1 /* 2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoaderData.hpp" 27 #include "classfile/stringTable.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "code/codeCache.hpp" 30 #include "gc/cms/cmsCollectorPolicy.hpp" 31 #include "gc/cms/cmsOopClosures.inline.hpp" 32 #include "gc/cms/compactibleFreeListSpace.hpp" 33 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp" 34 #include "gc/cms/concurrentMarkSweepThread.hpp" 35 #include "gc/cms/parNewGeneration.hpp" 36 #include "gc/cms/vmCMSOperations.hpp" 37 #include "gc/serial/genMarkSweep.hpp" 38 #include "gc/serial/tenuredGeneration.hpp" 39 #include "gc/shared/adaptiveSizePolicy.hpp" 40 #include "gc/shared/cardGeneration.inline.hpp" 41 #include "gc/shared/cardTableRS.hpp" 42 #include "gc/shared/collectedHeap.inline.hpp" 43 #include "gc/shared/collectorCounters.hpp" 44 #include "gc/shared/collectorPolicy.hpp" 45 #include "gc/shared/gcLocker.inline.hpp" 46 #include "gc/shared/gcPolicyCounters.hpp" 47 #include "gc/shared/gcTimer.hpp" 48 #include "gc/shared/gcTrace.hpp" 49 #include "gc/shared/gcTraceTime.hpp" 50 #include "gc/shared/genCollectedHeap.hpp" 51 #include "gc/shared/genOopClosures.inline.hpp" 52 #include "gc/shared/isGCActiveMark.hpp" 53 #include "gc/shared/referencePolicy.hpp" 54 #include "gc/shared/strongRootsScope.hpp" 55 #include "gc/shared/taskqueue.inline.hpp" 56 #include "memory/allocation.hpp" 57 #include "memory/iterator.inline.hpp" 58 #include "memory/padded.hpp" 59 #include "memory/resourceArea.hpp" 60 #include "oops/oop.inline.hpp" 61 #include "prims/jvmtiExport.hpp" 62 #include "runtime/atomic.inline.hpp" 63 #include "runtime/globals_extension.hpp" 64 #include "runtime/handles.inline.hpp" 65 #include "runtime/java.hpp" 66 #include "runtime/orderAccess.inline.hpp" 67 #include "runtime/vmThread.hpp" 68 #include "services/memoryService.hpp" 69 #include "services/runtimeService.hpp" 70 #include "utilities/stack.inline.hpp" 71 72 // statics 73 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL; 74 bool CMSCollector::_full_gc_requested = false; 75 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc; 76 77 ////////////////////////////////////////////////////////////////// 78 // In support of CMS/VM thread synchronization 79 ////////////////////////////////////////////////////////////////// 80 // We split use of the CGC_lock into 2 "levels". 81 // The low-level locking is of the usual CGC_lock monitor. We introduce 82 // a higher level "token" (hereafter "CMS token") built on top of the 83 // low level monitor (hereafter "CGC lock"). 84 // The token-passing protocol gives priority to the VM thread. The 85 // CMS-lock doesn't provide any fairness guarantees, but clients 86 // should ensure that it is only held for very short, bounded 87 // durations. 88 // 89 // When either of the CMS thread or the VM thread is involved in 90 // collection operations during which it does not want the other 91 // thread to interfere, it obtains the CMS token. 92 // 93 // If either thread tries to get the token while the other has 94 // it, that thread waits. However, if the VM thread and CMS thread 95 // both want the token, then the VM thread gets priority while the 96 // CMS thread waits. This ensures, for instance, that the "concurrent" 97 // phases of the CMS thread's work do not block out the VM thread 98 // for long periods of time as the CMS thread continues to hog 99 // the token. (See bug 4616232). 100 // 101 // The baton-passing functions are, however, controlled by the 102 // flags _foregroundGCShouldWait and _foregroundGCIsActive, 103 // and here the low-level CMS lock, not the high level token, 104 // ensures mutual exclusion. 105 // 106 // Two important conditions that we have to satisfy: 107 // 1. if a thread does a low-level wait on the CMS lock, then it 108 // relinquishes the CMS token if it were holding that token 109 // when it acquired the low-level CMS lock. 110 // 2. any low-level notifications on the low-level lock 111 // should only be sent when a thread has relinquished the token. 112 // 113 // In the absence of either property, we'd have potential deadlock. 114 // 115 // We protect each of the CMS (concurrent and sequential) phases 116 // with the CMS _token_, not the CMS _lock_. 117 // 118 // The only code protected by CMS lock is the token acquisition code 119 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the 120 // baton-passing code. 121 // 122 // Unfortunately, i couldn't come up with a good abstraction to factor and 123 // hide the naked CGC_lock manipulation in the baton-passing code 124 // further below. That's something we should try to do. Also, the proof 125 // of correctness of this 2-level locking scheme is far from obvious, 126 // and potentially quite slippery. We have an uneasy suspicion, for instance, 127 // that there may be a theoretical possibility of delay/starvation in the 128 // low-level lock/wait/notify scheme used for the baton-passing because of 129 // potential interference with the priority scheme embodied in the 130 // CMS-token-passing protocol. See related comments at a CGC_lock->wait() 131 // invocation further below and marked with "XXX 20011219YSR". 132 // Indeed, as we note elsewhere, this may become yet more slippery 133 // in the presence of multiple CMS and/or multiple VM threads. XXX 134 135 class CMSTokenSync: public StackObj { 136 private: 137 bool _is_cms_thread; 138 public: 139 CMSTokenSync(bool is_cms_thread): 140 _is_cms_thread(is_cms_thread) { 141 assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(), 142 "Incorrect argument to constructor"); 143 ConcurrentMarkSweepThread::synchronize(_is_cms_thread); 144 } 145 146 ~CMSTokenSync() { 147 assert(_is_cms_thread ? 148 ConcurrentMarkSweepThread::cms_thread_has_cms_token() : 149 ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 150 "Incorrect state"); 151 ConcurrentMarkSweepThread::desynchronize(_is_cms_thread); 152 } 153 }; 154 155 // Convenience class that does a CMSTokenSync, and then acquires 156 // upto three locks. 157 class CMSTokenSyncWithLocks: public CMSTokenSync { 158 private: 159 // Note: locks are acquired in textual declaration order 160 // and released in the opposite order 161 MutexLockerEx _locker1, _locker2, _locker3; 162 public: 163 CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1, 164 Mutex* mutex2 = NULL, Mutex* mutex3 = NULL): 165 CMSTokenSync(is_cms_thread), 166 _locker1(mutex1, Mutex::_no_safepoint_check_flag), 167 _locker2(mutex2, Mutex::_no_safepoint_check_flag), 168 _locker3(mutex3, Mutex::_no_safepoint_check_flag) 169 { } 170 }; 171 172 173 ////////////////////////////////////////////////////////////////// 174 // Concurrent Mark-Sweep Generation ///////////////////////////// 175 ////////////////////////////////////////////////////////////////// 176 177 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;) 178 179 // This struct contains per-thread things necessary to support parallel 180 // young-gen collection. 181 class CMSParGCThreadState: public CHeapObj<mtGC> { 182 public: 183 CFLS_LAB lab; 184 PromotionInfo promo; 185 186 // Constructor. 187 CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) { 188 promo.setSpace(cfls); 189 } 190 }; 191 192 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration( 193 ReservedSpace rs, size_t initial_byte_size, 194 CardTableRS* ct, bool use_adaptive_freelists, 195 FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) : 196 CardGeneration(rs, initial_byte_size, ct), 197 _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))), 198 _did_compact(false) 199 { 200 HeapWord* bottom = (HeapWord*) _virtual_space.low(); 201 HeapWord* end = (HeapWord*) _virtual_space.high(); 202 203 _direct_allocated_words = 0; 204 NOT_PRODUCT( 205 _numObjectsPromoted = 0; 206 _numWordsPromoted = 0; 207 _numObjectsAllocated = 0; 208 _numWordsAllocated = 0; 209 ) 210 211 _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end), 212 use_adaptive_freelists, 213 dictionaryChoice); 214 NOT_PRODUCT(debug_cms_space = _cmsSpace;) 215 _cmsSpace->_old_gen = this; 216 217 _gc_stats = new CMSGCStats(); 218 219 // Verify the assumption that FreeChunk::_prev and OopDesc::_klass 220 // offsets match. The ability to tell free chunks from objects 221 // depends on this property. 222 debug_only( 223 FreeChunk* junk = NULL; 224 assert(UseCompressedClassPointers || 225 junk->prev_addr() == (void*)(oop(junk)->klass_addr()), 226 "Offset of FreeChunk::_prev within FreeChunk must match" 227 " that of OopDesc::_klass within OopDesc"); 228 ) 229 230 _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC); 231 for (uint i = 0; i < ParallelGCThreads; i++) { 232 _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace()); 233 } 234 235 _incremental_collection_failed = false; 236 // The "dilatation_factor" is the expansion that can occur on 237 // account of the fact that the minimum object size in the CMS 238 // generation may be larger than that in, say, a contiguous young 239 // generation. 240 // Ideally, in the calculation below, we'd compute the dilatation 241 // factor as: MinChunkSize/(promoting_gen's min object size) 242 // Since we do not have such a general query interface for the 243 // promoting generation, we'll instead just use the minimum 244 // object size (which today is a header's worth of space); 245 // note that all arithmetic is in units of HeapWords. 246 assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking"); 247 assert(_dilatation_factor >= 1.0, "from previous assert"); 248 } 249 250 251 // The field "_initiating_occupancy" represents the occupancy percentage 252 // at which we trigger a new collection cycle. Unless explicitly specified 253 // via CMSInitiatingOccupancyFraction (argument "io" below), it 254 // is calculated by: 255 // 256 // Let "f" be MinHeapFreeRatio in 257 // 258 // _initiating_occupancy = 100-f + 259 // f * (CMSTriggerRatio/100) 260 // where CMSTriggerRatio is the argument "tr" below. 261 // 262 // That is, if we assume the heap is at its desired maximum occupancy at the 263 // end of a collection, we let CMSTriggerRatio of the (purported) free 264 // space be allocated before initiating a new collection cycle. 265 // 266 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) { 267 assert(io <= 100 && tr <= 100, "Check the arguments"); 268 if (io >= 0) { 269 _initiating_occupancy = (double)io / 100.0; 270 } else { 271 _initiating_occupancy = ((100 - MinHeapFreeRatio) + 272 (double)(tr * MinHeapFreeRatio) / 100.0) 273 / 100.0; 274 } 275 } 276 277 void ConcurrentMarkSweepGeneration::ref_processor_init() { 278 assert(collector() != NULL, "no collector"); 279 collector()->ref_processor_init(); 280 } 281 282 void CMSCollector::ref_processor_init() { 283 if (_ref_processor == NULL) { 284 // Allocate and initialize a reference processor 285 _ref_processor = 286 new ReferenceProcessor(_span, // span 287 (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing 288 ParallelGCThreads, // mt processing degree 289 _cmsGen->refs_discovery_is_mt(), // mt discovery 290 MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree 291 _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic 292 &_is_alive_closure); // closure for liveness info 293 // Initialize the _ref_processor field of CMSGen 294 _cmsGen->set_ref_processor(_ref_processor); 295 296 } 297 } 298 299 AdaptiveSizePolicy* CMSCollector::size_policy() { 300 GenCollectedHeap* gch = GenCollectedHeap::heap(); 301 return gch->gen_policy()->size_policy(); 302 } 303 304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() { 305 306 const char* gen_name = "old"; 307 GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy(); 308 // Generation Counters - generation 1, 1 subspace 309 _gen_counters = new GenerationCounters(gen_name, 1, 1, 310 gcp->min_old_size(), gcp->max_old_size(), &_virtual_space); 311 312 _space_counters = new GSpaceCounters(gen_name, 0, 313 _virtual_space.reserved_size(), 314 this, _gen_counters); 315 } 316 317 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha): 318 _cms_gen(cms_gen) 319 { 320 assert(alpha <= 100, "bad value"); 321 _saved_alpha = alpha; 322 323 // Initialize the alphas to the bootstrap value of 100. 324 _gc0_alpha = _cms_alpha = 100; 325 326 _cms_begin_time.update(); 327 _cms_end_time.update(); 328 329 _gc0_duration = 0.0; 330 _gc0_period = 0.0; 331 _gc0_promoted = 0; 332 333 _cms_duration = 0.0; 334 _cms_period = 0.0; 335 _cms_allocated = 0; 336 337 _cms_used_at_gc0_begin = 0; 338 _cms_used_at_gc0_end = 0; 339 _allow_duty_cycle_reduction = false; 340 _valid_bits = 0; 341 } 342 343 double CMSStats::cms_free_adjustment_factor(size_t free) const { 344 // TBD: CR 6909490 345 return 1.0; 346 } 347 348 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) { 349 } 350 351 // If promotion failure handling is on use 352 // the padded average size of the promotion for each 353 // young generation collection. 354 double CMSStats::time_until_cms_gen_full() const { 355 size_t cms_free = _cms_gen->cmsSpace()->free(); 356 GenCollectedHeap* gch = GenCollectedHeap::heap(); 357 size_t expected_promotion = MIN2(gch->young_gen()->capacity(), 358 (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average()); 359 if (cms_free > expected_promotion) { 360 // Start a cms collection if there isn't enough space to promote 361 // for the next young collection. Use the padded average as 362 // a safety factor. 363 cms_free -= expected_promotion; 364 365 // Adjust by the safety factor. 366 double cms_free_dbl = (double)cms_free; 367 double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0; 368 // Apply a further correction factor which tries to adjust 369 // for recent occurance of concurrent mode failures. 370 cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free); 371 cms_free_dbl = cms_free_dbl * cms_adjustment; 372 373 if (PrintGCDetails && Verbose) { 374 gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free " 375 SIZE_FORMAT " expected_promotion " SIZE_FORMAT, 376 cms_free, expected_promotion); 377 gclog_or_tty->print_cr(" cms_free_dbl %f cms_consumption_rate %f", 378 cms_free_dbl, cms_consumption_rate() + 1.0); 379 } 380 // Add 1 in case the consumption rate goes to zero. 381 return cms_free_dbl / (cms_consumption_rate() + 1.0); 382 } 383 return 0.0; 384 } 385 386 // Compare the duration of the cms collection to the 387 // time remaining before the cms generation is empty. 388 // Note that the time from the start of the cms collection 389 // to the start of the cms sweep (less than the total 390 // duration of the cms collection) can be used. This 391 // has been tried and some applications experienced 392 // promotion failures early in execution. This was 393 // possibly because the averages were not accurate 394 // enough at the beginning. 395 double CMSStats::time_until_cms_start() const { 396 // We add "gc0_period" to the "work" calculation 397 // below because this query is done (mostly) at the 398 // end of a scavenge, so we need to conservatively 399 // account for that much possible delay 400 // in the query so as to avoid concurrent mode failures 401 // due to starting the collection just a wee bit too 402 // late. 403 double work = cms_duration() + gc0_period(); 404 double deadline = time_until_cms_gen_full(); 405 // If a concurrent mode failure occurred recently, we want to be 406 // more conservative and halve our expected time_until_cms_gen_full() 407 if (work > deadline) { 408 if (Verbose && PrintGCDetails) { 409 gclog_or_tty->print( 410 " CMSCollector: collect because of anticipated promotion " 411 "before full %3.7f + %3.7f > %3.7f ", cms_duration(), 412 gc0_period(), time_until_cms_gen_full()); 413 } 414 return 0.0; 415 } 416 return work - deadline; 417 } 418 419 #ifndef PRODUCT 420 void CMSStats::print_on(outputStream *st) const { 421 st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha); 422 st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT, 423 gc0_duration(), gc0_period(), gc0_promoted()); 424 st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT, 425 cms_duration(), cms_period(), cms_allocated()); 426 st->print(",cms_since_beg=%g,cms_since_end=%g", 427 cms_time_since_begin(), cms_time_since_end()); 428 st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT, 429 _cms_used_at_gc0_begin, _cms_used_at_gc0_end); 430 431 if (valid()) { 432 st->print(",promo_rate=%g,cms_alloc_rate=%g", 433 promotion_rate(), cms_allocation_rate()); 434 st->print(",cms_consumption_rate=%g,time_until_full=%g", 435 cms_consumption_rate(), time_until_cms_gen_full()); 436 } 437 st->print(" "); 438 } 439 #endif // #ifndef PRODUCT 440 441 CMSCollector::CollectorState CMSCollector::_collectorState = 442 CMSCollector::Idling; 443 bool CMSCollector::_foregroundGCIsActive = false; 444 bool CMSCollector::_foregroundGCShouldWait = false; 445 446 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen, 447 CardTableRS* ct, 448 ConcurrentMarkSweepPolicy* cp): 449 _cmsGen(cmsGen), 450 _ct(ct), 451 _ref_processor(NULL), // will be set later 452 _conc_workers(NULL), // may be set later 453 _abort_preclean(false), 454 _start_sampling(false), 455 _between_prologue_and_epilogue(false), 456 _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"), 457 _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize), 458 -1 /* lock-free */, "No_lock" /* dummy */), 459 _modUnionClosurePar(&_modUnionTable), 460 // Adjust my span to cover old (cms) gen 461 _span(cmsGen->reserved()), 462 // Construct the is_alive_closure with _span & markBitMap 463 _is_alive_closure(_span, &_markBitMap), 464 _restart_addr(NULL), 465 _overflow_list(NULL), 466 _stats(cmsGen), 467 _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true, 468 //verify that this lock should be acquired with safepoint check. 469 Monitor::_safepoint_check_sometimes)), 470 _eden_chunk_array(NULL), // may be set in ctor body 471 _eden_chunk_capacity(0), // -- ditto -- 472 _eden_chunk_index(0), // -- ditto -- 473 _survivor_plab_array(NULL), // -- ditto -- 474 _survivor_chunk_array(NULL), // -- ditto -- 475 _survivor_chunk_capacity(0), // -- ditto -- 476 _survivor_chunk_index(0), // -- ditto -- 477 _ser_pmc_preclean_ovflw(0), 478 _ser_kac_preclean_ovflw(0), 479 _ser_pmc_remark_ovflw(0), 480 _par_pmc_remark_ovflw(0), 481 _ser_kac_ovflw(0), 482 _par_kac_ovflw(0), 483 #ifndef PRODUCT 484 _num_par_pushes(0), 485 #endif 486 _collection_count_start(0), 487 _verifying(false), 488 _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"), 489 _completed_initialization(false), 490 _collector_policy(cp), 491 _should_unload_classes(CMSClassUnloadingEnabled), 492 _concurrent_cycles_since_last_unload(0), 493 _roots_scanning_options(GenCollectedHeap::SO_None), 494 _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), 495 _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), 496 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()), 497 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 498 _cms_start_registered(false) 499 { 500 if (ExplicitGCInvokesConcurrentAndUnloadsClasses) { 501 ExplicitGCInvokesConcurrent = true; 502 } 503 // Now expand the span and allocate the collection support structures 504 // (MUT, marking bit map etc.) to cover both generations subject to 505 // collection. 506 507 // For use by dirty card to oop closures. 508 _cmsGen->cmsSpace()->set_collector(this); 509 510 // Allocate MUT and marking bit map 511 { 512 MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag); 513 if (!_markBitMap.allocate(_span)) { 514 warning("Failed to allocate CMS Bit Map"); 515 return; 516 } 517 assert(_markBitMap.covers(_span), "_markBitMap inconsistency?"); 518 } 519 { 520 _modUnionTable.allocate(_span); 521 assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?"); 522 } 523 524 if (!_markStack.allocate(MarkStackSize)) { 525 warning("Failed to allocate CMS Marking Stack"); 526 return; 527 } 528 529 // Support for multi-threaded concurrent phases 530 if (CMSConcurrentMTEnabled) { 531 if (FLAG_IS_DEFAULT(ConcGCThreads)) { 532 // just for now 533 FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4); 534 } 535 if (ConcGCThreads > 1) { 536 _conc_workers = new YieldingFlexibleWorkGang("CMS Thread", 537 ConcGCThreads, true); 538 if (_conc_workers == NULL) { 539 warning("GC/CMS: _conc_workers allocation failure: " 540 "forcing -CMSConcurrentMTEnabled"); 541 CMSConcurrentMTEnabled = false; 542 } else { 543 _conc_workers->initialize_workers(); 544 } 545 } else { 546 CMSConcurrentMTEnabled = false; 547 } 548 } 549 if (!CMSConcurrentMTEnabled) { 550 ConcGCThreads = 0; 551 } else { 552 // Turn off CMSCleanOnEnter optimization temporarily for 553 // the MT case where it's not fixed yet; see 6178663. 554 CMSCleanOnEnter = false; 555 } 556 assert((_conc_workers != NULL) == (ConcGCThreads > 1), 557 "Inconsistency"); 558 559 // Parallel task queues; these are shared for the 560 // concurrent and stop-world phases of CMS, but 561 // are not shared with parallel scavenge (ParNew). 562 { 563 uint i; 564 uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads); 565 566 if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled 567 || ParallelRefProcEnabled) 568 && num_queues > 0) { 569 _task_queues = new OopTaskQueueSet(num_queues); 570 if (_task_queues == NULL) { 571 warning("task_queues allocation failure."); 572 return; 573 } 574 _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC); 575 typedef Padded<OopTaskQueue> PaddedOopTaskQueue; 576 for (i = 0; i < num_queues; i++) { 577 PaddedOopTaskQueue *q = new PaddedOopTaskQueue(); 578 if (q == NULL) { 579 warning("work_queue allocation failure."); 580 return; 581 } 582 _task_queues->register_queue(i, q); 583 } 584 for (i = 0; i < num_queues; i++) { 585 _task_queues->queue(i)->initialize(); 586 _hash_seed[i] = 17; // copied from ParNew 587 } 588 } 589 } 590 591 _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio); 592 593 // Clip CMSBootstrapOccupancy between 0 and 100. 594 _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0; 595 596 // Now tell CMS generations the identity of their collector 597 ConcurrentMarkSweepGeneration::set_collector(this); 598 599 // Create & start a CMS thread for this CMS collector 600 _cmsThread = ConcurrentMarkSweepThread::start(this); 601 assert(cmsThread() != NULL, "CMS Thread should have been created"); 602 assert(cmsThread()->collector() == this, 603 "CMS Thread should refer to this gen"); 604 assert(CGC_lock != NULL, "Where's the CGC_lock?"); 605 606 // Support for parallelizing young gen rescan 607 GenCollectedHeap* gch = GenCollectedHeap::heap(); 608 assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew"); 609 _young_gen = (ParNewGeneration*)gch->young_gen(); 610 if (gch->supports_inline_contig_alloc()) { 611 _top_addr = gch->top_addr(); 612 _end_addr = gch->end_addr(); 613 assert(_young_gen != NULL, "no _young_gen"); 614 _eden_chunk_index = 0; 615 _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain; 616 _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC); 617 } 618 619 // Support for parallelizing survivor space rescan 620 if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) { 621 const size_t max_plab_samples = 622 _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize); 623 624 _survivor_plab_array = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC); 625 _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC); 626 _cursor = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC); 627 _survivor_chunk_capacity = max_plab_samples; 628 for (uint i = 0; i < ParallelGCThreads; i++) { 629 HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC); 630 ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples); 631 assert(cur->end() == 0, "Should be 0"); 632 assert(cur->array() == vec, "Should be vec"); 633 assert(cur->capacity() == max_plab_samples, "Error"); 634 } 635 } 636 637 NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;) 638 _gc_counters = new CollectorCounters("CMS", 1); 639 _completed_initialization = true; 640 _inter_sweep_timer.start(); // start of time 641 } 642 643 const char* ConcurrentMarkSweepGeneration::name() const { 644 return "concurrent mark-sweep generation"; 645 } 646 void ConcurrentMarkSweepGeneration::update_counters() { 647 if (UsePerfData) { 648 _space_counters->update_all(); 649 _gen_counters->update_all(); 650 } 651 } 652 653 // this is an optimized version of update_counters(). it takes the 654 // used value as a parameter rather than computing it. 655 // 656 void ConcurrentMarkSweepGeneration::update_counters(size_t used) { 657 if (UsePerfData) { 658 _space_counters->update_used(used); 659 _space_counters->update_capacity(); 660 _gen_counters->update_all(); 661 } 662 } 663 664 void ConcurrentMarkSweepGeneration::print() const { 665 Generation::print(); 666 cmsSpace()->print(); 667 } 668 669 #ifndef PRODUCT 670 void ConcurrentMarkSweepGeneration::print_statistics() { 671 cmsSpace()->printFLCensus(0); 672 } 673 #endif 674 675 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) { 676 GenCollectedHeap* gch = GenCollectedHeap::heap(); 677 if (PrintGCDetails) { 678 // I didn't want to change the logging when removing the level concept, 679 // but I guess this logging could say "old" or something instead of "1". 680 assert(gch->is_old_gen(this), 681 "The CMS generation should be the old generation"); 682 uint level = 1; 683 if (Verbose) { 684 gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "(" SIZE_FORMAT ")]", 685 level, short_name(), s, used(), capacity()); 686 } else { 687 gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)]", 688 level, short_name(), s, used() / K, capacity() / K); 689 } 690 } 691 if (Verbose) { 692 gclog_or_tty->print(" " SIZE_FORMAT "(" SIZE_FORMAT ")", 693 gch->used(), gch->capacity()); 694 } else { 695 gclog_or_tty->print(" " SIZE_FORMAT "K(" SIZE_FORMAT "K)", 696 gch->used() / K, gch->capacity() / K); 697 } 698 } 699 700 size_t 701 ConcurrentMarkSweepGeneration::contiguous_available() const { 702 // dld proposes an improvement in precision here. If the committed 703 // part of the space ends in a free block we should add that to 704 // uncommitted size in the calculation below. Will make this 705 // change later, staying with the approximation below for the 706 // time being. -- ysr. 707 return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc()); 708 } 709 710 size_t 711 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const { 712 return _cmsSpace->max_alloc_in_words() * HeapWordSize; 713 } 714 715 size_t ConcurrentMarkSweepGeneration::max_available() const { 716 return free() + _virtual_space.uncommitted_size(); 717 } 718 719 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const { 720 size_t available = max_available(); 721 size_t av_promo = (size_t)gc_stats()->avg_promoted()->padded_average(); 722 bool res = (available >= av_promo) || (available >= max_promotion_in_bytes); 723 if (Verbose && PrintGCDetails) { 724 gclog_or_tty->print_cr( 725 "CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT ")," 726 "max_promo(" SIZE_FORMAT ")", 727 res? "":" not", available, res? ">=":"<", 728 av_promo, max_promotion_in_bytes); 729 } 730 return res; 731 } 732 733 // At a promotion failure dump information on block layout in heap 734 // (cms old generation). 735 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() { 736 if (CMSDumpAtPromotionFailure) { 737 cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty); 738 } 739 } 740 741 void ConcurrentMarkSweepGeneration::reset_after_compaction() { 742 // Clear the promotion information. These pointers can be adjusted 743 // along with all the other pointers into the heap but 744 // compaction is expected to be a rare event with 745 // a heap using cms so don't do it without seeing the need. 746 for (uint i = 0; i < ParallelGCThreads; i++) { 747 _par_gc_thread_states[i]->promo.reset(); 748 } 749 } 750 751 void ConcurrentMarkSweepGeneration::compute_new_size() { 752 assert_locked_or_safepoint(Heap_lock); 753 754 // If incremental collection failed, we just want to expand 755 // to the limit. 756 if (incremental_collection_failed()) { 757 clear_incremental_collection_failed(); 758 grow_to_reserved(); 759 return; 760 } 761 762 // The heap has been compacted but not reset yet. 763 // Any metric such as free() or used() will be incorrect. 764 765 CardGeneration::compute_new_size(); 766 767 // Reset again after a possible resizing 768 if (did_compact()) { 769 cmsSpace()->reset_after_compaction(); 770 } 771 } 772 773 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() { 774 assert_locked_or_safepoint(Heap_lock); 775 776 // If incremental collection failed, we just want to expand 777 // to the limit. 778 if (incremental_collection_failed()) { 779 clear_incremental_collection_failed(); 780 grow_to_reserved(); 781 return; 782 } 783 784 double free_percentage = ((double) free()) / capacity(); 785 double desired_free_percentage = (double) MinHeapFreeRatio / 100; 786 double maximum_free_percentage = (double) MaxHeapFreeRatio / 100; 787 788 // compute expansion delta needed for reaching desired free percentage 789 if (free_percentage < desired_free_percentage) { 790 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 791 assert(desired_capacity >= capacity(), "invalid expansion size"); 792 size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes); 793 if (PrintGCDetails && Verbose) { 794 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 795 gclog_or_tty->print_cr("\nFrom compute_new_size: "); 796 gclog_or_tty->print_cr(" Free fraction %f", free_percentage); 797 gclog_or_tty->print_cr(" Desired free fraction %f", desired_free_percentage); 798 gclog_or_tty->print_cr(" Maximum free fraction %f", maximum_free_percentage); 799 gclog_or_tty->print_cr(" Capacity " SIZE_FORMAT, capacity() / 1000); 800 gclog_or_tty->print_cr(" Desired capacity " SIZE_FORMAT, desired_capacity / 1000); 801 GenCollectedHeap* gch = GenCollectedHeap::heap(); 802 assert(gch->is_old_gen(this), "The CMS generation should always be the old generation"); 803 size_t young_size = gch->young_gen()->capacity(); 804 gclog_or_tty->print_cr(" Young gen size " SIZE_FORMAT, young_size / 1000); 805 gclog_or_tty->print_cr(" unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000); 806 gclog_or_tty->print_cr(" contiguous available " SIZE_FORMAT, contiguous_available() / 1000); 807 gclog_or_tty->print_cr(" Expand by " SIZE_FORMAT " (bytes)", expand_bytes); 808 } 809 // safe if expansion fails 810 expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio); 811 if (PrintGCDetails && Verbose) { 812 gclog_or_tty->print_cr(" Expanded free fraction %f", ((double) free()) / capacity()); 813 } 814 } else { 815 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 816 assert(desired_capacity <= capacity(), "invalid expansion size"); 817 size_t shrink_bytes = capacity() - desired_capacity; 818 // Don't shrink unless the delta is greater than the minimum shrink we want 819 if (shrink_bytes >= MinHeapDeltaBytes) { 820 shrink_free_list_by(shrink_bytes); 821 } 822 } 823 } 824 825 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const { 826 return cmsSpace()->freelistLock(); 827 } 828 829 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) { 830 CMSSynchronousYieldRequest yr; 831 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 832 return have_lock_and_allocate(size, tlab); 833 } 834 835 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size, 836 bool tlab /* ignored */) { 837 assert_lock_strong(freelistLock()); 838 size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size); 839 HeapWord* res = cmsSpace()->allocate(adjustedSize); 840 // Allocate the object live (grey) if the background collector has 841 // started marking. This is necessary because the marker may 842 // have passed this address and consequently this object will 843 // not otherwise be greyed and would be incorrectly swept up. 844 // Note that if this object contains references, the writing 845 // of those references will dirty the card containing this object 846 // allowing the object to be blackened (and its references scanned) 847 // either during a preclean phase or at the final checkpoint. 848 if (res != NULL) { 849 // We may block here with an uninitialized object with 850 // its mark-bit or P-bits not yet set. Such objects need 851 // to be safely navigable by block_start(). 852 assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here."); 853 assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size"); 854 collector()->direct_allocated(res, adjustedSize); 855 _direct_allocated_words += adjustedSize; 856 // allocation counters 857 NOT_PRODUCT( 858 _numObjectsAllocated++; 859 _numWordsAllocated += (int)adjustedSize; 860 ) 861 } 862 return res; 863 } 864 865 // In the case of direct allocation by mutators in a generation that 866 // is being concurrently collected, the object must be allocated 867 // live (grey) if the background collector has started marking. 868 // This is necessary because the marker may 869 // have passed this address and consequently this object will 870 // not otherwise be greyed and would be incorrectly swept up. 871 // Note that if this object contains references, the writing 872 // of those references will dirty the card containing this object 873 // allowing the object to be blackened (and its references scanned) 874 // either during a preclean phase or at the final checkpoint. 875 void CMSCollector::direct_allocated(HeapWord* start, size_t size) { 876 assert(_markBitMap.covers(start, size), "Out of bounds"); 877 if (_collectorState >= Marking) { 878 MutexLockerEx y(_markBitMap.lock(), 879 Mutex::_no_safepoint_check_flag); 880 // [see comments preceding SweepClosure::do_blk() below for details] 881 // 882 // Can the P-bits be deleted now? JJJ 883 // 884 // 1. need to mark the object as live so it isn't collected 885 // 2. need to mark the 2nd bit to indicate the object may be uninitialized 886 // 3. need to mark the end of the object so marking, precleaning or sweeping 887 // can skip over uninitialized or unparsable objects. An allocated 888 // object is considered uninitialized for our purposes as long as 889 // its klass word is NULL. All old gen objects are parsable 890 // as soon as they are initialized.) 891 _markBitMap.mark(start); // object is live 892 _markBitMap.mark(start + 1); // object is potentially uninitialized? 893 _markBitMap.mark(start + size - 1); 894 // mark end of object 895 } 896 // check that oop looks uninitialized 897 assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL"); 898 } 899 900 void CMSCollector::promoted(bool par, HeapWord* start, 901 bool is_obj_array, size_t obj_size) { 902 assert(_markBitMap.covers(start), "Out of bounds"); 903 // See comment in direct_allocated() about when objects should 904 // be allocated live. 905 if (_collectorState >= Marking) { 906 // we already hold the marking bit map lock, taken in 907 // the prologue 908 if (par) { 909 _markBitMap.par_mark(start); 910 } else { 911 _markBitMap.mark(start); 912 } 913 // We don't need to mark the object as uninitialized (as 914 // in direct_allocated above) because this is being done with the 915 // world stopped and the object will be initialized by the 916 // time the marking, precleaning or sweeping get to look at it. 917 // But see the code for copying objects into the CMS generation, 918 // where we need to ensure that concurrent readers of the 919 // block offset table are able to safely navigate a block that 920 // is in flux from being free to being allocated (and in 921 // transition while being copied into) and subsequently 922 // becoming a bona-fide object when the copy/promotion is complete. 923 assert(SafepointSynchronize::is_at_safepoint(), 924 "expect promotion only at safepoints"); 925 926 if (_collectorState < Sweeping) { 927 // Mark the appropriate cards in the modUnionTable, so that 928 // this object gets scanned before the sweep. If this is 929 // not done, CMS generation references in the object might 930 // not get marked. 931 // For the case of arrays, which are otherwise precisely 932 // marked, we need to dirty the entire array, not just its head. 933 if (is_obj_array) { 934 // The [par_]mark_range() method expects mr.end() below to 935 // be aligned to the granularity of a bit's representation 936 // in the heap. In the case of the MUT below, that's a 937 // card size. 938 MemRegion mr(start, 939 (HeapWord*)round_to((intptr_t)(start + obj_size), 940 CardTableModRefBS::card_size /* bytes */)); 941 if (par) { 942 _modUnionTable.par_mark_range(mr); 943 } else { 944 _modUnionTable.mark_range(mr); 945 } 946 } else { // not an obj array; we can just mark the head 947 if (par) { 948 _modUnionTable.par_mark(start); 949 } else { 950 _modUnionTable.mark(start); 951 } 952 } 953 } 954 } 955 } 956 957 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) { 958 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in"); 959 // allocate, copy and if necessary update promoinfo -- 960 // delegate to underlying space. 961 assert_lock_strong(freelistLock()); 962 963 #ifndef PRODUCT 964 if (GenCollectedHeap::heap()->promotion_should_fail()) { 965 return NULL; 966 } 967 #endif // #ifndef PRODUCT 968 969 oop res = _cmsSpace->promote(obj, obj_size); 970 if (res == NULL) { 971 // expand and retry 972 size_t s = _cmsSpace->expansionSpaceRequired(obj_size); // HeapWords 973 expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion); 974 // Since this is the old generation, we don't try to promote 975 // into a more senior generation. 976 res = _cmsSpace->promote(obj, obj_size); 977 } 978 if (res != NULL) { 979 // See comment in allocate() about when objects should 980 // be allocated live. 981 assert(obj->is_oop(), "Will dereference klass pointer below"); 982 collector()->promoted(false, // Not parallel 983 (HeapWord*)res, obj->is_objArray(), obj_size); 984 // promotion counters 985 NOT_PRODUCT( 986 _numObjectsPromoted++; 987 _numWordsPromoted += 988 (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size())); 989 ) 990 } 991 return res; 992 } 993 994 995 // IMPORTANT: Notes on object size recognition in CMS. 996 // --------------------------------------------------- 997 // A block of storage in the CMS generation is always in 998 // one of three states. A free block (FREE), an allocated 999 // object (OBJECT) whose size() method reports the correct size, 1000 // and an intermediate state (TRANSIENT) in which its size cannot 1001 // be accurately determined. 1002 // STATE IDENTIFICATION: (32 bit and 64 bit w/o COOPS) 1003 // ----------------------------------------------------- 1004 // FREE: klass_word & 1 == 1; mark_word holds block size 1005 // 1006 // OBJECT: klass_word installed; klass_word != 0 && klass_word & 1 == 0; 1007 // obj->size() computes correct size 1008 // 1009 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT 1010 // 1011 // STATE IDENTIFICATION: (64 bit+COOPS) 1012 // ------------------------------------ 1013 // FREE: mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size 1014 // 1015 // OBJECT: klass_word installed; klass_word != 0; 1016 // obj->size() computes correct size 1017 // 1018 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT 1019 // 1020 // 1021 // STATE TRANSITION DIAGRAM 1022 // 1023 // mut / parnew mut / parnew 1024 // FREE --------------------> TRANSIENT ---------------------> OBJECT --| 1025 // ^ | 1026 // |------------------------ DEAD <------------------------------------| 1027 // sweep mut 1028 // 1029 // While a block is in TRANSIENT state its size cannot be determined 1030 // so readers will either need to come back later or stall until 1031 // the size can be determined. Note that for the case of direct 1032 // allocation, P-bits, when available, may be used to determine the 1033 // size of an object that may not yet have been initialized. 1034 1035 // Things to support parallel young-gen collection. 1036 oop 1037 ConcurrentMarkSweepGeneration::par_promote(int thread_num, 1038 oop old, markOop m, 1039 size_t word_sz) { 1040 #ifndef PRODUCT 1041 if (GenCollectedHeap::heap()->promotion_should_fail()) { 1042 return NULL; 1043 } 1044 #endif // #ifndef PRODUCT 1045 1046 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1047 PromotionInfo* promoInfo = &ps->promo; 1048 // if we are tracking promotions, then first ensure space for 1049 // promotion (including spooling space for saving header if necessary). 1050 // then allocate and copy, then track promoted info if needed. 1051 // When tracking (see PromotionInfo::track()), the mark word may 1052 // be displaced and in this case restoration of the mark word 1053 // occurs in the (oop_since_save_marks_)iterate phase. 1054 if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) { 1055 // Out of space for allocating spooling buffers; 1056 // try expanding and allocating spooling buffers. 1057 if (!expand_and_ensure_spooling_space(promoInfo)) { 1058 return NULL; 1059 } 1060 } 1061 assert(promoInfo->has_spooling_space(), "Control point invariant"); 1062 const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz); 1063 HeapWord* obj_ptr = ps->lab.alloc(alloc_sz); 1064 if (obj_ptr == NULL) { 1065 obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz); 1066 if (obj_ptr == NULL) { 1067 return NULL; 1068 } 1069 } 1070 oop obj = oop(obj_ptr); 1071 OrderAccess::storestore(); 1072 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1073 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1074 // IMPORTANT: See note on object initialization for CMS above. 1075 // Otherwise, copy the object. Here we must be careful to insert the 1076 // klass pointer last, since this marks the block as an allocated object. 1077 // Except with compressed oops it's the mark word. 1078 HeapWord* old_ptr = (HeapWord*)old; 1079 // Restore the mark word copied above. 1080 obj->set_mark(m); 1081 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1082 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1083 OrderAccess::storestore(); 1084 1085 if (UseCompressedClassPointers) { 1086 // Copy gap missed by (aligned) header size calculation below 1087 obj->set_klass_gap(old->klass_gap()); 1088 } 1089 if (word_sz > (size_t)oopDesc::header_size()) { 1090 Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(), 1091 obj_ptr + oopDesc::header_size(), 1092 word_sz - oopDesc::header_size()); 1093 } 1094 1095 // Now we can track the promoted object, if necessary. We take care 1096 // to delay the transition from uninitialized to full object 1097 // (i.e., insertion of klass pointer) until after, so that it 1098 // atomically becomes a promoted object. 1099 if (promoInfo->tracking()) { 1100 promoInfo->track((PromotedObject*)obj, old->klass()); 1101 } 1102 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1103 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1104 assert(old->is_oop(), "Will use and dereference old klass ptr below"); 1105 1106 // Finally, install the klass pointer (this should be volatile). 1107 OrderAccess::storestore(); 1108 obj->set_klass(old->klass()); 1109 // We should now be able to calculate the right size for this object 1110 assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object"); 1111 1112 collector()->promoted(true, // parallel 1113 obj_ptr, old->is_objArray(), word_sz); 1114 1115 NOT_PRODUCT( 1116 Atomic::inc_ptr(&_numObjectsPromoted); 1117 Atomic::add_ptr(alloc_sz, &_numWordsPromoted); 1118 ) 1119 1120 return obj; 1121 } 1122 1123 void 1124 ConcurrentMarkSweepGeneration:: 1125 par_promote_alloc_done(int thread_num) { 1126 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1127 ps->lab.retire(thread_num); 1128 } 1129 1130 void 1131 ConcurrentMarkSweepGeneration:: 1132 par_oop_since_save_marks_iterate_done(int thread_num) { 1133 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1134 ParScanWithoutBarrierClosure* dummy_cl = NULL; 1135 ps->promo.promoted_oops_iterate_nv(dummy_cl); 1136 } 1137 1138 bool ConcurrentMarkSweepGeneration::should_collect(bool full, 1139 size_t size, 1140 bool tlab) 1141 { 1142 // We allow a STW collection only if a full 1143 // collection was requested. 1144 return full || should_allocate(size, tlab); // FIX ME !!! 1145 // This and promotion failure handling are connected at the 1146 // hip and should be fixed by untying them. 1147 } 1148 1149 bool CMSCollector::shouldConcurrentCollect() { 1150 if (_full_gc_requested) { 1151 if (Verbose && PrintGCDetails) { 1152 gclog_or_tty->print_cr("CMSCollector: collect because of explicit " 1153 " gc request (or gc_locker)"); 1154 } 1155 return true; 1156 } 1157 1158 FreelistLocker x(this); 1159 // ------------------------------------------------------------------ 1160 // Print out lots of information which affects the initiation of 1161 // a collection. 1162 if (PrintCMSInitiationStatistics && stats().valid()) { 1163 gclog_or_tty->print("CMSCollector shouldConcurrentCollect: "); 1164 gclog_or_tty->stamp(); 1165 gclog_or_tty->cr(); 1166 stats().print_on(gclog_or_tty); 1167 gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f", 1168 stats().time_until_cms_gen_full()); 1169 gclog_or_tty->print_cr("free=" SIZE_FORMAT, _cmsGen->free()); 1170 gclog_or_tty->print_cr("contiguous_available=" SIZE_FORMAT, 1171 _cmsGen->contiguous_available()); 1172 gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate()); 1173 gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate()); 1174 gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy()); 1175 gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy()); 1176 gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin()); 1177 gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end()); 1178 gclog_or_tty->print_cr("metadata initialized %d", 1179 MetaspaceGC::should_concurrent_collect()); 1180 } 1181 // ------------------------------------------------------------------ 1182 1183 // If the estimated time to complete a cms collection (cms_duration()) 1184 // is less than the estimated time remaining until the cms generation 1185 // is full, start a collection. 1186 if (!UseCMSInitiatingOccupancyOnly) { 1187 if (stats().valid()) { 1188 if (stats().time_until_cms_start() == 0.0) { 1189 return true; 1190 } 1191 } else { 1192 // We want to conservatively collect somewhat early in order 1193 // to try and "bootstrap" our CMS/promotion statistics; 1194 // this branch will not fire after the first successful CMS 1195 // collection because the stats should then be valid. 1196 if (_cmsGen->occupancy() >= _bootstrap_occupancy) { 1197 if (Verbose && PrintGCDetails) { 1198 gclog_or_tty->print_cr( 1199 " CMSCollector: collect for bootstrapping statistics:" 1200 " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(), 1201 _bootstrap_occupancy); 1202 } 1203 return true; 1204 } 1205 } 1206 } 1207 1208 // Otherwise, we start a collection cycle if 1209 // old gen want a collection cycle started. Each may use 1210 // an appropriate criterion for making this decision. 1211 // XXX We need to make sure that the gen expansion 1212 // criterion dovetails well with this. XXX NEED TO FIX THIS 1213 if (_cmsGen->should_concurrent_collect()) { 1214 if (Verbose && PrintGCDetails) { 1215 gclog_or_tty->print_cr("CMS old gen initiated"); 1216 } 1217 return true; 1218 } 1219 1220 // We start a collection if we believe an incremental collection may fail; 1221 // this is not likely to be productive in practice because it's probably too 1222 // late anyway. 1223 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1224 assert(gch->collector_policy()->is_generation_policy(), 1225 "You may want to check the correctness of the following"); 1226 if (gch->incremental_collection_will_fail(true /* consult_young */)) { 1227 if (Verbose && PrintGCDetails) { 1228 gclog_or_tty->print("CMSCollector: collect because incremental collection will fail "); 1229 } 1230 return true; 1231 } 1232 1233 if (MetaspaceGC::should_concurrent_collect()) { 1234 if (Verbose && PrintGCDetails) { 1235 gclog_or_tty->print("CMSCollector: collect for metadata allocation "); 1236 } 1237 return true; 1238 } 1239 1240 // CMSTriggerInterval starts a CMS cycle if enough time has passed. 1241 if (CMSTriggerInterval >= 0) { 1242 if (CMSTriggerInterval == 0) { 1243 // Trigger always 1244 return true; 1245 } 1246 1247 // Check the CMS time since begin (we do not check the stats validity 1248 // as we want to be able to trigger the first CMS cycle as well) 1249 if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) { 1250 if (Verbose && PrintGCDetails) { 1251 if (stats().valid()) { 1252 gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)", 1253 stats().cms_time_since_begin()); 1254 } else { 1255 gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)"); 1256 } 1257 } 1258 return true; 1259 } 1260 } 1261 1262 return false; 1263 } 1264 1265 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); } 1266 1267 // Clear _expansion_cause fields of constituent generations 1268 void CMSCollector::clear_expansion_cause() { 1269 _cmsGen->clear_expansion_cause(); 1270 } 1271 1272 // We should be conservative in starting a collection cycle. To 1273 // start too eagerly runs the risk of collecting too often in the 1274 // extreme. To collect too rarely falls back on full collections, 1275 // which works, even if not optimum in terms of concurrent work. 1276 // As a work around for too eagerly collecting, use the flag 1277 // UseCMSInitiatingOccupancyOnly. This also has the advantage of 1278 // giving the user an easily understandable way of controlling the 1279 // collections. 1280 // We want to start a new collection cycle if any of the following 1281 // conditions hold: 1282 // . our current occupancy exceeds the configured initiating occupancy 1283 // for this generation, or 1284 // . we recently needed to expand this space and have not, since that 1285 // expansion, done a collection of this generation, or 1286 // . the underlying space believes that it may be a good idea to initiate 1287 // a concurrent collection (this may be based on criteria such as the 1288 // following: the space uses linear allocation and linear allocation is 1289 // going to fail, or there is believed to be excessive fragmentation in 1290 // the generation, etc... or ... 1291 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for 1292 // the case of the old generation; see CR 6543076): 1293 // we may be approaching a point at which allocation requests may fail because 1294 // we will be out of sufficient free space given allocation rate estimates.] 1295 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const { 1296 1297 assert_lock_strong(freelistLock()); 1298 if (occupancy() > initiating_occupancy()) { 1299 if (PrintGCDetails && Verbose) { 1300 gclog_or_tty->print(" %s: collect because of occupancy %f / %f ", 1301 short_name(), occupancy(), initiating_occupancy()); 1302 } 1303 return true; 1304 } 1305 if (UseCMSInitiatingOccupancyOnly) { 1306 return false; 1307 } 1308 if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) { 1309 if (PrintGCDetails && Verbose) { 1310 gclog_or_tty->print(" %s: collect because expanded for allocation ", 1311 short_name()); 1312 } 1313 return true; 1314 } 1315 if (_cmsSpace->should_concurrent_collect()) { 1316 if (PrintGCDetails && Verbose) { 1317 gclog_or_tty->print(" %s: collect because cmsSpace says so ", 1318 short_name()); 1319 } 1320 return true; 1321 } 1322 return false; 1323 } 1324 1325 void ConcurrentMarkSweepGeneration::collect(bool full, 1326 bool clear_all_soft_refs, 1327 size_t size, 1328 bool tlab) 1329 { 1330 collector()->collect(full, clear_all_soft_refs, size, tlab); 1331 } 1332 1333 void CMSCollector::collect(bool full, 1334 bool clear_all_soft_refs, 1335 size_t size, 1336 bool tlab) 1337 { 1338 // The following "if" branch is present for defensive reasons. 1339 // In the current uses of this interface, it can be replaced with: 1340 // assert(!GC_locker.is_active(), "Can't be called otherwise"); 1341 // But I am not placing that assert here to allow future 1342 // generality in invoking this interface. 1343 if (GC_locker::is_active()) { 1344 // A consistency test for GC_locker 1345 assert(GC_locker::needs_gc(), "Should have been set already"); 1346 // Skip this foreground collection, instead 1347 // expanding the heap if necessary. 1348 // Need the free list locks for the call to free() in compute_new_size() 1349 compute_new_size(); 1350 return; 1351 } 1352 acquire_control_and_collect(full, clear_all_soft_refs); 1353 } 1354 1355 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) { 1356 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1357 unsigned int gc_count = gch->total_full_collections(); 1358 if (gc_count == full_gc_count) { 1359 MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag); 1360 _full_gc_requested = true; 1361 _full_gc_cause = cause; 1362 CGC_lock->notify(); // nudge CMS thread 1363 } else { 1364 assert(gc_count > full_gc_count, "Error: causal loop"); 1365 } 1366 } 1367 1368 bool CMSCollector::is_external_interruption() { 1369 GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause(); 1370 return GCCause::is_user_requested_gc(cause) || 1371 GCCause::is_serviceability_requested_gc(cause); 1372 } 1373 1374 void CMSCollector::report_concurrent_mode_interruption() { 1375 if (is_external_interruption()) { 1376 if (PrintGCDetails) { 1377 gclog_or_tty->print(" (concurrent mode interrupted)"); 1378 } 1379 } else { 1380 if (PrintGCDetails) { 1381 gclog_or_tty->print(" (concurrent mode failure)"); 1382 } 1383 _gc_tracer_cm->report_concurrent_mode_failure(); 1384 } 1385 } 1386 1387 1388 // The foreground and background collectors need to coordinate in order 1389 // to make sure that they do not mutually interfere with CMS collections. 1390 // When a background collection is active, 1391 // the foreground collector may need to take over (preempt) and 1392 // synchronously complete an ongoing collection. Depending on the 1393 // frequency of the background collections and the heap usage 1394 // of the application, this preemption can be seldom or frequent. 1395 // There are only certain 1396 // points in the background collection that the "collection-baton" 1397 // can be passed to the foreground collector. 1398 // 1399 // The foreground collector will wait for the baton before 1400 // starting any part of the collection. The foreground collector 1401 // will only wait at one location. 1402 // 1403 // The background collector will yield the baton before starting a new 1404 // phase of the collection (e.g., before initial marking, marking from roots, 1405 // precleaning, final re-mark, sweep etc.) This is normally done at the head 1406 // of the loop which switches the phases. The background collector does some 1407 // of the phases (initial mark, final re-mark) with the world stopped. 1408 // Because of locking involved in stopping the world, 1409 // the foreground collector should not block waiting for the background 1410 // collector when it is doing a stop-the-world phase. The background 1411 // collector will yield the baton at an additional point just before 1412 // it enters a stop-the-world phase. Once the world is stopped, the 1413 // background collector checks the phase of the collection. If the 1414 // phase has not changed, it proceeds with the collection. If the 1415 // phase has changed, it skips that phase of the collection. See 1416 // the comments on the use of the Heap_lock in collect_in_background(). 1417 // 1418 // Variable used in baton passing. 1419 // _foregroundGCIsActive - Set to true by the foreground collector when 1420 // it wants the baton. The foreground clears it when it has finished 1421 // the collection. 1422 // _foregroundGCShouldWait - Set to true by the background collector 1423 // when it is running. The foreground collector waits while 1424 // _foregroundGCShouldWait is true. 1425 // CGC_lock - monitor used to protect access to the above variables 1426 // and to notify the foreground and background collectors. 1427 // _collectorState - current state of the CMS collection. 1428 // 1429 // The foreground collector 1430 // acquires the CGC_lock 1431 // sets _foregroundGCIsActive 1432 // waits on the CGC_lock for _foregroundGCShouldWait to be false 1433 // various locks acquired in preparation for the collection 1434 // are released so as not to block the background collector 1435 // that is in the midst of a collection 1436 // proceeds with the collection 1437 // clears _foregroundGCIsActive 1438 // returns 1439 // 1440 // The background collector in a loop iterating on the phases of the 1441 // collection 1442 // acquires the CGC_lock 1443 // sets _foregroundGCShouldWait 1444 // if _foregroundGCIsActive is set 1445 // clears _foregroundGCShouldWait, notifies _CGC_lock 1446 // waits on _CGC_lock for _foregroundGCIsActive to become false 1447 // and exits the loop. 1448 // otherwise 1449 // proceed with that phase of the collection 1450 // if the phase is a stop-the-world phase, 1451 // yield the baton once more just before enqueueing 1452 // the stop-world CMS operation (executed by the VM thread). 1453 // returns after all phases of the collection are done 1454 // 1455 1456 void CMSCollector::acquire_control_and_collect(bool full, 1457 bool clear_all_soft_refs) { 1458 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 1459 assert(!Thread::current()->is_ConcurrentGC_thread(), 1460 "shouldn't try to acquire control from self!"); 1461 1462 // Start the protocol for acquiring control of the 1463 // collection from the background collector (aka CMS thread). 1464 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 1465 "VM thread should have CMS token"); 1466 // Remember the possibly interrupted state of an ongoing 1467 // concurrent collection 1468 CollectorState first_state = _collectorState; 1469 1470 // Signal to a possibly ongoing concurrent collection that 1471 // we want to do a foreground collection. 1472 _foregroundGCIsActive = true; 1473 1474 // release locks and wait for a notify from the background collector 1475 // releasing the locks in only necessary for phases which 1476 // do yields to improve the granularity of the collection. 1477 assert_lock_strong(bitMapLock()); 1478 // We need to lock the Free list lock for the space that we are 1479 // currently collecting. 1480 assert(haveFreelistLocks(), "Must be holding free list locks"); 1481 bitMapLock()->unlock(); 1482 releaseFreelistLocks(); 1483 { 1484 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 1485 if (_foregroundGCShouldWait) { 1486 // We are going to be waiting for action for the CMS thread; 1487 // it had better not be gone (for instance at shutdown)! 1488 assert(ConcurrentMarkSweepThread::cmst() != NULL, 1489 "CMS thread must be running"); 1490 // Wait here until the background collector gives us the go-ahead 1491 ConcurrentMarkSweepThread::clear_CMS_flag( 1492 ConcurrentMarkSweepThread::CMS_vm_has_token); // release token 1493 // Get a possibly blocked CMS thread going: 1494 // Note that we set _foregroundGCIsActive true above, 1495 // without protection of the CGC_lock. 1496 CGC_lock->notify(); 1497 assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(), 1498 "Possible deadlock"); 1499 while (_foregroundGCShouldWait) { 1500 // wait for notification 1501 CGC_lock->wait(Mutex::_no_safepoint_check_flag); 1502 // Possibility of delay/starvation here, since CMS token does 1503 // not know to give priority to VM thread? Actually, i think 1504 // there wouldn't be any delay/starvation, but the proof of 1505 // that "fact" (?) appears non-trivial. XXX 20011219YSR 1506 } 1507 ConcurrentMarkSweepThread::set_CMS_flag( 1508 ConcurrentMarkSweepThread::CMS_vm_has_token); 1509 } 1510 } 1511 // The CMS_token is already held. Get back the other locks. 1512 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 1513 "VM thread should have CMS token"); 1514 getFreelistLocks(); 1515 bitMapLock()->lock_without_safepoint_check(); 1516 if (TraceCMSState) { 1517 gclog_or_tty->print_cr("CMS foreground collector has asked for control " 1518 INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state); 1519 gclog_or_tty->print_cr(" gets control with state %d", _collectorState); 1520 } 1521 1522 // Inform cms gen if this was due to partial collection failing. 1523 // The CMS gen may use this fact to determine its expansion policy. 1524 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1525 if (gch->incremental_collection_will_fail(false /* don't consult_young */)) { 1526 assert(!_cmsGen->incremental_collection_failed(), 1527 "Should have been noticed, reacted to and cleared"); 1528 _cmsGen->set_incremental_collection_failed(); 1529 } 1530 1531 if (first_state > Idling) { 1532 report_concurrent_mode_interruption(); 1533 } 1534 1535 set_did_compact(true); 1536 1537 // If the collection is being acquired from the background 1538 // collector, there may be references on the discovered 1539 // references lists. Abandon those references, since some 1540 // of them may have become unreachable after concurrent 1541 // discovery; the STW compacting collector will redo discovery 1542 // more precisely, without being subject to floating garbage. 1543 // Leaving otherwise unreachable references in the discovered 1544 // lists would require special handling. 1545 ref_processor()->disable_discovery(); 1546 ref_processor()->abandon_partial_discovery(); 1547 ref_processor()->verify_no_references_recorded(); 1548 1549 if (first_state > Idling) { 1550 save_heap_summary(); 1551 } 1552 1553 do_compaction_work(clear_all_soft_refs); 1554 1555 // Has the GC time limit been exceeded? 1556 size_t max_eden_size = _young_gen->max_capacity() - 1557 _young_gen->to()->capacity() - 1558 _young_gen->from()->capacity(); 1559 GCCause::Cause gc_cause = gch->gc_cause(); 1560 size_policy()->check_gc_overhead_limit(_young_gen->used(), 1561 _young_gen->eden()->used(), 1562 _cmsGen->max_capacity(), 1563 max_eden_size, 1564 full, 1565 gc_cause, 1566 gch->collector_policy()); 1567 1568 // Reset the expansion cause, now that we just completed 1569 // a collection cycle. 1570 clear_expansion_cause(); 1571 _foregroundGCIsActive = false; 1572 return; 1573 } 1574 1575 // Resize the tenured generation 1576 // after obtaining the free list locks for the 1577 // two generations. 1578 void CMSCollector::compute_new_size() { 1579 assert_locked_or_safepoint(Heap_lock); 1580 FreelistLocker z(this); 1581 MetaspaceGC::compute_new_size(); 1582 _cmsGen->compute_new_size_free_list(); 1583 } 1584 1585 // A work method used by the foreground collector to do 1586 // a mark-sweep-compact. 1587 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) { 1588 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1589 1590 STWGCTimer* gc_timer = GenMarkSweep::gc_timer(); 1591 gc_timer->register_gc_start(); 1592 1593 SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer(); 1594 gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start()); 1595 1596 GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id()); 1597 1598 // Temporarily widen the span of the weak reference processing to 1599 // the entire heap. 1600 MemRegion new_span(GenCollectedHeap::heap()->reserved_region()); 1601 ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span); 1602 // Temporarily, clear the "is_alive_non_header" field of the 1603 // reference processor. 1604 ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL); 1605 // Temporarily make reference _processing_ single threaded (non-MT). 1606 ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false); 1607 // Temporarily make refs discovery atomic 1608 ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true); 1609 // Temporarily make reference _discovery_ single threaded (non-MT) 1610 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); 1611 1612 ref_processor()->set_enqueuing_is_done(false); 1613 ref_processor()->enable_discovery(); 1614 ref_processor()->setup_policy(clear_all_soft_refs); 1615 // If an asynchronous collection finishes, the _modUnionTable is 1616 // all clear. If we are assuming the collection from an asynchronous 1617 // collection, clear the _modUnionTable. 1618 assert(_collectorState != Idling || _modUnionTable.isAllClear(), 1619 "_modUnionTable should be clear if the baton was not passed"); 1620 _modUnionTable.clear_all(); 1621 assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(), 1622 "mod union for klasses should be clear if the baton was passed"); 1623 _ct->klass_rem_set()->clear_mod_union(); 1624 1625 // We must adjust the allocation statistics being maintained 1626 // in the free list space. We do so by reading and clearing 1627 // the sweep timer and updating the block flux rate estimates below. 1628 assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive"); 1629 if (_inter_sweep_timer.is_active()) { 1630 _inter_sweep_timer.stop(); 1631 // Note that we do not use this sample to update the _inter_sweep_estimate. 1632 _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), 1633 _inter_sweep_estimate.padded_average(), 1634 _intra_sweep_estimate.padded_average()); 1635 } 1636 1637 GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs); 1638 #ifdef ASSERT 1639 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 1640 size_t free_size = cms_space->free(); 1641 assert(free_size == 1642 pointer_delta(cms_space->end(), cms_space->compaction_top()) 1643 * HeapWordSize, 1644 "All the free space should be compacted into one chunk at top"); 1645 assert(cms_space->dictionary()->total_chunk_size( 1646 debug_only(cms_space->freelistLock())) == 0 || 1647 cms_space->totalSizeInIndexedFreeLists() == 0, 1648 "All the free space should be in a single chunk"); 1649 size_t num = cms_space->totalCount(); 1650 assert((free_size == 0 && num == 0) || 1651 (free_size > 0 && (num == 1 || num == 2)), 1652 "There should be at most 2 free chunks after compaction"); 1653 #endif // ASSERT 1654 _collectorState = Resetting; 1655 assert(_restart_addr == NULL, 1656 "Should have been NULL'd before baton was passed"); 1657 reset(false /* == !concurrent */); 1658 _cmsGen->reset_after_compaction(); 1659 _concurrent_cycles_since_last_unload = 0; 1660 1661 // Clear any data recorded in the PLAB chunk arrays. 1662 if (_survivor_plab_array != NULL) { 1663 reset_survivor_plab_arrays(); 1664 } 1665 1666 // Adjust the per-size allocation stats for the next epoch. 1667 _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */); 1668 // Restart the "inter sweep timer" for the next epoch. 1669 _inter_sweep_timer.reset(); 1670 _inter_sweep_timer.start(); 1671 1672 gc_timer->register_gc_end(); 1673 1674 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); 1675 1676 // For a mark-sweep-compact, compute_new_size() will be called 1677 // in the heap's do_collection() method. 1678 } 1679 1680 void CMSCollector::print_eden_and_survivor_chunk_arrays() { 1681 ContiguousSpace* eden_space = _young_gen->eden(); 1682 ContiguousSpace* from_space = _young_gen->from(); 1683 ContiguousSpace* to_space = _young_gen->to(); 1684 // Eden 1685 if (_eden_chunk_array != NULL) { 1686 gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")", 1687 p2i(eden_space->bottom()), p2i(eden_space->top()), 1688 p2i(eden_space->end()), eden_space->capacity()); 1689 gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", " 1690 "_eden_chunk_capacity=" SIZE_FORMAT, 1691 _eden_chunk_index, _eden_chunk_capacity); 1692 for (size_t i = 0; i < _eden_chunk_index; i++) { 1693 gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, 1694 i, p2i(_eden_chunk_array[i])); 1695 } 1696 } 1697 // Survivor 1698 if (_survivor_chunk_array != NULL) { 1699 gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")", 1700 p2i(from_space->bottom()), p2i(from_space->top()), 1701 p2i(from_space->end()), from_space->capacity()); 1702 gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", " 1703 "_survivor_chunk_capacity=" SIZE_FORMAT, 1704 _survivor_chunk_index, _survivor_chunk_capacity); 1705 for (size_t i = 0; i < _survivor_chunk_index; i++) { 1706 gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, 1707 i, p2i(_survivor_chunk_array[i])); 1708 } 1709 } 1710 } 1711 1712 void CMSCollector::getFreelistLocks() const { 1713 // Get locks for all free lists in all generations that this 1714 // collector is responsible for 1715 _cmsGen->freelistLock()->lock_without_safepoint_check(); 1716 } 1717 1718 void CMSCollector::releaseFreelistLocks() const { 1719 // Release locks for all free lists in all generations that this 1720 // collector is responsible for 1721 _cmsGen->freelistLock()->unlock(); 1722 } 1723 1724 bool CMSCollector::haveFreelistLocks() const { 1725 // Check locks for all free lists in all generations that this 1726 // collector is responsible for 1727 assert_lock_strong(_cmsGen->freelistLock()); 1728 PRODUCT_ONLY(ShouldNotReachHere()); 1729 return true; 1730 } 1731 1732 // A utility class that is used by the CMS collector to 1733 // temporarily "release" the foreground collector from its 1734 // usual obligation to wait for the background collector to 1735 // complete an ongoing phase before proceeding. 1736 class ReleaseForegroundGC: public StackObj { 1737 private: 1738 CMSCollector* _c; 1739 public: 1740 ReleaseForegroundGC(CMSCollector* c) : _c(c) { 1741 assert(_c->_foregroundGCShouldWait, "Else should not need to call"); 1742 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 1743 // allow a potentially blocked foreground collector to proceed 1744 _c->_foregroundGCShouldWait = false; 1745 if (_c->_foregroundGCIsActive) { 1746 CGC_lock->notify(); 1747 } 1748 assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 1749 "Possible deadlock"); 1750 } 1751 1752 ~ReleaseForegroundGC() { 1753 assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?"); 1754 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 1755 _c->_foregroundGCShouldWait = true; 1756 } 1757 }; 1758 1759 void CMSCollector::collect_in_background(GCCause::Cause cause) { 1760 assert(Thread::current()->is_ConcurrentGC_thread(), 1761 "A CMS asynchronous collection is only allowed on a CMS thread."); 1762 1763 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1764 { 1765 bool safepoint_check = Mutex::_no_safepoint_check_flag; 1766 MutexLockerEx hl(Heap_lock, safepoint_check); 1767 FreelistLocker fll(this); 1768 MutexLockerEx x(CGC_lock, safepoint_check); 1769 if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) { 1770 // The foreground collector is active or we're 1771 // not using asynchronous collections. Skip this 1772 // background collection. 1773 assert(!_foregroundGCShouldWait, "Should be clear"); 1774 return; 1775 } else { 1776 assert(_collectorState == Idling, "Should be idling before start."); 1777 _collectorState = InitialMarking; 1778 register_gc_start(cause); 1779 // Reset the expansion cause, now that we are about to begin 1780 // a new cycle. 1781 clear_expansion_cause(); 1782 1783 // Clear the MetaspaceGC flag since a concurrent collection 1784 // is starting but also clear it after the collection. 1785 MetaspaceGC::set_should_concurrent_collect(false); 1786 } 1787 // Decide if we want to enable class unloading as part of the 1788 // ensuing concurrent GC cycle. 1789 update_should_unload_classes(); 1790 _full_gc_requested = false; // acks all outstanding full gc requests 1791 _full_gc_cause = GCCause::_no_gc; 1792 // Signal that we are about to start a collection 1793 gch->increment_total_full_collections(); // ... starting a collection cycle 1794 _collection_count_start = gch->total_full_collections(); 1795 } 1796 1797 // Used for PrintGC 1798 size_t prev_used; 1799 if (PrintGC && Verbose) { 1800 prev_used = _cmsGen->used(); 1801 } 1802 1803 // The change of the collection state is normally done at this level; 1804 // the exceptions are phases that are executed while the world is 1805 // stopped. For those phases the change of state is done while the 1806 // world is stopped. For baton passing purposes this allows the 1807 // background collector to finish the phase and change state atomically. 1808 // The foreground collector cannot wait on a phase that is done 1809 // while the world is stopped because the foreground collector already 1810 // has the world stopped and would deadlock. 1811 while (_collectorState != Idling) { 1812 if (TraceCMSState) { 1813 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d", 1814 p2i(Thread::current()), _collectorState); 1815 } 1816 // The foreground collector 1817 // holds the Heap_lock throughout its collection. 1818 // holds the CMS token (but not the lock) 1819 // except while it is waiting for the background collector to yield. 1820 // 1821 // The foreground collector should be blocked (not for long) 1822 // if the background collector is about to start a phase 1823 // executed with world stopped. If the background 1824 // collector has already started such a phase, the 1825 // foreground collector is blocked waiting for the 1826 // Heap_lock. The stop-world phases (InitialMarking and FinalMarking) 1827 // are executed in the VM thread. 1828 // 1829 // The locking order is 1830 // PendingListLock (PLL) -- if applicable (FinalMarking) 1831 // Heap_lock (both this & PLL locked in VM_CMS_Operation::prologue()) 1832 // CMS token (claimed in 1833 // stop_world_and_do() --> 1834 // safepoint_synchronize() --> 1835 // CMSThread::synchronize()) 1836 1837 { 1838 // Check if the FG collector wants us to yield. 1839 CMSTokenSync x(true); // is cms thread 1840 if (waitForForegroundGC()) { 1841 // We yielded to a foreground GC, nothing more to be 1842 // done this round. 1843 assert(_foregroundGCShouldWait == false, "We set it to false in " 1844 "waitForForegroundGC()"); 1845 if (TraceCMSState) { 1846 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 1847 " exiting collection CMS state %d", 1848 p2i(Thread::current()), _collectorState); 1849 } 1850 return; 1851 } else { 1852 // The background collector can run but check to see if the 1853 // foreground collector has done a collection while the 1854 // background collector was waiting to get the CGC_lock 1855 // above. If yes, break so that _foregroundGCShouldWait 1856 // is cleared before returning. 1857 if (_collectorState == Idling) { 1858 break; 1859 } 1860 } 1861 } 1862 1863 assert(_foregroundGCShouldWait, "Foreground collector, if active, " 1864 "should be waiting"); 1865 1866 switch (_collectorState) { 1867 case InitialMarking: 1868 { 1869 ReleaseForegroundGC x(this); 1870 stats().record_cms_begin(); 1871 VM_CMS_Initial_Mark initial_mark_op(this); 1872 VMThread::execute(&initial_mark_op); 1873 } 1874 // The collector state may be any legal state at this point 1875 // since the background collector may have yielded to the 1876 // foreground collector. 1877 break; 1878 case Marking: 1879 // initial marking in checkpointRootsInitialWork has been completed 1880 if (markFromRoots()) { // we were successful 1881 assert(_collectorState == Precleaning, "Collector state should " 1882 "have changed"); 1883 } else { 1884 assert(_foregroundGCIsActive, "Internal state inconsistency"); 1885 } 1886 break; 1887 case Precleaning: 1888 // marking from roots in markFromRoots has been completed 1889 preclean(); 1890 assert(_collectorState == AbortablePreclean || 1891 _collectorState == FinalMarking, 1892 "Collector state should have changed"); 1893 break; 1894 case AbortablePreclean: 1895 abortable_preclean(); 1896 assert(_collectorState == FinalMarking, "Collector state should " 1897 "have changed"); 1898 break; 1899 case FinalMarking: 1900 { 1901 ReleaseForegroundGC x(this); 1902 1903 VM_CMS_Final_Remark final_remark_op(this); 1904 VMThread::execute(&final_remark_op); 1905 } 1906 assert(_foregroundGCShouldWait, "block post-condition"); 1907 break; 1908 case Sweeping: 1909 // final marking in checkpointRootsFinal has been completed 1910 sweep(); 1911 assert(_collectorState == Resizing, "Collector state change " 1912 "to Resizing must be done under the free_list_lock"); 1913 1914 case Resizing: { 1915 // Sweeping has been completed... 1916 // At this point the background collection has completed. 1917 // Don't move the call to compute_new_size() down 1918 // into code that might be executed if the background 1919 // collection was preempted. 1920 { 1921 ReleaseForegroundGC x(this); // unblock FG collection 1922 MutexLockerEx y(Heap_lock, Mutex::_no_safepoint_check_flag); 1923 CMSTokenSync z(true); // not strictly needed. 1924 if (_collectorState == Resizing) { 1925 compute_new_size(); 1926 save_heap_summary(); 1927 _collectorState = Resetting; 1928 } else { 1929 assert(_collectorState == Idling, "The state should only change" 1930 " because the foreground collector has finished the collection"); 1931 } 1932 } 1933 break; 1934 } 1935 case Resetting: 1936 // CMS heap resizing has been completed 1937 reset(true); 1938 assert(_collectorState == Idling, "Collector state should " 1939 "have changed"); 1940 1941 MetaspaceGC::set_should_concurrent_collect(false); 1942 1943 stats().record_cms_end(); 1944 // Don't move the concurrent_phases_end() and compute_new_size() 1945 // calls to here because a preempted background collection 1946 // has it's state set to "Resetting". 1947 break; 1948 case Idling: 1949 default: 1950 ShouldNotReachHere(); 1951 break; 1952 } 1953 if (TraceCMSState) { 1954 gclog_or_tty->print_cr(" Thread " INTPTR_FORMAT " done - next CMS state %d", 1955 p2i(Thread::current()), _collectorState); 1956 } 1957 assert(_foregroundGCShouldWait, "block post-condition"); 1958 } 1959 1960 // Should this be in gc_epilogue? 1961 collector_policy()->counters()->update_counters(); 1962 1963 { 1964 // Clear _foregroundGCShouldWait and, in the event that the 1965 // foreground collector is waiting, notify it, before 1966 // returning. 1967 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 1968 _foregroundGCShouldWait = false; 1969 if (_foregroundGCIsActive) { 1970 CGC_lock->notify(); 1971 } 1972 assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 1973 "Possible deadlock"); 1974 } 1975 if (TraceCMSState) { 1976 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 1977 " exiting collection CMS state %d", 1978 p2i(Thread::current()), _collectorState); 1979 } 1980 if (PrintGC && Verbose) { 1981 _cmsGen->print_heap_change(prev_used); 1982 } 1983 } 1984 1985 void CMSCollector::register_gc_start(GCCause::Cause cause) { 1986 _cms_start_registered = true; 1987 _gc_timer_cm->register_gc_start(); 1988 _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start()); 1989 } 1990 1991 void CMSCollector::register_gc_end() { 1992 if (_cms_start_registered) { 1993 report_heap_summary(GCWhen::AfterGC); 1994 1995 _gc_timer_cm->register_gc_end(); 1996 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); 1997 _cms_start_registered = false; 1998 } 1999 } 2000 2001 void CMSCollector::save_heap_summary() { 2002 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2003 _last_heap_summary = gch->create_heap_summary(); 2004 _last_metaspace_summary = gch->create_metaspace_summary(); 2005 } 2006 2007 void CMSCollector::report_heap_summary(GCWhen::Type when) { 2008 _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary); 2009 _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary); 2010 } 2011 2012 bool CMSCollector::waitForForegroundGC() { 2013 bool res = false; 2014 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2015 "CMS thread should have CMS token"); 2016 // Block the foreground collector until the 2017 // background collectors decides whether to 2018 // yield. 2019 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2020 _foregroundGCShouldWait = true; 2021 if (_foregroundGCIsActive) { 2022 // The background collector yields to the 2023 // foreground collector and returns a value 2024 // indicating that it has yielded. The foreground 2025 // collector can proceed. 2026 res = true; 2027 _foregroundGCShouldWait = false; 2028 ConcurrentMarkSweepThread::clear_CMS_flag( 2029 ConcurrentMarkSweepThread::CMS_cms_has_token); 2030 ConcurrentMarkSweepThread::set_CMS_flag( 2031 ConcurrentMarkSweepThread::CMS_cms_wants_token); 2032 // Get a possibly blocked foreground thread going 2033 CGC_lock->notify(); 2034 if (TraceCMSState) { 2035 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d", 2036 p2i(Thread::current()), _collectorState); 2037 } 2038 while (_foregroundGCIsActive) { 2039 CGC_lock->wait(Mutex::_no_safepoint_check_flag); 2040 } 2041 ConcurrentMarkSweepThread::set_CMS_flag( 2042 ConcurrentMarkSweepThread::CMS_cms_has_token); 2043 ConcurrentMarkSweepThread::clear_CMS_flag( 2044 ConcurrentMarkSweepThread::CMS_cms_wants_token); 2045 } 2046 if (TraceCMSState) { 2047 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d", 2048 p2i(Thread::current()), _collectorState); 2049 } 2050 return res; 2051 } 2052 2053 // Because of the need to lock the free lists and other structures in 2054 // the collector, common to all the generations that the collector is 2055 // collecting, we need the gc_prologues of individual CMS generations 2056 // delegate to their collector. It may have been simpler had the 2057 // current infrastructure allowed one to call a prologue on a 2058 // collector. In the absence of that we have the generation's 2059 // prologue delegate to the collector, which delegates back 2060 // some "local" work to a worker method in the individual generations 2061 // that it's responsible for collecting, while itself doing any 2062 // work common to all generations it's responsible for. A similar 2063 // comment applies to the gc_epilogue()'s. 2064 // The role of the variable _between_prologue_and_epilogue is to 2065 // enforce the invocation protocol. 2066 void CMSCollector::gc_prologue(bool full) { 2067 // Call gc_prologue_work() for the CMSGen 2068 // we are responsible for. 2069 2070 // The following locking discipline assumes that we are only called 2071 // when the world is stopped. 2072 assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption"); 2073 2074 // The CMSCollector prologue must call the gc_prologues for the 2075 // "generations" that it's responsible 2076 // for. 2077 2078 assert( Thread::current()->is_VM_thread() 2079 || ( CMSScavengeBeforeRemark 2080 && Thread::current()->is_ConcurrentGC_thread()), 2081 "Incorrect thread type for prologue execution"); 2082 2083 if (_between_prologue_and_epilogue) { 2084 // We have already been invoked; this is a gc_prologue delegation 2085 // from yet another CMS generation that we are responsible for, just 2086 // ignore it since all relevant work has already been done. 2087 return; 2088 } 2089 2090 // set a bit saying prologue has been called; cleared in epilogue 2091 _between_prologue_and_epilogue = true; 2092 // Claim locks for common data structures, then call gc_prologue_work() 2093 // for each CMSGen. 2094 2095 getFreelistLocks(); // gets free list locks on constituent spaces 2096 bitMapLock()->lock_without_safepoint_check(); 2097 2098 // Should call gc_prologue_work() for all cms gens we are responsible for 2099 bool duringMarking = _collectorState >= Marking 2100 && _collectorState < Sweeping; 2101 2102 // The young collections clear the modified oops state, which tells if 2103 // there are any modified oops in the class. The remark phase also needs 2104 // that information. Tell the young collection to save the union of all 2105 // modified klasses. 2106 if (duringMarking) { 2107 _ct->klass_rem_set()->set_accumulate_modified_oops(true); 2108 } 2109 2110 bool registerClosure = duringMarking; 2111 2112 _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar); 2113 2114 if (!full) { 2115 stats().record_gc0_begin(); 2116 } 2117 } 2118 2119 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) { 2120 2121 _capacity_at_prologue = capacity(); 2122 _used_at_prologue = used(); 2123 2124 // Delegate to CMScollector which knows how to coordinate between 2125 // this and any other CMS generations that it is responsible for 2126 // collecting. 2127 collector()->gc_prologue(full); 2128 } 2129 2130 // This is a "private" interface for use by this generation's CMSCollector. 2131 // Not to be called directly by any other entity (for instance, 2132 // GenCollectedHeap, which calls the "public" gc_prologue method above). 2133 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full, 2134 bool registerClosure, ModUnionClosure* modUnionClosure) { 2135 assert(!incremental_collection_failed(), "Shouldn't be set yet"); 2136 assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL, 2137 "Should be NULL"); 2138 if (registerClosure) { 2139 cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure); 2140 } 2141 cmsSpace()->gc_prologue(); 2142 // Clear stat counters 2143 NOT_PRODUCT( 2144 assert(_numObjectsPromoted == 0, "check"); 2145 assert(_numWordsPromoted == 0, "check"); 2146 if (Verbose && PrintGC) { 2147 gclog_or_tty->print("Allocated " SIZE_FORMAT " objects, " 2148 SIZE_FORMAT " bytes concurrently", 2149 _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord)); 2150 } 2151 _numObjectsAllocated = 0; 2152 _numWordsAllocated = 0; 2153 ) 2154 } 2155 2156 void CMSCollector::gc_epilogue(bool full) { 2157 // The following locking discipline assumes that we are only called 2158 // when the world is stopped. 2159 assert(SafepointSynchronize::is_at_safepoint(), 2160 "world is stopped assumption"); 2161 2162 // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks 2163 // if linear allocation blocks need to be appropriately marked to allow the 2164 // the blocks to be parsable. We also check here whether we need to nudge the 2165 // CMS collector thread to start a new cycle (if it's not already active). 2166 assert( Thread::current()->is_VM_thread() 2167 || ( CMSScavengeBeforeRemark 2168 && Thread::current()->is_ConcurrentGC_thread()), 2169 "Incorrect thread type for epilogue execution"); 2170 2171 if (!_between_prologue_and_epilogue) { 2172 // We have already been invoked; this is a gc_epilogue delegation 2173 // from yet another CMS generation that we are responsible for, just 2174 // ignore it since all relevant work has already been done. 2175 return; 2176 } 2177 assert(haveFreelistLocks(), "must have freelist locks"); 2178 assert_lock_strong(bitMapLock()); 2179 2180 _ct->klass_rem_set()->set_accumulate_modified_oops(false); 2181 2182 _cmsGen->gc_epilogue_work(full); 2183 2184 if (_collectorState == AbortablePreclean || _collectorState == Precleaning) { 2185 // in case sampling was not already enabled, enable it 2186 _start_sampling = true; 2187 } 2188 // reset _eden_chunk_array so sampling starts afresh 2189 _eden_chunk_index = 0; 2190 2191 size_t cms_used = _cmsGen->cmsSpace()->used(); 2192 2193 // update performance counters - this uses a special version of 2194 // update_counters() that allows the utilization to be passed as a 2195 // parameter, avoiding multiple calls to used(). 2196 // 2197 _cmsGen->update_counters(cms_used); 2198 2199 bitMapLock()->unlock(); 2200 releaseFreelistLocks(); 2201 2202 if (!CleanChunkPoolAsync) { 2203 Chunk::clean_chunk_pool(); 2204 } 2205 2206 set_did_compact(false); 2207 _between_prologue_and_epilogue = false; // ready for next cycle 2208 } 2209 2210 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) { 2211 collector()->gc_epilogue(full); 2212 2213 // Also reset promotion tracking in par gc thread states. 2214 for (uint i = 0; i < ParallelGCThreads; i++) { 2215 _par_gc_thread_states[i]->promo.stopTrackingPromotions(i); 2216 } 2217 } 2218 2219 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) { 2220 assert(!incremental_collection_failed(), "Should have been cleared"); 2221 cmsSpace()->setPreconsumptionDirtyCardClosure(NULL); 2222 cmsSpace()->gc_epilogue(); 2223 // Print stat counters 2224 NOT_PRODUCT( 2225 assert(_numObjectsAllocated == 0, "check"); 2226 assert(_numWordsAllocated == 0, "check"); 2227 if (Verbose && PrintGC) { 2228 gclog_or_tty->print("Promoted " SIZE_FORMAT " objects, " 2229 SIZE_FORMAT " bytes", 2230 _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord)); 2231 } 2232 _numObjectsPromoted = 0; 2233 _numWordsPromoted = 0; 2234 ) 2235 2236 if (PrintGC && Verbose) { 2237 // Call down the chain in contiguous_available needs the freelistLock 2238 // so print this out before releasing the freeListLock. 2239 gclog_or_tty->print(" Contiguous available " SIZE_FORMAT " bytes ", 2240 contiguous_available()); 2241 } 2242 } 2243 2244 #ifndef PRODUCT 2245 bool CMSCollector::have_cms_token() { 2246 Thread* thr = Thread::current(); 2247 if (thr->is_VM_thread()) { 2248 return ConcurrentMarkSweepThread::vm_thread_has_cms_token(); 2249 } else if (thr->is_ConcurrentGC_thread()) { 2250 return ConcurrentMarkSweepThread::cms_thread_has_cms_token(); 2251 } else if (thr->is_GC_task_thread()) { 2252 return ConcurrentMarkSweepThread::vm_thread_has_cms_token() && 2253 ParGCRareEvent_lock->owned_by_self(); 2254 } 2255 return false; 2256 } 2257 #endif 2258 2259 // Check reachability of the given heap address in CMS generation, 2260 // treating all other generations as roots. 2261 bool CMSCollector::is_cms_reachable(HeapWord* addr) { 2262 // We could "guarantee" below, rather than assert, but I'll 2263 // leave these as "asserts" so that an adventurous debugger 2264 // could try this in the product build provided some subset of 2265 // the conditions were met, provided they were interested in the 2266 // results and knew that the computation below wouldn't interfere 2267 // with other concurrent computations mutating the structures 2268 // being read or written. 2269 assert(SafepointSynchronize::is_at_safepoint(), 2270 "Else mutations in object graph will make answer suspect"); 2271 assert(have_cms_token(), "Should hold cms token"); 2272 assert(haveFreelistLocks(), "must hold free list locks"); 2273 assert_lock_strong(bitMapLock()); 2274 2275 // Clear the marking bit map array before starting, but, just 2276 // for kicks, first report if the given address is already marked 2277 gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr), 2278 _markBitMap.isMarked(addr) ? "" : " not"); 2279 2280 if (verify_after_remark()) { 2281 MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); 2282 bool result = verification_mark_bm()->isMarked(addr); 2283 gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr), 2284 result ? "IS" : "is NOT"); 2285 return result; 2286 } else { 2287 gclog_or_tty->print_cr("Could not compute result"); 2288 return false; 2289 } 2290 } 2291 2292 2293 void 2294 CMSCollector::print_on_error(outputStream* st) { 2295 CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector; 2296 if (collector != NULL) { 2297 CMSBitMap* bitmap = &collector->_markBitMap; 2298 st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap)); 2299 bitmap->print_on_error(st, " Bits: "); 2300 2301 st->cr(); 2302 2303 CMSBitMap* mut_bitmap = &collector->_modUnionTable; 2304 st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap)); 2305 mut_bitmap->print_on_error(st, " Bits: "); 2306 } 2307 } 2308 2309 //////////////////////////////////////////////////////// 2310 // CMS Verification Support 2311 //////////////////////////////////////////////////////// 2312 // Following the remark phase, the following invariant 2313 // should hold -- each object in the CMS heap which is 2314 // marked in markBitMap() should be marked in the verification_mark_bm(). 2315 2316 class VerifyMarkedClosure: public BitMapClosure { 2317 CMSBitMap* _marks; 2318 bool _failed; 2319 2320 public: 2321 VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {} 2322 2323 bool do_bit(size_t offset) { 2324 HeapWord* addr = _marks->offsetToHeapWord(offset); 2325 if (!_marks->isMarked(addr)) { 2326 oop(addr)->print_on(gclog_or_tty); 2327 gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr)); 2328 _failed = true; 2329 } 2330 return true; 2331 } 2332 2333 bool failed() { return _failed; } 2334 }; 2335 2336 bool CMSCollector::verify_after_remark(bool silent) { 2337 if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... "); 2338 MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); 2339 static bool init = false; 2340 2341 assert(SafepointSynchronize::is_at_safepoint(), 2342 "Else mutations in object graph will make answer suspect"); 2343 assert(have_cms_token(), 2344 "Else there may be mutual interference in use of " 2345 " verification data structures"); 2346 assert(_collectorState > Marking && _collectorState <= Sweeping, 2347 "Else marking info checked here may be obsolete"); 2348 assert(haveFreelistLocks(), "must hold free list locks"); 2349 assert_lock_strong(bitMapLock()); 2350 2351 2352 // Allocate marking bit map if not already allocated 2353 if (!init) { // first time 2354 if (!verification_mark_bm()->allocate(_span)) { 2355 return false; 2356 } 2357 init = true; 2358 } 2359 2360 assert(verification_mark_stack()->isEmpty(), "Should be empty"); 2361 2362 // Turn off refs discovery -- so we will be tracing through refs. 2363 // This is as intended, because by this time 2364 // GC must already have cleared any refs that need to be cleared, 2365 // and traced those that need to be marked; moreover, 2366 // the marking done here is not going to interfere in any 2367 // way with the marking information used by GC. 2368 NoRefDiscovery no_discovery(ref_processor()); 2369 2370 #if defined(COMPILER2) || INCLUDE_JVMCI 2371 DerivedPointerTableDeactivate dpt_deact; 2372 #endif 2373 2374 // Clear any marks from a previous round 2375 verification_mark_bm()->clear_all(); 2376 assert(verification_mark_stack()->isEmpty(), "markStack should be empty"); 2377 verify_work_stacks_empty(); 2378 2379 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2380 gch->ensure_parsability(false); // fill TLABs, but no need to retire them 2381 // Update the saved marks which may affect the root scans. 2382 gch->save_marks(); 2383 2384 if (CMSRemarkVerifyVariant == 1) { 2385 // In this first variant of verification, we complete 2386 // all marking, then check if the new marks-vector is 2387 // a subset of the CMS marks-vector. 2388 verify_after_remark_work_1(); 2389 } else if (CMSRemarkVerifyVariant == 2) { 2390 // In this second variant of verification, we flag an error 2391 // (i.e. an object reachable in the new marks-vector not reachable 2392 // in the CMS marks-vector) immediately, also indicating the 2393 // identify of an object (A) that references the unmarked object (B) -- 2394 // presumably, a mutation to A failed to be picked up by preclean/remark? 2395 verify_after_remark_work_2(); 2396 } else { 2397 warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant", 2398 CMSRemarkVerifyVariant); 2399 } 2400 if (!silent) gclog_or_tty->print(" done] "); 2401 return true; 2402 } 2403 2404 void CMSCollector::verify_after_remark_work_1() { 2405 ResourceMark rm; 2406 HandleMark hm; 2407 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2408 2409 // Get a clear set of claim bits for the roots processing to work with. 2410 ClassLoaderDataGraph::clear_claimed_marks(); 2411 2412 // Mark from roots one level into CMS 2413 MarkRefsIntoClosure notOlder(_span, verification_mark_bm()); 2414 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 2415 2416 { 2417 StrongRootsScope srs(1); 2418 2419 gch->gen_process_roots(&srs, 2420 GenCollectedHeap::OldGen, 2421 true, // young gen as roots 2422 GenCollectedHeap::ScanningOption(roots_scanning_options()), 2423 should_unload_classes(), 2424 ¬Older, 2425 NULL, 2426 NULL); 2427 } 2428 2429 // Now mark from the roots 2430 MarkFromRootsClosure markFromRootsClosure(this, _span, 2431 verification_mark_bm(), verification_mark_stack(), 2432 false /* don't yield */, true /* verifying */); 2433 assert(_restart_addr == NULL, "Expected pre-condition"); 2434 verification_mark_bm()->iterate(&markFromRootsClosure); 2435 while (_restart_addr != NULL) { 2436 // Deal with stack overflow: by restarting at the indicated 2437 // address. 2438 HeapWord* ra = _restart_addr; 2439 markFromRootsClosure.reset(ra); 2440 _restart_addr = NULL; 2441 verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); 2442 } 2443 assert(verification_mark_stack()->isEmpty(), "Should have been drained"); 2444 verify_work_stacks_empty(); 2445 2446 // Marking completed -- now verify that each bit marked in 2447 // verification_mark_bm() is also marked in markBitMap(); flag all 2448 // errors by printing corresponding objects. 2449 VerifyMarkedClosure vcl(markBitMap()); 2450 verification_mark_bm()->iterate(&vcl); 2451 if (vcl.failed()) { 2452 gclog_or_tty->print("Verification failed"); 2453 gch->print_on(gclog_or_tty); 2454 fatal("CMS: failed marking verification after remark"); 2455 } 2456 } 2457 2458 class VerifyKlassOopsKlassClosure : public KlassClosure { 2459 class VerifyKlassOopsClosure : public OopClosure { 2460 CMSBitMap* _bitmap; 2461 public: 2462 VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { } 2463 void do_oop(oop* p) { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); } 2464 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 2465 } _oop_closure; 2466 public: 2467 VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {} 2468 void do_klass(Klass* k) { 2469 k->oops_do(&_oop_closure); 2470 } 2471 }; 2472 2473 void CMSCollector::verify_after_remark_work_2() { 2474 ResourceMark rm; 2475 HandleMark hm; 2476 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2477 2478 // Get a clear set of claim bits for the roots processing to work with. 2479 ClassLoaderDataGraph::clear_claimed_marks(); 2480 2481 // Mark from roots one level into CMS 2482 MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(), 2483 markBitMap()); 2484 CLDToOopClosure cld_closure(¬Older, true); 2485 2486 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 2487 2488 { 2489 StrongRootsScope srs(1); 2490 2491 gch->gen_process_roots(&srs, 2492 GenCollectedHeap::OldGen, 2493 true, // young gen as roots 2494 GenCollectedHeap::ScanningOption(roots_scanning_options()), 2495 should_unload_classes(), 2496 ¬Older, 2497 NULL, 2498 &cld_closure); 2499 } 2500 2501 // Now mark from the roots 2502 MarkFromRootsVerifyClosure markFromRootsClosure(this, _span, 2503 verification_mark_bm(), markBitMap(), verification_mark_stack()); 2504 assert(_restart_addr == NULL, "Expected pre-condition"); 2505 verification_mark_bm()->iterate(&markFromRootsClosure); 2506 while (_restart_addr != NULL) { 2507 // Deal with stack overflow: by restarting at the indicated 2508 // address. 2509 HeapWord* ra = _restart_addr; 2510 markFromRootsClosure.reset(ra); 2511 _restart_addr = NULL; 2512 verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); 2513 } 2514 assert(verification_mark_stack()->isEmpty(), "Should have been drained"); 2515 verify_work_stacks_empty(); 2516 2517 VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm()); 2518 ClassLoaderDataGraph::classes_do(&verify_klass_oops); 2519 2520 // Marking completed -- now verify that each bit marked in 2521 // verification_mark_bm() is also marked in markBitMap(); flag all 2522 // errors by printing corresponding objects. 2523 VerifyMarkedClosure vcl(markBitMap()); 2524 verification_mark_bm()->iterate(&vcl); 2525 assert(!vcl.failed(), "Else verification above should not have succeeded"); 2526 } 2527 2528 void ConcurrentMarkSweepGeneration::save_marks() { 2529 // delegate to CMS space 2530 cmsSpace()->save_marks(); 2531 for (uint i = 0; i < ParallelGCThreads; i++) { 2532 _par_gc_thread_states[i]->promo.startTrackingPromotions(); 2533 } 2534 } 2535 2536 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() { 2537 return cmsSpace()->no_allocs_since_save_marks(); 2538 } 2539 2540 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \ 2541 \ 2542 void ConcurrentMarkSweepGeneration:: \ 2543 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \ 2544 cl->set_generation(this); \ 2545 cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl); \ 2546 cl->reset_generation(); \ 2547 save_marks(); \ 2548 } 2549 2550 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN) 2551 2552 void 2553 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) { 2554 if (freelistLock()->owned_by_self()) { 2555 Generation::oop_iterate(cl); 2556 } else { 2557 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 2558 Generation::oop_iterate(cl); 2559 } 2560 } 2561 2562 void 2563 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) { 2564 if (freelistLock()->owned_by_self()) { 2565 Generation::object_iterate(cl); 2566 } else { 2567 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 2568 Generation::object_iterate(cl); 2569 } 2570 } 2571 2572 void 2573 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) { 2574 if (freelistLock()->owned_by_self()) { 2575 Generation::safe_object_iterate(cl); 2576 } else { 2577 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 2578 Generation::safe_object_iterate(cl); 2579 } 2580 } 2581 2582 void 2583 ConcurrentMarkSweepGeneration::post_compact() { 2584 } 2585 2586 void 2587 ConcurrentMarkSweepGeneration::prepare_for_verify() { 2588 // Fix the linear allocation blocks to look like free blocks. 2589 2590 // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those 2591 // are not called when the heap is verified during universe initialization and 2592 // at vm shutdown. 2593 if (freelistLock()->owned_by_self()) { 2594 cmsSpace()->prepare_for_verify(); 2595 } else { 2596 MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag); 2597 cmsSpace()->prepare_for_verify(); 2598 } 2599 } 2600 2601 void 2602 ConcurrentMarkSweepGeneration::verify() { 2603 // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those 2604 // are not called when the heap is verified during universe initialization and 2605 // at vm shutdown. 2606 if (freelistLock()->owned_by_self()) { 2607 cmsSpace()->verify(); 2608 } else { 2609 MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag); 2610 cmsSpace()->verify(); 2611 } 2612 } 2613 2614 void CMSCollector::verify() { 2615 _cmsGen->verify(); 2616 } 2617 2618 #ifndef PRODUCT 2619 bool CMSCollector::overflow_list_is_empty() const { 2620 assert(_num_par_pushes >= 0, "Inconsistency"); 2621 if (_overflow_list == NULL) { 2622 assert(_num_par_pushes == 0, "Inconsistency"); 2623 } 2624 return _overflow_list == NULL; 2625 } 2626 2627 // The methods verify_work_stacks_empty() and verify_overflow_empty() 2628 // merely consolidate assertion checks that appear to occur together frequently. 2629 void CMSCollector::verify_work_stacks_empty() const { 2630 assert(_markStack.isEmpty(), "Marking stack should be empty"); 2631 assert(overflow_list_is_empty(), "Overflow list should be empty"); 2632 } 2633 2634 void CMSCollector::verify_overflow_empty() const { 2635 assert(overflow_list_is_empty(), "Overflow list should be empty"); 2636 assert(no_preserved_marks(), "No preserved marks"); 2637 } 2638 #endif // PRODUCT 2639 2640 // Decide if we want to enable class unloading as part of the 2641 // ensuing concurrent GC cycle. We will collect and 2642 // unload classes if it's the case that: 2643 // (1) an explicit gc request has been made and the flag 2644 // ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR 2645 // (2) (a) class unloading is enabled at the command line, and 2646 // (b) old gen is getting really full 2647 // NOTE: Provided there is no change in the state of the heap between 2648 // calls to this method, it should have idempotent results. Moreover, 2649 // its results should be monotonically increasing (i.e. going from 0 to 1, 2650 // but not 1 to 0) between successive calls between which the heap was 2651 // not collected. For the implementation below, it must thus rely on 2652 // the property that concurrent_cycles_since_last_unload() 2653 // will not decrease unless a collection cycle happened and that 2654 // _cmsGen->is_too_full() are 2655 // themselves also monotonic in that sense. See check_monotonicity() 2656 // below. 2657 void CMSCollector::update_should_unload_classes() { 2658 _should_unload_classes = false; 2659 // Condition 1 above 2660 if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) { 2661 _should_unload_classes = true; 2662 } else if (CMSClassUnloadingEnabled) { // Condition 2.a above 2663 // Disjuncts 2.b.(i,ii,iii) above 2664 _should_unload_classes = (concurrent_cycles_since_last_unload() >= 2665 CMSClassUnloadingMaxInterval) 2666 || _cmsGen->is_too_full(); 2667 } 2668 } 2669 2670 bool ConcurrentMarkSweepGeneration::is_too_full() const { 2671 bool res = should_concurrent_collect(); 2672 res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0); 2673 return res; 2674 } 2675 2676 void CMSCollector::setup_cms_unloading_and_verification_state() { 2677 const bool should_verify = VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC 2678 || VerifyBeforeExit; 2679 const int rso = GenCollectedHeap::SO_AllCodeCache; 2680 2681 // We set the proper root for this CMS cycle here. 2682 if (should_unload_classes()) { // Should unload classes this cycle 2683 remove_root_scanning_option(rso); // Shrink the root set appropriately 2684 set_verifying(should_verify); // Set verification state for this cycle 2685 return; // Nothing else needs to be done at this time 2686 } 2687 2688 // Not unloading classes this cycle 2689 assert(!should_unload_classes(), "Inconsistency!"); 2690 2691 // If we are not unloading classes then add SO_AllCodeCache to root 2692 // scanning options. 2693 add_root_scanning_option(rso); 2694 2695 if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) { 2696 set_verifying(true); 2697 } else if (verifying() && !should_verify) { 2698 // We were verifying, but some verification flags got disabled. 2699 set_verifying(false); 2700 // Exclude symbols, strings and code cache elements from root scanning to 2701 // reduce IM and RM pauses. 2702 remove_root_scanning_option(rso); 2703 } 2704 } 2705 2706 2707 #ifndef PRODUCT 2708 HeapWord* CMSCollector::block_start(const void* p) const { 2709 const HeapWord* addr = (HeapWord*)p; 2710 if (_span.contains(p)) { 2711 if (_cmsGen->cmsSpace()->is_in_reserved(addr)) { 2712 return _cmsGen->cmsSpace()->block_start(p); 2713 } 2714 } 2715 return NULL; 2716 } 2717 #endif 2718 2719 HeapWord* 2720 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size, 2721 bool tlab, 2722 bool parallel) { 2723 CMSSynchronousYieldRequest yr; 2724 assert(!tlab, "Can't deal with TLAB allocation"); 2725 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 2726 expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation); 2727 if (GCExpandToAllocateDelayMillis > 0) { 2728 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 2729 } 2730 return have_lock_and_allocate(word_size, tlab); 2731 } 2732 2733 void ConcurrentMarkSweepGeneration::expand_for_gc_cause( 2734 size_t bytes, 2735 size_t expand_bytes, 2736 CMSExpansionCause::Cause cause) 2737 { 2738 2739 bool success = expand(bytes, expand_bytes); 2740 2741 // remember why we expanded; this information is used 2742 // by shouldConcurrentCollect() when making decisions on whether to start 2743 // a new CMS cycle. 2744 if (success) { 2745 set_expansion_cause(cause); 2746 if (PrintGCDetails && Verbose) { 2747 gclog_or_tty->print_cr("Expanded CMS gen for %s", 2748 CMSExpansionCause::to_string(cause)); 2749 } 2750 } 2751 } 2752 2753 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) { 2754 HeapWord* res = NULL; 2755 MutexLocker x(ParGCRareEvent_lock); 2756 while (true) { 2757 // Expansion by some other thread might make alloc OK now: 2758 res = ps->lab.alloc(word_sz); 2759 if (res != NULL) return res; 2760 // If there's not enough expansion space available, give up. 2761 if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) { 2762 return NULL; 2763 } 2764 // Otherwise, we try expansion. 2765 expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab); 2766 // Now go around the loop and try alloc again; 2767 // A competing par_promote might beat us to the expansion space, 2768 // so we may go around the loop again if promotion fails again. 2769 if (GCExpandToAllocateDelayMillis > 0) { 2770 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 2771 } 2772 } 2773 } 2774 2775 2776 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space( 2777 PromotionInfo* promo) { 2778 MutexLocker x(ParGCRareEvent_lock); 2779 size_t refill_size_bytes = promo->refillSize() * HeapWordSize; 2780 while (true) { 2781 // Expansion by some other thread might make alloc OK now: 2782 if (promo->ensure_spooling_space()) { 2783 assert(promo->has_spooling_space(), 2784 "Post-condition of successful ensure_spooling_space()"); 2785 return true; 2786 } 2787 // If there's not enough expansion space available, give up. 2788 if (_virtual_space.uncommitted_size() < refill_size_bytes) { 2789 return false; 2790 } 2791 // Otherwise, we try expansion. 2792 expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space); 2793 // Now go around the loop and try alloc again; 2794 // A competing allocation might beat us to the expansion space, 2795 // so we may go around the loop again if allocation fails again. 2796 if (GCExpandToAllocateDelayMillis > 0) { 2797 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 2798 } 2799 } 2800 } 2801 2802 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) { 2803 // Only shrink if a compaction was done so that all the free space 2804 // in the generation is in a contiguous block at the end. 2805 if (did_compact()) { 2806 CardGeneration::shrink(bytes); 2807 } 2808 } 2809 2810 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() { 2811 assert_locked_or_safepoint(Heap_lock); 2812 } 2813 2814 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) { 2815 assert_locked_or_safepoint(Heap_lock); 2816 assert_lock_strong(freelistLock()); 2817 if (PrintGCDetails && Verbose) { 2818 warning("Shrinking of CMS not yet implemented"); 2819 } 2820 return; 2821 } 2822 2823 2824 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent 2825 // phases. 2826 class CMSPhaseAccounting: public StackObj { 2827 public: 2828 CMSPhaseAccounting(CMSCollector *collector, 2829 const char *phase, 2830 const GCId gc_id, 2831 bool print_cr = true); 2832 ~CMSPhaseAccounting(); 2833 2834 private: 2835 CMSCollector *_collector; 2836 const char *_phase; 2837 elapsedTimer _wallclock; 2838 bool _print_cr; 2839 const GCId _gc_id; 2840 2841 public: 2842 // Not MT-safe; so do not pass around these StackObj's 2843 // where they may be accessed by other threads. 2844 jlong wallclock_millis() { 2845 assert(_wallclock.is_active(), "Wall clock should not stop"); 2846 _wallclock.stop(); // to record time 2847 jlong ret = _wallclock.milliseconds(); 2848 _wallclock.start(); // restart 2849 return ret; 2850 } 2851 }; 2852 2853 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector, 2854 const char *phase, 2855 const GCId gc_id, 2856 bool print_cr) : 2857 _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) { 2858 2859 if (PrintCMSStatistics != 0) { 2860 _collector->resetYields(); 2861 } 2862 if (PrintGCDetails) { 2863 gclog_or_tty->gclog_stamp(_gc_id); 2864 gclog_or_tty->print_cr("[%s-concurrent-%s-start]", 2865 _collector->cmsGen()->short_name(), _phase); 2866 } 2867 _collector->resetTimer(); 2868 _wallclock.start(); 2869 _collector->startTimer(); 2870 } 2871 2872 CMSPhaseAccounting::~CMSPhaseAccounting() { 2873 assert(_wallclock.is_active(), "Wall clock should not have stopped"); 2874 _collector->stopTimer(); 2875 _wallclock.stop(); 2876 if (PrintGCDetails) { 2877 gclog_or_tty->gclog_stamp(_gc_id); 2878 gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]", 2879 _collector->cmsGen()->short_name(), 2880 _phase, _collector->timerValue(), _wallclock.seconds()); 2881 if (_print_cr) { 2882 gclog_or_tty->cr(); 2883 } 2884 if (PrintCMSStatistics != 0) { 2885 gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase, 2886 _collector->yields()); 2887 } 2888 } 2889 } 2890 2891 // CMS work 2892 2893 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask. 2894 class CMSParMarkTask : public AbstractGangTask { 2895 protected: 2896 CMSCollector* _collector; 2897 uint _n_workers; 2898 CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) : 2899 AbstractGangTask(name), 2900 _collector(collector), 2901 _n_workers(n_workers) {} 2902 // Work method in support of parallel rescan ... of young gen spaces 2903 void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl, 2904 ContiguousSpace* space, 2905 HeapWord** chunk_array, size_t chunk_top); 2906 void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl); 2907 }; 2908 2909 // Parallel initial mark task 2910 class CMSParInitialMarkTask: public CMSParMarkTask { 2911 StrongRootsScope* _strong_roots_scope; 2912 public: 2913 CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) : 2914 CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers), 2915 _strong_roots_scope(strong_roots_scope) {} 2916 void work(uint worker_id); 2917 }; 2918 2919 // Checkpoint the roots into this generation from outside 2920 // this generation. [Note this initial checkpoint need only 2921 // be approximate -- we'll do a catch up phase subsequently.] 2922 void CMSCollector::checkpointRootsInitial() { 2923 assert(_collectorState == InitialMarking, "Wrong collector state"); 2924 check_correct_thread_executing(); 2925 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 2926 2927 save_heap_summary(); 2928 report_heap_summary(GCWhen::BeforeGC); 2929 2930 ReferenceProcessor* rp = ref_processor(); 2931 assert(_restart_addr == NULL, "Control point invariant"); 2932 { 2933 // acquire locks for subsequent manipulations 2934 MutexLockerEx x(bitMapLock(), 2935 Mutex::_no_safepoint_check_flag); 2936 checkpointRootsInitialWork(); 2937 // enable ("weak") refs discovery 2938 rp->enable_discovery(); 2939 _collectorState = Marking; 2940 } 2941 } 2942 2943 void CMSCollector::checkpointRootsInitialWork() { 2944 assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped"); 2945 assert(_collectorState == InitialMarking, "just checking"); 2946 2947 // Already have locks. 2948 assert_lock_strong(bitMapLock()); 2949 assert(_markBitMap.isAllClear(), "was reset at end of previous cycle"); 2950 2951 // Setup the verification and class unloading state for this 2952 // CMS collection cycle. 2953 setup_cms_unloading_and_verification_state(); 2954 2955 NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork", 2956 PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());) 2957 2958 // Reset all the PLAB chunk arrays if necessary. 2959 if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) { 2960 reset_survivor_plab_arrays(); 2961 } 2962 2963 ResourceMark rm; 2964 HandleMark hm; 2965 2966 MarkRefsIntoClosure notOlder(_span, &_markBitMap); 2967 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2968 2969 verify_work_stacks_empty(); 2970 verify_overflow_empty(); 2971 2972 gch->ensure_parsability(false); // fill TLABs, but no need to retire them 2973 // Update the saved marks which may affect the root scans. 2974 gch->save_marks(); 2975 2976 // weak reference processing has not started yet. 2977 ref_processor()->set_enqueuing_is_done(false); 2978 2979 // Need to remember all newly created CLDs, 2980 // so that we can guarantee that the remark finds them. 2981 ClassLoaderDataGraph::remember_new_clds(true); 2982 2983 // Whenever a CLD is found, it will be claimed before proceeding to mark 2984 // the klasses. The claimed marks need to be cleared before marking starts. 2985 ClassLoaderDataGraph::clear_claimed_marks(); 2986 2987 if (CMSPrintEdenSurvivorChunks) { 2988 print_eden_and_survivor_chunk_arrays(); 2989 } 2990 2991 { 2992 #if defined(COMPILER2) || INCLUDE_JVMCI 2993 DerivedPointerTableDeactivate dpt_deact; 2994 #endif 2995 if (CMSParallelInitialMarkEnabled) { 2996 // The parallel version. 2997 WorkGang* workers = gch->workers(); 2998 assert(workers != NULL, "Need parallel worker threads."); 2999 uint n_workers = workers->active_workers(); 3000 3001 StrongRootsScope srs(n_workers); 3002 3003 CMSParInitialMarkTask tsk(this, &srs, n_workers); 3004 initialize_sequential_subtasks_for_young_gen_rescan(n_workers); 3005 if (n_workers > 1) { 3006 workers->run_task(&tsk); 3007 } else { 3008 tsk.work(0); 3009 } 3010 } else { 3011 // The serial version. 3012 CLDToOopClosure cld_closure(¬Older, true); 3013 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 3014 3015 StrongRootsScope srs(1); 3016 3017 gch->gen_process_roots(&srs, 3018 GenCollectedHeap::OldGen, 3019 true, // young gen as roots 3020 GenCollectedHeap::ScanningOption(roots_scanning_options()), 3021 should_unload_classes(), 3022 ¬Older, 3023 NULL, 3024 &cld_closure); 3025 } 3026 } 3027 3028 // Clear mod-union table; it will be dirtied in the prologue of 3029 // CMS generation per each young generation collection. 3030 3031 assert(_modUnionTable.isAllClear(), 3032 "Was cleared in most recent final checkpoint phase" 3033 " or no bits are set in the gc_prologue before the start of the next " 3034 "subsequent marking phase."); 3035 3036 assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be"); 3037 3038 // Save the end of the used_region of the constituent generations 3039 // to be used to limit the extent of sweep in each generation. 3040 save_sweep_limits(); 3041 verify_overflow_empty(); 3042 } 3043 3044 bool CMSCollector::markFromRoots() { 3045 // we might be tempted to assert that: 3046 // assert(!SafepointSynchronize::is_at_safepoint(), 3047 // "inconsistent argument?"); 3048 // However that wouldn't be right, because it's possible that 3049 // a safepoint is indeed in progress as a young generation 3050 // stop-the-world GC happens even as we mark in this generation. 3051 assert(_collectorState == Marking, "inconsistent state?"); 3052 check_correct_thread_executing(); 3053 verify_overflow_empty(); 3054 3055 // Weak ref discovery note: We may be discovering weak 3056 // refs in this generation concurrent (but interleaved) with 3057 // weak ref discovery by the young generation collector. 3058 3059 CMSTokenSyncWithLocks ts(true, bitMapLock()); 3060 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 3061 CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails); 3062 bool res = markFromRootsWork(); 3063 if (res) { 3064 _collectorState = Precleaning; 3065 } else { // We failed and a foreground collection wants to take over 3066 assert(_foregroundGCIsActive, "internal state inconsistency"); 3067 assert(_restart_addr == NULL, "foreground will restart from scratch"); 3068 if (PrintGCDetails) { 3069 gclog_or_tty->print_cr("bailing out to foreground collection"); 3070 } 3071 } 3072 verify_overflow_empty(); 3073 return res; 3074 } 3075 3076 bool CMSCollector::markFromRootsWork() { 3077 // iterate over marked bits in bit map, doing a full scan and mark 3078 // from these roots using the following algorithm: 3079 // . if oop is to the right of the current scan pointer, 3080 // mark corresponding bit (we'll process it later) 3081 // . else (oop is to left of current scan pointer) 3082 // push oop on marking stack 3083 // . drain the marking stack 3084 3085 // Note that when we do a marking step we need to hold the 3086 // bit map lock -- recall that direct allocation (by mutators) 3087 // and promotion (by the young generation collector) is also 3088 // marking the bit map. [the so-called allocate live policy.] 3089 // Because the implementation of bit map marking is not 3090 // robust wrt simultaneous marking of bits in the same word, 3091 // we need to make sure that there is no such interference 3092 // between concurrent such updates. 3093 3094 // already have locks 3095 assert_lock_strong(bitMapLock()); 3096 3097 verify_work_stacks_empty(); 3098 verify_overflow_empty(); 3099 bool result = false; 3100 if (CMSConcurrentMTEnabled && ConcGCThreads > 0) { 3101 result = do_marking_mt(); 3102 } else { 3103 result = do_marking_st(); 3104 } 3105 return result; 3106 } 3107 3108 // Forward decl 3109 class CMSConcMarkingTask; 3110 3111 class CMSConcMarkingTerminator: public ParallelTaskTerminator { 3112 CMSCollector* _collector; 3113 CMSConcMarkingTask* _task; 3114 public: 3115 virtual void yield(); 3116 3117 // "n_threads" is the number of threads to be terminated. 3118 // "queue_set" is a set of work queues of other threads. 3119 // "collector" is the CMS collector associated with this task terminator. 3120 // "yield" indicates whether we need the gang as a whole to yield. 3121 CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) : 3122 ParallelTaskTerminator(n_threads, queue_set), 3123 _collector(collector) { } 3124 3125 void set_task(CMSConcMarkingTask* task) { 3126 _task = task; 3127 } 3128 }; 3129 3130 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator { 3131 CMSConcMarkingTask* _task; 3132 public: 3133 bool should_exit_termination(); 3134 void set_task(CMSConcMarkingTask* task) { 3135 _task = task; 3136 } 3137 }; 3138 3139 // MT Concurrent Marking Task 3140 class CMSConcMarkingTask: public YieldingFlexibleGangTask { 3141 CMSCollector* _collector; 3142 uint _n_workers; // requested/desired # workers 3143 bool _result; 3144 CompactibleFreeListSpace* _cms_space; 3145 char _pad_front[64]; // padding to ... 3146 HeapWord* _global_finger; // ... avoid sharing cache line 3147 char _pad_back[64]; 3148 HeapWord* _restart_addr; 3149 3150 // Exposed here for yielding support 3151 Mutex* const _bit_map_lock; 3152 3153 // The per thread work queues, available here for stealing 3154 OopTaskQueueSet* _task_queues; 3155 3156 // Termination (and yielding) support 3157 CMSConcMarkingTerminator _term; 3158 CMSConcMarkingTerminatorTerminator _term_term; 3159 3160 public: 3161 CMSConcMarkingTask(CMSCollector* collector, 3162 CompactibleFreeListSpace* cms_space, 3163 YieldingFlexibleWorkGang* workers, 3164 OopTaskQueueSet* task_queues): 3165 YieldingFlexibleGangTask("Concurrent marking done multi-threaded"), 3166 _collector(collector), 3167 _cms_space(cms_space), 3168 _n_workers(0), _result(true), 3169 _task_queues(task_queues), 3170 _term(_n_workers, task_queues, _collector), 3171 _bit_map_lock(collector->bitMapLock()) 3172 { 3173 _requested_size = _n_workers; 3174 _term.set_task(this); 3175 _term_term.set_task(this); 3176 _restart_addr = _global_finger = _cms_space->bottom(); 3177 } 3178 3179 3180 OopTaskQueueSet* task_queues() { return _task_queues; } 3181 3182 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 3183 3184 HeapWord** global_finger_addr() { return &_global_finger; } 3185 3186 CMSConcMarkingTerminator* terminator() { return &_term; } 3187 3188 virtual void set_for_termination(uint active_workers) { 3189 terminator()->reset_for_reuse(active_workers); 3190 } 3191 3192 void work(uint worker_id); 3193 bool should_yield() { 3194 return ConcurrentMarkSweepThread::should_yield() 3195 && !_collector->foregroundGCIsActive(); 3196 } 3197 3198 virtual void coordinator_yield(); // stuff done by coordinator 3199 bool result() { return _result; } 3200 3201 void reset(HeapWord* ra) { 3202 assert(_global_finger >= _cms_space->end(), "Postcondition of ::work(i)"); 3203 _restart_addr = _global_finger = ra; 3204 _term.reset_for_reuse(); 3205 } 3206 3207 static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, 3208 OopTaskQueue* work_q); 3209 3210 private: 3211 void do_scan_and_mark(int i, CompactibleFreeListSpace* sp); 3212 void do_work_steal(int i); 3213 void bump_global_finger(HeapWord* f); 3214 }; 3215 3216 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() { 3217 assert(_task != NULL, "Error"); 3218 return _task->yielding(); 3219 // Note that we do not need the disjunct || _task->should_yield() above 3220 // because we want terminating threads to yield only if the task 3221 // is already in the midst of yielding, which happens only after at least one 3222 // thread has yielded. 3223 } 3224 3225 void CMSConcMarkingTerminator::yield() { 3226 if (_task->should_yield()) { 3227 _task->yield(); 3228 } else { 3229 ParallelTaskTerminator::yield(); 3230 } 3231 } 3232 3233 //////////////////////////////////////////////////////////////// 3234 // Concurrent Marking Algorithm Sketch 3235 //////////////////////////////////////////////////////////////// 3236 // Until all tasks exhausted (both spaces): 3237 // -- claim next available chunk 3238 // -- bump global finger via CAS 3239 // -- find first object that starts in this chunk 3240 // and start scanning bitmap from that position 3241 // -- scan marked objects for oops 3242 // -- CAS-mark target, and if successful: 3243 // . if target oop is above global finger (volatile read) 3244 // nothing to do 3245 // . if target oop is in chunk and above local finger 3246 // then nothing to do 3247 // . else push on work-queue 3248 // -- Deal with possible overflow issues: 3249 // . local work-queue overflow causes stuff to be pushed on 3250 // global (common) overflow queue 3251 // . always first empty local work queue 3252 // . then get a batch of oops from global work queue if any 3253 // . then do work stealing 3254 // -- When all tasks claimed (both spaces) 3255 // and local work queue empty, 3256 // then in a loop do: 3257 // . check global overflow stack; steal a batch of oops and trace 3258 // . try to steal from other threads oif GOS is empty 3259 // . if neither is available, offer termination 3260 // -- Terminate and return result 3261 // 3262 void CMSConcMarkingTask::work(uint worker_id) { 3263 elapsedTimer _timer; 3264 ResourceMark rm; 3265 HandleMark hm; 3266 3267 DEBUG_ONLY(_collector->verify_overflow_empty();) 3268 3269 // Before we begin work, our work queue should be empty 3270 assert(work_queue(worker_id)->size() == 0, "Expected to be empty"); 3271 // Scan the bitmap covering _cms_space, tracing through grey objects. 3272 _timer.start(); 3273 do_scan_and_mark(worker_id, _cms_space); 3274 _timer.stop(); 3275 if (PrintCMSStatistics != 0) { 3276 gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec", 3277 worker_id, _timer.seconds()); 3278 // XXX: need xxx/xxx type of notation, two timers 3279 } 3280 3281 // ... do work stealing 3282 _timer.reset(); 3283 _timer.start(); 3284 do_work_steal(worker_id); 3285 _timer.stop(); 3286 if (PrintCMSStatistics != 0) { 3287 gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec", 3288 worker_id, _timer.seconds()); 3289 // XXX: need xxx/xxx type of notation, two timers 3290 } 3291 assert(_collector->_markStack.isEmpty(), "Should have been emptied"); 3292 assert(work_queue(worker_id)->size() == 0, "Should have been emptied"); 3293 // Note that under the current task protocol, the 3294 // following assertion is true even of the spaces 3295 // expanded since the completion of the concurrent 3296 // marking. XXX This will likely change under a strict 3297 // ABORT semantics. 3298 // After perm removal the comparison was changed to 3299 // greater than or equal to from strictly greater than. 3300 // Before perm removal the highest address sweep would 3301 // have been at the end of perm gen but now is at the 3302 // end of the tenured gen. 3303 assert(_global_finger >= _cms_space->end(), 3304 "All tasks have been completed"); 3305 DEBUG_ONLY(_collector->verify_overflow_empty();) 3306 } 3307 3308 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) { 3309 HeapWord* read = _global_finger; 3310 HeapWord* cur = read; 3311 while (f > read) { 3312 cur = read; 3313 read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur); 3314 if (cur == read) { 3315 // our cas succeeded 3316 assert(_global_finger >= f, "protocol consistency"); 3317 break; 3318 } 3319 } 3320 } 3321 3322 // This is really inefficient, and should be redone by 3323 // using (not yet available) block-read and -write interfaces to the 3324 // stack and the work_queue. XXX FIX ME !!! 3325 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, 3326 OopTaskQueue* work_q) { 3327 // Fast lock-free check 3328 if (ovflw_stk->length() == 0) { 3329 return false; 3330 } 3331 assert(work_q->size() == 0, "Shouldn't steal"); 3332 MutexLockerEx ml(ovflw_stk->par_lock(), 3333 Mutex::_no_safepoint_check_flag); 3334 // Grab up to 1/4 the size of the work queue 3335 size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 3336 (size_t)ParGCDesiredObjsFromOverflowList); 3337 num = MIN2(num, ovflw_stk->length()); 3338 for (int i = (int) num; i > 0; i--) { 3339 oop cur = ovflw_stk->pop(); 3340 assert(cur != NULL, "Counted wrong?"); 3341 work_q->push(cur); 3342 } 3343 return num > 0; 3344 } 3345 3346 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) { 3347 SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); 3348 int n_tasks = pst->n_tasks(); 3349 // We allow that there may be no tasks to do here because 3350 // we are restarting after a stack overflow. 3351 assert(pst->valid() || n_tasks == 0, "Uninitialized use?"); 3352 uint nth_task = 0; 3353 3354 HeapWord* aligned_start = sp->bottom(); 3355 if (sp->used_region().contains(_restart_addr)) { 3356 // Align down to a card boundary for the start of 0th task 3357 // for this space. 3358 aligned_start = 3359 (HeapWord*)align_size_down((uintptr_t)_restart_addr, 3360 CardTableModRefBS::card_size); 3361 } 3362 3363 size_t chunk_size = sp->marking_task_size(); 3364 while (!pst->is_task_claimed(/* reference */ nth_task)) { 3365 // Having claimed the nth task in this space, 3366 // compute the chunk that it corresponds to: 3367 MemRegion span = MemRegion(aligned_start + nth_task*chunk_size, 3368 aligned_start + (nth_task+1)*chunk_size); 3369 // Try and bump the global finger via a CAS; 3370 // note that we need to do the global finger bump 3371 // _before_ taking the intersection below, because 3372 // the task corresponding to that region will be 3373 // deemed done even if the used_region() expands 3374 // because of allocation -- as it almost certainly will 3375 // during start-up while the threads yield in the 3376 // closure below. 3377 HeapWord* finger = span.end(); 3378 bump_global_finger(finger); // atomically 3379 // There are null tasks here corresponding to chunks 3380 // beyond the "top" address of the space. 3381 span = span.intersection(sp->used_region()); 3382 if (!span.is_empty()) { // Non-null task 3383 HeapWord* prev_obj; 3384 assert(!span.contains(_restart_addr) || nth_task == 0, 3385 "Inconsistency"); 3386 if (nth_task == 0) { 3387 // For the 0th task, we'll not need to compute a block_start. 3388 if (span.contains(_restart_addr)) { 3389 // In the case of a restart because of stack overflow, 3390 // we might additionally skip a chunk prefix. 3391 prev_obj = _restart_addr; 3392 } else { 3393 prev_obj = span.start(); 3394 } 3395 } else { 3396 // We want to skip the first object because 3397 // the protocol is to scan any object in its entirety 3398 // that _starts_ in this span; a fortiori, any 3399 // object starting in an earlier span is scanned 3400 // as part of an earlier claimed task. 3401 // Below we use the "careful" version of block_start 3402 // so we do not try to navigate uninitialized objects. 3403 prev_obj = sp->block_start_careful(span.start()); 3404 // Below we use a variant of block_size that uses the 3405 // Printezis bits to avoid waiting for allocated 3406 // objects to become initialized/parsable. 3407 while (prev_obj < span.start()) { 3408 size_t sz = sp->block_size_no_stall(prev_obj, _collector); 3409 if (sz > 0) { 3410 prev_obj += sz; 3411 } else { 3412 // In this case we may end up doing a bit of redundant 3413 // scanning, but that appears unavoidable, short of 3414 // locking the free list locks; see bug 6324141. 3415 break; 3416 } 3417 } 3418 } 3419 if (prev_obj < span.end()) { 3420 MemRegion my_span = MemRegion(prev_obj, span.end()); 3421 // Do the marking work within a non-empty span -- 3422 // the last argument to the constructor indicates whether the 3423 // iteration should be incremental with periodic yields. 3424 Par_MarkFromRootsClosure cl(this, _collector, my_span, 3425 &_collector->_markBitMap, 3426 work_queue(i), 3427 &_collector->_markStack); 3428 _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end()); 3429 } // else nothing to do for this task 3430 } // else nothing to do for this task 3431 } 3432 // We'd be tempted to assert here that since there are no 3433 // more tasks left to claim in this space, the global_finger 3434 // must exceed space->top() and a fortiori space->end(). However, 3435 // that would not quite be correct because the bumping of 3436 // global_finger occurs strictly after the claiming of a task, 3437 // so by the time we reach here the global finger may not yet 3438 // have been bumped up by the thread that claimed the last 3439 // task. 3440 pst->all_tasks_completed(); 3441 } 3442 3443 class Par_ConcMarkingClosure: public MetadataAwareOopClosure { 3444 private: 3445 CMSCollector* _collector; 3446 CMSConcMarkingTask* _task; 3447 MemRegion _span; 3448 CMSBitMap* _bit_map; 3449 CMSMarkStack* _overflow_stack; 3450 OopTaskQueue* _work_queue; 3451 protected: 3452 DO_OOP_WORK_DEFN 3453 public: 3454 Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue, 3455 CMSBitMap* bit_map, CMSMarkStack* overflow_stack): 3456 MetadataAwareOopClosure(collector->ref_processor()), 3457 _collector(collector), 3458 _task(task), 3459 _span(collector->_span), 3460 _work_queue(work_queue), 3461 _bit_map(bit_map), 3462 _overflow_stack(overflow_stack) 3463 { } 3464 virtual void do_oop(oop* p); 3465 virtual void do_oop(narrowOop* p); 3466 3467 void trim_queue(size_t max); 3468 void handle_stack_overflow(HeapWord* lost); 3469 void do_yield_check() { 3470 if (_task->should_yield()) { 3471 _task->yield(); 3472 } 3473 } 3474 }; 3475 3476 // Grey object scanning during work stealing phase -- 3477 // the salient assumption here is that any references 3478 // that are in these stolen objects being scanned must 3479 // already have been initialized (else they would not have 3480 // been published), so we do not need to check for 3481 // uninitialized objects before pushing here. 3482 void Par_ConcMarkingClosure::do_oop(oop obj) { 3483 assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj))); 3484 HeapWord* addr = (HeapWord*)obj; 3485 // Check if oop points into the CMS generation 3486 // and is not marked 3487 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 3488 // a white object ... 3489 // If we manage to "claim" the object, by being the 3490 // first thread to mark it, then we push it on our 3491 // marking stack 3492 if (_bit_map->par_mark(addr)) { // ... now grey 3493 // push on work queue (grey set) 3494 bool simulate_overflow = false; 3495 NOT_PRODUCT( 3496 if (CMSMarkStackOverflowALot && 3497 _collector->simulate_overflow()) { 3498 // simulate a stack overflow 3499 simulate_overflow = true; 3500 } 3501 ) 3502 if (simulate_overflow || 3503 !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { 3504 // stack overflow 3505 if (PrintCMSStatistics != 0) { 3506 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 3507 SIZE_FORMAT, _overflow_stack->capacity()); 3508 } 3509 // We cannot assert that the overflow stack is full because 3510 // it may have been emptied since. 3511 assert(simulate_overflow || 3512 _work_queue->size() == _work_queue->max_elems(), 3513 "Else push should have succeeded"); 3514 handle_stack_overflow(addr); 3515 } 3516 } // Else, some other thread got there first 3517 do_yield_check(); 3518 } 3519 } 3520 3521 void Par_ConcMarkingClosure::do_oop(oop* p) { Par_ConcMarkingClosure::do_oop_work(p); } 3522 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); } 3523 3524 void Par_ConcMarkingClosure::trim_queue(size_t max) { 3525 while (_work_queue->size() > max) { 3526 oop new_oop; 3527 if (_work_queue->pop_local(new_oop)) { 3528 assert(new_oop->is_oop(), "Should be an oop"); 3529 assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object"); 3530 assert(_span.contains((HeapWord*)new_oop), "Not in span"); 3531 new_oop->oop_iterate(this); // do_oop() above 3532 do_yield_check(); 3533 } 3534 } 3535 } 3536 3537 // Upon stack overflow, we discard (part of) the stack, 3538 // remembering the least address amongst those discarded 3539 // in CMSCollector's _restart_address. 3540 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) { 3541 // We need to do this under a mutex to prevent other 3542 // workers from interfering with the work done below. 3543 MutexLockerEx ml(_overflow_stack->par_lock(), 3544 Mutex::_no_safepoint_check_flag); 3545 // Remember the least grey address discarded 3546 HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); 3547 _collector->lower_restart_addr(ra); 3548 _overflow_stack->reset(); // discard stack contents 3549 _overflow_stack->expand(); // expand the stack if possible 3550 } 3551 3552 3553 void CMSConcMarkingTask::do_work_steal(int i) { 3554 OopTaskQueue* work_q = work_queue(i); 3555 oop obj_to_scan; 3556 CMSBitMap* bm = &(_collector->_markBitMap); 3557 CMSMarkStack* ovflw = &(_collector->_markStack); 3558 int* seed = _collector->hash_seed(i); 3559 Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw); 3560 while (true) { 3561 cl.trim_queue(0); 3562 assert(work_q->size() == 0, "Should have been emptied above"); 3563 if (get_work_from_overflow_stack(ovflw, work_q)) { 3564 // Can't assert below because the work obtained from the 3565 // overflow stack may already have been stolen from us. 3566 // assert(work_q->size() > 0, "Work from overflow stack"); 3567 continue; 3568 } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 3569 assert(obj_to_scan->is_oop(), "Should be an oop"); 3570 assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object"); 3571 obj_to_scan->oop_iterate(&cl); 3572 } else if (terminator()->offer_termination(&_term_term)) { 3573 assert(work_q->size() == 0, "Impossible!"); 3574 break; 3575 } else if (yielding() || should_yield()) { 3576 yield(); 3577 } 3578 } 3579 } 3580 3581 // This is run by the CMS (coordinator) thread. 3582 void CMSConcMarkingTask::coordinator_yield() { 3583 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 3584 "CMS thread should hold CMS token"); 3585 // First give up the locks, then yield, then re-lock 3586 // We should probably use a constructor/destructor idiom to 3587 // do this unlock/lock or modify the MutexUnlocker class to 3588 // serve our purpose. XXX 3589 assert_lock_strong(_bit_map_lock); 3590 _bit_map_lock->unlock(); 3591 ConcurrentMarkSweepThread::desynchronize(true); 3592 _collector->stopTimer(); 3593 if (PrintCMSStatistics != 0) { 3594 _collector->incrementYields(); 3595 } 3596 3597 // It is possible for whichever thread initiated the yield request 3598 // not to get a chance to wake up and take the bitmap lock between 3599 // this thread releasing it and reacquiring it. So, while the 3600 // should_yield() flag is on, let's sleep for a bit to give the 3601 // other thread a chance to wake up. The limit imposed on the number 3602 // of iterations is defensive, to avoid any unforseen circumstances 3603 // putting us into an infinite loop. Since it's always been this 3604 // (coordinator_yield()) method that was observed to cause the 3605 // problem, we are using a parameter (CMSCoordinatorYieldSleepCount) 3606 // which is by default non-zero. For the other seven methods that 3607 // also perform the yield operation, as are using a different 3608 // parameter (CMSYieldSleepCount) which is by default zero. This way we 3609 // can enable the sleeping for those methods too, if necessary. 3610 // See 6442774. 3611 // 3612 // We really need to reconsider the synchronization between the GC 3613 // thread and the yield-requesting threads in the future and we 3614 // should really use wait/notify, which is the recommended 3615 // way of doing this type of interaction. Additionally, we should 3616 // consolidate the eight methods that do the yield operation and they 3617 // are almost identical into one for better maintainability and 3618 // readability. See 6445193. 3619 // 3620 // Tony 2006.06.29 3621 for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount && 3622 ConcurrentMarkSweepThread::should_yield() && 3623 !CMSCollector::foregroundGCIsActive(); ++i) { 3624 os::sleep(Thread::current(), 1, false); 3625 } 3626 3627 ConcurrentMarkSweepThread::synchronize(true); 3628 _bit_map_lock->lock_without_safepoint_check(); 3629 _collector->startTimer(); 3630 } 3631 3632 bool CMSCollector::do_marking_mt() { 3633 assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition"); 3634 uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(), 3635 conc_workers()->active_workers(), 3636 Threads::number_of_non_daemon_threads()); 3637 conc_workers()->set_active_workers(num_workers); 3638 3639 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 3640 3641 CMSConcMarkingTask tsk(this, 3642 cms_space, 3643 conc_workers(), 3644 task_queues()); 3645 3646 // Since the actual number of workers we get may be different 3647 // from the number we requested above, do we need to do anything different 3648 // below? In particular, may be we need to subclass the SequantialSubTasksDone 3649 // class?? XXX 3650 cms_space ->initialize_sequential_subtasks_for_marking(num_workers); 3651 3652 // Refs discovery is already non-atomic. 3653 assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic"); 3654 assert(ref_processor()->discovery_is_mt(), "Discovery should be MT"); 3655 conc_workers()->start_task(&tsk); 3656 while (tsk.yielded()) { 3657 tsk.coordinator_yield(); 3658 conc_workers()->continue_task(&tsk); 3659 } 3660 // If the task was aborted, _restart_addr will be non-NULL 3661 assert(tsk.completed() || _restart_addr != NULL, "Inconsistency"); 3662 while (_restart_addr != NULL) { 3663 // XXX For now we do not make use of ABORTED state and have not 3664 // yet implemented the right abort semantics (even in the original 3665 // single-threaded CMS case). That needs some more investigation 3666 // and is deferred for now; see CR# TBF. 07252005YSR. XXX 3667 assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency"); 3668 // If _restart_addr is non-NULL, a marking stack overflow 3669 // occurred; we need to do a fresh marking iteration from the 3670 // indicated restart address. 3671 if (_foregroundGCIsActive) { 3672 // We may be running into repeated stack overflows, having 3673 // reached the limit of the stack size, while making very 3674 // slow forward progress. It may be best to bail out and 3675 // let the foreground collector do its job. 3676 // Clear _restart_addr, so that foreground GC 3677 // works from scratch. This avoids the headache of 3678 // a "rescan" which would otherwise be needed because 3679 // of the dirty mod union table & card table. 3680 _restart_addr = NULL; 3681 return false; 3682 } 3683 // Adjust the task to restart from _restart_addr 3684 tsk.reset(_restart_addr); 3685 cms_space ->initialize_sequential_subtasks_for_marking(num_workers, 3686 _restart_addr); 3687 _restart_addr = NULL; 3688 // Get the workers going again 3689 conc_workers()->start_task(&tsk); 3690 while (tsk.yielded()) { 3691 tsk.coordinator_yield(); 3692 conc_workers()->continue_task(&tsk); 3693 } 3694 } 3695 assert(tsk.completed(), "Inconsistency"); 3696 assert(tsk.result() == true, "Inconsistency"); 3697 return true; 3698 } 3699 3700 bool CMSCollector::do_marking_st() { 3701 ResourceMark rm; 3702 HandleMark hm; 3703 3704 // Temporarily make refs discovery single threaded (non-MT) 3705 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); 3706 MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap, 3707 &_markStack, CMSYield); 3708 // the last argument to iterate indicates whether the iteration 3709 // should be incremental with periodic yields. 3710 _markBitMap.iterate(&markFromRootsClosure); 3711 // If _restart_addr is non-NULL, a marking stack overflow 3712 // occurred; we need to do a fresh iteration from the 3713 // indicated restart address. 3714 while (_restart_addr != NULL) { 3715 if (_foregroundGCIsActive) { 3716 // We may be running into repeated stack overflows, having 3717 // reached the limit of the stack size, while making very 3718 // slow forward progress. It may be best to bail out and 3719 // let the foreground collector do its job. 3720 // Clear _restart_addr, so that foreground GC 3721 // works from scratch. This avoids the headache of 3722 // a "rescan" which would otherwise be needed because 3723 // of the dirty mod union table & card table. 3724 _restart_addr = NULL; 3725 return false; // indicating failure to complete marking 3726 } 3727 // Deal with stack overflow: 3728 // we restart marking from _restart_addr 3729 HeapWord* ra = _restart_addr; 3730 markFromRootsClosure.reset(ra); 3731 _restart_addr = NULL; 3732 _markBitMap.iterate(&markFromRootsClosure, ra, _span.end()); 3733 } 3734 return true; 3735 } 3736 3737 void CMSCollector::preclean() { 3738 check_correct_thread_executing(); 3739 assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread"); 3740 verify_work_stacks_empty(); 3741 verify_overflow_empty(); 3742 _abort_preclean = false; 3743 if (CMSPrecleaningEnabled) { 3744 if (!CMSEdenChunksRecordAlways) { 3745 _eden_chunk_index = 0; 3746 } 3747 size_t used = get_eden_used(); 3748 size_t capacity = get_eden_capacity(); 3749 // Don't start sampling unless we will get sufficiently 3750 // many samples. 3751 if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100) 3752 * CMSScheduleRemarkEdenPenetration)) { 3753 _start_sampling = true; 3754 } else { 3755 _start_sampling = false; 3756 } 3757 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 3758 CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails); 3759 preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1); 3760 } 3761 CMSTokenSync x(true); // is cms thread 3762 if (CMSPrecleaningEnabled) { 3763 sample_eden(); 3764 _collectorState = AbortablePreclean; 3765 } else { 3766 _collectorState = FinalMarking; 3767 } 3768 verify_work_stacks_empty(); 3769 verify_overflow_empty(); 3770 } 3771 3772 // Try and schedule the remark such that young gen 3773 // occupancy is CMSScheduleRemarkEdenPenetration %. 3774 void CMSCollector::abortable_preclean() { 3775 check_correct_thread_executing(); 3776 assert(CMSPrecleaningEnabled, "Inconsistent control state"); 3777 assert(_collectorState == AbortablePreclean, "Inconsistent control state"); 3778 3779 // If Eden's current occupancy is below this threshold, 3780 // immediately schedule the remark; else preclean 3781 // past the next scavenge in an effort to 3782 // schedule the pause as described above. By choosing 3783 // CMSScheduleRemarkEdenSizeThreshold >= max eden size 3784 // we will never do an actual abortable preclean cycle. 3785 if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) { 3786 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 3787 CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails); 3788 // We need more smarts in the abortable preclean 3789 // loop below to deal with cases where allocation 3790 // in young gen is very very slow, and our precleaning 3791 // is running a losing race against a horde of 3792 // mutators intent on flooding us with CMS updates 3793 // (dirty cards). 3794 // One, admittedly dumb, strategy is to give up 3795 // after a certain number of abortable precleaning loops 3796 // or after a certain maximum time. We want to make 3797 // this smarter in the next iteration. 3798 // XXX FIX ME!!! YSR 3799 size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0; 3800 while (!(should_abort_preclean() || 3801 ConcurrentMarkSweepThread::should_terminate())) { 3802 workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2); 3803 cumworkdone += workdone; 3804 loops++; 3805 // Voluntarily terminate abortable preclean phase if we have 3806 // been at it for too long. 3807 if ((CMSMaxAbortablePrecleanLoops != 0) && 3808 loops >= CMSMaxAbortablePrecleanLoops) { 3809 if (PrintGCDetails) { 3810 gclog_or_tty->print(" CMS: abort preclean due to loops "); 3811 } 3812 break; 3813 } 3814 if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) { 3815 if (PrintGCDetails) { 3816 gclog_or_tty->print(" CMS: abort preclean due to time "); 3817 } 3818 break; 3819 } 3820 // If we are doing little work each iteration, we should 3821 // take a short break. 3822 if (workdone < CMSAbortablePrecleanMinWorkPerIteration) { 3823 // Sleep for some time, waiting for work to accumulate 3824 stopTimer(); 3825 cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis); 3826 startTimer(); 3827 waited++; 3828 } 3829 } 3830 if (PrintCMSStatistics > 0) { 3831 gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ", 3832 loops, waited, cumworkdone); 3833 } 3834 } 3835 CMSTokenSync x(true); // is cms thread 3836 if (_collectorState != Idling) { 3837 assert(_collectorState == AbortablePreclean, 3838 "Spontaneous state transition?"); 3839 _collectorState = FinalMarking; 3840 } // Else, a foreground collection completed this CMS cycle. 3841 return; 3842 } 3843 3844 // Respond to an Eden sampling opportunity 3845 void CMSCollector::sample_eden() { 3846 // Make sure a young gc cannot sneak in between our 3847 // reading and recording of a sample. 3848 assert(Thread::current()->is_ConcurrentGC_thread(), 3849 "Only the cms thread may collect Eden samples"); 3850 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 3851 "Should collect samples while holding CMS token"); 3852 if (!_start_sampling) { 3853 return; 3854 } 3855 // When CMSEdenChunksRecordAlways is true, the eden chunk array 3856 // is populated by the young generation. 3857 if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) { 3858 if (_eden_chunk_index < _eden_chunk_capacity) { 3859 _eden_chunk_array[_eden_chunk_index] = *_top_addr; // take sample 3860 assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr, 3861 "Unexpected state of Eden"); 3862 // We'd like to check that what we just sampled is an oop-start address; 3863 // however, we cannot do that here since the object may not yet have been 3864 // initialized. So we'll instead do the check when we _use_ this sample 3865 // later. 3866 if (_eden_chunk_index == 0 || 3867 (pointer_delta(_eden_chunk_array[_eden_chunk_index], 3868 _eden_chunk_array[_eden_chunk_index-1]) 3869 >= CMSSamplingGrain)) { 3870 _eden_chunk_index++; // commit sample 3871 } 3872 } 3873 } 3874 if ((_collectorState == AbortablePreclean) && !_abort_preclean) { 3875 size_t used = get_eden_used(); 3876 size_t capacity = get_eden_capacity(); 3877 assert(used <= capacity, "Unexpected state of Eden"); 3878 if (used > (capacity/100 * CMSScheduleRemarkEdenPenetration)) { 3879 _abort_preclean = true; 3880 } 3881 } 3882 } 3883 3884 3885 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) { 3886 assert(_collectorState == Precleaning || 3887 _collectorState == AbortablePreclean, "incorrect state"); 3888 ResourceMark rm; 3889 HandleMark hm; 3890 3891 // Precleaning is currently not MT but the reference processor 3892 // may be set for MT. Disable it temporarily here. 3893 ReferenceProcessor* rp = ref_processor(); 3894 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false); 3895 3896 // Do one pass of scrubbing the discovered reference lists 3897 // to remove any reference objects with strongly-reachable 3898 // referents. 3899 if (clean_refs) { 3900 CMSPrecleanRefsYieldClosure yield_cl(this); 3901 assert(rp->span().equals(_span), "Spans should be equal"); 3902 CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap, 3903 &_markStack, true /* preclean */); 3904 CMSDrainMarkingStackClosure complete_trace(this, 3905 _span, &_markBitMap, &_markStack, 3906 &keep_alive, true /* preclean */); 3907 3908 // We don't want this step to interfere with a young 3909 // collection because we don't want to take CPU 3910 // or memory bandwidth away from the young GC threads 3911 // (which may be as many as there are CPUs). 3912 // Note that we don't need to protect ourselves from 3913 // interference with mutators because they can't 3914 // manipulate the discovered reference lists nor affect 3915 // the computed reachability of the referents, the 3916 // only properties manipulated by the precleaning 3917 // of these reference lists. 3918 stopTimer(); 3919 CMSTokenSyncWithLocks x(true /* is cms thread */, 3920 bitMapLock()); 3921 startTimer(); 3922 sample_eden(); 3923 3924 // The following will yield to allow foreground 3925 // collection to proceed promptly. XXX YSR: 3926 // The code in this method may need further 3927 // tweaking for better performance and some restructuring 3928 // for cleaner interfaces. 3929 GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases 3930 rp->preclean_discovered_references( 3931 rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl, 3932 gc_timer, _gc_tracer_cm->gc_id()); 3933 } 3934 3935 if (clean_survivor) { // preclean the active survivor space(s) 3936 PushAndMarkClosure pam_cl(this, _span, ref_processor(), 3937 &_markBitMap, &_modUnionTable, 3938 &_markStack, true /* precleaning phase */); 3939 stopTimer(); 3940 CMSTokenSyncWithLocks ts(true /* is cms thread */, 3941 bitMapLock()); 3942 startTimer(); 3943 unsigned int before_count = 3944 GenCollectedHeap::heap()->total_collections(); 3945 SurvivorSpacePrecleanClosure 3946 sss_cl(this, _span, &_markBitMap, &_markStack, 3947 &pam_cl, before_count, CMSYield); 3948 _young_gen->from()->object_iterate_careful(&sss_cl); 3949 _young_gen->to()->object_iterate_careful(&sss_cl); 3950 } 3951 MarkRefsIntoAndScanClosure 3952 mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable, 3953 &_markStack, this, CMSYield, 3954 true /* precleaning phase */); 3955 // CAUTION: The following closure has persistent state that may need to 3956 // be reset upon a decrease in the sequence of addresses it 3957 // processes. 3958 ScanMarkedObjectsAgainCarefullyClosure 3959 smoac_cl(this, _span, 3960 &_markBitMap, &_markStack, &mrias_cl, CMSYield); 3961 3962 // Preclean dirty cards in ModUnionTable and CardTable using 3963 // appropriate convergence criterion; 3964 // repeat CMSPrecleanIter times unless we find that 3965 // we are losing. 3966 assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large"); 3967 assert(CMSPrecleanNumerator < CMSPrecleanDenominator, 3968 "Bad convergence multiplier"); 3969 assert(CMSPrecleanThreshold >= 100, 3970 "Unreasonably low CMSPrecleanThreshold"); 3971 3972 size_t numIter, cumNumCards, lastNumCards, curNumCards; 3973 for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0; 3974 numIter < CMSPrecleanIter; 3975 numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) { 3976 curNumCards = preclean_mod_union_table(_cmsGen, &smoac_cl); 3977 if (Verbose && PrintGCDetails) { 3978 gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards); 3979 } 3980 // Either there are very few dirty cards, so re-mark 3981 // pause will be small anyway, or our pre-cleaning isn't 3982 // that much faster than the rate at which cards are being 3983 // dirtied, so we might as well stop and re-mark since 3984 // precleaning won't improve our re-mark time by much. 3985 if (curNumCards <= CMSPrecleanThreshold || 3986 (numIter > 0 && 3987 (curNumCards * CMSPrecleanDenominator > 3988 lastNumCards * CMSPrecleanNumerator))) { 3989 numIter++; 3990 cumNumCards += curNumCards; 3991 break; 3992 } 3993 } 3994 3995 preclean_klasses(&mrias_cl, _cmsGen->freelistLock()); 3996 3997 curNumCards = preclean_card_table(_cmsGen, &smoac_cl); 3998 cumNumCards += curNumCards; 3999 if (PrintGCDetails && PrintCMSStatistics != 0) { 4000 gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)", 4001 curNumCards, cumNumCards, numIter); 4002 } 4003 return cumNumCards; // as a measure of useful work done 4004 } 4005 4006 // PRECLEANING NOTES: 4007 // Precleaning involves: 4008 // . reading the bits of the modUnionTable and clearing the set bits. 4009 // . For the cards corresponding to the set bits, we scan the 4010 // objects on those cards. This means we need the free_list_lock 4011 // so that we can safely iterate over the CMS space when scanning 4012 // for oops. 4013 // . When we scan the objects, we'll be both reading and setting 4014 // marks in the marking bit map, so we'll need the marking bit map. 4015 // . For protecting _collector_state transitions, we take the CGC_lock. 4016 // Note that any races in the reading of of card table entries by the 4017 // CMS thread on the one hand and the clearing of those entries by the 4018 // VM thread or the setting of those entries by the mutator threads on the 4019 // other are quite benign. However, for efficiency it makes sense to keep 4020 // the VM thread from racing with the CMS thread while the latter is 4021 // dirty card info to the modUnionTable. We therefore also use the 4022 // CGC_lock to protect the reading of the card table and the mod union 4023 // table by the CM thread. 4024 // . We run concurrently with mutator updates, so scanning 4025 // needs to be done carefully -- we should not try to scan 4026 // potentially uninitialized objects. 4027 // 4028 // Locking strategy: While holding the CGC_lock, we scan over and 4029 // reset a maximal dirty range of the mod union / card tables, then lock 4030 // the free_list_lock and bitmap lock to do a full marking, then 4031 // release these locks; and repeat the cycle. This allows for a 4032 // certain amount of fairness in the sharing of these locks between 4033 // the CMS collector on the one hand, and the VM thread and the 4034 // mutators on the other. 4035 4036 // NOTE: preclean_mod_union_table() and preclean_card_table() 4037 // further below are largely identical; if you need to modify 4038 // one of these methods, please check the other method too. 4039 4040 size_t CMSCollector::preclean_mod_union_table( 4041 ConcurrentMarkSweepGeneration* old_gen, 4042 ScanMarkedObjectsAgainCarefullyClosure* cl) { 4043 verify_work_stacks_empty(); 4044 verify_overflow_empty(); 4045 4046 // strategy: starting with the first card, accumulate contiguous 4047 // ranges of dirty cards; clear these cards, then scan the region 4048 // covered by these cards. 4049 4050 // Since all of the MUT is committed ahead, we can just use 4051 // that, in case the generations expand while we are precleaning. 4052 // It might also be fine to just use the committed part of the 4053 // generation, but we might potentially miss cards when the 4054 // generation is rapidly expanding while we are in the midst 4055 // of precleaning. 4056 HeapWord* startAddr = old_gen->reserved().start(); 4057 HeapWord* endAddr = old_gen->reserved().end(); 4058 4059 cl->setFreelistLock(old_gen->freelistLock()); // needed for yielding 4060 4061 size_t numDirtyCards, cumNumDirtyCards; 4062 HeapWord *nextAddr, *lastAddr; 4063 for (cumNumDirtyCards = numDirtyCards = 0, 4064 nextAddr = lastAddr = startAddr; 4065 nextAddr < endAddr; 4066 nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { 4067 4068 ResourceMark rm; 4069 HandleMark hm; 4070 4071 MemRegion dirtyRegion; 4072 { 4073 stopTimer(); 4074 // Potential yield point 4075 CMSTokenSync ts(true); 4076 startTimer(); 4077 sample_eden(); 4078 // Get dirty region starting at nextOffset (inclusive), 4079 // simultaneously clearing it. 4080 dirtyRegion = 4081 _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr); 4082 assert(dirtyRegion.start() >= nextAddr, 4083 "returned region inconsistent?"); 4084 } 4085 // Remember where the next search should begin. 4086 // The returned region (if non-empty) is a right open interval, 4087 // so lastOffset is obtained from the right end of that 4088 // interval. 4089 lastAddr = dirtyRegion.end(); 4090 // Should do something more transparent and less hacky XXX 4091 numDirtyCards = 4092 _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size()); 4093 4094 // We'll scan the cards in the dirty region (with periodic 4095 // yields for foreground GC as needed). 4096 if (!dirtyRegion.is_empty()) { 4097 assert(numDirtyCards > 0, "consistency check"); 4098 HeapWord* stop_point = NULL; 4099 stopTimer(); 4100 // Potential yield point 4101 CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), 4102 bitMapLock()); 4103 startTimer(); 4104 { 4105 verify_work_stacks_empty(); 4106 verify_overflow_empty(); 4107 sample_eden(); 4108 stop_point = 4109 old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); 4110 } 4111 if (stop_point != NULL) { 4112 // The careful iteration stopped early either because it found an 4113 // uninitialized object, or because we were in the midst of an 4114 // "abortable preclean", which should now be aborted. Redirty 4115 // the bits corresponding to the partially-scanned or unscanned 4116 // cards. We'll either restart at the next block boundary or 4117 // abort the preclean. 4118 assert((_collectorState == AbortablePreclean && should_abort_preclean()), 4119 "Should only be AbortablePreclean."); 4120 _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end())); 4121 if (should_abort_preclean()) { 4122 break; // out of preclean loop 4123 } else { 4124 // Compute the next address at which preclean should pick up; 4125 // might need bitMapLock in order to read P-bits. 4126 lastAddr = next_card_start_after_block(stop_point); 4127 } 4128 } 4129 } else { 4130 assert(lastAddr == endAddr, "consistency check"); 4131 assert(numDirtyCards == 0, "consistency check"); 4132 break; 4133 } 4134 } 4135 verify_work_stacks_empty(); 4136 verify_overflow_empty(); 4137 return cumNumDirtyCards; 4138 } 4139 4140 // NOTE: preclean_mod_union_table() above and preclean_card_table() 4141 // below are largely identical; if you need to modify 4142 // one of these methods, please check the other method too. 4143 4144 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen, 4145 ScanMarkedObjectsAgainCarefullyClosure* cl) { 4146 // strategy: it's similar to precleamModUnionTable above, in that 4147 // we accumulate contiguous ranges of dirty cards, mark these cards 4148 // precleaned, then scan the region covered by these cards. 4149 HeapWord* endAddr = (HeapWord*)(old_gen->_virtual_space.high()); 4150 HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low()); 4151 4152 cl->setFreelistLock(old_gen->freelistLock()); // needed for yielding 4153 4154 size_t numDirtyCards, cumNumDirtyCards; 4155 HeapWord *lastAddr, *nextAddr; 4156 4157 for (cumNumDirtyCards = numDirtyCards = 0, 4158 nextAddr = lastAddr = startAddr; 4159 nextAddr < endAddr; 4160 nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { 4161 4162 ResourceMark rm; 4163 HandleMark hm; 4164 4165 MemRegion dirtyRegion; 4166 { 4167 // See comments in "Precleaning notes" above on why we 4168 // do this locking. XXX Could the locking overheads be 4169 // too high when dirty cards are sparse? [I don't think so.] 4170 stopTimer(); 4171 CMSTokenSync x(true); // is cms thread 4172 startTimer(); 4173 sample_eden(); 4174 // Get and clear dirty region from card table 4175 dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset( 4176 MemRegion(nextAddr, endAddr), 4177 true, 4178 CardTableModRefBS::precleaned_card_val()); 4179 4180 assert(dirtyRegion.start() >= nextAddr, 4181 "returned region inconsistent?"); 4182 } 4183 lastAddr = dirtyRegion.end(); 4184 numDirtyCards = 4185 dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words; 4186 4187 if (!dirtyRegion.is_empty()) { 4188 stopTimer(); 4189 CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock()); 4190 startTimer(); 4191 sample_eden(); 4192 verify_work_stacks_empty(); 4193 verify_overflow_empty(); 4194 HeapWord* stop_point = 4195 old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); 4196 if (stop_point != NULL) { 4197 assert((_collectorState == AbortablePreclean && should_abort_preclean()), 4198 "Should only be AbortablePreclean."); 4199 _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end())); 4200 if (should_abort_preclean()) { 4201 break; // out of preclean loop 4202 } else { 4203 // Compute the next address at which preclean should pick up. 4204 lastAddr = next_card_start_after_block(stop_point); 4205 } 4206 } 4207 } else { 4208 break; 4209 } 4210 } 4211 verify_work_stacks_empty(); 4212 verify_overflow_empty(); 4213 return cumNumDirtyCards; 4214 } 4215 4216 class PrecleanKlassClosure : public KlassClosure { 4217 KlassToOopClosure _cm_klass_closure; 4218 public: 4219 PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {} 4220 void do_klass(Klass* k) { 4221 if (k->has_accumulated_modified_oops()) { 4222 k->clear_accumulated_modified_oops(); 4223 4224 _cm_klass_closure.do_klass(k); 4225 } 4226 } 4227 }; 4228 4229 // The freelist lock is needed to prevent asserts, is it really needed? 4230 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) { 4231 4232 cl->set_freelistLock(freelistLock); 4233 4234 CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock()); 4235 4236 // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean? 4237 // SSS: We should probably check if precleaning should be aborted, at suitable intervals? 4238 PrecleanKlassClosure preclean_klass_closure(cl); 4239 ClassLoaderDataGraph::classes_do(&preclean_klass_closure); 4240 4241 verify_work_stacks_empty(); 4242 verify_overflow_empty(); 4243 } 4244 4245 void CMSCollector::checkpointRootsFinal() { 4246 assert(_collectorState == FinalMarking, "incorrect state transition?"); 4247 check_correct_thread_executing(); 4248 // world is stopped at this checkpoint 4249 assert(SafepointSynchronize::is_at_safepoint(), 4250 "world should be stopped"); 4251 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 4252 4253 verify_work_stacks_empty(); 4254 verify_overflow_empty(); 4255 4256 if (PrintGCDetails) { 4257 gclog_or_tty->print("[YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)]", 4258 _young_gen->used() / K, 4259 _young_gen->capacity() / K); 4260 } 4261 { 4262 if (CMSScavengeBeforeRemark) { 4263 GenCollectedHeap* gch = GenCollectedHeap::heap(); 4264 // Temporarily set flag to false, GCH->do_collection will 4265 // expect it to be false and set to true 4266 FlagSetting fl(gch->_is_gc_active, false); 4267 NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark", 4268 PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());) 4269 gch->do_collection(true, // full (i.e. force, see below) 4270 false, // !clear_all_soft_refs 4271 0, // size 4272 false, // is_tlab 4273 GenCollectedHeap::YoungGen // type 4274 ); 4275 } 4276 FreelistLocker x(this); 4277 MutexLockerEx y(bitMapLock(), 4278 Mutex::_no_safepoint_check_flag); 4279 checkpointRootsFinalWork(); 4280 } 4281 verify_work_stacks_empty(); 4282 verify_overflow_empty(); 4283 } 4284 4285 void CMSCollector::checkpointRootsFinalWork() { 4286 NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());) 4287 4288 assert(haveFreelistLocks(), "must have free list locks"); 4289 assert_lock_strong(bitMapLock()); 4290 4291 ResourceMark rm; 4292 HandleMark hm; 4293 4294 GenCollectedHeap* gch = GenCollectedHeap::heap(); 4295 4296 if (should_unload_classes()) { 4297 CodeCache::gc_prologue(); 4298 } 4299 assert(haveFreelistLocks(), "must have free list locks"); 4300 assert_lock_strong(bitMapLock()); 4301 4302 // We might assume that we need not fill TLAB's when 4303 // CMSScavengeBeforeRemark is set, because we may have just done 4304 // a scavenge which would have filled all TLAB's -- and besides 4305 // Eden would be empty. This however may not always be the case -- 4306 // for instance although we asked for a scavenge, it may not have 4307 // happened because of a JNI critical section. We probably need 4308 // a policy for deciding whether we can in that case wait until 4309 // the critical section releases and then do the remark following 4310 // the scavenge, and skip it here. In the absence of that policy, 4311 // or of an indication of whether the scavenge did indeed occur, 4312 // we cannot rely on TLAB's having been filled and must do 4313 // so here just in case a scavenge did not happen. 4314 gch->ensure_parsability(false); // fill TLAB's, but no need to retire them 4315 // Update the saved marks which may affect the root scans. 4316 gch->save_marks(); 4317 4318 if (CMSPrintEdenSurvivorChunks) { 4319 print_eden_and_survivor_chunk_arrays(); 4320 } 4321 4322 { 4323 #if defined(COMPILER2) || INCLUDE_JVMCI 4324 DerivedPointerTableDeactivate dpt_deact; 4325 #endif 4326 4327 // Note on the role of the mod union table: 4328 // Since the marker in "markFromRoots" marks concurrently with 4329 // mutators, it is possible for some reachable objects not to have been 4330 // scanned. For instance, an only reference to an object A was 4331 // placed in object B after the marker scanned B. Unless B is rescanned, 4332 // A would be collected. Such updates to references in marked objects 4333 // are detected via the mod union table which is the set of all cards 4334 // dirtied since the first checkpoint in this GC cycle and prior to 4335 // the most recent young generation GC, minus those cleaned up by the 4336 // concurrent precleaning. 4337 if (CMSParallelRemarkEnabled) { 4338 GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id()); 4339 do_remark_parallel(); 4340 } else { 4341 GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false, 4342 _gc_timer_cm, _gc_tracer_cm->gc_id()); 4343 do_remark_non_parallel(); 4344 } 4345 } 4346 verify_work_stacks_empty(); 4347 verify_overflow_empty(); 4348 4349 { 4350 NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());) 4351 refProcessingWork(); 4352 } 4353 verify_work_stacks_empty(); 4354 verify_overflow_empty(); 4355 4356 if (should_unload_classes()) { 4357 CodeCache::gc_epilogue(); 4358 } 4359 JvmtiExport::gc_epilogue(); 4360 4361 // If we encountered any (marking stack / work queue) overflow 4362 // events during the current CMS cycle, take appropriate 4363 // remedial measures, where possible, so as to try and avoid 4364 // recurrence of that condition. 4365 assert(_markStack.isEmpty(), "No grey objects"); 4366 size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw + 4367 _ser_kac_ovflw + _ser_kac_preclean_ovflw; 4368 if (ser_ovflw > 0) { 4369 if (PrintCMSStatistics != 0) { 4370 gclog_or_tty->print_cr("Marking stack overflow (benign) " 4371 "(pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT 4372 ", kac_preclean=" SIZE_FORMAT ")", 4373 _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, 4374 _ser_kac_ovflw, _ser_kac_preclean_ovflw); 4375 } 4376 _markStack.expand(); 4377 _ser_pmc_remark_ovflw = 0; 4378 _ser_pmc_preclean_ovflw = 0; 4379 _ser_kac_preclean_ovflw = 0; 4380 _ser_kac_ovflw = 0; 4381 } 4382 if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) { 4383 if (PrintCMSStatistics != 0) { 4384 gclog_or_tty->print_cr("Work queue overflow (benign) " 4385 "(pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")", 4386 _par_pmc_remark_ovflw, _par_kac_ovflw); 4387 } 4388 _par_pmc_remark_ovflw = 0; 4389 _par_kac_ovflw = 0; 4390 } 4391 if (PrintCMSStatistics != 0) { 4392 if (_markStack._hit_limit > 0) { 4393 gclog_or_tty->print_cr(" (benign) Hit max stack size limit (" SIZE_FORMAT ")", 4394 _markStack._hit_limit); 4395 } 4396 if (_markStack._failed_double > 0) { 4397 gclog_or_tty->print_cr(" (benign) Failed stack doubling (" SIZE_FORMAT ")," 4398 " current capacity " SIZE_FORMAT, 4399 _markStack._failed_double, 4400 _markStack.capacity()); 4401 } 4402 } 4403 _markStack._hit_limit = 0; 4404 _markStack._failed_double = 0; 4405 4406 if ((VerifyAfterGC || VerifyDuringGC) && 4407 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 4408 verify_after_remark(); 4409 } 4410 4411 _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure); 4412 4413 // Change under the freelistLocks. 4414 _collectorState = Sweeping; 4415 // Call isAllClear() under bitMapLock 4416 assert(_modUnionTable.isAllClear(), 4417 "Should be clear by end of the final marking"); 4418 assert(_ct->klass_rem_set()->mod_union_is_clear(), 4419 "Should be clear by end of the final marking"); 4420 } 4421 4422 void CMSParInitialMarkTask::work(uint worker_id) { 4423 elapsedTimer _timer; 4424 ResourceMark rm; 4425 HandleMark hm; 4426 4427 // ---------- scan from roots -------------- 4428 _timer.start(); 4429 GenCollectedHeap* gch = GenCollectedHeap::heap(); 4430 Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap)); 4431 4432 // ---------- young gen roots -------------- 4433 { 4434 work_on_young_gen_roots(worker_id, &par_mri_cl); 4435 _timer.stop(); 4436 if (PrintCMSStatistics != 0) { 4437 gclog_or_tty->print_cr( 4438 "Finished young gen initial mark scan work in %dth thread: %3.3f sec", 4439 worker_id, _timer.seconds()); 4440 } 4441 } 4442 4443 // ---------- remaining roots -------------- 4444 _timer.reset(); 4445 _timer.start(); 4446 4447 CLDToOopClosure cld_closure(&par_mri_cl, true); 4448 4449 gch->gen_process_roots(_strong_roots_scope, 4450 GenCollectedHeap::OldGen, 4451 false, // yg was scanned above 4452 GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()), 4453 _collector->should_unload_classes(), 4454 &par_mri_cl, 4455 NULL, 4456 &cld_closure); 4457 assert(_collector->should_unload_classes() 4458 || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache), 4459 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 4460 _timer.stop(); 4461 if (PrintCMSStatistics != 0) { 4462 gclog_or_tty->print_cr( 4463 "Finished remaining root initial mark scan work in %dth thread: %3.3f sec", 4464 worker_id, _timer.seconds()); 4465 } 4466 } 4467 4468 // Parallel remark task 4469 class CMSParRemarkTask: public CMSParMarkTask { 4470 CompactibleFreeListSpace* _cms_space; 4471 4472 // The per-thread work queues, available here for stealing. 4473 OopTaskQueueSet* _task_queues; 4474 ParallelTaskTerminator _term; 4475 StrongRootsScope* _strong_roots_scope; 4476 4477 public: 4478 // A value of 0 passed to n_workers will cause the number of 4479 // workers to be taken from the active workers in the work gang. 4480 CMSParRemarkTask(CMSCollector* collector, 4481 CompactibleFreeListSpace* cms_space, 4482 uint n_workers, WorkGang* workers, 4483 OopTaskQueueSet* task_queues, 4484 StrongRootsScope* strong_roots_scope): 4485 CMSParMarkTask("Rescan roots and grey objects in parallel", 4486 collector, n_workers), 4487 _cms_space(cms_space), 4488 _task_queues(task_queues), 4489 _term(n_workers, task_queues), 4490 _strong_roots_scope(strong_roots_scope) { } 4491 4492 OopTaskQueueSet* task_queues() { return _task_queues; } 4493 4494 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 4495 4496 ParallelTaskTerminator* terminator() { return &_term; } 4497 uint n_workers() { return _n_workers; } 4498 4499 void work(uint worker_id); 4500 4501 private: 4502 // ... of dirty cards in old space 4503 void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i, 4504 Par_MarkRefsIntoAndScanClosure* cl); 4505 4506 // ... work stealing for the above 4507 void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed); 4508 }; 4509 4510 class RemarkKlassClosure : public KlassClosure { 4511 KlassToOopClosure _cm_klass_closure; 4512 public: 4513 RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {} 4514 void do_klass(Klass* k) { 4515 // Check if we have modified any oops in the Klass during the concurrent marking. 4516 if (k->has_accumulated_modified_oops()) { 4517 k->clear_accumulated_modified_oops(); 4518 4519 // We could have transfered the current modified marks to the accumulated marks, 4520 // like we do with the Card Table to Mod Union Table. But it's not really necessary. 4521 } else if (k->has_modified_oops()) { 4522 // Don't clear anything, this info is needed by the next young collection. 4523 } else { 4524 // No modified oops in the Klass. 4525 return; 4526 } 4527 4528 // The klass has modified fields, need to scan the klass. 4529 _cm_klass_closure.do_klass(k); 4530 } 4531 }; 4532 4533 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) { 4534 ParNewGeneration* young_gen = _collector->_young_gen; 4535 ContiguousSpace* eden_space = young_gen->eden(); 4536 ContiguousSpace* from_space = young_gen->from(); 4537 ContiguousSpace* to_space = young_gen->to(); 4538 4539 HeapWord** eca = _collector->_eden_chunk_array; 4540 size_t ect = _collector->_eden_chunk_index; 4541 HeapWord** sca = _collector->_survivor_chunk_array; 4542 size_t sct = _collector->_survivor_chunk_index; 4543 4544 assert(ect <= _collector->_eden_chunk_capacity, "out of bounds"); 4545 assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds"); 4546 4547 do_young_space_rescan(worker_id, cl, to_space, NULL, 0); 4548 do_young_space_rescan(worker_id, cl, from_space, sca, sct); 4549 do_young_space_rescan(worker_id, cl, eden_space, eca, ect); 4550 } 4551 4552 // work_queue(i) is passed to the closure 4553 // Par_MarkRefsIntoAndScanClosure. The "i" parameter 4554 // also is passed to do_dirty_card_rescan_tasks() and to 4555 // do_work_steal() to select the i-th task_queue. 4556 4557 void CMSParRemarkTask::work(uint worker_id) { 4558 elapsedTimer _timer; 4559 ResourceMark rm; 4560 HandleMark hm; 4561 4562 // ---------- rescan from roots -------------- 4563 _timer.start(); 4564 GenCollectedHeap* gch = GenCollectedHeap::heap(); 4565 Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector, 4566 _collector->_span, _collector->ref_processor(), 4567 &(_collector->_markBitMap), 4568 work_queue(worker_id)); 4569 4570 // Rescan young gen roots first since these are likely 4571 // coarsely partitioned and may, on that account, constitute 4572 // the critical path; thus, it's best to start off that 4573 // work first. 4574 // ---------- young gen roots -------------- 4575 { 4576 work_on_young_gen_roots(worker_id, &par_mrias_cl); 4577 _timer.stop(); 4578 if (PrintCMSStatistics != 0) { 4579 gclog_or_tty->print_cr( 4580 "Finished young gen rescan work in %dth thread: %3.3f sec", 4581 worker_id, _timer.seconds()); 4582 } 4583 } 4584 4585 // ---------- remaining roots -------------- 4586 _timer.reset(); 4587 _timer.start(); 4588 gch->gen_process_roots(_strong_roots_scope, 4589 GenCollectedHeap::OldGen, 4590 false, // yg was scanned above 4591 GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()), 4592 _collector->should_unload_classes(), 4593 &par_mrias_cl, 4594 NULL, 4595 NULL); // The dirty klasses will be handled below 4596 4597 assert(_collector->should_unload_classes() 4598 || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache), 4599 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 4600 _timer.stop(); 4601 if (PrintCMSStatistics != 0) { 4602 gclog_or_tty->print_cr( 4603 "Finished remaining root rescan work in %dth thread: %3.3f sec", 4604 worker_id, _timer.seconds()); 4605 } 4606 4607 // ---------- unhandled CLD scanning ---------- 4608 if (worker_id == 0) { // Single threaded at the moment. 4609 _timer.reset(); 4610 _timer.start(); 4611 4612 // Scan all new class loader data objects and new dependencies that were 4613 // introduced during concurrent marking. 4614 ResourceMark rm; 4615 GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds(); 4616 for (int i = 0; i < array->length(); i++) { 4617 par_mrias_cl.do_cld_nv(array->at(i)); 4618 } 4619 4620 // We don't need to keep track of new CLDs anymore. 4621 ClassLoaderDataGraph::remember_new_clds(false); 4622 4623 _timer.stop(); 4624 if (PrintCMSStatistics != 0) { 4625 gclog_or_tty->print_cr( 4626 "Finished unhandled CLD scanning work in %dth thread: %3.3f sec", 4627 worker_id, _timer.seconds()); 4628 } 4629 } 4630 4631 // ---------- dirty klass scanning ---------- 4632 if (worker_id == 0) { // Single threaded at the moment. 4633 _timer.reset(); 4634 _timer.start(); 4635 4636 // Scan all classes that was dirtied during the concurrent marking phase. 4637 RemarkKlassClosure remark_klass_closure(&par_mrias_cl); 4638 ClassLoaderDataGraph::classes_do(&remark_klass_closure); 4639 4640 _timer.stop(); 4641 if (PrintCMSStatistics != 0) { 4642 gclog_or_tty->print_cr( 4643 "Finished dirty klass scanning work in %dth thread: %3.3f sec", 4644 worker_id, _timer.seconds()); 4645 } 4646 } 4647 4648 // We might have added oops to ClassLoaderData::_handles during the 4649 // concurrent marking phase. These oops point to newly allocated objects 4650 // that are guaranteed to be kept alive. Either by the direct allocation 4651 // code, or when the young collector processes the roots. Hence, 4652 // we don't have to revisit the _handles block during the remark phase. 4653 4654 // ---------- rescan dirty cards ------------ 4655 _timer.reset(); 4656 _timer.start(); 4657 4658 // Do the rescan tasks for each of the two spaces 4659 // (cms_space) in turn. 4660 // "worker_id" is passed to select the task_queue for "worker_id" 4661 do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl); 4662 _timer.stop(); 4663 if (PrintCMSStatistics != 0) { 4664 gclog_or_tty->print_cr( 4665 "Finished dirty card rescan work in %dth thread: %3.3f sec", 4666 worker_id, _timer.seconds()); 4667 } 4668 4669 // ---------- steal work from other threads ... 4670 // ---------- ... and drain overflow list. 4671 _timer.reset(); 4672 _timer.start(); 4673 do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id)); 4674 _timer.stop(); 4675 if (PrintCMSStatistics != 0) { 4676 gclog_or_tty->print_cr( 4677 "Finished work stealing in %dth thread: %3.3f sec", 4678 worker_id, _timer.seconds()); 4679 } 4680 } 4681 4682 // Note that parameter "i" is not used. 4683 void 4684 CMSParMarkTask::do_young_space_rescan(uint worker_id, 4685 OopsInGenClosure* cl, ContiguousSpace* space, 4686 HeapWord** chunk_array, size_t chunk_top) { 4687 // Until all tasks completed: 4688 // . claim an unclaimed task 4689 // . compute region boundaries corresponding to task claimed 4690 // using chunk_array 4691 // . par_oop_iterate(cl) over that region 4692 4693 ResourceMark rm; 4694 HandleMark hm; 4695 4696 SequentialSubTasksDone* pst = space->par_seq_tasks(); 4697 4698 uint nth_task = 0; 4699 uint n_tasks = pst->n_tasks(); 4700 4701 if (n_tasks > 0) { 4702 assert(pst->valid(), "Uninitialized use?"); 4703 HeapWord *start, *end; 4704 while (!pst->is_task_claimed(/* reference */ nth_task)) { 4705 // We claimed task # nth_task; compute its boundaries. 4706 if (chunk_top == 0) { // no samples were taken 4707 assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task"); 4708 start = space->bottom(); 4709 end = space->top(); 4710 } else if (nth_task == 0) { 4711 start = space->bottom(); 4712 end = chunk_array[nth_task]; 4713 } else if (nth_task < (uint)chunk_top) { 4714 assert(nth_task >= 1, "Control point invariant"); 4715 start = chunk_array[nth_task - 1]; 4716 end = chunk_array[nth_task]; 4717 } else { 4718 assert(nth_task == (uint)chunk_top, "Control point invariant"); 4719 start = chunk_array[chunk_top - 1]; 4720 end = space->top(); 4721 } 4722 MemRegion mr(start, end); 4723 // Verify that mr is in space 4724 assert(mr.is_empty() || space->used_region().contains(mr), 4725 "Should be in space"); 4726 // Verify that "start" is an object boundary 4727 assert(mr.is_empty() || oop(mr.start())->is_oop(), 4728 "Should be an oop"); 4729 space->par_oop_iterate(mr, cl); 4730 } 4731 pst->all_tasks_completed(); 4732 } 4733 } 4734 4735 void 4736 CMSParRemarkTask::do_dirty_card_rescan_tasks( 4737 CompactibleFreeListSpace* sp, int i, 4738 Par_MarkRefsIntoAndScanClosure* cl) { 4739 // Until all tasks completed: 4740 // . claim an unclaimed task 4741 // . compute region boundaries corresponding to task claimed 4742 // . transfer dirty bits ct->mut for that region 4743 // . apply rescanclosure to dirty mut bits for that region 4744 4745 ResourceMark rm; 4746 HandleMark hm; 4747 4748 OopTaskQueue* work_q = work_queue(i); 4749 ModUnionClosure modUnionClosure(&(_collector->_modUnionTable)); 4750 // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! 4751 // CAUTION: This closure has state that persists across calls to 4752 // the work method dirty_range_iterate_clear() in that it has 4753 // embedded in it a (subtype of) UpwardsObjectClosure. The 4754 // use of that state in the embedded UpwardsObjectClosure instance 4755 // assumes that the cards are always iterated (even if in parallel 4756 // by several threads) in monotonically increasing order per each 4757 // thread. This is true of the implementation below which picks 4758 // card ranges (chunks) in monotonically increasing order globally 4759 // and, a-fortiori, in monotonically increasing order per thread 4760 // (the latter order being a subsequence of the former). 4761 // If the work code below is ever reorganized into a more chaotic 4762 // work-partitioning form than the current "sequential tasks" 4763 // paradigm, the use of that persistent state will have to be 4764 // revisited and modified appropriately. See also related 4765 // bug 4756801 work on which should examine this code to make 4766 // sure that the changes there do not run counter to the 4767 // assumptions made here and necessary for correctness and 4768 // efficiency. Note also that this code might yield inefficient 4769 // behavior in the case of very large objects that span one or 4770 // more work chunks. Such objects would potentially be scanned 4771 // several times redundantly. Work on 4756801 should try and 4772 // address that performance anomaly if at all possible. XXX 4773 MemRegion full_span = _collector->_span; 4774 CMSBitMap* bm = &(_collector->_markBitMap); // shared 4775 MarkFromDirtyCardsClosure 4776 greyRescanClosure(_collector, full_span, // entire span of interest 4777 sp, bm, work_q, cl); 4778 4779 SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); 4780 assert(pst->valid(), "Uninitialized use?"); 4781 uint nth_task = 0; 4782 const int alignment = CardTableModRefBS::card_size * BitsPerWord; 4783 MemRegion span = sp->used_region(); 4784 HeapWord* start_addr = span.start(); 4785 HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(), 4786 alignment); 4787 const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units 4788 assert((HeapWord*)round_to((intptr_t)start_addr, alignment) == 4789 start_addr, "Check alignment"); 4790 assert((size_t)round_to((intptr_t)chunk_size, alignment) == 4791 chunk_size, "Check alignment"); 4792 4793 while (!pst->is_task_claimed(/* reference */ nth_task)) { 4794 // Having claimed the nth_task, compute corresponding mem-region, 4795 // which is a-fortiori aligned correctly (i.e. at a MUT boundary). 4796 // The alignment restriction ensures that we do not need any 4797 // synchronization with other gang-workers while setting or 4798 // clearing bits in thus chunk of the MUT. 4799 MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size, 4800 start_addr + (nth_task+1)*chunk_size); 4801 // The last chunk's end might be way beyond end of the 4802 // used region. In that case pull back appropriately. 4803 if (this_span.end() > end_addr) { 4804 this_span.set_end(end_addr); 4805 assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)"); 4806 } 4807 // Iterate over the dirty cards covering this chunk, marking them 4808 // precleaned, and setting the corresponding bits in the mod union 4809 // table. Since we have been careful to partition at Card and MUT-word 4810 // boundaries no synchronization is needed between parallel threads. 4811 _collector->_ct->ct_bs()->dirty_card_iterate(this_span, 4812 &modUnionClosure); 4813 4814 // Having transferred these marks into the modUnionTable, 4815 // rescan the marked objects on the dirty cards in the modUnionTable. 4816 // Even if this is at a synchronous collection, the initial marking 4817 // may have been done during an asynchronous collection so there 4818 // may be dirty bits in the mod-union table. 4819 _collector->_modUnionTable.dirty_range_iterate_clear( 4820 this_span, &greyRescanClosure); 4821 _collector->_modUnionTable.verifyNoOneBitsInRange( 4822 this_span.start(), 4823 this_span.end()); 4824 } 4825 pst->all_tasks_completed(); // declare that i am done 4826 } 4827 4828 // . see if we can share work_queues with ParNew? XXX 4829 void 4830 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, 4831 int* seed) { 4832 OopTaskQueue* work_q = work_queue(i); 4833 NOT_PRODUCT(int num_steals = 0;) 4834 oop obj_to_scan; 4835 CMSBitMap* bm = &(_collector->_markBitMap); 4836 4837 while (true) { 4838 // Completely finish any left over work from (an) earlier round(s) 4839 cl->trim_queue(0); 4840 size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 4841 (size_t)ParGCDesiredObjsFromOverflowList); 4842 // Now check if there's any work in the overflow list 4843 // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, 4844 // only affects the number of attempts made to get work from the 4845 // overflow list and does not affect the number of workers. Just 4846 // pass ParallelGCThreads so this behavior is unchanged. 4847 if (_collector->par_take_from_overflow_list(num_from_overflow_list, 4848 work_q, 4849 ParallelGCThreads)) { 4850 // found something in global overflow list; 4851 // not yet ready to go stealing work from others. 4852 // We'd like to assert(work_q->size() != 0, ...) 4853 // because we just took work from the overflow list, 4854 // but of course we can't since all of that could have 4855 // been already stolen from us. 4856 // "He giveth and He taketh away." 4857 continue; 4858 } 4859 // Verify that we have no work before we resort to stealing 4860 assert(work_q->size() == 0, "Have work, shouldn't steal"); 4861 // Try to steal from other queues that have work 4862 if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 4863 NOT_PRODUCT(num_steals++;) 4864 assert(obj_to_scan->is_oop(), "Oops, not an oop!"); 4865 assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?"); 4866 // Do scanning work 4867 obj_to_scan->oop_iterate(cl); 4868 // Loop around, finish this work, and try to steal some more 4869 } else if (terminator()->offer_termination()) { 4870 break; // nirvana from the infinite cycle 4871 } 4872 } 4873 NOT_PRODUCT( 4874 if (PrintCMSStatistics != 0) { 4875 gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals); 4876 } 4877 ) 4878 assert(work_q->size() == 0 && _collector->overflow_list_is_empty(), 4879 "Else our work is not yet done"); 4880 } 4881 4882 // Record object boundaries in _eden_chunk_array by sampling the eden 4883 // top in the slow-path eden object allocation code path and record 4884 // the boundaries, if CMSEdenChunksRecordAlways is true. If 4885 // CMSEdenChunksRecordAlways is false, we use the other asynchronous 4886 // sampling in sample_eden() that activates during the part of the 4887 // preclean phase. 4888 void CMSCollector::sample_eden_chunk() { 4889 if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) { 4890 if (_eden_chunk_lock->try_lock()) { 4891 // Record a sample. This is the critical section. The contents 4892 // of the _eden_chunk_array have to be non-decreasing in the 4893 // address order. 4894 _eden_chunk_array[_eden_chunk_index] = *_top_addr; 4895 assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr, 4896 "Unexpected state of Eden"); 4897 if (_eden_chunk_index == 0 || 4898 ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) && 4899 (pointer_delta(_eden_chunk_array[_eden_chunk_index], 4900 _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) { 4901 _eden_chunk_index++; // commit sample 4902 } 4903 _eden_chunk_lock->unlock(); 4904 } 4905 } 4906 } 4907 4908 // Return a thread-local PLAB recording array, as appropriate. 4909 void* CMSCollector::get_data_recorder(int thr_num) { 4910 if (_survivor_plab_array != NULL && 4911 (CMSPLABRecordAlways || 4912 (_collectorState > Marking && _collectorState < FinalMarking))) { 4913 assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds"); 4914 ChunkArray* ca = &_survivor_plab_array[thr_num]; 4915 ca->reset(); // clear it so that fresh data is recorded 4916 return (void*) ca; 4917 } else { 4918 return NULL; 4919 } 4920 } 4921 4922 // Reset all the thread-local PLAB recording arrays 4923 void CMSCollector::reset_survivor_plab_arrays() { 4924 for (uint i = 0; i < ParallelGCThreads; i++) { 4925 _survivor_plab_array[i].reset(); 4926 } 4927 } 4928 4929 // Merge the per-thread plab arrays into the global survivor chunk 4930 // array which will provide the partitioning of the survivor space 4931 // for CMS initial scan and rescan. 4932 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv, 4933 int no_of_gc_threads) { 4934 assert(_survivor_plab_array != NULL, "Error"); 4935 assert(_survivor_chunk_array != NULL, "Error"); 4936 assert(_collectorState == FinalMarking || 4937 (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error"); 4938 for (int j = 0; j < no_of_gc_threads; j++) { 4939 _cursor[j] = 0; 4940 } 4941 HeapWord* top = surv->top(); 4942 size_t i; 4943 for (i = 0; i < _survivor_chunk_capacity; i++) { // all sca entries 4944 HeapWord* min_val = top; // Higher than any PLAB address 4945 uint min_tid = 0; // position of min_val this round 4946 for (int j = 0; j < no_of_gc_threads; j++) { 4947 ChunkArray* cur_sca = &_survivor_plab_array[j]; 4948 if (_cursor[j] == cur_sca->end()) { 4949 continue; 4950 } 4951 assert(_cursor[j] < cur_sca->end(), "ctl pt invariant"); 4952 HeapWord* cur_val = cur_sca->nth(_cursor[j]); 4953 assert(surv->used_region().contains(cur_val), "Out of bounds value"); 4954 if (cur_val < min_val) { 4955 min_tid = j; 4956 min_val = cur_val; 4957 } else { 4958 assert(cur_val < top, "All recorded addresses should be less"); 4959 } 4960 } 4961 // At this point min_val and min_tid are respectively 4962 // the least address in _survivor_plab_array[j]->nth(_cursor[j]) 4963 // and the thread (j) that witnesses that address. 4964 // We record this address in the _survivor_chunk_array[i] 4965 // and increment _cursor[min_tid] prior to the next round i. 4966 if (min_val == top) { 4967 break; 4968 } 4969 _survivor_chunk_array[i] = min_val; 4970 _cursor[min_tid]++; 4971 } 4972 // We are all done; record the size of the _survivor_chunk_array 4973 _survivor_chunk_index = i; // exclusive: [0, i) 4974 if (PrintCMSStatistics > 0) { 4975 gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i); 4976 } 4977 // Verify that we used up all the recorded entries 4978 #ifdef ASSERT 4979 size_t total = 0; 4980 for (int j = 0; j < no_of_gc_threads; j++) { 4981 assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant"); 4982 total += _cursor[j]; 4983 } 4984 assert(total == _survivor_chunk_index, "Ctl Pt Invariant"); 4985 // Check that the merged array is in sorted order 4986 if (total > 0) { 4987 for (size_t i = 0; i < total - 1; i++) { 4988 if (PrintCMSStatistics > 0) { 4989 gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ", 4990 i, p2i(_survivor_chunk_array[i])); 4991 } 4992 assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1], 4993 "Not sorted"); 4994 } 4995 } 4996 #endif // ASSERT 4997 } 4998 4999 // Set up the space's par_seq_tasks structure for work claiming 5000 // for parallel initial scan and rescan of young gen. 5001 // See ParRescanTask where this is currently used. 5002 void 5003 CMSCollector:: 5004 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) { 5005 assert(n_threads > 0, "Unexpected n_threads argument"); 5006 5007 // Eden space 5008 if (!_young_gen->eden()->is_empty()) { 5009 SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks(); 5010 assert(!pst->valid(), "Clobbering existing data?"); 5011 // Each valid entry in [0, _eden_chunk_index) represents a task. 5012 size_t n_tasks = _eden_chunk_index + 1; 5013 assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error"); 5014 // Sets the condition for completion of the subtask (how many threads 5015 // need to finish in order to be done). 5016 pst->set_n_threads(n_threads); 5017 pst->set_n_tasks((int)n_tasks); 5018 } 5019 5020 // Merge the survivor plab arrays into _survivor_chunk_array 5021 if (_survivor_plab_array != NULL) { 5022 merge_survivor_plab_arrays(_young_gen->from(), n_threads); 5023 } else { 5024 assert(_survivor_chunk_index == 0, "Error"); 5025 } 5026 5027 // To space 5028 { 5029 SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks(); 5030 assert(!pst->valid(), "Clobbering existing data?"); 5031 // Sets the condition for completion of the subtask (how many threads 5032 // need to finish in order to be done). 5033 pst->set_n_threads(n_threads); 5034 pst->set_n_tasks(1); 5035 assert(pst->valid(), "Error"); 5036 } 5037 5038 // From space 5039 { 5040 SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks(); 5041 assert(!pst->valid(), "Clobbering existing data?"); 5042 size_t n_tasks = _survivor_chunk_index + 1; 5043 assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error"); 5044 // Sets the condition for completion of the subtask (how many threads 5045 // need to finish in order to be done). 5046 pst->set_n_threads(n_threads); 5047 pst->set_n_tasks((int)n_tasks); 5048 assert(pst->valid(), "Error"); 5049 } 5050 } 5051 5052 // Parallel version of remark 5053 void CMSCollector::do_remark_parallel() { 5054 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5055 WorkGang* workers = gch->workers(); 5056 assert(workers != NULL, "Need parallel worker threads."); 5057 // Choose to use the number of GC workers most recently set 5058 // into "active_workers". 5059 uint n_workers = workers->active_workers(); 5060 5061 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 5062 5063 StrongRootsScope srs(n_workers); 5064 5065 CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs); 5066 5067 // We won't be iterating over the cards in the card table updating 5068 // the younger_gen cards, so we shouldn't call the following else 5069 // the verification code as well as subsequent younger_refs_iterate 5070 // code would get confused. XXX 5071 // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel 5072 5073 // The young gen rescan work will not be done as part of 5074 // process_roots (which currently doesn't know how to 5075 // parallelize such a scan), but rather will be broken up into 5076 // a set of parallel tasks (via the sampling that the [abortable] 5077 // preclean phase did of eden, plus the [two] tasks of 5078 // scanning the [two] survivor spaces. Further fine-grain 5079 // parallelization of the scanning of the survivor spaces 5080 // themselves, and of precleaning of the young gen itself 5081 // is deferred to the future. 5082 initialize_sequential_subtasks_for_young_gen_rescan(n_workers); 5083 5084 // The dirty card rescan work is broken up into a "sequence" 5085 // of parallel tasks (per constituent space) that are dynamically 5086 // claimed by the parallel threads. 5087 cms_space->initialize_sequential_subtasks_for_rescan(n_workers); 5088 5089 // It turns out that even when we're using 1 thread, doing the work in a 5090 // separate thread causes wide variance in run times. We can't help this 5091 // in the multi-threaded case, but we special-case n=1 here to get 5092 // repeatable measurements of the 1-thread overhead of the parallel code. 5093 if (n_workers > 1) { 5094 // Make refs discovery MT-safe, if it isn't already: it may not 5095 // necessarily be so, since it's possible that we are doing 5096 // ST marking. 5097 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true); 5098 workers->run_task(&tsk); 5099 } else { 5100 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); 5101 tsk.work(0); 5102 } 5103 5104 // restore, single-threaded for now, any preserved marks 5105 // as a result of work_q overflow 5106 restore_preserved_marks_if_any(); 5107 } 5108 5109 // Non-parallel version of remark 5110 void CMSCollector::do_remark_non_parallel() { 5111 ResourceMark rm; 5112 HandleMark hm; 5113 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5114 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); 5115 5116 MarkRefsIntoAndScanClosure 5117 mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */, 5118 &_markStack, this, 5119 false /* should_yield */, false /* not precleaning */); 5120 MarkFromDirtyCardsClosure 5121 markFromDirtyCardsClosure(this, _span, 5122 NULL, // space is set further below 5123 &_markBitMap, &_markStack, &mrias_cl); 5124 { 5125 GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id()); 5126 // Iterate over the dirty cards, setting the corresponding bits in the 5127 // mod union table. 5128 { 5129 ModUnionClosure modUnionClosure(&_modUnionTable); 5130 _ct->ct_bs()->dirty_card_iterate( 5131 _cmsGen->used_region(), 5132 &modUnionClosure); 5133 } 5134 // Having transferred these marks into the modUnionTable, we just need 5135 // to rescan the marked objects on the dirty cards in the modUnionTable. 5136 // The initial marking may have been done during an asynchronous 5137 // collection so there may be dirty bits in the mod-union table. 5138 const int alignment = 5139 CardTableModRefBS::card_size * BitsPerWord; 5140 { 5141 // ... First handle dirty cards in CMS gen 5142 markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace()); 5143 MemRegion ur = _cmsGen->used_region(); 5144 HeapWord* lb = ur.start(); 5145 HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment); 5146 MemRegion cms_span(lb, ub); 5147 _modUnionTable.dirty_range_iterate_clear(cms_span, 5148 &markFromDirtyCardsClosure); 5149 verify_work_stacks_empty(); 5150 if (PrintCMSStatistics != 0) { 5151 gclog_or_tty->print(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", 5152 markFromDirtyCardsClosure.num_dirty_cards()); 5153 } 5154 } 5155 } 5156 if (VerifyDuringGC && 5157 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 5158 HandleMark hm; // Discard invalid handles created during verification 5159 Universe::verify(); 5160 } 5161 { 5162 GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id()); 5163 5164 verify_work_stacks_empty(); 5165 5166 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 5167 StrongRootsScope srs(1); 5168 5169 gch->gen_process_roots(&srs, 5170 GenCollectedHeap::OldGen, 5171 true, // young gen as roots 5172 GenCollectedHeap::ScanningOption(roots_scanning_options()), 5173 should_unload_classes(), 5174 &mrias_cl, 5175 NULL, 5176 NULL); // The dirty klasses will be handled below 5177 5178 assert(should_unload_classes() 5179 || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache), 5180 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 5181 } 5182 5183 { 5184 GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id()); 5185 5186 verify_work_stacks_empty(); 5187 5188 // Scan all class loader data objects that might have been introduced 5189 // during concurrent marking. 5190 ResourceMark rm; 5191 GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds(); 5192 for (int i = 0; i < array->length(); i++) { 5193 mrias_cl.do_cld_nv(array->at(i)); 5194 } 5195 5196 // We don't need to keep track of new CLDs anymore. 5197 ClassLoaderDataGraph::remember_new_clds(false); 5198 5199 verify_work_stacks_empty(); 5200 } 5201 5202 { 5203 GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id()); 5204 5205 verify_work_stacks_empty(); 5206 5207 RemarkKlassClosure remark_klass_closure(&mrias_cl); 5208 ClassLoaderDataGraph::classes_do(&remark_klass_closure); 5209 5210 verify_work_stacks_empty(); 5211 } 5212 5213 // We might have added oops to ClassLoaderData::_handles during the 5214 // concurrent marking phase. These oops point to newly allocated objects 5215 // that are guaranteed to be kept alive. Either by the direct allocation 5216 // code, or when the young collector processes the roots. Hence, 5217 // we don't have to revisit the _handles block during the remark phase. 5218 5219 verify_work_stacks_empty(); 5220 // Restore evacuated mark words, if any, used for overflow list links 5221 if (!CMSOverflowEarlyRestoration) { 5222 restore_preserved_marks_if_any(); 5223 } 5224 verify_overflow_empty(); 5225 } 5226 5227 //////////////////////////////////////////////////////// 5228 // Parallel Reference Processing Task Proxy Class 5229 //////////////////////////////////////////////////////// 5230 class AbstractGangTaskWOopQueues : public AbstractGangTask { 5231 OopTaskQueueSet* _queues; 5232 ParallelTaskTerminator _terminator; 5233 public: 5234 AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) : 5235 AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {} 5236 ParallelTaskTerminator* terminator() { return &_terminator; } 5237 OopTaskQueueSet* queues() { return _queues; } 5238 }; 5239 5240 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues { 5241 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 5242 CMSCollector* _collector; 5243 CMSBitMap* _mark_bit_map; 5244 const MemRegion _span; 5245 ProcessTask& _task; 5246 5247 public: 5248 CMSRefProcTaskProxy(ProcessTask& task, 5249 CMSCollector* collector, 5250 const MemRegion& span, 5251 CMSBitMap* mark_bit_map, 5252 AbstractWorkGang* workers, 5253 OopTaskQueueSet* task_queues): 5254 AbstractGangTaskWOopQueues("Process referents by policy in parallel", 5255 task_queues, 5256 workers->active_workers()), 5257 _task(task), 5258 _collector(collector), _span(span), _mark_bit_map(mark_bit_map) 5259 { 5260 assert(_collector->_span.equals(_span) && !_span.is_empty(), 5261 "Inconsistency in _span"); 5262 } 5263 5264 OopTaskQueueSet* task_queues() { return queues(); } 5265 5266 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 5267 5268 void do_work_steal(int i, 5269 CMSParDrainMarkingStackClosure* drain, 5270 CMSParKeepAliveClosure* keep_alive, 5271 int* seed); 5272 5273 virtual void work(uint worker_id); 5274 }; 5275 5276 void CMSRefProcTaskProxy::work(uint worker_id) { 5277 ResourceMark rm; 5278 HandleMark hm; 5279 assert(_collector->_span.equals(_span), "Inconsistency in _span"); 5280 CMSParKeepAliveClosure par_keep_alive(_collector, _span, 5281 _mark_bit_map, 5282 work_queue(worker_id)); 5283 CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span, 5284 _mark_bit_map, 5285 work_queue(worker_id)); 5286 CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map); 5287 _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack); 5288 if (_task.marks_oops_alive()) { 5289 do_work_steal(worker_id, &par_drain_stack, &par_keep_alive, 5290 _collector->hash_seed(worker_id)); 5291 } 5292 assert(work_queue(worker_id)->size() == 0, "work_queue should be empty"); 5293 assert(_collector->_overflow_list == NULL, "non-empty _overflow_list"); 5294 } 5295 5296 class CMSRefEnqueueTaskProxy: public AbstractGangTask { 5297 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 5298 EnqueueTask& _task; 5299 5300 public: 5301 CMSRefEnqueueTaskProxy(EnqueueTask& task) 5302 : AbstractGangTask("Enqueue reference objects in parallel"), 5303 _task(task) 5304 { } 5305 5306 virtual void work(uint worker_id) 5307 { 5308 _task.work(worker_id); 5309 } 5310 }; 5311 5312 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector, 5313 MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue): 5314 _span(span), 5315 _bit_map(bit_map), 5316 _work_queue(work_queue), 5317 _mark_and_push(collector, span, bit_map, work_queue), 5318 _low_water_mark(MIN2((work_queue->max_elems()/4), 5319 ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))) 5320 { } 5321 5322 // . see if we can share work_queues with ParNew? XXX 5323 void CMSRefProcTaskProxy::do_work_steal(int i, 5324 CMSParDrainMarkingStackClosure* drain, 5325 CMSParKeepAliveClosure* keep_alive, 5326 int* seed) { 5327 OopTaskQueue* work_q = work_queue(i); 5328 NOT_PRODUCT(int num_steals = 0;) 5329 oop obj_to_scan; 5330 5331 while (true) { 5332 // Completely finish any left over work from (an) earlier round(s) 5333 drain->trim_queue(0); 5334 size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 5335 (size_t)ParGCDesiredObjsFromOverflowList); 5336 // Now check if there's any work in the overflow list 5337 // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, 5338 // only affects the number of attempts made to get work from the 5339 // overflow list and does not affect the number of workers. Just 5340 // pass ParallelGCThreads so this behavior is unchanged. 5341 if (_collector->par_take_from_overflow_list(num_from_overflow_list, 5342 work_q, 5343 ParallelGCThreads)) { 5344 // Found something in global overflow list; 5345 // not yet ready to go stealing work from others. 5346 // We'd like to assert(work_q->size() != 0, ...) 5347 // because we just took work from the overflow list, 5348 // but of course we can't, since all of that might have 5349 // been already stolen from us. 5350 continue; 5351 } 5352 // Verify that we have no work before we resort to stealing 5353 assert(work_q->size() == 0, "Have work, shouldn't steal"); 5354 // Try to steal from other queues that have work 5355 if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 5356 NOT_PRODUCT(num_steals++;) 5357 assert(obj_to_scan->is_oop(), "Oops, not an oop!"); 5358 assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?"); 5359 // Do scanning work 5360 obj_to_scan->oop_iterate(keep_alive); 5361 // Loop around, finish this work, and try to steal some more 5362 } else if (terminator()->offer_termination()) { 5363 break; // nirvana from the infinite cycle 5364 } 5365 } 5366 NOT_PRODUCT( 5367 if (PrintCMSStatistics != 0) { 5368 gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals); 5369 } 5370 ) 5371 } 5372 5373 void CMSRefProcTaskExecutor::execute(ProcessTask& task) 5374 { 5375 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5376 WorkGang* workers = gch->workers(); 5377 assert(workers != NULL, "Need parallel worker threads."); 5378 CMSRefProcTaskProxy rp_task(task, &_collector, 5379 _collector.ref_processor()->span(), 5380 _collector.markBitMap(), 5381 workers, _collector.task_queues()); 5382 workers->run_task(&rp_task); 5383 } 5384 5385 void CMSRefProcTaskExecutor::execute(EnqueueTask& task) 5386 { 5387 5388 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5389 WorkGang* workers = gch->workers(); 5390 assert(workers != NULL, "Need parallel worker threads."); 5391 CMSRefEnqueueTaskProxy enq_task(task); 5392 workers->run_task(&enq_task); 5393 } 5394 5395 void CMSCollector::refProcessingWork() { 5396 ResourceMark rm; 5397 HandleMark hm; 5398 5399 ReferenceProcessor* rp = ref_processor(); 5400 assert(rp->span().equals(_span), "Spans should be equal"); 5401 assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete"); 5402 // Process weak references. 5403 rp->setup_policy(false); 5404 verify_work_stacks_empty(); 5405 5406 CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap, 5407 &_markStack, false /* !preclean */); 5408 CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this, 5409 _span, &_markBitMap, &_markStack, 5410 &cmsKeepAliveClosure, false /* !preclean */); 5411 { 5412 GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id()); 5413 5414 ReferenceProcessorStats stats; 5415 if (rp->processing_is_mt()) { 5416 // Set the degree of MT here. If the discovery is done MT, there 5417 // may have been a different number of threads doing the discovery 5418 // and a different number of discovered lists may have Ref objects. 5419 // That is OK as long as the Reference lists are balanced (see 5420 // balance_all_queues() and balance_queues()). 5421 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5422 uint active_workers = ParallelGCThreads; 5423 WorkGang* workers = gch->workers(); 5424 if (workers != NULL) { 5425 active_workers = workers->active_workers(); 5426 // The expectation is that active_workers will have already 5427 // been set to a reasonable value. If it has not been set, 5428 // investigate. 5429 assert(active_workers > 0, "Should have been set during scavenge"); 5430 } 5431 rp->set_active_mt_degree(active_workers); 5432 CMSRefProcTaskExecutor task_executor(*this); 5433 stats = rp->process_discovered_references(&_is_alive_closure, 5434 &cmsKeepAliveClosure, 5435 &cmsDrainMarkingStackClosure, 5436 &task_executor, 5437 _gc_timer_cm, 5438 _gc_tracer_cm->gc_id()); 5439 } else { 5440 stats = rp->process_discovered_references(&_is_alive_closure, 5441 &cmsKeepAliveClosure, 5442 &cmsDrainMarkingStackClosure, 5443 NULL, 5444 _gc_timer_cm, 5445 _gc_tracer_cm->gc_id()); 5446 } 5447 _gc_tracer_cm->report_gc_reference_stats(stats); 5448 5449 } 5450 5451 // This is the point where the entire marking should have completed. 5452 verify_work_stacks_empty(); 5453 5454 if (should_unload_classes()) { 5455 { 5456 GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id()); 5457 5458 // Unload classes and purge the SystemDictionary. 5459 bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure); 5460 5461 // Unload nmethods. 5462 CodeCache::do_unloading(&_is_alive_closure, purged_class); 5463 5464 // Prune dead klasses from subklass/sibling/implementor lists. 5465 Klass::clean_weak_klass_links(&_is_alive_closure); 5466 } 5467 5468 { 5469 GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id()); 5470 // Clean up unreferenced symbols in symbol table. 5471 SymbolTable::unlink(); 5472 } 5473 5474 { 5475 GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id()); 5476 // Delete entries for dead interned strings. 5477 StringTable::unlink(&_is_alive_closure); 5478 } 5479 } 5480 5481 5482 // Restore any preserved marks as a result of mark stack or 5483 // work queue overflow 5484 restore_preserved_marks_if_any(); // done single-threaded for now 5485 5486 rp->set_enqueuing_is_done(true); 5487 if (rp->processing_is_mt()) { 5488 rp->balance_all_queues(); 5489 CMSRefProcTaskExecutor task_executor(*this); 5490 rp->enqueue_discovered_references(&task_executor); 5491 } else { 5492 rp->enqueue_discovered_references(NULL); 5493 } 5494 rp->verify_no_references_recorded(); 5495 assert(!rp->discovery_enabled(), "should have been disabled"); 5496 } 5497 5498 #ifndef PRODUCT 5499 void CMSCollector::check_correct_thread_executing() { 5500 Thread* t = Thread::current(); 5501 // Only the VM thread or the CMS thread should be here. 5502 assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(), 5503 "Unexpected thread type"); 5504 // If this is the vm thread, the foreground process 5505 // should not be waiting. Note that _foregroundGCIsActive is 5506 // true while the foreground collector is waiting. 5507 if (_foregroundGCShouldWait) { 5508 // We cannot be the VM thread 5509 assert(t->is_ConcurrentGC_thread(), 5510 "Should be CMS thread"); 5511 } else { 5512 // We can be the CMS thread only if we are in a stop-world 5513 // phase of CMS collection. 5514 if (t->is_ConcurrentGC_thread()) { 5515 assert(_collectorState == InitialMarking || 5516 _collectorState == FinalMarking, 5517 "Should be a stop-world phase"); 5518 // The CMS thread should be holding the CMS_token. 5519 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 5520 "Potential interference with concurrently " 5521 "executing VM thread"); 5522 } 5523 } 5524 } 5525 #endif 5526 5527 void CMSCollector::sweep() { 5528 assert(_collectorState == Sweeping, "just checking"); 5529 check_correct_thread_executing(); 5530 verify_work_stacks_empty(); 5531 verify_overflow_empty(); 5532 increment_sweep_count(); 5533 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 5534 5535 _inter_sweep_timer.stop(); 5536 _inter_sweep_estimate.sample(_inter_sweep_timer.seconds()); 5537 5538 assert(!_intra_sweep_timer.is_active(), "Should not be active"); 5539 _intra_sweep_timer.reset(); 5540 _intra_sweep_timer.start(); 5541 { 5542 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 5543 CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails); 5544 // First sweep the old gen 5545 { 5546 CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(), 5547 bitMapLock()); 5548 sweepWork(_cmsGen); 5549 } 5550 5551 // Update Universe::_heap_*_at_gc figures. 5552 // We need all the free list locks to make the abstract state 5553 // transition from Sweeping to Resetting. See detailed note 5554 // further below. 5555 { 5556 CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock()); 5557 // Update heap occupancy information which is used as 5558 // input to soft ref clearing policy at the next gc. 5559 Universe::update_heap_info_at_gc(); 5560 _collectorState = Resizing; 5561 } 5562 } 5563 verify_work_stacks_empty(); 5564 verify_overflow_empty(); 5565 5566 if (should_unload_classes()) { 5567 // Delay purge to the beginning of the next safepoint. Metaspace::contains 5568 // requires that the virtual spaces are stable and not deleted. 5569 ClassLoaderDataGraph::set_should_purge(true); 5570 } 5571 5572 _intra_sweep_timer.stop(); 5573 _intra_sweep_estimate.sample(_intra_sweep_timer.seconds()); 5574 5575 _inter_sweep_timer.reset(); 5576 _inter_sweep_timer.start(); 5577 5578 // We need to use a monotonically non-decreasing time in ms 5579 // or we will see time-warp warnings and os::javaTimeMillis() 5580 // does not guarantee monotonicity. 5581 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 5582 update_time_of_last_gc(now); 5583 5584 // NOTE on abstract state transitions: 5585 // Mutators allocate-live and/or mark the mod-union table dirty 5586 // based on the state of the collection. The former is done in 5587 // the interval [Marking, Sweeping] and the latter in the interval 5588 // [Marking, Sweeping). Thus the transitions into the Marking state 5589 // and out of the Sweeping state must be synchronously visible 5590 // globally to the mutators. 5591 // The transition into the Marking state happens with the world 5592 // stopped so the mutators will globally see it. Sweeping is 5593 // done asynchronously by the background collector so the transition 5594 // from the Sweeping state to the Resizing state must be done 5595 // under the freelistLock (as is the check for whether to 5596 // allocate-live and whether to dirty the mod-union table). 5597 assert(_collectorState == Resizing, "Change of collector state to" 5598 " Resizing must be done under the freelistLocks (plural)"); 5599 5600 // Now that sweeping has been completed, we clear 5601 // the incremental_collection_failed flag, 5602 // thus inviting a younger gen collection to promote into 5603 // this generation. If such a promotion may still fail, 5604 // the flag will be set again when a young collection is 5605 // attempted. 5606 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5607 gch->clear_incremental_collection_failed(); // Worth retrying as fresh space may have been freed up 5608 gch->update_full_collections_completed(_collection_count_start); 5609 } 5610 5611 // FIX ME!!! Looks like this belongs in CFLSpace, with 5612 // CMSGen merely delegating to it. 5613 void ConcurrentMarkSweepGeneration::setNearLargestChunk() { 5614 double nearLargestPercent = FLSLargestBlockCoalesceProximity; 5615 HeapWord* minAddr = _cmsSpace->bottom(); 5616 HeapWord* largestAddr = 5617 (HeapWord*) _cmsSpace->dictionary()->find_largest_dict(); 5618 if (largestAddr == NULL) { 5619 // The dictionary appears to be empty. In this case 5620 // try to coalesce at the end of the heap. 5621 largestAddr = _cmsSpace->end(); 5622 } 5623 size_t largestOffset = pointer_delta(largestAddr, minAddr); 5624 size_t nearLargestOffset = 5625 (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize; 5626 if (PrintFLSStatistics != 0) { 5627 gclog_or_tty->print_cr( 5628 "CMS: Large Block: " PTR_FORMAT ";" 5629 " Proximity: " PTR_FORMAT " -> " PTR_FORMAT, 5630 p2i(largestAddr), 5631 p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset)); 5632 } 5633 _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset); 5634 } 5635 5636 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) { 5637 return addr >= _cmsSpace->nearLargestChunk(); 5638 } 5639 5640 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() { 5641 return _cmsSpace->find_chunk_at_end(); 5642 } 5643 5644 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation, 5645 bool full) { 5646 // If the young generation has been collected, gather any statistics 5647 // that are of interest at this point. 5648 bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation); 5649 if (!full && current_is_young) { 5650 // Gather statistics on the young generation collection. 5651 collector()->stats().record_gc0_end(used()); 5652 } 5653 } 5654 5655 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) { 5656 // We iterate over the space(s) underlying this generation, 5657 // checking the mark bit map to see if the bits corresponding 5658 // to specific blocks are marked or not. Blocks that are 5659 // marked are live and are not swept up. All remaining blocks 5660 // are swept up, with coalescing on-the-fly as we sweep up 5661 // contiguous free and/or garbage blocks: 5662 // We need to ensure that the sweeper synchronizes with allocators 5663 // and stop-the-world collectors. In particular, the following 5664 // locks are used: 5665 // . CMS token: if this is held, a stop the world collection cannot occur 5666 // . freelistLock: if this is held no allocation can occur from this 5667 // generation by another thread 5668 // . bitMapLock: if this is held, no other thread can access or update 5669 // 5670 5671 // Note that we need to hold the freelistLock if we use 5672 // block iterate below; else the iterator might go awry if 5673 // a mutator (or promotion) causes block contents to change 5674 // (for instance if the allocator divvies up a block). 5675 // If we hold the free list lock, for all practical purposes 5676 // young generation GC's can't occur (they'll usually need to 5677 // promote), so we might as well prevent all young generation 5678 // GC's while we do a sweeping step. For the same reason, we might 5679 // as well take the bit map lock for the entire duration 5680 5681 // check that we hold the requisite locks 5682 assert(have_cms_token(), "Should hold cms token"); 5683 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep"); 5684 assert_lock_strong(old_gen->freelistLock()); 5685 assert_lock_strong(bitMapLock()); 5686 5687 assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context"); 5688 assert(_intra_sweep_timer.is_active(), "Was switched on in an outer context"); 5689 old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), 5690 _inter_sweep_estimate.padded_average(), 5691 _intra_sweep_estimate.padded_average()); 5692 old_gen->setNearLargestChunk(); 5693 5694 { 5695 SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield); 5696 old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure); 5697 // We need to free-up/coalesce garbage/blocks from a 5698 // co-terminal free run. This is done in the SweepClosure 5699 // destructor; so, do not remove this scope, else the 5700 // end-of-sweep-census below will be off by a little bit. 5701 } 5702 old_gen->cmsSpace()->sweep_completed(); 5703 old_gen->cmsSpace()->endSweepFLCensus(sweep_count()); 5704 if (should_unload_classes()) { // unloaded classes this cycle, 5705 _concurrent_cycles_since_last_unload = 0; // ... reset count 5706 } else { // did not unload classes, 5707 _concurrent_cycles_since_last_unload++; // ... increment count 5708 } 5709 } 5710 5711 // Reset CMS data structures (for now just the marking bit map) 5712 // preparatory for the next cycle. 5713 void CMSCollector::reset(bool concurrent) { 5714 if (concurrent) { 5715 CMSTokenSyncWithLocks ts(true, bitMapLock()); 5716 5717 // If the state is not "Resetting", the foreground thread 5718 // has done a collection and the resetting. 5719 if (_collectorState != Resetting) { 5720 assert(_collectorState == Idling, "The state should only change" 5721 " because the foreground collector has finished the collection"); 5722 return; 5723 } 5724 5725 // Clear the mark bitmap (no grey objects to start with) 5726 // for the next cycle. 5727 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 5728 CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails); 5729 5730 HeapWord* curAddr = _markBitMap.startWord(); 5731 while (curAddr < _markBitMap.endWord()) { 5732 size_t remaining = pointer_delta(_markBitMap.endWord(), curAddr); 5733 MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining)); 5734 _markBitMap.clear_large_range(chunk); 5735 if (ConcurrentMarkSweepThread::should_yield() && 5736 !foregroundGCIsActive() && 5737 CMSYield) { 5738 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 5739 "CMS thread should hold CMS token"); 5740 assert_lock_strong(bitMapLock()); 5741 bitMapLock()->unlock(); 5742 ConcurrentMarkSweepThread::desynchronize(true); 5743 stopTimer(); 5744 if (PrintCMSStatistics != 0) { 5745 incrementYields(); 5746 } 5747 5748 // See the comment in coordinator_yield() 5749 for (unsigned i = 0; i < CMSYieldSleepCount && 5750 ConcurrentMarkSweepThread::should_yield() && 5751 !CMSCollector::foregroundGCIsActive(); ++i) { 5752 os::sleep(Thread::current(), 1, false); 5753 } 5754 5755 ConcurrentMarkSweepThread::synchronize(true); 5756 bitMapLock()->lock_without_safepoint_check(); 5757 startTimer(); 5758 } 5759 curAddr = chunk.end(); 5760 } 5761 // A successful mostly concurrent collection has been done. 5762 // Because only the full (i.e., concurrent mode failure) collections 5763 // are being measured for gc overhead limits, clean the "near" flag 5764 // and count. 5765 size_policy()->reset_gc_overhead_limit_count(); 5766 _collectorState = Idling; 5767 } else { 5768 // already have the lock 5769 assert(_collectorState == Resetting, "just checking"); 5770 assert_lock_strong(bitMapLock()); 5771 _markBitMap.clear_all(); 5772 _collectorState = Idling; 5773 } 5774 5775 register_gc_end(); 5776 } 5777 5778 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) { 5779 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 5780 GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id()); 5781 TraceCollectorStats tcs(counters()); 5782 5783 switch (op) { 5784 case CMS_op_checkpointRootsInitial: { 5785 SvcGCMarker sgcm(SvcGCMarker::OTHER); 5786 checkpointRootsInitial(); 5787 if (PrintGC) { 5788 _cmsGen->printOccupancy("initial-mark"); 5789 } 5790 break; 5791 } 5792 case CMS_op_checkpointRootsFinal: { 5793 SvcGCMarker sgcm(SvcGCMarker::OTHER); 5794 checkpointRootsFinal(); 5795 if (PrintGC) { 5796 _cmsGen->printOccupancy("remark"); 5797 } 5798 break; 5799 } 5800 default: 5801 fatal("No such CMS_op"); 5802 } 5803 } 5804 5805 #ifndef PRODUCT 5806 size_t const CMSCollector::skip_header_HeapWords() { 5807 return FreeChunk::header_size(); 5808 } 5809 5810 // Try and collect here conditions that should hold when 5811 // CMS thread is exiting. The idea is that the foreground GC 5812 // thread should not be blocked if it wants to terminate 5813 // the CMS thread and yet continue to run the VM for a while 5814 // after that. 5815 void CMSCollector::verify_ok_to_terminate() const { 5816 assert(Thread::current()->is_ConcurrentGC_thread(), 5817 "should be called by CMS thread"); 5818 assert(!_foregroundGCShouldWait, "should be false"); 5819 // We could check here that all the various low-level locks 5820 // are not held by the CMS thread, but that is overkill; see 5821 // also CMSThread::verify_ok_to_terminate() where the CGC_lock 5822 // is checked. 5823 } 5824 #endif 5825 5826 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const { 5827 assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1), 5828 "missing Printezis mark?"); 5829 HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); 5830 size_t size = pointer_delta(nextOneAddr + 1, addr); 5831 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 5832 "alignment problem"); 5833 assert(size >= 3, "Necessary for Printezis marks to work"); 5834 return size; 5835 } 5836 5837 // A variant of the above (block_size_using_printezis_bits()) except 5838 // that we return 0 if the P-bits are not yet set. 5839 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const { 5840 if (_markBitMap.isMarked(addr + 1)) { 5841 assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects"); 5842 HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); 5843 size_t size = pointer_delta(nextOneAddr + 1, addr); 5844 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 5845 "alignment problem"); 5846 assert(size >= 3, "Necessary for Printezis marks to work"); 5847 return size; 5848 } 5849 return 0; 5850 } 5851 5852 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const { 5853 size_t sz = 0; 5854 oop p = (oop)addr; 5855 if (p->klass_or_null() != NULL) { 5856 sz = CompactibleFreeListSpace::adjustObjectSize(p->size()); 5857 } else { 5858 sz = block_size_using_printezis_bits(addr); 5859 } 5860 assert(sz > 0, "size must be nonzero"); 5861 HeapWord* next_block = addr + sz; 5862 HeapWord* next_card = (HeapWord*)round_to((uintptr_t)next_block, 5863 CardTableModRefBS::card_size); 5864 assert(round_down((uintptr_t)addr, CardTableModRefBS::card_size) < 5865 round_down((uintptr_t)next_card, CardTableModRefBS::card_size), 5866 "must be different cards"); 5867 return next_card; 5868 } 5869 5870 5871 // CMS Bit Map Wrapper ///////////////////////////////////////// 5872 5873 // Construct a CMS bit map infrastructure, but don't create the 5874 // bit vector itself. That is done by a separate call CMSBitMap::allocate() 5875 // further below. 5876 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name): 5877 _bm(), 5878 _shifter(shifter), 5879 _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true, 5880 Monitor::_safepoint_check_sometimes) : NULL) 5881 { 5882 _bmStartWord = 0; 5883 _bmWordSize = 0; 5884 } 5885 5886 bool CMSBitMap::allocate(MemRegion mr) { 5887 _bmStartWord = mr.start(); 5888 _bmWordSize = mr.word_size(); 5889 ReservedSpace brs(ReservedSpace::allocation_align_size_up( 5890 (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1)); 5891 if (!brs.is_reserved()) { 5892 warning("CMS bit map allocation failure"); 5893 return false; 5894 } 5895 // For now we'll just commit all of the bit map up front. 5896 // Later on we'll try to be more parsimonious with swap. 5897 if (!_virtual_space.initialize(brs, brs.size())) { 5898 warning("CMS bit map backing store failure"); 5899 return false; 5900 } 5901 assert(_virtual_space.committed_size() == brs.size(), 5902 "didn't reserve backing store for all of CMS bit map?"); 5903 _bm.set_map((BitMap::bm_word_t*)_virtual_space.low()); 5904 assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >= 5905 _bmWordSize, "inconsistency in bit map sizing"); 5906 _bm.set_size(_bmWordSize >> _shifter); 5907 5908 // bm.clear(); // can we rely on getting zero'd memory? verify below 5909 assert(isAllClear(), 5910 "Expected zero'd memory from ReservedSpace constructor"); 5911 assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()), 5912 "consistency check"); 5913 return true; 5914 } 5915 5916 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) { 5917 HeapWord *next_addr, *end_addr, *last_addr; 5918 assert_locked(); 5919 assert(covers(mr), "out-of-range error"); 5920 // XXX assert that start and end are appropriately aligned 5921 for (next_addr = mr.start(), end_addr = mr.end(); 5922 next_addr < end_addr; next_addr = last_addr) { 5923 MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr); 5924 last_addr = dirty_region.end(); 5925 if (!dirty_region.is_empty()) { 5926 cl->do_MemRegion(dirty_region); 5927 } else { 5928 assert(last_addr == end_addr, "program logic"); 5929 return; 5930 } 5931 } 5932 } 5933 5934 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const { 5935 _bm.print_on_error(st, prefix); 5936 } 5937 5938 #ifndef PRODUCT 5939 void CMSBitMap::assert_locked() const { 5940 CMSLockVerifier::assert_locked(lock()); 5941 } 5942 5943 bool CMSBitMap::covers(MemRegion mr) const { 5944 // assert(_bm.map() == _virtual_space.low(), "map inconsistency"); 5945 assert((size_t)_bm.size() == (_bmWordSize >> _shifter), 5946 "size inconsistency"); 5947 return (mr.start() >= _bmStartWord) && 5948 (mr.end() <= endWord()); 5949 } 5950 5951 bool CMSBitMap::covers(HeapWord* start, size_t size) const { 5952 return (start >= _bmStartWord && (start + size) <= endWord()); 5953 } 5954 5955 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) { 5956 // verify that there are no 1 bits in the interval [left, right) 5957 FalseBitMapClosure falseBitMapClosure; 5958 iterate(&falseBitMapClosure, left, right); 5959 } 5960 5961 void CMSBitMap::region_invariant(MemRegion mr) 5962 { 5963 assert_locked(); 5964 // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize)); 5965 assert(!mr.is_empty(), "unexpected empty region"); 5966 assert(covers(mr), "mr should be covered by bit map"); 5967 // convert address range into offset range 5968 size_t start_ofs = heapWordToOffset(mr.start()); 5969 // Make sure that end() is appropriately aligned 5970 assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(), 5971 (1 << (_shifter+LogHeapWordSize))), 5972 "Misaligned mr.end()"); 5973 size_t end_ofs = heapWordToOffset(mr.end()); 5974 assert(end_ofs > start_ofs, "Should mark at least one bit"); 5975 } 5976 5977 #endif 5978 5979 bool CMSMarkStack::allocate(size_t size) { 5980 // allocate a stack of the requisite depth 5981 ReservedSpace rs(ReservedSpace::allocation_align_size_up( 5982 size * sizeof(oop))); 5983 if (!rs.is_reserved()) { 5984 warning("CMSMarkStack allocation failure"); 5985 return false; 5986 } 5987 if (!_virtual_space.initialize(rs, rs.size())) { 5988 warning("CMSMarkStack backing store failure"); 5989 return false; 5990 } 5991 assert(_virtual_space.committed_size() == rs.size(), 5992 "didn't reserve backing store for all of CMS stack?"); 5993 _base = (oop*)(_virtual_space.low()); 5994 _index = 0; 5995 _capacity = size; 5996 NOT_PRODUCT(_max_depth = 0); 5997 return true; 5998 } 5999 6000 // XXX FIX ME !!! In the MT case we come in here holding a 6001 // leaf lock. For printing we need to take a further lock 6002 // which has lower rank. We need to recalibrate the two 6003 // lock-ranks involved in order to be able to print the 6004 // messages below. (Or defer the printing to the caller. 6005 // For now we take the expedient path of just disabling the 6006 // messages for the problematic case.) 6007 void CMSMarkStack::expand() { 6008 assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted"); 6009 if (_capacity == MarkStackSizeMax) { 6010 if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) { 6011 // We print a warning message only once per CMS cycle. 6012 gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit"); 6013 } 6014 return; 6015 } 6016 // Double capacity if possible 6017 size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax); 6018 // Do not give up existing stack until we have managed to 6019 // get the double capacity that we desired. 6020 ReservedSpace rs(ReservedSpace::allocation_align_size_up( 6021 new_capacity * sizeof(oop))); 6022 if (rs.is_reserved()) { 6023 // Release the backing store associated with old stack 6024 _virtual_space.release(); 6025 // Reinitialize virtual space for new stack 6026 if (!_virtual_space.initialize(rs, rs.size())) { 6027 fatal("Not enough swap for expanded marking stack"); 6028 } 6029 _base = (oop*)(_virtual_space.low()); 6030 _index = 0; 6031 _capacity = new_capacity; 6032 } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) { 6033 // Failed to double capacity, continue; 6034 // we print a detail message only once per CMS cycle. 6035 gclog_or_tty->print(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " 6036 SIZE_FORMAT "K", 6037 _capacity / K, new_capacity / K); 6038 } 6039 } 6040 6041 6042 // Closures 6043 // XXX: there seems to be a lot of code duplication here; 6044 // should refactor and consolidate common code. 6045 6046 // This closure is used to mark refs into the CMS generation in 6047 // the CMS bit map. Called at the first checkpoint. This closure 6048 // assumes that we do not need to re-mark dirty cards; if the CMS 6049 // generation on which this is used is not an oldest 6050 // generation then this will lose younger_gen cards! 6051 6052 MarkRefsIntoClosure::MarkRefsIntoClosure( 6053 MemRegion span, CMSBitMap* bitMap): 6054 _span(span), 6055 _bitMap(bitMap) 6056 { 6057 assert(_ref_processor == NULL, "deliberately left NULL"); 6058 assert(_bitMap->covers(_span), "_bitMap/_span mismatch"); 6059 } 6060 6061 void MarkRefsIntoClosure::do_oop(oop obj) { 6062 // if p points into _span, then mark corresponding bit in _markBitMap 6063 assert(obj->is_oop(), "expected an oop"); 6064 HeapWord* addr = (HeapWord*)obj; 6065 if (_span.contains(addr)) { 6066 // this should be made more efficient 6067 _bitMap->mark(addr); 6068 } 6069 } 6070 6071 void MarkRefsIntoClosure::do_oop(oop* p) { MarkRefsIntoClosure::do_oop_work(p); } 6072 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); } 6073 6074 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure( 6075 MemRegion span, CMSBitMap* bitMap): 6076 _span(span), 6077 _bitMap(bitMap) 6078 { 6079 assert(_ref_processor == NULL, "deliberately left NULL"); 6080 assert(_bitMap->covers(_span), "_bitMap/_span mismatch"); 6081 } 6082 6083 void Par_MarkRefsIntoClosure::do_oop(oop obj) { 6084 // if p points into _span, then mark corresponding bit in _markBitMap 6085 assert(obj->is_oop(), "expected an oop"); 6086 HeapWord* addr = (HeapWord*)obj; 6087 if (_span.contains(addr)) { 6088 // this should be made more efficient 6089 _bitMap->par_mark(addr); 6090 } 6091 } 6092 6093 void Par_MarkRefsIntoClosure::do_oop(oop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); } 6094 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); } 6095 6096 // A variant of the above, used for CMS marking verification. 6097 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure( 6098 MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm): 6099 _span(span), 6100 _verification_bm(verification_bm), 6101 _cms_bm(cms_bm) 6102 { 6103 assert(_ref_processor == NULL, "deliberately left NULL"); 6104 assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch"); 6105 } 6106 6107 void MarkRefsIntoVerifyClosure::do_oop(oop obj) { 6108 // if p points into _span, then mark corresponding bit in _markBitMap 6109 assert(obj->is_oop(), "expected an oop"); 6110 HeapWord* addr = (HeapWord*)obj; 6111 if (_span.contains(addr)) { 6112 _verification_bm->mark(addr); 6113 if (!_cms_bm->isMarked(addr)) { 6114 oop(addr)->print(); 6115 gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr)); 6116 fatal("... aborting"); 6117 } 6118 } 6119 } 6120 6121 void MarkRefsIntoVerifyClosure::do_oop(oop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); } 6122 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); } 6123 6124 ////////////////////////////////////////////////// 6125 // MarkRefsIntoAndScanClosure 6126 ////////////////////////////////////////////////// 6127 6128 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span, 6129 ReferenceProcessor* rp, 6130 CMSBitMap* bit_map, 6131 CMSBitMap* mod_union_table, 6132 CMSMarkStack* mark_stack, 6133 CMSCollector* collector, 6134 bool should_yield, 6135 bool concurrent_precleaning): 6136 _collector(collector), 6137 _span(span), 6138 _bit_map(bit_map), 6139 _mark_stack(mark_stack), 6140 _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table, 6141 mark_stack, concurrent_precleaning), 6142 _yield(should_yield), 6143 _concurrent_precleaning(concurrent_precleaning), 6144 _freelistLock(NULL) 6145 { 6146 _ref_processor = rp; 6147 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 6148 } 6149 6150 // This closure is used to mark refs into the CMS generation at the 6151 // second (final) checkpoint, and to scan and transitively follow 6152 // the unmarked oops. It is also used during the concurrent precleaning 6153 // phase while scanning objects on dirty cards in the CMS generation. 6154 // The marks are made in the marking bit map and the marking stack is 6155 // used for keeping the (newly) grey objects during the scan. 6156 // The parallel version (Par_...) appears further below. 6157 void MarkRefsIntoAndScanClosure::do_oop(oop obj) { 6158 if (obj != NULL) { 6159 assert(obj->is_oop(), "expected an oop"); 6160 HeapWord* addr = (HeapWord*)obj; 6161 assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)"); 6162 assert(_collector->overflow_list_is_empty(), 6163 "overflow list should be empty"); 6164 if (_span.contains(addr) && 6165 !_bit_map->isMarked(addr)) { 6166 // mark bit map (object is now grey) 6167 _bit_map->mark(addr); 6168 // push on marking stack (stack should be empty), and drain the 6169 // stack by applying this closure to the oops in the oops popped 6170 // from the stack (i.e. blacken the grey objects) 6171 bool res = _mark_stack->push(obj); 6172 assert(res, "Should have space to push on empty stack"); 6173 do { 6174 oop new_oop = _mark_stack->pop(); 6175 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 6176 assert(_bit_map->isMarked((HeapWord*)new_oop), 6177 "only grey objects on this stack"); 6178 // iterate over the oops in this oop, marking and pushing 6179 // the ones in CMS heap (i.e. in _span). 6180 new_oop->oop_iterate(&_pushAndMarkClosure); 6181 // check if it's time to yield 6182 do_yield_check(); 6183 } while (!_mark_stack->isEmpty() || 6184 (!_concurrent_precleaning && take_from_overflow_list())); 6185 // if marking stack is empty, and we are not doing this 6186 // during precleaning, then check the overflow list 6187 } 6188 assert(_mark_stack->isEmpty(), "post-condition (eager drainage)"); 6189 assert(_collector->overflow_list_is_empty(), 6190 "overflow list was drained above"); 6191 // We could restore evacuated mark words, if any, used for 6192 // overflow list links here because the overflow list is 6193 // provably empty here. That would reduce the maximum 6194 // size requirements for preserved_{oop,mark}_stack. 6195 // But we'll just postpone it until we are all done 6196 // so we can just stream through. 6197 if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) { 6198 _collector->restore_preserved_marks_if_any(); 6199 assert(_collector->no_preserved_marks(), "No preserved marks"); 6200 } 6201 assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(), 6202 "All preserved marks should have been restored above"); 6203 } 6204 } 6205 6206 void MarkRefsIntoAndScanClosure::do_oop(oop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); } 6207 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); } 6208 6209 void MarkRefsIntoAndScanClosure::do_yield_work() { 6210 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6211 "CMS thread should hold CMS token"); 6212 assert_lock_strong(_freelistLock); 6213 assert_lock_strong(_bit_map->lock()); 6214 // relinquish the free_list_lock and bitMaplock() 6215 _bit_map->lock()->unlock(); 6216 _freelistLock->unlock(); 6217 ConcurrentMarkSweepThread::desynchronize(true); 6218 _collector->stopTimer(); 6219 if (PrintCMSStatistics != 0) { 6220 _collector->incrementYields(); 6221 } 6222 6223 // See the comment in coordinator_yield() 6224 for (unsigned i = 0; 6225 i < CMSYieldSleepCount && 6226 ConcurrentMarkSweepThread::should_yield() && 6227 !CMSCollector::foregroundGCIsActive(); 6228 ++i) { 6229 os::sleep(Thread::current(), 1, false); 6230 } 6231 6232 ConcurrentMarkSweepThread::synchronize(true); 6233 _freelistLock->lock_without_safepoint_check(); 6234 _bit_map->lock()->lock_without_safepoint_check(); 6235 _collector->startTimer(); 6236 } 6237 6238 /////////////////////////////////////////////////////////// 6239 // Par_MarkRefsIntoAndScanClosure: a parallel version of 6240 // MarkRefsIntoAndScanClosure 6241 /////////////////////////////////////////////////////////// 6242 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure( 6243 CMSCollector* collector, MemRegion span, ReferenceProcessor* rp, 6244 CMSBitMap* bit_map, OopTaskQueue* work_queue): 6245 _span(span), 6246 _bit_map(bit_map), 6247 _work_queue(work_queue), 6248 _low_water_mark(MIN2((work_queue->max_elems()/4), 6249 ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))), 6250 _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue) 6251 { 6252 _ref_processor = rp; 6253 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 6254 } 6255 6256 // This closure is used to mark refs into the CMS generation at the 6257 // second (final) checkpoint, and to scan and transitively follow 6258 // the unmarked oops. The marks are made in the marking bit map and 6259 // the work_queue is used for keeping the (newly) grey objects during 6260 // the scan phase whence they are also available for stealing by parallel 6261 // threads. Since the marking bit map is shared, updates are 6262 // synchronized (via CAS). 6263 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) { 6264 if (obj != NULL) { 6265 // Ignore mark word because this could be an already marked oop 6266 // that may be chained at the end of the overflow list. 6267 assert(obj->is_oop(true), "expected an oop"); 6268 HeapWord* addr = (HeapWord*)obj; 6269 if (_span.contains(addr) && 6270 !_bit_map->isMarked(addr)) { 6271 // mark bit map (object will become grey): 6272 // It is possible for several threads to be 6273 // trying to "claim" this object concurrently; 6274 // the unique thread that succeeds in marking the 6275 // object first will do the subsequent push on 6276 // to the work queue (or overflow list). 6277 if (_bit_map->par_mark(addr)) { 6278 // push on work_queue (which may not be empty), and trim the 6279 // queue to an appropriate length by applying this closure to 6280 // the oops in the oops popped from the stack (i.e. blacken the 6281 // grey objects) 6282 bool res = _work_queue->push(obj); 6283 assert(res, "Low water mark should be less than capacity?"); 6284 trim_queue(_low_water_mark); 6285 } // Else, another thread claimed the object 6286 } 6287 } 6288 } 6289 6290 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); } 6291 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); } 6292 6293 // This closure is used to rescan the marked objects on the dirty cards 6294 // in the mod union table and the card table proper. 6295 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m( 6296 oop p, MemRegion mr) { 6297 6298 size_t size = 0; 6299 HeapWord* addr = (HeapWord*)p; 6300 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 6301 assert(_span.contains(addr), "we are scanning the CMS generation"); 6302 // check if it's time to yield 6303 if (do_yield_check()) { 6304 // We yielded for some foreground stop-world work, 6305 // and we have been asked to abort this ongoing preclean cycle. 6306 return 0; 6307 } 6308 if (_bitMap->isMarked(addr)) { 6309 // it's marked; is it potentially uninitialized? 6310 if (p->klass_or_null() != NULL) { 6311 // an initialized object; ignore mark word in verification below 6312 // since we are running concurrent with mutators 6313 assert(p->is_oop(true), "should be an oop"); 6314 if (p->is_objArray()) { 6315 // objArrays are precisely marked; restrict scanning 6316 // to dirty cards only. 6317 size = CompactibleFreeListSpace::adjustObjectSize( 6318 p->oop_iterate_size(_scanningClosure, mr)); 6319 } else { 6320 // A non-array may have been imprecisely marked; we need 6321 // to scan object in its entirety. 6322 size = CompactibleFreeListSpace::adjustObjectSize( 6323 p->oop_iterate_size(_scanningClosure)); 6324 } 6325 #ifdef ASSERT 6326 size_t direct_size = 6327 CompactibleFreeListSpace::adjustObjectSize(p->size()); 6328 assert(size == direct_size, "Inconsistency in size"); 6329 assert(size >= 3, "Necessary for Printezis marks to work"); 6330 if (!_bitMap->isMarked(addr+1)) { 6331 _bitMap->verifyNoOneBitsInRange(addr+2, addr+size); 6332 } else { 6333 _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1); 6334 assert(_bitMap->isMarked(addr+size-1), 6335 "inconsistent Printezis mark"); 6336 } 6337 #endif // ASSERT 6338 } else { 6339 // An uninitialized object. 6340 assert(_bitMap->isMarked(addr+1), "missing Printezis mark?"); 6341 HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); 6342 size = pointer_delta(nextOneAddr + 1, addr); 6343 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 6344 "alignment problem"); 6345 // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass() 6346 // will dirty the card when the klass pointer is installed in the 6347 // object (signaling the completion of initialization). 6348 } 6349 } else { 6350 // Either a not yet marked object or an uninitialized object 6351 if (p->klass_or_null() == NULL) { 6352 // An uninitialized object, skip to the next card, since 6353 // we may not be able to read its P-bits yet. 6354 assert(size == 0, "Initial value"); 6355 } else { 6356 // An object not (yet) reached by marking: we merely need to 6357 // compute its size so as to go look at the next block. 6358 assert(p->is_oop(true), "should be an oop"); 6359 size = CompactibleFreeListSpace::adjustObjectSize(p->size()); 6360 } 6361 } 6362 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 6363 return size; 6364 } 6365 6366 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() { 6367 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6368 "CMS thread should hold CMS token"); 6369 assert_lock_strong(_freelistLock); 6370 assert_lock_strong(_bitMap->lock()); 6371 // relinquish the free_list_lock and bitMaplock() 6372 _bitMap->lock()->unlock(); 6373 _freelistLock->unlock(); 6374 ConcurrentMarkSweepThread::desynchronize(true); 6375 _collector->stopTimer(); 6376 if (PrintCMSStatistics != 0) { 6377 _collector->incrementYields(); 6378 } 6379 6380 // See the comment in coordinator_yield() 6381 for (unsigned i = 0; i < CMSYieldSleepCount && 6382 ConcurrentMarkSweepThread::should_yield() && 6383 !CMSCollector::foregroundGCIsActive(); ++i) { 6384 os::sleep(Thread::current(), 1, false); 6385 } 6386 6387 ConcurrentMarkSweepThread::synchronize(true); 6388 _freelistLock->lock_without_safepoint_check(); 6389 _bitMap->lock()->lock_without_safepoint_check(); 6390 _collector->startTimer(); 6391 } 6392 6393 6394 ////////////////////////////////////////////////////////////////// 6395 // SurvivorSpacePrecleanClosure 6396 ////////////////////////////////////////////////////////////////// 6397 // This (single-threaded) closure is used to preclean the oops in 6398 // the survivor spaces. 6399 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) { 6400 6401 HeapWord* addr = (HeapWord*)p; 6402 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 6403 assert(!_span.contains(addr), "we are scanning the survivor spaces"); 6404 assert(p->klass_or_null() != NULL, "object should be initialized"); 6405 // an initialized object; ignore mark word in verification below 6406 // since we are running concurrent with mutators 6407 assert(p->is_oop(true), "should be an oop"); 6408 // Note that we do not yield while we iterate over 6409 // the interior oops of p, pushing the relevant ones 6410 // on our marking stack. 6411 size_t size = p->oop_iterate_size(_scanning_closure); 6412 do_yield_check(); 6413 // Observe that below, we do not abandon the preclean 6414 // phase as soon as we should; rather we empty the 6415 // marking stack before returning. This is to satisfy 6416 // some existing assertions. In general, it may be a 6417 // good idea to abort immediately and complete the marking 6418 // from the grey objects at a later time. 6419 while (!_mark_stack->isEmpty()) { 6420 oop new_oop = _mark_stack->pop(); 6421 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 6422 assert(_bit_map->isMarked((HeapWord*)new_oop), 6423 "only grey objects on this stack"); 6424 // iterate over the oops in this oop, marking and pushing 6425 // the ones in CMS heap (i.e. in _span). 6426 new_oop->oop_iterate(_scanning_closure); 6427 // check if it's time to yield 6428 do_yield_check(); 6429 } 6430 unsigned int after_count = 6431 GenCollectedHeap::heap()->total_collections(); 6432 bool abort = (_before_count != after_count) || 6433 _collector->should_abort_preclean(); 6434 return abort ? 0 : size; 6435 } 6436 6437 void SurvivorSpacePrecleanClosure::do_yield_work() { 6438 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6439 "CMS thread should hold CMS token"); 6440 assert_lock_strong(_bit_map->lock()); 6441 // Relinquish the bit map lock 6442 _bit_map->lock()->unlock(); 6443 ConcurrentMarkSweepThread::desynchronize(true); 6444 _collector->stopTimer(); 6445 if (PrintCMSStatistics != 0) { 6446 _collector->incrementYields(); 6447 } 6448 6449 // See the comment in coordinator_yield() 6450 for (unsigned i = 0; i < CMSYieldSleepCount && 6451 ConcurrentMarkSweepThread::should_yield() && 6452 !CMSCollector::foregroundGCIsActive(); ++i) { 6453 os::sleep(Thread::current(), 1, false); 6454 } 6455 6456 ConcurrentMarkSweepThread::synchronize(true); 6457 _bit_map->lock()->lock_without_safepoint_check(); 6458 _collector->startTimer(); 6459 } 6460 6461 // This closure is used to rescan the marked objects on the dirty cards 6462 // in the mod union table and the card table proper. In the parallel 6463 // case, although the bitMap is shared, we do a single read so the 6464 // isMarked() query is "safe". 6465 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) { 6466 // Ignore mark word because we are running concurrent with mutators 6467 assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p))); 6468 HeapWord* addr = (HeapWord*)p; 6469 assert(_span.contains(addr), "we are scanning the CMS generation"); 6470 bool is_obj_array = false; 6471 #ifdef ASSERT 6472 if (!_parallel) { 6473 assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)"); 6474 assert(_collector->overflow_list_is_empty(), 6475 "overflow list should be empty"); 6476 6477 } 6478 #endif // ASSERT 6479 if (_bit_map->isMarked(addr)) { 6480 // Obj arrays are precisely marked, non-arrays are not; 6481 // so we scan objArrays precisely and non-arrays in their 6482 // entirety. 6483 if (p->is_objArray()) { 6484 is_obj_array = true; 6485 if (_parallel) { 6486 p->oop_iterate(_par_scan_closure, mr); 6487 } else { 6488 p->oop_iterate(_scan_closure, mr); 6489 } 6490 } else { 6491 if (_parallel) { 6492 p->oop_iterate(_par_scan_closure); 6493 } else { 6494 p->oop_iterate(_scan_closure); 6495 } 6496 } 6497 } 6498 #ifdef ASSERT 6499 if (!_parallel) { 6500 assert(_mark_stack->isEmpty(), "post-condition (eager drainage)"); 6501 assert(_collector->overflow_list_is_empty(), 6502 "overflow list should be empty"); 6503 6504 } 6505 #endif // ASSERT 6506 return is_obj_array; 6507 } 6508 6509 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector, 6510 MemRegion span, 6511 CMSBitMap* bitMap, CMSMarkStack* markStack, 6512 bool should_yield, bool verifying): 6513 _collector(collector), 6514 _span(span), 6515 _bitMap(bitMap), 6516 _mut(&collector->_modUnionTable), 6517 _markStack(markStack), 6518 _yield(should_yield), 6519 _skipBits(0) 6520 { 6521 assert(_markStack->isEmpty(), "stack should be empty"); 6522 _finger = _bitMap->startWord(); 6523 _threshold = _finger; 6524 assert(_collector->_restart_addr == NULL, "Sanity check"); 6525 assert(_span.contains(_finger), "Out of bounds _finger?"); 6526 DEBUG_ONLY(_verifying = verifying;) 6527 } 6528 6529 void MarkFromRootsClosure::reset(HeapWord* addr) { 6530 assert(_markStack->isEmpty(), "would cause duplicates on stack"); 6531 assert(_span.contains(addr), "Out of bounds _finger?"); 6532 _finger = addr; 6533 _threshold = (HeapWord*)round_to( 6534 (intptr_t)_finger, CardTableModRefBS::card_size); 6535 } 6536 6537 // Should revisit to see if this should be restructured for 6538 // greater efficiency. 6539 bool MarkFromRootsClosure::do_bit(size_t offset) { 6540 if (_skipBits > 0) { 6541 _skipBits--; 6542 return true; 6543 } 6544 // convert offset into a HeapWord* 6545 HeapWord* addr = _bitMap->startWord() + offset; 6546 assert(_bitMap->endWord() && addr < _bitMap->endWord(), 6547 "address out of range"); 6548 assert(_bitMap->isMarked(addr), "tautology"); 6549 if (_bitMap->isMarked(addr+1)) { 6550 // this is an allocated but not yet initialized object 6551 assert(_skipBits == 0, "tautology"); 6552 _skipBits = 2; // skip next two marked bits ("Printezis-marks") 6553 oop p = oop(addr); 6554 if (p->klass_or_null() == NULL) { 6555 DEBUG_ONLY(if (!_verifying) {) 6556 // We re-dirty the cards on which this object lies and increase 6557 // the _threshold so that we'll come back to scan this object 6558 // during the preclean or remark phase. (CMSCleanOnEnter) 6559 if (CMSCleanOnEnter) { 6560 size_t sz = _collector->block_size_using_printezis_bits(addr); 6561 HeapWord* end_card_addr = (HeapWord*)round_to( 6562 (intptr_t)(addr+sz), CardTableModRefBS::card_size); 6563 MemRegion redirty_range = MemRegion(addr, end_card_addr); 6564 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 6565 // Bump _threshold to end_card_addr; note that 6566 // _threshold cannot possibly exceed end_card_addr, anyhow. 6567 // This prevents future clearing of the card as the scan proceeds 6568 // to the right. 6569 assert(_threshold <= end_card_addr, 6570 "Because we are just scanning into this object"); 6571 if (_threshold < end_card_addr) { 6572 _threshold = end_card_addr; 6573 } 6574 if (p->klass_or_null() != NULL) { 6575 // Redirty the range of cards... 6576 _mut->mark_range(redirty_range); 6577 } // ...else the setting of klass will dirty the card anyway. 6578 } 6579 DEBUG_ONLY(}) 6580 return true; 6581 } 6582 } 6583 scanOopsInOop(addr); 6584 return true; 6585 } 6586 6587 // We take a break if we've been at this for a while, 6588 // so as to avoid monopolizing the locks involved. 6589 void MarkFromRootsClosure::do_yield_work() { 6590 // First give up the locks, then yield, then re-lock 6591 // We should probably use a constructor/destructor idiom to 6592 // do this unlock/lock or modify the MutexUnlocker class to 6593 // serve our purpose. XXX 6594 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6595 "CMS thread should hold CMS token"); 6596 assert_lock_strong(_bitMap->lock()); 6597 _bitMap->lock()->unlock(); 6598 ConcurrentMarkSweepThread::desynchronize(true); 6599 _collector->stopTimer(); 6600 if (PrintCMSStatistics != 0) { 6601 _collector->incrementYields(); 6602 } 6603 6604 // See the comment in coordinator_yield() 6605 for (unsigned i = 0; i < CMSYieldSleepCount && 6606 ConcurrentMarkSweepThread::should_yield() && 6607 !CMSCollector::foregroundGCIsActive(); ++i) { 6608 os::sleep(Thread::current(), 1, false); 6609 } 6610 6611 ConcurrentMarkSweepThread::synchronize(true); 6612 _bitMap->lock()->lock_without_safepoint_check(); 6613 _collector->startTimer(); 6614 } 6615 6616 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) { 6617 assert(_bitMap->isMarked(ptr), "expected bit to be set"); 6618 assert(_markStack->isEmpty(), 6619 "should drain stack to limit stack usage"); 6620 // convert ptr to an oop preparatory to scanning 6621 oop obj = oop(ptr); 6622 // Ignore mark word in verification below, since we 6623 // may be running concurrent with mutators. 6624 assert(obj->is_oop(true), "should be an oop"); 6625 assert(_finger <= ptr, "_finger runneth ahead"); 6626 // advance the finger to right end of this object 6627 _finger = ptr + obj->size(); 6628 assert(_finger > ptr, "we just incremented it above"); 6629 // On large heaps, it may take us some time to get through 6630 // the marking phase. During 6631 // this time it's possible that a lot of mutations have 6632 // accumulated in the card table and the mod union table -- 6633 // these mutation records are redundant until we have 6634 // actually traced into the corresponding card. 6635 // Here, we check whether advancing the finger would make 6636 // us cross into a new card, and if so clear corresponding 6637 // cards in the MUT (preclean them in the card-table in the 6638 // future). 6639 6640 DEBUG_ONLY(if (!_verifying) {) 6641 // The clean-on-enter optimization is disabled by default, 6642 // until we fix 6178663. 6643 if (CMSCleanOnEnter && (_finger > _threshold)) { 6644 // [_threshold, _finger) represents the interval 6645 // of cards to be cleared in MUT (or precleaned in card table). 6646 // The set of cards to be cleared is all those that overlap 6647 // with the interval [_threshold, _finger); note that 6648 // _threshold is always kept card-aligned but _finger isn't 6649 // always card-aligned. 6650 HeapWord* old_threshold = _threshold; 6651 assert(old_threshold == (HeapWord*)round_to( 6652 (intptr_t)old_threshold, CardTableModRefBS::card_size), 6653 "_threshold should always be card-aligned"); 6654 _threshold = (HeapWord*)round_to( 6655 (intptr_t)_finger, CardTableModRefBS::card_size); 6656 MemRegion mr(old_threshold, _threshold); 6657 assert(!mr.is_empty(), "Control point invariant"); 6658 assert(_span.contains(mr), "Should clear within span"); 6659 _mut->clear_range(mr); 6660 } 6661 DEBUG_ONLY(}) 6662 // Note: the finger doesn't advance while we drain 6663 // the stack below. 6664 PushOrMarkClosure pushOrMarkClosure(_collector, 6665 _span, _bitMap, _markStack, 6666 _finger, this); 6667 bool res = _markStack->push(obj); 6668 assert(res, "Empty non-zero size stack should have space for single push"); 6669 while (!_markStack->isEmpty()) { 6670 oop new_oop = _markStack->pop(); 6671 // Skip verifying header mark word below because we are 6672 // running concurrent with mutators. 6673 assert(new_oop->is_oop(true), "Oops! expected to pop an oop"); 6674 // now scan this oop's oops 6675 new_oop->oop_iterate(&pushOrMarkClosure); 6676 do_yield_check(); 6677 } 6678 assert(_markStack->isEmpty(), "tautology, emphasizing post-condition"); 6679 } 6680 6681 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task, 6682 CMSCollector* collector, MemRegion span, 6683 CMSBitMap* bit_map, 6684 OopTaskQueue* work_queue, 6685 CMSMarkStack* overflow_stack): 6686 _collector(collector), 6687 _whole_span(collector->_span), 6688 _span(span), 6689 _bit_map(bit_map), 6690 _mut(&collector->_modUnionTable), 6691 _work_queue(work_queue), 6692 _overflow_stack(overflow_stack), 6693 _skip_bits(0), 6694 _task(task) 6695 { 6696 assert(_work_queue->size() == 0, "work_queue should be empty"); 6697 _finger = span.start(); 6698 _threshold = _finger; // XXX Defer clear-on-enter optimization for now 6699 assert(_span.contains(_finger), "Out of bounds _finger?"); 6700 } 6701 6702 // Should revisit to see if this should be restructured for 6703 // greater efficiency. 6704 bool Par_MarkFromRootsClosure::do_bit(size_t offset) { 6705 if (_skip_bits > 0) { 6706 _skip_bits--; 6707 return true; 6708 } 6709 // convert offset into a HeapWord* 6710 HeapWord* addr = _bit_map->startWord() + offset; 6711 assert(_bit_map->endWord() && addr < _bit_map->endWord(), 6712 "address out of range"); 6713 assert(_bit_map->isMarked(addr), "tautology"); 6714 if (_bit_map->isMarked(addr+1)) { 6715 // this is an allocated object that might not yet be initialized 6716 assert(_skip_bits == 0, "tautology"); 6717 _skip_bits = 2; // skip next two marked bits ("Printezis-marks") 6718 oop p = oop(addr); 6719 if (p->klass_or_null() == NULL) { 6720 // in the case of Clean-on-Enter optimization, redirty card 6721 // and avoid clearing card by increasing the threshold. 6722 return true; 6723 } 6724 } 6725 scan_oops_in_oop(addr); 6726 return true; 6727 } 6728 6729 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) { 6730 assert(_bit_map->isMarked(ptr), "expected bit to be set"); 6731 // Should we assert that our work queue is empty or 6732 // below some drain limit? 6733 assert(_work_queue->size() == 0, 6734 "should drain stack to limit stack usage"); 6735 // convert ptr to an oop preparatory to scanning 6736 oop obj = oop(ptr); 6737 // Ignore mark word in verification below, since we 6738 // may be running concurrent with mutators. 6739 assert(obj->is_oop(true), "should be an oop"); 6740 assert(_finger <= ptr, "_finger runneth ahead"); 6741 // advance the finger to right end of this object 6742 _finger = ptr + obj->size(); 6743 assert(_finger > ptr, "we just incremented it above"); 6744 // On large heaps, it may take us some time to get through 6745 // the marking phase. During 6746 // this time it's possible that a lot of mutations have 6747 // accumulated in the card table and the mod union table -- 6748 // these mutation records are redundant until we have 6749 // actually traced into the corresponding card. 6750 // Here, we check whether advancing the finger would make 6751 // us cross into a new card, and if so clear corresponding 6752 // cards in the MUT (preclean them in the card-table in the 6753 // future). 6754 6755 // The clean-on-enter optimization is disabled by default, 6756 // until we fix 6178663. 6757 if (CMSCleanOnEnter && (_finger > _threshold)) { 6758 // [_threshold, _finger) represents the interval 6759 // of cards to be cleared in MUT (or precleaned in card table). 6760 // The set of cards to be cleared is all those that overlap 6761 // with the interval [_threshold, _finger); note that 6762 // _threshold is always kept card-aligned but _finger isn't 6763 // always card-aligned. 6764 HeapWord* old_threshold = _threshold; 6765 assert(old_threshold == (HeapWord*)round_to( 6766 (intptr_t)old_threshold, CardTableModRefBS::card_size), 6767 "_threshold should always be card-aligned"); 6768 _threshold = (HeapWord*)round_to( 6769 (intptr_t)_finger, CardTableModRefBS::card_size); 6770 MemRegion mr(old_threshold, _threshold); 6771 assert(!mr.is_empty(), "Control point invariant"); 6772 assert(_span.contains(mr), "Should clear within span"); // _whole_span ?? 6773 _mut->clear_range(mr); 6774 } 6775 6776 // Note: the local finger doesn't advance while we drain 6777 // the stack below, but the global finger sure can and will. 6778 HeapWord** gfa = _task->global_finger_addr(); 6779 Par_PushOrMarkClosure pushOrMarkClosure(_collector, 6780 _span, _bit_map, 6781 _work_queue, 6782 _overflow_stack, 6783 _finger, 6784 gfa, this); 6785 bool res = _work_queue->push(obj); // overflow could occur here 6786 assert(res, "Will hold once we use workqueues"); 6787 while (true) { 6788 oop new_oop; 6789 if (!_work_queue->pop_local(new_oop)) { 6790 // We emptied our work_queue; check if there's stuff that can 6791 // be gotten from the overflow stack. 6792 if (CMSConcMarkingTask::get_work_from_overflow_stack( 6793 _overflow_stack, _work_queue)) { 6794 do_yield_check(); 6795 continue; 6796 } else { // done 6797 break; 6798 } 6799 } 6800 // Skip verifying header mark word below because we are 6801 // running concurrent with mutators. 6802 assert(new_oop->is_oop(true), "Oops! expected to pop an oop"); 6803 // now scan this oop's oops 6804 new_oop->oop_iterate(&pushOrMarkClosure); 6805 do_yield_check(); 6806 } 6807 assert(_work_queue->size() == 0, "tautology, emphasizing post-condition"); 6808 } 6809 6810 // Yield in response to a request from VM Thread or 6811 // from mutators. 6812 void Par_MarkFromRootsClosure::do_yield_work() { 6813 assert(_task != NULL, "sanity"); 6814 _task->yield(); 6815 } 6816 6817 // A variant of the above used for verifying CMS marking work. 6818 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector, 6819 MemRegion span, 6820 CMSBitMap* verification_bm, CMSBitMap* cms_bm, 6821 CMSMarkStack* mark_stack): 6822 _collector(collector), 6823 _span(span), 6824 _verification_bm(verification_bm), 6825 _cms_bm(cms_bm), 6826 _mark_stack(mark_stack), 6827 _pam_verify_closure(collector, span, verification_bm, cms_bm, 6828 mark_stack) 6829 { 6830 assert(_mark_stack->isEmpty(), "stack should be empty"); 6831 _finger = _verification_bm->startWord(); 6832 assert(_collector->_restart_addr == NULL, "Sanity check"); 6833 assert(_span.contains(_finger), "Out of bounds _finger?"); 6834 } 6835 6836 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) { 6837 assert(_mark_stack->isEmpty(), "would cause duplicates on stack"); 6838 assert(_span.contains(addr), "Out of bounds _finger?"); 6839 _finger = addr; 6840 } 6841 6842 // Should revisit to see if this should be restructured for 6843 // greater efficiency. 6844 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) { 6845 // convert offset into a HeapWord* 6846 HeapWord* addr = _verification_bm->startWord() + offset; 6847 assert(_verification_bm->endWord() && addr < _verification_bm->endWord(), 6848 "address out of range"); 6849 assert(_verification_bm->isMarked(addr), "tautology"); 6850 assert(_cms_bm->isMarked(addr), "tautology"); 6851 6852 assert(_mark_stack->isEmpty(), 6853 "should drain stack to limit stack usage"); 6854 // convert addr to an oop preparatory to scanning 6855 oop obj = oop(addr); 6856 assert(obj->is_oop(), "should be an oop"); 6857 assert(_finger <= addr, "_finger runneth ahead"); 6858 // advance the finger to right end of this object 6859 _finger = addr + obj->size(); 6860 assert(_finger > addr, "we just incremented it above"); 6861 // Note: the finger doesn't advance while we drain 6862 // the stack below. 6863 bool res = _mark_stack->push(obj); 6864 assert(res, "Empty non-zero size stack should have space for single push"); 6865 while (!_mark_stack->isEmpty()) { 6866 oop new_oop = _mark_stack->pop(); 6867 assert(new_oop->is_oop(), "Oops! expected to pop an oop"); 6868 // now scan this oop's oops 6869 new_oop->oop_iterate(&_pam_verify_closure); 6870 } 6871 assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition"); 6872 return true; 6873 } 6874 6875 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure( 6876 CMSCollector* collector, MemRegion span, 6877 CMSBitMap* verification_bm, CMSBitMap* cms_bm, 6878 CMSMarkStack* mark_stack): 6879 MetadataAwareOopClosure(collector->ref_processor()), 6880 _collector(collector), 6881 _span(span), 6882 _verification_bm(verification_bm), 6883 _cms_bm(cms_bm), 6884 _mark_stack(mark_stack) 6885 { } 6886 6887 void PushAndMarkVerifyClosure::do_oop(oop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } 6888 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } 6889 6890 // Upon stack overflow, we discard (part of) the stack, 6891 // remembering the least address amongst those discarded 6892 // in CMSCollector's _restart_address. 6893 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) { 6894 // Remember the least grey address discarded 6895 HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost); 6896 _collector->lower_restart_addr(ra); 6897 _mark_stack->reset(); // discard stack contents 6898 _mark_stack->expand(); // expand the stack if possible 6899 } 6900 6901 void PushAndMarkVerifyClosure::do_oop(oop obj) { 6902 assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj))); 6903 HeapWord* addr = (HeapWord*)obj; 6904 if (_span.contains(addr) && !_verification_bm->isMarked(addr)) { 6905 // Oop lies in _span and isn't yet grey or black 6906 _verification_bm->mark(addr); // now grey 6907 if (!_cms_bm->isMarked(addr)) { 6908 oop(addr)->print(); 6909 gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", 6910 p2i(addr)); 6911 fatal("... aborting"); 6912 } 6913 6914 if (!_mark_stack->push(obj)) { // stack overflow 6915 if (PrintCMSStatistics != 0) { 6916 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 6917 SIZE_FORMAT, _mark_stack->capacity()); 6918 } 6919 assert(_mark_stack->isFull(), "Else push should have succeeded"); 6920 handle_stack_overflow(addr); 6921 } 6922 // anything including and to the right of _finger 6923 // will be scanned as we iterate over the remainder of the 6924 // bit map 6925 } 6926 } 6927 6928 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector, 6929 MemRegion span, 6930 CMSBitMap* bitMap, CMSMarkStack* markStack, 6931 HeapWord* finger, MarkFromRootsClosure* parent) : 6932 MetadataAwareOopClosure(collector->ref_processor()), 6933 _collector(collector), 6934 _span(span), 6935 _bitMap(bitMap), 6936 _markStack(markStack), 6937 _finger(finger), 6938 _parent(parent) 6939 { } 6940 6941 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector, 6942 MemRegion span, 6943 CMSBitMap* bit_map, 6944 OopTaskQueue* work_queue, 6945 CMSMarkStack* overflow_stack, 6946 HeapWord* finger, 6947 HeapWord** global_finger_addr, 6948 Par_MarkFromRootsClosure* parent) : 6949 MetadataAwareOopClosure(collector->ref_processor()), 6950 _collector(collector), 6951 _whole_span(collector->_span), 6952 _span(span), 6953 _bit_map(bit_map), 6954 _work_queue(work_queue), 6955 _overflow_stack(overflow_stack), 6956 _finger(finger), 6957 _global_finger_addr(global_finger_addr), 6958 _parent(parent) 6959 { } 6960 6961 // Assumes thread-safe access by callers, who are 6962 // responsible for mutual exclusion. 6963 void CMSCollector::lower_restart_addr(HeapWord* low) { 6964 assert(_span.contains(low), "Out of bounds addr"); 6965 if (_restart_addr == NULL) { 6966 _restart_addr = low; 6967 } else { 6968 _restart_addr = MIN2(_restart_addr, low); 6969 } 6970 } 6971 6972 // Upon stack overflow, we discard (part of) the stack, 6973 // remembering the least address amongst those discarded 6974 // in CMSCollector's _restart_address. 6975 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { 6976 // Remember the least grey address discarded 6977 HeapWord* ra = (HeapWord*)_markStack->least_value(lost); 6978 _collector->lower_restart_addr(ra); 6979 _markStack->reset(); // discard stack contents 6980 _markStack->expand(); // expand the stack if possible 6981 } 6982 6983 // Upon stack overflow, we discard (part of) the stack, 6984 // remembering the least address amongst those discarded 6985 // in CMSCollector's _restart_address. 6986 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { 6987 // We need to do this under a mutex to prevent other 6988 // workers from interfering with the work done below. 6989 MutexLockerEx ml(_overflow_stack->par_lock(), 6990 Mutex::_no_safepoint_check_flag); 6991 // Remember the least grey address discarded 6992 HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); 6993 _collector->lower_restart_addr(ra); 6994 _overflow_stack->reset(); // discard stack contents 6995 _overflow_stack->expand(); // expand the stack if possible 6996 } 6997 6998 void PushOrMarkClosure::do_oop(oop obj) { 6999 // Ignore mark word because we are running concurrent with mutators. 7000 assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj))); 7001 HeapWord* addr = (HeapWord*)obj; 7002 if (_span.contains(addr) && !_bitMap->isMarked(addr)) { 7003 // Oop lies in _span and isn't yet grey or black 7004 _bitMap->mark(addr); // now grey 7005 if (addr < _finger) { 7006 // the bit map iteration has already either passed, or 7007 // sampled, this bit in the bit map; we'll need to 7008 // use the marking stack to scan this oop's oops. 7009 bool simulate_overflow = false; 7010 NOT_PRODUCT( 7011 if (CMSMarkStackOverflowALot && 7012 _collector->simulate_overflow()) { 7013 // simulate a stack overflow 7014 simulate_overflow = true; 7015 } 7016 ) 7017 if (simulate_overflow || !_markStack->push(obj)) { // stack overflow 7018 if (PrintCMSStatistics != 0) { 7019 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7020 SIZE_FORMAT, _markStack->capacity()); 7021 } 7022 assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded"); 7023 handle_stack_overflow(addr); 7024 } 7025 } 7026 // anything including and to the right of _finger 7027 // will be scanned as we iterate over the remainder of the 7028 // bit map 7029 do_yield_check(); 7030 } 7031 } 7032 7033 void PushOrMarkClosure::do_oop(oop* p) { PushOrMarkClosure::do_oop_work(p); } 7034 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); } 7035 7036 void Par_PushOrMarkClosure::do_oop(oop obj) { 7037 // Ignore mark word because we are running concurrent with mutators. 7038 assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj))); 7039 HeapWord* addr = (HeapWord*)obj; 7040 if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) { 7041 // Oop lies in _span and isn't yet grey or black 7042 // We read the global_finger (volatile read) strictly after marking oop 7043 bool res = _bit_map->par_mark(addr); // now grey 7044 volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr; 7045 // Should we push this marked oop on our stack? 7046 // -- if someone else marked it, nothing to do 7047 // -- if target oop is above global finger nothing to do 7048 // -- if target oop is in chunk and above local finger 7049 // then nothing to do 7050 // -- else push on work queue 7051 if ( !res // someone else marked it, they will deal with it 7052 || (addr >= *gfa) // will be scanned in a later task 7053 || (_span.contains(addr) && addr >= _finger)) { // later in this chunk 7054 return; 7055 } 7056 // the bit map iteration has already either passed, or 7057 // sampled, this bit in the bit map; we'll need to 7058 // use the marking stack to scan this oop's oops. 7059 bool simulate_overflow = false; 7060 NOT_PRODUCT( 7061 if (CMSMarkStackOverflowALot && 7062 _collector->simulate_overflow()) { 7063 // simulate a stack overflow 7064 simulate_overflow = true; 7065 } 7066 ) 7067 if (simulate_overflow || 7068 !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { 7069 // stack overflow 7070 if (PrintCMSStatistics != 0) { 7071 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7072 SIZE_FORMAT, _overflow_stack->capacity()); 7073 } 7074 // We cannot assert that the overflow stack is full because 7075 // it may have been emptied since. 7076 assert(simulate_overflow || 7077 _work_queue->size() == _work_queue->max_elems(), 7078 "Else push should have succeeded"); 7079 handle_stack_overflow(addr); 7080 } 7081 do_yield_check(); 7082 } 7083 } 7084 7085 void Par_PushOrMarkClosure::do_oop(oop* p) { Par_PushOrMarkClosure::do_oop_work(p); } 7086 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); } 7087 7088 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector, 7089 MemRegion span, 7090 ReferenceProcessor* rp, 7091 CMSBitMap* bit_map, 7092 CMSBitMap* mod_union_table, 7093 CMSMarkStack* mark_stack, 7094 bool concurrent_precleaning): 7095 MetadataAwareOopClosure(rp), 7096 _collector(collector), 7097 _span(span), 7098 _bit_map(bit_map), 7099 _mod_union_table(mod_union_table), 7100 _mark_stack(mark_stack), 7101 _concurrent_precleaning(concurrent_precleaning) 7102 { 7103 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 7104 } 7105 7106 // Grey object rescan during pre-cleaning and second checkpoint phases -- 7107 // the non-parallel version (the parallel version appears further below.) 7108 void PushAndMarkClosure::do_oop(oop obj) { 7109 // Ignore mark word verification. If during concurrent precleaning, 7110 // the object monitor may be locked. If during the checkpoint 7111 // phases, the object may already have been reached by a different 7112 // path and may be at the end of the global overflow list (so 7113 // the mark word may be NULL). 7114 assert(obj->is_oop_or_null(true /* ignore mark word */), 7115 err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj))); 7116 HeapWord* addr = (HeapWord*)obj; 7117 // Check if oop points into the CMS generation 7118 // and is not marked 7119 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 7120 // a white object ... 7121 _bit_map->mark(addr); // ... now grey 7122 // push on the marking stack (grey set) 7123 bool simulate_overflow = false; 7124 NOT_PRODUCT( 7125 if (CMSMarkStackOverflowALot && 7126 _collector->simulate_overflow()) { 7127 // simulate a stack overflow 7128 simulate_overflow = true; 7129 } 7130 ) 7131 if (simulate_overflow || !_mark_stack->push(obj)) { 7132 if (_concurrent_precleaning) { 7133 // During precleaning we can just dirty the appropriate card(s) 7134 // in the mod union table, thus ensuring that the object remains 7135 // in the grey set and continue. In the case of object arrays 7136 // we need to dirty all of the cards that the object spans, 7137 // since the rescan of object arrays will be limited to the 7138 // dirty cards. 7139 // Note that no one can be interfering with us in this action 7140 // of dirtying the mod union table, so no locking or atomics 7141 // are required. 7142 if (obj->is_objArray()) { 7143 size_t sz = obj->size(); 7144 HeapWord* end_card_addr = (HeapWord*)round_to( 7145 (intptr_t)(addr+sz), CardTableModRefBS::card_size); 7146 MemRegion redirty_range = MemRegion(addr, end_card_addr); 7147 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 7148 _mod_union_table->mark_range(redirty_range); 7149 } else { 7150 _mod_union_table->mark(addr); 7151 } 7152 _collector->_ser_pmc_preclean_ovflw++; 7153 } else { 7154 // During the remark phase, we need to remember this oop 7155 // in the overflow list. 7156 _collector->push_on_overflow_list(obj); 7157 _collector->_ser_pmc_remark_ovflw++; 7158 } 7159 } 7160 } 7161 } 7162 7163 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector, 7164 MemRegion span, 7165 ReferenceProcessor* rp, 7166 CMSBitMap* bit_map, 7167 OopTaskQueue* work_queue): 7168 MetadataAwareOopClosure(rp), 7169 _collector(collector), 7170 _span(span), 7171 _bit_map(bit_map), 7172 _work_queue(work_queue) 7173 { 7174 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 7175 } 7176 7177 void PushAndMarkClosure::do_oop(oop* p) { PushAndMarkClosure::do_oop_work(p); } 7178 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); } 7179 7180 // Grey object rescan during second checkpoint phase -- 7181 // the parallel version. 7182 void Par_PushAndMarkClosure::do_oop(oop obj) { 7183 // In the assert below, we ignore the mark word because 7184 // this oop may point to an already visited object that is 7185 // on the overflow stack (in which case the mark word has 7186 // been hijacked for chaining into the overflow stack -- 7187 // if this is the last object in the overflow stack then 7188 // its mark word will be NULL). Because this object may 7189 // have been subsequently popped off the global overflow 7190 // stack, and the mark word possibly restored to the prototypical 7191 // value, by the time we get to examined this failing assert in 7192 // the debugger, is_oop_or_null(false) may subsequently start 7193 // to hold. 7194 assert(obj->is_oop_or_null(true), 7195 err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj))); 7196 HeapWord* addr = (HeapWord*)obj; 7197 // Check if oop points into the CMS generation 7198 // and is not marked 7199 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 7200 // a white object ... 7201 // If we manage to "claim" the object, by being the 7202 // first thread to mark it, then we push it on our 7203 // marking stack 7204 if (_bit_map->par_mark(addr)) { // ... now grey 7205 // push on work queue (grey set) 7206 bool simulate_overflow = false; 7207 NOT_PRODUCT( 7208 if (CMSMarkStackOverflowALot && 7209 _collector->par_simulate_overflow()) { 7210 // simulate a stack overflow 7211 simulate_overflow = true; 7212 } 7213 ) 7214 if (simulate_overflow || !_work_queue->push(obj)) { 7215 _collector->par_push_on_overflow_list(obj); 7216 _collector->_par_pmc_remark_ovflw++; // imprecise OK: no need to CAS 7217 } 7218 } // Else, some other thread got there first 7219 } 7220 } 7221 7222 void Par_PushAndMarkClosure::do_oop(oop* p) { Par_PushAndMarkClosure::do_oop_work(p); } 7223 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); } 7224 7225 void CMSPrecleanRefsYieldClosure::do_yield_work() { 7226 Mutex* bml = _collector->bitMapLock(); 7227 assert_lock_strong(bml); 7228 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7229 "CMS thread should hold CMS token"); 7230 7231 bml->unlock(); 7232 ConcurrentMarkSweepThread::desynchronize(true); 7233 7234 _collector->stopTimer(); 7235 if (PrintCMSStatistics != 0) { 7236 _collector->incrementYields(); 7237 } 7238 7239 // See the comment in coordinator_yield() 7240 for (unsigned i = 0; i < CMSYieldSleepCount && 7241 ConcurrentMarkSweepThread::should_yield() && 7242 !CMSCollector::foregroundGCIsActive(); ++i) { 7243 os::sleep(Thread::current(), 1, false); 7244 } 7245 7246 ConcurrentMarkSweepThread::synchronize(true); 7247 bml->lock(); 7248 7249 _collector->startTimer(); 7250 } 7251 7252 bool CMSPrecleanRefsYieldClosure::should_return() { 7253 if (ConcurrentMarkSweepThread::should_yield()) { 7254 do_yield_work(); 7255 } 7256 return _collector->foregroundGCIsActive(); 7257 } 7258 7259 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) { 7260 assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0, 7261 "mr should be aligned to start at a card boundary"); 7262 // We'd like to assert: 7263 // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0, 7264 // "mr should be a range of cards"); 7265 // However, that would be too strong in one case -- the last 7266 // partition ends at _unallocated_block which, in general, can be 7267 // an arbitrary boundary, not necessarily card aligned. 7268 if (PrintCMSStatistics != 0) { 7269 _num_dirty_cards += 7270 mr.word_size()/CardTableModRefBS::card_size_in_words; 7271 } 7272 _space->object_iterate_mem(mr, &_scan_cl); 7273 } 7274 7275 SweepClosure::SweepClosure(CMSCollector* collector, 7276 ConcurrentMarkSweepGeneration* g, 7277 CMSBitMap* bitMap, bool should_yield) : 7278 _collector(collector), 7279 _g(g), 7280 _sp(g->cmsSpace()), 7281 _limit(_sp->sweep_limit()), 7282 _freelistLock(_sp->freelistLock()), 7283 _bitMap(bitMap), 7284 _yield(should_yield), 7285 _inFreeRange(false), // No free range at beginning of sweep 7286 _freeRangeInFreeLists(false), // No free range at beginning of sweep 7287 _lastFreeRangeCoalesced(false), 7288 _freeFinger(g->used_region().start()) 7289 { 7290 NOT_PRODUCT( 7291 _numObjectsFreed = 0; 7292 _numWordsFreed = 0; 7293 _numObjectsLive = 0; 7294 _numWordsLive = 0; 7295 _numObjectsAlreadyFree = 0; 7296 _numWordsAlreadyFree = 0; 7297 _last_fc = NULL; 7298 7299 _sp->initializeIndexedFreeListArrayReturnedBytes(); 7300 _sp->dictionary()->initialize_dict_returned_bytes(); 7301 ) 7302 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 7303 "sweep _limit out of bounds"); 7304 if (CMSTraceSweeper) { 7305 gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT, 7306 p2i(_limit)); 7307 } 7308 } 7309 7310 void SweepClosure::print_on(outputStream* st) const { 7311 tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")", 7312 p2i(_sp->bottom()), p2i(_sp->end())); 7313 tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit)); 7314 tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger)); 7315 NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));) 7316 tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d", 7317 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced); 7318 } 7319 7320 #ifndef PRODUCT 7321 // Assertion checking only: no useful work in product mode -- 7322 // however, if any of the flags below become product flags, 7323 // you may need to review this code to see if it needs to be 7324 // enabled in product mode. 7325 SweepClosure::~SweepClosure() { 7326 assert_lock_strong(_freelistLock); 7327 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 7328 "sweep _limit out of bounds"); 7329 if (inFreeRange()) { 7330 warning("inFreeRange() should have been reset; dumping state of SweepClosure"); 7331 print(); 7332 ShouldNotReachHere(); 7333 } 7334 if (Verbose && PrintGC) { 7335 gclog_or_tty->print("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes", 7336 _numObjectsFreed, _numWordsFreed*sizeof(HeapWord)); 7337 gclog_or_tty->print_cr("\nLive " SIZE_FORMAT " objects, " 7338 SIZE_FORMAT " bytes " 7339 "Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes", 7340 _numObjectsLive, _numWordsLive*sizeof(HeapWord), 7341 _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord)); 7342 size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) 7343 * sizeof(HeapWord); 7344 gclog_or_tty->print_cr("Total sweep: " SIZE_FORMAT " bytes", totalBytes); 7345 7346 if (PrintCMSStatistics && CMSVerifyReturnedBytes) { 7347 size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes(); 7348 size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes(); 7349 size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes; 7350 gclog_or_tty->print("Returned " SIZE_FORMAT " bytes", returned_bytes); 7351 gclog_or_tty->print(" Indexed List Returned " SIZE_FORMAT " bytes", 7352 indexListReturnedBytes); 7353 gclog_or_tty->print_cr(" Dictionary Returned " SIZE_FORMAT " bytes", 7354 dict_returned_bytes); 7355 } 7356 } 7357 if (CMSTraceSweeper) { 7358 gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================", 7359 p2i(_limit)); 7360 } 7361 } 7362 #endif // PRODUCT 7363 7364 void SweepClosure::initialize_free_range(HeapWord* freeFinger, 7365 bool freeRangeInFreeLists) { 7366 if (CMSTraceSweeper) { 7367 gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n", 7368 p2i(freeFinger), freeRangeInFreeLists); 7369 } 7370 assert(!inFreeRange(), "Trampling existing free range"); 7371 set_inFreeRange(true); 7372 set_lastFreeRangeCoalesced(false); 7373 7374 set_freeFinger(freeFinger); 7375 set_freeRangeInFreeLists(freeRangeInFreeLists); 7376 if (CMSTestInFreeList) { 7377 if (freeRangeInFreeLists) { 7378 FreeChunk* fc = (FreeChunk*) freeFinger; 7379 assert(fc->is_free(), "A chunk on the free list should be free."); 7380 assert(fc->size() > 0, "Free range should have a size"); 7381 assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists"); 7382 } 7383 } 7384 } 7385 7386 // Note that the sweeper runs concurrently with mutators. Thus, 7387 // it is possible for direct allocation in this generation to happen 7388 // in the middle of the sweep. Note that the sweeper also coalesces 7389 // contiguous free blocks. Thus, unless the sweeper and the allocator 7390 // synchronize appropriately freshly allocated blocks may get swept up. 7391 // This is accomplished by the sweeper locking the free lists while 7392 // it is sweeping. Thus blocks that are determined to be free are 7393 // indeed free. There is however one additional complication: 7394 // blocks that have been allocated since the final checkpoint and 7395 // mark, will not have been marked and so would be treated as 7396 // unreachable and swept up. To prevent this, the allocator marks 7397 // the bit map when allocating during the sweep phase. This leads, 7398 // however, to a further complication -- objects may have been allocated 7399 // but not yet initialized -- in the sense that the header isn't yet 7400 // installed. The sweeper can not then determine the size of the block 7401 // in order to skip over it. To deal with this case, we use a technique 7402 // (due to Printezis) to encode such uninitialized block sizes in the 7403 // bit map. Since the bit map uses a bit per every HeapWord, but the 7404 // CMS generation has a minimum object size of 3 HeapWords, it follows 7405 // that "normal marks" won't be adjacent in the bit map (there will 7406 // always be at least two 0 bits between successive 1 bits). We make use 7407 // of these "unused" bits to represent uninitialized blocks -- the bit 7408 // corresponding to the start of the uninitialized object and the next 7409 // bit are both set. Finally, a 1 bit marks the end of the object that 7410 // started with the two consecutive 1 bits to indicate its potentially 7411 // uninitialized state. 7412 7413 size_t SweepClosure::do_blk_careful(HeapWord* addr) { 7414 FreeChunk* fc = (FreeChunk*)addr; 7415 size_t res; 7416 7417 // Check if we are done sweeping. Below we check "addr >= _limit" rather 7418 // than "addr == _limit" because although _limit was a block boundary when 7419 // we started the sweep, it may no longer be one because heap expansion 7420 // may have caused us to coalesce the block ending at the address _limit 7421 // with a newly expanded chunk (this happens when _limit was set to the 7422 // previous _end of the space), so we may have stepped past _limit: 7423 // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740. 7424 if (addr >= _limit) { // we have swept up to or past the limit: finish up 7425 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 7426 "sweep _limit out of bounds"); 7427 assert(addr < _sp->end(), "addr out of bounds"); 7428 // Flush any free range we might be holding as a single 7429 // coalesced chunk to the appropriate free list. 7430 if (inFreeRange()) { 7431 assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit, 7432 err_msg("freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()))); 7433 flush_cur_free_chunk(freeFinger(), 7434 pointer_delta(addr, freeFinger())); 7435 if (CMSTraceSweeper) { 7436 gclog_or_tty->print("Sweep: last chunk: "); 7437 gclog_or_tty->print("put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") " 7438 "[coalesced:%d]\n", 7439 p2i(freeFinger()), pointer_delta(addr, freeFinger()), 7440 lastFreeRangeCoalesced() ? 1 : 0); 7441 } 7442 } 7443 7444 // help the iterator loop finish 7445 return pointer_delta(_sp->end(), addr); 7446 } 7447 7448 assert(addr < _limit, "sweep invariant"); 7449 // check if we should yield 7450 do_yield_check(addr); 7451 if (fc->is_free()) { 7452 // Chunk that is already free 7453 res = fc->size(); 7454 do_already_free_chunk(fc); 7455 debug_only(_sp->verifyFreeLists()); 7456 // If we flush the chunk at hand in lookahead_and_flush() 7457 // and it's coalesced with a preceding chunk, then the 7458 // process of "mangling" the payload of the coalesced block 7459 // will cause erasure of the size information from the 7460 // (erstwhile) header of all the coalesced blocks but the 7461 // first, so the first disjunct in the assert will not hold 7462 // in that specific case (in which case the second disjunct 7463 // will hold). 7464 assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit, 7465 "Otherwise the size info doesn't change at this step"); 7466 NOT_PRODUCT( 7467 _numObjectsAlreadyFree++; 7468 _numWordsAlreadyFree += res; 7469 ) 7470 NOT_PRODUCT(_last_fc = fc;) 7471 } else if (!_bitMap->isMarked(addr)) { 7472 // Chunk is fresh garbage 7473 res = do_garbage_chunk(fc); 7474 debug_only(_sp->verifyFreeLists()); 7475 NOT_PRODUCT( 7476 _numObjectsFreed++; 7477 _numWordsFreed += res; 7478 ) 7479 } else { 7480 // Chunk that is alive. 7481 res = do_live_chunk(fc); 7482 debug_only(_sp->verifyFreeLists()); 7483 NOT_PRODUCT( 7484 _numObjectsLive++; 7485 _numWordsLive += res; 7486 ) 7487 } 7488 return res; 7489 } 7490 7491 // For the smart allocation, record following 7492 // split deaths - a free chunk is removed from its free list because 7493 // it is being split into two or more chunks. 7494 // split birth - a free chunk is being added to its free list because 7495 // a larger free chunk has been split and resulted in this free chunk. 7496 // coal death - a free chunk is being removed from its free list because 7497 // it is being coalesced into a large free chunk. 7498 // coal birth - a free chunk is being added to its free list because 7499 // it was created when two or more free chunks where coalesced into 7500 // this free chunk. 7501 // 7502 // These statistics are used to determine the desired number of free 7503 // chunks of a given size. The desired number is chosen to be relative 7504 // to the end of a CMS sweep. The desired number at the end of a sweep 7505 // is the 7506 // count-at-end-of-previous-sweep (an amount that was enough) 7507 // - count-at-beginning-of-current-sweep (the excess) 7508 // + split-births (gains in this size during interval) 7509 // - split-deaths (demands on this size during interval) 7510 // where the interval is from the end of one sweep to the end of the 7511 // next. 7512 // 7513 // When sweeping the sweeper maintains an accumulated chunk which is 7514 // the chunk that is made up of chunks that have been coalesced. That 7515 // will be termed the left-hand chunk. A new chunk of garbage that 7516 // is being considered for coalescing will be referred to as the 7517 // right-hand chunk. 7518 // 7519 // When making a decision on whether to coalesce a right-hand chunk with 7520 // the current left-hand chunk, the current count vs. the desired count 7521 // of the left-hand chunk is considered. Also if the right-hand chunk 7522 // is near the large chunk at the end of the heap (see 7523 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the 7524 // left-hand chunk is coalesced. 7525 // 7526 // When making a decision about whether to split a chunk, the desired count 7527 // vs. the current count of the candidate to be split is also considered. 7528 // If the candidate is underpopulated (currently fewer chunks than desired) 7529 // a chunk of an overpopulated (currently more chunks than desired) size may 7530 // be chosen. The "hint" associated with a free list, if non-null, points 7531 // to a free list which may be overpopulated. 7532 // 7533 7534 void SweepClosure::do_already_free_chunk(FreeChunk* fc) { 7535 const size_t size = fc->size(); 7536 // Chunks that cannot be coalesced are not in the 7537 // free lists. 7538 if (CMSTestInFreeList && !fc->cantCoalesce()) { 7539 assert(_sp->verify_chunk_in_free_list(fc), 7540 "free chunk should be in free lists"); 7541 } 7542 // a chunk that is already free, should not have been 7543 // marked in the bit map 7544 HeapWord* const addr = (HeapWord*) fc; 7545 assert(!_bitMap->isMarked(addr), "free chunk should be unmarked"); 7546 // Verify that the bit map has no bits marked between 7547 // addr and purported end of this block. 7548 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 7549 7550 // Some chunks cannot be coalesced under any circumstances. 7551 // See the definition of cantCoalesce(). 7552 if (!fc->cantCoalesce()) { 7553 // This chunk can potentially be coalesced. 7554 if (_sp->adaptive_freelists()) { 7555 // All the work is done in 7556 do_post_free_or_garbage_chunk(fc, size); 7557 } else { // Not adaptive free lists 7558 // this is a free chunk that can potentially be coalesced by the sweeper; 7559 if (!inFreeRange()) { 7560 // if the next chunk is a free block that can't be coalesced 7561 // it doesn't make sense to remove this chunk from the free lists 7562 FreeChunk* nextChunk = (FreeChunk*)(addr + size); 7563 assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?"); 7564 if ((HeapWord*)nextChunk < _sp->end() && // There is another free chunk to the right ... 7565 nextChunk->is_free() && // ... which is free... 7566 nextChunk->cantCoalesce()) { // ... but can't be coalesced 7567 // nothing to do 7568 } else { 7569 // Potentially the start of a new free range: 7570 // Don't eagerly remove it from the free lists. 7571 // No need to remove it if it will just be put 7572 // back again. (Also from a pragmatic point of view 7573 // if it is a free block in a region that is beyond 7574 // any allocated blocks, an assertion will fail) 7575 // Remember the start of a free run. 7576 initialize_free_range(addr, true); 7577 // end - can coalesce with next chunk 7578 } 7579 } else { 7580 // the midst of a free range, we are coalescing 7581 print_free_block_coalesced(fc); 7582 if (CMSTraceSweeper) { 7583 gclog_or_tty->print(" -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size); 7584 } 7585 // remove it from the free lists 7586 _sp->removeFreeChunkFromFreeLists(fc); 7587 set_lastFreeRangeCoalesced(true); 7588 // If the chunk is being coalesced and the current free range is 7589 // in the free lists, remove the current free range so that it 7590 // will be returned to the free lists in its entirety - all 7591 // the coalesced pieces included. 7592 if (freeRangeInFreeLists()) { 7593 FreeChunk* ffc = (FreeChunk*) freeFinger(); 7594 assert(ffc->size() == pointer_delta(addr, freeFinger()), 7595 "Size of free range is inconsistent with chunk size."); 7596 if (CMSTestInFreeList) { 7597 assert(_sp->verify_chunk_in_free_list(ffc), 7598 "free range is not in free lists"); 7599 } 7600 _sp->removeFreeChunkFromFreeLists(ffc); 7601 set_freeRangeInFreeLists(false); 7602 } 7603 } 7604 } 7605 // Note that if the chunk is not coalescable (the else arm 7606 // below), we unconditionally flush, without needing to do 7607 // a "lookahead," as we do below. 7608 if (inFreeRange()) lookahead_and_flush(fc, size); 7609 } else { 7610 // Code path common to both original and adaptive free lists. 7611 7612 // cant coalesce with previous block; this should be treated 7613 // as the end of a free run if any 7614 if (inFreeRange()) { 7615 // we kicked some butt; time to pick up the garbage 7616 assert(freeFinger() < addr, "freeFinger points too high"); 7617 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 7618 } 7619 // else, nothing to do, just continue 7620 } 7621 } 7622 7623 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) { 7624 // This is a chunk of garbage. It is not in any free list. 7625 // Add it to a free list or let it possibly be coalesced into 7626 // a larger chunk. 7627 HeapWord* const addr = (HeapWord*) fc; 7628 const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); 7629 7630 if (_sp->adaptive_freelists()) { 7631 // Verify that the bit map has no bits marked between 7632 // addr and purported end of just dead object. 7633 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 7634 7635 do_post_free_or_garbage_chunk(fc, size); 7636 } else { 7637 if (!inFreeRange()) { 7638 // start of a new free range 7639 assert(size > 0, "A free range should have a size"); 7640 initialize_free_range(addr, false); 7641 } else { 7642 // this will be swept up when we hit the end of the 7643 // free range 7644 if (CMSTraceSweeper) { 7645 gclog_or_tty->print(" -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size); 7646 } 7647 // If the chunk is being coalesced and the current free range is 7648 // in the free lists, remove the current free range so that it 7649 // will be returned to the free lists in its entirety - all 7650 // the coalesced pieces included. 7651 if (freeRangeInFreeLists()) { 7652 FreeChunk* ffc = (FreeChunk*)freeFinger(); 7653 assert(ffc->size() == pointer_delta(addr, freeFinger()), 7654 "Size of free range is inconsistent with chunk size."); 7655 if (CMSTestInFreeList) { 7656 assert(_sp->verify_chunk_in_free_list(ffc), 7657 "free range is not in free lists"); 7658 } 7659 _sp->removeFreeChunkFromFreeLists(ffc); 7660 set_freeRangeInFreeLists(false); 7661 } 7662 set_lastFreeRangeCoalesced(true); 7663 } 7664 // this will be swept up when we hit the end of the free range 7665 7666 // Verify that the bit map has no bits marked between 7667 // addr and purported end of just dead object. 7668 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 7669 } 7670 assert(_limit >= addr + size, 7671 "A freshly garbage chunk can't possibly straddle over _limit"); 7672 if (inFreeRange()) lookahead_and_flush(fc, size); 7673 return size; 7674 } 7675 7676 size_t SweepClosure::do_live_chunk(FreeChunk* fc) { 7677 HeapWord* addr = (HeapWord*) fc; 7678 // The sweeper has just found a live object. Return any accumulated 7679 // left hand chunk to the free lists. 7680 if (inFreeRange()) { 7681 assert(freeFinger() < addr, "freeFinger points too high"); 7682 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 7683 } 7684 7685 // This object is live: we'd normally expect this to be 7686 // an oop, and like to assert the following: 7687 // assert(oop(addr)->is_oop(), "live block should be an oop"); 7688 // However, as we commented above, this may be an object whose 7689 // header hasn't yet been initialized. 7690 size_t size; 7691 assert(_bitMap->isMarked(addr), "Tautology for this control point"); 7692 if (_bitMap->isMarked(addr + 1)) { 7693 // Determine the size from the bit map, rather than trying to 7694 // compute it from the object header. 7695 HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); 7696 size = pointer_delta(nextOneAddr + 1, addr); 7697 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 7698 "alignment problem"); 7699 7700 #ifdef ASSERT 7701 if (oop(addr)->klass_or_null() != NULL) { 7702 // Ignore mark word because we are running concurrent with mutators 7703 assert(oop(addr)->is_oop(true), "live block should be an oop"); 7704 assert(size == 7705 CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()), 7706 "P-mark and computed size do not agree"); 7707 } 7708 #endif 7709 7710 } else { 7711 // This should be an initialized object that's alive. 7712 assert(oop(addr)->klass_or_null() != NULL, 7713 "Should be an initialized object"); 7714 // Ignore mark word because we are running concurrent with mutators 7715 assert(oop(addr)->is_oop(true), "live block should be an oop"); 7716 // Verify that the bit map has no bits marked between 7717 // addr and purported end of this block. 7718 size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); 7719 assert(size >= 3, "Necessary for Printezis marks to work"); 7720 assert(!_bitMap->isMarked(addr+1), "Tautology for this control point"); 7721 DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);) 7722 } 7723 return size; 7724 } 7725 7726 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc, 7727 size_t chunkSize) { 7728 // do_post_free_or_garbage_chunk() should only be called in the case 7729 // of the adaptive free list allocator. 7730 const bool fcInFreeLists = fc->is_free(); 7731 assert(_sp->adaptive_freelists(), "Should only be used in this case."); 7732 assert((HeapWord*)fc <= _limit, "sweep invariant"); 7733 if (CMSTestInFreeList && fcInFreeLists) { 7734 assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists"); 7735 } 7736 7737 if (CMSTraceSweeper) { 7738 gclog_or_tty->print_cr(" -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize); 7739 } 7740 7741 HeapWord* const fc_addr = (HeapWord*) fc; 7742 7743 bool coalesce; 7744 const size_t left = pointer_delta(fc_addr, freeFinger()); 7745 const size_t right = chunkSize; 7746 switch (FLSCoalescePolicy) { 7747 // numeric value forms a coalition aggressiveness metric 7748 case 0: { // never coalesce 7749 coalesce = false; 7750 break; 7751 } 7752 case 1: { // coalesce if left & right chunks on overpopulated lists 7753 coalesce = _sp->coalOverPopulated(left) && 7754 _sp->coalOverPopulated(right); 7755 break; 7756 } 7757 case 2: { // coalesce if left chunk on overpopulated list (default) 7758 coalesce = _sp->coalOverPopulated(left); 7759 break; 7760 } 7761 case 3: { // coalesce if left OR right chunk on overpopulated list 7762 coalesce = _sp->coalOverPopulated(left) || 7763 _sp->coalOverPopulated(right); 7764 break; 7765 } 7766 case 4: { // always coalesce 7767 coalesce = true; 7768 break; 7769 } 7770 default: 7771 ShouldNotReachHere(); 7772 } 7773 7774 // Should the current free range be coalesced? 7775 // If the chunk is in a free range and either we decided to coalesce above 7776 // or the chunk is near the large block at the end of the heap 7777 // (isNearLargestChunk() returns true), then coalesce this chunk. 7778 const bool doCoalesce = inFreeRange() 7779 && (coalesce || _g->isNearLargestChunk(fc_addr)); 7780 if (doCoalesce) { 7781 // Coalesce the current free range on the left with the new 7782 // chunk on the right. If either is on a free list, 7783 // it must be removed from the list and stashed in the closure. 7784 if (freeRangeInFreeLists()) { 7785 FreeChunk* const ffc = (FreeChunk*)freeFinger(); 7786 assert(ffc->size() == pointer_delta(fc_addr, freeFinger()), 7787 "Size of free range is inconsistent with chunk size."); 7788 if (CMSTestInFreeList) { 7789 assert(_sp->verify_chunk_in_free_list(ffc), 7790 "Chunk is not in free lists"); 7791 } 7792 _sp->coalDeath(ffc->size()); 7793 _sp->removeFreeChunkFromFreeLists(ffc); 7794 set_freeRangeInFreeLists(false); 7795 } 7796 if (fcInFreeLists) { 7797 _sp->coalDeath(chunkSize); 7798 assert(fc->size() == chunkSize, 7799 "The chunk has the wrong size or is not in the free lists"); 7800 _sp->removeFreeChunkFromFreeLists(fc); 7801 } 7802 set_lastFreeRangeCoalesced(true); 7803 print_free_block_coalesced(fc); 7804 } else { // not in a free range and/or should not coalesce 7805 // Return the current free range and start a new one. 7806 if (inFreeRange()) { 7807 // In a free range but cannot coalesce with the right hand chunk. 7808 // Put the current free range into the free lists. 7809 flush_cur_free_chunk(freeFinger(), 7810 pointer_delta(fc_addr, freeFinger())); 7811 } 7812 // Set up for new free range. Pass along whether the right hand 7813 // chunk is in the free lists. 7814 initialize_free_range((HeapWord*)fc, fcInFreeLists); 7815 } 7816 } 7817 7818 // Lookahead flush: 7819 // If we are tracking a free range, and this is the last chunk that 7820 // we'll look at because its end crosses past _limit, we'll preemptively 7821 // flush it along with any free range we may be holding on to. Note that 7822 // this can be the case only for an already free or freshly garbage 7823 // chunk. If this block is an object, it can never straddle 7824 // over _limit. The "straddling" occurs when _limit is set at 7825 // the previous end of the space when this cycle started, and 7826 // a subsequent heap expansion caused the previously co-terminal 7827 // free block to be coalesced with the newly expanded portion, 7828 // thus rendering _limit a non-block-boundary making it dangerous 7829 // for the sweeper to step over and examine. 7830 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) { 7831 assert(inFreeRange(), "Should only be called if currently in a free range."); 7832 HeapWord* const eob = ((HeapWord*)fc) + chunk_size; 7833 assert(_sp->used_region().contains(eob - 1), 7834 err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT 7835 " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")" 7836 " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")", 7837 p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size)); 7838 if (eob >= _limit) { 7839 assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit"); 7840 if (CMSTraceSweeper) { 7841 gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block " 7842 "[" PTR_FORMAT "," PTR_FORMAT ") in space " 7843 "[" PTR_FORMAT "," PTR_FORMAT ")", 7844 p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end())); 7845 } 7846 // Return the storage we are tracking back into the free lists. 7847 if (CMSTraceSweeper) { 7848 gclog_or_tty->print_cr("Flushing ... "); 7849 } 7850 assert(freeFinger() < eob, "Error"); 7851 flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger())); 7852 } 7853 } 7854 7855 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) { 7856 assert(inFreeRange(), "Should only be called if currently in a free range."); 7857 assert(size > 0, 7858 "A zero sized chunk cannot be added to the free lists."); 7859 if (!freeRangeInFreeLists()) { 7860 if (CMSTestInFreeList) { 7861 FreeChunk* fc = (FreeChunk*) chunk; 7862 fc->set_size(size); 7863 assert(!_sp->verify_chunk_in_free_list(fc), 7864 "chunk should not be in free lists yet"); 7865 } 7866 if (CMSTraceSweeper) { 7867 gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", 7868 p2i(chunk), size); 7869 } 7870 // A new free range is going to be starting. The current 7871 // free range has not been added to the free lists yet or 7872 // was removed so add it back. 7873 // If the current free range was coalesced, then the death 7874 // of the free range was recorded. Record a birth now. 7875 if (lastFreeRangeCoalesced()) { 7876 _sp->coalBirth(size); 7877 } 7878 _sp->addChunkAndRepairOffsetTable(chunk, size, 7879 lastFreeRangeCoalesced()); 7880 } else if (CMSTraceSweeper) { 7881 gclog_or_tty->print_cr("Already in free list: nothing to flush"); 7882 } 7883 set_inFreeRange(false); 7884 set_freeRangeInFreeLists(false); 7885 } 7886 7887 // We take a break if we've been at this for a while, 7888 // so as to avoid monopolizing the locks involved. 7889 void SweepClosure::do_yield_work(HeapWord* addr) { 7890 // Return current free chunk being used for coalescing (if any) 7891 // to the appropriate freelist. After yielding, the next 7892 // free block encountered will start a coalescing range of 7893 // free blocks. If the next free block is adjacent to the 7894 // chunk just flushed, they will need to wait for the next 7895 // sweep to be coalesced. 7896 if (inFreeRange()) { 7897 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 7898 } 7899 7900 // First give up the locks, then yield, then re-lock. 7901 // We should probably use a constructor/destructor idiom to 7902 // do this unlock/lock or modify the MutexUnlocker class to 7903 // serve our purpose. XXX 7904 assert_lock_strong(_bitMap->lock()); 7905 assert_lock_strong(_freelistLock); 7906 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7907 "CMS thread should hold CMS token"); 7908 _bitMap->lock()->unlock(); 7909 _freelistLock->unlock(); 7910 ConcurrentMarkSweepThread::desynchronize(true); 7911 _collector->stopTimer(); 7912 if (PrintCMSStatistics != 0) { 7913 _collector->incrementYields(); 7914 } 7915 7916 // See the comment in coordinator_yield() 7917 for (unsigned i = 0; i < CMSYieldSleepCount && 7918 ConcurrentMarkSweepThread::should_yield() && 7919 !CMSCollector::foregroundGCIsActive(); ++i) { 7920 os::sleep(Thread::current(), 1, false); 7921 } 7922 7923 ConcurrentMarkSweepThread::synchronize(true); 7924 _freelistLock->lock(); 7925 _bitMap->lock()->lock_without_safepoint_check(); 7926 _collector->startTimer(); 7927 } 7928 7929 #ifndef PRODUCT 7930 // This is actually very useful in a product build if it can 7931 // be called from the debugger. Compile it into the product 7932 // as needed. 7933 bool debug_verify_chunk_in_free_list(FreeChunk* fc) { 7934 return debug_cms_space->verify_chunk_in_free_list(fc); 7935 } 7936 #endif 7937 7938 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const { 7939 if (CMSTraceSweeper) { 7940 gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")", 7941 p2i(fc), fc->size()); 7942 } 7943 } 7944 7945 // CMSIsAliveClosure 7946 bool CMSIsAliveClosure::do_object_b(oop obj) { 7947 HeapWord* addr = (HeapWord*)obj; 7948 return addr != NULL && 7949 (!_span.contains(addr) || _bit_map->isMarked(addr)); 7950 } 7951 7952 7953 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector, 7954 MemRegion span, 7955 CMSBitMap* bit_map, CMSMarkStack* mark_stack, 7956 bool cpc): 7957 _collector(collector), 7958 _span(span), 7959 _bit_map(bit_map), 7960 _mark_stack(mark_stack), 7961 _concurrent_precleaning(cpc) { 7962 assert(!_span.is_empty(), "Empty span could spell trouble"); 7963 } 7964 7965 7966 // CMSKeepAliveClosure: the serial version 7967 void CMSKeepAliveClosure::do_oop(oop obj) { 7968 HeapWord* addr = (HeapWord*)obj; 7969 if (_span.contains(addr) && 7970 !_bit_map->isMarked(addr)) { 7971 _bit_map->mark(addr); 7972 bool simulate_overflow = false; 7973 NOT_PRODUCT( 7974 if (CMSMarkStackOverflowALot && 7975 _collector->simulate_overflow()) { 7976 // simulate a stack overflow 7977 simulate_overflow = true; 7978 } 7979 ) 7980 if (simulate_overflow || !_mark_stack->push(obj)) { 7981 if (_concurrent_precleaning) { 7982 // We dirty the overflown object and let the remark 7983 // phase deal with it. 7984 assert(_collector->overflow_list_is_empty(), "Error"); 7985 // In the case of object arrays, we need to dirty all of 7986 // the cards that the object spans. No locking or atomics 7987 // are needed since no one else can be mutating the mod union 7988 // table. 7989 if (obj->is_objArray()) { 7990 size_t sz = obj->size(); 7991 HeapWord* end_card_addr = 7992 (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size); 7993 MemRegion redirty_range = MemRegion(addr, end_card_addr); 7994 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 7995 _collector->_modUnionTable.mark_range(redirty_range); 7996 } else { 7997 _collector->_modUnionTable.mark(addr); 7998 } 7999 _collector->_ser_kac_preclean_ovflw++; 8000 } else { 8001 _collector->push_on_overflow_list(obj); 8002 _collector->_ser_kac_ovflw++; 8003 } 8004 } 8005 } 8006 } 8007 8008 void CMSKeepAliveClosure::do_oop(oop* p) { CMSKeepAliveClosure::do_oop_work(p); } 8009 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); } 8010 8011 // CMSParKeepAliveClosure: a parallel version of the above. 8012 // The work queues are private to each closure (thread), 8013 // but (may be) available for stealing by other threads. 8014 void CMSParKeepAliveClosure::do_oop(oop obj) { 8015 HeapWord* addr = (HeapWord*)obj; 8016 if (_span.contains(addr) && 8017 !_bit_map->isMarked(addr)) { 8018 // In general, during recursive tracing, several threads 8019 // may be concurrently getting here; the first one to 8020 // "tag" it, claims it. 8021 if (_bit_map->par_mark(addr)) { 8022 bool res = _work_queue->push(obj); 8023 assert(res, "Low water mark should be much less than capacity"); 8024 // Do a recursive trim in the hope that this will keep 8025 // stack usage lower, but leave some oops for potential stealers 8026 trim_queue(_low_water_mark); 8027 } // Else, another thread got there first 8028 } 8029 } 8030 8031 void CMSParKeepAliveClosure::do_oop(oop* p) { CMSParKeepAliveClosure::do_oop_work(p); } 8032 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); } 8033 8034 void CMSParKeepAliveClosure::trim_queue(uint max) { 8035 while (_work_queue->size() > max) { 8036 oop new_oop; 8037 if (_work_queue->pop_local(new_oop)) { 8038 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 8039 assert(_bit_map->isMarked((HeapWord*)new_oop), 8040 "no white objects on this stack!"); 8041 assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop"); 8042 // iterate over the oops in this oop, marking and pushing 8043 // the ones in CMS heap (i.e. in _span). 8044 new_oop->oop_iterate(&_mark_and_push); 8045 } 8046 } 8047 } 8048 8049 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure( 8050 CMSCollector* collector, 8051 MemRegion span, CMSBitMap* bit_map, 8052 OopTaskQueue* work_queue): 8053 _collector(collector), 8054 _span(span), 8055 _bit_map(bit_map), 8056 _work_queue(work_queue) { } 8057 8058 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) { 8059 HeapWord* addr = (HeapWord*)obj; 8060 if (_span.contains(addr) && 8061 !_bit_map->isMarked(addr)) { 8062 if (_bit_map->par_mark(addr)) { 8063 bool simulate_overflow = false; 8064 NOT_PRODUCT( 8065 if (CMSMarkStackOverflowALot && 8066 _collector->par_simulate_overflow()) { 8067 // simulate a stack overflow 8068 simulate_overflow = true; 8069 } 8070 ) 8071 if (simulate_overflow || !_work_queue->push(obj)) { 8072 _collector->par_push_on_overflow_list(obj); 8073 _collector->_par_kac_ovflw++; 8074 } 8075 } // Else another thread got there already 8076 } 8077 } 8078 8079 void CMSInnerParMarkAndPushClosure::do_oop(oop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); } 8080 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); } 8081 8082 ////////////////////////////////////////////////////////////////// 8083 // CMSExpansionCause ///////////////////////////// 8084 ////////////////////////////////////////////////////////////////// 8085 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) { 8086 switch (cause) { 8087 case _no_expansion: 8088 return "No expansion"; 8089 case _satisfy_free_ratio: 8090 return "Free ratio"; 8091 case _satisfy_promotion: 8092 return "Satisfy promotion"; 8093 case _satisfy_allocation: 8094 return "allocation"; 8095 case _allocate_par_lab: 8096 return "Par LAB"; 8097 case _allocate_par_spooling_space: 8098 return "Par Spooling Space"; 8099 case _adaptive_size_policy: 8100 return "Ergonomics"; 8101 default: 8102 return "unknown"; 8103 } 8104 } 8105 8106 void CMSDrainMarkingStackClosure::do_void() { 8107 // the max number to take from overflow list at a time 8108 const size_t num = _mark_stack->capacity()/4; 8109 assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(), 8110 "Overflow list should be NULL during concurrent phases"); 8111 while (!_mark_stack->isEmpty() || 8112 // if stack is empty, check the overflow list 8113 _collector->take_from_overflow_list(num, _mark_stack)) { 8114 oop obj = _mark_stack->pop(); 8115 HeapWord* addr = (HeapWord*)obj; 8116 assert(_span.contains(addr), "Should be within span"); 8117 assert(_bit_map->isMarked(addr), "Should be marked"); 8118 assert(obj->is_oop(), "Should be an oop"); 8119 obj->oop_iterate(_keep_alive); 8120 } 8121 } 8122 8123 void CMSParDrainMarkingStackClosure::do_void() { 8124 // drain queue 8125 trim_queue(0); 8126 } 8127 8128 // Trim our work_queue so its length is below max at return 8129 void CMSParDrainMarkingStackClosure::trim_queue(uint max) { 8130 while (_work_queue->size() > max) { 8131 oop new_oop; 8132 if (_work_queue->pop_local(new_oop)) { 8133 assert(new_oop->is_oop(), "Expected an oop"); 8134 assert(_bit_map->isMarked((HeapWord*)new_oop), 8135 "no white objects on this stack!"); 8136 assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop"); 8137 // iterate over the oops in this oop, marking and pushing 8138 // the ones in CMS heap (i.e. in _span). 8139 new_oop->oop_iterate(&_mark_and_push); 8140 } 8141 } 8142 } 8143 8144 //////////////////////////////////////////////////////////////////// 8145 // Support for Marking Stack Overflow list handling and related code 8146 //////////////////////////////////////////////////////////////////// 8147 // Much of the following code is similar in shape and spirit to the 8148 // code used in ParNewGC. We should try and share that code 8149 // as much as possible in the future. 8150 8151 #ifndef PRODUCT 8152 // Debugging support for CMSStackOverflowALot 8153 8154 // It's OK to call this multi-threaded; the worst thing 8155 // that can happen is that we'll get a bunch of closely 8156 // spaced simulated overflows, but that's OK, in fact 8157 // probably good as it would exercise the overflow code 8158 // under contention. 8159 bool CMSCollector::simulate_overflow() { 8160 if (_overflow_counter-- <= 0) { // just being defensive 8161 _overflow_counter = CMSMarkStackOverflowInterval; 8162 return true; 8163 } else { 8164 return false; 8165 } 8166 } 8167 8168 bool CMSCollector::par_simulate_overflow() { 8169 return simulate_overflow(); 8170 } 8171 #endif 8172 8173 // Single-threaded 8174 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) { 8175 assert(stack->isEmpty(), "Expected precondition"); 8176 assert(stack->capacity() > num, "Shouldn't bite more than can chew"); 8177 size_t i = num; 8178 oop cur = _overflow_list; 8179 const markOop proto = markOopDesc::prototype(); 8180 NOT_PRODUCT(ssize_t n = 0;) 8181 for (oop next; i > 0 && cur != NULL; cur = next, i--) { 8182 next = oop(cur->mark()); 8183 cur->set_mark(proto); // until proven otherwise 8184 assert(cur->is_oop(), "Should be an oop"); 8185 bool res = stack->push(cur); 8186 assert(res, "Bit off more than can chew?"); 8187 NOT_PRODUCT(n++;) 8188 } 8189 _overflow_list = cur; 8190 #ifndef PRODUCT 8191 assert(_num_par_pushes >= n, "Too many pops?"); 8192 _num_par_pushes -=n; 8193 #endif 8194 return !stack->isEmpty(); 8195 } 8196 8197 #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff)) 8198 // (MT-safe) Get a prefix of at most "num" from the list. 8199 // The overflow list is chained through the mark word of 8200 // each object in the list. We fetch the entire list, 8201 // break off a prefix of the right size and return the 8202 // remainder. If other threads try to take objects from 8203 // the overflow list at that time, they will wait for 8204 // some time to see if data becomes available. If (and 8205 // only if) another thread places one or more object(s) 8206 // on the global list before we have returned the suffix 8207 // to the global list, we will walk down our local list 8208 // to find its end and append the global list to 8209 // our suffix before returning it. This suffix walk can 8210 // prove to be expensive (quadratic in the amount of traffic) 8211 // when there are many objects in the overflow list and 8212 // there is much producer-consumer contention on the list. 8213 // *NOTE*: The overflow list manipulation code here and 8214 // in ParNewGeneration:: are very similar in shape, 8215 // except that in the ParNew case we use the old (from/eden) 8216 // copy of the object to thread the list via its klass word. 8217 // Because of the common code, if you make any changes in 8218 // the code below, please check the ParNew version to see if 8219 // similar changes might be needed. 8220 // CR 6797058 has been filed to consolidate the common code. 8221 bool CMSCollector::par_take_from_overflow_list(size_t num, 8222 OopTaskQueue* work_q, 8223 int no_of_gc_threads) { 8224 assert(work_q->size() == 0, "First empty local work queue"); 8225 assert(num < work_q->max_elems(), "Can't bite more than we can chew"); 8226 if (_overflow_list == NULL) { 8227 return false; 8228 } 8229 // Grab the entire list; we'll put back a suffix 8230 oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list)); 8231 Thread* tid = Thread::current(); 8232 // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was 8233 // set to ParallelGCThreads. 8234 size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads; 8235 size_t sleep_time_millis = MAX2((size_t)1, num/100); 8236 // If the list is busy, we spin for a short while, 8237 // sleeping between attempts to get the list. 8238 for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) { 8239 os::sleep(tid, sleep_time_millis, false); 8240 if (_overflow_list == NULL) { 8241 // Nothing left to take 8242 return false; 8243 } else if (_overflow_list != BUSY) { 8244 // Try and grab the prefix 8245 prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list)); 8246 } 8247 } 8248 // If the list was found to be empty, or we spun long 8249 // enough, we give up and return empty-handed. If we leave 8250 // the list in the BUSY state below, it must be the case that 8251 // some other thread holds the overflow list and will set it 8252 // to a non-BUSY state in the future. 8253 if (prefix == NULL || prefix == BUSY) { 8254 // Nothing to take or waited long enough 8255 if (prefix == NULL) { 8256 // Write back the NULL in case we overwrote it with BUSY above 8257 // and it is still the same value. 8258 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY); 8259 } 8260 return false; 8261 } 8262 assert(prefix != NULL && prefix != BUSY, "Error"); 8263 size_t i = num; 8264 oop cur = prefix; 8265 // Walk down the first "num" objects, unless we reach the end. 8266 for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--); 8267 if (cur->mark() == NULL) { 8268 // We have "num" or fewer elements in the list, so there 8269 // is nothing to return to the global list. 8270 // Write back the NULL in lieu of the BUSY we wrote 8271 // above, if it is still the same value. 8272 if (_overflow_list == BUSY) { 8273 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY); 8274 } 8275 } else { 8276 // Chop off the suffix and return it to the global list. 8277 assert(cur->mark() != BUSY, "Error"); 8278 oop suffix_head = cur->mark(); // suffix will be put back on global list 8279 cur->set_mark(NULL); // break off suffix 8280 // It's possible that the list is still in the empty(busy) state 8281 // we left it in a short while ago; in that case we may be 8282 // able to place back the suffix without incurring the cost 8283 // of a walk down the list. 8284 oop observed_overflow_list = _overflow_list; 8285 oop cur_overflow_list = observed_overflow_list; 8286 bool attached = false; 8287 while (observed_overflow_list == BUSY || observed_overflow_list == NULL) { 8288 observed_overflow_list = 8289 (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list); 8290 if (cur_overflow_list == observed_overflow_list) { 8291 attached = true; 8292 break; 8293 } else cur_overflow_list = observed_overflow_list; 8294 } 8295 if (!attached) { 8296 // Too bad, someone else sneaked in (at least) an element; we'll need 8297 // to do a splice. Find tail of suffix so we can prepend suffix to global 8298 // list. 8299 for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark())); 8300 oop suffix_tail = cur; 8301 assert(suffix_tail != NULL && suffix_tail->mark() == NULL, 8302 "Tautology"); 8303 observed_overflow_list = _overflow_list; 8304 do { 8305 cur_overflow_list = observed_overflow_list; 8306 if (cur_overflow_list != BUSY) { 8307 // Do the splice ... 8308 suffix_tail->set_mark(markOop(cur_overflow_list)); 8309 } else { // cur_overflow_list == BUSY 8310 suffix_tail->set_mark(NULL); 8311 } 8312 // ... and try to place spliced list back on overflow_list ... 8313 observed_overflow_list = 8314 (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list); 8315 } while (cur_overflow_list != observed_overflow_list); 8316 // ... until we have succeeded in doing so. 8317 } 8318 } 8319 8320 // Push the prefix elements on work_q 8321 assert(prefix != NULL, "control point invariant"); 8322 const markOop proto = markOopDesc::prototype(); 8323 oop next; 8324 NOT_PRODUCT(ssize_t n = 0;) 8325 for (cur = prefix; cur != NULL; cur = next) { 8326 next = oop(cur->mark()); 8327 cur->set_mark(proto); // until proven otherwise 8328 assert(cur->is_oop(), "Should be an oop"); 8329 bool res = work_q->push(cur); 8330 assert(res, "Bit off more than we can chew?"); 8331 NOT_PRODUCT(n++;) 8332 } 8333 #ifndef PRODUCT 8334 assert(_num_par_pushes >= n, "Too many pops?"); 8335 Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes); 8336 #endif 8337 return true; 8338 } 8339 8340 // Single-threaded 8341 void CMSCollector::push_on_overflow_list(oop p) { 8342 NOT_PRODUCT(_num_par_pushes++;) 8343 assert(p->is_oop(), "Not an oop"); 8344 preserve_mark_if_necessary(p); 8345 p->set_mark((markOop)_overflow_list); 8346 _overflow_list = p; 8347 } 8348 8349 // Multi-threaded; use CAS to prepend to overflow list 8350 void CMSCollector::par_push_on_overflow_list(oop p) { 8351 NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);) 8352 assert(p->is_oop(), "Not an oop"); 8353 par_preserve_mark_if_necessary(p); 8354 oop observed_overflow_list = _overflow_list; 8355 oop cur_overflow_list; 8356 do { 8357 cur_overflow_list = observed_overflow_list; 8358 if (cur_overflow_list != BUSY) { 8359 p->set_mark(markOop(cur_overflow_list)); 8360 } else { 8361 p->set_mark(NULL); 8362 } 8363 observed_overflow_list = 8364 (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list); 8365 } while (cur_overflow_list != observed_overflow_list); 8366 } 8367 #undef BUSY 8368 8369 // Single threaded 8370 // General Note on GrowableArray: pushes may silently fail 8371 // because we are (temporarily) out of C-heap for expanding 8372 // the stack. The problem is quite ubiquitous and affects 8373 // a lot of code in the JVM. The prudent thing for GrowableArray 8374 // to do (for now) is to exit with an error. However, that may 8375 // be too draconian in some cases because the caller may be 8376 // able to recover without much harm. For such cases, we 8377 // should probably introduce a "soft_push" method which returns 8378 // an indication of success or failure with the assumption that 8379 // the caller may be able to recover from a failure; code in 8380 // the VM can then be changed, incrementally, to deal with such 8381 // failures where possible, thus, incrementally hardening the VM 8382 // in such low resource situations. 8383 void CMSCollector::preserve_mark_work(oop p, markOop m) { 8384 _preserved_oop_stack.push(p); 8385 _preserved_mark_stack.push(m); 8386 assert(m == p->mark(), "Mark word changed"); 8387 assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), 8388 "bijection"); 8389 } 8390 8391 // Single threaded 8392 void CMSCollector::preserve_mark_if_necessary(oop p) { 8393 markOop m = p->mark(); 8394 if (m->must_be_preserved(p)) { 8395 preserve_mark_work(p, m); 8396 } 8397 } 8398 8399 void CMSCollector::par_preserve_mark_if_necessary(oop p) { 8400 markOop m = p->mark(); 8401 if (m->must_be_preserved(p)) { 8402 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 8403 // Even though we read the mark word without holding 8404 // the lock, we are assured that it will not change 8405 // because we "own" this oop, so no other thread can 8406 // be trying to push it on the overflow list; see 8407 // the assertion in preserve_mark_work() that checks 8408 // that m == p->mark(). 8409 preserve_mark_work(p, m); 8410 } 8411 } 8412 8413 // We should be able to do this multi-threaded, 8414 // a chunk of stack being a task (this is 8415 // correct because each oop only ever appears 8416 // once in the overflow list. However, it's 8417 // not very easy to completely overlap this with 8418 // other operations, so will generally not be done 8419 // until all work's been completed. Because we 8420 // expect the preserved oop stack (set) to be small, 8421 // it's probably fine to do this single-threaded. 8422 // We can explore cleverer concurrent/overlapped/parallel 8423 // processing of preserved marks if we feel the 8424 // need for this in the future. Stack overflow should 8425 // be so rare in practice and, when it happens, its 8426 // effect on performance so great that this will 8427 // likely just be in the noise anyway. 8428 void CMSCollector::restore_preserved_marks_if_any() { 8429 assert(SafepointSynchronize::is_at_safepoint(), 8430 "world should be stopped"); 8431 assert(Thread::current()->is_ConcurrentGC_thread() || 8432 Thread::current()->is_VM_thread(), 8433 "should be single-threaded"); 8434 assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), 8435 "bijection"); 8436 8437 while (!_preserved_oop_stack.is_empty()) { 8438 oop p = _preserved_oop_stack.pop(); 8439 assert(p->is_oop(), "Should be an oop"); 8440 assert(_span.contains(p), "oop should be in _span"); 8441 assert(p->mark() == markOopDesc::prototype(), 8442 "Set when taken from overflow list"); 8443 markOop m = _preserved_mark_stack.pop(); 8444 p->set_mark(m); 8445 } 8446 assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(), 8447 "stacks were cleared above"); 8448 } 8449 8450 #ifndef PRODUCT 8451 bool CMSCollector::no_preserved_marks() const { 8452 return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(); 8453 } 8454 #endif 8455 8456 // Transfer some number of overflown objects to usual marking 8457 // stack. Return true if some objects were transferred. 8458 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() { 8459 size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4, 8460 (size_t)ParGCDesiredObjsFromOverflowList); 8461 8462 bool res = _collector->take_from_overflow_list(num, _mark_stack); 8463 assert(_collector->overflow_list_is_empty() || res, 8464 "If list is not empty, we should have taken something"); 8465 assert(!res || !_mark_stack->isEmpty(), 8466 "If we took something, it should now be on our stack"); 8467 return res; 8468 } 8469 8470 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) { 8471 size_t res = _sp->block_size_no_stall(addr, _collector); 8472 if (_sp->block_is_obj(addr)) { 8473 if (_live_bit_map->isMarked(addr)) { 8474 // It can't have been dead in a previous cycle 8475 guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!"); 8476 } else { 8477 _dead_bit_map->mark(addr); // mark the dead object 8478 } 8479 } 8480 // Could be 0, if the block size could not be computed without stalling. 8481 return res; 8482 } 8483 8484 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() { 8485 8486 switch (phase) { 8487 case CMSCollector::InitialMarking: 8488 initialize(true /* fullGC */ , 8489 cause /* cause of the GC */, 8490 true /* recordGCBeginTime */, 8491 true /* recordPreGCUsage */, 8492 false /* recordPeakUsage */, 8493 false /* recordPostGCusage */, 8494 true /* recordAccumulatedGCTime */, 8495 false /* recordGCEndTime */, 8496 false /* countCollection */ ); 8497 break; 8498 8499 case CMSCollector::FinalMarking: 8500 initialize(true /* fullGC */ , 8501 cause /* cause of the GC */, 8502 false /* recordGCBeginTime */, 8503 false /* recordPreGCUsage */, 8504 false /* recordPeakUsage */, 8505 false /* recordPostGCusage */, 8506 true /* recordAccumulatedGCTime */, 8507 false /* recordGCEndTime */, 8508 false /* countCollection */ ); 8509 break; 8510 8511 case CMSCollector::Sweeping: 8512 initialize(true /* fullGC */ , 8513 cause /* cause of the GC */, 8514 false /* recordGCBeginTime */, 8515 false /* recordPreGCUsage */, 8516 true /* recordPeakUsage */, 8517 true /* recordPostGCusage */, 8518 false /* recordAccumulatedGCTime */, 8519 true /* recordGCEndTime */, 8520 true /* countCollection */ ); 8521 break; 8522 8523 default: 8524 ShouldNotReachHere(); 8525 } 8526 }