 555 
 556   // Move/convert 64-bit integer value.
 557   int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
 558                                VexSimdPrefix pre) {
 559     bool rex_w = true;
 560     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src.encoding()), pre, VEX_OPCODE_0F, rex_w);
 561   }
 562   int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre) {
 563     return simd_prefix_and_encode_q(dst, xnoreg, src, pre);
 564   }
 565   int simd_prefix_and_encode_q(Register dst, XMMRegister src,
 566                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 567     bool rex_w = true;
 568     return simd_prefix_and_encode(as_XMMRegister(dst.encoding()), xnoreg, src, pre, opc, rex_w);
 569   }
 570 
 571   // Helper functions for groups of instructions
 572   void emit_arith_b(int op1, int op2, Register dst, int imm8);
 573 
 574   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
 575   // Force generation of a 4 byte immediate value even if it fits into 8bit
 576   void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
 577   void emit_arith(int op1, int op2, Register dst, Register src);
 578 
 579   void emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
 580   void emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
 581   void emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
 582   void emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
 583   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
 584                       Address src, VexSimdPrefix pre, bool vector256);
 585   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
 586                       XMMRegister src, VexSimdPrefix pre, bool vector256);
 587 
 588   void emit_operand(AbstractRegister reg,
 589                     Register base, Register index, Address::ScaleFactor scale,
 590                     int disp,
 591                     RelocationHolder const& rspec,
 592                     int rip_relative_correction = 0);
 593 
 594   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
 595 
 596   // operands that only take the original 32bit registers
 597   void emit_operand32(Register reg, Address adr);
 598 
 599   void emit_operand(XMMRegister reg, Address adr);
 600 
 601   void emit_operand(MMXRegister reg, Address adr);
 602 
 603   // workaround gcc (3.2.1-7) bug
 604   void emit_operand(Address adr, MMXRegister reg);
 605 
 606 
 607   // Immediate-to-memory forms
 608   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
 609 
 610   void emit_farith(int b1, int b2, int i);
 611 
 612 
 613  protected:
 614   #ifdef ASSERT
 615   void check_relocation(RelocationHolder const& rspec, int format);
 616   #endif
 617 
 618   void emit_data(jint data, relocInfo::relocType    rtype, int format);
 619   void emit_data(jint data, RelocationHolder const& rspec, int format);
 620   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
 621   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
 622 
 623   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
 624 
 625   // These are all easily abused and hence protected
 626 
 627   // 32BIT ONLY SECTION
 628 #ifndef _LP64
 629   // Make these disappear in 64bit mode since they would never be correct
 630   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
 631   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 632 
 633   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 634   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
 635 
 636   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
 637 #else
 638   // 64BIT ONLY SECTION
 639   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
 640 
 641   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
 642   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
 643 
 644   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
 645   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
 646 #endif // _LP64
 647 
 648   // These are unique in that we are ensured by the caller that the 32bit
 649   // relative in these instructions will always be able to reach the potentially
 650   // 64bit address described by entry. Since they can take a 64bit address they
 651   // don't have the 32 suffix like the other instructions in this class.
 652 
 653   void call_literal(address entry, RelocationHolder const& rspec);
 654   void jmp_literal(address entry, RelocationHolder const& rspec);
 655 
 656   // Avoid using directly section
 657   // Instructions in this section are actually usable by anyone without danger
 658   // of failure but have performance issues that are addressed my enhanced
 659   // instructions which will do the proper thing base on the particular cpu.
 660   // We protect them because we don't trust you...
 661 
 662   // Don't use next inc() and dec() methods directly. INC & DEC instructions
 663   // could cause a partial flag stall since they don't set CF flag.
 664   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
 665   // which call inc() & dec() or add() & sub() in accordance with
 666   // the product flag UseIncDec value.
 667 
 668   void decl(Register dst);
 669   void decl(Address dst);
 670   void decq(Register dst);
 671   void decq(Address dst);
 672 
 673   void incl(Register dst);
 674   void incl(Address dst);
 675   void incq(Register dst);
 676   void incq(Address dst);
 677 
 678   // New cpus require use of movsd and movss to avoid partial register stall
 679   // when loading from memory. But for old Opteron use movlpd instead of movsd.
 680   // The selection is done in MacroAssembler::movdbl() and movflt().
 681 
 682   // Move Scalar Single-Precision Floating-Point Values
 683   void movss(XMMRegister dst, Address src);
 684   void movss(XMMRegister dst, XMMRegister src);
 685   void movss(Address dst, XMMRegister src);
 686 
 687   // Move Scalar Double-Precision Floating-Point Values
 688   void movsd(XMMRegister dst, Address src);
 689   void movsd(XMMRegister dst, XMMRegister src);
 690   void movsd(Address dst, XMMRegister src);
 691   void movlpd(XMMRegister dst, Address src);
 692 
 693   // New cpus require use of movaps and movapd to avoid partial register stall
 694   // when moving between registers.
 695   void movaps(XMMRegister dst, XMMRegister src);
 696   void movapd(XMMRegister dst, XMMRegister src);
 697 
 698   // End avoid using directly
 699 
 700 
 701   // Instruction prefixes
 702   void prefix(Prefix p);
 703 
 704   public:
 705 
 706   // Creation
 707   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
 708 
 709   // Decoding
 710   static address locate_operand(address inst, WhichOperand which);
 711   static address locate_next_instruction(address inst);
 712 
 713   // Utilities
 714   static bool is_polling_page_far() NOT_LP64({ return false;});
 715 
 716   // Generic instructions
 717   // Does 32bit or 64bit as needed for the platform. In some sense these
 718   // belong in macro assembler but there is no need for both varieties to exist
 719 
 720   void lea(Register dst, Address src);
 721 
 722   void mov(Register dst, Register src);
 723 
 724   void pusha();
 725   void popa();
 726 
 727   void pushf();
 728   void popf();
 729 
 730   void push(int32_t imm32);
 731 
 732   void push(Register src);
 733 
 734   void pop(Register dst);
 735 
 736   // These are dummies to prevent surprise implicit conversions to Register
 737   void push(void* v);
 738   void pop(void* v);
 739 
 740   // These do register sized moves/scans
 741   void rep_mov();
 742   void rep_stos();
 743   void rep_stosb();
 744   void repne_scan();
 745 #ifdef _LP64
 746   void repne_scanl();
 747 #endif
 748 
 749   // Vanilla instructions in lexical order
 750 
 751   void adcl(Address dst, int32_t imm32);
 752   void adcl(Address dst, Register src);
 753   void adcl(Register dst, int32_t imm32);
 754   void adcl(Register dst, Address src);
 755   void adcl(Register dst, Register src);
 756 
 757   void adcq(Register dst, int32_t imm32);
 758   void adcq(Register dst, Address src);
 759   void adcq(Register dst, Register src);
 760 
 761   void addl(Address dst, int32_t imm32);
 762   void addl(Address dst, Register src);
 763   void addl(Register dst, int32_t imm32);
 764   void addl(Register dst, Address src);
 765   void addl(Register dst, Register src);
 766 
 767   void addq(Address dst, int32_t imm32);
 768   void addq(Address dst, Register src);
 769   void addq(Register dst, int32_t imm32);
 770   void addq(Register dst, Address src);
 771   void addq(Register dst, Register src);
 772 
 773   void addr_nop_4();
 774   void addr_nop_5();
 775   void addr_nop_7();
 776   void addr_nop_8();
 777 
 778   // Add Scalar Double-Precision Floating-Point Values
 779   void addsd(XMMRegister dst, Address src);
 780   void addsd(XMMRegister dst, XMMRegister src);
 781 
 782   // Add Scalar Single-Precision Floating-Point Values
 783   void addss(XMMRegister dst, Address src);
 784   void addss(XMMRegister dst, XMMRegister src);
 785 
 786   // AES instructions
 787   void aesdec(XMMRegister dst, Address src);
 788   void aesdec(XMMRegister dst, XMMRegister src);
 789   void aesdeclast(XMMRegister dst, Address src);
 790   void aesdeclast(XMMRegister dst, XMMRegister src);
 791   void aesenc(XMMRegister dst, Address src);
 792   void aesenc(XMMRegister dst, XMMRegister src);
 793   void aesenclast(XMMRegister dst, Address src);
 794   void aesenclast(XMMRegister dst, XMMRegister src);
 795 
 796 
 797   void andl(Address  dst, int32_t imm32);
 798   void andl(Register dst, int32_t imm32);
 799   void andl(Register dst, Address src);
 800   void andl(Register dst, Register src);
 801 
 802   void andq(Address  dst, int32_t imm32);
 803   void andq(Register dst, int32_t imm32);
 804   void andq(Register dst, Address src);
 805   void andq(Register dst, Register src);
 806 
 807   // BMI instructions
 808   void andnl(Register dst, Register src1, Register src2);
 809   void andnl(Register dst, Register src1, Address src2);
 810   void andnq(Register dst, Register src1, Register src2);
 811   void andnq(Register dst, Register src1, Address src2);
 812 
 813   void blsil(Register dst, Register src);
 814   void blsil(Register dst, Address src);
 815   void blsiq(Register dst, Register src);
 816   void blsiq(Register dst, Address src);
 817 
 818   void blsmskl(Register dst, Register src);
 819   void blsmskl(Register dst, Address src);
 820   void blsmskq(Register dst, Register src);
 821   void blsmskq(Register dst, Address src);
 822 
 823   void blsrl(Register dst, Register src);
 824   void blsrl(Register dst, Address src);
 825   void blsrq(Register dst, Register src);
 826   void blsrq(Register dst, Address src);
 827 
 828   void bsfl(Register dst, Register src);
 829   void bsrl(Register dst, Register src);
 830 
 831 #ifdef _LP64
 832   void bsfq(Register dst, Register src);
 833   void bsrq(Register dst, Register src);
 834 #endif
 835 
 836   void bswapl(Register reg);
 837 
 838   void bswapq(Register reg);
 839 
 840   void call(Label& L, relocInfo::relocType rtype);
 841   void call(Register reg);  // push pc; pc <- reg
 842   void call(Address adr);   // push pc; pc <- adr
 843 
 844   void cdql();
 845 
 846   void cdqq();
 847 
 848   void cld();
 849 
 850   void clflush(Address adr);
 851 
 852   void cmovl(Condition cc, Register dst, Register src);
 853   void cmovl(Condition cc, Register dst, Address src);
 854 
 855   void cmovq(Condition cc, Register dst, Register src);
 856   void cmovq(Condition cc, Register dst, Address src);
 857 
 858 
 859   void cmpb(Address dst, int imm8);
 860 
 861   void cmpl(Address dst, int32_t imm32);
 862 
 863   void cmpl(Register dst, int32_t imm32);
 864   void cmpl(Register dst, Register src);
 865   void cmpl(Register dst, Address src);
 866 
 867   void cmpq(Address dst, int32_t imm32);
 868   void cmpq(Address dst, Register src);
 869 
 870   void cmpq(Register dst, int32_t imm32);
 871   void cmpq(Register dst, Register src);
 872   void cmpq(Register dst, Address src);
 873 
 874   // these are dummies used to catch attempting to convert NULL to Register
 875   void cmpl(Register dst, void* junk); // dummy
 876   void cmpq(Register dst, void* junk); // dummy
 877 
 878   void cmpw(Address dst, int imm16);
 879 
 880   void cmpxchg8 (Address adr);
 881 
 882   void cmpxchgl(Register reg, Address adr);
 883 
 884   void cmpxchgq(Register reg, Address adr);
 885 
 886   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
 887   void comisd(XMMRegister dst, Address src);
 888   void comisd(XMMRegister dst, XMMRegister src);
 889 
 890   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
 891   void comiss(XMMRegister dst, Address src);
 892   void comiss(XMMRegister dst, XMMRegister src);
 893 
 894   // Identify processor type and features
 895   void cpuid();
 896 
 897   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
 898   void cvtsd2ss(XMMRegister dst, XMMRegister src);
 899   void cvtsd2ss(XMMRegister dst, Address src);
 900 
 901   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
 902   void cvtsi2sdl(XMMRegister dst, Register src);
 903   void cvtsi2sdl(XMMRegister dst, Address src);
 904   void cvtsi2sdq(XMMRegister dst, Register src);
 905   void cvtsi2sdq(XMMRegister dst, Address src);
 906 
 907   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
 908   void cvtsi2ssl(XMMRegister dst, Register src);
 909   void cvtsi2ssl(XMMRegister dst, Address src);
 910   void cvtsi2ssq(XMMRegister dst, Register src);
 911   void cvtsi2ssq(XMMRegister dst, Address src);
 912 
 913   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
 914   void cvtdq2pd(XMMRegister dst, XMMRegister src);
 915 
 916   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
 917   void cvtdq2ps(XMMRegister dst, XMMRegister src);
 918 
 919   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
 920   void cvtss2sd(XMMRegister dst, XMMRegister src);
 921   void cvtss2sd(XMMRegister dst, Address src);
 922 
 923   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
 924   void cvttsd2sil(Register dst, Address src);
 925   void cvttsd2sil(Register dst, XMMRegister src);
 926   void cvttsd2siq(Register dst, XMMRegister src);
 927 
 928   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
 929   void cvttss2sil(Register dst, XMMRegister src);
 930   void cvttss2siq(Register dst, XMMRegister src);
 931 
 932   // Divide Scalar Double-Precision Floating-Point Values
 933   void divsd(XMMRegister dst, Address src);
 934   void divsd(XMMRegister dst, XMMRegister src);
 935 
 936   // Divide Scalar Single-Precision Floating-Point Values
 937   void divss(XMMRegister dst, Address src);
 938   void divss(XMMRegister dst, XMMRegister src);
 939 
 940   void emms();
 941 
 942   void fabs();
 943 
 944   void fadd(int i);
 945 
 946   void fadd_d(Address src);
 947   void fadd_s(Address src);
 948 
 949   // "Alternate" versions of x87 instructions place result down in FPU
 950   // stack instead of on TOS
 951 
 952   void fadda(int i); // "alternate" fadd
 953   void faddp(int i = 1);
 954 
 955   void fchs();
 956 
 957   void fcom(int i);
 958 
 959   void fcomp(int i = 1);
 960   void fcomp_d(Address src);
 961   void fcomp_s(Address src);
 962 
 963   void fcompp();
 964 
 965   void fcos();
 966 
 967   void fdecstp();
 968 
 969   void fdiv(int i);
 970   void fdiv_d(Address src);
 971   void fdivr_s(Address src);
 972   void fdiva(int i);  // "alternate" fdiv
 973   void fdivp(int i = 1);
 974 
 975   void fdivr(int i);
 976   void fdivr_d(Address src);
 977   void fdiv_s(Address src);
 978 
 979   void fdivra(int i); // "alternate" reversed fdiv
 980 
 981   void fdivrp(int i = 1);
 982 
 983   void ffree(int i = 0);
 984 
 985   void fild_d(Address adr);
 986   void fild_s(Address adr);
 987 
 988   void fincstp();
 989 
 990   void finit();
 991 
 992   void fist_s (Address adr);
 993   void fistp_d(Address adr);
 994   void fistp_s(Address adr);
 995 
 996   void fld1();
 997 
 998   void fld_d(Address adr);
 999   void fld_s(Address adr);
1000   void fld_s(int index);
1001   void fld_x(Address adr);  // extended-precision (80-bit) format
1002 
1003   void fldcw(Address src);
1004 
1005   void fldenv(Address src);
1006 
1007   void fldlg2();
1008 
1009   void fldln2();
1010 
1011   void fldz();
1012 
1013   void flog();
1014   void flog10();
1015 
1016   void fmul(int i);
1017 
1018   void fmul_d(Address src);
1019   void fmul_s(Address src);
1020 
1021   void fmula(int i);  // "alternate" fmul
1022 
1023   void fmulp(int i = 1);
1024 
1025   void fnsave(Address dst);
1026 
1027   void fnstcw(Address src);
1028 
1029   void fnstsw_ax();
1030 
1031   void fprem();
1032   void fprem1();
1033 
1034   void frstor(Address src);
1035 
1036   void fsin();
1037 
1038   void fsqrt();
1039 
1040   void fst_d(Address adr);
1041   void fst_s(Address adr);
1042 
1043   void fstp_d(Address adr);
1044   void fstp_d(int index);
1045   void fstp_s(Address adr);
1046   void fstp_x(Address adr); // extended-precision (80-bit) format
1047 
1048   void fsub(int i);
1049   void fsub_d(Address src);
1050   void fsub_s(Address src);
1051 
1052   void fsuba(int i);  // "alternate" fsub
1053 
1054   void fsubp(int i = 1);
1055 
1056   void fsubr(int i);
1057   void fsubr_d(Address src);
1058   void fsubr_s(Address src);
1059 
1060   void fsubra(int i); // "alternate" reversed fsub
1061 
1062   void fsubrp(int i = 1);
1063 
1064   void ftan();
1065 
1066   void ftst();
1067 
1068   void fucomi(int i = 1);
1069   void fucomip(int i = 1);
1070 
1071   void fwait();
1072 
1073   void fxch(int i = 1);
1074 
1075   void fxrstor(Address src);
1076 
1077   void fxsave(Address dst);
1078 
1079   void fyl2x();
1080   void frndint();
1081   void f2xm1();
1082   void fldl2e();
1083 
1084   void hlt();
1085 
1086   void idivl(Register src);
1087   void divl(Register src); // Unsigned division
1088 
1089   void idivq(Register src);
1090 
1091   void imull(Register dst, Register src);
1092   void imull(Register dst, Register src, int value);
1093   void imull(Register dst, Address src);
1094 
1095   void imulq(Register dst, Register src);
1096   void imulq(Register dst, Register src, int value);
1097 #ifdef _LP64
1098   void imulq(Register dst, Address src);
1099 #endif
1100 
1101 
1102   // jcc is the generic conditional branch generator to run-
1103   // time routines, jcc is used for branches to labels. jcc
1104   // takes a branch opcode (cc) and a label (L) and generates
1105   // either a backward branch or a forward branch and links it
1106   // to the label fixup chain. Usage:
1107   //
1108   // Label L;      // unbound label
1109   // jcc(cc, L);   // forward branch to unbound label
1110   // bind(L);      // bind label to the current pc
1111   // jcc(cc, L);   // backward branch to bound label
1112   // bind(L);      // illegal: a label may be bound only once
1113   //
1114   // Note: The same Label can be used for forward and backward branches
1115   // but it may be bound only once.
1116 
1117   void jcc(Condition cc, Label& L, bool maybe_short = true);
1118 
1119   // Conditional jump to a 8-bit offset to L.
1120   // WARNING: be very careful using this for forward jumps.  If the label is
1121   // not bound within an 8-bit offset of this instruction, a run-time error
1122   // will occur.
1123   void jccb(Condition cc, Label& L);
1124 
1125   void jmp(Address entry);    // pc <- entry
1126 
1127   // Label operations & relative jumps (PPUM Appendix D)
1128   void jmp(Label& L, bool maybe_short = true);   // unconditional jump to L
1129 
1130   void jmp(Register entry); // pc <- entry
1131 
1132   // Unconditional 8-bit offset jump to L.
1133   // WARNING: be very careful using this for forward jumps.  If the label is
1134   // not bound within an 8-bit offset of this instruction, a run-time error
1135   // will occur.
1136   void jmpb(Label& L);
1137 
1138   void ldmxcsr( Address src );
1139 
1140   void leal(Register dst, Address src);
1141 
1142   void leaq(Register dst, Address src);
1143 
1144   void lfence();
1145 
1146   void lock();
1147 
1148   void lzcntl(Register dst, Register src);
1149 
1150 #ifdef _LP64
1151   void lzcntq(Register dst, Register src);
1152 #endif
1153 
1154   enum Membar_mask_bits {
1155     StoreStore = 1 << 3,
1156     LoadStore  = 1 << 2,
1157     StoreLoad  = 1 << 1,
1158     LoadLoad   = 1 << 0
1159   };
1160 
1161   // Serializes memory and blows flags
1162   void membar(Membar_mask_bits order_constraint) {
1163     if (os::is_MP()) {
1164       // We only have to handle StoreLoad
1165       if (order_constraint & StoreLoad) {
1166         // All usable chips support "locked" instructions which suffice
1167         // as barriers, and are much faster than the alternative of
1168         // using cpuid instruction. We use here a locked add [esp],0.
1169         // This is conveniently otherwise a no-op except for blowing
1170         // flags.
1171         // Any change to this code may need to revisit other places in
1172         // the code where this idiom is used, in particular the
1173         // orderAccess code.
1174         lock();
1175         addl(Address(rsp, 0), 0);// Assert the lock# signal here
1176       }
1177     }
1178   }
1179 
1180   void mfence();
1181 
1182   // Moves
1183 
1184   void mov64(Register dst, int64_t imm64);
1185 
1186   void movb(Address dst, Register src);
1187   void movb(Address dst, int imm8);
1188   void movb(Register dst, Address src);
1189 
1190   void movdl(XMMRegister dst, Register src);
1191   void movdl(Register dst, XMMRegister src);
1192   void movdl(XMMRegister dst, Address src);
1193   void movdl(Address dst, XMMRegister src);
1194 
1195   // Move Double Quadword
1196   void movdq(XMMRegister dst, Register src);
1197   void movdq(Register dst, XMMRegister src);
1198 
1199   // Move Aligned Double Quadword
1200   void movdqa(XMMRegister dst, XMMRegister src);
1201   void movdqa(XMMRegister dst, Address src);
1202 
1203   // Move Unaligned Double Quadword
1204   void movdqu(Address     dst, XMMRegister src);
1205   void movdqu(XMMRegister dst, Address src);
1206   void movdqu(XMMRegister dst, XMMRegister src);
1207 
1208   // Move Unaligned 256bit Vector
1209   void vmovdqu(Address dst, XMMRegister src);
1210   void vmovdqu(XMMRegister dst, Address src);
1211   void vmovdqu(XMMRegister dst, XMMRegister src);
1212 
1213   // Move lower 64bit to high 64bit in 128bit register
1214   void movlhps(XMMRegister dst, XMMRegister src);
1215 
1216   void movl(Register dst, int32_t imm32);
1217   void movl(Address dst, int32_t imm32);
1218   void movl(Register dst, Register src);
1219   void movl(Register dst, Address src);
1220   void movl(Address dst, Register src);
1221 
1222   // These dummies prevent using movl from converting a zero (like NULL) into Register
1223   // by giving the compiler two choices it can't resolve
1224 
1225   void movl(Address  dst, void* junk);
1226   void movl(Register dst, void* junk);
1227 
1228 #ifdef _LP64
1229   void movq(Register dst, Register src);
1230   void movq(Register dst, Address src);
1231   void movq(Address  dst, Register src);
1232 #endif
1233 
1234   void movq(Address     dst, MMXRegister src );
1235   void movq(MMXRegister dst, Address src );
1236 
1237 #ifdef _LP64
1238   // These dummies prevent using movq from converting a zero (like NULL) into Register
1239   // by giving the compiler two choices it can't resolve
1240 
1241   void movq(Address  dst, void* dummy);
1242   void movq(Register dst, void* dummy);
1243 #endif
1244 
1245   // Move Quadword
1246   void movq(Address     dst, XMMRegister src);
1247   void movq(XMMRegister dst, Address src);
1248 
1249   void movsbl(Register dst, Address src);
1250   void movsbl(Register dst, Register src);
1251 
1252 #ifdef _LP64
1253   void movsbq(Register dst, Address src);
1254   void movsbq(Register dst, Register src);
1255 
1256   // Move signed 32bit immediate to 64bit extending sign
1257   void movslq(Address  dst, int32_t imm64);
1258   void movslq(Register dst, int32_t imm64);
1259 
1260   void movslq(Register dst, Address src);
1261   void movslq(Register dst, Register src);
1262   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1263 #endif
1264 
1265   void movswl(Register dst, Address src);
1266   void movswl(Register dst, Register src);
1267 
1268 #ifdef _LP64
1269   void movswq(Register dst, Address src);
1270   void movswq(Register dst, Register src);
1271 #endif
1272 
1273   void movw(Address dst, int imm16);
1274   void movw(Register dst, Address src);
1275   void movw(Address dst, Register src);
1276 
1277   void movzbl(Register dst, Address src);
1278   void movzbl(Register dst, Register src);
1279 
1280 #ifdef _LP64
1281   void movzbq(Register dst, Address src);
1282   void movzbq(Register dst, Register src);
1283 #endif
1284 
1285   void movzwl(Register dst, Address src);
1286   void movzwl(Register dst, Register src);
1287 
1288 #ifdef _LP64
1289   void movzwq(Register dst, Address src);
1290   void movzwq(Register dst, Register src);
1291 #endif
1292 
1293   void mull(Address src);
1294   void mull(Register src);
1295 
1296   // Multiply Scalar Double-Precision Floating-Point Values
1297   void mulsd(XMMRegister dst, Address src);
1298   void mulsd(XMMRegister dst, XMMRegister src);
1299 
1300   // Multiply Scalar Single-Precision Floating-Point Values
1301   void mulss(XMMRegister dst, Address src);
1302   void mulss(XMMRegister dst, XMMRegister src);
1303 
1304   void negl(Register dst);
1305 
1306 #ifdef _LP64
1307   void negq(Register dst);
1308 #endif
1309 
1310   void nop(int i = 1);
1311 
1312   void notl(Register dst);
1313 
1314 #ifdef _LP64
1315   void notq(Register dst);
1316 #endif
1317 
1318   void orl(Address dst, int32_t imm32);
1319   void orl(Register dst, int32_t imm32);
1320   void orl(Register dst, Address src);
1321   void orl(Register dst, Register src);
1322 
1323   void orq(Address dst, int32_t imm32);
1324   void orq(Register dst, int32_t imm32);
1325   void orq(Register dst, Address src);
1326   void orq(Register dst, Register src);
1327 
1328   // Pack with unsigned saturation
1329   void packuswb(XMMRegister dst, XMMRegister src);
1330   void packuswb(XMMRegister dst, Address src);
1331   void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1332 
1333   // Pemutation of 64bit words
1334   void vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256);
1335 
1336   void pause();
1337 
1338   // SSE4.2 string instructions
1339   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1340   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1341 
1342   // SSE 4.1 extract
1343   void pextrd(Register dst, XMMRegister src, int imm8);
1344   void pextrq(Register dst, XMMRegister src, int imm8);
1345 
1346   // SSE 4.1 insert
1347   void pinsrd(XMMRegister dst, Register src, int imm8);
1348   void pinsrq(XMMRegister dst, Register src, int imm8);
1349 
1350   // SSE4.1 packed move
1351   void pmovzxbw(XMMRegister dst, XMMRegister src);
1352   void pmovzxbw(XMMRegister dst, Address src);
1353 
1354 #ifndef _LP64 // no 32bit push/pop on amd64
1355   void popl(Address dst);
1356 #endif
1357 
1358 #ifdef _LP64
1359   void popq(Address dst);
1360 #endif
1361 
1362   void popcntl(Register dst, Address src);
1363   void popcntl(Register dst, Register src);
1364 
1365 #ifdef _LP64
1366   void popcntq(Register dst, Address src);
1367   void popcntq(Register dst, Register src);
1368 #endif
1369 
1370   // Prefetches (SSE, SSE2, 3DNOW only)
1371 
1372   void prefetchnta(Address src);
1373   void prefetchr(Address src);
1374   void prefetcht0(Address src);
1375   void prefetcht1(Address src);
1376   void prefetcht2(Address src);
1377   void prefetchw(Address src);
1378 
1379   // Shuffle Bytes
1380   void pshufb(XMMRegister dst, XMMRegister src);
1381   void pshufb(XMMRegister dst, Address src);
1382 
1383   // Shuffle Packed Doublewords
1384   void pshufd(XMMRegister dst, XMMRegister src, int mode);
1385   void pshufd(XMMRegister dst, Address src,     int mode);
1386 
1387   // Shuffle Packed Low Words
1388   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1389   void pshuflw(XMMRegister dst, Address src,     int mode);
1390 
1391   // Shift Right by bytes Logical DoubleQuadword Immediate
1392   void psrldq(XMMRegister dst, int shift);
1393 
1394   // Logical Compare 128bit
1395   void ptest(XMMRegister dst, XMMRegister src);
1396   void ptest(XMMRegister dst, Address src);
1397   // Logical Compare 256bit
1398   void vptest(XMMRegister dst, XMMRegister src);
1399   void vptest(XMMRegister dst, Address src);
1400 
1401   // Interleave Low Bytes
1402   void punpcklbw(XMMRegister dst, XMMRegister src);
1403   void punpcklbw(XMMRegister dst, Address src);
1404 
1405   // Interleave Low Doublewords
1406   void punpckldq(XMMRegister dst, XMMRegister src);
1407   void punpckldq(XMMRegister dst, Address src);
1408 
1409   // Interleave Low Quadwords
1410   void punpcklqdq(XMMRegister dst, XMMRegister src);
1411 
1412 #ifndef _LP64 // no 32bit push/pop on amd64
1413   void pushl(Address src);
1414 #endif
1415 
1416   void pushq(Address src);
1417 
1418   void rcll(Register dst, int imm8);
1419 
1420   void rclq(Register dst, int imm8);
1421 
1422   void rdtsc();
1423 
1424   void ret(int imm16);
1425 
1426   void sahf();
1427 
1428   void sarl(Register dst, int imm8);
1429   void sarl(Register dst);
1430 
1431   void sarq(Register dst, int imm8);
1432   void sarq(Register dst);
1433 
1434   void sbbl(Address dst, int32_t imm32);
1435   void sbbl(Register dst, int32_t imm32);
1436   void sbbl(Register dst, Address src);
1437   void sbbl(Register dst, Register src);
1438 
1439   void sbbq(Address dst, int32_t imm32);
1440   void sbbq(Register dst, int32_t imm32);
1441   void sbbq(Register dst, Address src);
1442   void sbbq(Register dst, Register src);
1443 
1444   void setb(Condition cc, Register dst);
1445 
1446   void shldl(Register dst, Register src);
1447 
1448   void shll(Register dst, int imm8);
1449   void shll(Register dst);
1450 
1451   void shlq(Register dst, int imm8);
1452   void shlq(Register dst);
1453 
1454   void shrdl(Register dst, Register src);
1455 
1456   void shrl(Register dst, int imm8);
1457   void shrl(Register dst);
1458 
1459   void shrq(Register dst, int imm8);
1460   void shrq(Register dst);
1461 
1462   void smovl(); // QQQ generic?
1463 
1464   // Compute Square Root of Scalar Double-Precision Floating-Point Value
1465   void sqrtsd(XMMRegister dst, Address src);
1466   void sqrtsd(XMMRegister dst, XMMRegister src);
1467 
1468   // Compute Square Root of Scalar Single-Precision Floating-Point Value
1469   void sqrtss(XMMRegister dst, Address src);
1470   void sqrtss(XMMRegister dst, XMMRegister src);
1471 
1472   void std();
1473 
1474   void stmxcsr( Address dst );
1475 
1476   void subl(Address dst, int32_t imm32);
1477   void subl(Address dst, Register src);
1478   void subl(Register dst, int32_t imm32);
1479   void subl(Register dst, Address src);
1480   void subl(Register dst, Register src);
1481 
1482   void subq(Address dst, int32_t imm32);
1483   void subq(Address dst, Register src);
1484   void subq(Register dst, int32_t imm32);
1485   void subq(Register dst, Address src);
1486   void subq(Register dst, Register src);
1487 
1488   // Force generation of a 4 byte immediate value even if it fits into 8bit
1489   void subl_imm32(Register dst, int32_t imm32);
1490   void subq_imm32(Register dst, int32_t imm32);
1491 
1492   // Subtract Scalar Double-Precision Floating-Point Values
1493   void subsd(XMMRegister dst, Address src);
1494   void subsd(XMMRegister dst, XMMRegister src);
1495 
1496   // Subtract Scalar Single-Precision Floating-Point Values
1497   void subss(XMMRegister dst, Address src);
1498   void subss(XMMRegister dst, XMMRegister src);
1499 
1500   void testb(Register dst, int imm8);
1501 
1502   void testl(Register dst, int32_t imm32);
1503   void testl(Register dst, Register src);
1504   void testl(Register dst, Address src);
1505 
1506   void testq(Register dst, int32_t imm32);
1507   void testq(Register dst, Register src);
1508 
1509   // BMI - count trailing zeros
1510   void tzcntl(Register dst, Register src);
1511   void tzcntq(Register dst, Register src);
1512 
1513   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1514   void ucomisd(XMMRegister dst, Address src);
1515   void ucomisd(XMMRegister dst, XMMRegister src);
1516 
1517   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1518   void ucomiss(XMMRegister dst, Address src);
1519   void ucomiss(XMMRegister dst, XMMRegister src);
1520 
1521   void xabort(int8_t imm8);
1522 
1523   void xaddl(Address dst, Register src);
1524 
1525   void xaddq(Address dst, Register src);
1526 
1527   void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none);
1528 
1529   void xchgl(Register reg, Address adr);
1530   void xchgl(Register dst, Register src);
1531 
1532   void xchgq(Register reg, Address adr);
1533   void xchgq(Register dst, Register src);
1534 
1535   void xend();
1536 
1537   // Get Value of Extended Control Register
1538   void xgetbv();
1539 
1540   void xorl(Register dst, int32_t imm32);
1541   void xorl(Register dst, Address src);
1542   void xorl(Register dst, Register src);
1543 
1544   void xorq(Register dst, Address src);
1545   void xorq(Register dst, Register src);
1546 
1547   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1548 
1549   // AVX 3-operands scalar instructions (encoded with VEX prefix)
1550 
1551   void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
1552   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1553   void vaddss(XMMRegister dst, XMMRegister nds, Address src);
1554   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1555   void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
1556   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1557   void vdivss(XMMRegister dst, XMMRegister nds, Address src);
1558   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1559   void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
1560   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1561   void vmulss(XMMRegister dst, XMMRegister nds, Address src);
1562   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1563   void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
1564   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1565   void vsubss(XMMRegister dst, XMMRegister nds, Address src);
1566   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1567 
1568 
1569   //====================VECTOR ARITHMETIC=====================================
1570 
1571   // Add Packed Floating-Point Values
1572   void addpd(XMMRegister dst, XMMRegister src);
1573   void addps(XMMRegister dst, XMMRegister src);
1574   void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1575   void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1576   void vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1577   void vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1578 
1579   // Subtract Packed Floating-Point Values
1580   void subpd(XMMRegister dst, XMMRegister src);
1581   void subps(XMMRegister dst, XMMRegister src);
1582   void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1583   void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1584   void vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1585   void vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1586 
1587   // Multiply Packed Floating-Point Values
1588   void mulpd(XMMRegister dst, XMMRegister src);
1589   void mulps(XMMRegister dst, XMMRegister src);
1590   void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1591   void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1592   void vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1593   void vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1594 
1595   // Divide Packed Floating-Point Values
1596   void divpd(XMMRegister dst, XMMRegister src);
1597   void divps(XMMRegister dst, XMMRegister src);
1598   void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1599   void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1600   void vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1601   void vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1602 
1603   // Bitwise Logical AND of Packed Floating-Point Values
1604   void andpd(XMMRegister dst, XMMRegister src);
1605   void andps(XMMRegister dst, XMMRegister src);
1606   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1607   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1608   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1609   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1610 
1611   // Bitwise Logical XOR of Packed Floating-Point Values
1612   void xorpd(XMMRegister dst, XMMRegister src);
1613   void xorps(XMMRegister dst, XMMRegister src);
1614   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1615   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1616   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1617   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1618 
1619   // Add packed integers
1620   void paddb(XMMRegister dst, XMMRegister src);
1621   void paddw(XMMRegister dst, XMMRegister src);
1622   void paddd(XMMRegister dst, XMMRegister src);
1623   void paddq(XMMRegister dst, XMMRegister src);
1624   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1625   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1626   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1627   void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1628   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1629   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1630   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1631   void vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1632 
1633   // Sub packed integers
1634   void psubb(XMMRegister dst, XMMRegister src);
1635   void psubw(XMMRegister dst, XMMRegister src);
1636   void psubd(XMMRegister dst, XMMRegister src);
1637   void psubq(XMMRegister dst, XMMRegister src);
1638   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1639   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1640   void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1641   void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1642   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1643   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1644   void vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1645   void vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1646 
1647   // Multiply packed integers (only shorts and ints)
1648   void pmullw(XMMRegister dst, XMMRegister src);
1649   void pmulld(XMMRegister dst, XMMRegister src);
1650   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1651   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1652   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1653   void vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1654 
1655   // Shift left packed integers
1656   void psllw(XMMRegister dst, int shift);
1657   void pslld(XMMRegister dst, int shift);
1658   void psllq(XMMRegister dst, int shift);
1659   void psllw(XMMRegister dst, XMMRegister shift);
1660   void pslld(XMMRegister dst, XMMRegister shift);
1661   void psllq(XMMRegister dst, XMMRegister shift);
1662   void vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1663   void vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1664   void vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1665   void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1666   void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1667   void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1668 
1669   // Logical shift right packed integers
1670   void psrlw(XMMRegister dst, int shift);
1671   void psrld(XMMRegister dst, int shift);
1672   void psrlq(XMMRegister dst, int shift);
1673   void psrlw(XMMRegister dst, XMMRegister shift);
1674   void psrld(XMMRegister dst, XMMRegister shift);
1675   void psrlq(XMMRegister dst, XMMRegister shift);
1676   void vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1677   void vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1678   void vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1679   void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1680   void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1681   void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1682 
1683   // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
1684   void psraw(XMMRegister dst, int shift);
1685   void psrad(XMMRegister dst, int shift);
1686   void psraw(XMMRegister dst, XMMRegister shift);
1687   void psrad(XMMRegister dst, XMMRegister shift);
1688   void vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1689   void vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1690   void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1691   void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1692 
1693   // And packed integers
1694   void pand(XMMRegister dst, XMMRegister src);
1695   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1696   void vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1697 
1698   // Or packed integers
1699   void por(XMMRegister dst, XMMRegister src);
1700   void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1701   void vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1702 
1703   // Xor packed integers
1704   void pxor(XMMRegister dst, XMMRegister src);
1705   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1706   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1707 
1708   // Copy low 128bit into high 128bit of YMM registers.
1709   void vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
1710   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
1711 
1712   // Load/store high 128bit of YMM registers which does not destroy other half.
1713   void vinsertf128h(XMMRegister dst, Address src);
1714   void vinserti128h(XMMRegister dst, Address src);
1715   void vextractf128h(Address dst, XMMRegister src);
1716   void vextracti128h(Address dst, XMMRegister src);
1717 
1718   // duplicate 4-bytes integer data from src into 8 locations in dest
1719   void vpbroadcastd(XMMRegister dst, XMMRegister src);
1720 
1721   // Carry-Less Multiplication Quadword
1722   void vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask);
1723 
1724   // AVX instruction which is used to clear upper 128 bits of YMM registers and
1725   // to avoid transaction penalty between AVX and SSE states. There is no
1726   // penalty if legacy SSE instructions are encoded using VEX prefix because
1727   // they always clear upper 128 bits. It should be used before calling
1728   // runtime code and native libraries.
1729   void vzeroupper();
1730 
1731  protected:
1732   // Next instructions require address alignment 16 bytes SSE mode.
1733   // They should be called only from corresponding MacroAssembler instructions.
1734   void andpd(XMMRegister dst, Address src);
1735   void andps(XMMRegister dst, Address src);
1736   void xorpd(XMMRegister dst, Address src);
1737   void xorps(XMMRegister dst, Address src);
1738 
1739 };
1740 
1741 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP