/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "code/codeCache.hpp" #include "memory/resourceArea.hpp" #include "nativeInst_sparc.hpp" #include "oops/oop.inline.hpp" #include "runtime/handles.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "utilities/ostream.hpp" #ifdef COMPILER1 #include "c1/c1_Runtime1.hpp" #endif void NativeInstruction::set_data64_sethi(address instaddr, intptr_t x) { ResourceMark rm; CodeBuffer buf(instaddr, 10 * BytesPerInstWord ); MacroAssembler* _masm = new MacroAssembler(&buf); Register destreg; destreg = inv_rd(*(unsigned int *)instaddr); // Generate a the new sequence _masm->patchable_sethi(x, destreg); ICache::invalidate_range(instaddr, 7 * BytesPerInstWord); } void NativeInstruction::verify_data64_sethi(address instaddr, intptr_t x) { ResourceMark rm; unsigned char buffer[10 * BytesPerInstWord]; CodeBuffer buf(buffer, 10 * BytesPerInstWord); MacroAssembler masm(&buf); Register destreg = inv_rd(*(unsigned int *)instaddr); // Generate the proper sequence into a temporary buffer and compare // it with the original sequence. masm.patchable_sethi(x, destreg); int len = buffer - masm.pc(); for (int i = 0; i < len; i++) { assert(instaddr[i] == buffer[i], "instructions must match"); } } void NativeInstruction::verify() { // make sure code pattern is actually an instruction address address addr = addr_at(0); if (addr == 0 || ((intptr_t)addr & 3) != 0) { fatal("not an instruction address"); } } void NativeInstruction::print() { tty->print_cr(INTPTR_FORMAT ": 0x%x", p2i(addr_at(0)), long_at(0)); } void NativeInstruction::set_long_at(int offset, int i) { address addr = addr_at(offset); *(int*)addr = i; ICache::invalidate_word(addr); } void NativeInstruction::set_jlong_at(int offset, jlong i) { address addr = addr_at(offset); *(jlong*)addr = i; // Don't need to invalidate 2 words here, because // the flush instruction operates on doublewords. ICache::invalidate_word(addr); } void NativeInstruction::set_addr_at(int offset, address x) { address addr = addr_at(offset); assert( ((intptr_t)addr & (wordSize-1)) == 0, "set_addr_at bad address alignment"); *(uintptr_t*)addr = (uintptr_t)x; // Don't need to invalidate 2 words here in the 64-bit case, // because the flush instruction operates on doublewords. ICache::invalidate_word(addr); // The Intel code has this assertion for NativeCall::set_destination, // NativeMovConstReg::set_data, NativeMovRegMem::set_offset, // NativeJump::set_jump_destination, and NativePushImm32::set_data //assert (Patching_lock->owned_by_self(), "must hold lock to patch instruction") } bool NativeInstruction::is_zero_test(Register ®) { int x = long_at(0); Assembler::op3s temp = (Assembler::op3s) (Assembler::sub_op3 | Assembler::cc_bit_op3); if (is_op3(x, temp, Assembler::arith_op) && inv_immed(x) && inv_rd(x) == G0) { if (inv_rs1(x) == G0) { reg = inv_rs2(x); return true; } else if (inv_rs2(x) == G0) { reg = inv_rs1(x); return true; } } return false; } bool NativeInstruction::is_load_store_with_small_offset(Register reg) { int x = long_at(0); if (is_op(x, Assembler::ldst_op) && inv_rs1(x) == reg && inv_immed(x)) { return true; } return false; } void NativeCall::verify() { NativeInstruction::verify(); // make sure code pattern is actually a call instruction if (!is_op(long_at(0), Assembler::call_op)) { fatal("not a call"); } } void NativeCall::print() { tty->print_cr(INTPTR_FORMAT ": call " INTPTR_FORMAT, p2i(instruction_address()), p2i(destination())); } // MT-safe patching of a call instruction (and following word). // First patches the second word, and then atomicly replaces // the first word with the first new instruction word. // Other processors might briefly see the old first word // followed by the new second word. This is OK if the old // second word is harmless, and the new second word may be // harmlessly executed in the delay slot of the call. void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) { assert(Patching_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "concurrent code patching"); assert (instr_addr != NULL, "illegal address for code patching"); NativeCall* n_call = nativeCall_at (instr_addr); // checking that it is a call assert(NativeCall::instruction_size == 8, "wrong instruction size; must be 8"); int i0 = ((int*)code_buffer)[0]; int i1 = ((int*)code_buffer)[1]; int* contention_addr = (int*) n_call->addr_at(1*BytesPerInstWord); assert(inv_op(*contention_addr) == Assembler::arith_op || *contention_addr == nop_instruction(), "must not interfere with original call"); // The set_long_at calls do the ICacheInvalidate so we just need to do them in reverse order n_call->set_long_at(1*BytesPerInstWord, i1); n_call->set_long_at(0*BytesPerInstWord, i0); // NOTE: It is possible that another thread T will execute // only the second patched word. // In other words, since the original instruction is this // call patching_stub; nop (NativeCall) // and the new sequence from the buffer is this: // sethi %hi(K), %r; add %r, %lo(K), %r (NativeMovConstReg) // what T will execute is this: // call patching_stub; add %r, %lo(K), %r // thereby putting garbage into %r before calling the patching stub. // This is OK, because the patching stub ignores the value of %r. // Make sure the first-patched instruction, which may co-exist // briefly with the call, will do something harmless. assert(inv_op(*contention_addr) == Assembler::arith_op || *contention_addr == nop_instruction(), "must not interfere with original call"); } // Similar to replace_mt_safe, but just changes the destination. The // important thing is that free-running threads are able to execute this // call instruction at all times. Thus, the displacement field must be // instruction-word-aligned. This is always true on SPARC. // // Used in the runtime linkage of calls; see class CompiledIC. void NativeCall::set_destination_mt_safe(address dest) { assert(Patching_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "concurrent code patching"); // set_destination uses set_long_at which does the ICache::invalidate set_destination(dest); } // Code for unit testing implementation of NativeCall class void NativeCall::test() { #ifdef ASSERT ResourceMark rm; CodeBuffer cb("test", 100, 100); MacroAssembler* a = new MacroAssembler(&cb); NativeCall *nc; uint idx; int offsets[] = { 0x0, 0xfffffff0, 0x7ffffff0, 0x80000000, 0x20, 0x4000, }; VM_Version::allow_all(); a->call( a->pc(), relocInfo::none ); a->delayed()->nop(); nc = nativeCall_at( cb.insts_begin() ); nc->print(); nc = nativeCall_overwriting_at( nc->next_instruction_address() ); for (idx = 0; idx < ARRAY_SIZE(offsets); idx++) { nc->set_destination( cb.insts_begin() + offsets[idx] ); assert(nc->destination() == (cb.insts_begin() + offsets[idx]), "check unit test"); nc->print(); } nc = nativeCall_before( cb.insts_begin() + 8 ); nc->print(); VM_Version::revert(); #endif } // End code for unit testing implementation of NativeCall class //------------------------------------------------------------------- #ifdef _LP64 void NativeFarCall::set_destination(address dest) { // Address materialized in the instruction stream, so nothing to do. return; #if 0 // What we'd do if we really did want to change the destination if (destination() == dest) { return; } ResourceMark rm; CodeBuffer buf(addr_at(0), instruction_size + 1); MacroAssembler* _masm = new MacroAssembler(&buf); // Generate the new sequence AddressLiteral(dest); _masm->jumpl_to(dest, O7, O7); ICache::invalidate_range(addr_at(0), instruction_size ); #endif } void NativeFarCall::verify() { // make sure code pattern is actually a jumpl_to instruction assert((int)instruction_size == (int)NativeJump::instruction_size, "same as jump_to"); assert((int)jmpl_offset == (int)NativeMovConstReg::add_offset, "sethi size ok"); nativeJump_at(addr_at(0))->verify(); } bool NativeFarCall::is_call_at(address instr) { return nativeInstruction_at(instr)->is_sethi(); } void NativeFarCall::print() { tty->print_cr(INTPTR_FORMAT ": call " INTPTR_FORMAT, p2i(instruction_address()), p2i(destination())); } bool NativeFarCall::destination_is_compiled_verified_entry_point() { nmethod* callee = CodeCache::find_nmethod(destination()); if (callee == NULL) { return false; } else { return destination() == callee->verified_entry_point(); } } // MT-safe patching of a far call. void NativeFarCall::replace_mt_safe(address instr_addr, address code_buffer) { Unimplemented(); } // Code for unit testing implementation of NativeFarCall class void NativeFarCall::test() { Unimplemented(); } // End code for unit testing implementation of NativeFarCall class #endif // _LP64 //------------------------------------------------------------------- void NativeMovConstReg::verify() { NativeInstruction::verify(); // make sure code pattern is actually a "set_metadata" synthetic instruction // see MacroAssembler::set_oop() int i0 = long_at(sethi_offset); int i1 = long_at(add_offset); // verify the pattern "sethi %hi22(imm), reg ; add reg, %lo10(imm), reg" Register rd = inv_rd(i0); #ifndef _LP64 if (!(is_op2(i0, Assembler::sethi_op2) && rd != G0 && is_op3(i1, Assembler::add_op3, Assembler::arith_op) && inv_immed(i1) && (unsigned)get_simm13(i1) < (1 << 10) && rd == inv_rs1(i1) && rd == inv_rd(i1))) { fatal("not a set_metadata"); } #else if (!is_op2(i0, Assembler::sethi_op2) && rd != G0 ) { fatal("not a set_metadata"); } #endif } void NativeMovConstReg::print() { tty->print_cr(INTPTR_FORMAT ": mov reg, " INTPTR_FORMAT, p2i(instruction_address()), data()); } #ifdef _LP64 intptr_t NativeMovConstReg::data() const { return data64(addr_at(sethi_offset), long_at(add_offset)); } #else intptr_t NativeMovConstReg::data() const { return data32(long_at(sethi_offset), long_at(add_offset)); } #endif void NativeMovConstReg::set_data(intptr_t x) { #ifdef _LP64 set_data64_sethi(addr_at(sethi_offset), x); #else set_long_at(sethi_offset, set_data32_sethi( long_at(sethi_offset), x)); #endif set_long_at(add_offset, set_data32_simm13( long_at(add_offset), x)); // also store the value into an oop_Relocation cell, if any CodeBlob* cb = CodeCache::find_blob(instruction_address()); nmethod* nm = cb ? cb->as_nmethod_or_null() : NULL; if (nm != NULL) { RelocIterator iter(nm, instruction_address(), next_instruction_address()); oop* oop_addr = NULL; Metadata** metadata_addr = NULL; while (iter.next()) { if (iter.type() == relocInfo::oop_type) { oop_Relocation *r = iter.oop_reloc(); if (oop_addr == NULL) { oop_addr = r->oop_addr(); *oop_addr = cast_to_oop(x); } else { assert(oop_addr == r->oop_addr(), "must be only one set-oop here"); } } if (iter.type() == relocInfo::metadata_type) { metadata_Relocation *r = iter.metadata_reloc(); if (metadata_addr == NULL) { metadata_addr = r->metadata_addr(); *metadata_addr = (Metadata*)x; } else { assert(metadata_addr == r->metadata_addr(), "must be only one set-metadata here"); } } } } } // Code for unit testing implementation of NativeMovConstReg class void NativeMovConstReg::test() { #ifdef ASSERT ResourceMark rm; CodeBuffer cb("test", 100, 100); MacroAssembler* a = new MacroAssembler(&cb); NativeMovConstReg* nm; uint idx; int offsets[] = { 0x0, 0x7fffffff, 0x80000000, 0xffffffff, 0x20, 4096, 4097, }; VM_Version::allow_all(); AddressLiteral al1(0xaaaabbbb, relocInfo::external_word_type); a->sethi(al1, I3); a->add(I3, al1.low10(), I3); AddressLiteral al2(0xccccdddd, relocInfo::external_word_type); a->sethi(al2, O2); a->add(O2, al2.low10(), O2); nm = nativeMovConstReg_at( cb.insts_begin() ); nm->print(); nm = nativeMovConstReg_at( nm->next_instruction_address() ); for (idx = 0; idx < ARRAY_SIZE(offsets); idx++) { nm->set_data( offsets[idx] ); assert(nm->data() == offsets[idx], "check unit test"); } nm->print(); VM_Version::revert(); #endif } // End code for unit testing implementation of NativeMovConstReg class //------------------------------------------------------------------- void NativeMovConstReg32::verify() { NativeInstruction::verify(); // make sure code pattern is actually a "set_metadata" synthetic instruction // see MacroAssembler::set_oop() int i0 = long_at(sethi_offset); int i1 = long_at(add_offset); // verify the pattern "sethi %hi22(imm), reg ; add reg, %lo10(imm), reg" Register rd = inv_rd(i0); if (!is_op2(i0, Assembler::sethi_op2) && rd != G0 ) { fatal("not a set_metadata"); } } void NativeMovConstReg32::print() { tty->print_cr(INTPTR_FORMAT ": mov reg, " INTPTR_FORMAT, instruction_address(), data()); } intptr_t NativeMovConstReg32::data() const { return data32(long_at(sethi_offset), long_at(add_offset)); } void NativeMovConstReg32::set_data(intptr_t x) { set_long_at(sethi_offset, set_data32_sethi( long_at(sethi_offset), x)); set_long_at(add_offset, set_data32_simm13( long_at(add_offset), x)); // also store the value into an oop_Relocation cell, if any CodeBlob* cb = CodeCache::find_blob(instruction_address()); nmethod* nm = cb ? cb->as_nmethod_or_null() : NULL; if (nm != NULL) { RelocIterator iter(nm, instruction_address(), next_instruction_address()); oop* oop_addr = NULL; Metadata** metadata_addr = NULL; while (iter.next()) { if (iter.type() == relocInfo::oop_type) { oop_Relocation *r = iter.oop_reloc(); if (oop_addr == NULL) { oop_addr = r->oop_addr(); *oop_addr = cast_to_oop(x); } else { assert(oop_addr == r->oop_addr(), "must be only one set-oop here"); } } if (iter.type() == relocInfo::metadata_type) { metadata_Relocation *r = iter.metadata_reloc(); if (metadata_addr == NULL) { metadata_addr = r->metadata_addr(); *metadata_addr = (Metadata*)x; } else { assert(metadata_addr == r->metadata_addr(), "must be only one set-metadata here"); } } } } } //------------------------------------------------------------------- void NativeMovConstRegPatching::verify() { NativeInstruction::verify(); // Make sure code pattern is sethi/nop/add. int i0 = long_at(sethi_offset); int i1 = long_at(nop_offset); int i2 = long_at(add_offset); assert((int)nop_offset == (int)NativeMovConstReg::add_offset, "sethi size ok"); // Verify the pattern "sethi %hi22(imm), reg; nop; add reg, %lo10(imm), reg" // The casual reader should note that on Sparc a nop is a special case if sethi // in which the destination register is %g0. Register rd0 = inv_rd(i0); Register rd1 = inv_rd(i1); if (!(is_op2(i0, Assembler::sethi_op2) && rd0 != G0 && is_op2(i1, Assembler::sethi_op2) && rd1 == G0 && // nop is a special case of sethi is_op3(i2, Assembler::add_op3, Assembler::arith_op) && inv_immed(i2) && (unsigned)get_simm13(i2) < (1 << 10) && rd0 == inv_rs1(i2) && rd0 == inv_rd(i2))) { fatal("not a set_metadata"); } } void NativeMovConstRegPatching::print() { tty->print_cr(INTPTR_FORMAT ": mov reg, 0x%x", p2i(instruction_address()), data()); } int NativeMovConstRegPatching::data() const { #ifdef _LP64 return data64(addr_at(sethi_offset), long_at(add_offset)); #else return data32(long_at(sethi_offset), long_at(add_offset)); #endif } void NativeMovConstRegPatching::set_data(int x) { #ifdef _LP64 set_data64_sethi(addr_at(sethi_offset), x); #else set_long_at(sethi_offset, set_data32_sethi(long_at(sethi_offset), x)); #endif set_long_at(add_offset, set_data32_simm13(long_at(add_offset), x)); // also store the value into an oop_Relocation cell, if any CodeBlob* cb = CodeCache::find_blob(instruction_address()); nmethod* nm = cb ? cb->as_nmethod_or_null() : NULL; if (nm != NULL) { RelocIterator iter(nm, instruction_address(), next_instruction_address()); oop* oop_addr = NULL; Metadata** metadata_addr = NULL; while (iter.next()) { if (iter.type() == relocInfo::oop_type) { oop_Relocation *r = iter.oop_reloc(); if (oop_addr == NULL) { oop_addr = r->oop_addr(); *oop_addr = cast_to_oop(x); } else { assert(oop_addr == r->oop_addr(), "must be only one set-oop here"); } } if (iter.type() == relocInfo::metadata_type) { metadata_Relocation *r = iter.metadata_reloc(); if (metadata_addr == NULL) { metadata_addr = r->metadata_addr(); *metadata_addr = (Metadata*)x; } else { assert(metadata_addr == r->metadata_addr(), "must be only one set-metadata here"); } } } } } // Code for unit testing implementation of NativeMovConstRegPatching class void NativeMovConstRegPatching::test() { #ifdef ASSERT ResourceMark rm; CodeBuffer cb("test", 100, 100); MacroAssembler* a = new MacroAssembler(&cb); NativeMovConstRegPatching* nm; uint idx; int offsets[] = { 0x0, 0x7fffffff, 0x80000000, 0xffffffff, 0x20, 4096, 4097, }; VM_Version::allow_all(); AddressLiteral al1(0xaaaabbbb, relocInfo::external_word_type); a->sethi(al1, I3); a->nop(); a->add(I3, al1.low10(), I3); AddressLiteral al2(0xccccdddd, relocInfo::external_word_type); a->sethi(al2, O2); a->nop(); a->add(O2, al2.low10(), O2); nm = nativeMovConstRegPatching_at( cb.insts_begin() ); nm->print(); nm = nativeMovConstRegPatching_at( nm->next_instruction_address() ); for (idx = 0; idx < ARRAY_SIZE(offsets); idx++) { nm->set_data( offsets[idx] ); assert(nm->data() == offsets[idx], "check unit test"); } nm->print(); VM_Version::revert(); #endif // ASSERT } // End code for unit testing implementation of NativeMovConstRegPatching class //------------------------------------------------------------------- void NativeMovRegMem::copy_instruction_to(address new_instruction_address) { Untested("copy_instruction_to"); int instruction_size = next_instruction_address() - instruction_address(); for (int i = 0; i < instruction_size; i += BytesPerInstWord) { *(int*)(new_instruction_address + i) = *(int*)(address(this) + i); } } void NativeMovRegMem::verify() { NativeInstruction::verify(); // make sure code pattern is actually a "ld" or "st" of some sort. int i0 = long_at(0); int op3 = inv_op3(i0); assert((int)add_offset == NativeMovConstReg::add_offset, "sethi size ok"); if (!(is_op(i0, Assembler::ldst_op) && inv_immed(i0) && 0 != (op3 < op3_ldst_int_limit ? (1 << op3 ) & (op3_mask_ld | op3_mask_st) : (1 << (op3 - op3_ldst_int_limit)) & (op3_mask_ldf | op3_mask_stf)))) { int i1 = long_at(ldst_offset); Register rd = inv_rd(i0); op3 = inv_op3(i1); if (!is_op(i1, Assembler::ldst_op) && rd == inv_rs2(i1) && 0 != (op3 < op3_ldst_int_limit ? (1 << op3 ) & (op3_mask_ld | op3_mask_st) : (1 << (op3 - op3_ldst_int_limit)) & (op3_mask_ldf | op3_mask_stf))) { fatal("not a ld* or st* op"); } } } void NativeMovRegMem::print() { if (is_immediate()) { // offset is a signed 13-bit immediate, so casting it to int will not lose significant bits tty->print_cr(INTPTR_FORMAT ": mov reg, [reg + %d]", p2i(instruction_address()), (int)offset()); } else { tty->print_cr(INTPTR_FORMAT ": mov reg, [reg + reg]", p2i(instruction_address())); } } // Code for unit testing implementation of NativeMovRegMem class void NativeMovRegMem::test() { #ifdef ASSERT ResourceMark rm; CodeBuffer cb("test", 1000, 1000); MacroAssembler* a = new MacroAssembler(&cb); NativeMovRegMem* nm; uint idx = 0; uint idx1; int offsets[] = { 0x0, 0xffffffff, 0x7fffffff, 0x80000000, 4096, 4097, 0x20, 0x4000, }; VM_Version::allow_all(); AddressLiteral al1(0xffffffff, relocInfo::external_word_type); AddressLiteral al2(0xaaaabbbb, relocInfo::external_word_type); a->ldsw( G5, al1.low10(), G4 ); idx++; a->sethi(al2, I3); a->add(I3, al2.low10(), I3); a->ldsw( G5, I3, G4 ); idx++; a->ldsb( G5, al1.low10(), G4 ); idx++; a->sethi(al2, I3); a->add(I3, al2.low10(), I3); a->ldsb( G5, I3, G4 ); idx++; a->ldsh( G5, al1.low10(), G4 ); idx++; a->sethi(al2, I3); a->add(I3, al2.low10(), I3); a->ldsh( G5, I3, G4 ); idx++; a->lduw( G5, al1.low10(), G4 ); idx++; a->sethi(al2, I3); a->add(I3, al2.low10(), I3); a->lduw( G5, I3, G4 ); idx++; a->ldub( G5, al1.low10(), G4 ); idx++; a->sethi(al2, I3); a->add(I3, al2.low10(), I3); a->ldub( G5, I3, G4 ); idx++; a->lduh( G5, al1.low10(), G4 ); idx++; a->sethi(al2, I3); a->add(I3, al2.low10(), I3); a->lduh( G5, I3, G4 ); idx++; a->ldx( G5, al1.low10(), G4 ); idx++; a->sethi(al2, I3); a->add(I3, al2.low10(), I3); a->ldx( G5, I3, G4 ); idx++; a->ldd( G5, al1.low10(), G4 ); idx++; a->sethi(al2, I3); a->add(I3, al2.low10(), I3); a->ldd( G5, I3, G4 ); idx++; a->ldf( FloatRegisterImpl::D, O2, -1, F14 ); idx++; a->sethi(al2, I3); a->add(I3, al2.low10(), I3); a->ldf( FloatRegisterImpl::S, O0, I3, F15 ); idx++; a->stw( G5, G4, al1.low10() ); idx++; a->sethi(al2, I3); a->add(I3, al2.low10(), I3); a->stw( G5, G4, I3 ); idx++; a->stb( G5, G4, al1.low10() ); idx++; a->sethi(al2, I3); a->add(I3, al2.low10(), I3); a->stb( G5, G4, I3 ); idx++; a->sth( G5, G4, al1.low10() ); idx++; a->sethi(al2, I3); a->add(I3, al2.low10(), I3); a->sth( G5, G4, I3 ); idx++; a->stx( G5, G4, al1.low10() ); idx++; a->sethi(al2, I3); a->add(I3, al2.low10(), I3); a->stx( G5, G4, I3 ); idx++; a->std( G5, G4, al1.low10() ); idx++; a->sethi(al2, I3); a->add(I3, al2.low10(), I3); a->std( G5, G4, I3 ); idx++; a->stf( FloatRegisterImpl::S, F18, O2, -1 ); idx++; a->sethi(al2, I3); a->add(I3, al2.low10(), I3); a->stf( FloatRegisterImpl::S, F15, O0, I3 ); idx++; nm = nativeMovRegMem_at( cb.insts_begin() ); nm->print(); nm->set_offset( low10(0) ); nm->print(); nm->add_offset_in_bytes( low10(0xbb) * wordSize ); nm->print(); while (--idx) { nm = nativeMovRegMem_at( nm->next_instruction_address() ); nm->print(); for (idx1 = 0; idx1 < ARRAY_SIZE(offsets); idx1++) { nm->set_offset( nm->is_immediate() ? low10(offsets[idx1]) : offsets[idx1] ); assert(nm->offset() == (nm->is_immediate() ? low10(offsets[idx1]) : offsets[idx1]), "check unit test"); nm->print(); } nm->add_offset_in_bytes( low10(0xbb) * wordSize ); nm->print(); } VM_Version::revert(); #endif // ASSERT } // End code for unit testing implementation of NativeMovRegMem class //-------------------------------------------------------------------------------- void NativeJump::verify() { NativeInstruction::verify(); int i0 = long_at(sethi_offset); int i1 = long_at(jmpl_offset); assert((int)jmpl_offset == (int)NativeMovConstReg::add_offset, "sethi size ok"); // verify the pattern "sethi %hi22(imm), treg ; jmpl treg, %lo10(imm), lreg" Register rd = inv_rd(i0); #ifndef _LP64 if (!(is_op2(i0, Assembler::sethi_op2) && rd != G0 && (is_op3(i1, Assembler::jmpl_op3, Assembler::arith_op) || (TraceJumps && is_op3(i1, Assembler::add_op3, Assembler::arith_op))) && inv_immed(i1) && (unsigned)get_simm13(i1) < (1 << 10) && rd == inv_rs1(i1))) { fatal("not a jump_to instruction"); } #else // In LP64, the jump instruction location varies for non relocatable // jumps, for example is could be sethi, xor, jmp instead of the // 7 instructions for sethi. So let's check sethi only. if (!is_op2(i0, Assembler::sethi_op2) && rd != G0 ) { fatal("not a jump_to instruction"); } #endif } void NativeJump::print() { tty->print_cr(INTPTR_FORMAT ": jmpl reg, " INTPTR_FORMAT, p2i(instruction_address()), p2i(jump_destination())); } // Code for unit testing implementation of NativeJump class void NativeJump::test() { #ifdef ASSERT ResourceMark rm; CodeBuffer cb("test", 100, 100); MacroAssembler* a = new MacroAssembler(&cb); NativeJump* nj; uint idx; int offsets[] = { 0x0, 0xffffffff, 0x7fffffff, 0x80000000, 4096, 4097, 0x20, 0x4000, }; VM_Version::allow_all(); AddressLiteral al(0x7fffbbbb, relocInfo::external_word_type); a->sethi(al, I3); a->jmpl(I3, al.low10(), G0, RelocationHolder::none); a->delayed()->nop(); a->sethi(al, I3); a->jmpl(I3, al.low10(), L3, RelocationHolder::none); a->delayed()->nop(); nj = nativeJump_at( cb.insts_begin() ); nj->print(); nj = nativeJump_at( nj->next_instruction_address() ); for (idx = 0; idx < ARRAY_SIZE(offsets); idx++) { nj->set_jump_destination( nj->instruction_address() + offsets[idx] ); assert(nj->jump_destination() == (nj->instruction_address() + offsets[idx]), "check unit test"); nj->print(); } VM_Version::revert(); #endif // ASSERT } // End code for unit testing implementation of NativeJump class void NativeJump::insert(address code_pos, address entry) { Unimplemented(); } // MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie) // The problem: jump_to is a 3-word instruction (including its delay slot). // Atomic write can be only with 1 word. void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) { // Here's one way to do it: Pre-allocate a three-word jump sequence somewhere // in the header of the nmethod, within a short branch's span of the patch point. // Set up the jump sequence using NativeJump::insert, and then use an annulled // unconditional branch at the target site (an atomic 1-word update). // Limitations: You can only patch nmethods, with any given nmethod patched at // most once, and the patch must be in the nmethod's header. // It's messy, but you can ask the CodeCache for the nmethod containing the // target address. // %%%%% For now, do something MT-stupid: ResourceMark rm; int code_size = 1 * BytesPerInstWord; CodeBuffer cb(verified_entry, code_size + 1); MacroAssembler* a = new MacroAssembler(&cb); a->ldsw(G0, 0, O7); // "ld" must agree with code in the signal handler ICache::invalidate_range(verified_entry, code_size); } void NativeIllegalInstruction::insert(address code_pos) { NativeIllegalInstruction* nii = (NativeIllegalInstruction*) nativeInstruction_at(code_pos); nii->set_long_at(0, illegal_instruction()); } static int illegal_instruction_bits = 0; int NativeInstruction::illegal_instruction() { if (illegal_instruction_bits == 0) { ResourceMark rm; char buf[40]; CodeBuffer cbuf((address)&buf[0], 20); MacroAssembler* a = new MacroAssembler(&cbuf); address ia = a->pc(); a->trap(ST_RESERVED_FOR_USER_0 + 1); int bits = *(int*)ia; assert(is_op3(bits, Assembler::trap_op3, Assembler::arith_op), "bad instruction"); illegal_instruction_bits = bits; assert(illegal_instruction_bits != 0, "oops"); } return illegal_instruction_bits; } static int ic_miss_trap_bits = 0; bool NativeInstruction::is_ic_miss_trap() { if (ic_miss_trap_bits == 0) { ResourceMark rm; char buf[40]; CodeBuffer cbuf((address)&buf[0], 20); MacroAssembler* a = new MacroAssembler(&cbuf); address ia = a->pc(); a->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0 + 2); int bits = *(int*)ia; assert(is_op3(bits, Assembler::trap_op3, Assembler::arith_op), "bad instruction"); ic_miss_trap_bits = bits; assert(ic_miss_trap_bits != 0, "oops"); } return long_at(0) == ic_miss_trap_bits; } bool NativeInstruction::is_illegal() { if (illegal_instruction_bits == 0) { return false; } return long_at(0) == illegal_instruction_bits; } void NativeGeneralJump::verify() { assert(((NativeInstruction *)this)->is_jump() || ((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction"); } void NativeGeneralJump::insert_unconditional(address code_pos, address entry) { Assembler::Condition condition = Assembler::always; int x = Assembler::op2(Assembler::br_op2) | Assembler::annul(false) | Assembler::cond(condition) | Assembler::wdisp((intptr_t)entry, (intptr_t)code_pos, 22); NativeGeneralJump* ni = (NativeGeneralJump*) nativeInstruction_at(code_pos); ni->set_long_at(0, x); } // MT-safe patching of a jmp instruction (and following word). // First patches the second word, and then atomicly replaces // the first word with the first new instruction word. // Other processors might briefly see the old first word // followed by the new second word. This is OK if the old // second word is harmless, and the new second word may be // harmlessly executed in the delay slot of the call. void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) { assert(Patching_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "concurrent code patching"); assert (instr_addr != NULL, "illegal address for code patching"); NativeGeneralJump* h_jump = nativeGeneralJump_at (instr_addr); // checking that it is a call assert(NativeGeneralJump::instruction_size == 8, "wrong instruction size; must be 8"); int i0 = ((int*)code_buffer)[0]; int i1 = ((int*)code_buffer)[1]; int* contention_addr = (int*) h_jump->addr_at(1*BytesPerInstWord); assert(inv_op(*contention_addr) == Assembler::arith_op || *contention_addr == nop_instruction(), "must not interfere with original call"); // The set_long_at calls do the ICacheInvalidate so we just need to do them in reverse order h_jump->set_long_at(1*BytesPerInstWord, i1); h_jump->set_long_at(0*BytesPerInstWord, i0); // NOTE: It is possible that another thread T will execute // only the second patched word. // In other words, since the original instruction is this // jmp patching_stub; nop (NativeGeneralJump) // and the new sequence from the buffer is this: // sethi %hi(K), %r; add %r, %lo(K), %r (NativeMovConstReg) // what T will execute is this: // jmp patching_stub; add %r, %lo(K), %r // thereby putting garbage into %r before calling the patching stub. // This is OK, because the patching stub ignores the value of %r. // Make sure the first-patched instruction, which may co-exist // briefly with the call, will do something harmless. assert(inv_op(*contention_addr) == Assembler::arith_op || *contention_addr == nop_instruction(), "must not interfere with original call"); }