1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/codeCacheExtensions.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "gc/shared/collectedHeap.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/interpreterRuntime.hpp"
  36 #include "interpreter/linkResolver.hpp"
  37 #include "interpreter/templateTable.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/constantPool.hpp"
  41 #include "oops/instanceKlass.hpp"
  42 #include "oops/methodData.hpp"
  43 #include "oops/objArrayKlass.hpp"
  44 #include "oops/objArrayOop.inline.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/symbol.hpp"
  47 #include "prims/jvmtiExport.hpp"
  48 #include "prims/nativeLookup.hpp"
  49 #include "runtime/atomic.inline.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/compilationPolicy.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/fieldDescriptor.hpp"
  54 #include "runtime/handles.inline.hpp"
  55 #include "runtime/icache.hpp"
  56 #include "runtime/interfaceSupport.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/jfieldIDWorkaround.hpp"
  59 #include "runtime/osThread.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/synchronizer.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "utilities/events.hpp"
  65 #ifdef COMPILER2
  66 #include "opto/runtime.hpp"
  67 #endif
  68 
  69 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  70 
  71 class UnlockFlagSaver {
  72   private:
  73     JavaThread* _thread;
  74     bool _do_not_unlock;
  75   public:
  76     UnlockFlagSaver(JavaThread* t) {
  77       _thread = t;
  78       _do_not_unlock = t->do_not_unlock_if_synchronized();
  79       t->set_do_not_unlock_if_synchronized(false);
  80     }
  81     ~UnlockFlagSaver() {
  82       _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
  83     }
  84 };
  85 
  86 //------------------------------------------------------------------------------------------------------------------------
  87 // State accessors
  88 
  89 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
  90   last_frame(thread).interpreter_frame_set_bcp(bcp);
  91   if (ProfileInterpreter) {
  92     // ProfileTraps uses MDOs independently of ProfileInterpreter.
  93     // That is why we must check both ProfileInterpreter and mdo != NULL.
  94     MethodData* mdo = last_frame(thread).interpreter_frame_method()->method_data();
  95     if (mdo != NULL) {
  96       NEEDS_CLEANUP;
  97       last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci()));
  98     }
  99   }
 100 }
 101 
 102 //------------------------------------------------------------------------------------------------------------------------
 103 // Constants
 104 
 105 
 106 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
 107   // access constant pool
 108   ConstantPool* pool = method(thread)->constants();
 109   int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc);
 110   constantTag tag = pool->tag_at(index);
 111 
 112   assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
 113   Klass* klass = pool->klass_at(index, CHECK);
 114     oop java_class = klass->java_mirror();
 115     thread->set_vm_result(java_class);
 116 IRT_END
 117 
 118 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
 119   assert(bytecode == Bytecodes::_fast_aldc ||
 120          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
 121   ResourceMark rm(thread);
 122   methodHandle m (thread, method(thread));
 123   Bytecode_loadconstant ldc(m, bci(thread));
 124   oop result = ldc.resolve_constant(CHECK);
 125 #ifdef ASSERT
 126   {
 127     // The bytecode wrappers aren't GC-safe so construct a new one
 128     Bytecode_loadconstant ldc2(m, bci(thread));
 129     oop coop = m->constants()->resolved_references()->obj_at(ldc2.cache_index());
 130     assert(result == coop, "expected result for assembly code");
 131   }
 132 #endif
 133   thread->set_vm_result(result);
 134 }
 135 IRT_END
 136 
 137 
 138 //------------------------------------------------------------------------------------------------------------------------
 139 // Allocation
 140 
 141 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index))
 142   Klass* k_oop = pool->klass_at(index, CHECK);
 143   instanceKlassHandle klass (THREAD, k_oop);
 144 
 145   // Make sure we are not instantiating an abstract klass
 146   klass->check_valid_for_instantiation(true, CHECK);
 147 
 148   // Make sure klass is initialized
 149   klass->initialize(CHECK);
 150 
 151   // At this point the class may not be fully initialized
 152   // because of recursive initialization. If it is fully
 153   // initialized & has_finalized is not set, we rewrite
 154   // it into its fast version (Note: no locking is needed
 155   // here since this is an atomic byte write and can be
 156   // done more than once).
 157   //
 158   // Note: In case of classes with has_finalized we don't
 159   //       rewrite since that saves us an extra check in
 160   //       the fast version which then would call the
 161   //       slow version anyway (and do a call back into
 162   //       Java).
 163   //       If we have a breakpoint, then we don't rewrite
 164   //       because the _breakpoint bytecode would be lost.
 165   oop obj = klass->allocate_instance(CHECK);
 166   thread->set_vm_result(obj);
 167 IRT_END
 168 
 169 
 170 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
 171   oop obj = oopFactory::new_typeArray(type, size, CHECK);
 172   thread->set_vm_result(obj);
 173 IRT_END
 174 
 175 
 176 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size))
 177   // Note: no oopHandle for pool & klass needed since they are not used
 178   //       anymore after new_objArray() and no GC can happen before.
 179   //       (This may have to change if this code changes!)
 180   Klass*    klass = pool->klass_at(index, CHECK);
 181   objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
 182   thread->set_vm_result(obj);
 183 IRT_END
 184 
 185 
 186 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
 187   // We may want to pass in more arguments - could make this slightly faster
 188   ConstantPool* constants = method(thread)->constants();
 189   int          i = get_index_u2(thread, Bytecodes::_multianewarray);
 190   Klass* klass = constants->klass_at(i, CHECK);
 191   int   nof_dims = number_of_dimensions(thread);
 192   assert(klass->is_klass(), "not a class");
 193   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
 194 
 195   // We must create an array of jints to pass to multi_allocate.
 196   ResourceMark rm(thread);
 197   const int small_dims = 10;
 198   jint dim_array[small_dims];
 199   jint *dims = &dim_array[0];
 200   if (nof_dims > small_dims) {
 201     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
 202   }
 203   for (int index = 0; index < nof_dims; index++) {
 204     // offset from first_size_address is addressed as local[index]
 205     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
 206     dims[index] = first_size_address[n];
 207   }
 208   oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
 209   thread->set_vm_result(obj);
 210 IRT_END
 211 
 212 
 213 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 214   assert(obj->is_oop(), "must be a valid oop");
 215   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 216   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 217 IRT_END
 218 
 219 
 220 // Quicken instance-of and check-cast bytecodes
 221 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
 222   // Force resolving; quicken the bytecode
 223   int which = get_index_u2(thread, Bytecodes::_checkcast);
 224   ConstantPool* cpool = method(thread)->constants();
 225   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
 226   // program we might have seen an unquick'd bytecode in the interpreter but have another
 227   // thread quicken the bytecode before we get here.
 228   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
 229   Klass* klass = cpool->klass_at(which, CHECK);
 230   thread->set_vm_result_2(klass);
 231 IRT_END
 232 
 233 
 234 //------------------------------------------------------------------------------------------------------------------------
 235 // Exceptions
 236 
 237 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason,
 238                                          methodHandle trap_method, int trap_bci, TRAPS) {
 239   if (trap_method.not_null()) {
 240     MethodData* trap_mdo = trap_method->method_data();
 241     if (trap_mdo == NULL) {
 242       Method::build_interpreter_method_data(trap_method, THREAD);
 243       if (HAS_PENDING_EXCEPTION) {
 244         assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())),
 245                "we expect only an OOM error here");
 246         CLEAR_PENDING_EXCEPTION;
 247       }
 248       trap_mdo = trap_method->method_data();
 249       // and fall through...
 250     }
 251     if (trap_mdo != NULL) {
 252       // Update per-method count of trap events.  The interpreter
 253       // is updating the MDO to simulate the effect of compiler traps.
 254       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
 255     }
 256   }
 257 }
 258 
 259 // Assume the compiler is (or will be) interested in this event.
 260 // If necessary, create an MDO to hold the information, and record it.
 261 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
 262   assert(ProfileTraps, "call me only if profiling");
 263   methodHandle trap_method(thread, method(thread));
 264   int trap_bci = trap_method->bci_from(bcp(thread));
 265   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 266 }
 267 
 268 #ifdef CC_INTERP
 269 // As legacy note_trap, but we have more arguments.
 270 IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci))
 271   methodHandle trap_method(method);
 272   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 273 IRT_END
 274 
 275 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper
 276 // for each exception.
 277 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 278   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); }
 279 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci)
 280   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); }
 281 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 282   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); }
 283 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 284   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); }
 285 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 286   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); }
 287 #endif // CC_INTERP
 288 
 289 
 290 static Handle get_preinitialized_exception(Klass* k, TRAPS) {
 291   // get klass
 292   InstanceKlass* klass = InstanceKlass::cast(k);
 293   assert(klass->is_initialized(),
 294          "this klass should have been initialized during VM initialization");
 295   // create instance - do not call constructor since we may have no
 296   // (java) stack space left (should assert constructor is empty)
 297   Handle exception;
 298   oop exception_oop = klass->allocate_instance(CHECK_(exception));
 299   exception = Handle(THREAD, exception_oop);
 300   if (StackTraceInThrowable) {
 301     java_lang_Throwable::fill_in_stack_trace(exception);
 302   }
 303   return exception;
 304 }
 305 
 306 // Special handling for stack overflow: since we don't have any (java) stack
 307 // space left we use the pre-allocated & pre-initialized StackOverflowError
 308 // klass to create an stack overflow error instance.  We do not call its
 309 // constructor for the same reason (it is empty, anyway).
 310 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
 311   Handle exception = get_preinitialized_exception(
 312                                  SystemDictionary::StackOverflowError_klass(),
 313                                  CHECK);
 314   // Increment counter for hs_err file reporting
 315   Atomic::inc(&Exceptions::_stack_overflow_errors);
 316   THROW_HANDLE(exception);
 317 IRT_END
 318 
 319 
 320 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
 321   // lookup exception klass
 322   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 323   if (ProfileTraps) {
 324     if (s == vmSymbols::java_lang_ArithmeticException()) {
 325       note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
 326     } else if (s == vmSymbols::java_lang_NullPointerException()) {
 327       note_trap(thread, Deoptimization::Reason_null_check, CHECK);
 328     }
 329   }
 330   // create exception
 331   Handle exception = Exceptions::new_exception(thread, s, message);
 332   thread->set_vm_result(exception());
 333 IRT_END
 334 
 335 
 336 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
 337   ResourceMark rm(thread);
 338   const char* klass_name = obj->klass()->external_name();
 339   // lookup exception klass
 340   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 341   if (ProfileTraps) {
 342     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 343   }
 344   // create exception, with klass name as detail message
 345   Handle exception = Exceptions::new_exception(thread, s, klass_name);
 346   thread->set_vm_result(exception());
 347 IRT_END
 348 
 349 
 350 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
 351   char message[jintAsStringSize];
 352   // lookup exception klass
 353   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 354   if (ProfileTraps) {
 355     note_trap(thread, Deoptimization::Reason_range_check, CHECK);
 356   }
 357   // create exception
 358   sprintf(message, "%d", index);
 359   THROW_MSG(s, message);
 360 IRT_END
 361 
 362 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
 363   JavaThread* thread, oopDesc* obj))
 364 
 365   ResourceMark rm(thread);
 366   char* message = SharedRuntime::generate_class_cast_message(
 367     thread, obj->klass()->external_name());
 368 
 369   if (ProfileTraps) {
 370     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 371   }
 372 
 373   // create exception
 374   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
 375 IRT_END
 376 
 377 // exception_handler_for_exception(...) returns the continuation address,
 378 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
 379 // The exception oop is returned to make sure it is preserved over GC (it
 380 // is only on the stack if the exception was thrown explicitly via athrow).
 381 // During this operation, the expression stack contains the values for the
 382 // bci where the exception happened. If the exception was propagated back
 383 // from a call, the expression stack contains the values for the bci at the
 384 // invoke w/o arguments (i.e., as if one were inside the call).
 385 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
 386 
 387   Handle             h_exception(thread, exception);
 388   methodHandle       h_method   (thread, method(thread));
 389   constantPoolHandle h_constants(thread, h_method->constants());
 390   bool               should_repeat;
 391   int                handler_bci;
 392   int                current_bci = bci(thread);
 393 
 394   if (thread->frames_to_pop_failed_realloc() > 0) {
 395     // Allocation of scalar replaced object used in this frame
 396     // failed. Unconditionally pop the frame.
 397     thread->dec_frames_to_pop_failed_realloc();
 398     thread->set_vm_result(h_exception());
 399     // If the method is synchronized we already unlocked the monitor
 400     // during deoptimization so the interpreter needs to skip it when
 401     // the frame is popped.
 402     thread->set_do_not_unlock_if_synchronized(true);
 403 #ifdef CC_INTERP
 404     return (address) -1;
 405 #else
 406     return Interpreter::remove_activation_entry();
 407 #endif
 408   }
 409 
 410   // Need to do this check first since when _do_not_unlock_if_synchronized
 411   // is set, we don't want to trigger any classloading which may make calls
 412   // into java, or surprisingly find a matching exception handler for bci 0
 413   // since at this moment the method hasn't been "officially" entered yet.
 414   if (thread->do_not_unlock_if_synchronized()) {
 415     ResourceMark rm;
 416     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
 417     thread->set_vm_result(exception);
 418 #ifdef CC_INTERP
 419     return (address) -1;
 420 #else
 421     return Interpreter::remove_activation_entry();
 422 #endif
 423   }
 424 
 425   do {
 426     should_repeat = false;
 427 
 428     // assertions
 429 #ifdef ASSERT
 430     assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
 431     assert(h_exception->is_oop(), "just checking");
 432     // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 433     if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
 434       if (ExitVMOnVerifyError) vm_exit(-1);
 435       ShouldNotReachHere();
 436     }
 437 #endif
 438 
 439     // tracing
 440     if (TraceExceptions) {
 441       ResourceMark rm(thread);
 442       Symbol* message = java_lang_Throwable::detail_message(h_exception());
 443       ttyLocker ttyl;  // Lock after getting the detail message
 444       if (message != NULL) {
 445         tty->print_cr("Exception <%s: %s> (" INTPTR_FORMAT ")",
 446                       h_exception->print_value_string(), message->as_C_string(),
 447                       (address)h_exception());
 448       } else {
 449         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")",
 450                       h_exception->print_value_string(),
 451                       (address)h_exception());
 452       }
 453       tty->print_cr(" thrown in interpreter method <%s>", h_method->print_value_string());
 454       tty->print_cr(" at bci %d for thread " INTPTR_FORMAT, current_bci, thread);
 455     }
 456 // Don't go paging in something which won't be used.
 457 //     else if (extable->length() == 0) {
 458 //       // disabled for now - interpreter is not using shortcut yet
 459 //       // (shortcut is not to call runtime if we have no exception handlers)
 460 //       // warning("performance bug: should not call runtime if method has no exception handlers");
 461 //     }
 462     // for AbortVMOnException flag
 463     NOT_PRODUCT(Exceptions::debug_check_abort(h_exception));
 464 
 465     // exception handler lookup
 466     KlassHandle h_klass(THREAD, h_exception->klass());
 467     handler_bci = Method::fast_exception_handler_bci_for(h_method, h_klass, current_bci, THREAD);
 468     if (HAS_PENDING_EXCEPTION) {
 469       // We threw an exception while trying to find the exception handler.
 470       // Transfer the new exception to the exception handle which will
 471       // be set into thread local storage, and do another lookup for an
 472       // exception handler for this exception, this time starting at the
 473       // BCI of the exception handler which caused the exception to be
 474       // thrown (bug 4307310).
 475       h_exception = Handle(THREAD, PENDING_EXCEPTION);
 476       CLEAR_PENDING_EXCEPTION;
 477       if (handler_bci >= 0) {
 478         current_bci = handler_bci;
 479         should_repeat = true;
 480       }
 481     }
 482   } while (should_repeat == true);
 483 
 484 #if INCLUDE_JVMCI
 485   if (UseJVMCICompiler && h_method->method_data() != NULL) {
 486     ResourceMark rm(thread);
 487     ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL);
 488     if (pdata != NULL && pdata->is_BitData()) {
 489       BitData* bit_data = (BitData*) pdata;
 490       bit_data->set_exception_seen();
 491     }
 492   }
 493 #endif
 494 
 495   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
 496   // time throw or a stack unwinding throw and accordingly notify the debugger
 497   if (JvmtiExport::can_post_on_exceptions()) {
 498     JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception());
 499   }
 500 
 501 #ifdef CC_INTERP
 502   address continuation = (address)(intptr_t) handler_bci;
 503 #else
 504   address continuation = NULL;
 505 #endif
 506   address handler_pc = NULL;
 507   if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
 508     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
 509     // handler in this method, or (b) after a stack overflow there is not yet
 510     // enough stack space available to reprotect the stack.
 511 #ifndef CC_INTERP
 512     continuation = Interpreter::remove_activation_entry();
 513 #endif
 514     // Count this for compilation purposes
 515     h_method->interpreter_throwout_increment(THREAD);
 516   } else {
 517     // handler in this method => change bci/bcp to handler bci/bcp and continue there
 518     handler_pc = h_method->code_base() + handler_bci;
 519 #ifndef CC_INTERP
 520     set_bcp_and_mdp(handler_pc, thread);
 521     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
 522 #endif
 523   }
 524   // notify debugger of an exception catch
 525   // (this is good for exceptions caught in native methods as well)
 526   if (JvmtiExport::can_post_on_exceptions()) {
 527     JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
 528   }
 529 
 530   thread->set_vm_result(h_exception());
 531   return continuation;
 532 IRT_END
 533 
 534 
 535 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
 536   assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
 537   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
 538 IRT_END
 539 
 540 
 541 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
 542   THROW(vmSymbols::java_lang_AbstractMethodError());
 543 IRT_END
 544 
 545 
 546 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 547   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
 548 IRT_END
 549 
 550 
 551 //------------------------------------------------------------------------------------------------------------------------
 552 // Fields
 553 //
 554 
 555 void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) {
 556   Thread* THREAD = thread;
 557   // resolve field
 558   fieldDescriptor info;
 559   constantPoolHandle pool(thread, method(thread)->constants());
 560   bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_nofast_putfield ||
 561                     bytecode == Bytecodes::_putstatic);
 562   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
 563 
 564   {
 565     JvmtiHideSingleStepping jhss(thread);
 566     LinkResolver::resolve_field_access(info, pool, get_index_u2_cpcache(thread, bytecode),
 567                                        bytecode, CHECK);
 568   } // end JvmtiHideSingleStepping
 569 
 570   // check if link resolution caused cpCache to be updated
 571   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 572   if (cp_cache_entry->is_resolved(bytecode)) return;
 573 
 574   // compute auxiliary field attributes
 575   TosState state  = as_TosState(info.field_type());
 576 
 577   // We need to delay resolving put instructions on final fields
 578   // until we actually invoke one. This is required so we throw
 579   // exceptions at the correct place. If we do not resolve completely
 580   // in the current pass, leaving the put_code set to zero will
 581   // cause the next put instruction to reresolve.
 582   Bytecodes::Code put_code = (Bytecodes::Code)0;
 583 
 584   // We also need to delay resolving getstatic instructions until the
 585   // class is intitialized.  This is required so that access to the static
 586   // field will call the initialization function every time until the class
 587   // is completely initialized ala. in 2.17.5 in JVM Specification.
 588   InstanceKlass* klass = InstanceKlass::cast(info.field_holder());
 589   bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) &&
 590                                !klass->is_initialized());
 591   Bytecodes::Code get_code = (Bytecodes::Code)0;
 592 
 593   if (!uninitialized_static) {
 594     get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
 595     if (is_put || !info.access_flags().is_final()) {
 596       put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
 597     }
 598   }
 599 
 600   cp_cache_entry->set_field(
 601     get_code,
 602     put_code,
 603     info.field_holder(),
 604     info.index(),
 605     info.offset(),
 606     state,
 607     info.access_flags().is_final(),
 608     info.access_flags().is_volatile(),
 609     pool->pool_holder()
 610   );
 611 }
 612 
 613 
 614 //------------------------------------------------------------------------------------------------------------------------
 615 // Synchronization
 616 //
 617 // The interpreter's synchronization code is factored out so that it can
 618 // be shared by method invocation and synchronized blocks.
 619 //%note synchronization_3
 620 
 621 //%note monitor_1
 622 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
 623 #ifdef ASSERT
 624   thread->last_frame().interpreter_frame_verify_monitor(elem);
 625 #endif
 626   if (PrintBiasedLockingStatistics) {
 627     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 628   }
 629   Handle h_obj(thread, elem->obj());
 630   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 631          "must be NULL or an object");
 632   if (UseBiasedLocking) {
 633     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 634     ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
 635   } else {
 636     ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
 637   }
 638   assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
 639          "must be NULL or an object");
 640 #ifdef ASSERT
 641   thread->last_frame().interpreter_frame_verify_monitor(elem);
 642 #endif
 643 IRT_END
 644 
 645 
 646 //%note monitor_1
 647 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
 648 #ifdef ASSERT
 649   thread->last_frame().interpreter_frame_verify_monitor(elem);
 650 #endif
 651   Handle h_obj(thread, elem->obj());
 652   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 653          "must be NULL or an object");
 654   if (elem == NULL || h_obj()->is_unlocked()) {
 655     THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 656   }
 657   ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
 658   // Free entry. This must be done here, since a pending exception might be installed on
 659   // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
 660   elem->set_obj(NULL);
 661 #ifdef ASSERT
 662   thread->last_frame().interpreter_frame_verify_monitor(elem);
 663 #endif
 664 IRT_END
 665 
 666 
 667 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
 668   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 669 IRT_END
 670 
 671 
 672 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
 673   // Returns an illegal exception to install into the current thread. The
 674   // pending_exception flag is cleared so normal exception handling does not
 675   // trigger. Any current installed exception will be overwritten. This
 676   // method will be called during an exception unwind.
 677 
 678   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
 679   Handle exception(thread, thread->vm_result());
 680   assert(exception() != NULL, "vm result should be set");
 681   thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
 682   if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
 683     exception = get_preinitialized_exception(
 684                        SystemDictionary::IllegalMonitorStateException_klass(),
 685                        CATCH);
 686   }
 687   thread->set_vm_result(exception());
 688 IRT_END
 689 
 690 
 691 //------------------------------------------------------------------------------------------------------------------------
 692 // Invokes
 693 
 694 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp))
 695   return method->orig_bytecode_at(method->bci_from(bcp));
 696 IRT_END
 697 
 698 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code))
 699   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
 700 IRT_END
 701 
 702 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp))
 703   JvmtiExport::post_raw_breakpoint(thread, method, bcp);
 704 IRT_END
 705 
 706 void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) {
 707   Thread* THREAD = thread;
 708   // extract receiver from the outgoing argument list if necessary
 709   Handle receiver(thread, NULL);
 710   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) {
 711     ResourceMark rm(thread);
 712     methodHandle m (thread, method(thread));
 713     Bytecode_invoke call(m, bci(thread));
 714     Symbol* signature = call.signature();
 715     receiver = Handle(thread,
 716                   thread->last_frame().interpreter_callee_receiver(signature));
 717     assert(Universe::heap()->is_in_reserved_or_null(receiver()),
 718            "sanity check");
 719     assert(receiver.is_null() ||
 720            !Universe::heap()->is_in_reserved(receiver->klass()),
 721            "sanity check");
 722   }
 723 
 724   // resolve method
 725   CallInfo info;
 726   constantPoolHandle pool(thread, method(thread)->constants());
 727 
 728   {
 729     JvmtiHideSingleStepping jhss(thread);
 730     LinkResolver::resolve_invoke(info, receiver, pool,
 731                                  get_index_u2_cpcache(thread, bytecode), bytecode,
 732                                  CHECK);
 733     if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 734       int retry_count = 0;
 735       while (info.resolved_method()->is_old()) {
 736         // It is very unlikely that method is redefined more than 100 times
 737         // in the middle of resolve. If it is looping here more than 100 times
 738         // means then there could be a bug here.
 739         guarantee((retry_count++ < 100),
 740                   "Could not resolve to latest version of redefined method");
 741         // method is redefined in the middle of resolve so re-try.
 742         LinkResolver::resolve_invoke(info, receiver, pool,
 743                                      get_index_u2_cpcache(thread, bytecode), bytecode,
 744                                      CHECK);
 745       }
 746     }
 747   } // end JvmtiHideSingleStepping
 748 
 749   // check if link resolution caused cpCache to be updated
 750   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 751   if (cp_cache_entry->is_resolved(bytecode)) return;
 752 
 753   if (bytecode == Bytecodes::_invokeinterface) {
 754     if (TraceItables && Verbose) {
 755       ResourceMark rm(thread);
 756       tty->print_cr("Resolving: klass: %s to method: %s", info.resolved_klass()->name()->as_C_string(), info.resolved_method()->name()->as_C_string());
 757     }
 758   }
 759 #ifdef ASSERT
 760   if (bytecode == Bytecodes::_invokeinterface) {
 761     if (info.resolved_method()->method_holder() ==
 762                                             SystemDictionary::Object_klass()) {
 763       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
 764       // (see also CallInfo::set_interface for details)
 765       assert(info.call_kind() == CallInfo::vtable_call ||
 766              info.call_kind() == CallInfo::direct_call, "");
 767       methodHandle rm = info.resolved_method();
 768       assert(rm->is_final() || info.has_vtable_index(),
 769              "should have been set already");
 770     } else if (!info.resolved_method()->has_itable_index()) {
 771       // Resolved something like CharSequence.toString.  Use vtable not itable.
 772       assert(info.call_kind() != CallInfo::itable_call, "");
 773     } else {
 774       // Setup itable entry
 775       assert(info.call_kind() == CallInfo::itable_call, "");
 776       int index = info.resolved_method()->itable_index();
 777       assert(info.itable_index() == index, "");
 778     }
 779   } else {
 780     assert(info.call_kind() == CallInfo::direct_call ||
 781            info.call_kind() == CallInfo::vtable_call, "");
 782   }
 783 #endif
 784   switch (info.call_kind()) {
 785   case CallInfo::direct_call:
 786     cp_cache_entry->set_direct_call(
 787       bytecode,
 788       info.resolved_method());
 789     break;
 790   case CallInfo::vtable_call:
 791     cp_cache_entry->set_vtable_call(
 792       bytecode,
 793       info.resolved_method(),
 794       info.vtable_index());
 795     break;
 796   case CallInfo::itable_call:
 797     cp_cache_entry->set_itable_call(
 798       bytecode,
 799       info.resolved_method(),
 800       info.itable_index());
 801     break;
 802   default:  ShouldNotReachHere();
 803   }
 804 }
 805 
 806 
 807 // First time execution:  Resolve symbols, create a permanent MethodType object.
 808 void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) {
 809   Thread* THREAD = thread;
 810   const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
 811 
 812   // resolve method
 813   CallInfo info;
 814   constantPoolHandle pool(thread, method(thread)->constants());
 815   {
 816     JvmtiHideSingleStepping jhss(thread);
 817     LinkResolver::resolve_invoke(info, Handle(), pool,
 818                                  get_index_u2_cpcache(thread, bytecode), bytecode,
 819                                  CHECK);
 820   } // end JvmtiHideSingleStepping
 821 
 822   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 823   cp_cache_entry->set_method_handle(pool, info);
 824 }
 825 
 826 // First time execution:  Resolve symbols, create a permanent CallSite object.
 827 void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) {
 828   Thread* THREAD = thread;
 829   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
 830 
 831   //TO DO: consider passing BCI to Java.
 832   //  int caller_bci = method(thread)->bci_from(bcp(thread));
 833 
 834   // resolve method
 835   CallInfo info;
 836   constantPoolHandle pool(thread, method(thread)->constants());
 837   int index = get_index_u4(thread, bytecode);
 838   {
 839     JvmtiHideSingleStepping jhss(thread);
 840     LinkResolver::resolve_invoke(info, Handle(), pool,
 841                                  index, bytecode, CHECK);
 842   } // end JvmtiHideSingleStepping
 843 
 844   ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index);
 845   cp_cache_entry->set_dynamic_call(pool, info);
 846 }
 847 
 848 // This function is the interface to the assembly code. It returns the resolved
 849 // cpCache entry.  This doesn't safepoint, but the helper routines safepoint.
 850 // This function will check for redefinition!
 851 IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) {
 852   switch (bytecode) {
 853   case Bytecodes::_getstatic:
 854   case Bytecodes::_putstatic:
 855   case Bytecodes::_getfield:
 856   case Bytecodes::_putfield:
 857     resolve_get_put(thread, bytecode);
 858     break;
 859   case Bytecodes::_invokevirtual:
 860   case Bytecodes::_invokespecial:
 861   case Bytecodes::_invokestatic:
 862   case Bytecodes::_invokeinterface:
 863     resolve_invoke(thread, bytecode);
 864     break;
 865   case Bytecodes::_invokehandle:
 866     resolve_invokehandle(thread);
 867     break;
 868   case Bytecodes::_invokedynamic:
 869     resolve_invokedynamic(thread);
 870     break;
 871   default:
 872     fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode)));
 873     break;
 874   }
 875 }
 876 IRT_END
 877 
 878 //------------------------------------------------------------------------------------------------------------------------
 879 // Miscellaneous
 880 
 881 
 882 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
 883   nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
 884   assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
 885   if (branch_bcp != NULL && nm != NULL) {
 886     // This was a successful request for an OSR nmethod.  Because
 887     // frequency_counter_overflow_inner ends with a safepoint check,
 888     // nm could have been unloaded so look it up again.  It's unsafe
 889     // to examine nm directly since it might have been freed and used
 890     // for something else.
 891     frame fr = thread->last_frame();
 892     Method* method =  fr.interpreter_frame_method();
 893     int bci = method->bci_from(fr.interpreter_frame_bcp());
 894     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
 895   }
 896 #ifndef PRODUCT
 897   if (TraceOnStackReplacement) {
 898     if (nm != NULL) {
 899       tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", nm->osr_entry());
 900       nm->print();
 901     }
 902   }
 903 #endif
 904   return nm;
 905 }
 906 
 907 IRT_ENTRY(nmethod*,
 908           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
 909   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 910   // flag, in case this method triggers classloading which will call into Java.
 911   UnlockFlagSaver fs(thread);
 912 
 913   frame fr = thread->last_frame();
 914   assert(fr.is_interpreted_frame(), "must come from interpreter");
 915   methodHandle method(thread, fr.interpreter_frame_method());
 916   const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
 917   const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci;
 918 
 919   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 920   nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread);
 921   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 922 
 923   if (osr_nm != NULL) {
 924     // We may need to do on-stack replacement which requires that no
 925     // monitors in the activation are biased because their
 926     // BasicObjectLocks will need to migrate during OSR. Force
 927     // unbiasing of all monitors in the activation now (even though
 928     // the OSR nmethod might be invalidated) because we don't have a
 929     // safepoint opportunity later once the migration begins.
 930     if (UseBiasedLocking) {
 931       ResourceMark rm;
 932       GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
 933       for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
 934            kptr < fr.interpreter_frame_monitor_begin();
 935            kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
 936         if( kptr->obj() != NULL ) {
 937           objects_to_revoke->append(Handle(THREAD, kptr->obj()));
 938         }
 939       }
 940       BiasedLocking::revoke(objects_to_revoke);
 941     }
 942   }
 943   return osr_nm;
 944 IRT_END
 945 
 946 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
 947   assert(ProfileInterpreter, "must be profiling interpreter");
 948   int bci = method->bci_from(cur_bcp);
 949   MethodData* mdo = method->method_data();
 950   if (mdo == NULL)  return 0;
 951   return mdo->bci_to_di(bci);
 952 IRT_END
 953 
 954 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread))
 955   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 956   // flag, in case this method triggers classloading which will call into Java.
 957   UnlockFlagSaver fs(thread);
 958 
 959   assert(ProfileInterpreter, "must be profiling interpreter");
 960   frame fr = thread->last_frame();
 961   assert(fr.is_interpreted_frame(), "must come from interpreter");
 962   methodHandle method(thread, fr.interpreter_frame_method());
 963   Method::build_interpreter_method_data(method, THREAD);
 964   if (HAS_PENDING_EXCEPTION) {
 965     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
 966     CLEAR_PENDING_EXCEPTION;
 967     // and fall through...
 968   }
 969 IRT_END
 970 
 971 
 972 #ifdef ASSERT
 973 IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
 974   assert(ProfileInterpreter, "must be profiling interpreter");
 975 
 976   MethodData* mdo = method->method_data();
 977   assert(mdo != NULL, "must not be null");
 978 
 979   int bci = method->bci_from(bcp);
 980 
 981   address mdp2 = mdo->bci_to_dp(bci);
 982   if (mdp != mdp2) {
 983     ResourceMark rm;
 984     ResetNoHandleMark rnm; // In a LEAF entry.
 985     HandleMark hm;
 986     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
 987     int current_di = mdo->dp_to_di(mdp);
 988     int expected_di  = mdo->dp_to_di(mdp2);
 989     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
 990     int expected_approx_bci = mdo->data_at(expected_di)->bci();
 991     int approx_bci = -1;
 992     if (current_di >= 0) {
 993       approx_bci = mdo->data_at(current_di)->bci();
 994     }
 995     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
 996     mdo->print_on(tty);
 997     method->print_codes();
 998   }
 999   assert(mdp == mdp2, "wrong mdp");
1000 IRT_END
1001 #endif // ASSERT
1002 
1003 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
1004   assert(ProfileInterpreter, "must be profiling interpreter");
1005   ResourceMark rm(thread);
1006   HandleMark hm(thread);
1007   frame fr = thread->last_frame();
1008   assert(fr.is_interpreted_frame(), "must come from interpreter");
1009   MethodData* h_mdo = fr.interpreter_frame_method()->method_data();
1010 
1011   // Grab a lock to ensure atomic access to setting the return bci and
1012   // the displacement.  This can block and GC, invalidating all naked oops.
1013   MutexLocker ml(RetData_lock);
1014 
1015   // ProfileData is essentially a wrapper around a derived oop, so we
1016   // need to take the lock before making any ProfileData structures.
1017   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp()));
1018   RetData* rdata = data->as_RetData();
1019   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
1020   fr.interpreter_frame_set_mdp(new_mdp);
1021 IRT_END
1022 
1023 IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m))
1024   MethodCounters* mcs = Method::build_method_counters(m, thread);
1025   if (HAS_PENDING_EXCEPTION) {
1026     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1027     CLEAR_PENDING_EXCEPTION;
1028   }
1029   return mcs;
1030 IRT_END
1031 
1032 
1033 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
1034   // We used to need an explict preserve_arguments here for invoke bytecodes. However,
1035   // stack traversal automatically takes care of preserving arguments for invoke, so
1036   // this is no longer needed.
1037 
1038   // IRT_END does an implicit safepoint check, hence we are guaranteed to block
1039   // if this is called during a safepoint
1040 
1041   if (JvmtiExport::should_post_single_step()) {
1042     // We are called during regular safepoints and when the VM is
1043     // single stepping. If any thread is marked for single stepping,
1044     // then we may have JVMTI work to do.
1045     JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread));
1046   }
1047 IRT_END
1048 
1049 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
1050 ConstantPoolCacheEntry *cp_entry))
1051 
1052   // check the access_flags for the field in the klass
1053 
1054   InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass());
1055   int index = cp_entry->field_index();
1056   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
1057 
1058   bool is_static = (obj == NULL);
1059   HandleMark hm(thread);
1060 
1061   Handle h_obj;
1062   if (!is_static) {
1063     // non-static field accessors have an object, but we need a handle
1064     h_obj = Handle(thread, obj);
1065   }
1066   instanceKlassHandle h_cp_entry_f1(thread, (Klass*)cp_entry->f1_as_klass());
1067   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2_as_index(), is_static);
1068   JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid);
1069 IRT_END
1070 
1071 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
1072   oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
1073 
1074   Klass* k = (Klass*)cp_entry->f1_as_klass();
1075 
1076   // check the access_flags for the field in the klass
1077   InstanceKlass* ik = InstanceKlass::cast(k);
1078   int index = cp_entry->field_index();
1079   // bail out if field modifications are not watched
1080   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
1081 
1082   char sig_type = '\0';
1083 
1084   switch(cp_entry->flag_state()) {
1085     case btos: sig_type = 'Z'; break;
1086     case ctos: sig_type = 'C'; break;
1087     case stos: sig_type = 'S'; break;
1088     case itos: sig_type = 'I'; break;
1089     case ftos: sig_type = 'F'; break;
1090     case atos: sig_type = 'L'; break;
1091     case ltos: sig_type = 'J'; break;
1092     case dtos: sig_type = 'D'; break;
1093     default:  ShouldNotReachHere(); return;
1094   }
1095   bool is_static = (obj == NULL);
1096 
1097   HandleMark hm(thread);
1098   instanceKlassHandle h_klass(thread, k);
1099   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2_as_index(), is_static);
1100   jvalue fvalue;
1101 #ifdef _LP64
1102   fvalue = *value;
1103 #else
1104   // Long/double values are stored unaligned and also noncontiguously with
1105   // tagged stacks.  We can't just do a simple assignment even in the non-
1106   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1107   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1108   // We assume that the two halves of longs/doubles are stored in interpreter
1109   // stack slots in platform-endian order.
1110   jlong_accessor u;
1111   jint* newval = (jint*)value;
1112   u.words[0] = newval[0];
1113   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1114   fvalue.j = u.long_value;
1115 #endif // _LP64
1116 
1117   Handle h_obj;
1118   if (!is_static) {
1119     // non-static field accessors have an object, but we need a handle
1120     h_obj = Handle(thread, obj);
1121   }
1122 
1123   JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj,
1124                                            fid, sig_type, &fvalue);
1125 IRT_END
1126 
1127 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
1128   JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1129 IRT_END
1130 
1131 
1132 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
1133   JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1134 IRT_END
1135 
1136 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1137 {
1138   return (Interpreter::contains(pc) ? 1 : 0);
1139 }
1140 IRT_END
1141 
1142 
1143 // Implementation of SignatureHandlerLibrary
1144 
1145 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS
1146 // Dummy definition (else normalization method is defined in CPU
1147 // dependant code)
1148 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) {
1149   return fingerprint;
1150 }
1151 #endif
1152 
1153 address SignatureHandlerLibrary::set_handler_blob() {
1154   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1155   if (handler_blob == NULL) {
1156     return NULL;
1157   }
1158   address handler = handler_blob->code_begin();
1159   _handler_blob = handler_blob;
1160   _handler = handler;
1161   return handler;
1162 }
1163 
1164 void SignatureHandlerLibrary::initialize() {
1165   if (_fingerprints != NULL) {
1166     return;
1167   }
1168   if (set_handler_blob() == NULL) {
1169     vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
1170   }
1171 
1172   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1173                                       SignatureHandlerLibrary::buffer_size);
1174   _buffer = bb->code_begin();
1175 
1176   _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true);
1177   _handlers     = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true);
1178 }
1179 
1180 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1181   address handler   = _handler;
1182   int     insts_size = buffer->pure_insts_size();
1183   if (handler + insts_size > _handler_blob->code_end()) {
1184     // get a new handler blob
1185     handler = set_handler_blob();
1186   }
1187   if (handler != NULL) {
1188     memcpy(handler, buffer->insts_begin(), insts_size);
1189     pd_set_handler(handler);
1190     ICache::invalidate_range(handler, insts_size);
1191     _handler = handler + insts_size;
1192   }
1193   CodeCacheExtensions::handle_generated_handler(handler, buffer->name(), _handler);
1194   return handler;
1195 }
1196 
1197 void SignatureHandlerLibrary::add(methodHandle method) {
1198   if (method->signature_handler() == NULL) {
1199     // use slow signature handler if we can't do better
1200     int handler_index = -1;
1201     // check if we can use customized (fast) signature handler
1202     if (UseFastSignatureHandlers && CodeCacheExtensions::support_fast_signature_handlers() && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
1203       // use customized signature handler
1204       MutexLocker mu(SignatureHandlerLibrary_lock);
1205       // make sure data structure is initialized
1206       initialize();
1207       // lookup method signature's fingerprint
1208       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1209       // allow CPU dependant code to optimize the fingerprints for the fast handler
1210       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1211       handler_index = _fingerprints->find(fingerprint);
1212       // create handler if necessary
1213       if (handler_index < 0) {
1214         ResourceMark rm;
1215         ptrdiff_t align_offset = (address)
1216           round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer;
1217         CodeBuffer buffer((address)(_buffer + align_offset),
1218                           SignatureHandlerLibrary::buffer_size - align_offset);
1219         if (!CodeCacheExtensions::support_dynamic_code()) {
1220           // we need a name for the signature (for lookups or saving)
1221           const int SYMBOL_SIZE = 50;
1222           char *symbolName = NEW_RESOURCE_ARRAY(char, SYMBOL_SIZE);
1223           // support for named signatures
1224           jio_snprintf(symbolName, SYMBOL_SIZE,
1225                        "native_" UINT64_FORMAT, fingerprint);
1226           buffer.set_name(symbolName);
1227         }
1228         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1229         // copy into code heap
1230         address handler = set_handler(&buffer);
1231         if (handler == NULL) {
1232           // use slow signature handler (without memorizing it in the fingerprints)
1233         } else {
1234           // debugging suppport
1235           if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1236             tty->cr();
1237             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1238                           _handlers->length(),
1239                           (method->is_static() ? "static" : "receiver"),
1240                           method->name_and_sig_as_C_string(),
1241                           fingerprint,
1242                           buffer.insts_size());
1243             if (buffer.insts_size() > 0) {
1244               // buffer may be empty for pregenerated handlers
1245               Disassembler::decode(handler, handler + buffer.insts_size());
1246             }
1247 #ifndef PRODUCT
1248             address rh_begin = Interpreter::result_handler(method()->result_type());
1249             if (CodeCache::contains(rh_begin)) {
1250               // else it might be special platform dependent values
1251               tty->print_cr(" --- associated result handler ---");
1252               address rh_end = rh_begin;
1253               while (*(int*)rh_end != 0) {
1254                 rh_end += sizeof(int);
1255               }
1256               Disassembler::decode(rh_begin, rh_end);
1257             } else {
1258               tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin));
1259             }
1260 #endif
1261           }
1262           // add handler to library
1263           _fingerprints->append(fingerprint);
1264           _handlers->append(handler);
1265           // set handler index
1266           assert(_fingerprints->length() == _handlers->length(), "sanity check");
1267           handler_index = _fingerprints->length() - 1;
1268         }
1269       }
1270       // Set handler under SignatureHandlerLibrary_lock
1271       if (handler_index < 0) {
1272         // use generic signature handler
1273         method->set_signature_handler(Interpreter::slow_signature_handler());
1274       } else {
1275         // set handler
1276         method->set_signature_handler(_handlers->at(handler_index));
1277       }
1278     } else {
1279       CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
1280       // use generic signature handler
1281       method->set_signature_handler(Interpreter::slow_signature_handler());
1282     }
1283   }
1284 #ifdef ASSERT
1285   int handler_index = -1;
1286   int fingerprint_index = -2;
1287   {
1288     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1289     // in any way if accessed from multiple threads. To avoid races with another
1290     // thread which may change the arrays in the above, mutex protected block, we
1291     // have to protect this read access here with the same mutex as well!
1292     MutexLocker mu(SignatureHandlerLibrary_lock);
1293     if (_handlers != NULL) {
1294       handler_index = _handlers->find(method->signature_handler());
1295       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1296       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1297       fingerprint_index = _fingerprints->find(fingerprint);
1298     }
1299   }
1300   assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1301          handler_index == fingerprint_index, "sanity check");
1302 #endif // ASSERT
1303 }
1304 
1305 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) {
1306   int handler_index = -1;
1307   // use customized signature handler
1308   MutexLocker mu(SignatureHandlerLibrary_lock);
1309   // make sure data structure is initialized
1310   initialize();
1311   fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1312   handler_index = _fingerprints->find(fingerprint);
1313   // create handler if necessary
1314   if (handler_index < 0) {
1315     if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1316       tty->cr();
1317       tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT,
1318                     _handlers->length(),
1319                     handler,
1320                     fingerprint);
1321     }
1322     _fingerprints->append(fingerprint);
1323     _handlers->append(handler);
1324   } else {
1325     if (PrintSignatureHandlers) {
1326       tty->cr();
1327       tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")",
1328                     _handlers->length(),
1329                     fingerprint,
1330                     _handlers->at(handler_index),
1331                     handler);
1332     }
1333   }
1334 }
1335 
1336 
1337 BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
1338 address                  SignatureHandlerLibrary::_handler      = NULL;
1339 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
1340 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
1341 address                  SignatureHandlerLibrary::_buffer       = NULL;
1342 
1343 
1344 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method))
1345   methodHandle m(thread, method);
1346   assert(m->is_native(), "sanity check");
1347   // lookup native function entry point if it doesn't exist
1348   bool in_base_library;
1349   if (!m->has_native_function()) {
1350     NativeLookup::lookup(m, in_base_library, CHECK);
1351   }
1352   // make sure signature handler is installed
1353   SignatureHandlerLibrary::add(m);
1354   // The interpreter entry point checks the signature handler first,
1355   // before trying to fetch the native entry point and klass mirror.
1356   // We must set the signature handler last, so that multiple processors
1357   // preparing the same method will be sure to see non-null entry & mirror.
1358 IRT_END
1359 
1360 #if defined(IA32) || defined(AMD64) || defined(ARM)
1361 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
1362   if (src_address == dest_address) {
1363     return;
1364   }
1365   ResetNoHandleMark rnm; // In a LEAF entry.
1366   HandleMark hm;
1367   ResourceMark rm;
1368   frame fr = thread->last_frame();
1369   assert(fr.is_interpreted_frame(), "");
1370   jint bci = fr.interpreter_frame_bci();
1371   methodHandle mh(thread, fr.interpreter_frame_method());
1372   Bytecode_invoke invoke(mh, bci);
1373   ArgumentSizeComputer asc(invoke.signature());
1374   int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
1375   Copy::conjoint_jbytes(src_address, dest_address,
1376                        size_of_arguments * Interpreter::stackElementSize);
1377 IRT_END
1378 #endif
1379 
1380 #if INCLUDE_JVMTI
1381 // This is a support of the JVMTI PopFrame interface.
1382 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
1383 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
1384 // The member_name argument is a saved reference (in local#0) to the member_name.
1385 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
1386 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
1387 IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name,
1388                                                             Method* method, address bcp))
1389   Bytecodes::Code code = Bytecodes::code_at(method, bcp);
1390   if (code != Bytecodes::_invokestatic) {
1391     return;
1392   }
1393   ConstantPool* cpool = method->constants();
1394   int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG;
1395   Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index));
1396   Symbol* mname = cpool->name_ref_at(cp_index);
1397 
1398   if (MethodHandles::has_member_arg(cname, mname)) {
1399     oop member_name_oop = (oop) member_name;
1400     if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
1401       // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
1402       member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
1403     }
1404     thread->set_vm_result(member_name_oop);
1405   } else {
1406     thread->set_vm_result(NULL);
1407   }
1408 IRT_END
1409 #endif // INCLUDE_JVMTI