1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "prims/forte.hpp"
  43 #include "prims/jvmtiExport.hpp"
  44 #include "prims/jvmtiRedefineClassesTrace.hpp"
  45 #include "prims/methodHandles.hpp"
  46 #include "prims/nativeLookup.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/compilationPolicy.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/init.hpp"
  53 #include "runtime/interfaceSupport.hpp"
  54 #include "runtime/javaCalls.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/vframe.hpp"
  58 #include "runtime/vframeArray.hpp"
  59 #include "utilities/copy.hpp"
  60 #include "utilities/dtrace.hpp"
  61 #include "utilities/events.hpp"
  62 #include "utilities/hashtable.inline.hpp"
  63 #include "utilities/macros.hpp"
  64 #include "utilities/xmlstream.hpp"
  65 #ifdef COMPILER1
  66 #include "c1/c1_Runtime1.hpp"
  67 #endif
  68 
  69 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  70 
  71 // Shared stub locations
  72 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  73 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  74 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  75 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  76 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  77 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  78 
  79 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  80 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  81 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  82 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  83 
  84 #ifdef COMPILER2
  85 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  86 #endif // COMPILER2
  87 
  88 
  89 //----------------------------generate_stubs-----------------------------------
  90 void SharedRuntime::generate_stubs() {
  91   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  92   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  93   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  94   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
  95   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
  96   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
  97 
  98 #if defined(COMPILER2) || INCLUDE_JVMCI
  99   // Vectors are generated only by C2 and JVMCI.
 100   bool support_wide = is_wide_vector(MaxVectorSize);
 101   if (support_wide) {
 102     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 103   }
 104 #endif // COMPILER2 || INCLUDE_JVMCI
 105   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 106   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 107 
 108   generate_deopt_blob();
 109 
 110 #ifdef COMPILER2
 111   generate_uncommon_trap_blob();
 112 #endif // COMPILER2
 113 }
 114 
 115 #include <math.h>
 116 
 117 // Implementation of SharedRuntime
 118 
 119 #ifndef PRODUCT
 120 // For statistics
 121 int SharedRuntime::_ic_miss_ctr = 0;
 122 int SharedRuntime::_wrong_method_ctr = 0;
 123 int SharedRuntime::_resolve_static_ctr = 0;
 124 int SharedRuntime::_resolve_virtual_ctr = 0;
 125 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 126 int SharedRuntime::_implicit_null_throws = 0;
 127 int SharedRuntime::_implicit_div0_throws = 0;
 128 int SharedRuntime::_throw_null_ctr = 0;
 129 
 130 int SharedRuntime::_nof_normal_calls = 0;
 131 int SharedRuntime::_nof_optimized_calls = 0;
 132 int SharedRuntime::_nof_inlined_calls = 0;
 133 int SharedRuntime::_nof_megamorphic_calls = 0;
 134 int SharedRuntime::_nof_static_calls = 0;
 135 int SharedRuntime::_nof_inlined_static_calls = 0;
 136 int SharedRuntime::_nof_interface_calls = 0;
 137 int SharedRuntime::_nof_optimized_interface_calls = 0;
 138 int SharedRuntime::_nof_inlined_interface_calls = 0;
 139 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 140 int SharedRuntime::_nof_removable_exceptions = 0;
 141 
 142 int SharedRuntime::_new_instance_ctr=0;
 143 int SharedRuntime::_new_array_ctr=0;
 144 int SharedRuntime::_multi1_ctr=0;
 145 int SharedRuntime::_multi2_ctr=0;
 146 int SharedRuntime::_multi3_ctr=0;
 147 int SharedRuntime::_multi4_ctr=0;
 148 int SharedRuntime::_multi5_ctr=0;
 149 int SharedRuntime::_mon_enter_stub_ctr=0;
 150 int SharedRuntime::_mon_exit_stub_ctr=0;
 151 int SharedRuntime::_mon_enter_ctr=0;
 152 int SharedRuntime::_mon_exit_ctr=0;
 153 int SharedRuntime::_partial_subtype_ctr=0;
 154 int SharedRuntime::_jbyte_array_copy_ctr=0;
 155 int SharedRuntime::_jshort_array_copy_ctr=0;
 156 int SharedRuntime::_jint_array_copy_ctr=0;
 157 int SharedRuntime::_jlong_array_copy_ctr=0;
 158 int SharedRuntime::_oop_array_copy_ctr=0;
 159 int SharedRuntime::_checkcast_array_copy_ctr=0;
 160 int SharedRuntime::_unsafe_array_copy_ctr=0;
 161 int SharedRuntime::_generic_array_copy_ctr=0;
 162 int SharedRuntime::_slow_array_copy_ctr=0;
 163 int SharedRuntime::_find_handler_ctr=0;
 164 int SharedRuntime::_rethrow_ctr=0;
 165 
 166 int     SharedRuntime::_ICmiss_index                    = 0;
 167 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 168 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 169 
 170 
 171 void SharedRuntime::trace_ic_miss(address at) {
 172   for (int i = 0; i < _ICmiss_index; i++) {
 173     if (_ICmiss_at[i] == at) {
 174       _ICmiss_count[i]++;
 175       return;
 176     }
 177   }
 178   int index = _ICmiss_index++;
 179   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 180   _ICmiss_at[index] = at;
 181   _ICmiss_count[index] = 1;
 182 }
 183 
 184 void SharedRuntime::print_ic_miss_histogram() {
 185   if (ICMissHistogram) {
 186     tty->print_cr("IC Miss Histogram:");
 187     int tot_misses = 0;
 188     for (int i = 0; i < _ICmiss_index; i++) {
 189       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 190       tot_misses += _ICmiss_count[i];
 191     }
 192     tty->print_cr("Total IC misses: %7d", tot_misses);
 193   }
 194 }
 195 #endif // PRODUCT
 196 
 197 #if INCLUDE_ALL_GCS
 198 
 199 // G1 write-barrier pre: executed before a pointer store.
 200 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 201   if (orig == NULL) {
 202     assert(false, "should be optimized out");
 203     return;
 204   }
 205   assert(orig->is_oop(true /* ignore mark word */), "Error");
 206   // store the original value that was in the field reference
 207   thread->satb_mark_queue().enqueue(orig);
 208 JRT_END
 209 
 210 // G1 write-barrier post: executed after a pointer store.
 211 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 212   thread->dirty_card_queue().enqueue(card_addr);
 213 JRT_END
 214 
 215 #endif // INCLUDE_ALL_GCS
 216 
 217 
 218 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 219   return x * y;
 220 JRT_END
 221 
 222 
 223 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 224   if (x == min_jlong && y == CONST64(-1)) {
 225     return x;
 226   } else {
 227     return x / y;
 228   }
 229 JRT_END
 230 
 231 
 232 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 233   if (x == min_jlong && y == CONST64(-1)) {
 234     return 0;
 235   } else {
 236     return x % y;
 237   }
 238 JRT_END
 239 
 240 
 241 const juint  float_sign_mask  = 0x7FFFFFFF;
 242 const juint  float_infinity   = 0x7F800000;
 243 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 244 const julong double_infinity  = CONST64(0x7FF0000000000000);
 245 
 246 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 247 #ifdef _WIN64
 248   // 64-bit Windows on amd64 returns the wrong values for
 249   // infinity operands.
 250   union { jfloat f; juint i; } xbits, ybits;
 251   xbits.f = x;
 252   ybits.f = y;
 253   // x Mod Infinity == x unless x is infinity
 254   if (((xbits.i & float_sign_mask) != float_infinity) &&
 255        ((ybits.i & float_sign_mask) == float_infinity) ) {
 256     return x;
 257   }
 258 #endif
 259   return ((jfloat)fmod((double)x,(double)y));
 260 JRT_END
 261 
 262 
 263 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 264 #ifdef _WIN64
 265   union { jdouble d; julong l; } xbits, ybits;
 266   xbits.d = x;
 267   ybits.d = y;
 268   // x Mod Infinity == x unless x is infinity
 269   if (((xbits.l & double_sign_mask) != double_infinity) &&
 270        ((ybits.l & double_sign_mask) == double_infinity) ) {
 271     return x;
 272   }
 273 #endif
 274   return ((jdouble)fmod((double)x,(double)y));
 275 JRT_END
 276 
 277 #ifdef __SOFTFP__
 278 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 279   return x + y;
 280 JRT_END
 281 
 282 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 283   return x - y;
 284 JRT_END
 285 
 286 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 287   return x * y;
 288 JRT_END
 289 
 290 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 291   return x / y;
 292 JRT_END
 293 
 294 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 295   return x + y;
 296 JRT_END
 297 
 298 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 299   return x - y;
 300 JRT_END
 301 
 302 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 303   return x * y;
 304 JRT_END
 305 
 306 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 307   return x / y;
 308 JRT_END
 309 
 310 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 311   return (jfloat)x;
 312 JRT_END
 313 
 314 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 315   return (jdouble)x;
 316 JRT_END
 317 
 318 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 319   return (jdouble)x;
 320 JRT_END
 321 
 322 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 323   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 324 JRT_END
 325 
 326 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 327   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 328 JRT_END
 329 
 330 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 331   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 332 JRT_END
 333 
 334 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 335   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 336 JRT_END
 337 
 338 // Functions to return the opposite of the aeabi functions for nan.
 339 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 340   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 341 JRT_END
 342 
 343 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 344   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 345 JRT_END
 346 
 347 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 348   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 349 JRT_END
 350 
 351 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 352   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 353 JRT_END
 354 
 355 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 356   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 357 JRT_END
 358 
 359 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 360   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 361 JRT_END
 362 
 363 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 364   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 365 JRT_END
 366 
 367 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 368   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 369 JRT_END
 370 
 371 // Intrinsics make gcc generate code for these.
 372 float  SharedRuntime::fneg(float f)   {
 373   return -f;
 374 }
 375 
 376 double SharedRuntime::dneg(double f)  {
 377   return -f;
 378 }
 379 
 380 #endif // __SOFTFP__
 381 
 382 #if defined(__SOFTFP__) || defined(E500V2)
 383 // Intrinsics make gcc generate code for these.
 384 double SharedRuntime::dabs(double f)  {
 385   return (f <= (double)0.0) ? (double)0.0 - f : f;
 386 }
 387 
 388 #endif
 389 
 390 #if defined(__SOFTFP__) || defined(PPC32)
 391 double SharedRuntime::dsqrt(double f) {
 392   return sqrt(f);
 393 }
 394 #endif
 395 
 396 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 397   if (g_isnan(x))
 398     return 0;
 399   if (x >= (jfloat) max_jint)
 400     return max_jint;
 401   if (x <= (jfloat) min_jint)
 402     return min_jint;
 403   return (jint) x;
 404 JRT_END
 405 
 406 
 407 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 408   if (g_isnan(x))
 409     return 0;
 410   if (x >= (jfloat) max_jlong)
 411     return max_jlong;
 412   if (x <= (jfloat) min_jlong)
 413     return min_jlong;
 414   return (jlong) x;
 415 JRT_END
 416 
 417 
 418 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 419   if (g_isnan(x))
 420     return 0;
 421   if (x >= (jdouble) max_jint)
 422     return max_jint;
 423   if (x <= (jdouble) min_jint)
 424     return min_jint;
 425   return (jint) x;
 426 JRT_END
 427 
 428 
 429 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 430   if (g_isnan(x))
 431     return 0;
 432   if (x >= (jdouble) max_jlong)
 433     return max_jlong;
 434   if (x <= (jdouble) min_jlong)
 435     return min_jlong;
 436   return (jlong) x;
 437 JRT_END
 438 
 439 
 440 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 441   return (jfloat)x;
 442 JRT_END
 443 
 444 
 445 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 446   return (jfloat)x;
 447 JRT_END
 448 
 449 
 450 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 451   return (jdouble)x;
 452 JRT_END
 453 
 454 // Exception handling across interpreter/compiler boundaries
 455 //
 456 // exception_handler_for_return_address(...) returns the continuation address.
 457 // The continuation address is the entry point of the exception handler of the
 458 // previous frame depending on the return address.
 459 
 460 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 461   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 462   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 463 
 464   // Reset method handle flag.
 465   thread->set_is_method_handle_return(false);
 466 
 467 #if INCLUDE_JVMCI
 468   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 469   // and other exception handler continuations do not read it
 470   thread->set_exception_pc(NULL);
 471 #endif
 472 
 473   // The fastest case first
 474   CodeBlob* blob = CodeCache::find_blob(return_address);
 475   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 476   if (nm != NULL) {
 477     // Set flag if return address is a method handle call site.
 478     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 479     // native nmethods don't have exception handlers
 480     assert(!nm->is_native_method(), "no exception handler");
 481     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 482     if (nm->is_deopt_pc(return_address)) {
 483       // If we come here because of a stack overflow, the stack may be
 484       // unguarded. Reguard the stack otherwise if we return to the
 485       // deopt blob and the stack bang causes a stack overflow we
 486       // crash.
 487       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 488       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 489       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 490       return SharedRuntime::deopt_blob()->unpack_with_exception();
 491     } else {
 492       return nm->exception_begin();
 493     }
 494   }
 495 
 496   // Entry code
 497   if (StubRoutines::returns_to_call_stub(return_address)) {
 498     return StubRoutines::catch_exception_entry();
 499   }
 500   // Interpreted code
 501   if (Interpreter::contains(return_address)) {
 502     return Interpreter::rethrow_exception_entry();
 503   }
 504 
 505   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 506   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 507 
 508 #ifndef PRODUCT
 509   { ResourceMark rm;
 510     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 511     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 512     tty->print_cr("b) other problem");
 513   }
 514 #endif // PRODUCT
 515 
 516   ShouldNotReachHere();
 517   return NULL;
 518 }
 519 
 520 
 521 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 522   return raw_exception_handler_for_return_address(thread, return_address);
 523 JRT_END
 524 
 525 
 526 address SharedRuntime::get_poll_stub(address pc) {
 527   address stub;
 528   // Look up the code blob
 529   CodeBlob *cb = CodeCache::find_blob(pc);
 530 
 531   // Should be an nmethod
 532   assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 533 
 534   // Look up the relocation information
 535   assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 536     "safepoint polling: type must be poll");
 537 
 538 #ifdef ASSERT
 539   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 540     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 541     Disassembler::decode(cb);
 542     fatal("Only polling locations are used for safepoint");
 543   }
 544 #endif
 545 
 546   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 547   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 548   if (at_poll_return) {
 549     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 550            "polling page return stub not created yet");
 551     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 552   } else if (has_wide_vectors) {
 553     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 554            "polling page vectors safepoint stub not created yet");
 555     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 556   } else {
 557     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 558            "polling page safepoint stub not created yet");
 559     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 560   }
 561 #ifndef PRODUCT
 562   if (TraceSafepoint) {
 563     char buf[256];
 564     jio_snprintf(buf, sizeof(buf),
 565                  "... found polling page %s exception at pc = "
 566                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 567                  at_poll_return ? "return" : "loop",
 568                  (intptr_t)pc, (intptr_t)stub);
 569     tty->print_raw_cr(buf);
 570   }
 571 #endif // PRODUCT
 572   return stub;
 573 }
 574 
 575 
 576 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 577   assert(caller.is_interpreted_frame(), "");
 578   int args_size = ArgumentSizeComputer(sig).size() + 1;
 579   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 580   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 581   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 582   return result;
 583 }
 584 
 585 
 586 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 587   if (JvmtiExport::can_post_on_exceptions()) {
 588     vframeStream vfst(thread, true);
 589     methodHandle method = methodHandle(thread, vfst.method());
 590     address bcp = method()->bcp_from(vfst.bci());
 591     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 592   }
 593   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 594 }
 595 
 596 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 597   Handle h_exception = Exceptions::new_exception(thread, name, message);
 598   throw_and_post_jvmti_exception(thread, h_exception);
 599 }
 600 
 601 // The interpreter code to call this tracing function is only
 602 // called/generated when TraceRedefineClasses has the right bits
 603 // set. Since obsolete methods are never compiled, we don't have
 604 // to modify the compilers to generate calls to this function.
 605 //
 606 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 607     JavaThread* thread, Method* method))
 608   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 609 
 610   if (method->is_obsolete()) {
 611     // We are calling an obsolete method, but this is not necessarily
 612     // an error. Our method could have been redefined just after we
 613     // fetched the Method* from the constant pool.
 614 
 615     // RC_TRACE macro has an embedded ResourceMark
 616     RC_TRACE_WITH_THREAD(0x00001000, thread,
 617                          ("calling obsolete method '%s'",
 618                           method->name_and_sig_as_C_string()));
 619     if (RC_TRACE_ENABLED(0x00002000)) {
 620       // this option is provided to debug calls to obsolete methods
 621       guarantee(false, "faulting at call to an obsolete method.");
 622     }
 623   }
 624   return 0;
 625 JRT_END
 626 
 627 // ret_pc points into caller; we are returning caller's exception handler
 628 // for given exception
 629 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 630                                                     bool force_unwind, bool top_frame_only) {
 631   assert(nm != NULL, "must exist");
 632   ResourceMark rm;
 633 
 634 #if INCLUDE_JVMCI
 635   if (nm->is_compiled_by_jvmci()) {
 636     // lookup exception handler for this pc
 637     int catch_pco = ret_pc - nm->code_begin();
 638     ExceptionHandlerTable table(nm);
 639     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 640     if (t != NULL) {
 641       return nm->code_begin() + t->pco();
 642     } else {
 643       // there is no exception handler for this pc => deoptimize
 644       nm->make_not_entrant();
 645 
 646       // Use Deoptimization::deoptimize for all of its side-effects:
 647       // revoking biases of monitors, gathering traps statistics, logging...
 648       // it also patches the return pc but we do not care about that
 649       // since we return a continuation to the deopt_blob below.
 650       JavaThread* thread = JavaThread::current();
 651       RegisterMap reg_map(thread, UseBiasedLocking);
 652       frame runtime_frame = thread->last_frame();
 653       frame caller_frame = runtime_frame.sender(&reg_map);
 654       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 655 
 656       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 657     }
 658   }
 659 #endif // INCLUDE_JVMCI
 660 
 661   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 662   // determine handler bci, if any
 663   EXCEPTION_MARK;
 664 
 665   int handler_bci = -1;
 666   int scope_depth = 0;
 667   if (!force_unwind) {
 668     int bci = sd->bci();
 669     bool recursive_exception = false;
 670     do {
 671       bool skip_scope_increment = false;
 672       // exception handler lookup
 673       KlassHandle ek (THREAD, exception->klass());
 674       methodHandle mh(THREAD, sd->method());
 675       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 676       if (HAS_PENDING_EXCEPTION) {
 677         recursive_exception = true;
 678         // We threw an exception while trying to find the exception handler.
 679         // Transfer the new exception to the exception handle which will
 680         // be set into thread local storage, and do another lookup for an
 681         // exception handler for this exception, this time starting at the
 682         // BCI of the exception handler which caused the exception to be
 683         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 684         // argument to ensure that the correct exception is thrown (4870175).
 685         exception = Handle(THREAD, PENDING_EXCEPTION);
 686         CLEAR_PENDING_EXCEPTION;
 687         if (handler_bci >= 0) {
 688           bci = handler_bci;
 689           handler_bci = -1;
 690           skip_scope_increment = true;
 691         }
 692       }
 693       else {
 694         recursive_exception = false;
 695       }
 696       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 697         sd = sd->sender();
 698         if (sd != NULL) {
 699           bci = sd->bci();
 700         }
 701         ++scope_depth;
 702       }
 703     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 704   }
 705 
 706   // found handling method => lookup exception handler
 707   int catch_pco = ret_pc - nm->code_begin();
 708 
 709   ExceptionHandlerTable table(nm);
 710   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 711   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 712     // Allow abbreviated catch tables.  The idea is to allow a method
 713     // to materialize its exceptions without committing to the exact
 714     // routing of exceptions.  In particular this is needed for adding
 715     // a synthetic handler to unlock monitors when inlining
 716     // synchronized methods since the unlock path isn't represented in
 717     // the bytecodes.
 718     t = table.entry_for(catch_pco, -1, 0);
 719   }
 720 
 721 #ifdef COMPILER1
 722   if (t == NULL && nm->is_compiled_by_c1()) {
 723     assert(nm->unwind_handler_begin() != NULL, "");
 724     return nm->unwind_handler_begin();
 725   }
 726 #endif
 727 
 728   if (t == NULL) {
 729     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 730     tty->print_cr("   Exception:");
 731     exception->print();
 732     tty->cr();
 733     tty->print_cr(" Compiled exception table :");
 734     table.print();
 735     nm->print_code();
 736     guarantee(false, "missing exception handler");
 737     return NULL;
 738   }
 739 
 740   return nm->code_begin() + t->pco();
 741 }
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 744   // These errors occur only at call sites
 745   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 746 JRT_END
 747 
 748 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 749   // These errors occur only at call sites
 750   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 754   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 755 JRT_END
 756 
 757 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 758   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 759 JRT_END
 760 
 761 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 762   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 763   // cache sites (when the callee activation is not yet set up) so we are at a call site
 764   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 765 JRT_END
 766 
 767 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 768   // We avoid using the normal exception construction in this case because
 769   // it performs an upcall to Java, and we're already out of stack space.
 770   Klass* k = SystemDictionary::StackOverflowError_klass();
 771   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 772   Handle exception (thread, exception_oop);
 773   if (StackTraceInThrowable) {
 774     java_lang_Throwable::fill_in_stack_trace(exception);
 775   }
 776   // Increment counter for hs_err file reporting
 777   Atomic::inc(&Exceptions::_stack_overflow_errors);
 778   throw_and_post_jvmti_exception(thread, exception);
 779 JRT_END
 780 
 781 #if INCLUDE_JVMCI
 782 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, nmethod* nm, int deopt_reason) {
 783   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 784   thread->set_jvmci_implicit_exception_pc(pc);
 785   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 786   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 787 }
 788 #endif // INCLUDE_JVMCI
 789 
 790 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 791                                                            address pc,
 792                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 793 {
 794   address target_pc = NULL;
 795 
 796   if (Interpreter::contains(pc)) {
 797 #ifdef CC_INTERP
 798     // C++ interpreter doesn't throw implicit exceptions
 799     ShouldNotReachHere();
 800 #else
 801     switch (exception_kind) {
 802       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 803       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 804       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 805       default:                      ShouldNotReachHere();
 806     }
 807 #endif // !CC_INTERP
 808   } else {
 809     switch (exception_kind) {
 810       case STACK_OVERFLOW: {
 811         // Stack overflow only occurs upon frame setup; the callee is
 812         // going to be unwound. Dispatch to a shared runtime stub
 813         // which will cause the StackOverflowError to be fabricated
 814         // and processed.
 815         // Stack overflow should never occur during deoptimization:
 816         // the compiled method bangs the stack by as much as the
 817         // interpreter would need in case of a deoptimization. The
 818         // deoptimization blob and uncommon trap blob bang the stack
 819         // in a debug VM to verify the correctness of the compiled
 820         // method stack banging.
 821         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 822         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 823         return StubRoutines::throw_StackOverflowError_entry();
 824       }
 825 
 826       case IMPLICIT_NULL: {
 827         if (VtableStubs::contains(pc)) {
 828           // We haven't yet entered the callee frame. Fabricate an
 829           // exception and begin dispatching it in the caller. Since
 830           // the caller was at a call site, it's safe to destroy all
 831           // caller-saved registers, as these entry points do.
 832           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 833 
 834           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 835           if (vt_stub == NULL) return NULL;
 836 
 837           if (vt_stub->is_abstract_method_error(pc)) {
 838             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 839             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 840             return StubRoutines::throw_AbstractMethodError_entry();
 841           } else {
 842             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 843             return StubRoutines::throw_NullPointerException_at_call_entry();
 844           }
 845         } else {
 846           CodeBlob* cb = CodeCache::find_blob(pc);
 847 
 848           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 849           if (cb == NULL) return NULL;
 850 
 851           // Exception happened in CodeCache. Must be either:
 852           // 1. Inline-cache check in C2I handler blob,
 853           // 2. Inline-cache check in nmethod, or
 854           // 3. Implicit null exception in nmethod
 855 
 856           if (!cb->is_nmethod()) {
 857             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 858             if (!is_in_blob) {
 859               // Allow normal crash reporting to handle this
 860               return NULL;
 861             }
 862             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 863             // There is no handler here, so we will simply unwind.
 864             return StubRoutines::throw_NullPointerException_at_call_entry();
 865           }
 866 
 867           // Otherwise, it's an nmethod.  Consult its exception handlers.
 868           nmethod* nm = (nmethod*)cb;
 869           if (nm->inlinecache_check_contains(pc)) {
 870             // exception happened inside inline-cache check code
 871             // => the nmethod is not yet active (i.e., the frame
 872             // is not set up yet) => use return address pushed by
 873             // caller => don't push another return address
 874             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 875             return StubRoutines::throw_NullPointerException_at_call_entry();
 876           }
 877 
 878           if (nm->method()->is_method_handle_intrinsic()) {
 879             // exception happened inside MH dispatch code, similar to a vtable stub
 880             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 881             return StubRoutines::throw_NullPointerException_at_call_entry();
 882           }
 883 
 884 #ifndef PRODUCT
 885           _implicit_null_throws++;
 886 #endif
 887 #if INCLUDE_JVMCI
 888           if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 889             // If there's no PcDesc then we'll die way down inside of
 890             // deopt instead of just getting normal error reporting,
 891             // so only go there if it will succeed.
 892             return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_null_check);
 893           } else {
 894 #endif // INCLUDE_JVMCI
 895           assert (nm->is_nmethod(), "Expect nmethod");
 896           target_pc = nm->continuation_for_implicit_exception(pc);
 897 #if INCLUDE_JVMCI
 898           }
 899 #endif // INCLUDE_JVMCI
 900           // If there's an unexpected fault, target_pc might be NULL,
 901           // in which case we want to fall through into the normal
 902           // error handling code.
 903         }
 904 
 905         break; // fall through
 906       }
 907 
 908 
 909       case IMPLICIT_DIVIDE_BY_ZERO: {
 910         nmethod* nm = CodeCache::find_nmethod(pc);
 911         guarantee(nm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 912 #ifndef PRODUCT
 913         _implicit_div0_throws++;
 914 #endif
 915 #if INCLUDE_JVMCI
 916         if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 917           return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_div0_check);
 918         } else {
 919 #endif // INCLUDE_JVMCI
 920         target_pc = nm->continuation_for_implicit_exception(pc);
 921 #if INCLUDE_JVMCI
 922         }
 923 #endif // INCLUDE_JVMCI
 924         // If there's an unexpected fault, target_pc might be NULL,
 925         // in which case we want to fall through into the normal
 926         // error handling code.
 927         break; // fall through
 928       }
 929 
 930       default: ShouldNotReachHere();
 931     }
 932 
 933     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 934 
 935     if (exception_kind == IMPLICIT_NULL) {
 936 #ifndef PRODUCT
 937       // for AbortVMOnException flag
 938       Exceptions::debug_check_abort("java.lang.NullPointerException");
 939 #endif //PRODUCT
 940       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 941     } else {
 942 #ifndef PRODUCT
 943       // for AbortVMOnException flag
 944       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 945 #endif //PRODUCT
 946       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 947     }
 948     return target_pc;
 949   }
 950 
 951   ShouldNotReachHere();
 952   return NULL;
 953 }
 954 
 955 
 956 /**
 957  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 958  * installed in the native function entry of all native Java methods before
 959  * they get linked to their actual native methods.
 960  *
 961  * \note
 962  * This method actually never gets called!  The reason is because
 963  * the interpreter's native entries call NativeLookup::lookup() which
 964  * throws the exception when the lookup fails.  The exception is then
 965  * caught and forwarded on the return from NativeLookup::lookup() call
 966  * before the call to the native function.  This might change in the future.
 967  */
 968 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 969 {
 970   // We return a bad value here to make sure that the exception is
 971   // forwarded before we look at the return value.
 972   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 973 }
 974 JNI_END
 975 
 976 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 977   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 978 }
 979 
 980 
 981 #ifndef PRODUCT
 982 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 983   const frame f = thread->last_frame();
 984   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 985 #ifndef PRODUCT
 986   methodHandle mh(THREAD, f.interpreter_frame_method());
 987   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 988 #endif // !PRODUCT
 989   return preserve_this_value;
 990 JRT_END
 991 #endif // !PRODUCT
 992 
 993 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 994   assert(obj->is_oop(), "must be a valid oop");
 995 #if INCLUDE_JVMCI
 996   // This removes the requirement for JVMCI compilers to emit code
 997   // performing a dynamic check that obj has a finalizer before
 998   // calling this routine. There should be no performance impact
 999   // for C1 since it emits a dynamic check. C2 and the interpreter
1000   // uses other runtime routines for registering finalizers.
1001   if (!obj->klass()->has_finalizer()) {
1002     return;
1003   }
1004 #endif // INCLUDE_JVMCI
1005   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1006   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1007 JRT_END
1008 
1009 
1010 jlong SharedRuntime::get_java_tid(Thread* thread) {
1011   if (thread != NULL) {
1012     if (thread->is_Java_thread()) {
1013       oop obj = ((JavaThread*)thread)->threadObj();
1014       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1015     }
1016   }
1017   return 0;
1018 }
1019 
1020 /**
1021  * This function ought to be a void function, but cannot be because
1022  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1023  * 6254741.  Once that is fixed we can remove the dummy return value.
1024  */
1025 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1026   return dtrace_object_alloc_base(Thread::current(), o, size);
1027 }
1028 
1029 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1030   assert(DTraceAllocProbes, "wrong call");
1031   Klass* klass = o->klass();
1032   Symbol* name = klass->name();
1033   HOTSPOT_OBJECT_ALLOC(
1034                    get_java_tid(thread),
1035                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1036   return 0;
1037 }
1038 
1039 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1040     JavaThread* thread, Method* method))
1041   assert(DTraceMethodProbes, "wrong call");
1042   Symbol* kname = method->klass_name();
1043   Symbol* name = method->name();
1044   Symbol* sig = method->signature();
1045   HOTSPOT_METHOD_ENTRY(
1046       get_java_tid(thread),
1047       (char *) kname->bytes(), kname->utf8_length(),
1048       (char *) name->bytes(), name->utf8_length(),
1049       (char *) sig->bytes(), sig->utf8_length());
1050   return 0;
1051 JRT_END
1052 
1053 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1054     JavaThread* thread, Method* method))
1055   assert(DTraceMethodProbes, "wrong call");
1056   Symbol* kname = method->klass_name();
1057   Symbol* name = method->name();
1058   Symbol* sig = method->signature();
1059   HOTSPOT_METHOD_RETURN(
1060       get_java_tid(thread),
1061       (char *) kname->bytes(), kname->utf8_length(),
1062       (char *) name->bytes(), name->utf8_length(),
1063       (char *) sig->bytes(), sig->utf8_length());
1064   return 0;
1065 JRT_END
1066 
1067 
1068 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1069 // for a call current in progress, i.e., arguments has been pushed on stack
1070 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1071 // vtable updates, etc.  Caller frame must be compiled.
1072 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1073   ResourceMark rm(THREAD);
1074 
1075   // last java frame on stack (which includes native call frames)
1076   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1077 
1078   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1079 }
1080 
1081 
1082 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1083 // for a call current in progress, i.e., arguments has been pushed on stack
1084 // but callee has not been invoked yet.  Caller frame must be compiled.
1085 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1086                                               vframeStream& vfst,
1087                                               Bytecodes::Code& bc,
1088                                               CallInfo& callinfo, TRAPS) {
1089   Handle receiver;
1090   Handle nullHandle;  //create a handy null handle for exception returns
1091 
1092   assert(!vfst.at_end(), "Java frame must exist");
1093 
1094   // Find caller and bci from vframe
1095   methodHandle caller(THREAD, vfst.method());
1096   int          bci   = vfst.bci();
1097 
1098   // Find bytecode
1099   Bytecode_invoke bytecode(caller, bci);
1100   bc = bytecode.invoke_code();
1101   int bytecode_index = bytecode.index();
1102 
1103   // Find receiver for non-static call
1104   if (bc != Bytecodes::_invokestatic &&
1105       bc != Bytecodes::_invokedynamic &&
1106       bc != Bytecodes::_invokehandle) {
1107     // This register map must be update since we need to find the receiver for
1108     // compiled frames. The receiver might be in a register.
1109     RegisterMap reg_map2(thread);
1110     frame stubFrame   = thread->last_frame();
1111     // Caller-frame is a compiled frame
1112     frame callerFrame = stubFrame.sender(&reg_map2);
1113 
1114     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1115     if (callee.is_null()) {
1116       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1117     }
1118     // Retrieve from a compiled argument list
1119     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1120 
1121     if (receiver.is_null()) {
1122       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1123     }
1124   }
1125 
1126   // Resolve method. This is parameterized by bytecode.
1127   constantPoolHandle constants(THREAD, caller->constants());
1128   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1129   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1130 
1131 #ifdef ASSERT
1132   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1133   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1134     assert(receiver.not_null(), "should have thrown exception");
1135     KlassHandle receiver_klass(THREAD, receiver->klass());
1136     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1137                             // klass is already loaded
1138     KlassHandle static_receiver_klass(THREAD, rk);
1139     // Method handle invokes might have been optimized to a direct call
1140     // so don't check for the receiver class.
1141     // FIXME this weakens the assert too much
1142     methodHandle callee = callinfo.selected_method();
1143     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1144            callee->is_method_handle_intrinsic() ||
1145            callee->is_compiled_lambda_form(),
1146            "actual receiver must be subclass of static receiver klass");
1147     if (receiver_klass->oop_is_instance()) {
1148       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1149         tty->print_cr("ERROR: Klass not yet initialized!!");
1150         receiver_klass()->print();
1151       }
1152       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1153     }
1154   }
1155 #endif
1156 
1157   return receiver;
1158 }
1159 
1160 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1161   ResourceMark rm(THREAD);
1162   // We need first to check if any Java activations (compiled, interpreted)
1163   // exist on the stack since last JavaCall.  If not, we need
1164   // to get the target method from the JavaCall wrapper.
1165   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1166   methodHandle callee_method;
1167   if (vfst.at_end()) {
1168     // No Java frames were found on stack since we did the JavaCall.
1169     // Hence the stack can only contain an entry_frame.  We need to
1170     // find the target method from the stub frame.
1171     RegisterMap reg_map(thread, false);
1172     frame fr = thread->last_frame();
1173     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1174     fr = fr.sender(&reg_map);
1175     assert(fr.is_entry_frame(), "must be");
1176     // fr is now pointing to the entry frame.
1177     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1178     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1179   } else {
1180     Bytecodes::Code bc;
1181     CallInfo callinfo;
1182     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1183     callee_method = callinfo.selected_method();
1184   }
1185   assert(callee_method()->is_method(), "must be");
1186   return callee_method;
1187 }
1188 
1189 // Resolves a call.
1190 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1191                                            bool is_virtual,
1192                                            bool is_optimized, TRAPS) {
1193   methodHandle callee_method;
1194   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1195   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1196     int retry_count = 0;
1197     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1198            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1199       // If has a pending exception then there is no need to re-try to
1200       // resolve this method.
1201       // If the method has been redefined, we need to try again.
1202       // Hack: we have no way to update the vtables of arrays, so don't
1203       // require that java.lang.Object has been updated.
1204 
1205       // It is very unlikely that method is redefined more than 100 times
1206       // in the middle of resolve. If it is looping here more than 100 times
1207       // means then there could be a bug here.
1208       guarantee((retry_count++ < 100),
1209                 "Could not resolve to latest version of redefined method");
1210       // method is redefined in the middle of resolve so re-try.
1211       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1212     }
1213   }
1214   return callee_method;
1215 }
1216 
1217 // Resolves a call.  The compilers generate code for calls that go here
1218 // and are patched with the real destination of the call.
1219 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1220                                            bool is_virtual,
1221                                            bool is_optimized, TRAPS) {
1222 
1223   ResourceMark rm(thread);
1224   RegisterMap cbl_map(thread, false);
1225   frame caller_frame = thread->last_frame().sender(&cbl_map);
1226 
1227   CodeBlob* caller_cb = caller_frame.cb();
1228   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1229   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1230 
1231   // make sure caller is not getting deoptimized
1232   // and removed before we are done with it.
1233   // CLEANUP - with lazy deopt shouldn't need this lock
1234   nmethodLocker caller_lock(caller_nm);
1235 
1236   // determine call info & receiver
1237   // note: a) receiver is NULL for static calls
1238   //       b) an exception is thrown if receiver is NULL for non-static calls
1239   CallInfo call_info;
1240   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1241   Handle receiver = find_callee_info(thread, invoke_code,
1242                                      call_info, CHECK_(methodHandle()));
1243   methodHandle callee_method = call_info.selected_method();
1244 
1245   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1246          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1247          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1248          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1249          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1250 
1251   assert(caller_nm->is_alive(), "It should be alive");
1252 
1253 #ifndef PRODUCT
1254   // tracing/debugging/statistics
1255   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1256                 (is_virtual) ? (&_resolve_virtual_ctr) :
1257                                (&_resolve_static_ctr);
1258   Atomic::inc(addr);
1259 
1260   if (TraceCallFixup) {
1261     ResourceMark rm(thread);
1262     tty->print("resolving %s%s (%s) call to",
1263       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1264       Bytecodes::name(invoke_code));
1265     callee_method->print_short_name(tty);
1266     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1267   }
1268 #endif
1269 
1270   // JSR 292 key invariant:
1271   // If the resolved method is a MethodHandle invoke target, the call
1272   // site must be a MethodHandle call site, because the lambda form might tail-call
1273   // leaving the stack in a state unknown to either caller or callee
1274   // TODO detune for now but we might need it again
1275 //  assert(!callee_method->is_compiled_lambda_form() ||
1276 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1277 
1278   // Compute entry points. This might require generation of C2I converter
1279   // frames, so we cannot be holding any locks here. Furthermore, the
1280   // computation of the entry points is independent of patching the call.  We
1281   // always return the entry-point, but we only patch the stub if the call has
1282   // not been deoptimized.  Return values: For a virtual call this is an
1283   // (cached_oop, destination address) pair. For a static call/optimized
1284   // virtual this is just a destination address.
1285 
1286   StaticCallInfo static_call_info;
1287   CompiledICInfo virtual_call_info;
1288 
1289   // Make sure the callee nmethod does not get deoptimized and removed before
1290   // we are done patching the code.
1291   nmethod* callee_nm = callee_method->code();
1292   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1293     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1294     callee_nm = NULL;
1295   }
1296   nmethodLocker nl_callee(callee_nm);
1297 #ifdef ASSERT
1298   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1299 #endif
1300 
1301   if (is_virtual) {
1302     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1303     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1304     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1305     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1306                      is_optimized, static_bound, virtual_call_info,
1307                      CHECK_(methodHandle()));
1308   } else {
1309     // static call
1310     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1311   }
1312 
1313   // grab lock, check for deoptimization and potentially patch caller
1314   {
1315     MutexLocker ml_patch(CompiledIC_lock);
1316 
1317     // Lock blocks for safepoint during which both nmethods can change state.
1318 
1319     // Now that we are ready to patch if the Method* was redefined then
1320     // don't update call site and let the caller retry.
1321     // Don't update call site if callee nmethod was unloaded or deoptimized.
1322     // Don't update call site if callee nmethod was replaced by an other nmethod
1323     // which may happen when multiply alive nmethod (tiered compilation)
1324     // will be supported.
1325     if (!callee_method->is_old() &&
1326         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1327 #ifdef ASSERT
1328       // We must not try to patch to jump to an already unloaded method.
1329       if (dest_entry_point != 0) {
1330         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1331         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1332                "should not call unloaded nmethod");
1333       }
1334 #endif
1335       if (is_virtual) {
1336         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1337         if (inline_cache->is_clean()) {
1338           inline_cache->set_to_monomorphic(virtual_call_info);
1339         }
1340       } else {
1341         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1342         if (ssc->is_clean()) ssc->set(static_call_info);
1343       }
1344     }
1345 
1346   } // unlock CompiledIC_lock
1347 
1348   return callee_method;
1349 }
1350 
1351 
1352 // Inline caches exist only in compiled code
1353 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1354 #ifdef ASSERT
1355   RegisterMap reg_map(thread, false);
1356   frame stub_frame = thread->last_frame();
1357   assert(stub_frame.is_runtime_frame(), "sanity check");
1358   frame caller_frame = stub_frame.sender(&reg_map);
1359   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1360 #endif /* ASSERT */
1361 
1362   methodHandle callee_method;
1363   JRT_BLOCK
1364     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1365     // Return Method* through TLS
1366     thread->set_vm_result_2(callee_method());
1367   JRT_BLOCK_END
1368   // return compiled code entry point after potential safepoints
1369   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1370   return callee_method->verified_code_entry();
1371 JRT_END
1372 
1373 
1374 // Handle call site that has been made non-entrant
1375 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1376   // 6243940 We might end up in here if the callee is deoptimized
1377   // as we race to call it.  We don't want to take a safepoint if
1378   // the caller was interpreted because the caller frame will look
1379   // interpreted to the stack walkers and arguments are now
1380   // "compiled" so it is much better to make this transition
1381   // invisible to the stack walking code. The i2c path will
1382   // place the callee method in the callee_target. It is stashed
1383   // there because if we try and find the callee by normal means a
1384   // safepoint is possible and have trouble gc'ing the compiled args.
1385   RegisterMap reg_map(thread, false);
1386   frame stub_frame = thread->last_frame();
1387   assert(stub_frame.is_runtime_frame(), "sanity check");
1388   frame caller_frame = stub_frame.sender(&reg_map);
1389 
1390   if (caller_frame.is_interpreted_frame() ||
1391       caller_frame.is_entry_frame()) {
1392     Method* callee = thread->callee_target();
1393     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1394     thread->set_vm_result_2(callee);
1395     thread->set_callee_target(NULL);
1396     return callee->get_c2i_entry();
1397   }
1398 
1399   // Must be compiled to compiled path which is safe to stackwalk
1400   methodHandle callee_method;
1401   JRT_BLOCK
1402     // Force resolving of caller (if we called from compiled frame)
1403     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1404     thread->set_vm_result_2(callee_method());
1405   JRT_BLOCK_END
1406   // return compiled code entry point after potential safepoints
1407   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1408   return callee_method->verified_code_entry();
1409 JRT_END
1410 
1411 // Handle abstract method call
1412 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1413   return StubRoutines::throw_AbstractMethodError_entry();
1414 JRT_END
1415 
1416 
1417 // resolve a static call and patch code
1418 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1419   methodHandle callee_method;
1420   JRT_BLOCK
1421     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1422     thread->set_vm_result_2(callee_method());
1423   JRT_BLOCK_END
1424   // return compiled code entry point after potential safepoints
1425   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1426   return callee_method->verified_code_entry();
1427 JRT_END
1428 
1429 
1430 // resolve virtual call and update inline cache to monomorphic
1431 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1432   methodHandle callee_method;
1433   JRT_BLOCK
1434     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1435     thread->set_vm_result_2(callee_method());
1436   JRT_BLOCK_END
1437   // return compiled code entry point after potential safepoints
1438   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1439   return callee_method->verified_code_entry();
1440 JRT_END
1441 
1442 
1443 // Resolve a virtual call that can be statically bound (e.g., always
1444 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1445 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1446   methodHandle callee_method;
1447   JRT_BLOCK
1448     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1449     thread->set_vm_result_2(callee_method());
1450   JRT_BLOCK_END
1451   // return compiled code entry point after potential safepoints
1452   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1453   return callee_method->verified_code_entry();
1454 JRT_END
1455 
1456 
1457 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1458   ResourceMark rm(thread);
1459   CallInfo call_info;
1460   Bytecodes::Code bc;
1461 
1462   // receiver is NULL for static calls. An exception is thrown for NULL
1463   // receivers for non-static calls
1464   Handle receiver = find_callee_info(thread, bc, call_info,
1465                                      CHECK_(methodHandle()));
1466   // Compiler1 can produce virtual call sites that can actually be statically bound
1467   // If we fell thru to below we would think that the site was going megamorphic
1468   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1469   // we'd try and do a vtable dispatch however methods that can be statically bound
1470   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1471   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1472   // plain ic_miss) and the site will be converted to an optimized virtual call site
1473   // never to miss again. I don't believe C2 will produce code like this but if it
1474   // did this would still be the correct thing to do for it too, hence no ifdef.
1475   //
1476   if (call_info.resolved_method()->can_be_statically_bound()) {
1477     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1478     if (TraceCallFixup) {
1479       RegisterMap reg_map(thread, false);
1480       frame caller_frame = thread->last_frame().sender(&reg_map);
1481       ResourceMark rm(thread);
1482       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1483       callee_method->print_short_name(tty);
1484       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1485       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1486     }
1487     return callee_method;
1488   }
1489 
1490   methodHandle callee_method = call_info.selected_method();
1491 
1492   bool should_be_mono = false;
1493 
1494 #ifndef PRODUCT
1495   Atomic::inc(&_ic_miss_ctr);
1496 
1497   // Statistics & Tracing
1498   if (TraceCallFixup) {
1499     ResourceMark rm(thread);
1500     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1501     callee_method->print_short_name(tty);
1502     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1503   }
1504 
1505   if (ICMissHistogram) {
1506     MutexLocker m(VMStatistic_lock);
1507     RegisterMap reg_map(thread, false);
1508     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1509     // produce statistics under the lock
1510     trace_ic_miss(f.pc());
1511   }
1512 #endif
1513 
1514   // install an event collector so that when a vtable stub is created the
1515   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1516   // event can't be posted when the stub is created as locks are held
1517   // - instead the event will be deferred until the event collector goes
1518   // out of scope.
1519   JvmtiDynamicCodeEventCollector event_collector;
1520 
1521   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1522   { MutexLocker ml_patch (CompiledIC_lock);
1523     RegisterMap reg_map(thread, false);
1524     frame caller_frame = thread->last_frame().sender(&reg_map);
1525     CodeBlob* cb = caller_frame.cb();
1526     if (cb->is_nmethod()) {
1527       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1528       bool should_be_mono = false;
1529       if (inline_cache->is_optimized()) {
1530         if (TraceCallFixup) {
1531           ResourceMark rm(thread);
1532           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1533           callee_method->print_short_name(tty);
1534           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1535         }
1536         should_be_mono = true;
1537       } else if (inline_cache->is_icholder_call()) {
1538         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1539         if (ic_oop != NULL) {
1540 
1541           if (receiver()->klass() == ic_oop->holder_klass()) {
1542             // This isn't a real miss. We must have seen that compiled code
1543             // is now available and we want the call site converted to a
1544             // monomorphic compiled call site.
1545             // We can't assert for callee_method->code() != NULL because it
1546             // could have been deoptimized in the meantime
1547             if (TraceCallFixup) {
1548               ResourceMark rm(thread);
1549               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1550               callee_method->print_short_name(tty);
1551               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1552             }
1553             should_be_mono = true;
1554           }
1555         }
1556       }
1557 
1558       if (should_be_mono) {
1559 
1560         // We have a path that was monomorphic but was going interpreted
1561         // and now we have (or had) a compiled entry. We correct the IC
1562         // by using a new icBuffer.
1563         CompiledICInfo info;
1564         KlassHandle receiver_klass(THREAD, receiver()->klass());
1565         inline_cache->compute_monomorphic_entry(callee_method,
1566                                                 receiver_klass,
1567                                                 inline_cache->is_optimized(),
1568                                                 false,
1569                                                 info, CHECK_(methodHandle()));
1570         inline_cache->set_to_monomorphic(info);
1571       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1572         // Potential change to megamorphic
1573         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1574         if (!successful) {
1575           inline_cache->set_to_clean();
1576         }
1577       } else {
1578         // Either clean or megamorphic
1579       }
1580     } else {
1581       fatal("Unimplemented");
1582     }
1583   } // Release CompiledIC_lock
1584 
1585   return callee_method;
1586 }
1587 
1588 //
1589 // Resets a call-site in compiled code so it will get resolved again.
1590 // This routines handles both virtual call sites, optimized virtual call
1591 // sites, and static call sites. Typically used to change a call sites
1592 // destination from compiled to interpreted.
1593 //
1594 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1595   ResourceMark rm(thread);
1596   RegisterMap reg_map(thread, false);
1597   frame stub_frame = thread->last_frame();
1598   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1599   frame caller = stub_frame.sender(&reg_map);
1600 
1601   // Do nothing if the frame isn't a live compiled frame.
1602   // nmethod could be deoptimized by the time we get here
1603   // so no update to the caller is needed.
1604 
1605   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1606 
1607     address pc = caller.pc();
1608 
1609     // Check for static or virtual call
1610     bool is_static_call = false;
1611     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1612 
1613     // Default call_addr is the location of the "basic" call.
1614     // Determine the address of the call we a reresolving. With
1615     // Inline Caches we will always find a recognizable call.
1616     // With Inline Caches disabled we may or may not find a
1617     // recognizable call. We will always find a call for static
1618     // calls and for optimized virtual calls. For vanilla virtual
1619     // calls it depends on the state of the UseInlineCaches switch.
1620     //
1621     // With Inline Caches disabled we can get here for a virtual call
1622     // for two reasons:
1623     //   1 - calling an abstract method. The vtable for abstract methods
1624     //       will run us thru handle_wrong_method and we will eventually
1625     //       end up in the interpreter to throw the ame.
1626     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1627     //       call and between the time we fetch the entry address and
1628     //       we jump to it the target gets deoptimized. Similar to 1
1629     //       we will wind up in the interprter (thru a c2i with c2).
1630     //
1631     address call_addr = NULL;
1632     {
1633       // Get call instruction under lock because another thread may be
1634       // busy patching it.
1635       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1636       // Location of call instruction
1637       if (NativeCall::is_call_before(pc)) {
1638         NativeCall *ncall = nativeCall_before(pc);
1639         call_addr = ncall->instruction_address();
1640       }
1641     }
1642     // Make sure nmethod doesn't get deoptimized and removed until
1643     // this is done with it.
1644     // CLEANUP - with lazy deopt shouldn't need this lock
1645     nmethodLocker nmlock(caller_nm);
1646 
1647     if (call_addr != NULL) {
1648       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1649       int ret = iter.next(); // Get item
1650       if (ret) {
1651         assert(iter.addr() == call_addr, "must find call");
1652         if (iter.type() == relocInfo::static_call_type) {
1653           is_static_call = true;
1654         } else {
1655           assert(iter.type() == relocInfo::virtual_call_type ||
1656                  iter.type() == relocInfo::opt_virtual_call_type
1657                 , "unexpected relocInfo. type");
1658         }
1659       } else {
1660         assert(!UseInlineCaches, "relocation info. must exist for this address");
1661       }
1662 
1663       // Cleaning the inline cache will force a new resolve. This is more robust
1664       // than directly setting it to the new destination, since resolving of calls
1665       // is always done through the same code path. (experience shows that it
1666       // leads to very hard to track down bugs, if an inline cache gets updated
1667       // to a wrong method). It should not be performance critical, since the
1668       // resolve is only done once.
1669 
1670       MutexLocker ml(CompiledIC_lock);
1671       if (is_static_call) {
1672         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1673         ssc->set_to_clean();
1674       } else {
1675         // compiled, dispatched call (which used to call an interpreted method)
1676         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1677         inline_cache->set_to_clean();
1678       }
1679     }
1680 
1681   }
1682 
1683   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1684 
1685 
1686 #ifndef PRODUCT
1687   Atomic::inc(&_wrong_method_ctr);
1688 
1689   if (TraceCallFixup) {
1690     ResourceMark rm(thread);
1691     tty->print("handle_wrong_method reresolving call to");
1692     callee_method->print_short_name(tty);
1693     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1694   }
1695 #endif
1696 
1697   return callee_method;
1698 }
1699 
1700 #ifdef ASSERT
1701 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1702                                                                 const BasicType* sig_bt,
1703                                                                 const VMRegPair* regs) {
1704   ResourceMark rm;
1705   const int total_args_passed = method->size_of_parameters();
1706   const VMRegPair*    regs_with_member_name = regs;
1707         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1708 
1709   const int member_arg_pos = total_args_passed - 1;
1710   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1711   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1712 
1713   const bool is_outgoing = method->is_method_handle_intrinsic();
1714   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1715 
1716   for (int i = 0; i < member_arg_pos; i++) {
1717     VMReg a =    regs_with_member_name[i].first();
1718     VMReg b = regs_without_member_name[i].first();
1719     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1720   }
1721   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1722 }
1723 #endif
1724 
1725 // ---------------------------------------------------------------------------
1726 // We are calling the interpreter via a c2i. Normally this would mean that
1727 // we were called by a compiled method. However we could have lost a race
1728 // where we went int -> i2c -> c2i and so the caller could in fact be
1729 // interpreted. If the caller is compiled we attempt to patch the caller
1730 // so he no longer calls into the interpreter.
1731 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1732   Method* moop(method);
1733 
1734   address entry_point = moop->from_compiled_entry();
1735 
1736   // It's possible that deoptimization can occur at a call site which hasn't
1737   // been resolved yet, in which case this function will be called from
1738   // an nmethod that has been patched for deopt and we can ignore the
1739   // request for a fixup.
1740   // Also it is possible that we lost a race in that from_compiled_entry
1741   // is now back to the i2c in that case we don't need to patch and if
1742   // we did we'd leap into space because the callsite needs to use
1743   // "to interpreter" stub in order to load up the Method*. Don't
1744   // ask me how I know this...
1745 
1746   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1747   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1748     return;
1749   }
1750 
1751   // The check above makes sure this is a nmethod.
1752   nmethod* nm = cb->as_nmethod_or_null();
1753   assert(nm, "must be");
1754 
1755   // Get the return PC for the passed caller PC.
1756   address return_pc = caller_pc + frame::pc_return_offset;
1757 
1758   // There is a benign race here. We could be attempting to patch to a compiled
1759   // entry point at the same time the callee is being deoptimized. If that is
1760   // the case then entry_point may in fact point to a c2i and we'd patch the
1761   // call site with the same old data. clear_code will set code() to NULL
1762   // at the end of it. If we happen to see that NULL then we can skip trying
1763   // to patch. If we hit the window where the callee has a c2i in the
1764   // from_compiled_entry and the NULL isn't present yet then we lose the race
1765   // and patch the code with the same old data. Asi es la vida.
1766 
1767   if (moop->code() == NULL) return;
1768 
1769   if (nm->is_in_use()) {
1770 
1771     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1772     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1773     if (NativeCall::is_call_before(return_pc)) {
1774       NativeCall *call = nativeCall_before(return_pc);
1775       //
1776       // bug 6281185. We might get here after resolving a call site to a vanilla
1777       // virtual call. Because the resolvee uses the verified entry it may then
1778       // see compiled code and attempt to patch the site by calling us. This would
1779       // then incorrectly convert the call site to optimized and its downhill from
1780       // there. If you're lucky you'll get the assert in the bugid, if not you've
1781       // just made a call site that could be megamorphic into a monomorphic site
1782       // for the rest of its life! Just another racing bug in the life of
1783       // fixup_callers_callsite ...
1784       //
1785       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1786       iter.next();
1787       assert(iter.has_current(), "must have a reloc at java call site");
1788       relocInfo::relocType typ = iter.reloc()->type();
1789       if (typ != relocInfo::static_call_type &&
1790            typ != relocInfo::opt_virtual_call_type &&
1791            typ != relocInfo::static_stub_type) {
1792         return;
1793       }
1794       address destination = call->destination();
1795       if (destination != entry_point) {
1796         CodeBlob* callee = CodeCache::find_blob(destination);
1797         // callee == cb seems weird. It means calling interpreter thru stub.
1798         if (callee == cb || callee->is_adapter_blob()) {
1799           // static call or optimized virtual
1800           if (TraceCallFixup) {
1801             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1802             moop->print_short_name(tty);
1803             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1804           }
1805           call->set_destination_mt_safe(entry_point);
1806         } else {
1807           if (TraceCallFixup) {
1808             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1809             moop->print_short_name(tty);
1810             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1811           }
1812           // assert is too strong could also be resolve destinations.
1813           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1814         }
1815       } else {
1816           if (TraceCallFixup) {
1817             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1818             moop->print_short_name(tty);
1819             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1820           }
1821       }
1822     }
1823   }
1824 IRT_END
1825 
1826 
1827 // same as JVM_Arraycopy, but called directly from compiled code
1828 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1829                                                 oopDesc* dest, jint dest_pos,
1830                                                 jint length,
1831                                                 JavaThread* thread)) {
1832 #ifndef PRODUCT
1833   _slow_array_copy_ctr++;
1834 #endif
1835   // Check if we have null pointers
1836   if (src == NULL || dest == NULL) {
1837     THROW(vmSymbols::java_lang_NullPointerException());
1838   }
1839   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1840   // even though the copy_array API also performs dynamic checks to ensure
1841   // that src and dest are truly arrays (and are conformable).
1842   // The copy_array mechanism is awkward and could be removed, but
1843   // the compilers don't call this function except as a last resort,
1844   // so it probably doesn't matter.
1845   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1846                                         (arrayOopDesc*)dest, dest_pos,
1847                                         length, thread);
1848 }
1849 JRT_END
1850 
1851 char* SharedRuntime::generate_class_cast_message(
1852     JavaThread* thread, const char* objName) {
1853 
1854   // Get target class name from the checkcast instruction
1855   vframeStream vfst(thread, true);
1856   assert(!vfst.at_end(), "Java frame must exist");
1857   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1858   Klass* targetKlass = vfst.method()->constants()->klass_at(
1859     cc.index(), thread);
1860   return generate_class_cast_message(objName, targetKlass->external_name());
1861 }
1862 
1863 char* SharedRuntime::generate_class_cast_message(
1864     const char* objName, const char* targetKlassName, const char* desc) {
1865   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1866 
1867   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1868   if (NULL == message) {
1869     // Shouldn't happen, but don't cause even more problems if it does
1870     message = const_cast<char*>(objName);
1871   } else {
1872     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1873   }
1874   return message;
1875 }
1876 
1877 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1878   (void) JavaThread::current()->reguard_stack();
1879 JRT_END
1880 
1881 
1882 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1883 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1884   // Disable ObjectSynchronizer::quick_enter() in default config
1885   // until JDK-8077392 is resolved.
1886   if ((SyncFlags & 256) != 0 && !SafepointSynchronize::is_synchronizing()) {
1887     // Only try quick_enter() if we're not trying to reach a safepoint
1888     // so that the calling thread reaches the safepoint more quickly.
1889     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1890   }
1891   // NO_ASYNC required because an async exception on the state transition destructor
1892   // would leave you with the lock held and it would never be released.
1893   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1894   // and the model is that an exception implies the method failed.
1895   JRT_BLOCK_NO_ASYNC
1896   oop obj(_obj);
1897   if (PrintBiasedLockingStatistics) {
1898     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1899   }
1900   Handle h_obj(THREAD, obj);
1901   if (UseBiasedLocking) {
1902     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1903     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1904   } else {
1905     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1906   }
1907   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1908   JRT_BLOCK_END
1909 JRT_END
1910 
1911 // Handles the uncommon cases of monitor unlocking in compiled code
1912 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
1913    oop obj(_obj);
1914   assert(JavaThread::current() == THREAD, "invariant");
1915   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1916   // testing was unable to ever fire the assert that guarded it so I have removed it.
1917   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1918 #undef MIGHT_HAVE_PENDING
1919 #ifdef MIGHT_HAVE_PENDING
1920   // Save and restore any pending_exception around the exception mark.
1921   // While the slow_exit must not throw an exception, we could come into
1922   // this routine with one set.
1923   oop pending_excep = NULL;
1924   const char* pending_file;
1925   int pending_line;
1926   if (HAS_PENDING_EXCEPTION) {
1927     pending_excep = PENDING_EXCEPTION;
1928     pending_file  = THREAD->exception_file();
1929     pending_line  = THREAD->exception_line();
1930     CLEAR_PENDING_EXCEPTION;
1931   }
1932 #endif /* MIGHT_HAVE_PENDING */
1933 
1934   {
1935     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1936     EXCEPTION_MARK;
1937     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1938   }
1939 
1940 #ifdef MIGHT_HAVE_PENDING
1941   if (pending_excep != NULL) {
1942     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1943   }
1944 #endif /* MIGHT_HAVE_PENDING */
1945 JRT_END
1946 
1947 #ifndef PRODUCT
1948 
1949 void SharedRuntime::print_statistics() {
1950   ttyLocker ttyl;
1951   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1952 
1953   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1954 
1955   SharedRuntime::print_ic_miss_histogram();
1956 
1957   if (CountRemovableExceptions) {
1958     if (_nof_removable_exceptions > 0) {
1959       Unimplemented(); // this counter is not yet incremented
1960       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1961     }
1962   }
1963 
1964   // Dump the JRT_ENTRY counters
1965   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1966   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1967   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1968   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1969   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1970   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1971   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1972 
1973   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
1974   tty->print_cr("%5d wrong method", _wrong_method_ctr);
1975   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
1976   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
1977   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
1978 
1979   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
1980   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
1981   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
1982   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
1983   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
1984   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
1985   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
1986   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
1987   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
1988   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
1989   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
1990   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
1991   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
1992   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
1993   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
1994   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
1995 
1996   AdapterHandlerLibrary::print_statistics();
1997 
1998   if (xtty != NULL)  xtty->tail("statistics");
1999 }
2000 
2001 inline double percent(int x, int y) {
2002   return 100.0 * x / MAX2(y, 1);
2003 }
2004 
2005 class MethodArityHistogram {
2006  public:
2007   enum { MAX_ARITY = 256 };
2008  private:
2009   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2010   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2011   static int _max_arity;                      // max. arity seen
2012   static int _max_size;                       // max. arg size seen
2013 
2014   static void add_method_to_histogram(nmethod* nm) {
2015     Method* m = nm->method();
2016     ArgumentCount args(m->signature());
2017     int arity   = args.size() + (m->is_static() ? 0 : 1);
2018     int argsize = m->size_of_parameters();
2019     arity   = MIN2(arity, MAX_ARITY-1);
2020     argsize = MIN2(argsize, MAX_ARITY-1);
2021     int count = nm->method()->compiled_invocation_count();
2022     _arity_histogram[arity]  += count;
2023     _size_histogram[argsize] += count;
2024     _max_arity = MAX2(_max_arity, arity);
2025     _max_size  = MAX2(_max_size, argsize);
2026   }
2027 
2028   void print_histogram_helper(int n, int* histo, const char* name) {
2029     const int N = MIN2(5, n);
2030     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2031     double sum = 0;
2032     double weighted_sum = 0;
2033     int i;
2034     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2035     double rest = sum;
2036     double percent = sum / 100;
2037     for (i = 0; i <= N; i++) {
2038       rest -= histo[i];
2039       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2040     }
2041     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2042     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2043   }
2044 
2045   void print_histogram() {
2046     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2047     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2048     tty->print_cr("\nSame for parameter size (in words):");
2049     print_histogram_helper(_max_size, _size_histogram, "size");
2050     tty->cr();
2051   }
2052 
2053  public:
2054   MethodArityHistogram() {
2055     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2056     _max_arity = _max_size = 0;
2057     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2058     CodeCache::nmethods_do(add_method_to_histogram);
2059     print_histogram();
2060   }
2061 };
2062 
2063 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2064 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2065 int MethodArityHistogram::_max_arity;
2066 int MethodArityHistogram::_max_size;
2067 
2068 void SharedRuntime::print_call_statistics(int comp_total) {
2069   tty->print_cr("Calls from compiled code:");
2070   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2071   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2072   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2073   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2074   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2075   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2076   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2077   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2078   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2079   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2080   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2081   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2082   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2083   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2084   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2085   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2086   tty->cr();
2087   tty->print_cr("Note 1: counter updates are not MT-safe.");
2088   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2089   tty->print_cr("        %% in nested categories are relative to their category");
2090   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2091   tty->cr();
2092 
2093   MethodArityHistogram h;
2094 }
2095 #endif
2096 
2097 
2098 // A simple wrapper class around the calling convention information
2099 // that allows sharing of adapters for the same calling convention.
2100 class AdapterFingerPrint : public CHeapObj<mtCode> {
2101  private:
2102   enum {
2103     _basic_type_bits = 4,
2104     _basic_type_mask = right_n_bits(_basic_type_bits),
2105     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2106     _compact_int_count = 3
2107   };
2108   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2109   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2110 
2111   union {
2112     int  _compact[_compact_int_count];
2113     int* _fingerprint;
2114   } _value;
2115   int _length; // A negative length indicates the fingerprint is in the compact form,
2116                // Otherwise _value._fingerprint is the array.
2117 
2118   // Remap BasicTypes that are handled equivalently by the adapters.
2119   // These are correct for the current system but someday it might be
2120   // necessary to make this mapping platform dependent.
2121   static int adapter_encoding(BasicType in) {
2122     switch (in) {
2123       case T_BOOLEAN:
2124       case T_BYTE:
2125       case T_SHORT:
2126       case T_CHAR:
2127         // There are all promoted to T_INT in the calling convention
2128         return T_INT;
2129 
2130       case T_OBJECT:
2131       case T_ARRAY:
2132         // In other words, we assume that any register good enough for
2133         // an int or long is good enough for a managed pointer.
2134 #ifdef _LP64
2135         return T_LONG;
2136 #else
2137         return T_INT;
2138 #endif
2139 
2140       case T_INT:
2141       case T_LONG:
2142       case T_FLOAT:
2143       case T_DOUBLE:
2144       case T_VOID:
2145         return in;
2146 
2147       default:
2148         ShouldNotReachHere();
2149         return T_CONFLICT;
2150     }
2151   }
2152 
2153  public:
2154   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2155     // The fingerprint is based on the BasicType signature encoded
2156     // into an array of ints with eight entries per int.
2157     int* ptr;
2158     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2159     if (len <= _compact_int_count) {
2160       assert(_compact_int_count == 3, "else change next line");
2161       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2162       // Storing the signature encoded as signed chars hits about 98%
2163       // of the time.
2164       _length = -len;
2165       ptr = _value._compact;
2166     } else {
2167       _length = len;
2168       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2169       ptr = _value._fingerprint;
2170     }
2171 
2172     // Now pack the BasicTypes with 8 per int
2173     int sig_index = 0;
2174     for (int index = 0; index < len; index++) {
2175       int value = 0;
2176       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2177         int bt = ((sig_index < total_args_passed)
2178                   ? adapter_encoding(sig_bt[sig_index++])
2179                   : 0);
2180         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2181         value = (value << _basic_type_bits) | bt;
2182       }
2183       ptr[index] = value;
2184     }
2185   }
2186 
2187   ~AdapterFingerPrint() {
2188     if (_length > 0) {
2189       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2190     }
2191   }
2192 
2193   int value(int index) {
2194     if (_length < 0) {
2195       return _value._compact[index];
2196     }
2197     return _value._fingerprint[index];
2198   }
2199   int length() {
2200     if (_length < 0) return -_length;
2201     return _length;
2202   }
2203 
2204   bool is_compact() {
2205     return _length <= 0;
2206   }
2207 
2208   unsigned int compute_hash() {
2209     int hash = 0;
2210     for (int i = 0; i < length(); i++) {
2211       int v = value(i);
2212       hash = (hash << 8) ^ v ^ (hash >> 5);
2213     }
2214     return (unsigned int)hash;
2215   }
2216 
2217   const char* as_string() {
2218     stringStream st;
2219     st.print("0x");
2220     for (int i = 0; i < length(); i++) {
2221       st.print("%08x", value(i));
2222     }
2223     return st.as_string();
2224   }
2225 
2226   bool equals(AdapterFingerPrint* other) {
2227     if (other->_length != _length) {
2228       return false;
2229     }
2230     if (_length < 0) {
2231       assert(_compact_int_count == 3, "else change next line");
2232       return _value._compact[0] == other->_value._compact[0] &&
2233              _value._compact[1] == other->_value._compact[1] &&
2234              _value._compact[2] == other->_value._compact[2];
2235     } else {
2236       for (int i = 0; i < _length; i++) {
2237         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2238           return false;
2239         }
2240       }
2241     }
2242     return true;
2243   }
2244 };
2245 
2246 
2247 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2248 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2249   friend class AdapterHandlerTableIterator;
2250 
2251  private:
2252 
2253 #ifndef PRODUCT
2254   static int _lookups; // number of calls to lookup
2255   static int _buckets; // number of buckets checked
2256   static int _equals;  // number of buckets checked with matching hash
2257   static int _hits;    // number of successful lookups
2258   static int _compact; // number of equals calls with compact signature
2259 #endif
2260 
2261   AdapterHandlerEntry* bucket(int i) {
2262     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2263   }
2264 
2265  public:
2266   AdapterHandlerTable()
2267     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2268 
2269   // Create a new entry suitable for insertion in the table
2270   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2271     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2272     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2273     return entry;
2274   }
2275 
2276   // Insert an entry into the table
2277   void add(AdapterHandlerEntry* entry) {
2278     int index = hash_to_index(entry->hash());
2279     add_entry(index, entry);
2280   }
2281 
2282   void free_entry(AdapterHandlerEntry* entry) {
2283     entry->deallocate();
2284     BasicHashtable<mtCode>::free_entry(entry);
2285   }
2286 
2287   // Find a entry with the same fingerprint if it exists
2288   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2289     NOT_PRODUCT(_lookups++);
2290     AdapterFingerPrint fp(total_args_passed, sig_bt);
2291     unsigned int hash = fp.compute_hash();
2292     int index = hash_to_index(hash);
2293     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2294       NOT_PRODUCT(_buckets++);
2295       if (e->hash() == hash) {
2296         NOT_PRODUCT(_equals++);
2297         if (fp.equals(e->fingerprint())) {
2298 #ifndef PRODUCT
2299           if (fp.is_compact()) _compact++;
2300           _hits++;
2301 #endif
2302           return e;
2303         }
2304       }
2305     }
2306     return NULL;
2307   }
2308 
2309 #ifndef PRODUCT
2310   void print_statistics() {
2311     ResourceMark rm;
2312     int longest = 0;
2313     int empty = 0;
2314     int total = 0;
2315     int nonempty = 0;
2316     for (int index = 0; index < table_size(); index++) {
2317       int count = 0;
2318       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2319         count++;
2320       }
2321       if (count != 0) nonempty++;
2322       if (count == 0) empty++;
2323       if (count > longest) longest = count;
2324       total += count;
2325     }
2326     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2327                   empty, longest, total, total / (double)nonempty);
2328     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2329                   _lookups, _buckets, _equals, _hits, _compact);
2330   }
2331 #endif
2332 };
2333 
2334 
2335 #ifndef PRODUCT
2336 
2337 int AdapterHandlerTable::_lookups;
2338 int AdapterHandlerTable::_buckets;
2339 int AdapterHandlerTable::_equals;
2340 int AdapterHandlerTable::_hits;
2341 int AdapterHandlerTable::_compact;
2342 
2343 #endif
2344 
2345 class AdapterHandlerTableIterator : public StackObj {
2346  private:
2347   AdapterHandlerTable* _table;
2348   int _index;
2349   AdapterHandlerEntry* _current;
2350 
2351   void scan() {
2352     while (_index < _table->table_size()) {
2353       AdapterHandlerEntry* a = _table->bucket(_index);
2354       _index++;
2355       if (a != NULL) {
2356         _current = a;
2357         return;
2358       }
2359     }
2360   }
2361 
2362  public:
2363   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2364     scan();
2365   }
2366   bool has_next() {
2367     return _current != NULL;
2368   }
2369   AdapterHandlerEntry* next() {
2370     if (_current != NULL) {
2371       AdapterHandlerEntry* result = _current;
2372       _current = _current->next();
2373       if (_current == NULL) scan();
2374       return result;
2375     } else {
2376       return NULL;
2377     }
2378   }
2379 };
2380 
2381 
2382 // ---------------------------------------------------------------------------
2383 // Implementation of AdapterHandlerLibrary
2384 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2385 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2386 const int AdapterHandlerLibrary_size = 16*K;
2387 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2388 
2389 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2390   // Should be called only when AdapterHandlerLibrary_lock is active.
2391   if (_buffer == NULL) // Initialize lazily
2392       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2393   return _buffer;
2394 }
2395 
2396 extern "C" void unexpected_adapter_call() {
2397   ShouldNotCallThis();
2398 }
2399 
2400 void AdapterHandlerLibrary::initialize() {
2401   if (_adapters != NULL) return;
2402   _adapters = new AdapterHandlerTable();
2403 
2404   if (!CodeCacheExtensions::skip_compiler_support()) {
2405     // Create a special handler for abstract methods.  Abstract methods
2406     // are never compiled so an i2c entry is somewhat meaningless, but
2407     // throw AbstractMethodError just in case.
2408     // Pass wrong_method_abstract for the c2i transitions to return
2409     // AbstractMethodError for invalid invocations.
2410     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2411     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2412                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2413                                                                 wrong_method_abstract, wrong_method_abstract);
2414   } else {
2415     // Adapters are not supposed to be used.
2416     // Generate a special one to cause an error if used (and store this
2417     // singleton in place of the useless _abstract_method_error adapter).
2418     address entry = (address) &unexpected_adapter_call;
2419     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2420                                                                 entry,
2421                                                                 entry,
2422                                                                 entry);
2423 
2424   }
2425 }
2426 
2427 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2428                                                       address i2c_entry,
2429                                                       address c2i_entry,
2430                                                       address c2i_unverified_entry) {
2431   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2432 }
2433 
2434 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2435   // Use customized signature handler.  Need to lock around updates to
2436   // the AdapterHandlerTable (it is not safe for concurrent readers
2437   // and a single writer: this could be fixed if it becomes a
2438   // problem).
2439 
2440   ResourceMark rm;
2441 
2442   NOT_PRODUCT(int insts_size);
2443   AdapterBlob* new_adapter = NULL;
2444   AdapterHandlerEntry* entry = NULL;
2445   AdapterFingerPrint* fingerprint = NULL;
2446   {
2447     MutexLocker mu(AdapterHandlerLibrary_lock);
2448     // make sure data structure is initialized
2449     initialize();
2450 
2451     if (CodeCacheExtensions::skip_compiler_support()) {
2452       // adapters are useless and should not be used, including the
2453       // abstract_method_handler. However, some callers check that
2454       // an adapter was installed.
2455       // Return the singleton adapter, stored into _abstract_method_handler
2456       // and modified to cause an error if we ever call it.
2457       return _abstract_method_handler;
2458     }
2459 
2460     if (method->is_abstract()) {
2461       return _abstract_method_handler;
2462     }
2463 
2464     // Fill in the signature array, for the calling-convention call.
2465     int total_args_passed = method->size_of_parameters(); // All args on stack
2466 
2467     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2468     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2469     int i = 0;
2470     if (!method->is_static())  // Pass in receiver first
2471       sig_bt[i++] = T_OBJECT;
2472     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2473       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2474       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2475         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2476     }
2477     assert(i == total_args_passed, "");
2478 
2479     // Lookup method signature's fingerprint
2480     entry = _adapters->lookup(total_args_passed, sig_bt);
2481 
2482 #ifdef ASSERT
2483     AdapterHandlerEntry* shared_entry = NULL;
2484     // Start adapter sharing verification only after the VM is booted.
2485     if (VerifyAdapterSharing && (entry != NULL)) {
2486       shared_entry = entry;
2487       entry = NULL;
2488     }
2489 #endif
2490 
2491     if (entry != NULL) {
2492       return entry;
2493     }
2494 
2495     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2496     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2497 
2498     // Make a C heap allocated version of the fingerprint to store in the adapter
2499     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2500 
2501     // StubRoutines::code2() is initialized after this function can be called. As a result,
2502     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2503     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2504     // stub that ensure that an I2C stub is called from an interpreter frame.
2505     bool contains_all_checks = StubRoutines::code2() != NULL;
2506 
2507     // Create I2C & C2I handlers
2508     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2509     if (buf != NULL) {
2510       CodeBuffer buffer(buf);
2511       short buffer_locs[20];
2512       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2513                                              sizeof(buffer_locs)/sizeof(relocInfo));
2514 
2515       MacroAssembler _masm(&buffer);
2516       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2517                                                      total_args_passed,
2518                                                      comp_args_on_stack,
2519                                                      sig_bt,
2520                                                      regs,
2521                                                      fingerprint);
2522 #ifdef ASSERT
2523       if (VerifyAdapterSharing) {
2524         if (shared_entry != NULL) {
2525           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2526           // Release the one just created and return the original
2527           _adapters->free_entry(entry);
2528           return shared_entry;
2529         } else  {
2530           entry->save_code(buf->code_begin(), buffer.insts_size());
2531         }
2532       }
2533 #endif
2534 
2535       new_adapter = AdapterBlob::create(&buffer);
2536       NOT_PRODUCT(insts_size = buffer.insts_size());
2537     }
2538     if (new_adapter == NULL) {
2539       // CodeCache is full, disable compilation
2540       // Ought to log this but compile log is only per compile thread
2541       // and we're some non descript Java thread.
2542       return NULL; // Out of CodeCache space
2543     }
2544     entry->relocate(new_adapter->content_begin());
2545 #ifndef PRODUCT
2546     // debugging suppport
2547     if (PrintAdapterHandlers || PrintStubCode) {
2548       ttyLocker ttyl;
2549       entry->print_adapter_on(tty);
2550       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2551                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2552                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2553       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2554       if (Verbose || PrintStubCode) {
2555         address first_pc = entry->base_address();
2556         if (first_pc != NULL) {
2557           Disassembler::decode(first_pc, first_pc + insts_size);
2558           tty->cr();
2559         }
2560       }
2561     }
2562 #endif
2563     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2564     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2565     if (contains_all_checks || !VerifyAdapterCalls) {
2566       _adapters->add(entry);
2567     }
2568   }
2569   // Outside of the lock
2570   if (new_adapter != NULL) {
2571     char blob_id[256];
2572     jio_snprintf(blob_id,
2573                  sizeof(blob_id),
2574                  "%s(%s)@" PTR_FORMAT,
2575                  new_adapter->name(),
2576                  fingerprint->as_string(),
2577                  new_adapter->content_begin());
2578     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2579 
2580     if (JvmtiExport::should_post_dynamic_code_generated()) {
2581       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2582     }
2583   }
2584   return entry;
2585 }
2586 
2587 address AdapterHandlerEntry::base_address() {
2588   address base = _i2c_entry;
2589   if (base == NULL)  base = _c2i_entry;
2590   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2591   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2592   return base;
2593 }
2594 
2595 void AdapterHandlerEntry::relocate(address new_base) {
2596   address old_base = base_address();
2597   assert(old_base != NULL, "");
2598   ptrdiff_t delta = new_base - old_base;
2599   if (_i2c_entry != NULL)
2600     _i2c_entry += delta;
2601   if (_c2i_entry != NULL)
2602     _c2i_entry += delta;
2603   if (_c2i_unverified_entry != NULL)
2604     _c2i_unverified_entry += delta;
2605   assert(base_address() == new_base, "");
2606 }
2607 
2608 
2609 void AdapterHandlerEntry::deallocate() {
2610   delete _fingerprint;
2611 #ifdef ASSERT
2612   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2613 #endif
2614 }
2615 
2616 
2617 #ifdef ASSERT
2618 // Capture the code before relocation so that it can be compared
2619 // against other versions.  If the code is captured after relocation
2620 // then relative instructions won't be equivalent.
2621 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2622   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2623   _saved_code_length = length;
2624   memcpy(_saved_code, buffer, length);
2625 }
2626 
2627 
2628 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2629   if (length != _saved_code_length) {
2630     return false;
2631   }
2632 
2633   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2634 }
2635 #endif
2636 
2637 
2638 /**
2639  * Create a native wrapper for this native method.  The wrapper converts the
2640  * Java-compiled calling convention to the native convention, handles
2641  * arguments, and transitions to native.  On return from the native we transition
2642  * back to java blocking if a safepoint is in progress.
2643  */
2644 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2645   ResourceMark rm;
2646   nmethod* nm = NULL;
2647 
2648   assert(method->is_native(), "must be native");
2649   assert(method->is_method_handle_intrinsic() ||
2650          method->has_native_function(), "must have something valid to call!");
2651 
2652   {
2653     // Perform the work while holding the lock, but perform any printing outside the lock
2654     MutexLocker mu(AdapterHandlerLibrary_lock);
2655     // See if somebody beat us to it
2656     if (method->code() != NULL) {
2657       return;
2658     }
2659 
2660     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2661     assert(compile_id > 0, "Must generate native wrapper");
2662 
2663 
2664     ResourceMark rm;
2665     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2666     if (buf != NULL) {
2667       CodeBuffer buffer(buf);
2668       double locs_buf[20];
2669       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2670       MacroAssembler _masm(&buffer);
2671 
2672       // Fill in the signature array, for the calling-convention call.
2673       const int total_args_passed = method->size_of_parameters();
2674 
2675       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2676       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2677       int i=0;
2678       if (!method->is_static())  // Pass in receiver first
2679         sig_bt[i++] = T_OBJECT;
2680       SignatureStream ss(method->signature());
2681       for (; !ss.at_return_type(); ss.next()) {
2682         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2683         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2684           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2685       }
2686       assert(i == total_args_passed, "");
2687       BasicType ret_type = ss.type();
2688 
2689       // Now get the compiled-Java layout as input (or output) arguments.
2690       // NOTE: Stubs for compiled entry points of method handle intrinsics
2691       // are just trampolines so the argument registers must be outgoing ones.
2692       const bool is_outgoing = method->is_method_handle_intrinsic();
2693       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2694 
2695       // Generate the compiled-to-native wrapper code
2696       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2697 
2698       if (nm != NULL) {
2699         method->set_code(method, nm);
2700       }
2701     }
2702   } // Unlock AdapterHandlerLibrary_lock
2703 
2704 
2705   // Install the generated code.
2706   if (nm != NULL) {
2707     if (PrintCompilation) {
2708       ttyLocker ttyl;
2709       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2710     }
2711     nm->post_compiled_method_load_event();
2712   }
2713 }
2714 
2715 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2716   assert(thread == JavaThread::current(), "must be");
2717   // The code is about to enter a JNI lazy critical native method and
2718   // _needs_gc is true, so if this thread is already in a critical
2719   // section then just return, otherwise this thread should block
2720   // until needs_gc has been cleared.
2721   if (thread->in_critical()) {
2722     return;
2723   }
2724   // Lock and unlock a critical section to give the system a chance to block
2725   GC_locker::lock_critical(thread);
2726   GC_locker::unlock_critical(thread);
2727 JRT_END
2728 
2729 // -------------------------------------------------------------------------
2730 // Java-Java calling convention
2731 // (what you use when Java calls Java)
2732 
2733 //------------------------------name_for_receiver----------------------------------
2734 // For a given signature, return the VMReg for parameter 0.
2735 VMReg SharedRuntime::name_for_receiver() {
2736   VMRegPair regs;
2737   BasicType sig_bt = T_OBJECT;
2738   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2739   // Return argument 0 register.  In the LP64 build pointers
2740   // take 2 registers, but the VM wants only the 'main' name.
2741   return regs.first();
2742 }
2743 
2744 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2745   // This method is returning a data structure allocating as a
2746   // ResourceObject, so do not put any ResourceMarks in here.
2747   char *s = sig->as_C_string();
2748   int len = (int)strlen(s);
2749   s++; len--;                   // Skip opening paren
2750   char *t = s+len;
2751   while (*(--t) != ')');      // Find close paren
2752 
2753   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2754   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2755   int cnt = 0;
2756   if (has_receiver) {
2757     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2758   }
2759 
2760   while (s < t) {
2761     switch (*s++) {            // Switch on signature character
2762     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2763     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2764     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2765     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2766     case 'I': sig_bt[cnt++] = T_INT;     break;
2767     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2768     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2769     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2770     case 'V': sig_bt[cnt++] = T_VOID;    break;
2771     case 'L':                   // Oop
2772       while (*s++ != ';');   // Skip signature
2773       sig_bt[cnt++] = T_OBJECT;
2774       break;
2775     case '[': {                 // Array
2776       do {                      // Skip optional size
2777         while (*s >= '0' && *s <= '9') s++;
2778       } while (*s++ == '[');   // Nested arrays?
2779       // Skip element type
2780       if (s[-1] == 'L')
2781         while (*s++ != ';'); // Skip signature
2782       sig_bt[cnt++] = T_ARRAY;
2783       break;
2784     }
2785     default : ShouldNotReachHere();
2786     }
2787   }
2788 
2789   if (has_appendix) {
2790     sig_bt[cnt++] = T_OBJECT;
2791   }
2792 
2793   assert(cnt < 256, "grow table size");
2794 
2795   int comp_args_on_stack;
2796   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2797 
2798   // the calling convention doesn't count out_preserve_stack_slots so
2799   // we must add that in to get "true" stack offsets.
2800 
2801   if (comp_args_on_stack) {
2802     for (int i = 0; i < cnt; i++) {
2803       VMReg reg1 = regs[i].first();
2804       if (reg1->is_stack()) {
2805         // Yuck
2806         reg1 = reg1->bias(out_preserve_stack_slots());
2807       }
2808       VMReg reg2 = regs[i].second();
2809       if (reg2->is_stack()) {
2810         // Yuck
2811         reg2 = reg2->bias(out_preserve_stack_slots());
2812       }
2813       regs[i].set_pair(reg2, reg1);
2814     }
2815   }
2816 
2817   // results
2818   *arg_size = cnt;
2819   return regs;
2820 }
2821 
2822 // OSR Migration Code
2823 //
2824 // This code is used convert interpreter frames into compiled frames.  It is
2825 // called from very start of a compiled OSR nmethod.  A temp array is
2826 // allocated to hold the interesting bits of the interpreter frame.  All
2827 // active locks are inflated to allow them to move.  The displaced headers and
2828 // active interpreter locals are copied into the temp buffer.  Then we return
2829 // back to the compiled code.  The compiled code then pops the current
2830 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2831 // copies the interpreter locals and displaced headers where it wants.
2832 // Finally it calls back to free the temp buffer.
2833 //
2834 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2835 
2836 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2837 
2838   //
2839   // This code is dependent on the memory layout of the interpreter local
2840   // array and the monitors. On all of our platforms the layout is identical
2841   // so this code is shared. If some platform lays the their arrays out
2842   // differently then this code could move to platform specific code or
2843   // the code here could be modified to copy items one at a time using
2844   // frame accessor methods and be platform independent.
2845 
2846   frame fr = thread->last_frame();
2847   assert(fr.is_interpreted_frame(), "");
2848   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2849 
2850   // Figure out how many monitors are active.
2851   int active_monitor_count = 0;
2852   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2853        kptr < fr.interpreter_frame_monitor_begin();
2854        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2855     if (kptr->obj() != NULL) active_monitor_count++;
2856   }
2857 
2858   // QQQ we could place number of active monitors in the array so that compiled code
2859   // could double check it.
2860 
2861   Method* moop = fr.interpreter_frame_method();
2862   int max_locals = moop->max_locals();
2863   // Allocate temp buffer, 1 word per local & 2 per active monitor
2864   int buf_size_words = max_locals + active_monitor_count*2;
2865   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2866 
2867   // Copy the locals.  Order is preserved so that loading of longs works.
2868   // Since there's no GC I can copy the oops blindly.
2869   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2870   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2871                        (HeapWord*)&buf[0],
2872                        max_locals);
2873 
2874   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2875   int i = max_locals;
2876   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2877        kptr2 < fr.interpreter_frame_monitor_begin();
2878        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2879     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2880       BasicLock *lock = kptr2->lock();
2881       // Inflate so the displaced header becomes position-independent
2882       if (lock->displaced_header()->is_unlocked())
2883         ObjectSynchronizer::inflate_helper(kptr2->obj());
2884       // Now the displaced header is free to move
2885       buf[i++] = (intptr_t)lock->displaced_header();
2886       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2887     }
2888   }
2889   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
2890 
2891   return buf;
2892 JRT_END
2893 
2894 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2895   FREE_C_HEAP_ARRAY(intptr_t, buf);
2896 JRT_END
2897 
2898 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
2899   AdapterHandlerTableIterator iter(_adapters);
2900   while (iter.has_next()) {
2901     AdapterHandlerEntry* a = iter.next();
2902     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
2903   }
2904   return false;
2905 }
2906 
2907 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
2908   AdapterHandlerTableIterator iter(_adapters);
2909   while (iter.has_next()) {
2910     AdapterHandlerEntry* a = iter.next();
2911     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2912       st->print("Adapter for signature: ");
2913       a->print_adapter_on(tty);
2914       return;
2915     }
2916   }
2917   assert(false, "Should have found handler");
2918 }
2919 
2920 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2921   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2922                (intptr_t) this, fingerprint()->as_string(),
2923                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2924 
2925 }
2926 
2927 #ifndef PRODUCT
2928 
2929 void AdapterHandlerLibrary::print_statistics() {
2930   _adapters->print_statistics();
2931 }
2932 
2933 #endif /* PRODUCT */