1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "oops/fieldStreams.hpp"
  41 #include "oops/verifyOopClosure.hpp"
  42 #include "prims/jvmtiThreadState.hpp"
  43 #include "runtime/biasedLocking.hpp"
  44 #include "runtime/compilationPolicy.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/signature.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.hpp"
  51 #include "runtime/vframe.hpp"
  52 #include "runtime/vframeArray.hpp"
  53 #include "runtime/vframe_hp.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/xmlstream.hpp"
  56 
  57 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  58 
  59 #if INCLUDE_JVMCI
  60 #include "jvmci/jvmciRuntime.hpp"
  61 #include "jvmci/jvmciJavaClasses.hpp"
  62 #endif
  63 
  64 
  65 bool DeoptimizationMarker::_is_active = false;
  66 
  67 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  68                                          int  caller_adjustment,
  69                                          int  caller_actual_parameters,
  70                                          int  number_of_frames,
  71                                          intptr_t* frame_sizes,
  72                                          address* frame_pcs,
  73                                          BasicType return_type) {
  74   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  75   _caller_adjustment         = caller_adjustment;
  76   _caller_actual_parameters  = caller_actual_parameters;
  77   _number_of_frames          = number_of_frames;
  78   _frame_sizes               = frame_sizes;
  79   _frame_pcs                 = frame_pcs;
  80   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  81   _return_type               = return_type;
  82   _initial_info              = 0;
  83   // PD (x86 only)
  84   _counter_temp              = 0;
  85   _unpack_kind               = 0;
  86   _sender_sp_temp            = 0;
  87 
  88   _total_frame_sizes         = size_of_frames();
  89 }
  90 
  91 
  92 Deoptimization::UnrollBlock::~UnrollBlock() {
  93   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  94   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  95   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  96 }
  97 
  98 
  99 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 100   assert(register_number < RegisterMap::reg_count, "checking register number");
 101   return &_register_block[register_number * 2];
 102 }
 103 
 104 
 105 
 106 int Deoptimization::UnrollBlock::size_of_frames() const {
 107   // Acount first for the adjustment of the initial frame
 108   int result = _caller_adjustment;
 109   for (int index = 0; index < number_of_frames(); index++) {
 110     result += frame_sizes()[index];
 111   }
 112   return result;
 113 }
 114 
 115 
 116 void Deoptimization::UnrollBlock::print() {
 117   ttyLocker ttyl;
 118   tty->print_cr("UnrollBlock");
 119   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 120   tty->print(   "  frame_sizes: ");
 121   for (int index = 0; index < number_of_frames(); index++) {
 122     tty->print("%d ", frame_sizes()[index]);
 123   }
 124   tty->cr();
 125 }
 126 
 127 
 128 // In order to make fetch_unroll_info work properly with escape
 129 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 130 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 131 // of previously eliminated objects occurs in realloc_objects, which is
 132 // called from the method fetch_unroll_info_helper below.
 133 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
 134   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 135   // but makes the entry a little slower. There is however a little dance we have to
 136   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 137 
 138   // fetch_unroll_info() is called at the beginning of the deoptimization
 139   // handler. Note this fact before we start generating temporary frames
 140   // that can confuse an asynchronous stack walker. This counter is
 141   // decremented at the end of unpack_frames().
 142   if (TraceDeoptimization) {
 143     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, thread);
 144   }
 145   thread->inc_in_deopt_handler();
 146 
 147   return fetch_unroll_info_helper(thread);
 148 JRT_END
 149 
 150 
 151 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 152 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 153 
 154   // Note: there is a safepoint safety issue here. No matter whether we enter
 155   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 156   // the vframeArray is created.
 157   //
 158 
 159   // Allocate our special deoptimization ResourceMark
 160   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 161   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 162   thread->set_deopt_mark(dmark);
 163 
 164   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 165   RegisterMap map(thread, true);
 166   RegisterMap dummy_map(thread, false);
 167   // Now get the deoptee with a valid map
 168   frame deoptee = stub_frame.sender(&map);
 169   // Set the deoptee nmethod
 170   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
 171   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
 172   bool skip_internal = thread->deopt_nmethod() != NULL && !thread->deopt_nmethod()->compiler()->is_jvmci();
 173 
 174   if (VerifyStack) {
 175     thread->validate_frame_layout();
 176   }
 177 
 178   // Create a growable array of VFrames where each VFrame represents an inlined
 179   // Java frame.  This storage is allocated with the usual system arena.
 180   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 181   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 182   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 183   while (!vf->is_top()) {
 184     assert(vf->is_compiled_frame(), "Wrong frame type");
 185     chunk->push(compiledVFrame::cast(vf));
 186     vf = vf->sender();
 187   }
 188   assert(vf->is_compiled_frame(), "Wrong frame type");
 189   chunk->push(compiledVFrame::cast(vf));
 190 
 191   bool realloc_failures = false;
 192 
 193 #if defined(COMPILER2) || INCLUDE_JVMCI
 194   // Reallocate the non-escaping objects and restore their fields. Then
 195   // relock objects if synchronization on them was eliminated.
 196 #ifndef INCLUDE_JVMCI
 197   if (DoEscapeAnalysis || EliminateNestedLocks) {
 198     if (EliminateAllocations) {
 199 #endif // INCLUDE_JVMCI
 200       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 201       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 202 
 203       // The flag return_oop() indicates call sites which return oop
 204       // in compiled code. Such sites include java method calls,
 205       // runtime calls (for example, used to allocate new objects/arrays
 206       // on slow code path) and any other calls generated in compiled code.
 207       // It is not guaranteed that we can get such information here only
 208       // by analyzing bytecode in deoptimized frames. This is why this flag
 209       // is set during method compilation (see Compile::Process_OopMap_Node()).
 210       // If the previous frame was popped, we don't have a result.
 211       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution();
 212       Handle return_value;
 213       if (save_oop_result) {
 214         // Reallocation may trigger GC. If deoptimization happened on return from
 215         // call which returns oop we need to save it since it is not in oopmap.
 216         oop result = deoptee.saved_oop_result(&map);
 217         assert(result == NULL || result->is_oop(), "must be oop");
 218         return_value = Handle(thread, result);
 219         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 220         if (TraceDeoptimization) {
 221           ttyLocker ttyl;
 222           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
 223         }
 224       }
 225       if (objects != NULL) {
 226         JRT_BLOCK
 227           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 228         JRT_END
 229         reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 230 #ifndef PRODUCT
 231         if (TraceDeoptimization) {
 232           ttyLocker ttyl;
 233           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
 234           print_objects(objects, realloc_failures);
 235         }
 236 #endif
 237       }
 238       if (save_oop_result) {
 239         // Restore result.
 240         deoptee.set_saved_oop_result(&map, return_value());
 241       }
 242 #ifndef INCLUDE_JVMCI
 243     }
 244     if (EliminateLocks) {
 245 #endif // INCLUDE_JVMCI
 246 #ifndef PRODUCT
 247       bool first = true;
 248 #endif
 249       for (int i = 0; i < chunk->length(); i++) {
 250         compiledVFrame* cvf = chunk->at(i);
 251         assert (cvf->scope() != NULL,"expect only compiled java frames");
 252         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 253         if (monitors->is_nonempty()) {
 254           relock_objects(monitors, thread, realloc_failures);
 255 #ifndef PRODUCT
 256           if (PrintDeoptimizationDetails) {
 257             ttyLocker ttyl;
 258             for (int j = 0; j < monitors->length(); j++) {
 259               MonitorInfo* mi = monitors->at(j);
 260               if (mi->eliminated()) {
 261                 if (first) {
 262                   first = false;
 263                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
 264                 }
 265                 if (mi->owner_is_scalar_replaced()) {
 266                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 267                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 268                 } else {
 269                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
 270                 }
 271               }
 272             }
 273           }
 274 #endif // !PRODUCT
 275         }
 276       }
 277 #ifndef INCLUDE_JVMCI
 278     }
 279   }
 280 #endif // INCLUDE_JVMCI
 281 #endif // COMPILER2 || INCLUDE_JVMCI
 282 
 283   // Ensure that no safepoint is taken after pointers have been stored
 284   // in fields of rematerialized objects.  If a safepoint occurs from here on
 285   // out the java state residing in the vframeArray will be missed.
 286   No_Safepoint_Verifier no_safepoint;
 287 
 288   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 289 #if defined(COMPILER2) || INCLUDE_JVMCI
 290   if (realloc_failures) {
 291     pop_frames_failed_reallocs(thread, array);
 292   }
 293 #endif
 294 
 295   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 296   thread->set_vframe_array_head(array);
 297 
 298   // Now that the vframeArray has been created if we have any deferred local writes
 299   // added by jvmti then we can free up that structure as the data is now in the
 300   // vframeArray
 301 
 302   if (thread->deferred_locals() != NULL) {
 303     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 304     int i = 0;
 305     do {
 306       // Because of inlining we could have multiple vframes for a single frame
 307       // and several of the vframes could have deferred writes. Find them all.
 308       if (list->at(i)->id() == array->original().id()) {
 309         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 310         list->remove_at(i);
 311         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 312         delete dlv;
 313       } else {
 314         i++;
 315       }
 316     } while ( i < list->length() );
 317     if (list->length() == 0) {
 318       thread->set_deferred_locals(NULL);
 319       // free the list and elements back to C heap.
 320       delete list;
 321     }
 322 
 323   }
 324 
 325 #ifndef SHARK
 326   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 327   CodeBlob* cb = stub_frame.cb();
 328   // Verify we have the right vframeArray
 329   assert(cb->frame_size() >= 0, "Unexpected frame size");
 330   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 331 
 332   // If the deopt call site is a MethodHandle invoke call site we have
 333   // to adjust the unpack_sp.
 334   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 335   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 336     unpack_sp = deoptee.unextended_sp();
 337 
 338 #ifdef ASSERT
 339   assert(cb->is_deoptimization_stub() ||
 340          cb->is_uncommon_trap_stub() ||
 341          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 342          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 343          err_msg("unexpected code blob: %s", cb->name()));
 344 #endif
 345 #else
 346   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 347 #endif // !SHARK
 348 
 349   // This is a guarantee instead of an assert because if vframe doesn't match
 350   // we will unpack the wrong deoptimized frame and wind up in strange places
 351   // where it will be very difficult to figure out what went wrong. Better
 352   // to die an early death here than some very obscure death later when the
 353   // trail is cold.
 354   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 355   // in that it will fail to detect a problem when there is one. This needs
 356   // more work in tiger timeframe.
 357   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 358 
 359   int number_of_frames = array->frames();
 360 
 361   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 362   // virtual activation, which is the reverse of the elements in the vframes array.
 363   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 364   // +1 because we always have an interpreter return address for the final slot.
 365   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 366   int popframe_extra_args = 0;
 367   // Create an interpreter return address for the stub to use as its return
 368   // address so the skeletal frames are perfectly walkable
 369   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 370 
 371   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 372   // activation be put back on the expression stack of the caller for reexecution
 373   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 374     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 375   }
 376 
 377   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 378   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 379   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 380   //
 381   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 382   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 383 
 384   // It's possible that the number of parameters at the call site is
 385   // different than number of arguments in the callee when method
 386   // handles are used.  If the caller is interpreted get the real
 387   // value so that the proper amount of space can be added to it's
 388   // frame.
 389   bool caller_was_method_handle = false;
 390   if (deopt_sender.is_interpreted_frame()) {
 391     methodHandle method = deopt_sender.interpreter_frame_method();
 392     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 393     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 394       // Method handle invokes may involve fairly arbitrary chains of
 395       // calls so it's impossible to know how much actual space the
 396       // caller has for locals.
 397       caller_was_method_handle = true;
 398     }
 399   }
 400 
 401   //
 402   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 403   // frame_sizes/frame_pcs[1] next oldest frame (int)
 404   // frame_sizes/frame_pcs[n] youngest frame (int)
 405   //
 406   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 407   // owns the space for the return address to it's caller).  Confusing ain't it.
 408   //
 409   // The vframe array can address vframes with indices running from
 410   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 411   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 412   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 413   // so things look a little strange in this loop.
 414   //
 415   int callee_parameters = 0;
 416   int callee_locals = 0;
 417   for (int index = 0; index < array->frames(); index++ ) {
 418     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 419     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 420     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 421     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 422                                                                                                     callee_locals,
 423                                                                                                     index == 0,
 424                                                                                                     popframe_extra_args);
 425     // This pc doesn't have to be perfect just good enough to identify the frame
 426     // as interpreted so the skeleton frame will be walkable
 427     // The correct pc will be set when the skeleton frame is completely filled out
 428     // The final pc we store in the loop is wrong and will be overwritten below
 429     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 430 
 431     callee_parameters = array->element(index)->method()->size_of_parameters();
 432     callee_locals = array->element(index)->method()->max_locals();
 433     popframe_extra_args = 0;
 434   }
 435 
 436   // Compute whether the root vframe returns a float or double value.
 437   BasicType return_type;
 438   {
 439     HandleMark hm;
 440     methodHandle method(thread, array->element(0)->method());
 441     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 442     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 443   }
 444 
 445   // Compute information for handling adapters and adjusting the frame size of the caller.
 446   int caller_adjustment = 0;
 447 
 448   // Compute the amount the oldest interpreter frame will have to adjust
 449   // its caller's stack by. If the caller is a compiled frame then
 450   // we pretend that the callee has no parameters so that the
 451   // extension counts for the full amount of locals and not just
 452   // locals-parms. This is because without a c2i adapter the parm
 453   // area as created by the compiled frame will not be usable by
 454   // the interpreter. (Depending on the calling convention there
 455   // may not even be enough space).
 456 
 457   // QQQ I'd rather see this pushed down into last_frame_adjust
 458   // and have it take the sender (aka caller).
 459 
 460   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 461     caller_adjustment = last_frame_adjust(0, callee_locals);
 462   } else if (callee_locals > callee_parameters) {
 463     // The caller frame may need extending to accommodate
 464     // non-parameter locals of the first unpacked interpreted frame.
 465     // Compute that adjustment.
 466     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 467   }
 468 
 469   // If the sender is deoptimized the we must retrieve the address of the handler
 470   // since the frame will "magically" show the original pc before the deopt
 471   // and we'd undo the deopt.
 472 
 473   frame_pcs[0] = deopt_sender.raw_pc();
 474 
 475 #ifndef SHARK
 476   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 477 #endif // SHARK
 478 
 479   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 480                                       caller_adjustment * BytesPerWord,
 481                                       caller_was_method_handle ? 0 : callee_parameters,
 482                                       number_of_frames,
 483                                       frame_sizes,
 484                                       frame_pcs,
 485                                       return_type);
 486   // On some platforms, we need a way to pass some platform dependent
 487   // information to the unpacking code so the skeletal frames come out
 488   // correct (initial fp value, unextended sp, ...)
 489   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 490 
 491   if (array->frames() > 1) {
 492     if (VerifyStack && TraceDeoptimization) {
 493       ttyLocker ttyl;
 494       tty->print_cr("Deoptimizing method containing inlining");
 495     }
 496   }
 497 
 498   array->set_unroll_block(info);
 499   return info;
 500 }
 501 
 502 // Called to cleanup deoptimization data structures in normal case
 503 // after unpacking to stack and when stack overflow error occurs
 504 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 505                                         vframeArray *array) {
 506 
 507   // Get array if coming from exception
 508   if (array == NULL) {
 509     array = thread->vframe_array_head();
 510   }
 511   thread->set_vframe_array_head(NULL);
 512 
 513   // Free the previous UnrollBlock
 514   vframeArray* old_array = thread->vframe_array_last();
 515   thread->set_vframe_array_last(array);
 516 
 517   if (old_array != NULL) {
 518     UnrollBlock* old_info = old_array->unroll_block();
 519     old_array->set_unroll_block(NULL);
 520     delete old_info;
 521     delete old_array;
 522   }
 523 
 524   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 525   // inside the vframeArray (StackValueCollections)
 526 
 527   delete thread->deopt_mark();
 528   thread->set_deopt_mark(NULL);
 529   thread->set_deopt_nmethod(NULL);
 530 
 531 
 532   if (JvmtiExport::can_pop_frame()) {
 533 #ifndef CC_INTERP
 534     // Regardless of whether we entered this routine with the pending
 535     // popframe condition bit set, we should always clear it now
 536     thread->clear_popframe_condition();
 537 #else
 538     // C++ interpreter will clear has_pending_popframe when it enters
 539     // with method_resume. For deopt_resume2 we clear it now.
 540     if (thread->popframe_forcing_deopt_reexecution())
 541         thread->clear_popframe_condition();
 542 #endif /* CC_INTERP */
 543   }
 544 
 545   // unpack_frames() is called at the end of the deoptimization handler
 546   // and (in C2) at the end of the uncommon trap handler. Note this fact
 547   // so that an asynchronous stack walker can work again. This counter is
 548   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 549   // the beginning of uncommon_trap().
 550   thread->dec_in_deopt_handler();
 551 }
 552 
 553 
 554 // Return BasicType of value being returned
 555 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 556 
 557   // We are already active int he special DeoptResourceMark any ResourceObj's we
 558   // allocate will be freed at the end of the routine.
 559 
 560   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 561   // but makes the entry a little slower. There is however a little dance we have to
 562   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 563   ResetNoHandleMark rnhm; // No-op in release/product versions
 564   HandleMark hm;
 565 
 566   frame stub_frame = thread->last_frame();
 567 
 568   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 569   // must point to the vframeArray for the unpack frame.
 570   vframeArray* array = thread->vframe_array_head();
 571 
 572 #ifndef PRODUCT
 573   if (TraceDeoptimization) {
 574     ttyLocker ttyl;
 575     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
 576   }
 577 #endif
 578   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 579               stub_frame.pc(), stub_frame.sp(), exec_mode);
 580 
 581   UnrollBlock* info = array->unroll_block();
 582 
 583   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 584   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 585 
 586   BasicType bt = info->return_type();
 587 
 588   // If we have an exception pending, claim that the return type is an oop
 589   // so the deopt_blob does not overwrite the exception_oop.
 590 
 591   if (exec_mode == Unpack_exception)
 592     bt = T_OBJECT;
 593 
 594   // Cleanup thread deopt data
 595   cleanup_deopt_info(thread, array);
 596 
 597 #ifndef PRODUCT
 598   if (VerifyStack) {
 599     ResourceMark res_mark;
 600 
 601     thread->validate_frame_layout();
 602 
 603     // Verify that the just-unpacked frames match the interpreter's
 604     // notions of expression stack and locals
 605     vframeArray* cur_array = thread->vframe_array_last();
 606     RegisterMap rm(thread, false);
 607     rm.set_include_argument_oops(false);
 608     bool is_top_frame = true;
 609     int callee_size_of_parameters = 0;
 610     int callee_max_locals = 0;
 611     for (int i = 0; i < cur_array->frames(); i++) {
 612       vframeArrayElement* el = cur_array->element(i);
 613       frame* iframe = el->iframe();
 614       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 615 
 616       // Get the oop map for this bci
 617       InterpreterOopMap mask;
 618       int cur_invoke_parameter_size = 0;
 619       bool try_next_mask = false;
 620       int next_mask_expression_stack_size = -1;
 621       int top_frame_expression_stack_adjustment = 0;
 622       methodHandle mh(thread, iframe->interpreter_frame_method());
 623       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 624       BytecodeStream str(mh);
 625       str.set_start(iframe->interpreter_frame_bci());
 626       int max_bci = mh->code_size();
 627       // Get to the next bytecode if possible
 628       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 629       // Check to see if we can grab the number of outgoing arguments
 630       // at an uncommon trap for an invoke (where the compiler
 631       // generates debug info before the invoke has executed)
 632       Bytecodes::Code cur_code = str.next();
 633       if (cur_code == Bytecodes::_invokevirtual   ||
 634           cur_code == Bytecodes::_invokespecial   ||
 635           cur_code == Bytecodes::_invokestatic    ||
 636           cur_code == Bytecodes::_invokeinterface ||
 637           cur_code == Bytecodes::_invokedynamic) {
 638         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 639         Symbol* signature = invoke.signature();
 640         ArgumentSizeComputer asc(signature);
 641         cur_invoke_parameter_size = asc.size();
 642         if (invoke.has_receiver()) {
 643           // Add in receiver
 644           ++cur_invoke_parameter_size;
 645         }
 646         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 647           callee_size_of_parameters++;
 648         }
 649       }
 650       if (str.bci() < max_bci) {
 651         Bytecodes::Code bc = str.next();
 652         if (bc >= 0) {
 653           // The interpreter oop map generator reports results before
 654           // the current bytecode has executed except in the case of
 655           // calls. It seems to be hard to tell whether the compiler
 656           // has emitted debug information matching the "state before"
 657           // a given bytecode or the state after, so we try both
 658           switch (cur_code) {
 659             case Bytecodes::_invokevirtual:
 660             case Bytecodes::_invokespecial:
 661             case Bytecodes::_invokestatic:
 662             case Bytecodes::_invokeinterface:
 663             case Bytecodes::_invokedynamic:
 664             case Bytecodes::_athrow:
 665               break;
 666             default: {
 667               InterpreterOopMap next_mask;
 668               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 669               next_mask_expression_stack_size = next_mask.expression_stack_size();
 670               // Need to subtract off the size of the result type of
 671               // the bytecode because this is not described in the
 672               // debug info but returned to the interpreter in the TOS
 673               // caching register
 674               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 675               if (bytecode_result_type != T_ILLEGAL) {
 676                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 677               }
 678               assert(top_frame_expression_stack_adjustment >= 0, "");
 679               try_next_mask = true;
 680               break;
 681             }
 682           }
 683         }
 684       }
 685 
 686       // Verify stack depth and oops in frame
 687       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 688       if (!(
 689             /* SPARC */
 690             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 691             /* x86 */
 692             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 693             (try_next_mask &&
 694              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 695                                                                     top_frame_expression_stack_adjustment))) ||
 696             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 697             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 698              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 699             )) {
 700         ttyLocker ttyl;
 701 
 702         // Print out some information that will help us debug the problem
 703         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 704         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 705         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 706                       iframe->interpreter_frame_expression_stack_size());
 707         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 708         tty->print_cr("  try_next_mask = %d", try_next_mask);
 709         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 710         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 711         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 712         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 713         tty->print_cr("  exec_mode = %d", exec_mode);
 714         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 715         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
 716         tty->print_cr("  Interpreted frames:");
 717         for (int k = 0; k < cur_array->frames(); k++) {
 718           vframeArrayElement* el = cur_array->element(k);
 719           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 720         }
 721         cur_array->print_on_2(tty);
 722         guarantee(false, "wrong number of expression stack elements during deopt");
 723       }
 724       VerifyOopClosure verify;
 725       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
 726       callee_size_of_parameters = mh->size_of_parameters();
 727       callee_max_locals = mh->max_locals();
 728       is_top_frame = false;
 729     }
 730   }
 731 #endif /* !PRODUCT */
 732 
 733 
 734   return bt;
 735 JRT_END
 736 
 737 
 738 int Deoptimization::deoptimize_dependents() {
 739   Threads::deoptimized_wrt_marked_nmethods();
 740   return 0;
 741 }
 742 
 743 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 744   = Deoptimization::Action_reinterpret;
 745 
 746 #if defined(COMPILER2) || INCLUDE_JVMCI
 747 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 748   Handle pending_exception(thread->pending_exception());
 749   const char* exception_file = thread->exception_file();
 750   int exception_line = thread->exception_line();
 751   thread->clear_pending_exception();
 752 
 753   bool failures = false;
 754 
 755   for (int i = 0; i < objects->length(); i++) {
 756     assert(objects->at(i)->is_object(), "invalid debug information");
 757     ObjectValue* sv = (ObjectValue*) objects->at(i);
 758 
 759     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 760     oop obj = NULL;
 761 
 762     if (k->oop_is_instance()) {
 763       InstanceKlass* ik = InstanceKlass::cast(k());
 764       obj = ik->allocate_instance(THREAD);
 765     } else if (k->oop_is_typeArray()) {
 766       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 767       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 768       int len = sv->field_size() / type2size[ak->element_type()];
 769       obj = ak->allocate(len, THREAD);
 770     } else if (k->oop_is_objArray()) {
 771       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
 772       obj = ak->allocate(sv->field_size(), THREAD);
 773     }
 774 
 775     if (obj == NULL) {
 776       failures = true;
 777     }
 778 
 779     assert(sv->value().is_null(), "redundant reallocation");
 780     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 781     CLEAR_PENDING_EXCEPTION;
 782     sv->set_value(obj);
 783   }
 784 
 785   if (failures) {
 786     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 787   } else if (pending_exception.not_null()) {
 788     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 789   }
 790 
 791   return failures;
 792 }
 793 
 794 // restore elements of an eliminated type array
 795 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 796   int index = 0;















 797   intptr_t val;








 798 
 799   for (int i = 0; i < sv->field_size(); i++) {
 800     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 801     switch(type) {
 802     case T_LONG: case T_DOUBLE: {
 803       assert(value->type() == T_INT, "Agreement.");
 804       StackValue* low =
 805         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 806 #ifdef _LP64
 807       jlong res = (jlong)low->get_int();
 808 #else
 809 #ifdef SPARC
 810       // For SPARC we have to swap high and low words.
 811       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 812 #else
 813       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 814 #endif //SPARC
 815 #endif
 816       obj->long_at_put(index, res);
 817       break;
 818     }
 819 
 820     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 821     case T_INT: case T_FLOAT: { // 4 bytes.
 822       assert(value->type() == T_INT, "Agreement.");
 823       bool big_value = false;
 824       if (i + 1 < sv->field_size() && type == T_INT) {
 825         if (sv->field_at(i)->is_location()) {
 826           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 827           if (type == Location::dbl || type == Location::lng) {
 828             big_value = true;
 829           }
 830         } else if (sv->field_at(i)->is_constant_int()) {
 831           ScopeValue* next_scope_field = sv->field_at(i + 1);
 832           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 833             big_value = true;
 834           }
 835         }
 836       }
 837 
 838       if (big_value) {
 839         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 840   #ifdef _LP64
 841         jlong res = (jlong)low->get_int();
 842   #else
 843   #ifdef SPARC
 844         // For SPARC we have to swap high and low words.
 845         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 846   #else
 847         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 848   #endif //SPARC
 849   #endif
 850         obj->int_at_put(index, (jint)*((jint*)&res));
 851         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 852       } else {
 853         val = value->get_int();
 854         obj->int_at_put(index, (jint)*((jint*)&val));
 855       }
 856       break;
 857     }
 858 
 859     case T_SHORT: case T_CHAR: // 2 bytes
 860       assert(value->type() == T_INT, "Agreement.");
 861       val = value->get_int();
 862       obj->short_at_put(index, (jshort)*((jint*)&val));
 863       break;
 864 
 865     case T_BOOLEAN: case T_BYTE: // 1 byte
 866       assert(value->type() == T_INT, "Agreement.");
 867       val = value->get_int();
 868       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 869       break;
 870 
 871       default:
 872         ShouldNotReachHere();
 873     }
 874     index++;
 875   }
 876 }
 877 




 878 
 879 // restore fields of an eliminated object array
 880 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 881   for (int i = 0; i < sv->field_size(); i++) {
 882     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 883     assert(value->type() == T_OBJECT, "object element expected");
 884     obj->obj_at_put(i, value->get_obj()());
 885   }
 886 }
 887 
 888 class ReassignedField {
 889 public:
 890   int _offset;
 891   BasicType _type;
 892 public:
 893   ReassignedField() {
 894     _offset = 0;
 895     _type = T_ILLEGAL;
 896   }
 897 };
 898 
 899 int compare(ReassignedField* left, ReassignedField* right) {
 900   return left->_offset - right->_offset;
 901 }
 902 
 903 // Restore fields of an eliminated instance object using the same field order
 904 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
 905 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
 906   if (klass->superklass() != NULL) {
 907     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
 908   }
 909 
 910   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
 911   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
 912     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
 913       ReassignedField field;
 914       field._offset = fs.offset();
 915       field._type = FieldType::basic_type(fs.signature());
 916       fields->append(field);
 917     }
 918   }
 919   fields->sort(compare);
 920   for (int i = 0; i < fields->length(); i++) {
 921     intptr_t val;
 922     ScopeValue* scope_field = sv->field_at(svIndex);
 923     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
 924     int offset = fields->at(i)._offset;
 925     BasicType type = fields->at(i)._type;
 926     switch (type) {
 927       case T_OBJECT: case T_ARRAY:
 928         assert(value->type() == T_OBJECT, "Agreement.");
 929         obj->obj_field_put(offset, value->get_obj()());
 930         break;
 931 
 932       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 933       case T_INT: case T_FLOAT: { // 4 bytes.
 934         assert(value->type() == T_INT, "Agreement.");
 935         bool big_value = false;
 936         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
 937           if (scope_field->is_location()) {
 938             Location::Type type = ((LocationValue*) scope_field)->location().type();
 939             if (type == Location::dbl || type == Location::lng) {
 940               big_value = true;
 941             }
 942           }
 943           if (scope_field->is_constant_int()) {
 944             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
 945             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 946               big_value = true;
 947             }
 948           }
 949         }
 950 
 951         if (big_value) {
 952           i++;
 953           assert(i < fields->length(), "second T_INT field needed");
 954           assert(fields->at(i)._type == T_INT, "T_INT field needed");
 955         } else {
 956           val = value->get_int();
 957           obj->int_field_put(offset, (jint)*((jint*)&val));
 958           break;
 959         }
 960       }
 961         /* no break */
 962 
 963       case T_LONG: case T_DOUBLE: {
 964         assert(value->type() == T_INT, "Agreement.");
 965         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));

 966 #ifdef _LP64
 967         jlong res = (jlong)low->get_int();
 968 #else
 969 #ifdef SPARC
 970         // For SPARC we have to swap high and low words.
 971         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 972 #else
 973         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 974 #endif //SPARC
 975 #endif
 976         obj->long_field_put(offset, res);
 977         break;
 978       }
 979 







 980       case T_SHORT: case T_CHAR: // 2 bytes
 981         assert(value->type() == T_INT, "Agreement.");
 982         val = value->get_int();
 983         obj->short_field_put(offset, (jshort)*((jint*)&val));
 984         break;
 985 
 986       case T_BOOLEAN: case T_BYTE: // 1 byte
 987         assert(value->type() == T_INT, "Agreement.");
 988         val = value->get_int();
 989         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 990         break;
 991 
 992       default:
 993         ShouldNotReachHere();
 994     }
 995     svIndex++;










 996   }
 997   return svIndex;
 998 }
 999 

1000 // restore fields of all eliminated objects and arrays
1001 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1002   for (int i = 0; i < objects->length(); i++) {
1003     ObjectValue* sv = (ObjectValue*) objects->at(i);
1004     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
1005     Handle obj = sv->value();
1006     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1007     if (PrintDeoptimizationDetails) {
1008       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1009     }
1010     if (obj.is_null()) {
1011       continue;
1012     }
1013 
1014     if (k->oop_is_instance()) {
1015       InstanceKlass* ik = InstanceKlass::cast(k());
1016       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);

1017     } else if (k->oop_is_typeArray()) {
1018       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
1019       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1020     } else if (k->oop_is_objArray()) {
1021       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1022     }
1023   }
1024 }
1025 
1026 
1027 // relock objects for which synchronization was eliminated
1028 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1029   for (int i = 0; i < monitors->length(); i++) {
1030     MonitorInfo* mon_info = monitors->at(i);
1031     if (mon_info->eliminated()) {
1032       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1033       if (!mon_info->owner_is_scalar_replaced()) {
1034         Handle obj = Handle(mon_info->owner());
1035         markOop mark = obj->mark();
1036         if (UseBiasedLocking && mark->has_bias_pattern()) {
1037           // New allocated objects may have the mark set to anonymously biased.
1038           // Also the deoptimized method may called methods with synchronization
1039           // where the thread-local object is bias locked to the current thread.
1040           assert(mark->is_biased_anonymously() ||
1041                  mark->biased_locker() == thread, "should be locked to current thread");
1042           // Reset mark word to unbiased prototype.
1043           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1044           obj->set_mark(unbiased_prototype);
1045         }
1046         BasicLock* lock = mon_info->lock();
1047         ObjectSynchronizer::slow_enter(obj, lock, thread);
1048         assert(mon_info->owner()->is_locked(), "object must be locked now");
1049       }
1050     }
1051   }
1052 }
1053 
1054 
1055 #ifndef PRODUCT
1056 // print information about reallocated objects
1057 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1058   fieldDescriptor fd;
1059 
1060   for (int i = 0; i < objects->length(); i++) {
1061     ObjectValue* sv = (ObjectValue*) objects->at(i);
1062     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
1063     Handle obj = sv->value();
1064 
1065     tty->print("     object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
1066     k->print_value();
1067     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1068     if (obj.is_null()) {
1069       tty->print(" allocation failed");
1070     } else {
1071       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1072     }
1073     tty->cr();
1074 
1075     if (Verbose && !obj.is_null()) {
1076       k->oop_print_on(obj(), tty);
1077     }
1078   }
1079 }
1080 #endif
1081 #endif // COMPILER2 || INCLUDE_JVMCI
1082 
1083 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1084   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
1085 
1086 #ifndef PRODUCT
1087   if (PrintDeoptimizationDetails) {
1088     ttyLocker ttyl;
1089     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
1090     fr.print_on(tty);
1091     tty->print_cr("     Virtual frames (innermost first):");
1092     for (int index = 0; index < chunk->length(); index++) {
1093       compiledVFrame* vf = chunk->at(index);
1094       tty->print("       %2d - ", index);
1095       vf->print_value();
1096       int bci = chunk->at(index)->raw_bci();
1097       const char* code_name;
1098       if (bci == SynchronizationEntryBCI) {
1099         code_name = "sync entry";
1100       } else {
1101         Bytecodes::Code code = vf->method()->code_at(bci);
1102         code_name = Bytecodes::name(code);
1103       }
1104       tty->print(" - %s", code_name);
1105       tty->print_cr(" @ bci %d ", bci);
1106       if (Verbose) {
1107         vf->print();
1108         tty->cr();
1109       }
1110     }
1111   }
1112 #endif
1113 
1114   // Register map for next frame (used for stack crawl).  We capture
1115   // the state of the deopt'ing frame's caller.  Thus if we need to
1116   // stuff a C2I adapter we can properly fill in the callee-save
1117   // register locations.
1118   frame caller = fr.sender(reg_map);
1119   int frame_size = caller.sp() - fr.sp();
1120 
1121   frame sender = caller;
1122 
1123   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1124   // the vframeArray containing the unpacking information is allocated in the C heap.
1125   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1126   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1127 
1128   // Compare the vframeArray to the collected vframes
1129   assert(array->structural_compare(thread, chunk), "just checking");
1130 
1131 #ifndef PRODUCT
1132   if (PrintDeoptimizationDetails) {
1133     ttyLocker ttyl;
1134     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
1135   }
1136 #endif // PRODUCT
1137 
1138   return array;
1139 }
1140 
1141 #if defined(COMPILER2) || INCLUDE_JVMCI
1142 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1143   // Reallocation of some scalar replaced objects failed. Record
1144   // that we need to pop all the interpreter frames for the
1145   // deoptimized compiled frame.
1146   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1147   thread->set_frames_to_pop_failed_realloc(array->frames());
1148   // Unlock all monitors here otherwise the interpreter will see a
1149   // mix of locked and unlocked monitors (because of failed
1150   // reallocations of synchronized objects) and be confused.
1151   for (int i = 0; i < array->frames(); i++) {
1152     MonitorChunk* monitors = array->element(i)->monitors();
1153     if (monitors != NULL) {
1154       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1155         BasicObjectLock* src = monitors->at(j);
1156         if (src->obj() != NULL) {
1157           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1158         }
1159       }
1160       array->element(i)->free_monitors(thread);
1161 #ifdef ASSERT
1162       array->element(i)->set_removed_monitors();
1163 #endif
1164     }
1165   }
1166 }
1167 #endif
1168 
1169 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1170   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1171   for (int i = 0; i < monitors->length(); i++) {
1172     MonitorInfo* mon_info = monitors->at(i);
1173     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1174       objects_to_revoke->append(Handle(mon_info->owner()));
1175     }
1176   }
1177 }
1178 
1179 
1180 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1181   if (!UseBiasedLocking) {
1182     return;
1183   }
1184 
1185   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1186 
1187   // Unfortunately we don't have a RegisterMap available in most of
1188   // the places we want to call this routine so we need to walk the
1189   // stack again to update the register map.
1190   if (map == NULL || !map->update_map()) {
1191     StackFrameStream sfs(thread, true);
1192     bool found = false;
1193     while (!found && !sfs.is_done()) {
1194       frame* cur = sfs.current();
1195       sfs.next();
1196       found = cur->id() == fr.id();
1197     }
1198     assert(found, "frame to be deoptimized not found on target thread's stack");
1199     map = sfs.register_map();
1200   }
1201 
1202   vframe* vf = vframe::new_vframe(&fr, map, thread);
1203   compiledVFrame* cvf = compiledVFrame::cast(vf);
1204   // Revoke monitors' biases in all scopes
1205   while (!cvf->is_top()) {
1206     collect_monitors(cvf, objects_to_revoke);
1207     cvf = compiledVFrame::cast(cvf->sender());
1208   }
1209   collect_monitors(cvf, objects_to_revoke);
1210 
1211   if (SafepointSynchronize::is_at_safepoint()) {
1212     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1213   } else {
1214     BiasedLocking::revoke(objects_to_revoke);
1215   }
1216 }
1217 
1218 
1219 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1220   if (!UseBiasedLocking) {
1221     return;
1222   }
1223 
1224   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1225   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1226   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1227     if (jt->has_last_Java_frame()) {
1228       StackFrameStream sfs(jt, true);
1229       while (!sfs.is_done()) {
1230         frame* cur = sfs.current();
1231         if (cb->contains(cur->pc())) {
1232           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1233           compiledVFrame* cvf = compiledVFrame::cast(vf);
1234           // Revoke monitors' biases in all scopes
1235           while (!cvf->is_top()) {
1236             collect_monitors(cvf, objects_to_revoke);
1237             cvf = compiledVFrame::cast(cvf->sender());
1238           }
1239           collect_monitors(cvf, objects_to_revoke);
1240         }
1241         sfs.next();
1242       }
1243     }
1244   }
1245   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1246 }
1247 
1248 
1249 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1250   assert(fr.can_be_deoptimized(), "checking frame type");
1251 
1252   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1253 
1254   if (LogCompilation && xtty != NULL) {
1255     nmethod* nm = fr.cb()->as_nmethod_or_null();
1256     assert(nm != NULL, "only compiled methods can deopt");
1257 
1258     ttyLocker ttyl;
1259     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "'", thread->osthread()->thread_id());
1260     nm->log_identity(xtty);
1261     xtty->end_head();
1262     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1263       xtty->begin_elem("jvms bci='%d'", sd->bci());
1264       xtty->method(sd->method());
1265       xtty->end_elem();
1266       if (sd->is_top())  break;
1267     }
1268     xtty->tail("deoptimized");
1269   }
1270 
1271   // Patch the compiled method so that when execution returns to it we will
1272   // deopt the execution state and return to the interpreter.
1273   fr.deoptimize(thread);
1274 }
1275 
1276 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1277   deoptimize(thread, fr, map, Reason_constraint);
1278 }
1279 
1280 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1281   // Deoptimize only if the frame comes from compile code.
1282   // Do not deoptimize the frame which is already patched
1283   // during the execution of the loops below.
1284   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1285     return;
1286   }
1287   ResourceMark rm;
1288   DeoptimizationMarker dm;
1289   if (UseBiasedLocking) {
1290     revoke_biases_of_monitors(thread, fr, map);
1291   }
1292   deoptimize_single_frame(thread, fr, reason);
1293 
1294 }
1295 
1296 
1297 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1298   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1299          "can only deoptimize other thread at a safepoint");
1300   // Compute frame and register map based on thread and sp.
1301   RegisterMap reg_map(thread, UseBiasedLocking);
1302   frame fr = thread->last_frame();
1303   while (fr.id() != id) {
1304     fr = fr.sender(&reg_map);
1305   }
1306   deoptimize(thread, fr, &reg_map, reason);
1307 }
1308 
1309 
1310 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1311   if (thread == Thread::current()) {
1312     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1313   } else {
1314     VM_DeoptimizeFrame deopt(thread, id, reason);
1315     VMThread::execute(&deopt);
1316   }
1317 }
1318 
1319 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1320   deoptimize_frame(thread, id, Reason_constraint);
1321 }
1322 
1323 // JVMTI PopFrame support
1324 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1325 {
1326   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1327 }
1328 JRT_END
1329 
1330 MethodData*
1331 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1332                                 bool create_if_missing) {
1333   Thread* THREAD = thread;
1334   MethodData* mdo = m()->method_data();
1335   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1336     // Build an MDO.  Ignore errors like OutOfMemory;
1337     // that simply means we won't have an MDO to update.
1338     Method::build_interpreter_method_data(m, THREAD);
1339     if (HAS_PENDING_EXCEPTION) {
1340       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1341       CLEAR_PENDING_EXCEPTION;
1342     }
1343     mdo = m()->method_data();
1344   }
1345   return mdo;
1346 }
1347 
1348 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
1349 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1350   // in case of an unresolved klass entry, load the class.
1351   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1352     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1353     return;
1354   }
1355 
1356   if (!constant_pool->tag_at(index).is_symbol()) return;
1357 
1358   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1359   Symbol*  symbol  = constant_pool->symbol_at(index);
1360 
1361   // class name?
1362   if (symbol->byte_at(0) != '(') {
1363     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1364     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1365     return;
1366   }
1367 
1368   // then it must be a signature!
1369   ResourceMark rm(THREAD);
1370   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1371     if (ss.is_object()) {
1372       Symbol* class_name = ss.as_symbol(CHECK);
1373       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1374       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1375     }
1376   }
1377 }
1378 
1379 
1380 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1381   EXCEPTION_MARK;
1382   load_class_by_index(constant_pool, index, THREAD);
1383   if (HAS_PENDING_EXCEPTION) {
1384     // Exception happened during classloading. We ignore the exception here, since it
1385     // is going to be rethrown since the current activation is going to be deoptimized and
1386     // the interpreter will re-execute the bytecode.
1387     CLEAR_PENDING_EXCEPTION;
1388     // Class loading called java code which may have caused a stack
1389     // overflow. If the exception was thrown right before the return
1390     // to the runtime the stack is no longer guarded. Reguard the
1391     // stack otherwise if we return to the uncommon trap blob and the
1392     // stack bang causes a stack overflow we crash.
1393     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1394     JavaThread* thread = (JavaThread*)THREAD;
1395     bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
1396     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1397     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1398   }
1399 }
1400 
1401 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1402   HandleMark hm;
1403 
1404   // uncommon_trap() is called at the beginning of the uncommon trap
1405   // handler. Note this fact before we start generating temporary frames
1406   // that can confuse an asynchronous stack walker. This counter is
1407   // decremented at the end of unpack_frames().
1408   thread->inc_in_deopt_handler();
1409 
1410   // We need to update the map if we have biased locking.
1411 #if INCLUDE_JVMCI
1412   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1413   RegisterMap reg_map(thread, true);
1414 #else
1415   RegisterMap reg_map(thread, UseBiasedLocking);
1416 #endif
1417   frame stub_frame = thread->last_frame();
1418   frame fr = stub_frame.sender(&reg_map);
1419   // Make sure the calling nmethod is not getting deoptimized and removed
1420   // before we are done with it.
1421   nmethodLocker nl(fr.pc());
1422 
1423   // Log a message
1424   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1425               trap_request, fr.pc(), fr.pc() - fr.cb()->code_begin());
1426 
1427   {
1428     ResourceMark rm;
1429 
1430     // Revoke biases of any monitors in the frame to ensure we can migrate them
1431     revoke_biases_of_monitors(thread, fr, &reg_map);
1432 
1433     DeoptReason reason = trap_request_reason(trap_request);
1434     DeoptAction action = trap_request_action(trap_request);
1435 #if INCLUDE_JVMCI
1436     int debug_id = trap_request_debug_id(trap_request);
1437 #endif
1438     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1439 
1440     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1441     compiledVFrame* cvf = compiledVFrame::cast(vf);
1442 
1443     nmethod* nm = cvf->code();
1444 
1445     ScopeDesc*      trap_scope  = cvf->scope();
1446     
1447     if (TraceDeoptimization) {
1448       ttyLocker ttyl;
1449       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=%d, method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), fr.pc(), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1450 #if INCLUDE_JVMCI
1451           , debug_id
1452 #endif
1453           );
1454     }
1455 
1456     methodHandle    trap_method = trap_scope->method();
1457     int             trap_bci    = trap_scope->bci();
1458 #if INCLUDE_JVMCI
1459     oop speculation = thread->pending_failed_speculation();
1460     if (nm->is_compiled_by_jvmci()) {
1461       if (speculation != NULL) {
1462         oop speculation_log = nm->speculation_log();
1463         if (speculation_log != NULL) {
1464           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1465             if (SpeculationLog::lastFailed(speculation_log) != NULL) {
1466               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1467             }
1468           }
1469           if (TraceDeoptimization) {
1470             tty->print_cr("Saving speculation to speculation log");
1471           }
1472           SpeculationLog::set_lastFailed(speculation_log, speculation);
1473         } else {
1474           if (TraceDeoptimization) {
1475             tty->print_cr("Speculation present but no speculation log");
1476           }
1477         }
1478         thread->set_pending_failed_speculation(NULL);
1479       } else {
1480         if (TraceDeoptimization) {
1481           tty->print_cr("No speculation");
1482         }
1483       }
1484     } else {
1485       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1486     }
1487 
1488     if (trap_bci == SynchronizationEntryBCI) {
1489       trap_bci = 0;
1490       thread->set_pending_monitorenter(true);
1491     }
1492 
1493     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1494       thread->set_pending_transfer_to_interpreter(true);
1495     }
1496 #endif
1497 
1498     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1499 
1500     if (trap_scope->rethrow_exception()) {
1501       if (PrintDeoptimizationDetails) {
1502         tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_method->method_holder()->name()->as_C_string(), trap_method->name()->as_C_string(), trap_bci);
1503       }
1504       GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
1505       guarantee(expressions != NULL, "must have exception to throw");
1506       ScopeValue* topOfStack = expressions->top();
1507       Handle topOfStackObj = StackValue::create_stack_value(&fr, &reg_map, topOfStack)->get_obj();
1508       THREAD->set_pending_exception(topOfStackObj(), NULL, 0);
1509     }
1510     
1511     // Record this event in the histogram.
1512     gather_statistics(reason, action, trap_bc);
1513 
1514     // Ensure that we can record deopt. history:
1515     // Need MDO to record RTM code generation state.
1516     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1517 
1518     methodHandle profiled_method;
1519 #if INCLUDE_JVMCI
1520     if (nm->is_compiled_by_jvmci()) {
1521       profiled_method = nm->method();
1522     } else {
1523       profiled_method = trap_method;
1524     }
1525 #else
1526     profiled_method = trap_method;
1527 #endif
1528 
1529     MethodData* trap_mdo =
1530       get_method_data(thread, profiled_method, create_if_missing);
1531 
1532     // Log a message
1533     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
1534                               trap_reason_name(reason), trap_action_name(action), fr.pc(),
1535                               trap_method->name_and_sig_as_C_string(), trap_bci);
1536 
1537     // Print a bunch of diagnostics, if requested.
1538     if (TraceDeoptimization || LogCompilation) {
1539       ResourceMark rm;
1540       ttyLocker ttyl;
1541       char buf[100];
1542       if (xtty != NULL) {
1543         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1544                          os::current_thread_id(),
1545                          format_trap_request(buf, sizeof(buf), trap_request));
1546         nm->log_identity(xtty);
1547       }
1548       Symbol* class_name = NULL;
1549       bool unresolved = false;
1550       if (unloaded_class_index >= 0) {
1551         constantPoolHandle constants (THREAD, trap_method->constants());
1552         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1553           class_name = constants->klass_name_at(unloaded_class_index);
1554           unresolved = true;
1555           if (xtty != NULL)
1556             xtty->print(" unresolved='1'");
1557         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1558           class_name = constants->symbol_at(unloaded_class_index);
1559         }
1560         if (xtty != NULL)
1561           xtty->name(class_name);
1562       }
1563       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1564         // Dump the relevant MDO state.
1565         // This is the deopt count for the current reason, any previous
1566         // reasons or recompiles seen at this point.
1567         int dcnt = trap_mdo->trap_count(reason);
1568         if (dcnt != 0)
1569           xtty->print(" count='%d'", dcnt);
1570         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1571         int dos = (pdata == NULL)? 0: pdata->trap_state();
1572         if (dos != 0) {
1573           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1574           if (trap_state_is_recompiled(dos)) {
1575             int recnt2 = trap_mdo->overflow_recompile_count();
1576             if (recnt2 != 0)
1577               xtty->print(" recompiles2='%d'", recnt2);
1578           }
1579         }
1580       }
1581       if (xtty != NULL) {
1582         xtty->stamp();
1583         xtty->end_head();
1584       }
1585       if (TraceDeoptimization) {  // make noise on the tty
1586         tty->print("Uncommon trap occurred in");
1587         nm->method()->print_short_name(tty);
1588         tty->print(" compiler=%s compile_id=%d", nm->compiler() == NULL ? "" : nm->compiler()->name(), nm->compile_id());
1589 #if INCLUDE_JVMCI
1590         oop installedCode = nm->jvmci_installed_code();
1591         if (installedCode != NULL) {
1592           oop installedCodeName = NULL;
1593           if (installedCode->is_a(InstalledCode::klass())) {
1594             installedCodeName = InstalledCode::name(installedCode);
1595           }
1596           if (installedCodeName != NULL) {
1597             tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1598           } else {
1599             tty->print(" (JVMCI: installed code has no name) ");
1600           }
1601         } else if (nm->is_compiled_by_jvmci()) {
1602           tty->print(" (JVMCI: no installed code) ");
1603         }
1604 #endif
1605         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1606                    fr.pc(),
1607                    os::current_thread_id(),
1608                    trap_reason_name(reason),
1609                    trap_action_name(action),
1610                    unloaded_class_index
1611 #if INCLUDE_JVMCI
1612                    , debug_id
1613 #endif
1614                    );
1615         if (class_name != NULL) {
1616           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1617           class_name->print_symbol_on(tty);
1618         }
1619         tty->cr();
1620       }
1621       if (xtty != NULL) {
1622         // Log the precise location of the trap.
1623         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1624           xtty->begin_elem("jvms bci='%d'", sd->bci());
1625           xtty->method(sd->method());
1626           xtty->end_elem();
1627           if (sd->is_top())  break;
1628         }
1629         xtty->tail("uncommon_trap");
1630       }
1631     }
1632     // (End diagnostic printout.)
1633 
1634     // Load class if necessary
1635     if (unloaded_class_index >= 0) {
1636       constantPoolHandle constants(THREAD, trap_method->constants());
1637       load_class_by_index(constants, unloaded_class_index);
1638     }
1639 
1640     // Flush the nmethod if necessary and desirable.
1641     //
1642     // We need to avoid situations where we are re-flushing the nmethod
1643     // because of a hot deoptimization site.  Repeated flushes at the same
1644     // point need to be detected by the compiler and avoided.  If the compiler
1645     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1646     // module must take measures to avoid an infinite cycle of recompilation
1647     // and deoptimization.  There are several such measures:
1648     //
1649     //   1. If a recompilation is ordered a second time at some site X
1650     //   and for the same reason R, the action is adjusted to 'reinterpret',
1651     //   to give the interpreter time to exercise the method more thoroughly.
1652     //   If this happens, the method's overflow_recompile_count is incremented.
1653     //
1654     //   2. If the compiler fails to reduce the deoptimization rate, then
1655     //   the method's overflow_recompile_count will begin to exceed the set
1656     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1657     //   is adjusted to 'make_not_compilable', and the method is abandoned
1658     //   to the interpreter.  This is a performance hit for hot methods,
1659     //   but is better than a disastrous infinite cycle of recompilations.
1660     //   (Actually, only the method containing the site X is abandoned.)
1661     //
1662     //   3. In parallel with the previous measures, if the total number of
1663     //   recompilations of a method exceeds the much larger set limit
1664     //   PerMethodRecompilationCutoff, the method is abandoned.
1665     //   This should only happen if the method is very large and has
1666     //   many "lukewarm" deoptimizations.  The code which enforces this
1667     //   limit is elsewhere (class nmethod, class Method).
1668     //
1669     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1670     // to recompile at each bytecode independently of the per-BCI cutoff.
1671     //
1672     // The decision to update code is up to the compiler, and is encoded
1673     // in the Action_xxx code.  If the compiler requests Action_none
1674     // no trap state is changed, no compiled code is changed, and the
1675     // computation suffers along in the interpreter.
1676     //
1677     // The other action codes specify various tactics for decompilation
1678     // and recompilation.  Action_maybe_recompile is the loosest, and
1679     // allows the compiled code to stay around until enough traps are seen,
1680     // and until the compiler gets around to recompiling the trapping method.
1681     //
1682     // The other actions cause immediate removal of the present code.
1683 
1684     // Traps caused by injected profile shouldn't pollute trap counts.
1685     bool injected_profile_trap = trap_method->has_injected_profile() &&
1686                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1687 
1688     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1689     bool make_not_entrant = false;
1690     bool make_not_compilable = false;
1691     bool reprofile = false;
1692     switch (action) {
1693     case Action_none:
1694       // Keep the old code.
1695       update_trap_state = false;
1696       break;
1697     case Action_maybe_recompile:
1698       // Do not need to invalidate the present code, but we can
1699       // initiate another
1700       // Start compiler without (necessarily) invalidating the nmethod.
1701       // The system will tolerate the old code, but new code should be
1702       // generated when possible.
1703       break;
1704     case Action_reinterpret:
1705       // Go back into the interpreter for a while, and then consider
1706       // recompiling form scratch.
1707       make_not_entrant = true;
1708       // Reset invocation counter for outer most method.
1709       // This will allow the interpreter to exercise the bytecodes
1710       // for a while before recompiling.
1711       // By contrast, Action_make_not_entrant is immediate.
1712       //
1713       // Note that the compiler will track null_check, null_assert,
1714       // range_check, and class_check events and log them as if they
1715       // had been traps taken from compiled code.  This will update
1716       // the MDO trap history so that the next compilation will
1717       // properly detect hot trap sites.
1718       reprofile = true;
1719       break;
1720     case Action_make_not_entrant:
1721       // Request immediate recompilation, and get rid of the old code.
1722       // Make them not entrant, so next time they are called they get
1723       // recompiled.  Unloaded classes are loaded now so recompile before next
1724       // time they are called.  Same for uninitialized.  The interpreter will
1725       // link the missing class, if any.
1726       make_not_entrant = true;
1727       break;
1728     case Action_make_not_compilable:
1729       // Give up on compiling this method at all.
1730       make_not_entrant = true;
1731       make_not_compilable = true;
1732       break;
1733     default:
1734       ShouldNotReachHere();
1735     }
1736 
1737     // Setting +ProfileTraps fixes the following, on all platforms:
1738     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1739     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1740     // recompile relies on a MethodData* to record heroic opt failures.
1741 
1742     // Whether the interpreter is producing MDO data or not, we also need
1743     // to use the MDO to detect hot deoptimization points and control
1744     // aggressive optimization.
1745     bool inc_recompile_count = false;
1746     ProfileData* pdata = NULL;
1747     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
1748       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1749       uint this_trap_count = 0;
1750       bool maybe_prior_trap = false;
1751       bool maybe_prior_recompile = false;
1752       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1753 #if INCLUDE_JVMCI
1754                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1755 #endif
1756                                    nm->method(),
1757                                    //outputs:
1758                                    this_trap_count,
1759                                    maybe_prior_trap,
1760                                    maybe_prior_recompile);
1761       // Because the interpreter also counts null, div0, range, and class
1762       // checks, these traps from compiled code are double-counted.
1763       // This is harmless; it just means that the PerXTrapLimit values
1764       // are in effect a little smaller than they look.
1765 
1766       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1767       if (per_bc_reason != Reason_none) {
1768         // Now take action based on the partially known per-BCI history.
1769         if (maybe_prior_trap
1770             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1771           // If there are too many traps at this BCI, force a recompile.
1772           // This will allow the compiler to see the limit overflow, and
1773           // take corrective action, if possible.  The compiler generally
1774           // does not use the exact PerBytecodeTrapLimit value, but instead
1775           // changes its tactics if it sees any traps at all.  This provides
1776           // a little hysteresis, delaying a recompile until a trap happens
1777           // several times.
1778           //
1779           // Actually, since there is only one bit of counter per BCI,
1780           // the possible per-BCI counts are {0,1,(per-method count)}.
1781           // This produces accurate results if in fact there is only
1782           // one hot trap site, but begins to get fuzzy if there are
1783           // many sites.  For example, if there are ten sites each
1784           // trapping two or more times, they each get the blame for
1785           // all of their traps.
1786           make_not_entrant = true;
1787         }
1788 
1789         // Detect repeated recompilation at the same BCI, and enforce a limit.
1790         if (make_not_entrant && maybe_prior_recompile) {
1791           // More than one recompile at this point.
1792           inc_recompile_count = maybe_prior_trap;
1793         }
1794       } else {
1795         // For reasons which are not recorded per-bytecode, we simply
1796         // force recompiles unconditionally.
1797         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1798         make_not_entrant = true;
1799       }
1800 
1801       // Go back to the compiler if there are too many traps in this method.
1802       if (this_trap_count >= per_method_trap_limit(reason)) {
1803         // If there are too many traps in this method, force a recompile.
1804         // This will allow the compiler to see the limit overflow, and
1805         // take corrective action, if possible.
1806         // (This condition is an unlikely backstop only, because the
1807         // PerBytecodeTrapLimit is more likely to take effect first,
1808         // if it is applicable.)
1809         make_not_entrant = true;
1810       }
1811 
1812       // Here's more hysteresis:  If there has been a recompile at
1813       // this trap point already, run the method in the interpreter
1814       // for a while to exercise it more thoroughly.
1815       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1816         reprofile = true;
1817       }
1818     }
1819 
1820     // Take requested actions on the method:
1821 
1822     // Recompile
1823     if (make_not_entrant) {
1824       if (!nm->make_not_entrant()) {
1825         return; // the call did not change nmethod's state
1826       }
1827 
1828       if (pdata != NULL) {
1829         // Record the recompilation event, if any.
1830         int tstate0 = pdata->trap_state();
1831         int tstate1 = trap_state_set_recompiled(tstate0, true);
1832         if (tstate1 != tstate0)
1833           pdata->set_trap_state(tstate1);
1834       }
1835 
1836 #if INCLUDE_RTM_OPT
1837       // Restart collecting RTM locking abort statistic if the method
1838       // is recompiled for a reason other than RTM state change.
1839       // Assume that in new recompiled code the statistic could be different,
1840       // for example, due to different inlining.
1841       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1842           UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
1843         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1844       }
1845 #endif
1846       // For code aging we count traps separately here, using make_not_entrant()
1847       // as a guard against simultaneous deopts in multiple threads.
1848       if (reason == Reason_tenured && trap_mdo != NULL) {
1849         trap_mdo->inc_tenure_traps();
1850       }
1851     }
1852 
1853     if (inc_recompile_count) {
1854       trap_mdo->inc_overflow_recompile_count();
1855       if ((uint)trap_mdo->overflow_recompile_count() >
1856           (uint)PerBytecodeRecompilationCutoff) {
1857         // Give up on the method containing the bad BCI.
1858         if (trap_method() == nm->method()) {
1859           make_not_compilable = true;
1860         } else {
1861           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1862           // But give grace to the enclosing nm->method().
1863         }
1864       }
1865     }
1866 
1867     // Reprofile
1868     if (reprofile) {
1869       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1870     }
1871 
1872     // Give up compiling
1873     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1874       assert(make_not_entrant, "consistent");
1875       nm->method()->set_not_compilable(CompLevel_full_optimization);
1876     }
1877 
1878   } // Free marked resources
1879 
1880 }
1881 JRT_END
1882 
1883 ProfileData*
1884 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1885                                          int trap_bci,
1886                                          Deoptimization::DeoptReason reason,
1887                                          bool update_total_trap_count,
1888 #if INCLUDE_JVMCI
1889                                          bool is_osr,
1890 #endif
1891                                          Method* compiled_method,
1892                                          //outputs:
1893                                          uint& ret_this_trap_count,
1894                                          bool& ret_maybe_prior_trap,
1895                                          bool& ret_maybe_prior_recompile) {
1896   bool maybe_prior_trap = false;
1897   bool maybe_prior_recompile = false;
1898   uint this_trap_count = 0;
1899   if (update_total_trap_count) {
1900     uint idx = reason;
1901 #if INCLUDE_JVMCI
1902     if (is_osr) {
1903       idx += Reason_LIMIT;
1904     }
1905 #endif
1906     uint prior_trap_count = trap_mdo->trap_count(idx);
1907     this_trap_count  = trap_mdo->inc_trap_count(idx);
1908 
1909     // If the runtime cannot find a place to store trap history,
1910     // it is estimated based on the general condition of the method.
1911     // If the method has ever been recompiled, or has ever incurred
1912     // a trap with the present reason , then this BCI is assumed
1913     // (pessimistically) to be the culprit.
1914     maybe_prior_trap      = (prior_trap_count != 0);
1915     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1916   }
1917   ProfileData* pdata = NULL;
1918 
1919 
1920   // For reasons which are recorded per bytecode, we check per-BCI data.
1921   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1922   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
1923   if (per_bc_reason != Reason_none) {
1924     // Find the profile data for this BCI.  If there isn't one,
1925     // try to allocate one from the MDO's set of spares.
1926     // This will let us detect a repeated trap at this point.
1927     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1928 
1929     if (pdata != NULL) {
1930       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
1931         if (LogCompilation && xtty != NULL) {
1932           ttyLocker ttyl;
1933           // no more room for speculative traps in this MDO
1934           xtty->elem("speculative_traps_oom");
1935         }
1936       }
1937       // Query the trap state of this profile datum.
1938       int tstate0 = pdata->trap_state();
1939       if (!trap_state_has_reason(tstate0, per_bc_reason))
1940         maybe_prior_trap = false;
1941       if (!trap_state_is_recompiled(tstate0))
1942         maybe_prior_recompile = false;
1943 
1944       // Update the trap state of this profile datum.
1945       int tstate1 = tstate0;
1946       // Record the reason.
1947       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1948       // Store the updated state on the MDO, for next time.
1949       if (tstate1 != tstate0)
1950         pdata->set_trap_state(tstate1);
1951     } else {
1952       if (LogCompilation && xtty != NULL) {
1953         ttyLocker ttyl;
1954         // Missing MDP?  Leave a small complaint in the log.
1955         xtty->elem("missing_mdp bci='%d'", trap_bci);
1956       }
1957     }
1958   }
1959 
1960   // Return results:
1961   ret_this_trap_count = this_trap_count;
1962   ret_maybe_prior_trap = maybe_prior_trap;
1963   ret_maybe_prior_recompile = maybe_prior_recompile;
1964   return pdata;
1965 }
1966 
1967 void
1968 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1969   ResourceMark rm;
1970   // Ignored outputs:
1971   uint ignore_this_trap_count;
1972   bool ignore_maybe_prior_trap;
1973   bool ignore_maybe_prior_recompile;
1974   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
1975   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
1976   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
1977   query_update_method_data(trap_mdo, trap_bci,
1978                            (DeoptReason)reason,
1979                            update_total_counts,
1980 #if INCLUDE_JVMCI
1981                            false,
1982 #endif
1983                            NULL,
1984                            ignore_this_trap_count,
1985                            ignore_maybe_prior_trap,
1986                            ignore_maybe_prior_recompile);
1987 }
1988 
1989 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1990   if (TraceDeoptimization) {
1991     tty->print("Uncommon trap "); 
1992   }
1993   // Still in Java no safepoints
1994   {
1995     // This enters VM and may safepoint
1996     uncommon_trap_inner(thread, trap_request);
1997   }
1998   return fetch_unroll_info_helper(thread);
1999 }
2000 
2001 // Local derived constants.
2002 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2003 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2004 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2005 
2006 //---------------------------trap_state_reason---------------------------------
2007 Deoptimization::DeoptReason
2008 Deoptimization::trap_state_reason(int trap_state) {
2009   // This assert provides the link between the width of DataLayout::trap_bits
2010   // and the encoding of "recorded" reasons.  It ensures there are enough
2011   // bits to store all needed reasons in the per-BCI MDO profile.
2012   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2013   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2014   trap_state -= recompile_bit;
2015   if (trap_state == DS_REASON_MASK) {
2016     return Reason_many;
2017   } else {
2018     assert((int)Reason_none == 0, "state=0 => Reason_none");
2019     return (DeoptReason)trap_state;
2020   }
2021 }
2022 //-------------------------trap_state_has_reason-------------------------------
2023 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2024   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2025   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2026   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2027   trap_state -= recompile_bit;
2028   if (trap_state == DS_REASON_MASK) {
2029     return -1;  // true, unspecifically (bottom of state lattice)
2030   } else if (trap_state == reason) {
2031     return 1;   // true, definitely
2032   } else if (trap_state == 0) {
2033     return 0;   // false, definitely (top of state lattice)
2034   } else {
2035     return 0;   // false, definitely
2036   }
2037 }
2038 //-------------------------trap_state_add_reason-------------------------------
2039 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2040   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2041   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2042   trap_state -= recompile_bit;
2043   if (trap_state == DS_REASON_MASK) {
2044     return trap_state + recompile_bit;     // already at state lattice bottom
2045   } else if (trap_state == reason) {
2046     return trap_state + recompile_bit;     // the condition is already true
2047   } else if (trap_state == 0) {
2048     return reason + recompile_bit;          // no condition has yet been true
2049   } else {
2050     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2051   }
2052 }
2053 //-----------------------trap_state_is_recompiled------------------------------
2054 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2055   return (trap_state & DS_RECOMPILE_BIT) != 0;
2056 }
2057 //-----------------------trap_state_set_recompiled-----------------------------
2058 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2059   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2060   else    return trap_state & ~DS_RECOMPILE_BIT;
2061 }
2062 //---------------------------format_trap_state---------------------------------
2063 // This is used for debugging and diagnostics, including LogFile output.
2064 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2065                                               int trap_state) {
2066   DeoptReason reason      = trap_state_reason(trap_state);
2067   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2068   // Re-encode the state from its decoded components.
2069   int decoded_state = 0;
2070   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2071     decoded_state = trap_state_add_reason(decoded_state, reason);
2072   if (recomp_flag)
2073     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2074   // If the state re-encodes properly, format it symbolically.
2075   // Because this routine is used for debugging and diagnostics,
2076   // be robust even if the state is a strange value.
2077   size_t len;
2078   if (decoded_state != trap_state) {
2079     // Random buggy state that doesn't decode??
2080     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2081   } else {
2082     len = jio_snprintf(buf, buflen, "%s%s",
2083                        trap_reason_name(reason),
2084                        recomp_flag ? " recompiled" : "");
2085   }
2086   if (len >= buflen)
2087     buf[buflen-1] = '\0';
2088   return buf;
2089 }
2090 
2091 
2092 //--------------------------------statics--------------------------------------
2093 const char* Deoptimization::_trap_reason_name[] = {
2094   // Note:  Keep this in sync. with enum DeoptReason.
2095   "none",
2096   "null_check",
2097   "null_assert" JVMCI_ONLY("_or_unreached0"),
2098   "range_check",
2099   "class_check",
2100   "array_check",
2101   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2102   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2103   "unloaded",
2104   "uninitialized",
2105   "unreached",
2106   "unhandled",
2107   "constraint",
2108   "div0_check",
2109   "age",
2110   "predicate",
2111   "loop_limit_check",
2112   "speculate_class_check",
2113   "speculate_null_check",
2114   "rtm_state_change",
2115   "unstable_if",
2116   "unstable_fused_if",
2117 #if INCLUDE_JVMCI
2118   "aliasing",
2119   "transfer_to_interpreter",
2120   "not_compiled_exception_handler",
2121   "unresolved",
2122   "jsr_mismatch",
2123 #endif
2124   "tenured"
2125 };
2126 const char* Deoptimization::_trap_action_name[] = {
2127   // Note:  Keep this in sync. with enum DeoptAction.
2128   "none",
2129   "maybe_recompile",
2130   "reinterpret",
2131   "make_not_entrant",
2132   "make_not_compilable"
2133 };
2134 
2135 const char* Deoptimization::trap_reason_name(int reason) {
2136   // Check that every reason has a name
2137   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2138 
2139   if (reason == Reason_many)  return "many";
2140   if ((uint)reason < Reason_LIMIT)
2141     return _trap_reason_name[reason];
2142   static char buf[20];
2143   sprintf(buf, "reason%d", reason);
2144   return buf;
2145 }
2146 const char* Deoptimization::trap_action_name(int action) {
2147   // Check that every action has a name
2148   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2149 
2150   if ((uint)action < Action_LIMIT)
2151     return _trap_action_name[action];
2152   static char buf[20];
2153   sprintf(buf, "action%d", action);
2154   return buf;
2155 }
2156 
2157 // This is used for debugging and diagnostics, including LogFile output.
2158 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2159                                                 int trap_request) {
2160   jint unloaded_class_index = trap_request_index(trap_request);
2161   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2162   const char* action = trap_action_name(trap_request_action(trap_request));
2163 #if INCLUDE_JVMCI
2164   int debug_id = trap_request_debug_id(trap_request);
2165 #endif
2166   size_t len;
2167   if (unloaded_class_index < 0) {
2168     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2169                        reason, action
2170 #if INCLUDE_JVMCI
2171                        ,debug_id
2172 #endif
2173                        );
2174   } else {
2175     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2176                        reason, action, unloaded_class_index
2177 #if INCLUDE_JVMCI
2178                        ,debug_id
2179 #endif
2180                        );
2181   }
2182   if (len >= buflen)
2183     buf[buflen-1] = '\0';
2184   return buf;
2185 }
2186 
2187 juint Deoptimization::_deoptimization_hist
2188         [Deoptimization::Reason_LIMIT]
2189     [1 + Deoptimization::Action_LIMIT]
2190         [Deoptimization::BC_CASE_LIMIT]
2191   = {0};
2192 
2193 enum {
2194   LSB_BITS = 8,
2195   LSB_MASK = right_n_bits(LSB_BITS)
2196 };
2197 
2198 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2199                                        Bytecodes::Code bc) {
2200   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2201   assert(action >= 0 && action < Action_LIMIT, "oob");
2202   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2203   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2204   juint* cases = _deoptimization_hist[reason][1+action];
2205   juint* bc_counter_addr = NULL;
2206   juint  bc_counter      = 0;
2207   // Look for an unused counter, or an exact match to this BC.
2208   if (bc != Bytecodes::_illegal) {
2209     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2210       juint* counter_addr = &cases[bc_case];
2211       juint  counter = *counter_addr;
2212       if ((counter == 0 && bc_counter_addr == NULL)
2213           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2214         // this counter is either free or is already devoted to this BC
2215         bc_counter_addr = counter_addr;
2216         bc_counter = counter | bc;
2217       }
2218     }
2219   }
2220   if (bc_counter_addr == NULL) {
2221     // Overflow, or no given bytecode.
2222     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2223     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2224   }
2225   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2226 }
2227 
2228 jint Deoptimization::total_deoptimization_count() {
2229   return _deoptimization_hist[Reason_none][0][0];
2230 }
2231 
2232 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2233   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2234   return _deoptimization_hist[reason][0][0];
2235 }
2236 
2237 void Deoptimization::print_statistics() {
2238   juint total = total_deoptimization_count();
2239   juint account = total;
2240   if (total != 0) {
2241     ttyLocker ttyl;
2242     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2243     tty->print_cr("Deoptimization traps recorded:");
2244     #define PRINT_STAT_LINE(name, r) \
2245       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2246     PRINT_STAT_LINE("total", total);
2247     // For each non-zero entry in the histogram, print the reason,
2248     // the action, and (if specifically known) the type of bytecode.
2249     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2250       for (int action = 0; action < Action_LIMIT; action++) {
2251         juint* cases = _deoptimization_hist[reason][1+action];
2252         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2253           juint counter = cases[bc_case];
2254           if (counter != 0) {
2255             char name[1*K];
2256             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2257             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2258               bc = Bytecodes::_illegal;
2259             sprintf(name, "%s/%s/%s",
2260                     trap_reason_name(reason),
2261                     trap_action_name(action),
2262                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2263             juint r = counter >> LSB_BITS;
2264             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2265             account -= r;
2266           }
2267         }
2268       }
2269     }
2270     if (account != 0) {
2271       PRINT_STAT_LINE("unaccounted", account);
2272     }
2273     #undef PRINT_STAT_LINE
2274     if (xtty != NULL)  xtty->tail("statistics");
2275   }
2276 }
2277 #else // COMPILER2 || SHARK || INCLUDE_JVMCI
2278 
2279 
2280 // Stubs for C1 only system.
2281 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2282   return false;
2283 }
2284 
2285 const char* Deoptimization::trap_reason_name(int reason) {
2286   return "unknown";
2287 }
2288 
2289 void Deoptimization::print_statistics() {
2290   // no output
2291 }
2292 
2293 void
2294 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2295   // no udpate
2296 }
2297 
2298 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2299   return 0;
2300 }
2301 
2302 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2303                                        Bytecodes::Code bc) {
2304   // no update
2305 }
2306 
2307 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2308                                               int trap_state) {
2309   jio_snprintf(buf, buflen, "#%d", trap_state);
2310   return buf;
2311 }
2312 
2313 #endif // COMPILER2 || SHARK || INCLUDE_JVMCI
--- EOF ---