1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc_interface/collectedHeap.hpp"
  36 #include "memory/barrierSet.hpp"
  37 #include "memory/cardTableModRefBS.hpp"
  38 #include "nativeInst_x86.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "vmreg_x86.inline.hpp"
  42 
  43 
  44 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  45 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  46 // fast versions of NegF/NegD and AbsF/AbsD.
  47 
  48 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  49 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  50   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  51   // of 128-bits operands for SSE instructions.
  52   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  53   // Store the value to a 128-bits operand.
  54   operand[0] = lo;
  55   operand[1] = hi;
  56   return operand;
  57 }
  58 
  59 // Buffer for 128-bits masks used by SSE instructions.
  60 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  61 
  62 // Static initialization during VM startup.
  63 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
  64 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
  65 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
  66 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
  67 
  68 
  69 
  70 NEEDS_CLEANUP // remove this definitions ?
  71 const Register IC_Klass    = rax;   // where the IC klass is cached
  72 const Register SYNC_header = rax;   // synchronization header
  73 const Register SHIFT_count = rcx;   // where count for shift operations must be
  74 
  75 #define __ _masm->
  76 
  77 
  78 static void select_different_registers(Register preserve,
  79                                        Register extra,
  80                                        Register &tmp1,
  81                                        Register &tmp2) {
  82   if (tmp1 == preserve) {
  83     assert_different_registers(tmp1, tmp2, extra);
  84     tmp1 = extra;
  85   } else if (tmp2 == preserve) {
  86     assert_different_registers(tmp1, tmp2, extra);
  87     tmp2 = extra;
  88   }
  89   assert_different_registers(preserve, tmp1, tmp2);
  90 }
  91 
  92 
  93 
  94 static void select_different_registers(Register preserve,
  95                                        Register extra,
  96                                        Register &tmp1,
  97                                        Register &tmp2,
  98                                        Register &tmp3) {
  99   if (tmp1 == preserve) {
 100     assert_different_registers(tmp1, tmp2, tmp3, extra);
 101     tmp1 = extra;
 102   } else if (tmp2 == preserve) {
 103     assert_different_registers(tmp1, tmp2, tmp3, extra);
 104     tmp2 = extra;
 105   } else if (tmp3 == preserve) {
 106     assert_different_registers(tmp1, tmp2, tmp3, extra);
 107     tmp3 = extra;
 108   }
 109   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 110 }
 111 
 112 
 113 
 114 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 115   if (opr->is_constant()) {
 116     LIR_Const* constant = opr->as_constant_ptr();
 117     switch (constant->type()) {
 118       case T_INT: {
 119         return true;
 120       }
 121 
 122       default:
 123         return false;
 124     }
 125   }
 126   return false;
 127 }
 128 
 129 
 130 LIR_Opr LIR_Assembler::receiverOpr() {
 131   return FrameMap::receiver_opr;
 132 }
 133 
 134 LIR_Opr LIR_Assembler::osrBufferPointer() {
 135   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 136 }
 137 
 138 //--------------fpu register translations-----------------------
 139 
 140 
 141 address LIR_Assembler::float_constant(float f) {
 142   address const_addr = __ float_constant(f);
 143   if (const_addr == NULL) {
 144     bailout("const section overflow");
 145     return __ code()->consts()->start();
 146   } else {
 147     return const_addr;
 148   }
 149 }
 150 
 151 
 152 address LIR_Assembler::double_constant(double d) {
 153   address const_addr = __ double_constant(d);
 154   if (const_addr == NULL) {
 155     bailout("const section overflow");
 156     return __ code()->consts()->start();
 157   } else {
 158     return const_addr;
 159   }
 160 }
 161 
 162 
 163 void LIR_Assembler::set_24bit_FPU() {
 164   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 165 }
 166 
 167 void LIR_Assembler::reset_FPU() {
 168   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 169 }
 170 
 171 void LIR_Assembler::fpop() {
 172   __ fpop();
 173 }
 174 
 175 void LIR_Assembler::fxch(int i) {
 176   __ fxch(i);
 177 }
 178 
 179 void LIR_Assembler::fld(int i) {
 180   __ fld_s(i);
 181 }
 182 
 183 void LIR_Assembler::ffree(int i) {
 184   __ ffree(i);
 185 }
 186 
 187 void LIR_Assembler::breakpoint() {
 188   __ int3();
 189 }
 190 
 191 void LIR_Assembler::push(LIR_Opr opr) {
 192   if (opr->is_single_cpu()) {
 193     __ push_reg(opr->as_register());
 194   } else if (opr->is_double_cpu()) {
 195     NOT_LP64(__ push_reg(opr->as_register_hi()));
 196     __ push_reg(opr->as_register_lo());
 197   } else if (opr->is_stack()) {
 198     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 199   } else if (opr->is_constant()) {
 200     LIR_Const* const_opr = opr->as_constant_ptr();
 201     if (const_opr->type() == T_OBJECT) {
 202       __ push_oop(const_opr->as_jobject());
 203     } else if (const_opr->type() == T_INT) {
 204       __ push_jint(const_opr->as_jint());
 205     } else {
 206       ShouldNotReachHere();
 207     }
 208 
 209   } else {
 210     ShouldNotReachHere();
 211   }
 212 }
 213 
 214 void LIR_Assembler::pop(LIR_Opr opr) {
 215   if (opr->is_single_cpu()) {
 216     __ pop_reg(opr->as_register());
 217   } else {
 218     ShouldNotReachHere();
 219   }
 220 }
 221 
 222 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 223   return addr->base()->is_illegal() && addr->index()->is_illegal();
 224 }
 225 
 226 //-------------------------------------------
 227 
 228 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 229   return as_Address(addr, rscratch1);
 230 }
 231 
 232 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 233   if (addr->base()->is_illegal()) {
 234     assert(addr->index()->is_illegal(), "must be illegal too");
 235     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 236     if (! __ reachable(laddr)) {
 237       __ movptr(tmp, laddr.addr());
 238       Address res(tmp, 0);
 239       return res;
 240     } else {
 241       return __ as_Address(laddr);
 242     }
 243   }
 244 
 245   Register base = addr->base()->as_pointer_register();
 246 
 247   if (addr->index()->is_illegal()) {
 248     return Address( base, addr->disp());
 249   } else if (addr->index()->is_cpu_register()) {
 250     Register index = addr->index()->as_pointer_register();
 251     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 252   } else if (addr->index()->is_constant()) {
 253     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 254     assert(Assembler::is_simm32(addr_offset), "must be");
 255 
 256     return Address(base, addr_offset);
 257   } else {
 258     Unimplemented();
 259     return Address();
 260   }
 261 }
 262 
 263 
 264 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 265   Address base = as_Address(addr);
 266   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 267 }
 268 
 269 
 270 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 271   return as_Address(addr);
 272 }
 273 
 274 
 275 void LIR_Assembler::osr_entry() {
 276   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 277   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 278   ValueStack* entry_state = osr_entry->state();
 279   int number_of_locks = entry_state->locks_size();
 280 
 281   // we jump here if osr happens with the interpreter
 282   // state set up to continue at the beginning of the
 283   // loop that triggered osr - in particular, we have
 284   // the following registers setup:
 285   //
 286   // rcx: osr buffer
 287   //
 288 
 289   // build frame
 290   ciMethod* m = compilation()->method();
 291   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 292 
 293   // OSR buffer is
 294   //
 295   // locals[nlocals-1..0]
 296   // monitors[0..number_of_locks]
 297   //
 298   // locals is a direct copy of the interpreter frame so in the osr buffer
 299   // so first slot in the local array is the last local from the interpreter
 300   // and last slot is local[0] (receiver) from the interpreter
 301   //
 302   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 303   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 304   // in the interpreter frame (the method lock if a sync method)
 305 
 306   // Initialize monitors in the compiled activation.
 307   //   rcx: pointer to osr buffer
 308   //
 309   // All other registers are dead at this point and the locals will be
 310   // copied into place by code emitted in the IR.
 311 
 312   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 313   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 314     int monitor_offset = BytesPerWord * method()->max_locals() +
 315       (2 * BytesPerWord) * (number_of_locks - 1);
 316     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 317     // the OSR buffer using 2 word entries: first the lock and then
 318     // the oop.
 319     for (int i = 0; i < number_of_locks; i++) {
 320       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 321 #ifdef ASSERT
 322       // verify the interpreter's monitor has a non-null object
 323       {
 324         Label L;
 325         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 326         __ jcc(Assembler::notZero, L);
 327         __ stop("locked object is NULL");
 328         __ bind(L);
 329       }
 330 #endif
 331       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 332       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 333       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 334       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 335     }
 336   }
 337 }
 338 
 339 
 340 // inline cache check; done before the frame is built.
 341 int LIR_Assembler::check_icache() {
 342   Register receiver = FrameMap::receiver_opr->as_register();
 343   Register ic_klass = IC_Klass;
 344   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 345   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 346   if (!do_post_padding) {
 347     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 348     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
 349       __ nop();
 350     }
 351   }
 352   int offset = __ offset();
 353   __ inline_cache_check(receiver, IC_Klass);
 354   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 355   if (do_post_padding) {
 356     // force alignment after the cache check.
 357     // It's been verified to be aligned if !VerifyOops
 358     __ align(CodeEntryAlignment);
 359   }
 360   return offset;
 361 }
 362 
 363 
 364 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 365   jobject o = NULL;
 366   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 367   __ movoop(reg, o);
 368   patching_epilog(patch, lir_patch_normal, reg, info);
 369 }
 370 
 371 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 372   Metadata* o = NULL;
 373   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 374   __ mov_metadata(reg, o);
 375   patching_epilog(patch, lir_patch_normal, reg, info);
 376 }
 377 
 378 // This specifies the rsp decrement needed to build the frame
 379 int LIR_Assembler::initial_frame_size_in_bytes() const {
 380   // if rounding, must let FrameMap know!
 381 
 382   // The frame_map records size in slots (32bit word)
 383 
 384   // subtract two words to account for return address and link
 385   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 386 }
 387 
 388 
 389 int LIR_Assembler::emit_exception_handler() {
 390   // if the last instruction is a call (typically to do a throw which
 391   // is coming at the end after block reordering) the return address
 392   // must still point into the code area in order to avoid assertion
 393   // failures when searching for the corresponding bci => add a nop
 394   // (was bug 5/14/1999 - gri)
 395   __ nop();
 396 
 397   // generate code for exception handler
 398   address handler_base = __ start_a_stub(exception_handler_size);
 399   if (handler_base == NULL) {
 400     // not enough space left for the handler
 401     bailout("exception handler overflow");
 402     return -1;
 403   }
 404 
 405   int offset = code_offset();
 406 
 407   // the exception oop and pc are in rax, and rdx
 408   // no other registers need to be preserved, so invalidate them
 409   __ invalidate_registers(false, true, true, false, true, true);
 410 
 411   // check that there is really an exception
 412   __ verify_not_null_oop(rax);
 413 
 414   // search an exception handler (rax: exception oop, rdx: throwing pc)
 415   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 416   __ should_not_reach_here();
 417   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
 418   __ end_a_stub();
 419 
 420   return offset;
 421 }
 422 
 423 
 424 // Emit the code to remove the frame from the stack in the exception
 425 // unwind path.
 426 int LIR_Assembler::emit_unwind_handler() {
 427 #ifndef PRODUCT
 428   if (CommentedAssembly) {
 429     _masm->block_comment("Unwind handler");
 430   }
 431 #endif
 432 
 433   int offset = code_offset();
 434 
 435   // Fetch the exception from TLS and clear out exception related thread state
 436   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 437   NOT_LP64(__ get_thread(rsi));
 438   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 439   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 440   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 441 
 442   __ bind(_unwind_handler_entry);
 443   __ verify_not_null_oop(rax);
 444   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 445     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 446   }
 447 
 448   // Preform needed unlocking
 449   MonitorExitStub* stub = NULL;
 450   if (method()->is_synchronized()) {
 451     monitor_address(0, FrameMap::rax_opr);
 452     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 453     __ unlock_object(rdi, rsi, rax, *stub->entry());
 454     __ bind(*stub->continuation());
 455   }
 456 
 457   if (compilation()->env()->dtrace_method_probes()) {
 458 #ifdef _LP64
 459     __ mov(rdi, r15_thread);
 460     __ mov_metadata(rsi, method()->constant_encoding());
 461 #else
 462     __ get_thread(rax);
 463     __ movptr(Address(rsp, 0), rax);
 464     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 465 #endif
 466     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 467   }
 468 
 469   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 470     __ mov(rax, rbx);  // Restore the exception
 471   }
 472 
 473   // remove the activation and dispatch to the unwind handler
 474   __ remove_frame(initial_frame_size_in_bytes());
 475   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 476 
 477   // Emit the slow path assembly
 478   if (stub != NULL) {
 479     stub->emit_code(this);
 480   }
 481 
 482   return offset;
 483 }
 484 
 485 
 486 int LIR_Assembler::emit_deopt_handler() {
 487   // if the last instruction is a call (typically to do a throw which
 488   // is coming at the end after block reordering) the return address
 489   // must still point into the code area in order to avoid assertion
 490   // failures when searching for the corresponding bci => add a nop
 491   // (was bug 5/14/1999 - gri)
 492   __ nop();
 493 
 494   // generate code for exception handler
 495   address handler_base = __ start_a_stub(deopt_handler_size);
 496   if (handler_base == NULL) {
 497     // not enough space left for the handler
 498     bailout("deopt handler overflow");
 499     return -1;
 500   }
 501 
 502   int offset = code_offset();
 503   InternalAddress here(__ pc());
 504 
 505   __ pushptr(here.addr());
 506   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 507   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
 508   __ end_a_stub();
 509 
 510   return offset;
 511 }
 512 
 513 
 514 // This is the fast version of java.lang.String.compare; it has not
 515 // OSR-entry and therefore, we generate a slow version for OSR's
 516 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
 517   __ movptr (rbx, rcx); // receiver is in rcx
 518   __ movptr (rax, arg1->as_register());
 519 
 520   // Get addresses of first characters from both Strings
 521   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
 522   if (java_lang_String::has_offset_field()) {
 523     __ movptr     (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
 524     __ movl       (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
 525     __ lea        (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 526   } else {
 527     __ movl       (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
 528     __ lea        (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 529   }
 530 
 531   // rbx, may be NULL
 532   add_debug_info_for_null_check_here(info);
 533   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
 534   if (java_lang_String::has_offset_field()) {
 535     __ movptr     (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
 536     __ movl       (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 537     __ lea        (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 538   } else {
 539     __ movl       (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
 540     __ lea        (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 541   }
 542 
 543   // compute minimum length (in rax) and difference of lengths (on top of stack)
 544   __ mov   (rcx, rbx);
 545   __ subptr(rbx, rax); // subtract lengths
 546   __ push  (rbx);      // result
 547   __ cmov  (Assembler::lessEqual, rax, rcx);
 548 
 549   // is minimum length 0?
 550   Label noLoop, haveResult;
 551   __ testptr (rax, rax);
 552   __ jcc (Assembler::zero, noLoop);
 553 
 554   // compare first characters
 555   __ load_unsigned_short(rcx, Address(rdi, 0));
 556   __ load_unsigned_short(rbx, Address(rsi, 0));
 557   __ subl(rcx, rbx);
 558   __ jcc(Assembler::notZero, haveResult);
 559   // starting loop
 560   __ decrement(rax); // we already tested index: skip one
 561   __ jcc(Assembler::zero, noLoop);
 562 
 563   // set rsi.edi to the end of the arrays (arrays have same length)
 564   // negate the index
 565 
 566   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 567   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 568   __ negptr(rax);
 569 
 570   // compare the strings in a loop
 571 
 572   Label loop;
 573   __ align(wordSize);
 574   __ bind(loop);
 575   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
 576   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
 577   __ subl(rcx, rbx);
 578   __ jcc(Assembler::notZero, haveResult);
 579   __ increment(rax);
 580   __ jcc(Assembler::notZero, loop);
 581 
 582   // strings are equal up to min length
 583 
 584   __ bind(noLoop);
 585   __ pop(rax);
 586   return_op(LIR_OprFact::illegalOpr);
 587 
 588   __ bind(haveResult);
 589   // leave instruction is going to discard the TOS value
 590   __ mov (rax, rcx); // result of call is in rax,
 591 }
 592 
 593 
 594 void LIR_Assembler::return_op(LIR_Opr result) {
 595   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 596   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 597     assert(result->fpu() == 0, "result must already be on TOS");
 598   }
 599 
 600   // Pop the stack before the safepoint code
 601   __ remove_frame(initial_frame_size_in_bytes());
 602 
 603   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 604 
 605   // Note: we do not need to round double result; float result has the right precision
 606   // the poll sets the condition code, but no data registers
 607   AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 608 
 609   if (Assembler::is_polling_page_far()) {
 610     __ lea(rscratch1, polling_page);
 611     __ relocate(relocInfo::poll_return_type);
 612     __ testl(rax, Address(rscratch1, 0));
 613   } else {
 614     __ testl(rax, polling_page);
 615   }
 616   __ ret(0);
 617 }
 618 
 619 
 620 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 621   AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
 622   guarantee(info != NULL, "Shouldn't be NULL");
 623   int offset = __ offset();
 624   if (Assembler::is_polling_page_far()) {
 625     __ lea(rscratch1, polling_page);
 626     offset = __ offset();
 627     add_debug_info_for_branch(info);
 628     __ testl(rax, Address(rscratch1, 0));
 629   } else {
 630     add_debug_info_for_branch(info);
 631     __ testl(rax, polling_page);
 632   }
 633   return offset;
 634 }
 635 
 636 
 637 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 638   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 639 }
 640 
 641 void LIR_Assembler::swap_reg(Register a, Register b) {
 642   __ xchgptr(a, b);
 643 }
 644 
 645 
 646 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 647   assert(src->is_constant(), "should not call otherwise");
 648   assert(dest->is_register(), "should not call otherwise");
 649   LIR_Const* c = src->as_constant_ptr();
 650 
 651   switch (c->type()) {
 652     case T_INT: {
 653       assert(patch_code == lir_patch_none, "no patching handled here");
 654       __ movl(dest->as_register(), c->as_jint());
 655       break;
 656     }
 657 
 658     case T_ADDRESS: {
 659       assert(patch_code == lir_patch_none, "no patching handled here");
 660       __ movptr(dest->as_register(), c->as_jint());
 661       break;
 662     }
 663 
 664     case T_LONG: {
 665       assert(patch_code == lir_patch_none, "no patching handled here");
 666 #ifdef _LP64
 667       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 668 #else
 669       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 670       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 671 #endif // _LP64
 672       break;
 673     }
 674 
 675     case T_OBJECT: {
 676       if (patch_code != lir_patch_none) {
 677         jobject2reg_with_patching(dest->as_register(), info);
 678       } else {
 679         __ movoop(dest->as_register(), c->as_jobject());
 680       }
 681       break;
 682     }
 683 
 684     case T_METADATA: {
 685       if (patch_code != lir_patch_none) {
 686         klass2reg_with_patching(dest->as_register(), info);
 687       } else {
 688         __ mov_metadata(dest->as_register(), c->as_metadata());
 689       }
 690       break;
 691     }
 692 
 693     case T_FLOAT: {
 694       if (dest->is_single_xmm()) {
 695         if (c->is_zero_float()) {
 696           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 697         } else {
 698           __ movflt(dest->as_xmm_float_reg(),
 699                    InternalAddress(float_constant(c->as_jfloat())));
 700         }
 701       } else {
 702         assert(dest->is_single_fpu(), "must be");
 703         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 704         if (c->is_zero_float()) {
 705           __ fldz();
 706         } else if (c->is_one_float()) {
 707           __ fld1();
 708         } else {
 709           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 710         }
 711       }
 712       break;
 713     }
 714 
 715     case T_DOUBLE: {
 716       if (dest->is_double_xmm()) {
 717         if (c->is_zero_double()) {
 718           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 719         } else {
 720           __ movdbl(dest->as_xmm_double_reg(),
 721                     InternalAddress(double_constant(c->as_jdouble())));
 722         }
 723       } else {
 724         assert(dest->is_double_fpu(), "must be");
 725         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 726         if (c->is_zero_double()) {
 727           __ fldz();
 728         } else if (c->is_one_double()) {
 729           __ fld1();
 730         } else {
 731           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 732         }
 733       }
 734       break;
 735     }
 736 
 737     default:
 738       ShouldNotReachHere();
 739   }
 740 }
 741 
 742 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 743   assert(src->is_constant(), "should not call otherwise");
 744   assert(dest->is_stack(), "should not call otherwise");
 745   LIR_Const* c = src->as_constant_ptr();
 746 
 747   switch (c->type()) {
 748     case T_INT:  // fall through
 749     case T_FLOAT:
 750       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 751       break;
 752 
 753     case T_ADDRESS:
 754       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 755       break;
 756 
 757     case T_OBJECT:
 758       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 759       break;
 760 
 761     case T_LONG:  // fall through
 762     case T_DOUBLE:
 763 #ifdef _LP64
 764       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 765                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 766 #else
 767       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 768                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 769       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 770                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 771 #endif // _LP64
 772       break;
 773 
 774     default:
 775       ShouldNotReachHere();
 776   }
 777 }
 778 
 779 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 780   assert(src->is_constant(), "should not call otherwise");
 781   assert(dest->is_address(), "should not call otherwise");
 782   LIR_Const* c = src->as_constant_ptr();
 783   LIR_Address* addr = dest->as_address_ptr();
 784 
 785   int null_check_here = code_offset();
 786   switch (type) {
 787     case T_INT:    // fall through
 788     case T_FLOAT:
 789       __ movl(as_Address(addr), c->as_jint_bits());
 790       break;
 791 
 792     case T_ADDRESS:
 793       __ movptr(as_Address(addr), c->as_jint_bits());
 794       break;
 795 
 796     case T_OBJECT:  // fall through
 797     case T_ARRAY:
 798       if (c->as_jobject() == NULL) {
 799         if (UseCompressedOops && !wide) {
 800           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 801         } else {
 802 #ifdef _LP64
 803           __ xorptr(rscratch1, rscratch1);
 804           null_check_here = code_offset();
 805           __ movptr(as_Address(addr), rscratch1);
 806 #else
 807           __ movptr(as_Address(addr), NULL_WORD);
 808 #endif
 809         }
 810       } else {
 811         if (is_literal_address(addr)) {
 812           ShouldNotReachHere();
 813           __ movoop(as_Address(addr, noreg), c->as_jobject());
 814         } else {
 815 #ifdef _LP64
 816           __ movoop(rscratch1, c->as_jobject());
 817           if (UseCompressedOops && !wide) {
 818             __ encode_heap_oop(rscratch1);
 819             null_check_here = code_offset();
 820             __ movl(as_Address_lo(addr), rscratch1);
 821           } else {
 822             null_check_here = code_offset();
 823             __ movptr(as_Address_lo(addr), rscratch1);
 824           }
 825 #else
 826           __ movoop(as_Address(addr), c->as_jobject());
 827 #endif
 828         }
 829       }
 830       break;
 831 
 832     case T_LONG:    // fall through
 833     case T_DOUBLE:
 834 #ifdef _LP64
 835       if (is_literal_address(addr)) {
 836         ShouldNotReachHere();
 837         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 838       } else {
 839         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 840         null_check_here = code_offset();
 841         __ movptr(as_Address_lo(addr), r10);
 842       }
 843 #else
 844       // Always reachable in 32bit so this doesn't produce useless move literal
 845       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 846       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 847 #endif // _LP64
 848       break;
 849 
 850     case T_BOOLEAN: // fall through
 851     case T_BYTE:
 852       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 853       break;
 854 
 855     case T_CHAR:    // fall through
 856     case T_SHORT:
 857       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 858       break;
 859 
 860     default:
 861       ShouldNotReachHere();
 862   };
 863 
 864   if (info != NULL) {
 865     add_debug_info_for_null_check(null_check_here, info);
 866   }
 867 }
 868 
 869 
 870 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 871   assert(src->is_register(), "should not call otherwise");
 872   assert(dest->is_register(), "should not call otherwise");
 873 
 874   // move between cpu-registers
 875   if (dest->is_single_cpu()) {
 876 #ifdef _LP64
 877     if (src->type() == T_LONG) {
 878       // Can do LONG -> OBJECT
 879       move_regs(src->as_register_lo(), dest->as_register());
 880       return;
 881     }
 882 #endif
 883     assert(src->is_single_cpu(), "must match");
 884     if (src->type() == T_OBJECT) {
 885       __ verify_oop(src->as_register());
 886     }
 887     move_regs(src->as_register(), dest->as_register());
 888 
 889   } else if (dest->is_double_cpu()) {
 890 #ifdef _LP64
 891     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 892       // Surprising to me but we can see move of a long to t_object
 893       __ verify_oop(src->as_register());
 894       move_regs(src->as_register(), dest->as_register_lo());
 895       return;
 896     }
 897 #endif
 898     assert(src->is_double_cpu(), "must match");
 899     Register f_lo = src->as_register_lo();
 900     Register f_hi = src->as_register_hi();
 901     Register t_lo = dest->as_register_lo();
 902     Register t_hi = dest->as_register_hi();
 903 #ifdef _LP64
 904     assert(f_hi == f_lo, "must be same");
 905     assert(t_hi == t_lo, "must be same");
 906     move_regs(f_lo, t_lo);
 907 #else
 908     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 909 
 910 
 911     if (f_lo == t_hi && f_hi == t_lo) {
 912       swap_reg(f_lo, f_hi);
 913     } else if (f_hi == t_lo) {
 914       assert(f_lo != t_hi, "overwriting register");
 915       move_regs(f_hi, t_hi);
 916       move_regs(f_lo, t_lo);
 917     } else {
 918       assert(f_hi != t_lo, "overwriting register");
 919       move_regs(f_lo, t_lo);
 920       move_regs(f_hi, t_hi);
 921     }
 922 #endif // LP64
 923 
 924     // special moves from fpu-register to xmm-register
 925     // necessary for method results
 926   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 927     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 928     __ fld_s(Address(rsp, 0));
 929   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 930     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 931     __ fld_d(Address(rsp, 0));
 932   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 933     __ fstp_s(Address(rsp, 0));
 934     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 935   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 936     __ fstp_d(Address(rsp, 0));
 937     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 938 
 939     // move between xmm-registers
 940   } else if (dest->is_single_xmm()) {
 941     assert(src->is_single_xmm(), "must match");
 942     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 943   } else if (dest->is_double_xmm()) {
 944     assert(src->is_double_xmm(), "must match");
 945     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 946 
 947     // move between fpu-registers (no instruction necessary because of fpu-stack)
 948   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 949     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 950     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 951   } else {
 952     ShouldNotReachHere();
 953   }
 954 }
 955 
 956 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 957   assert(src->is_register(), "should not call otherwise");
 958   assert(dest->is_stack(), "should not call otherwise");
 959 
 960   if (src->is_single_cpu()) {
 961     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 962     if (type == T_OBJECT || type == T_ARRAY) {
 963       __ verify_oop(src->as_register());
 964       __ movptr (dst, src->as_register());
 965     } else if (type == T_METADATA) {
 966       __ movptr (dst, src->as_register());
 967     } else {
 968       __ movl (dst, src->as_register());
 969     }
 970 
 971   } else if (src->is_double_cpu()) {
 972     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 973     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 974     __ movptr (dstLO, src->as_register_lo());
 975     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 976 
 977   } else if (src->is_single_xmm()) {
 978     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 979     __ movflt(dst_addr, src->as_xmm_float_reg());
 980 
 981   } else if (src->is_double_xmm()) {
 982     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 983     __ movdbl(dst_addr, src->as_xmm_double_reg());
 984 
 985   } else if (src->is_single_fpu()) {
 986     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 987     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 988     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 989     else                   __ fst_s  (dst_addr);
 990 
 991   } else if (src->is_double_fpu()) {
 992     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 993     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 994     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 995     else                   __ fst_d  (dst_addr);
 996 
 997   } else {
 998     ShouldNotReachHere();
 999   }
1000 }
1001 
1002 
1003 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
1004   LIR_Address* to_addr = dest->as_address_ptr();
1005   PatchingStub* patch = NULL;
1006   Register compressed_src = rscratch1;
1007 
1008   if (type == T_ARRAY || type == T_OBJECT) {
1009     __ verify_oop(src->as_register());
1010 #ifdef _LP64
1011     if (UseCompressedOops && !wide) {
1012       __ movptr(compressed_src, src->as_register());
1013       __ encode_heap_oop(compressed_src);
1014       if (patch_code != lir_patch_none) {
1015         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
1016       }
1017     }
1018 #endif
1019   }
1020 
1021   if (patch_code != lir_patch_none) {
1022     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1023     Address toa = as_Address(to_addr);
1024     assert(toa.disp() != 0, "must have");
1025   }
1026 
1027   int null_check_here = code_offset();
1028   switch (type) {
1029     case T_FLOAT: {
1030       if (src->is_single_xmm()) {
1031         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1032       } else {
1033         assert(src->is_single_fpu(), "must be");
1034         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1035         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1036         else                    __ fst_s (as_Address(to_addr));
1037       }
1038       break;
1039     }
1040 
1041     case T_DOUBLE: {
1042       if (src->is_double_xmm()) {
1043         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1044       } else {
1045         assert(src->is_double_fpu(), "must be");
1046         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1047         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1048         else                    __ fst_d (as_Address(to_addr));
1049       }
1050       break;
1051     }
1052 
1053     case T_ARRAY:   // fall through
1054     case T_OBJECT:  // fall through
1055       if (UseCompressedOops && !wide) {
1056         __ movl(as_Address(to_addr), compressed_src);
1057       } else {
1058         __ movptr(as_Address(to_addr), src->as_register());
1059       }
1060       break;
1061     case T_METADATA:
1062       // We get here to store a method pointer to the stack to pass to
1063       // a dtrace runtime call. This can't work on 64 bit with
1064       // compressed klass ptrs: T_METADATA can be a compressed klass
1065       // ptr or a 64 bit method pointer.
1066       LP64_ONLY(ShouldNotReachHere());
1067       __ movptr(as_Address(to_addr), src->as_register());
1068       break;
1069     case T_ADDRESS:
1070       __ movptr(as_Address(to_addr), src->as_register());
1071       break;
1072     case T_INT:
1073       __ movl(as_Address(to_addr), src->as_register());
1074       break;
1075 
1076     case T_LONG: {
1077       Register from_lo = src->as_register_lo();
1078       Register from_hi = src->as_register_hi();
1079 #ifdef _LP64
1080       __ movptr(as_Address_lo(to_addr), from_lo);
1081 #else
1082       Register base = to_addr->base()->as_register();
1083       Register index = noreg;
1084       if (to_addr->index()->is_register()) {
1085         index = to_addr->index()->as_register();
1086       }
1087       if (base == from_lo || index == from_lo) {
1088         assert(base != from_hi, "can't be");
1089         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1090         __ movl(as_Address_hi(to_addr), from_hi);
1091         if (patch != NULL) {
1092           patching_epilog(patch, lir_patch_high, base, info);
1093           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1094           patch_code = lir_patch_low;
1095         }
1096         __ movl(as_Address_lo(to_addr), from_lo);
1097       } else {
1098         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1099         __ movl(as_Address_lo(to_addr), from_lo);
1100         if (patch != NULL) {
1101           patching_epilog(patch, lir_patch_low, base, info);
1102           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1103           patch_code = lir_patch_high;
1104         }
1105         __ movl(as_Address_hi(to_addr), from_hi);
1106       }
1107 #endif // _LP64
1108       break;
1109     }
1110 
1111     case T_BYTE:    // fall through
1112     case T_BOOLEAN: {
1113       Register src_reg = src->as_register();
1114       Address dst_addr = as_Address(to_addr);
1115       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1116       __ movb(dst_addr, src_reg);
1117       break;
1118     }
1119 
1120     case T_CHAR:    // fall through
1121     case T_SHORT:
1122       __ movw(as_Address(to_addr), src->as_register());
1123       break;
1124 
1125     default:
1126       ShouldNotReachHere();
1127   }
1128   if (info != NULL) {
1129     add_debug_info_for_null_check(null_check_here, info);
1130   }
1131 
1132   if (patch_code != lir_patch_none) {
1133     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1134   }
1135 }
1136 
1137 
1138 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1139   assert(src->is_stack(), "should not call otherwise");
1140   assert(dest->is_register(), "should not call otherwise");
1141 
1142   if (dest->is_single_cpu()) {
1143     if (type == T_ARRAY || type == T_OBJECT) {
1144       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1145       __ verify_oop(dest->as_register());
1146     } else if (type == T_METADATA) {
1147       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1148     } else {
1149       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1150     }
1151 
1152   } else if (dest->is_double_cpu()) {
1153     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1154     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1155     __ movptr(dest->as_register_lo(), src_addr_LO);
1156     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1157 
1158   } else if (dest->is_single_xmm()) {
1159     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1160     __ movflt(dest->as_xmm_float_reg(), src_addr);
1161 
1162   } else if (dest->is_double_xmm()) {
1163     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1164     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1165 
1166   } else if (dest->is_single_fpu()) {
1167     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1168     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1169     __ fld_s(src_addr);
1170 
1171   } else if (dest->is_double_fpu()) {
1172     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1173     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1174     __ fld_d(src_addr);
1175 
1176   } else {
1177     ShouldNotReachHere();
1178   }
1179 }
1180 
1181 
1182 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1183   if (src->is_single_stack()) {
1184     if (type == T_OBJECT || type == T_ARRAY) {
1185       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1186       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1187     } else {
1188 #ifndef _LP64
1189       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1190       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1191 #else
1192       //no pushl on 64bits
1193       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1194       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1195 #endif
1196     }
1197 
1198   } else if (src->is_double_stack()) {
1199 #ifdef _LP64
1200     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1201     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1202 #else
1203     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1204     // push and pop the part at src + wordSize, adding wordSize for the previous push
1205     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1206     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1207     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1208 #endif // _LP64
1209 
1210   } else {
1211     ShouldNotReachHere();
1212   }
1213 }
1214 
1215 
1216 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1217   assert(src->is_address(), "should not call otherwise");
1218   assert(dest->is_register(), "should not call otherwise");
1219 
1220   LIR_Address* addr = src->as_address_ptr();
1221   Address from_addr = as_Address(addr);
1222 
1223   if (addr->base()->type() == T_OBJECT) {
1224     __ verify_oop(addr->base()->as_pointer_register());
1225   }
1226 
1227   switch (type) {
1228     case T_BOOLEAN: // fall through
1229     case T_BYTE:    // fall through
1230     case T_CHAR:    // fall through
1231     case T_SHORT:
1232       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1233         // on pre P6 processors we may get partial register stalls
1234         // so blow away the value of to_rinfo before loading a
1235         // partial word into it.  Do it here so that it precedes
1236         // the potential patch point below.
1237         __ xorptr(dest->as_register(), dest->as_register());
1238       }
1239       break;
1240   }
1241 
1242   PatchingStub* patch = NULL;
1243   if (patch_code != lir_patch_none) {
1244     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1245     assert(from_addr.disp() != 0, "must have");
1246   }
1247   if (info != NULL) {
1248     add_debug_info_for_null_check_here(info);
1249   }
1250 
1251   switch (type) {
1252     case T_FLOAT: {
1253       if (dest->is_single_xmm()) {
1254         __ movflt(dest->as_xmm_float_reg(), from_addr);
1255       } else {
1256         assert(dest->is_single_fpu(), "must be");
1257         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1258         __ fld_s(from_addr);
1259       }
1260       break;
1261     }
1262 
1263     case T_DOUBLE: {
1264       if (dest->is_double_xmm()) {
1265         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1266       } else {
1267         assert(dest->is_double_fpu(), "must be");
1268         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1269         __ fld_d(from_addr);
1270       }
1271       break;
1272     }
1273 
1274     case T_OBJECT:  // fall through
1275     case T_ARRAY:   // fall through
1276       if (UseCompressedOops && !wide) {
1277         __ movl(dest->as_register(), from_addr);
1278       } else {
1279         __ movptr(dest->as_register(), from_addr);
1280       }
1281       break;
1282 
1283     case T_ADDRESS:
1284       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1285         __ movl(dest->as_register(), from_addr);
1286       } else {
1287         __ movptr(dest->as_register(), from_addr);
1288       }
1289       break;
1290     case T_INT:
1291       __ movl(dest->as_register(), from_addr);
1292       break;
1293 
1294     case T_LONG: {
1295       Register to_lo = dest->as_register_lo();
1296       Register to_hi = dest->as_register_hi();
1297 #ifdef _LP64
1298       __ movptr(to_lo, as_Address_lo(addr));
1299 #else
1300       Register base = addr->base()->as_register();
1301       Register index = noreg;
1302       if (addr->index()->is_register()) {
1303         index = addr->index()->as_register();
1304       }
1305       if ((base == to_lo && index == to_hi) ||
1306           (base == to_hi && index == to_lo)) {
1307         // addresses with 2 registers are only formed as a result of
1308         // array access so this code will never have to deal with
1309         // patches or null checks.
1310         assert(info == NULL && patch == NULL, "must be");
1311         __ lea(to_hi, as_Address(addr));
1312         __ movl(to_lo, Address(to_hi, 0));
1313         __ movl(to_hi, Address(to_hi, BytesPerWord));
1314       } else if (base == to_lo || index == to_lo) {
1315         assert(base != to_hi, "can't be");
1316         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1317         __ movl(to_hi, as_Address_hi(addr));
1318         if (patch != NULL) {
1319           patching_epilog(patch, lir_patch_high, base, info);
1320           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1321           patch_code = lir_patch_low;
1322         }
1323         __ movl(to_lo, as_Address_lo(addr));
1324       } else {
1325         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1326         __ movl(to_lo, as_Address_lo(addr));
1327         if (patch != NULL) {
1328           patching_epilog(patch, lir_patch_low, base, info);
1329           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1330           patch_code = lir_patch_high;
1331         }
1332         __ movl(to_hi, as_Address_hi(addr));
1333       }
1334 #endif // _LP64
1335       break;
1336     }
1337 
1338     case T_BOOLEAN: // fall through
1339     case T_BYTE: {
1340       Register dest_reg = dest->as_register();
1341       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1342       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1343         __ movsbl(dest_reg, from_addr);
1344       } else {
1345         __ movb(dest_reg, from_addr);
1346         __ shll(dest_reg, 24);
1347         __ sarl(dest_reg, 24);
1348       }
1349       break;
1350     }
1351 
1352     case T_CHAR: {
1353       Register dest_reg = dest->as_register();
1354       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1355       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1356         __ movzwl(dest_reg, from_addr);
1357       } else {
1358         __ movw(dest_reg, from_addr);
1359       }
1360       break;
1361     }
1362 
1363     case T_SHORT: {
1364       Register dest_reg = dest->as_register();
1365       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1366         __ movswl(dest_reg, from_addr);
1367       } else {
1368         __ movw(dest_reg, from_addr);
1369         __ shll(dest_reg, 16);
1370         __ sarl(dest_reg, 16);
1371       }
1372       break;
1373     }
1374 
1375     default:
1376       ShouldNotReachHere();
1377   }
1378 
1379   if (patch != NULL) {
1380     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1381   }
1382 
1383   if (type == T_ARRAY || type == T_OBJECT) {
1384 #ifdef _LP64
1385     if (UseCompressedOops && !wide) {
1386       __ decode_heap_oop(dest->as_register());
1387     }
1388 #endif
1389     __ verify_oop(dest->as_register());
1390   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1391 #ifdef _LP64
1392     if (UseCompressedClassPointers) {
1393       __ decode_klass_not_null(dest->as_register());
1394     }
1395 #endif
1396   }
1397 }
1398 
1399 
1400 void LIR_Assembler::prefetchr(LIR_Opr src) {
1401   LIR_Address* addr = src->as_address_ptr();
1402   Address from_addr = as_Address(addr);
1403 
1404   if (VM_Version::supports_sse()) {
1405     switch (ReadPrefetchInstr) {
1406       case 0:
1407         __ prefetchnta(from_addr); break;
1408       case 1:
1409         __ prefetcht0(from_addr); break;
1410       case 2:
1411         __ prefetcht2(from_addr); break;
1412       default:
1413         ShouldNotReachHere(); break;
1414     }
1415   } else if (VM_Version::supports_3dnow_prefetch()) {
1416     __ prefetchr(from_addr);
1417   }
1418 }
1419 
1420 
1421 void LIR_Assembler::prefetchw(LIR_Opr src) {
1422   LIR_Address* addr = src->as_address_ptr();
1423   Address from_addr = as_Address(addr);
1424 
1425   if (VM_Version::supports_sse()) {
1426     switch (AllocatePrefetchInstr) {
1427       case 0:
1428         __ prefetchnta(from_addr); break;
1429       case 1:
1430         __ prefetcht0(from_addr); break;
1431       case 2:
1432         __ prefetcht2(from_addr); break;
1433       case 3:
1434         __ prefetchw(from_addr); break;
1435       default:
1436         ShouldNotReachHere(); break;
1437     }
1438   } else if (VM_Version::supports_3dnow_prefetch()) {
1439     __ prefetchw(from_addr);
1440   }
1441 }
1442 
1443 
1444 NEEDS_CLEANUP; // This could be static?
1445 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1446   int elem_size = type2aelembytes(type);
1447   switch (elem_size) {
1448     case 1: return Address::times_1;
1449     case 2: return Address::times_2;
1450     case 4: return Address::times_4;
1451     case 8: return Address::times_8;
1452   }
1453   ShouldNotReachHere();
1454   return Address::no_scale;
1455 }
1456 
1457 
1458 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1459   switch (op->code()) {
1460     case lir_idiv:
1461     case lir_irem:
1462       arithmetic_idiv(op->code(),
1463                       op->in_opr1(),
1464                       op->in_opr2(),
1465                       op->in_opr3(),
1466                       op->result_opr(),
1467                       op->info());
1468       break;
1469     default:      ShouldNotReachHere(); break;
1470   }
1471 }
1472 
1473 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1474 #ifdef ASSERT
1475   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1476   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1477   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1478 #endif
1479 
1480   if (op->cond() == lir_cond_always) {
1481     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1482     __ jmp (*(op->label()));
1483   } else {
1484     Assembler::Condition acond = Assembler::zero;
1485     if (op->code() == lir_cond_float_branch) {
1486       assert(op->ublock() != NULL, "must have unordered successor");
1487       __ jcc(Assembler::parity, *(op->ublock()->label()));
1488       switch(op->cond()) {
1489         case lir_cond_equal:        acond = Assembler::equal;      break;
1490         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1491         case lir_cond_less:         acond = Assembler::below;      break;
1492         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1493         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1494         case lir_cond_greater:      acond = Assembler::above;      break;
1495         default:                         ShouldNotReachHere();
1496       }
1497     } else {
1498       switch (op->cond()) {
1499         case lir_cond_equal:        acond = Assembler::equal;       break;
1500         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1501         case lir_cond_less:         acond = Assembler::less;        break;
1502         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1503         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1504         case lir_cond_greater:      acond = Assembler::greater;     break;
1505         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1506         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1507         default:                         ShouldNotReachHere();
1508       }
1509     }
1510     __ jcc(acond,*(op->label()));
1511   }
1512 }
1513 
1514 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1515   LIR_Opr src  = op->in_opr();
1516   LIR_Opr dest = op->result_opr();
1517 
1518   switch (op->bytecode()) {
1519     case Bytecodes::_i2l:
1520 #ifdef _LP64
1521       __ movl2ptr(dest->as_register_lo(), src->as_register());
1522 #else
1523       move_regs(src->as_register(), dest->as_register_lo());
1524       move_regs(src->as_register(), dest->as_register_hi());
1525       __ sarl(dest->as_register_hi(), 31);
1526 #endif // LP64
1527       break;
1528 
1529     case Bytecodes::_l2i:
1530 #ifdef _LP64
1531       __ movl(dest->as_register(), src->as_register_lo());
1532 #else
1533       move_regs(src->as_register_lo(), dest->as_register());
1534 #endif
1535       break;
1536 
1537     case Bytecodes::_i2b:
1538       move_regs(src->as_register(), dest->as_register());
1539       __ sign_extend_byte(dest->as_register());
1540       break;
1541 
1542     case Bytecodes::_i2c:
1543       move_regs(src->as_register(), dest->as_register());
1544       __ andl(dest->as_register(), 0xFFFF);
1545       break;
1546 
1547     case Bytecodes::_i2s:
1548       move_regs(src->as_register(), dest->as_register());
1549       __ sign_extend_short(dest->as_register());
1550       break;
1551 
1552 
1553     case Bytecodes::_f2d:
1554     case Bytecodes::_d2f:
1555       if (dest->is_single_xmm()) {
1556         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1557       } else if (dest->is_double_xmm()) {
1558         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1559       } else {
1560         assert(src->fpu() == dest->fpu(), "register must be equal");
1561         // do nothing (float result is rounded later through spilling)
1562       }
1563       break;
1564 
1565     case Bytecodes::_i2f:
1566     case Bytecodes::_i2d:
1567       if (dest->is_single_xmm()) {
1568         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1569       } else if (dest->is_double_xmm()) {
1570         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1571       } else {
1572         assert(dest->fpu() == 0, "result must be on TOS");
1573         __ movl(Address(rsp, 0), src->as_register());
1574         __ fild_s(Address(rsp, 0));
1575       }
1576       break;
1577 
1578     case Bytecodes::_f2i:
1579     case Bytecodes::_d2i:
1580       if (src->is_single_xmm()) {
1581         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1582       } else if (src->is_double_xmm()) {
1583         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1584       } else {
1585         assert(src->fpu() == 0, "input must be on TOS");
1586         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1587         __ fist_s(Address(rsp, 0));
1588         __ movl(dest->as_register(), Address(rsp, 0));
1589         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1590       }
1591 
1592       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1593       assert(op->stub() != NULL, "stub required");
1594       __ cmpl(dest->as_register(), 0x80000000);
1595       __ jcc(Assembler::equal, *op->stub()->entry());
1596       __ bind(*op->stub()->continuation());
1597       break;
1598 
1599     case Bytecodes::_l2f:
1600     case Bytecodes::_l2d:
1601       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1602       assert(dest->fpu() == 0, "result must be on TOS");
1603 
1604       __ movptr(Address(rsp, 0),            src->as_register_lo());
1605       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1606       __ fild_d(Address(rsp, 0));
1607       // float result is rounded later through spilling
1608       break;
1609 
1610     case Bytecodes::_f2l:
1611     case Bytecodes::_d2l:
1612       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1613       assert(src->fpu() == 0, "input must be on TOS");
1614       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1615 
1616       // instruction sequence too long to inline it here
1617       {
1618         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1619       }
1620       break;
1621 
1622     default: ShouldNotReachHere();
1623   }
1624 }
1625 
1626 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1627   if (op->init_check()) {
1628     __ cmpb(Address(op->klass()->as_register(),
1629                     InstanceKlass::init_state_offset()),
1630                     InstanceKlass::fully_initialized);
1631     add_debug_info_for_null_check_here(op->stub()->info());
1632     __ jcc(Assembler::notEqual, *op->stub()->entry());
1633   }
1634   __ allocate_object(op->obj()->as_register(),
1635                      op->tmp1()->as_register(),
1636                      op->tmp2()->as_register(),
1637                      op->header_size(),
1638                      op->object_size(),
1639                      op->klass()->as_register(),
1640                      *op->stub()->entry());
1641   __ bind(*op->stub()->continuation());
1642 }
1643 
1644 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1645   Register len =  op->len()->as_register();
1646   LP64_ONLY( __ movslq(len, len); )
1647 
1648   if (UseSlowPath ||
1649       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1650       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1651     __ jmp(*op->stub()->entry());
1652   } else {
1653     Register tmp1 = op->tmp1()->as_register();
1654     Register tmp2 = op->tmp2()->as_register();
1655     Register tmp3 = op->tmp3()->as_register();
1656     if (len == tmp1) {
1657       tmp1 = tmp3;
1658     } else if (len == tmp2) {
1659       tmp2 = tmp3;
1660     } else if (len == tmp3) {
1661       // everything is ok
1662     } else {
1663       __ mov(tmp3, len);
1664     }
1665     __ allocate_array(op->obj()->as_register(),
1666                       len,
1667                       tmp1,
1668                       tmp2,
1669                       arrayOopDesc::header_size(op->type()),
1670                       array_element_size(op->type()),
1671                       op->klass()->as_register(),
1672                       *op->stub()->entry());
1673   }
1674   __ bind(*op->stub()->continuation());
1675 }
1676 
1677 void LIR_Assembler::type_profile_helper(Register mdo,
1678                                         ciMethodData *md, ciProfileData *data,
1679                                         Register recv, Label* update_done) {
1680   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1681     Label next_test;
1682     // See if the receiver is receiver[n].
1683     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1684     __ jccb(Assembler::notEqual, next_test);
1685     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1686     __ addptr(data_addr, DataLayout::counter_increment);
1687     __ jmp(*update_done);
1688     __ bind(next_test);
1689   }
1690 
1691   // Didn't find receiver; find next empty slot and fill it in
1692   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1693     Label next_test;
1694     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1695     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1696     __ jccb(Assembler::notEqual, next_test);
1697     __ movptr(recv_addr, recv);
1698     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1699     __ jmp(*update_done);
1700     __ bind(next_test);
1701   }
1702 }
1703 
1704 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1705   // we always need a stub for the failure case.
1706   CodeStub* stub = op->stub();
1707   Register obj = op->object()->as_register();
1708   Register k_RInfo = op->tmp1()->as_register();
1709   Register klass_RInfo = op->tmp2()->as_register();
1710   Register dst = op->result_opr()->as_register();
1711   ciKlass* k = op->klass();
1712   Register Rtmp1 = noreg;
1713 
1714   // check if it needs to be profiled
1715   ciMethodData* md;
1716   ciProfileData* data;
1717 
1718   if (op->should_profile()) {
1719     ciMethod* method = op->profiled_method();
1720     assert(method != NULL, "Should have method");
1721     int bci = op->profiled_bci();
1722     md = method->method_data_or_null();
1723     assert(md != NULL, "Sanity");
1724     data = md->bci_to_data(bci);
1725     assert(data != NULL,                "need data for type check");
1726     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1727   }
1728   Label profile_cast_success, profile_cast_failure;
1729   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1730   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1731 
1732   if (obj == k_RInfo) {
1733     k_RInfo = dst;
1734   } else if (obj == klass_RInfo) {
1735     klass_RInfo = dst;
1736   }
1737   if (k->is_loaded() && !UseCompressedClassPointers) {
1738     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1739   } else {
1740     Rtmp1 = op->tmp3()->as_register();
1741     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1742   }
1743 
1744   assert_different_registers(obj, k_RInfo, klass_RInfo);
1745 
1746   __ cmpptr(obj, (int32_t)NULL_WORD);
1747   if (op->should_profile()) {
1748     Label not_null;
1749     __ jccb(Assembler::notEqual, not_null);
1750     // Object is null; update MDO and exit
1751     Register mdo  = klass_RInfo;
1752     __ mov_metadata(mdo, md->constant_encoding());
1753     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1754     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1755     __ orl(data_addr, header_bits);
1756     __ jmp(*obj_is_null);
1757     __ bind(not_null);
1758   } else {
1759     __ jcc(Assembler::equal, *obj_is_null);
1760   }
1761 
1762   if (!k->is_loaded()) {
1763     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1764   } else {
1765 #ifdef _LP64
1766     __ mov_metadata(k_RInfo, k->constant_encoding());
1767 #endif // _LP64
1768   }
1769   __ verify_oop(obj);
1770 
1771   if (op->fast_check()) {
1772     // get object class
1773     // not a safepoint as obj null check happens earlier
1774 #ifdef _LP64
1775     if (UseCompressedClassPointers) {
1776       __ load_klass(Rtmp1, obj);
1777       __ cmpptr(k_RInfo, Rtmp1);
1778     } else {
1779       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1780     }
1781 #else
1782     if (k->is_loaded()) {
1783       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1784     } else {
1785       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1786     }
1787 #endif
1788     __ jcc(Assembler::notEqual, *failure_target);
1789     // successful cast, fall through to profile or jump
1790   } else {
1791     // get object class
1792     // not a safepoint as obj null check happens earlier
1793     __ load_klass(klass_RInfo, obj);
1794     if (k->is_loaded()) {
1795       // See if we get an immediate positive hit
1796 #ifdef _LP64
1797       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1798 #else
1799       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1800 #endif // _LP64
1801       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1802         __ jcc(Assembler::notEqual, *failure_target);
1803         // successful cast, fall through to profile or jump
1804       } else {
1805         // See if we get an immediate positive hit
1806         __ jcc(Assembler::equal, *success_target);
1807         // check for self
1808 #ifdef _LP64
1809         __ cmpptr(klass_RInfo, k_RInfo);
1810 #else
1811         __ cmpklass(klass_RInfo, k->constant_encoding());
1812 #endif // _LP64
1813         __ jcc(Assembler::equal, *success_target);
1814 
1815         __ push(klass_RInfo);
1816 #ifdef _LP64
1817         __ push(k_RInfo);
1818 #else
1819         __ pushklass(k->constant_encoding());
1820 #endif // _LP64
1821         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1822         __ pop(klass_RInfo);
1823         __ pop(klass_RInfo);
1824         // result is a boolean
1825         __ cmpl(klass_RInfo, 0);
1826         __ jcc(Assembler::equal, *failure_target);
1827         // successful cast, fall through to profile or jump
1828       }
1829     } else {
1830       // perform the fast part of the checking logic
1831       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1832       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1833       __ push(klass_RInfo);
1834       __ push(k_RInfo);
1835       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1836       __ pop(klass_RInfo);
1837       __ pop(k_RInfo);
1838       // result is a boolean
1839       __ cmpl(k_RInfo, 0);
1840       __ jcc(Assembler::equal, *failure_target);
1841       // successful cast, fall through to profile or jump
1842     }
1843   }
1844   if (op->should_profile()) {
1845     Register mdo  = klass_RInfo, recv = k_RInfo;
1846     __ bind(profile_cast_success);
1847     __ mov_metadata(mdo, md->constant_encoding());
1848     __ load_klass(recv, obj);
1849     Label update_done;
1850     type_profile_helper(mdo, md, data, recv, success);
1851     __ jmp(*success);
1852 
1853     __ bind(profile_cast_failure);
1854     __ mov_metadata(mdo, md->constant_encoding());
1855     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1856     __ subptr(counter_addr, DataLayout::counter_increment);
1857     __ jmp(*failure);
1858   }
1859   __ jmp(*success);
1860 }
1861 
1862 
1863 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1864   LIR_Code code = op->code();
1865   if (code == lir_store_check) {
1866     Register value = op->object()->as_register();
1867     Register array = op->array()->as_register();
1868     Register k_RInfo = op->tmp1()->as_register();
1869     Register klass_RInfo = op->tmp2()->as_register();
1870     Register Rtmp1 = op->tmp3()->as_register();
1871 
1872     CodeStub* stub = op->stub();
1873 
1874     // check if it needs to be profiled
1875     ciMethodData* md;
1876     ciProfileData* data;
1877 
1878     if (op->should_profile()) {
1879       ciMethod* method = op->profiled_method();
1880       assert(method != NULL, "Should have method");
1881       int bci = op->profiled_bci();
1882       md = method->method_data_or_null();
1883       assert(md != NULL, "Sanity");
1884       data = md->bci_to_data(bci);
1885       assert(data != NULL,                "need data for type check");
1886       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1887     }
1888     Label profile_cast_success, profile_cast_failure, done;
1889     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1890     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1891 
1892     __ cmpptr(value, (int32_t)NULL_WORD);
1893     if (op->should_profile()) {
1894       Label not_null;
1895       __ jccb(Assembler::notEqual, not_null);
1896       // Object is null; update MDO and exit
1897       Register mdo  = klass_RInfo;
1898       __ mov_metadata(mdo, md->constant_encoding());
1899       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1900       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1901       __ orl(data_addr, header_bits);
1902       __ jmp(done);
1903       __ bind(not_null);
1904     } else {
1905       __ jcc(Assembler::equal, done);
1906     }
1907 
1908     add_debug_info_for_null_check_here(op->info_for_exception());
1909     __ load_klass(k_RInfo, array);
1910     __ load_klass(klass_RInfo, value);
1911 
1912     // get instance klass (it's already uncompressed)
1913     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1914     // perform the fast part of the checking logic
1915     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1916     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1917     __ push(klass_RInfo);
1918     __ push(k_RInfo);
1919     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1920     __ pop(klass_RInfo);
1921     __ pop(k_RInfo);
1922     // result is a boolean
1923     __ cmpl(k_RInfo, 0);
1924     __ jcc(Assembler::equal, *failure_target);
1925     // fall through to the success case
1926 
1927     if (op->should_profile()) {
1928       Register mdo  = klass_RInfo, recv = k_RInfo;
1929       __ bind(profile_cast_success);
1930       __ mov_metadata(mdo, md->constant_encoding());
1931       __ load_klass(recv, value);
1932       Label update_done;
1933       type_profile_helper(mdo, md, data, recv, &done);
1934       __ jmpb(done);
1935 
1936       __ bind(profile_cast_failure);
1937       __ mov_metadata(mdo, md->constant_encoding());
1938       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1939       __ subptr(counter_addr, DataLayout::counter_increment);
1940       __ jmp(*stub->entry());
1941     }
1942 
1943     __ bind(done);
1944   } else
1945     if (code == lir_checkcast) {
1946       Register obj = op->object()->as_register();
1947       Register dst = op->result_opr()->as_register();
1948       Label success;
1949       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1950       __ bind(success);
1951       if (dst != obj) {
1952         __ mov(dst, obj);
1953       }
1954     } else
1955       if (code == lir_instanceof) {
1956         Register obj = op->object()->as_register();
1957         Register dst = op->result_opr()->as_register();
1958         Label success, failure, done;
1959         emit_typecheck_helper(op, &success, &failure, &failure);
1960         __ bind(failure);
1961         __ xorptr(dst, dst);
1962         __ jmpb(done);
1963         __ bind(success);
1964         __ movptr(dst, 1);
1965         __ bind(done);
1966       } else {
1967         ShouldNotReachHere();
1968       }
1969 
1970 }
1971 
1972 
1973 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1974   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1975     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1976     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1977     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1978     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1979     Register addr = op->addr()->as_register();
1980     if (os::is_MP()) {
1981       __ lock();
1982     }
1983     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1984 
1985   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1986     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1987     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1988     Register newval = op->new_value()->as_register();
1989     Register cmpval = op->cmp_value()->as_register();
1990     assert(cmpval == rax, "wrong register");
1991     assert(newval != NULL, "new val must be register");
1992     assert(cmpval != newval, "cmp and new values must be in different registers");
1993     assert(cmpval != addr, "cmp and addr must be in different registers");
1994     assert(newval != addr, "new value and addr must be in different registers");
1995 
1996     if ( op->code() == lir_cas_obj) {
1997 #ifdef _LP64
1998       if (UseCompressedOops) {
1999         __ encode_heap_oop(cmpval);
2000         __ mov(rscratch1, newval);
2001         __ encode_heap_oop(rscratch1);
2002         if (os::is_MP()) {
2003           __ lock();
2004         }
2005         // cmpval (rax) is implicitly used by this instruction
2006         __ cmpxchgl(rscratch1, Address(addr, 0));
2007       } else
2008 #endif
2009       {
2010         if (os::is_MP()) {
2011           __ lock();
2012         }
2013         __ cmpxchgptr(newval, Address(addr, 0));
2014       }
2015     } else {
2016       assert(op->code() == lir_cas_int, "lir_cas_int expected");
2017       if (os::is_MP()) {
2018         __ lock();
2019       }
2020       __ cmpxchgl(newval, Address(addr, 0));
2021     }
2022 #ifdef _LP64
2023   } else if (op->code() == lir_cas_long) {
2024     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
2025     Register newval = op->new_value()->as_register_lo();
2026     Register cmpval = op->cmp_value()->as_register_lo();
2027     assert(cmpval == rax, "wrong register");
2028     assert(newval != NULL, "new val must be register");
2029     assert(cmpval != newval, "cmp and new values must be in different registers");
2030     assert(cmpval != addr, "cmp and addr must be in different registers");
2031     assert(newval != addr, "new value and addr must be in different registers");
2032     if (os::is_MP()) {
2033       __ lock();
2034     }
2035     __ cmpxchgq(newval, Address(addr, 0));
2036 #endif // _LP64
2037   } else {
2038     Unimplemented();
2039   }
2040 }
2041 
2042 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
2043   Assembler::Condition acond, ncond;
2044   switch (condition) {
2045     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
2046     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
2047     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
2048     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
2049     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
2050     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
2051     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
2052     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
2053     default:                    ShouldNotReachHere();
2054   }
2055 
2056   if (opr1->is_cpu_register()) {
2057     reg2reg(opr1, result);
2058   } else if (opr1->is_stack()) {
2059     stack2reg(opr1, result, result->type());
2060   } else if (opr1->is_constant()) {
2061     const2reg(opr1, result, lir_patch_none, NULL);
2062   } else {
2063     ShouldNotReachHere();
2064   }
2065 
2066   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2067     // optimized version that does not require a branch
2068     if (opr2->is_single_cpu()) {
2069       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2070       __ cmov(ncond, result->as_register(), opr2->as_register());
2071     } else if (opr2->is_double_cpu()) {
2072       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2073       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2074       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2075       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2076     } else if (opr2->is_single_stack()) {
2077       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2078     } else if (opr2->is_double_stack()) {
2079       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2080       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2081     } else {
2082       ShouldNotReachHere();
2083     }
2084 
2085   } else {
2086     Label skip;
2087     __ jcc (acond, skip);
2088     if (opr2->is_cpu_register()) {
2089       reg2reg(opr2, result);
2090     } else if (opr2->is_stack()) {
2091       stack2reg(opr2, result, result->type());
2092     } else if (opr2->is_constant()) {
2093       const2reg(opr2, result, lir_patch_none, NULL);
2094     } else {
2095       ShouldNotReachHere();
2096     }
2097     __ bind(skip);
2098   }
2099 }
2100 
2101 
2102 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2103   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2104 
2105   if (left->is_single_cpu()) {
2106     assert(left == dest, "left and dest must be equal");
2107     Register lreg = left->as_register();
2108 
2109     if (right->is_single_cpu()) {
2110       // cpu register - cpu register
2111       Register rreg = right->as_register();
2112       switch (code) {
2113         case lir_add: __ addl (lreg, rreg); break;
2114         case lir_sub: __ subl (lreg, rreg); break;
2115         case lir_mul: __ imull(lreg, rreg); break;
2116         default:      ShouldNotReachHere();
2117       }
2118 
2119     } else if (right->is_stack()) {
2120       // cpu register - stack
2121       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2122       switch (code) {
2123         case lir_add: __ addl(lreg, raddr); break;
2124         case lir_sub: __ subl(lreg, raddr); break;
2125         default:      ShouldNotReachHere();
2126       }
2127 
2128     } else if (right->is_constant()) {
2129       // cpu register - constant
2130       jint c = right->as_constant_ptr()->as_jint();
2131       switch (code) {
2132         case lir_add: {
2133           __ incrementl(lreg, c);
2134           break;
2135         }
2136         case lir_sub: {
2137           __ decrementl(lreg, c);
2138           break;
2139         }
2140         default: ShouldNotReachHere();
2141       }
2142 
2143     } else {
2144       ShouldNotReachHere();
2145     }
2146 
2147   } else if (left->is_double_cpu()) {
2148     assert(left == dest, "left and dest must be equal");
2149     Register lreg_lo = left->as_register_lo();
2150     Register lreg_hi = left->as_register_hi();
2151 
2152     if (right->is_double_cpu()) {
2153       // cpu register - cpu register
2154       Register rreg_lo = right->as_register_lo();
2155       Register rreg_hi = right->as_register_hi();
2156       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2157       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2158       switch (code) {
2159         case lir_add:
2160           __ addptr(lreg_lo, rreg_lo);
2161           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2162           break;
2163         case lir_sub:
2164           __ subptr(lreg_lo, rreg_lo);
2165           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2166           break;
2167         case lir_mul:
2168 #ifdef _LP64
2169           __ imulq(lreg_lo, rreg_lo);
2170 #else
2171           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2172           __ imull(lreg_hi, rreg_lo);
2173           __ imull(rreg_hi, lreg_lo);
2174           __ addl (rreg_hi, lreg_hi);
2175           __ mull (rreg_lo);
2176           __ addl (lreg_hi, rreg_hi);
2177 #endif // _LP64
2178           break;
2179         default:
2180           ShouldNotReachHere();
2181       }
2182 
2183     } else if (right->is_constant()) {
2184       // cpu register - constant
2185 #ifdef _LP64
2186       jlong c = right->as_constant_ptr()->as_jlong_bits();
2187       __ movptr(r10, (intptr_t) c);
2188       switch (code) {
2189         case lir_add:
2190           __ addptr(lreg_lo, r10);
2191           break;
2192         case lir_sub:
2193           __ subptr(lreg_lo, r10);
2194           break;
2195         default:
2196           ShouldNotReachHere();
2197       }
2198 #else
2199       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2200       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2201       switch (code) {
2202         case lir_add:
2203           __ addptr(lreg_lo, c_lo);
2204           __ adcl(lreg_hi, c_hi);
2205           break;
2206         case lir_sub:
2207           __ subptr(lreg_lo, c_lo);
2208           __ sbbl(lreg_hi, c_hi);
2209           break;
2210         default:
2211           ShouldNotReachHere();
2212       }
2213 #endif // _LP64
2214 
2215     } else {
2216       ShouldNotReachHere();
2217     }
2218 
2219   } else if (left->is_single_xmm()) {
2220     assert(left == dest, "left and dest must be equal");
2221     XMMRegister lreg = left->as_xmm_float_reg();
2222 
2223     if (right->is_single_xmm()) {
2224       XMMRegister rreg = right->as_xmm_float_reg();
2225       switch (code) {
2226         case lir_add: __ addss(lreg, rreg);  break;
2227         case lir_sub: __ subss(lreg, rreg);  break;
2228         case lir_mul_strictfp: // fall through
2229         case lir_mul: __ mulss(lreg, rreg);  break;
2230         case lir_div_strictfp: // fall through
2231         case lir_div: __ divss(lreg, rreg);  break;
2232         default: ShouldNotReachHere();
2233       }
2234     } else {
2235       Address raddr;
2236       if (right->is_single_stack()) {
2237         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2238       } else if (right->is_constant()) {
2239         // hack for now
2240         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2241       } else {
2242         ShouldNotReachHere();
2243       }
2244       switch (code) {
2245         case lir_add: __ addss(lreg, raddr);  break;
2246         case lir_sub: __ subss(lreg, raddr);  break;
2247         case lir_mul_strictfp: // fall through
2248         case lir_mul: __ mulss(lreg, raddr);  break;
2249         case lir_div_strictfp: // fall through
2250         case lir_div: __ divss(lreg, raddr);  break;
2251         default: ShouldNotReachHere();
2252       }
2253     }
2254 
2255   } else if (left->is_double_xmm()) {
2256     assert(left == dest, "left and dest must be equal");
2257 
2258     XMMRegister lreg = left->as_xmm_double_reg();
2259     if (right->is_double_xmm()) {
2260       XMMRegister rreg = right->as_xmm_double_reg();
2261       switch (code) {
2262         case lir_add: __ addsd(lreg, rreg);  break;
2263         case lir_sub: __ subsd(lreg, rreg);  break;
2264         case lir_mul_strictfp: // fall through
2265         case lir_mul: __ mulsd(lreg, rreg);  break;
2266         case lir_div_strictfp: // fall through
2267         case lir_div: __ divsd(lreg, rreg);  break;
2268         default: ShouldNotReachHere();
2269       }
2270     } else {
2271       Address raddr;
2272       if (right->is_double_stack()) {
2273         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2274       } else if (right->is_constant()) {
2275         // hack for now
2276         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2277       } else {
2278         ShouldNotReachHere();
2279       }
2280       switch (code) {
2281         case lir_add: __ addsd(lreg, raddr);  break;
2282         case lir_sub: __ subsd(lreg, raddr);  break;
2283         case lir_mul_strictfp: // fall through
2284         case lir_mul: __ mulsd(lreg, raddr);  break;
2285         case lir_div_strictfp: // fall through
2286         case lir_div: __ divsd(lreg, raddr);  break;
2287         default: ShouldNotReachHere();
2288       }
2289     }
2290 
2291   } else if (left->is_single_fpu()) {
2292     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2293 
2294     if (right->is_single_fpu()) {
2295       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2296 
2297     } else {
2298       assert(left->fpu_regnr() == 0, "left must be on TOS");
2299       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2300 
2301       Address raddr;
2302       if (right->is_single_stack()) {
2303         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2304       } else if (right->is_constant()) {
2305         address const_addr = float_constant(right->as_jfloat());
2306         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2307         // hack for now
2308         raddr = __ as_Address(InternalAddress(const_addr));
2309       } else {
2310         ShouldNotReachHere();
2311       }
2312 
2313       switch (code) {
2314         case lir_add: __ fadd_s(raddr); break;
2315         case lir_sub: __ fsub_s(raddr); break;
2316         case lir_mul_strictfp: // fall through
2317         case lir_mul: __ fmul_s(raddr); break;
2318         case lir_div_strictfp: // fall through
2319         case lir_div: __ fdiv_s(raddr); break;
2320         default:      ShouldNotReachHere();
2321       }
2322     }
2323 
2324   } else if (left->is_double_fpu()) {
2325     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2326 
2327     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2328       // Double values require special handling for strictfp mul/div on x86
2329       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2330       __ fmulp(left->fpu_regnrLo() + 1);
2331     }
2332 
2333     if (right->is_double_fpu()) {
2334       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2335 
2336     } else {
2337       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2338       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2339 
2340       Address raddr;
2341       if (right->is_double_stack()) {
2342         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2343       } else if (right->is_constant()) {
2344         // hack for now
2345         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2346       } else {
2347         ShouldNotReachHere();
2348       }
2349 
2350       switch (code) {
2351         case lir_add: __ fadd_d(raddr); break;
2352         case lir_sub: __ fsub_d(raddr); break;
2353         case lir_mul_strictfp: // fall through
2354         case lir_mul: __ fmul_d(raddr); break;
2355         case lir_div_strictfp: // fall through
2356         case lir_div: __ fdiv_d(raddr); break;
2357         default: ShouldNotReachHere();
2358       }
2359     }
2360 
2361     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2362       // Double values require special handling for strictfp mul/div on x86
2363       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2364       __ fmulp(dest->fpu_regnrLo() + 1);
2365     }
2366 
2367   } else if (left->is_single_stack() || left->is_address()) {
2368     assert(left == dest, "left and dest must be equal");
2369 
2370     Address laddr;
2371     if (left->is_single_stack()) {
2372       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2373     } else if (left->is_address()) {
2374       laddr = as_Address(left->as_address_ptr());
2375     } else {
2376       ShouldNotReachHere();
2377     }
2378 
2379     if (right->is_single_cpu()) {
2380       Register rreg = right->as_register();
2381       switch (code) {
2382         case lir_add: __ addl(laddr, rreg); break;
2383         case lir_sub: __ subl(laddr, rreg); break;
2384         default:      ShouldNotReachHere();
2385       }
2386     } else if (right->is_constant()) {
2387       jint c = right->as_constant_ptr()->as_jint();
2388       switch (code) {
2389         case lir_add: {
2390           __ incrementl(laddr, c);
2391           break;
2392         }
2393         case lir_sub: {
2394           __ decrementl(laddr, c);
2395           break;
2396         }
2397         default: ShouldNotReachHere();
2398       }
2399     } else {
2400       ShouldNotReachHere();
2401     }
2402 
2403   } else {
2404     ShouldNotReachHere();
2405   }
2406 }
2407 
2408 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2409   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2410   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2411   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2412 
2413   bool left_is_tos = (left_index == 0);
2414   bool dest_is_tos = (dest_index == 0);
2415   int non_tos_index = (left_is_tos ? right_index : left_index);
2416 
2417   switch (code) {
2418     case lir_add:
2419       if (pop_fpu_stack)       __ faddp(non_tos_index);
2420       else if (dest_is_tos)    __ fadd (non_tos_index);
2421       else                     __ fadda(non_tos_index);
2422       break;
2423 
2424     case lir_sub:
2425       if (left_is_tos) {
2426         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2427         else if (dest_is_tos)  __ fsub  (non_tos_index);
2428         else                   __ fsubra(non_tos_index);
2429       } else {
2430         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2431         else if (dest_is_tos)  __ fsubr (non_tos_index);
2432         else                   __ fsuba (non_tos_index);
2433       }
2434       break;
2435 
2436     case lir_mul_strictfp: // fall through
2437     case lir_mul:
2438       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2439       else if (dest_is_tos)    __ fmul (non_tos_index);
2440       else                     __ fmula(non_tos_index);
2441       break;
2442 
2443     case lir_div_strictfp: // fall through
2444     case lir_div:
2445       if (left_is_tos) {
2446         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2447         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2448         else                   __ fdivra(non_tos_index);
2449       } else {
2450         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2451         else if (dest_is_tos)  __ fdivr (non_tos_index);
2452         else                   __ fdiva (non_tos_index);
2453       }
2454       break;
2455 
2456     case lir_rem:
2457       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2458       __ fremr(noreg);
2459       break;
2460 
2461     default:
2462       ShouldNotReachHere();
2463   }
2464 }
2465 
2466 
2467 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2468   if (value->is_double_xmm()) {
2469     switch(code) {
2470       case lir_abs :
2471         {
2472           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2473             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2474           }
2475           __ andpd(dest->as_xmm_double_reg(),
2476                     ExternalAddress((address)double_signmask_pool));
2477         }
2478         break;
2479 
2480       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2481       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2482       default      : ShouldNotReachHere();
2483     }
2484 
2485   } else if (value->is_double_fpu()) {
2486     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2487     switch(code) {
2488       case lir_log   : __ flog() ; break;
2489       case lir_log10 : __ flog10() ; break;
2490       case lir_abs   : __ fabs() ; break;
2491       case lir_sqrt  : __ fsqrt(); break;
2492       case lir_sin   :
2493         // Should consider not saving rbx, if not necessary
2494         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2495         break;
2496       case lir_cos :
2497         // Should consider not saving rbx, if not necessary
2498         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2499         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2500         break;
2501       case lir_tan :
2502         // Should consider not saving rbx, if not necessary
2503         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2504         break;
2505       case lir_exp :
2506         __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
2507         break;
2508       case lir_pow :
2509         __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
2510         break;
2511       default      : ShouldNotReachHere();
2512     }
2513   } else {
2514     Unimplemented();
2515   }
2516 }
2517 
2518 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2519   // assert(left->destroys_register(), "check");
2520   if (left->is_single_cpu()) {
2521     Register reg = left->as_register();
2522     if (right->is_constant()) {
2523       int val = right->as_constant_ptr()->as_jint();
2524       switch (code) {
2525         case lir_logic_and: __ andl (reg, val); break;
2526         case lir_logic_or:  __ orl  (reg, val); break;
2527         case lir_logic_xor: __ xorl (reg, val); break;
2528         default: ShouldNotReachHere();
2529       }
2530     } else if (right->is_stack()) {
2531       // added support for stack operands
2532       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2533       switch (code) {
2534         case lir_logic_and: __ andl (reg, raddr); break;
2535         case lir_logic_or:  __ orl  (reg, raddr); break;
2536         case lir_logic_xor: __ xorl (reg, raddr); break;
2537         default: ShouldNotReachHere();
2538       }
2539     } else {
2540       Register rright = right->as_register();
2541       switch (code) {
2542         case lir_logic_and: __ andptr (reg, rright); break;
2543         case lir_logic_or : __ orptr  (reg, rright); break;
2544         case lir_logic_xor: __ xorptr (reg, rright); break;
2545         default: ShouldNotReachHere();
2546       }
2547     }
2548     move_regs(reg, dst->as_register());
2549   } else {
2550     Register l_lo = left->as_register_lo();
2551     Register l_hi = left->as_register_hi();
2552     if (right->is_constant()) {
2553 #ifdef _LP64
2554       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2555       switch (code) {
2556         case lir_logic_and:
2557           __ andq(l_lo, rscratch1);
2558           break;
2559         case lir_logic_or:
2560           __ orq(l_lo, rscratch1);
2561           break;
2562         case lir_logic_xor:
2563           __ xorq(l_lo, rscratch1);
2564           break;
2565         default: ShouldNotReachHere();
2566       }
2567 #else
2568       int r_lo = right->as_constant_ptr()->as_jint_lo();
2569       int r_hi = right->as_constant_ptr()->as_jint_hi();
2570       switch (code) {
2571         case lir_logic_and:
2572           __ andl(l_lo, r_lo);
2573           __ andl(l_hi, r_hi);
2574           break;
2575         case lir_logic_or:
2576           __ orl(l_lo, r_lo);
2577           __ orl(l_hi, r_hi);
2578           break;
2579         case lir_logic_xor:
2580           __ xorl(l_lo, r_lo);
2581           __ xorl(l_hi, r_hi);
2582           break;
2583         default: ShouldNotReachHere();
2584       }
2585 #endif // _LP64
2586     } else {
2587 #ifdef _LP64
2588       Register r_lo;
2589       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2590         r_lo = right->as_register();
2591       } else {
2592         r_lo = right->as_register_lo();
2593       }
2594 #else
2595       Register r_lo = right->as_register_lo();
2596       Register r_hi = right->as_register_hi();
2597       assert(l_lo != r_hi, "overwriting registers");
2598 #endif
2599       switch (code) {
2600         case lir_logic_and:
2601           __ andptr(l_lo, r_lo);
2602           NOT_LP64(__ andptr(l_hi, r_hi);)
2603           break;
2604         case lir_logic_or:
2605           __ orptr(l_lo, r_lo);
2606           NOT_LP64(__ orptr(l_hi, r_hi);)
2607           break;
2608         case lir_logic_xor:
2609           __ xorptr(l_lo, r_lo);
2610           NOT_LP64(__ xorptr(l_hi, r_hi);)
2611           break;
2612         default: ShouldNotReachHere();
2613       }
2614     }
2615 
2616     Register dst_lo = dst->as_register_lo();
2617     Register dst_hi = dst->as_register_hi();
2618 
2619 #ifdef _LP64
2620     move_regs(l_lo, dst_lo);
2621 #else
2622     if (dst_lo == l_hi) {
2623       assert(dst_hi != l_lo, "overwriting registers");
2624       move_regs(l_hi, dst_hi);
2625       move_regs(l_lo, dst_lo);
2626     } else {
2627       assert(dst_lo != l_hi, "overwriting registers");
2628       move_regs(l_lo, dst_lo);
2629       move_regs(l_hi, dst_hi);
2630     }
2631 #endif // _LP64
2632   }
2633 }
2634 
2635 
2636 // we assume that rax, and rdx can be overwritten
2637 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2638 
2639   assert(left->is_single_cpu(),   "left must be register");
2640   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2641   assert(result->is_single_cpu(), "result must be register");
2642 
2643   //  assert(left->destroys_register(), "check");
2644   //  assert(right->destroys_register(), "check");
2645 
2646   Register lreg = left->as_register();
2647   Register dreg = result->as_register();
2648 
2649   if (right->is_constant()) {
2650     int divisor = right->as_constant_ptr()->as_jint();
2651     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2652     if (code == lir_idiv) {
2653       assert(lreg == rax, "must be rax,");
2654       assert(temp->as_register() == rdx, "tmp register must be rdx");
2655       __ cdql(); // sign extend into rdx:rax
2656       if (divisor == 2) {
2657         __ subl(lreg, rdx);
2658       } else {
2659         __ andl(rdx, divisor - 1);
2660         __ addl(lreg, rdx);
2661       }
2662       __ sarl(lreg, log2_intptr(divisor));
2663       move_regs(lreg, dreg);
2664     } else if (code == lir_irem) {
2665       Label done;
2666       __ mov(dreg, lreg);
2667       __ andl(dreg, 0x80000000 | (divisor - 1));
2668       __ jcc(Assembler::positive, done);
2669       __ decrement(dreg);
2670       __ orl(dreg, ~(divisor - 1));
2671       __ increment(dreg);
2672       __ bind(done);
2673     } else {
2674       ShouldNotReachHere();
2675     }
2676   } else {
2677     Register rreg = right->as_register();
2678     assert(lreg == rax, "left register must be rax,");
2679     assert(rreg != rdx, "right register must not be rdx");
2680     assert(temp->as_register() == rdx, "tmp register must be rdx");
2681 
2682     move_regs(lreg, rax);
2683 
2684     int idivl_offset = __ corrected_idivl(rreg);
2685     add_debug_info_for_div0(idivl_offset, info);
2686     if (code == lir_irem) {
2687       move_regs(rdx, dreg); // result is in rdx
2688     } else {
2689       move_regs(rax, dreg);
2690     }
2691   }
2692 }
2693 
2694 
2695 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2696   if (opr1->is_single_cpu()) {
2697     Register reg1 = opr1->as_register();
2698     if (opr2->is_single_cpu()) {
2699       // cpu register - cpu register
2700       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2701         __ cmpptr(reg1, opr2->as_register());
2702       } else {
2703         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2704         __ cmpl(reg1, opr2->as_register());
2705       }
2706     } else if (opr2->is_stack()) {
2707       // cpu register - stack
2708       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2709         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2710       } else {
2711         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2712       }
2713     } else if (opr2->is_constant()) {
2714       // cpu register - constant
2715       LIR_Const* c = opr2->as_constant_ptr();
2716       if (c->type() == T_INT) {
2717         __ cmpl(reg1, c->as_jint());
2718       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2719         // In 64bit oops are single register
2720         jobject o = c->as_jobject();
2721         if (o == NULL) {
2722           __ cmpptr(reg1, (int32_t)NULL_WORD);
2723         } else {
2724 #ifdef _LP64
2725           __ movoop(rscratch1, o);
2726           __ cmpptr(reg1, rscratch1);
2727 #else
2728           __ cmpoop(reg1, c->as_jobject());
2729 #endif // _LP64
2730         }
2731       } else {
2732         fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
2733       }
2734       // cpu register - address
2735     } else if (opr2->is_address()) {
2736       if (op->info() != NULL) {
2737         add_debug_info_for_null_check_here(op->info());
2738       }
2739       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2740     } else {
2741       ShouldNotReachHere();
2742     }
2743 
2744   } else if(opr1->is_double_cpu()) {
2745     Register xlo = opr1->as_register_lo();
2746     Register xhi = opr1->as_register_hi();
2747     if (opr2->is_double_cpu()) {
2748 #ifdef _LP64
2749       __ cmpptr(xlo, opr2->as_register_lo());
2750 #else
2751       // cpu register - cpu register
2752       Register ylo = opr2->as_register_lo();
2753       Register yhi = opr2->as_register_hi();
2754       __ subl(xlo, ylo);
2755       __ sbbl(xhi, yhi);
2756       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2757         __ orl(xhi, xlo);
2758       }
2759 #endif // _LP64
2760     } else if (opr2->is_constant()) {
2761       // cpu register - constant 0
2762       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2763 #ifdef _LP64
2764       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2765 #else
2766       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2767       __ orl(xhi, xlo);
2768 #endif // _LP64
2769     } else {
2770       ShouldNotReachHere();
2771     }
2772 
2773   } else if (opr1->is_single_xmm()) {
2774     XMMRegister reg1 = opr1->as_xmm_float_reg();
2775     if (opr2->is_single_xmm()) {
2776       // xmm register - xmm register
2777       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2778     } else if (opr2->is_stack()) {
2779       // xmm register - stack
2780       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2781     } else if (opr2->is_constant()) {
2782       // xmm register - constant
2783       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2784     } else if (opr2->is_address()) {
2785       // xmm register - address
2786       if (op->info() != NULL) {
2787         add_debug_info_for_null_check_here(op->info());
2788       }
2789       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2790     } else {
2791       ShouldNotReachHere();
2792     }
2793 
2794   } else if (opr1->is_double_xmm()) {
2795     XMMRegister reg1 = opr1->as_xmm_double_reg();
2796     if (opr2->is_double_xmm()) {
2797       // xmm register - xmm register
2798       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2799     } else if (opr2->is_stack()) {
2800       // xmm register - stack
2801       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2802     } else if (opr2->is_constant()) {
2803       // xmm register - constant
2804       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2805     } else if (opr2->is_address()) {
2806       // xmm register - address
2807       if (op->info() != NULL) {
2808         add_debug_info_for_null_check_here(op->info());
2809       }
2810       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2811     } else {
2812       ShouldNotReachHere();
2813     }
2814 
2815   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2816     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2817     assert(opr2->is_fpu_register(), "both must be registers");
2818     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2819 
2820   } else if (opr1->is_address() && opr2->is_constant()) {
2821     LIR_Const* c = opr2->as_constant_ptr();
2822 #ifdef _LP64
2823     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2824       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2825       __ movoop(rscratch1, c->as_jobject());
2826     }
2827 #endif // LP64
2828     if (op->info() != NULL) {
2829       add_debug_info_for_null_check_here(op->info());
2830     }
2831     // special case: address - constant
2832     LIR_Address* addr = opr1->as_address_ptr();
2833     if (c->type() == T_INT) {
2834       __ cmpl(as_Address(addr), c->as_jint());
2835     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2836 #ifdef _LP64
2837       // %%% Make this explode if addr isn't reachable until we figure out a
2838       // better strategy by giving noreg as the temp for as_Address
2839       __ cmpptr(rscratch1, as_Address(addr, noreg));
2840 #else
2841       __ cmpoop(as_Address(addr), c->as_jobject());
2842 #endif // _LP64
2843     } else {
2844       ShouldNotReachHere();
2845     }
2846 
2847   } else {
2848     ShouldNotReachHere();
2849   }
2850 }
2851 
2852 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2853   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2854     if (left->is_single_xmm()) {
2855       assert(right->is_single_xmm(), "must match");
2856       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2857     } else if (left->is_double_xmm()) {
2858       assert(right->is_double_xmm(), "must match");
2859       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2860 
2861     } else {
2862       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2863       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2864 
2865       assert(left->fpu() == 0, "left must be on TOS");
2866       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2867                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2868     }
2869   } else {
2870     assert(code == lir_cmp_l2i, "check");
2871 #ifdef _LP64
2872     Label done;
2873     Register dest = dst->as_register();
2874     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2875     __ movl(dest, -1);
2876     __ jccb(Assembler::less, done);
2877     __ set_byte_if_not_zero(dest);
2878     __ movzbl(dest, dest);
2879     __ bind(done);
2880 #else
2881     __ lcmp2int(left->as_register_hi(),
2882                 left->as_register_lo(),
2883                 right->as_register_hi(),
2884                 right->as_register_lo());
2885     move_regs(left->as_register_hi(), dst->as_register());
2886 #endif // _LP64
2887   }
2888 }
2889 
2890 
2891 void LIR_Assembler::align_call(LIR_Code code) {
2892   if (os::is_MP()) {
2893     // make sure that the displacement word of the call ends up word aligned
2894     int offset = __ offset();
2895     switch (code) {
2896       case lir_static_call:
2897       case lir_optvirtual_call:
2898       case lir_dynamic_call:
2899         offset += NativeCall::displacement_offset;
2900         break;
2901       case lir_icvirtual_call:
2902         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2903       break;
2904       case lir_virtual_call:  // currently, sparc-specific for niagara
2905       default: ShouldNotReachHere();
2906     }
2907     while (offset++ % BytesPerWord != 0) {
2908       __ nop();
2909     }
2910   }
2911 }
2912 
2913 
2914 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2915   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2916          "must be aligned");
2917   __ call(AddressLiteral(op->addr(), rtype));
2918   add_call_info(code_offset(), op->info());
2919 }
2920 
2921 
2922 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2923   __ ic_call(op->addr());
2924   add_call_info(code_offset(), op->info());
2925   assert(!os::is_MP() ||
2926          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2927          "must be aligned");
2928 }
2929 
2930 
2931 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2932 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2933   ShouldNotReachHere();
2934 }
2935 
2936 
2937 void LIR_Assembler::emit_static_call_stub() {
2938   address call_pc = __ pc();
2939   address stub = __ start_a_stub(call_stub_size);
2940   if (stub == NULL) {
2941     bailout("static call stub overflow");
2942     return;
2943   }
2944 
2945   int start = __ offset();
2946   if (os::is_MP()) {
2947     // make sure that the displacement word of the call ends up word aligned
2948     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2949     while (offset++ % BytesPerWord != 0) {
2950       __ nop();
2951     }
2952   }
2953   __ relocate(static_stub_Relocation::spec(call_pc));
2954   __ mov_metadata(rbx, (Metadata*)NULL);
2955   // must be set to -1 at code generation time
2956   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2957   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2958   __ jump(RuntimeAddress(__ pc()));
2959 
2960   assert(__ offset() - start <= call_stub_size, "stub too big");
2961   __ end_a_stub();
2962 }
2963 
2964 
2965 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2966   assert(exceptionOop->as_register() == rax, "must match");
2967   assert(exceptionPC->as_register() == rdx, "must match");
2968 
2969   // exception object is not added to oop map by LinearScan
2970   // (LinearScan assumes that no oops are in fixed registers)
2971   info->add_register_oop(exceptionOop);
2972   Runtime1::StubID unwind_id;
2973 
2974   // get current pc information
2975   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2976   int pc_for_athrow_offset = __ offset();
2977   InternalAddress pc_for_athrow(__ pc());
2978   __ lea(exceptionPC->as_register(), pc_for_athrow);
2979   add_call_info(pc_for_athrow_offset, info); // for exception handler
2980 
2981   __ verify_not_null_oop(rax);
2982   // search an exception handler (rax: exception oop, rdx: throwing pc)
2983   if (compilation()->has_fpu_code()) {
2984     unwind_id = Runtime1::handle_exception_id;
2985   } else {
2986     unwind_id = Runtime1::handle_exception_nofpu_id;
2987   }
2988   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2989 
2990   // enough room for two byte trap
2991   __ nop();
2992 }
2993 
2994 
2995 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2996   assert(exceptionOop->as_register() == rax, "must match");
2997 
2998   __ jmp(_unwind_handler_entry);
2999 }
3000 
3001 
3002 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
3003 
3004   // optimized version for linear scan:
3005   // * count must be already in ECX (guaranteed by LinearScan)
3006   // * left and dest must be equal
3007   // * tmp must be unused
3008   assert(count->as_register() == SHIFT_count, "count must be in ECX");
3009   assert(left == dest, "left and dest must be equal");
3010   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
3011 
3012   if (left->is_single_cpu()) {
3013     Register value = left->as_register();
3014     assert(value != SHIFT_count, "left cannot be ECX");
3015 
3016     switch (code) {
3017       case lir_shl:  __ shll(value); break;
3018       case lir_shr:  __ sarl(value); break;
3019       case lir_ushr: __ shrl(value); break;
3020       default: ShouldNotReachHere();
3021     }
3022   } else if (left->is_double_cpu()) {
3023     Register lo = left->as_register_lo();
3024     Register hi = left->as_register_hi();
3025     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
3026 #ifdef _LP64
3027     switch (code) {
3028       case lir_shl:  __ shlptr(lo);        break;
3029       case lir_shr:  __ sarptr(lo);        break;
3030       case lir_ushr: __ shrptr(lo);        break;
3031       default: ShouldNotReachHere();
3032     }
3033 #else
3034 
3035     switch (code) {
3036       case lir_shl:  __ lshl(hi, lo);        break;
3037       case lir_shr:  __ lshr(hi, lo, true);  break;
3038       case lir_ushr: __ lshr(hi, lo, false); break;
3039       default: ShouldNotReachHere();
3040     }
3041 #endif // LP64
3042   } else {
3043     ShouldNotReachHere();
3044   }
3045 }
3046 
3047 
3048 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
3049   if (dest->is_single_cpu()) {
3050     // first move left into dest so that left is not destroyed by the shift
3051     Register value = dest->as_register();
3052     count = count & 0x1F; // Java spec
3053 
3054     move_regs(left->as_register(), value);
3055     switch (code) {
3056       case lir_shl:  __ shll(value, count); break;
3057       case lir_shr:  __ sarl(value, count); break;
3058       case lir_ushr: __ shrl(value, count); break;
3059       default: ShouldNotReachHere();
3060     }
3061   } else if (dest->is_double_cpu()) {
3062 #ifndef _LP64
3063     Unimplemented();
3064 #else
3065     // first move left into dest so that left is not destroyed by the shift
3066     Register value = dest->as_register_lo();
3067     count = count & 0x1F; // Java spec
3068 
3069     move_regs(left->as_register_lo(), value);
3070     switch (code) {
3071       case lir_shl:  __ shlptr(value, count); break;
3072       case lir_shr:  __ sarptr(value, count); break;
3073       case lir_ushr: __ shrptr(value, count); break;
3074       default: ShouldNotReachHere();
3075     }
3076 #endif // _LP64
3077   } else {
3078     ShouldNotReachHere();
3079   }
3080 }
3081 
3082 
3083 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3084   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3085   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3086   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3087   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3088 }
3089 
3090 
3091 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3092   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3093   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3094   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3095   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3096 }
3097 
3098 
3099 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3100   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3101   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3102   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3103   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3104 }
3105 
3106 
3107 // This code replaces a call to arraycopy; no exception may
3108 // be thrown in this code, they must be thrown in the System.arraycopy
3109 // activation frame; we could save some checks if this would not be the case
3110 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3111   ciArrayKlass* default_type = op->expected_type();
3112   Register src = op->src()->as_register();
3113   Register dst = op->dst()->as_register();
3114   Register src_pos = op->src_pos()->as_register();
3115   Register dst_pos = op->dst_pos()->as_register();
3116   Register length  = op->length()->as_register();
3117   Register tmp = op->tmp()->as_register();
3118 
3119   CodeStub* stub = op->stub();
3120   int flags = op->flags();
3121   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3122   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3123 
3124   // if we don't know anything, just go through the generic arraycopy
3125   if (default_type == NULL) {
3126     Label done;
3127     // save outgoing arguments on stack in case call to System.arraycopy is needed
3128     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3129     // for interpreter calling conventions. Now we have to do it in new style conventions.
3130     // For the moment until C1 gets the new register allocator I just force all the
3131     // args to the right place (except the register args) and then on the back side
3132     // reload the register args properly if we go slow path. Yuck
3133 
3134     // These are proper for the calling convention
3135     store_parameter(length, 2);
3136     store_parameter(dst_pos, 1);
3137     store_parameter(dst, 0);
3138 
3139     // these are just temporary placements until we need to reload
3140     store_parameter(src_pos, 3);
3141     store_parameter(src, 4);
3142     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3143 
3144     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3145 
3146     address copyfunc_addr = StubRoutines::generic_arraycopy();
3147 
3148     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3149 #ifdef _LP64
3150     // The arguments are in java calling convention so we can trivially shift them to C
3151     // convention
3152     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3153     __ mov(c_rarg0, j_rarg0);
3154     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3155     __ mov(c_rarg1, j_rarg1);
3156     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3157     __ mov(c_rarg2, j_rarg2);
3158     assert_different_registers(c_rarg3, j_rarg4);
3159     __ mov(c_rarg3, j_rarg3);
3160 #ifdef _WIN64
3161     // Allocate abi space for args but be sure to keep stack aligned
3162     __ subptr(rsp, 6*wordSize);
3163     store_parameter(j_rarg4, 4);
3164     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3165       __ call(RuntimeAddress(C_entry));
3166     } else {
3167 #ifndef PRODUCT
3168       if (PrintC1Statistics) {
3169         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3170       }
3171 #endif
3172       __ call(RuntimeAddress(copyfunc_addr));
3173     }
3174     __ addptr(rsp, 6*wordSize);
3175 #else
3176     __ mov(c_rarg4, j_rarg4);
3177     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3178       __ call(RuntimeAddress(C_entry));
3179     } else {
3180 #ifndef PRODUCT
3181       if (PrintC1Statistics) {
3182         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3183       }
3184 #endif
3185       __ call(RuntimeAddress(copyfunc_addr));
3186     }
3187 #endif // _WIN64
3188 #else
3189     __ push(length);
3190     __ push(dst_pos);
3191     __ push(dst);
3192     __ push(src_pos);
3193     __ push(src);
3194 
3195     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3196       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3197     } else {
3198 #ifndef PRODUCT
3199       if (PrintC1Statistics) {
3200         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3201       }
3202 #endif
3203       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3204     }
3205 
3206 #endif // _LP64
3207 
3208     __ cmpl(rax, 0);
3209     __ jcc(Assembler::equal, *stub->continuation());
3210 
3211     if (copyfunc_addr != NULL) {
3212       __ mov(tmp, rax);
3213       __ xorl(tmp, -1);
3214     }
3215 
3216     // Reload values from the stack so they are where the stub
3217     // expects them.
3218     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3219     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3220     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3221     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3222     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3223 
3224     if (copyfunc_addr != NULL) {
3225       __ subl(length, tmp);
3226       __ addl(src_pos, tmp);
3227       __ addl(dst_pos, tmp);
3228     }
3229     __ jmp(*stub->entry());
3230 
3231     __ bind(*stub->continuation());
3232     return;
3233   }
3234 
3235   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3236 
3237   int elem_size = type2aelembytes(basic_type);
3238   int shift_amount;
3239   Address::ScaleFactor scale;
3240 
3241   switch (elem_size) {
3242     case 1 :
3243       shift_amount = 0;
3244       scale = Address::times_1;
3245       break;
3246     case 2 :
3247       shift_amount = 1;
3248       scale = Address::times_2;
3249       break;
3250     case 4 :
3251       shift_amount = 2;
3252       scale = Address::times_4;
3253       break;
3254     case 8 :
3255       shift_amount = 3;
3256       scale = Address::times_8;
3257       break;
3258     default:
3259       ShouldNotReachHere();
3260   }
3261 
3262   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3263   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3264   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3265   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3266 
3267   // length and pos's are all sign extended at this point on 64bit
3268 
3269   // test for NULL
3270   if (flags & LIR_OpArrayCopy::src_null_check) {
3271     __ testptr(src, src);
3272     __ jcc(Assembler::zero, *stub->entry());
3273   }
3274   if (flags & LIR_OpArrayCopy::dst_null_check) {
3275     __ testptr(dst, dst);
3276     __ jcc(Assembler::zero, *stub->entry());
3277   }
3278 
3279   // check if negative
3280   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3281     __ testl(src_pos, src_pos);
3282     __ jcc(Assembler::less, *stub->entry());
3283   }
3284   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3285     __ testl(dst_pos, dst_pos);
3286     __ jcc(Assembler::less, *stub->entry());
3287   }
3288 
3289   if (flags & LIR_OpArrayCopy::src_range_check) {
3290     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3291     __ cmpl(tmp, src_length_addr);
3292     __ jcc(Assembler::above, *stub->entry());
3293   }
3294   if (flags & LIR_OpArrayCopy::dst_range_check) {
3295     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3296     __ cmpl(tmp, dst_length_addr);
3297     __ jcc(Assembler::above, *stub->entry());
3298   }
3299 
3300   if (flags & LIR_OpArrayCopy::length_positive_check) {
3301     __ testl(length, length);
3302     __ jcc(Assembler::less, *stub->entry());
3303     __ jcc(Assembler::zero, *stub->continuation());
3304   }
3305 
3306 #ifdef _LP64
3307   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3308   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3309 #endif
3310 
3311   if (flags & LIR_OpArrayCopy::type_check) {
3312     // We don't know the array types are compatible
3313     if (basic_type != T_OBJECT) {
3314       // Simple test for basic type arrays
3315       if (UseCompressedClassPointers) {
3316         __ movl(tmp, src_klass_addr);
3317         __ cmpl(tmp, dst_klass_addr);
3318       } else {
3319         __ movptr(tmp, src_klass_addr);
3320         __ cmpptr(tmp, dst_klass_addr);
3321       }
3322       __ jcc(Assembler::notEqual, *stub->entry());
3323     } else {
3324       // For object arrays, if src is a sub class of dst then we can
3325       // safely do the copy.
3326       Label cont, slow;
3327 
3328       __ push(src);
3329       __ push(dst);
3330 
3331       __ load_klass(src, src);
3332       __ load_klass(dst, dst);
3333 
3334       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3335 
3336       __ push(src);
3337       __ push(dst);
3338       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3339       __ pop(dst);
3340       __ pop(src);
3341 
3342       __ cmpl(src, 0);
3343       __ jcc(Assembler::notEqual, cont);
3344 
3345       __ bind(slow);
3346       __ pop(dst);
3347       __ pop(src);
3348 
3349       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3350       if (copyfunc_addr != NULL) { // use stub if available
3351         // src is not a sub class of dst so we have to do a
3352         // per-element check.
3353 
3354         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3355         if ((flags & mask) != mask) {
3356           // Check that at least both of them object arrays.
3357           assert(flags & mask, "one of the two should be known to be an object array");
3358 
3359           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3360             __ load_klass(tmp, src);
3361           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3362             __ load_klass(tmp, dst);
3363           }
3364           int lh_offset = in_bytes(Klass::layout_helper_offset());
3365           Address klass_lh_addr(tmp, lh_offset);
3366           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3367           __ cmpl(klass_lh_addr, objArray_lh);
3368           __ jcc(Assembler::notEqual, *stub->entry());
3369         }
3370 
3371        // Spill because stubs can use any register they like and it's
3372        // easier to restore just those that we care about.
3373        store_parameter(dst, 0);
3374        store_parameter(dst_pos, 1);
3375        store_parameter(length, 2);
3376        store_parameter(src_pos, 3);
3377        store_parameter(src, 4);
3378 
3379 #ifndef _LP64
3380         __ movptr(tmp, dst_klass_addr);
3381         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3382         __ push(tmp);
3383         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3384         __ push(tmp);
3385         __ push(length);
3386         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3387         __ push(tmp);
3388         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3389         __ push(tmp);
3390 
3391         __ call_VM_leaf(copyfunc_addr, 5);
3392 #else
3393         __ movl2ptr(length, length); //higher 32bits must be null
3394 
3395         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3396         assert_different_registers(c_rarg0, dst, dst_pos, length);
3397         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3398         assert_different_registers(c_rarg1, dst, length);
3399 
3400         __ mov(c_rarg2, length);
3401         assert_different_registers(c_rarg2, dst);
3402 
3403 #ifdef _WIN64
3404         // Allocate abi space for args but be sure to keep stack aligned
3405         __ subptr(rsp, 6*wordSize);
3406         __ load_klass(c_rarg3, dst);
3407         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3408         store_parameter(c_rarg3, 4);
3409         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3410         __ call(RuntimeAddress(copyfunc_addr));
3411         __ addptr(rsp, 6*wordSize);
3412 #else
3413         __ load_klass(c_rarg4, dst);
3414         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3415         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3416         __ call(RuntimeAddress(copyfunc_addr));
3417 #endif
3418 
3419 #endif
3420 
3421 #ifndef PRODUCT
3422         if (PrintC1Statistics) {
3423           Label failed;
3424           __ testl(rax, rax);
3425           __ jcc(Assembler::notZero, failed);
3426           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3427           __ bind(failed);
3428         }
3429 #endif
3430 
3431         __ testl(rax, rax);
3432         __ jcc(Assembler::zero, *stub->continuation());
3433 
3434 #ifndef PRODUCT
3435         if (PrintC1Statistics) {
3436           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3437         }
3438 #endif
3439 
3440         __ mov(tmp, rax);
3441 
3442         __ xorl(tmp, -1);
3443 
3444         // Restore previously spilled arguments
3445         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3446         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3447         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3448         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3449         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3450 
3451 
3452         __ subl(length, tmp);
3453         __ addl(src_pos, tmp);
3454         __ addl(dst_pos, tmp);
3455       }
3456 
3457       __ jmp(*stub->entry());
3458 
3459       __ bind(cont);
3460       __ pop(dst);
3461       __ pop(src);
3462     }
3463   }
3464 
3465 #ifdef ASSERT
3466   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3467     // Sanity check the known type with the incoming class.  For the
3468     // primitive case the types must match exactly with src.klass and
3469     // dst.klass each exactly matching the default type.  For the
3470     // object array case, if no type check is needed then either the
3471     // dst type is exactly the expected type and the src type is a
3472     // subtype which we can't check or src is the same array as dst
3473     // but not necessarily exactly of type default_type.
3474     Label known_ok, halt;
3475     __ mov_metadata(tmp, default_type->constant_encoding());
3476 #ifdef _LP64
3477     if (UseCompressedClassPointers) {
3478       __ encode_klass_not_null(tmp);
3479     }
3480 #endif
3481 
3482     if (basic_type != T_OBJECT) {
3483 
3484       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3485       else                   __ cmpptr(tmp, dst_klass_addr);
3486       __ jcc(Assembler::notEqual, halt);
3487       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3488       else                   __ cmpptr(tmp, src_klass_addr);
3489       __ jcc(Assembler::equal, known_ok);
3490     } else {
3491       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3492       else                   __ cmpptr(tmp, dst_klass_addr);
3493       __ jcc(Assembler::equal, known_ok);
3494       __ cmpptr(src, dst);
3495       __ jcc(Assembler::equal, known_ok);
3496     }
3497     __ bind(halt);
3498     __ stop("incorrect type information in arraycopy");
3499     __ bind(known_ok);
3500   }
3501 #endif
3502 
3503 #ifndef PRODUCT
3504   if (PrintC1Statistics) {
3505     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3506   }
3507 #endif
3508 
3509 #ifdef _LP64
3510   assert_different_registers(c_rarg0, dst, dst_pos, length);
3511   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3512   assert_different_registers(c_rarg1, length);
3513   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3514   __ mov(c_rarg2, length);
3515 
3516 #else
3517   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3518   store_parameter(tmp, 0);
3519   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3520   store_parameter(tmp, 1);
3521   store_parameter(length, 2);
3522 #endif // _LP64
3523 
3524   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3525   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3526   const char *name;
3527   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3528   __ call_VM_leaf(entry, 0);
3529 
3530   __ bind(*stub->continuation());
3531 }
3532 
3533 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3534   assert(op->crc()->is_single_cpu(),  "crc must be register");
3535   assert(op->val()->is_single_cpu(),  "byte value must be register");
3536   assert(op->result_opr()->is_single_cpu(), "result must be register");
3537   Register crc = op->crc()->as_register();
3538   Register val = op->val()->as_register();
3539   Register res = op->result_opr()->as_register();
3540 
3541   assert_different_registers(val, crc, res);
3542 
3543   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3544   __ notl(crc); // ~crc
3545   __ update_byte_crc32(crc, val, res);
3546   __ notl(crc); // ~crc
3547   __ mov(res, crc);
3548 }
3549 
3550 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3551   Register obj = op->obj_opr()->as_register();  // may not be an oop
3552   Register hdr = op->hdr_opr()->as_register();
3553   Register lock = op->lock_opr()->as_register();
3554   if (!UseFastLocking) {
3555     __ jmp(*op->stub()->entry());
3556   } else if (op->code() == lir_lock) {
3557     Register scratch = noreg;
3558     if (UseBiasedLocking) {
3559       scratch = op->scratch_opr()->as_register();
3560     }
3561     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3562     // add debug info for NullPointerException only if one is possible
3563     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3564     if (op->info() != NULL) {
3565       add_debug_info_for_null_check(null_check_offset, op->info());
3566     }
3567     // done
3568   } else if (op->code() == lir_unlock) {
3569     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3570     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3571   } else {
3572     Unimplemented();
3573   }
3574   __ bind(*op->stub()->continuation());
3575 }
3576 
3577 
3578 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3579   ciMethod* method = op->profiled_method();
3580   int bci          = op->profiled_bci();
3581   ciMethod* callee = op->profiled_callee();
3582 
3583   // Update counter for all call types
3584   ciMethodData* md = method->method_data_or_null();
3585   assert(md != NULL, "Sanity");
3586   ciProfileData* data = md->bci_to_data(bci);
3587   assert(data->is_CounterData(), "need CounterData for calls");
3588   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3589   Register mdo  = op->mdo()->as_register();
3590   __ mov_metadata(mdo, md->constant_encoding());
3591   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3592   Bytecodes::Code bc = method->java_code_at_bci(bci);
3593   const bool callee_is_static = callee->is_loaded() && callee->is_static();
3594   // Perform additional virtual call profiling for invokevirtual and
3595   // invokeinterface bytecodes
3596   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3597       !callee_is_static &&  // required for optimized MH invokes
3598       C1ProfileVirtualCalls) {
3599     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3600     Register recv = op->recv()->as_register();
3601     assert_different_registers(mdo, recv);
3602     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3603     ciKlass* known_klass = op->known_holder();
3604     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3605       // We know the type that will be seen at this call site; we can
3606       // statically update the MethodData* rather than needing to do
3607       // dynamic tests on the receiver type
3608 
3609       // NOTE: we should probably put a lock around this search to
3610       // avoid collisions by concurrent compilations
3611       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3612       uint i;
3613       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3614         ciKlass* receiver = vc_data->receiver(i);
3615         if (known_klass->equals(receiver)) {
3616           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3617           __ addptr(data_addr, DataLayout::counter_increment);
3618           return;
3619         }
3620       }
3621 
3622       // Receiver type not found in profile data; select an empty slot
3623 
3624       // Note that this is less efficient than it should be because it
3625       // always does a write to the receiver part of the
3626       // VirtualCallData rather than just the first time
3627       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3628         ciKlass* receiver = vc_data->receiver(i);
3629         if (receiver == NULL) {
3630           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3631           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3632           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3633           __ addptr(data_addr, DataLayout::counter_increment);
3634           return;
3635         }
3636       }
3637     } else {
3638       __ load_klass(recv, recv);
3639       Label update_done;
3640       type_profile_helper(mdo, md, data, recv, &update_done);
3641       // Receiver did not match any saved receiver and there is no empty row for it.
3642       // Increment total counter to indicate polymorphic case.
3643       __ addptr(counter_addr, DataLayout::counter_increment);
3644 
3645       __ bind(update_done);
3646     }
3647   } else {
3648     // Static call
3649     __ addptr(counter_addr, DataLayout::counter_increment);
3650   }
3651 }
3652 
3653 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3654   Register obj = op->obj()->as_register();
3655   Register tmp = op->tmp()->as_pointer_register();
3656   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3657   ciKlass* exact_klass = op->exact_klass();
3658   intptr_t current_klass = op->current_klass();
3659   bool not_null = op->not_null();
3660   bool no_conflict = op->no_conflict();
3661 
3662   Label update, next, none;
3663 
3664   bool do_null = !not_null;
3665   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3666   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3667 
3668   assert(do_null || do_update, "why are we here?");
3669   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3670 
3671   __ verify_oop(obj);
3672 
3673   if (tmp != obj) {
3674     __ mov(tmp, obj);
3675   }
3676   if (do_null) {
3677     __ testptr(tmp, tmp);
3678     __ jccb(Assembler::notZero, update);
3679     if (!TypeEntries::was_null_seen(current_klass)) {
3680       __ orptr(mdo_addr, TypeEntries::null_seen);
3681     }
3682     if (do_update) {
3683 #ifndef ASSERT
3684       __ jmpb(next);
3685     }
3686 #else
3687       __ jmp(next);
3688     }
3689   } else {
3690     __ testptr(tmp, tmp);
3691     __ jccb(Assembler::notZero, update);
3692     __ stop("unexpect null obj");
3693 #endif
3694   }
3695 
3696   __ bind(update);
3697 
3698   if (do_update) {
3699 #ifdef ASSERT
3700     if (exact_klass != NULL) {
3701       Label ok;
3702       __ load_klass(tmp, tmp);
3703       __ push(tmp);
3704       __ mov_metadata(tmp, exact_klass->constant_encoding());
3705       __ cmpptr(tmp, Address(rsp, 0));
3706       __ jccb(Assembler::equal, ok);
3707       __ stop("exact klass and actual klass differ");
3708       __ bind(ok);
3709       __ pop(tmp);
3710     }
3711 #endif
3712     if (!no_conflict) {
3713       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3714         if (exact_klass != NULL) {
3715           __ mov_metadata(tmp, exact_klass->constant_encoding());
3716         } else {
3717           __ load_klass(tmp, tmp);
3718         }
3719 
3720         __ xorptr(tmp, mdo_addr);
3721         __ testptr(tmp, TypeEntries::type_klass_mask);
3722         // klass seen before, nothing to do. The unknown bit may have been
3723         // set already but no need to check.
3724         __ jccb(Assembler::zero, next);
3725 
3726         __ testptr(tmp, TypeEntries::type_unknown);
3727         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3728 
3729         if (TypeEntries::is_type_none(current_klass)) {
3730           __ cmpptr(mdo_addr, 0);
3731           __ jccb(Assembler::equal, none);
3732           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3733           __ jccb(Assembler::equal, none);
3734           // There is a chance that the checks above (re-reading profiling
3735           // data from memory) fail if another thread has just set the
3736           // profiling to this obj's klass
3737           __ xorptr(tmp, mdo_addr);
3738           __ testptr(tmp, TypeEntries::type_klass_mask);
3739           __ jccb(Assembler::zero, next);
3740         }
3741       } else {
3742         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3743                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3744 
3745         __ movptr(tmp, mdo_addr);
3746         __ testptr(tmp, TypeEntries::type_unknown);
3747         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3748       }
3749 
3750       // different than before. Cannot keep accurate profile.
3751       __ orptr(mdo_addr, TypeEntries::type_unknown);
3752 
3753       if (TypeEntries::is_type_none(current_klass)) {
3754         __ jmpb(next);
3755 
3756         __ bind(none);
3757         // first time here. Set profile type.
3758         __ movptr(mdo_addr, tmp);
3759       }
3760     } else {
3761       // There's a single possible klass at this profile point
3762       assert(exact_klass != NULL, "should be");
3763       if (TypeEntries::is_type_none(current_klass)) {
3764         __ mov_metadata(tmp, exact_klass->constant_encoding());
3765         __ xorptr(tmp, mdo_addr);
3766         __ testptr(tmp, TypeEntries::type_klass_mask);
3767 #ifdef ASSERT
3768         __ jcc(Assembler::zero, next);
3769 
3770         {
3771           Label ok;
3772           __ push(tmp);
3773           __ cmpptr(mdo_addr, 0);
3774           __ jcc(Assembler::equal, ok);
3775           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3776           __ jcc(Assembler::equal, ok);
3777           // may have been set by another thread
3778           __ mov_metadata(tmp, exact_klass->constant_encoding());
3779           __ xorptr(tmp, mdo_addr);
3780           __ testptr(tmp, TypeEntries::type_mask);
3781           __ jcc(Assembler::zero, ok);
3782 
3783           __ stop("unexpected profiling mismatch");
3784           __ bind(ok);
3785           __ pop(tmp);
3786         }
3787 #else
3788         __ jccb(Assembler::zero, next);
3789 #endif
3790         // first time here. Set profile type.
3791         __ movptr(mdo_addr, tmp);
3792       } else {
3793         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3794                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3795 
3796         __ movptr(tmp, mdo_addr);
3797         __ testptr(tmp, TypeEntries::type_unknown);
3798         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3799 
3800         __ orptr(mdo_addr, TypeEntries::type_unknown);
3801       }
3802     }
3803 
3804     __ bind(next);
3805   }
3806 }
3807 
3808 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3809   Unimplemented();
3810 }
3811 
3812 
3813 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3814   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3815 }
3816 
3817 
3818 void LIR_Assembler::align_backward_branch_target() {
3819   __ align(BytesPerWord);
3820 }
3821 
3822 
3823 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3824   if (left->is_single_cpu()) {
3825     __ negl(left->as_register());
3826     move_regs(left->as_register(), dest->as_register());
3827 
3828   } else if (left->is_double_cpu()) {
3829     Register lo = left->as_register_lo();
3830 #ifdef _LP64
3831     Register dst = dest->as_register_lo();
3832     __ movptr(dst, lo);
3833     __ negptr(dst);
3834 #else
3835     Register hi = left->as_register_hi();
3836     __ lneg(hi, lo);
3837     if (dest->as_register_lo() == hi) {
3838       assert(dest->as_register_hi() != lo, "destroying register");
3839       move_regs(hi, dest->as_register_hi());
3840       move_regs(lo, dest->as_register_lo());
3841     } else {
3842       move_regs(lo, dest->as_register_lo());
3843       move_regs(hi, dest->as_register_hi());
3844     }
3845 #endif // _LP64
3846 
3847   } else if (dest->is_single_xmm()) {
3848     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3849       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3850     }
3851     __ xorps(dest->as_xmm_float_reg(),
3852              ExternalAddress((address)float_signflip_pool));
3853 
3854   } else if (dest->is_double_xmm()) {
3855     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3856       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3857     }
3858     __ xorpd(dest->as_xmm_double_reg(),
3859              ExternalAddress((address)double_signflip_pool));
3860 
3861   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3862     assert(left->fpu() == 0, "arg must be on TOS");
3863     assert(dest->fpu() == 0, "dest must be TOS");
3864     __ fchs();
3865 
3866   } else {
3867     ShouldNotReachHere();
3868   }
3869 }
3870 
3871 
3872 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3873   assert(addr->is_address() && dest->is_register(), "check");
3874   Register reg;
3875   reg = dest->as_pointer_register();
3876   __ lea(reg, as_Address(addr->as_address_ptr()));
3877 }
3878 
3879 
3880 
3881 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3882   assert(!tmp->is_valid(), "don't need temporary");
3883   __ call(RuntimeAddress(dest));
3884   if (info != NULL) {
3885     add_call_info_here(info);
3886   }
3887 }
3888 
3889 
3890 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3891   assert(type == T_LONG, "only for volatile long fields");
3892 
3893   if (info != NULL) {
3894     add_debug_info_for_null_check_here(info);
3895   }
3896 
3897   if (src->is_double_xmm()) {
3898     if (dest->is_double_cpu()) {
3899 #ifdef _LP64
3900       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3901 #else
3902       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3903       __ psrlq(src->as_xmm_double_reg(), 32);
3904       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3905 #endif // _LP64
3906     } else if (dest->is_double_stack()) {
3907       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3908     } else if (dest->is_address()) {
3909       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3910     } else {
3911       ShouldNotReachHere();
3912     }
3913 
3914   } else if (dest->is_double_xmm()) {
3915     if (src->is_double_stack()) {
3916       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3917     } else if (src->is_address()) {
3918       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3919     } else {
3920       ShouldNotReachHere();
3921     }
3922 
3923   } else if (src->is_double_fpu()) {
3924     assert(src->fpu_regnrLo() == 0, "must be TOS");
3925     if (dest->is_double_stack()) {
3926       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3927     } else if (dest->is_address()) {
3928       __ fistp_d(as_Address(dest->as_address_ptr()));
3929     } else {
3930       ShouldNotReachHere();
3931     }
3932 
3933   } else if (dest->is_double_fpu()) {
3934     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3935     if (src->is_double_stack()) {
3936       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3937     } else if (src->is_address()) {
3938       __ fild_d(as_Address(src->as_address_ptr()));
3939     } else {
3940       ShouldNotReachHere();
3941     }
3942   } else {
3943     ShouldNotReachHere();
3944   }
3945 }
3946 
3947 #ifdef ASSERT
3948 // emit run-time assertion
3949 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3950   assert(op->code() == lir_assert, "must be");
3951 
3952   if (op->in_opr1()->is_valid()) {
3953     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3954     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3955   } else {
3956     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3957     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3958   }
3959 
3960   Label ok;
3961   if (op->condition() != lir_cond_always) {
3962     Assembler::Condition acond = Assembler::zero;
3963     switch (op->condition()) {
3964       case lir_cond_equal:        acond = Assembler::equal;       break;
3965       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3966       case lir_cond_less:         acond = Assembler::less;        break;
3967       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3968       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3969       case lir_cond_greater:      acond = Assembler::greater;     break;
3970       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3971       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3972       default:                    ShouldNotReachHere();
3973     }
3974     __ jcc(acond, ok);
3975   }
3976   if (op->halt()) {
3977     const char* str = __ code_string(op->msg());
3978     __ stop(str);
3979   } else {
3980     breakpoint();
3981   }
3982   __ bind(ok);
3983 }
3984 #endif
3985 
3986 void LIR_Assembler::membar() {
3987   // QQQ sparc TSO uses this,
3988   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3989 }
3990 
3991 void LIR_Assembler::membar_acquire() {
3992   // No x86 machines currently require load fences
3993   // __ load_fence();
3994 }
3995 
3996 void LIR_Assembler::membar_release() {
3997   // No x86 machines currently require store fences
3998   // __ store_fence();
3999 }
4000 
4001 void LIR_Assembler::membar_loadload() {
4002   // no-op
4003   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
4004 }
4005 
4006 void LIR_Assembler::membar_storestore() {
4007   // no-op
4008   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
4009 }
4010 
4011 void LIR_Assembler::membar_loadstore() {
4012   // no-op
4013   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
4014 }
4015 
4016 void LIR_Assembler::membar_storeload() {
4017   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4018 }
4019 
4020 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
4021   assert(result_reg->is_register(), "check");
4022 #ifdef _LP64
4023   // __ get_thread(result_reg->as_register_lo());
4024   __ mov(result_reg->as_register(), r15_thread);
4025 #else
4026   __ get_thread(result_reg->as_register());
4027 #endif // _LP64
4028 }
4029 
4030 
4031 void LIR_Assembler::peephole(LIR_List*) {
4032   // do nothing for now
4033 }
4034 
4035 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
4036   assert(data == dest, "xchg/xadd uses only 2 operands");
4037 
4038   if (data->type() == T_INT) {
4039     if (code == lir_xadd) {
4040       if (os::is_MP()) {
4041         __ lock();
4042       }
4043       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4044     } else {
4045       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4046     }
4047   } else if (data->is_oop()) {
4048     assert (code == lir_xchg, "xadd for oops");
4049     Register obj = data->as_register();
4050 #ifdef _LP64
4051     if (UseCompressedOops) {
4052       __ encode_heap_oop(obj);
4053       __ xchgl(obj, as_Address(src->as_address_ptr()));
4054       __ decode_heap_oop(obj);
4055     } else {
4056       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4057     }
4058 #else
4059     __ xchgl(obj, as_Address(src->as_address_ptr()));
4060 #endif
4061   } else if (data->type() == T_LONG) {
4062 #ifdef _LP64
4063     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4064     if (code == lir_xadd) {
4065       if (os::is_MP()) {
4066         __ lock();
4067       }
4068       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4069     } else {
4070       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4071     }
4072 #else
4073     ShouldNotReachHere();
4074 #endif
4075   } else {
4076     ShouldNotReachHere();
4077   }
4078 }
4079 
4080 #undef __