1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "nativeInst_x86.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/handles.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 #include "runtime/stubRoutines.hpp"
  33 #include "utilities/ostream.hpp"
  34 #ifdef COMPILER1
  35 #include "c1/c1_Runtime1.hpp"
  36 #endif
  37 
  38 void NativeInstruction::wrote(int offset) {
  39   ICache::invalidate_word(addr_at(offset));
  40 }
  41 
  42 
  43 void NativeCall::verify() {
  44   // Make sure code pattern is actually a call imm32 instruction.
  45   int inst = ubyte_at(0);
  46   if (inst != instruction_code) {
  47     tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", instruction_address(),
  48                                                         inst);
  49     fatal("not a call disp32");
  50   }
  51 }
  52 
  53 address NativeCall::destination() const {
  54   // Getting the destination of a call isn't safe because that call can
  55   // be getting patched while you're calling this.  There's only special
  56   // places where this can be called but not automatically verifiable by
  57   // checking which locks are held.  The solution is true atomic patching
  58   // on x86, nyi.
  59   return return_address() + displacement();
  60 }
  61 
  62 void NativeCall::print() {
  63   tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT,
  64                 instruction_address(), destination());
  65 }
  66 
  67 // Inserts a native call instruction at a given pc
  68 void NativeCall::insert(address code_pos, address entry) {
  69   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
  70 #ifdef AMD64
  71   guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
  72 #endif // AMD64
  73   *code_pos = instruction_code;
  74   *((int32_t *)(code_pos+1)) = (int32_t) disp;
  75   ICache::invalidate_range(code_pos, instruction_size);
  76 }
  77 
  78 // MT-safe patching of a call instruction.
  79 // First patches first word of instruction to two jmp's that jmps to them
  80 // selfs (spinlock). Then patches the last byte, and then atomicly replaces
  81 // the jmp's with the first 4 byte of the new instruction.
  82 void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) {
  83   assert(Patching_lock->is_locked() ||
  84          SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
  85   assert (instr_addr != NULL, "illegal address for code patching");
  86 
  87   NativeCall* n_call =  nativeCall_at (instr_addr); // checking that it is a call
  88   if (os::is_MP()) {
  89     guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned");
  90   }
  91 
  92   // First patch dummy jmp in place
  93   unsigned char patch[4];
  94   assert(sizeof(patch)==sizeof(jint), "sanity check");
  95   patch[0] = 0xEB;       // jmp rel8
  96   patch[1] = 0xFE;       // jmp to self
  97   patch[2] = 0xEB;
  98   patch[3] = 0xFE;
  99 
 100   // First patch dummy jmp in place
 101   *(jint*)instr_addr = *(jint *)patch;
 102 
 103   // Invalidate.  Opteron requires a flush after every write.
 104   n_call->wrote(0);
 105 
 106   // Patch 4th byte
 107   instr_addr[4] = code_buffer[4];
 108 
 109   n_call->wrote(4);
 110 
 111   // Patch bytes 0-3
 112   *(jint*)instr_addr = *(jint *)code_buffer;
 113 
 114   n_call->wrote(0);
 115 
 116 #ifdef ASSERT
 117    // verify patching
 118    for ( int i = 0; i < instruction_size; i++) {
 119      address ptr = (address)((intptr_t)code_buffer + i);
 120      int a_byte = (*ptr) & 0xFF;
 121      assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
 122    }
 123 #endif
 124 
 125 }
 126 
 127 
 128 // Similar to replace_mt_safe, but just changes the destination.  The
 129 // important thing is that free-running threads are able to execute this
 130 // call instruction at all times.  If the displacement field is aligned
 131 // we can simply rely on atomicity of 32-bit writes to make sure other threads
 132 // will see no intermediate states.  Otherwise, the first two bytes of the
 133 // call are guaranteed to be aligned, and can be atomically patched to a
 134 // self-loop to guard the instruction while we change the other bytes.
 135 
 136 // We cannot rely on locks here, since the free-running threads must run at
 137 // full speed.
 138 //
 139 // Used in the runtime linkage of calls; see class CompiledIC.
 140 // (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.)
 141 void NativeCall::set_destination_mt_safe(address dest) {
 142   debug_only(verify());
 143   // Make sure patching code is locked.  No two threads can patch at the same
 144   // time but one may be executing this code.
 145   assert(Patching_lock->is_locked() ||
 146          SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
 147   // Both C1 and C2 should now be generating code which aligns the patched address
 148   // to be within a single cache line except that C1 does not do the alignment on
 149   // uniprocessor systems.
 150   bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size ==
 151                     ((uintptr_t)displacement_address() + 3) / cache_line_size;
 152 
 153   guarantee(!os::is_MP() || is_aligned, "destination must be aligned");
 154 
 155   if (is_aligned) {
 156     // Simple case:  The destination lies within a single cache line.
 157     set_destination(dest);
 158   } else if ((uintptr_t)instruction_address() / cache_line_size ==
 159              ((uintptr_t)instruction_address()+1) / cache_line_size) {
 160     // Tricky case:  The instruction prefix lies within a single cache line.
 161     intptr_t disp = dest - return_address();
 162 #ifdef AMD64
 163     guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
 164 #endif // AMD64
 165 
 166     int call_opcode = instruction_address()[0];
 167 
 168     // First patch dummy jump in place:
 169     {
 170       u_char patch_jump[2];
 171       patch_jump[0] = 0xEB;       // jmp rel8
 172       patch_jump[1] = 0xFE;       // jmp to self
 173 
 174       assert(sizeof(patch_jump)==sizeof(short), "sanity check");
 175       *(short*)instruction_address() = *(short*)patch_jump;
 176     }
 177     // Invalidate.  Opteron requires a flush after every write.
 178     wrote(0);
 179 
 180     // (Note: We assume any reader which has already started to read
 181     // the unpatched call will completely read the whole unpatched call
 182     // without seeing the next writes we are about to make.)
 183 
 184     // Next, patch the last three bytes:
 185     u_char patch_disp[5];
 186     patch_disp[0] = call_opcode;
 187     *(int32_t*)&patch_disp[1] = (int32_t)disp;
 188     assert(sizeof(patch_disp)==instruction_size, "sanity check");
 189     for (int i = sizeof(short); i < instruction_size; i++)
 190       instruction_address()[i] = patch_disp[i];
 191 
 192     // Invalidate.  Opteron requires a flush after every write.
 193     wrote(sizeof(short));
 194 
 195     // (Note: We assume that any reader which reads the opcode we are
 196     // about to repatch will also read the writes we just made.)
 197 
 198     // Finally, overwrite the jump:
 199     *(short*)instruction_address() = *(short*)patch_disp;
 200     // Invalidate.  Opteron requires a flush after every write.
 201     wrote(0);
 202 
 203     debug_only(verify());
 204     guarantee(destination() == dest, "patch succeeded");
 205   } else {
 206     // Impossible:  One or the other must be atomically writable.
 207     ShouldNotReachHere();
 208   }
 209 }
 210 
 211 
 212 void NativeMovConstReg::verify() {
 213 #ifdef AMD64
 214   // make sure code pattern is actually a mov reg64, imm64 instruction
 215   if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) ||
 216       (ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) {
 217     print();
 218     fatal("not a REX.W[B] mov reg64, imm64");
 219   }
 220 #else
 221   // make sure code pattern is actually a mov reg, imm32 instruction
 222   u_char test_byte = *(u_char*)instruction_address();
 223   u_char test_byte_2 = test_byte & ( 0xff ^ register_mask);
 224   if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32");
 225 #endif // AMD64
 226 }
 227 
 228 
 229 void NativeMovConstReg::print() {
 230   tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
 231                 instruction_address(), data());
 232 }
 233 
 234 //-------------------------------------------------------------------
 235 
 236 int NativeMovRegMem::instruction_start() const {
 237   int off = 0;
 238   u_char instr_0 = ubyte_at(off);
 239 
 240   // See comment in Assembler::locate_operand() about VEX prefixes.
 241   if (instr_0 == instruction_VEX_prefix_2bytes) {
 242     assert((UseAVX > 0), "shouldn't have VEX prefix");
 243     NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
 244     return 2;
 245   }
 246   if (instr_0 == instruction_VEX_prefix_3bytes) {
 247     assert((UseAVX > 0), "shouldn't have VEX prefix");
 248     NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
 249     return 3;
 250   }
 251 
 252   // First check to see if we have a (prefixed or not) xor
 253   if (instr_0 >= instruction_prefix_wide_lo && // 0x40
 254       instr_0 <= instruction_prefix_wide_hi) { // 0x4f
 255     off++;
 256     instr_0 = ubyte_at(off);
 257   }
 258 
 259   if (instr_0 == instruction_code_xor) {
 260     off += 2;
 261     instr_0 = ubyte_at(off);
 262   }
 263 
 264   // Now look for the real instruction and the many prefix/size specifiers.
 265 
 266   if (instr_0 == instruction_operandsize_prefix ) {  // 0x66
 267     off++; // Not SSE instructions
 268     instr_0 = ubyte_at(off);
 269   }
 270 
 271   if ( instr_0 == instruction_code_xmm_ss_prefix || // 0xf3
 272        instr_0 == instruction_code_xmm_sd_prefix) { // 0xf2
 273     off++;
 274     instr_0 = ubyte_at(off);
 275   }
 276 
 277   if ( instr_0 >= instruction_prefix_wide_lo && // 0x40
 278        instr_0 <= instruction_prefix_wide_hi) { // 0x4f
 279     off++;
 280     instr_0 = ubyte_at(off);
 281   }
 282 
 283 
 284   if (instr_0 == instruction_extended_prefix ) {  // 0x0f
 285     off++;
 286   }
 287 
 288   return off;
 289 }
 290 
 291 address NativeMovRegMem::instruction_address() const {
 292   return addr_at(instruction_start());
 293 }
 294 
 295 address NativeMovRegMem::next_instruction_address() const {
 296   address ret = instruction_address() + instruction_size;
 297   u_char instr_0 =  *(u_char*) instruction_address();
 298   switch (instr_0) {
 299   case instruction_operandsize_prefix:
 300 
 301     fatal("should have skipped instruction_operandsize_prefix");
 302     break;
 303 
 304   case instruction_extended_prefix:
 305     fatal("should have skipped instruction_extended_prefix");
 306     break;
 307 
 308   case instruction_code_mem2reg_movslq: // 0x63
 309   case instruction_code_mem2reg_movzxb: // 0xB6
 310   case instruction_code_mem2reg_movsxb: // 0xBE
 311   case instruction_code_mem2reg_movzxw: // 0xB7
 312   case instruction_code_mem2reg_movsxw: // 0xBF
 313   case instruction_code_reg2mem:        // 0x89 (q/l)
 314   case instruction_code_mem2reg:        // 0x8B (q/l)
 315   case instruction_code_reg2memb:       // 0x88
 316   case instruction_code_mem2regb:       // 0x8a
 317 
 318   case instruction_code_float_s:        // 0xd9 fld_s a
 319   case instruction_code_float_d:        // 0xdd fld_d a
 320 
 321   case instruction_code_xmm_load:       // 0x10
 322   case instruction_code_xmm_store:      // 0x11
 323   case instruction_code_xmm_lpd:        // 0x12
 324     {
 325       // If there is an SIB then instruction is longer than expected
 326       u_char mod_rm = *(u_char*)(instruction_address() + 1);
 327       if ((mod_rm & 7) == 0x4) {
 328         ret++;
 329       }
 330     }
 331   case instruction_code_xor:
 332     fatal("should have skipped xor lead in");
 333     break;
 334 
 335   default:
 336     fatal("not a NativeMovRegMem");
 337   }
 338   return ret;
 339 
 340 }
 341 
 342 int NativeMovRegMem::offset() const{
 343   int off = data_offset + instruction_start();
 344   u_char mod_rm = *(u_char*)(instruction_address() + 1);
 345   // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
 346   // the encoding to use an SIB byte. Which will have the nnnn
 347   // field off by one byte
 348   if ((mod_rm & 7) == 0x4) {
 349     off++;
 350   }
 351   return int_at(off);
 352 }
 353 
 354 void NativeMovRegMem::set_offset(int x) {
 355   int off = data_offset + instruction_start();
 356   u_char mod_rm = *(u_char*)(instruction_address() + 1);
 357   // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
 358   // the encoding to use an SIB byte. Which will have the nnnn
 359   // field off by one byte
 360   if ((mod_rm & 7) == 0x4) {
 361     off++;
 362   }
 363   set_int_at(off, x);
 364 }
 365 
 366 void NativeMovRegMem::verify() {
 367   // make sure code pattern is actually a mov [reg+offset], reg instruction
 368   u_char test_byte = *(u_char*)instruction_address();
 369   switch (test_byte) {
 370     case instruction_code_reg2memb:  // 0x88 movb a, r
 371     case instruction_code_reg2mem:   // 0x89 movl a, r (can be movq in 64bit)
 372     case instruction_code_mem2regb:  // 0x8a movb r, a
 373     case instruction_code_mem2reg:   // 0x8b movl r, a (can be movq in 64bit)
 374       break;
 375 
 376     case instruction_code_mem2reg_movslq: // 0x63 movsql r, a
 377     case instruction_code_mem2reg_movzxb: // 0xb6 movzbl r, a (movzxb)
 378     case instruction_code_mem2reg_movzxw: // 0xb7 movzwl r, a (movzxw)
 379     case instruction_code_mem2reg_movsxb: // 0xbe movsbl r, a (movsxb)
 380     case instruction_code_mem2reg_movsxw: // 0xbf  movswl r, a (movsxw)
 381       break;
 382 
 383     case instruction_code_float_s:   // 0xd9 fld_s a
 384     case instruction_code_float_d:   // 0xdd fld_d a
 385     case instruction_code_xmm_load:  // 0x10 movsd xmm, a
 386     case instruction_code_xmm_store: // 0x11 movsd a, xmm
 387     case instruction_code_xmm_lpd:   // 0x12 movlpd xmm, a
 388       break;
 389 
 390     default:
 391           fatal ("not a mov [reg+offs], reg instruction");
 392   }
 393 }
 394 
 395 
 396 void NativeMovRegMem::print() {
 397   tty->print_cr("0x%x: mov reg, [reg + %x]", instruction_address(), offset());
 398 }
 399 
 400 //-------------------------------------------------------------------
 401 
 402 void NativeLoadAddress::verify() {
 403   // make sure code pattern is actually a mov [reg+offset], reg instruction
 404   u_char test_byte = *(u_char*)instruction_address();
 405 #ifdef _LP64
 406   if ( (test_byte == instruction_prefix_wide ||
 407         test_byte == instruction_prefix_wide_extended) ) {
 408     test_byte = *(u_char*)(instruction_address() + 1);
 409   }
 410 #endif // _LP64
 411   if ( ! ((test_byte == lea_instruction_code)
 412           LP64_ONLY(|| (test_byte == mov64_instruction_code) ))) {
 413     fatal ("not a lea reg, [reg+offs] instruction");
 414   }
 415 }
 416 
 417 
 418 void NativeLoadAddress::print() {
 419   tty->print_cr("0x%x: lea [reg + %x], reg", instruction_address(), offset());
 420 }
 421 
 422 //--------------------------------------------------------------------------------
 423 
 424 void NativeJump::verify() {
 425   if (*(u_char*)instruction_address() != instruction_code) {
 426     fatal("not a jump instruction");
 427   }
 428 }
 429 
 430 
 431 void NativeJump::insert(address code_pos, address entry) {
 432   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
 433 #ifdef AMD64
 434   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
 435 #endif // AMD64
 436 
 437   *code_pos = instruction_code;
 438   *((int32_t*)(code_pos + 1)) = (int32_t)disp;
 439 
 440   ICache::invalidate_range(code_pos, instruction_size);
 441 }
 442 
 443 void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
 444   // Patching to not_entrant can happen while activations of the method are
 445   // in use. The patching in that instance must happen only when certain
 446   // alignment restrictions are true. These guarantees check those
 447   // conditions.
 448 #ifdef AMD64
 449   const int linesize = 64;
 450 #else
 451   const int linesize = 32;
 452 #endif // AMD64
 453 
 454   // Must be wordSize aligned
 455   guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0,
 456             "illegal address for code patching 2");
 457   // First 5 bytes must be within the same cache line - 4827828
 458   guarantee((uintptr_t) verified_entry / linesize ==
 459             ((uintptr_t) verified_entry + 4) / linesize,
 460             "illegal address for code patching 3");
 461 }
 462 
 463 
 464 // MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie)
 465 // The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes.
 466 // First patches the first word atomically to be a jump to itself.
 467 // Then patches the last byte  and then atomically patches the first word (4-bytes),
 468 // thus inserting the desired jump
 469 // This code is mt-safe with the following conditions: entry point is 4 byte aligned,
 470 // entry point is in same cache line as unverified entry point, and the instruction being
 471 // patched is >= 5 byte (size of patch).
 472 //
 473 // In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit.
 474 // In C1 the restriction is enforced by CodeEmitter::method_entry
 475 //
 476 void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
 477   // complete jump instruction (to be inserted) is in code_buffer;
 478   unsigned char code_buffer[5];
 479   code_buffer[0] = instruction_code;
 480   intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4);
 481 #ifdef AMD64
 482   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
 483 #endif // AMD64
 484   *(int32_t*)(code_buffer + 1) = (int32_t)disp;
 485 
 486   check_verified_entry_alignment(entry, verified_entry);
 487 
 488   // Can't call nativeJump_at() because it's asserts jump exists
 489   NativeJump* n_jump = (NativeJump*) verified_entry;
 490 
 491   //First patch dummy jmp in place
 492 
 493   unsigned char patch[4];
 494   assert(sizeof(patch)==sizeof(int32_t), "sanity check");
 495   patch[0] = 0xEB;       // jmp rel8
 496   patch[1] = 0xFE;       // jmp to self
 497   patch[2] = 0xEB;
 498   patch[3] = 0xFE;
 499 
 500   // First patch dummy jmp in place
 501   *(int32_t*)verified_entry = *(int32_t *)patch;
 502 
 503   n_jump->wrote(0);
 504 
 505   // Patch 5th byte (from jump instruction)
 506   verified_entry[4] = code_buffer[4];
 507 
 508   n_jump->wrote(4);
 509 
 510   // Patch bytes 0-3 (from jump instruction)
 511   *(int32_t*)verified_entry = *(int32_t *)code_buffer;
 512   // Invalidate.  Opteron requires a flush after every write.
 513   n_jump->wrote(0);
 514 
 515 }
 516 
 517 void NativePopReg::insert(address code_pos, Register reg) {
 518   assert(reg.encoding() < 8, "no space for REX");
 519   assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update");
 520   *code_pos = (u_char)(instruction_code | reg.encoding());
 521   ICache::invalidate_range(code_pos, instruction_size);
 522 }
 523 
 524 
 525 void NativeIllegalInstruction::insert(address code_pos) {
 526   assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
 527   *(short *)code_pos = instruction_code;
 528   ICache::invalidate_range(code_pos, instruction_size);
 529 }
 530 
 531 void NativeGeneralJump::verify() {
 532   assert(((NativeInstruction *)this)->is_jump() ||
 533          ((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction");
 534 }
 535 
 536 
 537 void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
 538   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
 539 #ifdef AMD64
 540   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
 541 #endif // AMD64
 542 
 543   *code_pos = unconditional_long_jump;
 544   *((int32_t *)(code_pos+1)) = (int32_t) disp;
 545   ICache::invalidate_range(code_pos, instruction_size);
 546 }
 547 
 548 
 549 // MT-safe patching of a long jump instruction.
 550 // First patches first word of instruction to two jmp's that jmps to them
 551 // selfs (spinlock). Then patches the last byte, and then atomicly replaces
 552 // the jmp's with the first 4 byte of the new instruction.
 553 void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
 554    assert (instr_addr != NULL, "illegal address for code patching (4)");
 555    NativeGeneralJump* n_jump =  nativeGeneralJump_at (instr_addr); // checking that it is a jump
 556 
 557    // Temporary code
 558    unsigned char patch[4];
 559    assert(sizeof(patch)==sizeof(int32_t), "sanity check");
 560    patch[0] = 0xEB;       // jmp rel8
 561    patch[1] = 0xFE;       // jmp to self
 562    patch[2] = 0xEB;
 563    patch[3] = 0xFE;
 564 
 565    // First patch dummy jmp in place
 566    *(int32_t*)instr_addr = *(int32_t *)patch;
 567     n_jump->wrote(0);
 568 
 569    // Patch 4th byte
 570    instr_addr[4] = code_buffer[4];
 571 
 572     n_jump->wrote(4);
 573 
 574    // Patch bytes 0-3
 575    *(jint*)instr_addr = *(jint *)code_buffer;
 576 
 577     n_jump->wrote(0);
 578 
 579 #ifdef ASSERT
 580    // verify patching
 581    for ( int i = 0; i < instruction_size; i++) {
 582      address ptr = (address)((intptr_t)code_buffer + i);
 583      int a_byte = (*ptr) & 0xFF;
 584      assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
 585    }
 586 #endif
 587 
 588 }
 589 
 590 
 591 
 592 address NativeGeneralJump::jump_destination() const {
 593   int op_code = ubyte_at(0);
 594   bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F);
 595   int  offset  = (op_code == 0x0F)  ? 2 : 1;
 596   int  length  = offset + ((is_rel32off) ? 4 : 1);
 597 
 598   if (is_rel32off)
 599     return addr_at(0) + length + int_at(offset);
 600   else
 601     return addr_at(0) + length + sbyte_at(offset);
 602 }
 603 
 604 bool NativeInstruction::is_dtrace_trap() {
 605   return (*(int32_t*)this & 0xff) == 0xcc;
 606 }