1 /*
   2  * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
  26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "memory/universe.hpp"
  30 #include "oops/method.hpp"
  31 #include "oops/oop.hpp"
  32 #include "runtime/orderAccess.hpp"
  33 
  34 class BytecodeStream;
  35 class KlassSizeStats;
  36 
  37 // The MethodData object collects counts and other profile information
  38 // during zeroth-tier (interpretive) and first-tier execution.
  39 // The profile is used later by compilation heuristics.  Some heuristics
  40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  41 // optimization often has a down-side, a corner case that it handles
  42 // poorly, but which is thought to be rare.  The profile provides
  43 // evidence of this rarity for a given method or even BCI.  It allows
  44 // the compiler to back out of the optimization at places where it
  45 // has historically been a poor choice.  Other heuristics try to use
  46 // specific information gathered about types observed at a given site.
  47 //
  48 // All data in the profile is approximate.  It is expected to be accurate
  49 // on the whole, but the system expects occasional inaccuraces, due to
  50 // counter overflow, multiprocessor races during data collection, space
  51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  52 // optimization quality but will not affect correctness.  Also, each MDO
  53 // is marked with its birth-date ("creation_mileage") which can be used
  54 // to assess the quality ("maturity") of its data.
  55 //
  56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  57 // state.  Also, certain recorded per-BCI events are given one-bit counters
  58 // which overflow to a saturated state which applied to all counters at
  59 // that BCI.  In other words, there is a small lattice which approximates
  60 // the ideal of an infinite-precision counter for each event at each BCI,
  61 // and the lattice quickly "bottoms out" in a state where all counters
  62 // are taken to be indefinitely large.
  63 //
  64 // The reader will find many data races in profile gathering code, starting
  65 // with invocation counter incrementation.  None of these races harm correct
  66 // execution of the compiled code.
  67 
  68 // forward decl
  69 class ProfileData;
  70 
  71 // DataLayout
  72 //
  73 // Overlay for generic profiling data.
  74 class DataLayout VALUE_OBJ_CLASS_SPEC {
  75   friend class VMStructs;
  76 
  77 private:
  78   // Every data layout begins with a header.  This header
  79   // contains a tag, which is used to indicate the size/layout
  80   // of the data, 4 bits of flags, which can be used in any way,
  81   // 4 bits of trap history (none/one reason/many reasons),
  82   // and a bci, which is used to tie this piece of data to a
  83   // specific bci in the bytecodes.
  84   union {
  85     intptr_t _bits;
  86     struct {
  87       u1 _tag;
  88       u1 _flags;
  89       u2 _bci;
  90     } _struct;
  91   } _header;
  92 
  93   // The data layout has an arbitrary number of cells, each sized
  94   // to accomodate a pointer or an integer.
  95   intptr_t _cells[1];
  96 
  97   // Some types of data layouts need a length field.
  98   static bool needs_array_len(u1 tag);
  99 
 100 public:
 101   enum {
 102     counter_increment = 1
 103   };
 104 
 105   enum {
 106     cell_size = sizeof(intptr_t)
 107   };
 108 
 109   // Tag values
 110   enum {
 111     no_tag,
 112     bit_data_tag,
 113     counter_data_tag,
 114     jump_data_tag,
 115     receiver_type_data_tag,
 116     virtual_call_data_tag,
 117     ret_data_tag,
 118     branch_data_tag,
 119     multi_branch_data_tag,
 120     arg_info_data_tag,
 121     call_type_data_tag,
 122     virtual_call_type_data_tag,
 123     parameters_type_data_tag,
 124     speculative_trap_data_tag
 125   };
 126 
 127   enum {
 128     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
 129     // The trap state breaks down further as [recompile:1 | reason:3].
 130     // This further breakdown is defined in deoptimization.cpp.
 131     // See Deoptimization::trap_state_reason for an assert that
 132     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 133     //
 134     // The trap_state is collected only if ProfileTraps is true.
 135     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
 136     trap_shift = BitsPerByte - trap_bits,
 137     trap_mask = right_n_bits(trap_bits),
 138     trap_mask_in_place = (trap_mask << trap_shift),
 139     flag_limit = trap_shift,
 140     flag_mask = right_n_bits(flag_limit),
 141     first_flag = 0
 142   };
 143 
 144   // Size computation
 145   static int header_size_in_bytes() {
 146     return cell_size;
 147   }
 148   static int header_size_in_cells() {
 149     return 1;
 150   }
 151 
 152   static int compute_size_in_bytes(int cell_count) {
 153     return header_size_in_bytes() + cell_count * cell_size;
 154   }
 155 
 156   // Initialization
 157   void initialize(u1 tag, u2 bci, int cell_count);
 158 
 159   // Accessors
 160   u1 tag() {
 161     return _header._struct._tag;
 162   }
 163 
 164   // Return a few bits of trap state.  Range is [0..trap_mask].
 165   // The state tells if traps with zero, one, or many reasons have occurred.
 166   // It also tells whether zero or many recompilations have occurred.
 167   // The associated trap histogram in the MDO itself tells whether
 168   // traps are common or not.  If a BCI shows that a trap X has
 169   // occurred, and the MDO shows N occurrences of X, we make the
 170   // simplifying assumption that all N occurrences can be blamed
 171   // on that BCI.
 172   int trap_state() const {
 173     return ((_header._struct._flags >> trap_shift) & trap_mask);
 174   }
 175 
 176   void set_trap_state(int new_state) {
 177     assert(ProfileTraps, "used only under +ProfileTraps");
 178     uint old_flags = (_header._struct._flags & flag_mask);
 179     _header._struct._flags = (new_state << trap_shift) | old_flags;
 180   }
 181 
 182   u1 flags() const {
 183     return _header._struct._flags;
 184   }
 185 
 186   u2 bci() const {
 187     return _header._struct._bci;
 188   }
 189 
 190   void set_header(intptr_t value) {
 191     _header._bits = value;
 192   }
 193   intptr_t header() {
 194     return _header._bits;
 195   }
 196   void set_cell_at(int index, intptr_t value) {
 197     _cells[index] = value;
 198   }
 199   void release_set_cell_at(int index, intptr_t value) {
 200     OrderAccess::release_store_ptr(&_cells[index], value);
 201   }
 202   intptr_t cell_at(int index) const {
 203     return _cells[index];
 204   }
 205 
 206   void set_flag_at(int flag_number) {
 207     assert(flag_number < flag_limit, "oob");
 208     _header._struct._flags |= (0x1 << flag_number);
 209   }
 210   bool flag_at(int flag_number) const {
 211     assert(flag_number < flag_limit, "oob");
 212     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 213   }
 214 
 215   // Low-level support for code generation.
 216   static ByteSize header_offset() {
 217     return byte_offset_of(DataLayout, _header);
 218   }
 219   static ByteSize tag_offset() {
 220     return byte_offset_of(DataLayout, _header._struct._tag);
 221   }
 222   static ByteSize flags_offset() {
 223     return byte_offset_of(DataLayout, _header._struct._flags);
 224   }
 225   static ByteSize bci_offset() {
 226     return byte_offset_of(DataLayout, _header._struct._bci);
 227   }
 228   static ByteSize cell_offset(int index) {
 229     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
 230   }
 231 #ifdef CC_INTERP
 232   static int cell_offset_in_bytes(int index) {
 233     return (int)offset_of(DataLayout, _cells[index]);
 234   }
 235 #endif // CC_INTERP
 236   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 237   static int flag_number_to_byte_constant(int flag_number) {
 238     assert(0 <= flag_number && flag_number < flag_limit, "oob");
 239     DataLayout temp; temp.set_header(0);
 240     temp.set_flag_at(flag_number);
 241     return temp._header._struct._flags;
 242   }
 243   // Return a value which, when or-ed as a word into _header, sets the flag.
 244   static intptr_t flag_mask_to_header_mask(int byte_constant) {
 245     DataLayout temp; temp.set_header(0);
 246     temp._header._struct._flags = byte_constant;
 247     return temp._header._bits;
 248   }
 249 
 250   ProfileData* data_in();
 251 
 252   // GC support
 253   void clean_weak_klass_links(BoolObjectClosure* cl);
 254 
 255   // Redefinition support
 256   void clean_weak_method_links();
 257   DEBUG_ONLY(void verify_clean_weak_method_links();)
 258 };
 259 
 260 
 261 // ProfileData class hierarchy
 262 class ProfileData;
 263 class   BitData;
 264 class     CounterData;
 265 class       ReceiverTypeData;
 266 class         VirtualCallData;
 267 class           VirtualCallTypeData;
 268 class       RetData;
 269 class       CallTypeData;
 270 class   JumpData;
 271 class     BranchData;
 272 class   ArrayData;
 273 class     MultiBranchData;
 274 class     ArgInfoData;
 275 class     ParametersTypeData;
 276 class   SpeculativeTrapData;
 277 
 278 // ProfileData
 279 //
 280 // A ProfileData object is created to refer to a section of profiling
 281 // data in a structured way.
 282 class ProfileData : public ResourceObj {
 283   friend class TypeEntries;
 284   friend class ReturnTypeEntry;
 285   friend class TypeStackSlotEntries;
 286 private:
 287   enum {
 288     tab_width_one = 16,
 289     tab_width_two = 36
 290   };
 291 
 292   // This is a pointer to a section of profiling data.
 293   DataLayout* _data;
 294 
 295   char* print_data_on_helper(const MethodData* md) const;
 296 
 297 protected:
 298   DataLayout* data() { return _data; }
 299   const DataLayout* data() const { return _data; }
 300 
 301   enum {
 302     cell_size = DataLayout::cell_size
 303   };
 304 
 305 public:
 306   // How many cells are in this?
 307   virtual int cell_count() const {
 308     ShouldNotReachHere();
 309     return -1;
 310   }
 311 
 312   // Return the size of this data.
 313   int size_in_bytes() {
 314     return DataLayout::compute_size_in_bytes(cell_count());
 315   }
 316 
 317 protected:
 318   // Low-level accessors for underlying data
 319   void set_intptr_at(int index, intptr_t value) {
 320     assert(0 <= index && index < cell_count(), "oob");
 321     data()->set_cell_at(index, value);
 322   }
 323   void release_set_intptr_at(int index, intptr_t value) {
 324     assert(0 <= index && index < cell_count(), "oob");
 325     data()->release_set_cell_at(index, value);
 326   }
 327   intptr_t intptr_at(int index) const {
 328     assert(0 <= index && index < cell_count(), "oob");
 329     return data()->cell_at(index);
 330   }
 331   void set_uint_at(int index, uint value) {
 332     set_intptr_at(index, (intptr_t) value);
 333   }
 334   void release_set_uint_at(int index, uint value) {
 335     release_set_intptr_at(index, (intptr_t) value);
 336   }
 337   uint uint_at(int index) const {
 338     return (uint)intptr_at(index);
 339   }
 340   void set_int_at(int index, int value) {
 341     set_intptr_at(index, (intptr_t) value);
 342   }
 343   void release_set_int_at(int index, int value) {
 344     release_set_intptr_at(index, (intptr_t) value);
 345   }
 346   int int_at(int index) const {
 347     return (int)intptr_at(index);
 348   }
 349   int int_at_unchecked(int index) const {
 350     return (int)data()->cell_at(index);
 351   }
 352   void set_oop_at(int index, oop value) {
 353     set_intptr_at(index, cast_from_oop<intptr_t>(value));
 354   }
 355   oop oop_at(int index) const {
 356     return cast_to_oop(intptr_at(index));
 357   }
 358 
 359   void set_flag_at(int flag_number) {
 360     data()->set_flag_at(flag_number);
 361   }
 362   bool flag_at(int flag_number) const {
 363     return data()->flag_at(flag_number);
 364   }
 365 
 366   // two convenient imports for use by subclasses:
 367   static ByteSize cell_offset(int index) {
 368     return DataLayout::cell_offset(index);
 369   }
 370   static int flag_number_to_byte_constant(int flag_number) {
 371     return DataLayout::flag_number_to_byte_constant(flag_number);
 372   }
 373 
 374   ProfileData(DataLayout* data) {
 375     _data = data;
 376   }
 377 
 378 #ifdef CC_INTERP
 379   // Static low level accessors for DataLayout with ProfileData's semantics.
 380 
 381   static int cell_offset_in_bytes(int index) {
 382     return DataLayout::cell_offset_in_bytes(index);
 383   }
 384 
 385   static void increment_uint_at_no_overflow(DataLayout* layout, int index,
 386                                             int inc = DataLayout::counter_increment) {
 387     uint count = ((uint)layout->cell_at(index)) + inc;
 388     if (count == 0) return;
 389     layout->set_cell_at(index, (intptr_t) count);
 390   }
 391 
 392   static int int_at(DataLayout* layout, int index) {
 393     return (int)layout->cell_at(index);
 394   }
 395 
 396   static int uint_at(DataLayout* layout, int index) {
 397     return (uint)layout->cell_at(index);
 398   }
 399 
 400   static oop oop_at(DataLayout* layout, int index) {
 401     return cast_to_oop(layout->cell_at(index));
 402   }
 403 
 404   static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
 405     layout->set_cell_at(index, (intptr_t) value);
 406   }
 407 
 408   static void set_flag_at(DataLayout* layout, int flag_number) {
 409     layout->set_flag_at(flag_number);
 410   }
 411 #endif // CC_INTERP
 412 
 413 public:
 414   // Constructor for invalid ProfileData.
 415   ProfileData();
 416 
 417   u2 bci() const {
 418     return data()->bci();
 419   }
 420 
 421   address dp() {
 422     return (address)_data;
 423   }
 424 
 425   int trap_state() const {
 426     return data()->trap_state();
 427   }
 428   void set_trap_state(int new_state) {
 429     data()->set_trap_state(new_state);
 430   }
 431 
 432   // Type checking
 433   virtual bool is_BitData()         const { return false; }
 434   virtual bool is_CounterData()     const { return false; }
 435   virtual bool is_JumpData()        const { return false; }
 436   virtual bool is_ReceiverTypeData()const { return false; }
 437   virtual bool is_VirtualCallData() const { return false; }
 438   virtual bool is_RetData()         const { return false; }
 439   virtual bool is_BranchData()      const { return false; }
 440   virtual bool is_ArrayData()       const { return false; }
 441   virtual bool is_MultiBranchData() const { return false; }
 442   virtual bool is_ArgInfoData()     const { return false; }
 443   virtual bool is_CallTypeData()    const { return false; }
 444   virtual bool is_VirtualCallTypeData()const { return false; }
 445   virtual bool is_ParametersTypeData() const { return false; }
 446   virtual bool is_SpeculativeTrapData()const { return false; }
 447 
 448 
 449   BitData* as_BitData() const {
 450     assert(is_BitData(), "wrong type");
 451     return is_BitData()         ? (BitData*)        this : NULL;
 452   }
 453   CounterData* as_CounterData() const {
 454     assert(is_CounterData(), "wrong type");
 455     return is_CounterData()     ? (CounterData*)    this : NULL;
 456   }
 457   JumpData* as_JumpData() const {
 458     assert(is_JumpData(), "wrong type");
 459     return is_JumpData()        ? (JumpData*)       this : NULL;
 460   }
 461   ReceiverTypeData* as_ReceiverTypeData() const {
 462     assert(is_ReceiverTypeData(), "wrong type");
 463     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 464   }
 465   VirtualCallData* as_VirtualCallData() const {
 466     assert(is_VirtualCallData(), "wrong type");
 467     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 468   }
 469   RetData* as_RetData() const {
 470     assert(is_RetData(), "wrong type");
 471     return is_RetData()         ? (RetData*)        this : NULL;
 472   }
 473   BranchData* as_BranchData() const {
 474     assert(is_BranchData(), "wrong type");
 475     return is_BranchData()      ? (BranchData*)     this : NULL;
 476   }
 477   ArrayData* as_ArrayData() const {
 478     assert(is_ArrayData(), "wrong type");
 479     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 480   }
 481   MultiBranchData* as_MultiBranchData() const {
 482     assert(is_MultiBranchData(), "wrong type");
 483     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 484   }
 485   ArgInfoData* as_ArgInfoData() const {
 486     assert(is_ArgInfoData(), "wrong type");
 487     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 488   }
 489   CallTypeData* as_CallTypeData() const {
 490     assert(is_CallTypeData(), "wrong type");
 491     return is_CallTypeData() ? (CallTypeData*)this : NULL;
 492   }
 493   VirtualCallTypeData* as_VirtualCallTypeData() const {
 494     assert(is_VirtualCallTypeData(), "wrong type");
 495     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
 496   }
 497   ParametersTypeData* as_ParametersTypeData() const {
 498     assert(is_ParametersTypeData(), "wrong type");
 499     return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
 500   }
 501   SpeculativeTrapData* as_SpeculativeTrapData() const {
 502     assert(is_SpeculativeTrapData(), "wrong type");
 503     return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
 504   }
 505 
 506 
 507   // Subclass specific initialization
 508   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
 509 
 510   // GC support
 511   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
 512 
 513   // Redefinition support
 514   virtual void clean_weak_method_links() {}
 515   DEBUG_ONLY(virtual void verify_clean_weak_method_links() {})
 516 
 517   // CI translation: ProfileData can represent both MethodDataOop data
 518   // as well as CIMethodData data. This function is provided for translating
 519   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 520   // most ProfileData don't require any translation, so we provide the null
 521   // translation here, and the required translators are in the ci subclasses.
 522   virtual void translate_from(const ProfileData* data) {}
 523 
 524   virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
 525     ShouldNotReachHere();
 526   }
 527 
 528   void print_data_on(outputStream* st, const MethodData* md) const;
 529 
 530   void print_shared(outputStream* st, const char* name, const char* extra) const;
 531   void tab(outputStream* st, bool first = false) const;
 532 };
 533 
 534 // BitData
 535 //
 536 // A BitData holds a flag or two in its header.
 537 class BitData : public ProfileData {
 538   friend class VMStructs;
 539 protected:
 540   enum {
 541     // null_seen:
 542     //  saw a null operand (cast/aastore/instanceof)
 543       null_seen_flag              = DataLayout::first_flag + 0
 544 #if INCLUDE_JVMCI
 545     // bytecode threw any exception
 546     , exception_seen_flag         = null_seen_flag + 1
 547 #endif
 548   };
 549   enum { bit_cell_count = 0 };  // no additional data fields needed.
 550 public:
 551   BitData(DataLayout* layout) : ProfileData(layout) {
 552   }
 553 
 554   virtual bool is_BitData() const { return true; }
 555 
 556   static int static_cell_count() {
 557     return bit_cell_count;
 558   }
 559 
 560   virtual int cell_count() const {
 561     return static_cell_count();
 562   }
 563 
 564   // Accessor
 565 
 566   // The null_seen flag bit is specially known to the interpreter.
 567   // Consulting it allows the compiler to avoid setting up null_check traps.
 568   bool null_seen()     { return flag_at(null_seen_flag); }
 569   void set_null_seen()    { set_flag_at(null_seen_flag); }
 570 
 571 #if INCLUDE_JVMCI
 572   // true if an exception was thrown at the specific BCI
 573   bool exception_seen() { return flag_at(exception_seen_flag); }
 574   void set_exception_seen() { set_flag_at(exception_seen_flag); }
 575 #endif
 576 
 577   // Code generation support
 578   static int null_seen_byte_constant() {
 579     return flag_number_to_byte_constant(null_seen_flag);
 580   }
 581 
 582   static ByteSize bit_data_size() {
 583     return cell_offset(bit_cell_count);
 584   }
 585 
 586 #ifdef CC_INTERP
 587   static int bit_data_size_in_bytes() {
 588     return cell_offset_in_bytes(bit_cell_count);
 589   }
 590 
 591   static void set_null_seen(DataLayout* layout) {
 592     set_flag_at(layout, null_seen_flag);
 593   }
 594 
 595   static DataLayout* advance(DataLayout* layout) {
 596     return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
 597   }
 598 #endif // CC_INTERP
 599 
 600   void print_data_on(outputStream* st, const char* extra = NULL) const;
 601 };
 602 
 603 // CounterData
 604 //
 605 // A CounterData corresponds to a simple counter.
 606 class CounterData : public BitData {
 607   friend class VMStructs;
 608 protected:
 609   enum {
 610     count_off,
 611     counter_cell_count
 612   };
 613 public:
 614   CounterData(DataLayout* layout) : BitData(layout) {}
 615 
 616   virtual bool is_CounterData() const { return true; }
 617 
 618   static int static_cell_count() {
 619     return counter_cell_count;
 620   }
 621 
 622   virtual int cell_count() const {
 623     return static_cell_count();
 624   }
 625 
 626   // Direct accessor
 627   uint count() const {
 628     return uint_at(count_off);
 629   }
 630 
 631   // Code generation support
 632   static ByteSize count_offset() {
 633     return cell_offset(count_off);
 634   }
 635   static ByteSize counter_data_size() {
 636     return cell_offset(counter_cell_count);
 637   }
 638 
 639   void set_count(uint count) {
 640     set_uint_at(count_off, count);
 641   }
 642 
 643 #ifdef CC_INTERP
 644   static int counter_data_size_in_bytes() {
 645     return cell_offset_in_bytes(counter_cell_count);
 646   }
 647 
 648   static void increment_count_no_overflow(DataLayout* layout) {
 649     increment_uint_at_no_overflow(layout, count_off);
 650   }
 651 
 652   // Support counter decrementation at checkcast / subtype check failed.
 653   static void decrement_count(DataLayout* layout) {
 654     increment_uint_at_no_overflow(layout, count_off, -1);
 655   }
 656 
 657   static DataLayout* advance(DataLayout* layout) {
 658     return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
 659   }
 660 #endif // CC_INTERP
 661 
 662   void print_data_on(outputStream* st, const char* extra = NULL) const;
 663 };
 664 
 665 // JumpData
 666 //
 667 // A JumpData is used to access profiling information for a direct
 668 // branch.  It is a counter, used for counting the number of branches,
 669 // plus a data displacement, used for realigning the data pointer to
 670 // the corresponding target bci.
 671 class JumpData : public ProfileData {
 672   friend class VMStructs;
 673 protected:
 674   enum {
 675     taken_off_set,
 676     displacement_off_set,
 677     jump_cell_count
 678   };
 679 
 680   void set_displacement(int displacement) {
 681     set_int_at(displacement_off_set, displacement);
 682   }
 683 
 684 public:
 685   JumpData(DataLayout* layout) : ProfileData(layout) {
 686     assert(layout->tag() == DataLayout::jump_data_tag ||
 687       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 688   }
 689 
 690   virtual bool is_JumpData() const { return true; }
 691 
 692   static int static_cell_count() {
 693     return jump_cell_count;
 694   }
 695 
 696   virtual int cell_count() const {
 697     return static_cell_count();
 698   }
 699 
 700   // Direct accessor
 701   uint taken() const {
 702     return uint_at(taken_off_set);
 703   }
 704 
 705   void set_taken(uint cnt) {
 706     set_uint_at(taken_off_set, cnt);
 707   }
 708 
 709   // Saturating counter
 710   uint inc_taken() {
 711     uint cnt = taken() + 1;
 712     // Did we wrap? Will compiler screw us??
 713     if (cnt == 0) cnt--;
 714     set_uint_at(taken_off_set, cnt);
 715     return cnt;
 716   }
 717 
 718   int displacement() const {
 719     return int_at(displacement_off_set);
 720   }
 721 
 722   // Code generation support
 723   static ByteSize taken_offset() {
 724     return cell_offset(taken_off_set);
 725   }
 726 
 727   static ByteSize displacement_offset() {
 728     return cell_offset(displacement_off_set);
 729   }
 730 
 731 #ifdef CC_INTERP
 732   static void increment_taken_count_no_overflow(DataLayout* layout) {
 733     increment_uint_at_no_overflow(layout, taken_off_set);
 734   }
 735 
 736   static DataLayout* advance_taken(DataLayout* layout) {
 737     return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
 738   }
 739 
 740   static uint taken_count(DataLayout* layout) {
 741     return (uint) uint_at(layout, taken_off_set);
 742   }
 743 #endif // CC_INTERP
 744 
 745   // Specific initialization.
 746   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 747 
 748   void print_data_on(outputStream* st, const char* extra = NULL) const;
 749 };
 750 
 751 // Entries in a ProfileData object to record types: it can either be
 752 // none (no profile), unknown (conflicting profile data) or a klass if
 753 // a single one is seen. Whether a null reference was seen is also
 754 // recorded. No counter is associated with the type and a single type
 755 // is tracked (unlike VirtualCallData).
 756 class TypeEntries {
 757 
 758 public:
 759 
 760   // A single cell is used to record information for a type:
 761   // - the cell is initialized to 0
 762   // - when a type is discovered it is stored in the cell
 763   // - bit zero of the cell is used to record whether a null reference
 764   // was encountered or not
 765   // - bit 1 is set to record a conflict in the type information
 766 
 767   enum {
 768     null_seen = 1,
 769     type_mask = ~null_seen,
 770     type_unknown = 2,
 771     status_bits = null_seen | type_unknown,
 772     type_klass_mask = ~status_bits
 773   };
 774 
 775   // what to initialize a cell to
 776   static intptr_t type_none() {
 777     return 0;
 778   }
 779 
 780   // null seen = bit 0 set?
 781   static bool was_null_seen(intptr_t v) {
 782     return (v & null_seen) != 0;
 783   }
 784 
 785   // conflicting type information = bit 1 set?
 786   static bool is_type_unknown(intptr_t v) {
 787     return (v & type_unknown) != 0;
 788   }
 789 
 790   // not type information yet = all bits cleared, ignoring bit 0?
 791   static bool is_type_none(intptr_t v) {
 792     return (v & type_mask) == 0;
 793   }
 794 
 795   // recorded type: cell without bit 0 and 1
 796   static intptr_t klass_part(intptr_t v) {
 797     intptr_t r = v & type_klass_mask;
 798     return r;
 799   }
 800 
 801   // type recorded
 802   static Klass* valid_klass(intptr_t k) {
 803     if (!is_type_none(k) &&
 804         !is_type_unknown(k)) {
 805       Klass* res = (Klass*)klass_part(k);
 806       assert(res != NULL, "invalid");
 807       return res;
 808     } else {
 809       return NULL;
 810     }
 811   }
 812 
 813   static intptr_t with_status(intptr_t k, intptr_t in) {
 814     return k | (in & status_bits);
 815   }
 816 
 817   static intptr_t with_status(Klass* k, intptr_t in) {
 818     return with_status((intptr_t)k, in);
 819   }
 820 
 821   static void print_klass(outputStream* st, intptr_t k);
 822 
 823   // GC support
 824   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
 825 
 826 protected:
 827   // ProfileData object these entries are part of
 828   ProfileData* _pd;
 829   // offset within the ProfileData object where the entries start
 830   const int _base_off;
 831 
 832   TypeEntries(int base_off)
 833     : _base_off(base_off), _pd(NULL) {}
 834 
 835   void set_intptr_at(int index, intptr_t value) {
 836     _pd->set_intptr_at(index, value);
 837   }
 838 
 839   intptr_t intptr_at(int index) const {
 840     return _pd->intptr_at(index);
 841   }
 842 
 843 public:
 844   void set_profile_data(ProfileData* pd) {
 845     _pd = pd;
 846   }
 847 };
 848 
 849 // Type entries used for arguments passed at a call and parameters on
 850 // method entry. 2 cells per entry: one for the type encoded as in
 851 // TypeEntries and one initialized with the stack slot where the
 852 // profiled object is to be found so that the interpreter can locate
 853 // it quickly.
 854 class TypeStackSlotEntries : public TypeEntries {
 855 
 856 private:
 857   enum {
 858     stack_slot_entry,
 859     type_entry,
 860     per_arg_cell_count
 861   };
 862 
 863   // offset of cell for stack slot for entry i within ProfileData object
 864   int stack_slot_offset(int i) const {
 865     return _base_off + stack_slot_local_offset(i);
 866   }
 867 
 868   const int _number_of_entries;
 869 
 870   // offset of cell for type for entry i within ProfileData object
 871   int type_offset_in_cells(int i) const {
 872     return _base_off + type_local_offset(i);
 873   }
 874 
 875 public:
 876 
 877   TypeStackSlotEntries(int base_off, int nb_entries)
 878     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
 879 
 880   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
 881 
 882   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
 883 
 884   int number_of_entries() const { return _number_of_entries; }
 885 
 886   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
 887   static int stack_slot_local_offset(int i) {
 888     return i * per_arg_cell_count + stack_slot_entry;
 889   }
 890 
 891   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
 892   static int type_local_offset(int i) {
 893     return i * per_arg_cell_count + type_entry;
 894   }
 895 
 896   // stack slot for entry i
 897   uint stack_slot(int i) const {
 898     assert(i >= 0 && i < _number_of_entries, "oob");
 899     return _pd->uint_at(stack_slot_offset(i));
 900   }
 901 
 902   // set stack slot for entry i
 903   void set_stack_slot(int i, uint num) {
 904     assert(i >= 0 && i < _number_of_entries, "oob");
 905     _pd->set_uint_at(stack_slot_offset(i), num);
 906   }
 907 
 908   // type for entry i
 909   intptr_t type(int i) const {
 910     assert(i >= 0 && i < _number_of_entries, "oob");
 911     return _pd->intptr_at(type_offset_in_cells(i));
 912   }
 913 
 914   // set type for entry i
 915   void set_type(int i, intptr_t k) {
 916     assert(i >= 0 && i < _number_of_entries, "oob");
 917     _pd->set_intptr_at(type_offset_in_cells(i), k);
 918   }
 919 
 920   static ByteSize per_arg_size() {
 921     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
 922   }
 923 
 924   static int per_arg_count() {
 925     return per_arg_cell_count;
 926   }
 927 
 928   ByteSize type_offset(int i) const {
 929     return DataLayout::cell_offset(type_offset_in_cells(i));
 930   }
 931 
 932   // GC support
 933   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 934 
 935   void print_data_on(outputStream* st) const;
 936 };
 937 
 938 // Type entry used for return from a call. A single cell to record the
 939 // type.
 940 class ReturnTypeEntry : public TypeEntries {
 941 
 942 private:
 943   enum {
 944     cell_count = 1
 945   };
 946 
 947 public:
 948   ReturnTypeEntry(int base_off)
 949     : TypeEntries(base_off) {}
 950 
 951   void post_initialize() {
 952     set_type(type_none());
 953   }
 954 
 955   intptr_t type() const {
 956     return _pd->intptr_at(_base_off);
 957   }
 958 
 959   void set_type(intptr_t k) {
 960     _pd->set_intptr_at(_base_off, k);
 961   }
 962 
 963   static int static_cell_count() {
 964     return cell_count;
 965   }
 966 
 967   static ByteSize size() {
 968     return in_ByteSize(cell_count * DataLayout::cell_size);
 969   }
 970 
 971   ByteSize type_offset() {
 972     return DataLayout::cell_offset(_base_off);
 973   }
 974 
 975   // GC support
 976   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 977 
 978   void print_data_on(outputStream* st) const;
 979 };
 980 
 981 // Entries to collect type information at a call: contains arguments
 982 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
 983 // number of cells. Because the number of cells for the return type is
 984 // smaller than the number of cells for the type of an arguments, the
 985 // number of cells is used to tell how many arguments are profiled and
 986 // whether a return value is profiled. See has_arguments() and
 987 // has_return().
 988 class TypeEntriesAtCall {
 989 private:
 990   static int stack_slot_local_offset(int i) {
 991     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
 992   }
 993 
 994   static int argument_type_local_offset(int i) {
 995     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);
 996   }
 997 
 998 public:
 999 
1000   static int header_cell_count() {
1001     return 1;
1002   }
1003 
1004   static int cell_count_local_offset() {
1005     return 0;
1006   }
1007 
1008   static int compute_cell_count(BytecodeStream* stream);
1009 
1010   static void initialize(DataLayout* dl, int base, int cell_count) {
1011     int off = base + cell_count_local_offset();
1012     dl->set_cell_at(off, cell_count - base - header_cell_count());
1013   }
1014 
1015   static bool arguments_profiling_enabled();
1016   static bool return_profiling_enabled();
1017 
1018   // Code generation support
1019   static ByteSize cell_count_offset() {
1020     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
1021   }
1022 
1023   static ByteSize args_data_offset() {
1024     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
1025   }
1026 
1027   static ByteSize stack_slot_offset(int i) {
1028     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
1029   }
1030 
1031   static ByteSize argument_type_offset(int i) {
1032     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
1033   }
1034 
1035   static ByteSize return_only_size() {
1036     return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
1037   }
1038 
1039 };
1040 
1041 // CallTypeData
1042 //
1043 // A CallTypeData is used to access profiling information about a non
1044 // virtual call for which we collect type information about arguments
1045 // and return value.
1046 class CallTypeData : public CounterData {
1047 private:
1048   // entries for arguments if any
1049   TypeStackSlotEntries _args;
1050   // entry for return type if any
1051   ReturnTypeEntry _ret;
1052 
1053   int cell_count_global_offset() const {
1054     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1055   }
1056 
1057   // number of cells not counting the header
1058   int cell_count_no_header() const {
1059     return uint_at(cell_count_global_offset());
1060   }
1061 
1062   void check_number_of_arguments(int total) {
1063     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1064   }
1065 
1066 public:
1067   CallTypeData(DataLayout* layout) :
1068     CounterData(layout),
1069     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1070     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1071   {
1072     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
1073     // Some compilers (VC++) don't want this passed in member initialization list
1074     _args.set_profile_data(this);
1075     _ret.set_profile_data(this);
1076   }
1077 
1078   const TypeStackSlotEntries* args() const {
1079     assert(has_arguments(), "no profiling of arguments");
1080     return &_args;
1081   }
1082 
1083   const ReturnTypeEntry* ret() const {
1084     assert(has_return(), "no profiling of return value");
1085     return &_ret;
1086   }
1087 
1088   virtual bool is_CallTypeData() const { return true; }
1089 
1090   static int static_cell_count() {
1091     return -1;
1092   }
1093 
1094   static int compute_cell_count(BytecodeStream* stream) {
1095     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1096   }
1097 
1098   static void initialize(DataLayout* dl, int cell_count) {
1099     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
1100   }
1101 
1102   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1103 
1104   virtual int cell_count() const {
1105     return CounterData::static_cell_count() +
1106       TypeEntriesAtCall::header_cell_count() +
1107       int_at_unchecked(cell_count_global_offset());
1108   }
1109 
1110   int number_of_arguments() const {
1111     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1112   }
1113 
1114   void set_argument_type(int i, Klass* k) {
1115     assert(has_arguments(), "no arguments!");
1116     intptr_t current = _args.type(i);
1117     _args.set_type(i, TypeEntries::with_status(k, current));
1118   }
1119 
1120   void set_return_type(Klass* k) {
1121     assert(has_return(), "no return!");
1122     intptr_t current = _ret.type();
1123     _ret.set_type(TypeEntries::with_status(k, current));
1124   }
1125 
1126   // An entry for a return value takes less space than an entry for an
1127   // argument so if the number of cells exceeds the number of cells
1128   // needed for an argument, this object contains type information for
1129   // at least one argument.
1130   bool has_arguments() const {
1131     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1132     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1133     return res;
1134   }
1135 
1136   // An entry for a return value takes less space than an entry for an
1137   // argument, so if the remainder of the number of cells divided by
1138   // the number of cells for an argument is not null, a return value
1139   // is profiled in this object.
1140   bool has_return() const {
1141     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1142     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1143     return res;
1144   }
1145 
1146   // Code generation support
1147   static ByteSize args_data_offset() {
1148     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1149   }
1150 
1151   ByteSize argument_type_offset(int i) {
1152     return _args.type_offset(i);
1153   }
1154 
1155   ByteSize return_type_offset() {
1156     return _ret.type_offset();
1157   }
1158 
1159   // GC support
1160   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1161     if (has_arguments()) {
1162       _args.clean_weak_klass_links(is_alive_closure);
1163     }
1164     if (has_return()) {
1165       _ret.clean_weak_klass_links(is_alive_closure);
1166     }
1167   }
1168 
1169   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1170 };
1171 
1172 // ReceiverTypeData
1173 //
1174 // A ReceiverTypeData is used to access profiling information about a
1175 // dynamic type check.  It consists of a counter which counts the total times
1176 // that the check is reached, and a series of (Klass*, count) pairs
1177 // which are used to store a type profile for the receiver of the check.
1178 class ReceiverTypeData : public CounterData {
1179   friend class VMStructs;
1180 protected:
1181   enum {
1182 #if INCLUDE_JVMCI
1183     // Description of the different counters
1184     // ReceiverTypeData for instanceof/checkcast/aastore:
1185     //   C1/C2: count is incremented on type overflow and decremented for failed type checks
1186     //   JVMCI: count decremented for failed type checks and nonprofiled_count is incremented on type overflow
1187     //          TODO (chaeubl): in fact, JVMCI should also increment the count for failed type checks to mimic the C1/C2 behavior
1188     // VirtualCallData for invokevirtual/invokeinterface:
1189     //   C1/C2: count is incremented on type overflow
1190     //   JVMCI: count is incremented on type overflow, nonprofiled_count is incremented on method overflow
1191 
1192     // JVMCI is interested in knowing the percentage of type checks involving a type not explicitly in the profile
1193     nonprofiled_count_off_set = counter_cell_count,
1194     receiver0_offset,
1195 #else
1196     receiver0_offset = counter_cell_count,
1197 #endif
1198     count0_offset,
1199     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1200   };
1201 
1202 public:
1203   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1204     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1205            layout->tag() == DataLayout::virtual_call_data_tag ||
1206            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1207   }
1208 
1209   virtual bool is_ReceiverTypeData() const { return true; }
1210 
1211   static int static_cell_count() {
1212     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count JVMCI_ONLY(+ 1);
1213   }
1214 
1215   virtual int cell_count() const {
1216     return static_cell_count();
1217   }
1218 
1219   // Direct accessors
1220   static uint row_limit() {
1221     return TypeProfileWidth;
1222   }
1223   static int receiver_cell_index(uint row) {
1224     return receiver0_offset + row * receiver_type_row_cell_count;
1225   }
1226   static int receiver_count_cell_index(uint row) {
1227     return count0_offset + row * receiver_type_row_cell_count;
1228   }
1229 
1230   Klass* receiver(uint row) const {
1231     assert(row < row_limit(), "oob");
1232 
1233     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1234     assert(recv == NULL || recv->is_klass(), "wrong type");
1235     return recv;
1236   }
1237 
1238   void set_receiver(uint row, Klass* k) {
1239     assert((uint)row < row_limit(), "oob");
1240     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1241   }
1242 
1243   uint receiver_count(uint row) const {
1244     assert(row < row_limit(), "oob");
1245     return uint_at(receiver_count_cell_index(row));
1246   }
1247 
1248   void set_receiver_count(uint row, uint count) {
1249     assert(row < row_limit(), "oob");
1250     set_uint_at(receiver_count_cell_index(row), count);
1251   }
1252 
1253   void clear_row(uint row) {
1254     assert(row < row_limit(), "oob");
1255     // Clear total count - indicator of polymorphic call site.
1256     // The site may look like as monomorphic after that but
1257     // it allow to have more accurate profiling information because
1258     // there was execution phase change since klasses were unloaded.
1259     // If the site is still polymorphic then MDO will be updated
1260     // to reflect it. But it could be the case that the site becomes
1261     // only bimorphic. Then keeping total count not 0 will be wrong.
1262     // Even if we use monomorphic (when it is not) for compilation
1263     // we will only have trap, deoptimization and recompile again
1264     // with updated MDO after executing method in Interpreter.
1265     // An additional receiver will be recorded in the cleaned row
1266     // during next call execution.
1267     //
1268     // Note: our profiling logic works with empty rows in any slot.
1269     // We do sorting a profiling info (ciCallProfile) for compilation.
1270     //
1271     set_count(0);
1272     set_receiver(row, NULL);
1273     set_receiver_count(row, 0);
1274 #if INCLUDE_JVMCI
1275     if (!this->is_VirtualCallData()) {
1276       // if this is a ReceiverTypeData for JVMCI, the nonprofiled_count
1277       // must also be reset (see "Description of the different counters" above)
1278       set_nonprofiled_count(0);
1279     }
1280 #endif
1281   }
1282 
1283   // Code generation support
1284   static ByteSize receiver_offset(uint row) {
1285     return cell_offset(receiver_cell_index(row));
1286   }
1287   static ByteSize receiver_count_offset(uint row) {
1288     return cell_offset(receiver_count_cell_index(row));
1289   }
1290 #if INCLUDE_JVMCI
1291   static ByteSize nonprofiled_receiver_count_offset() {
1292     return cell_offset(nonprofiled_count_off_set);
1293   }
1294   uint nonprofiled_count() const {
1295     return uint_at(nonprofiled_count_off_set);
1296   }
1297   void set_nonprofiled_count(uint count) {
1298     set_uint_at(nonprofiled_count_off_set, count);
1299   }
1300 #endif // INCLUDE_JVMCI
1301   static ByteSize receiver_type_data_size() {
1302     return cell_offset(static_cell_count());
1303   }
1304 
1305   // GC support
1306   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1307 
1308 #ifdef CC_INTERP
1309   static int receiver_type_data_size_in_bytes() {
1310     return cell_offset_in_bytes(static_cell_count());
1311   }
1312 
1313   static Klass *receiver_unchecked(DataLayout* layout, uint row) {
1314     Klass* recv = (Klass*)layout->cell_at(receiver_cell_index(row));
1315     return recv;
1316   }
1317 
1318   static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
1319     const int num_rows = row_limit();
1320     // Receiver already exists?
1321     for (int row = 0; row < num_rows; row++) {
1322       if (receiver_unchecked(layout, row) == rcvr) {
1323         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1324         return;
1325       }
1326     }
1327     // New receiver, find a free slot.
1328     for (int row = 0; row < num_rows; row++) {
1329       if (receiver_unchecked(layout, row) == NULL) {
1330         set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
1331         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1332         return;
1333       }
1334     }
1335     // Receiver did not match any saved receiver and there is no empty row for it.
1336     // Increment total counter to indicate polymorphic case.
1337     increment_count_no_overflow(layout);
1338   }
1339 
1340   static DataLayout* advance(DataLayout* layout) {
1341     return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
1342   }
1343 #endif // CC_INTERP
1344 
1345   void print_receiver_data_on(outputStream* st) const;
1346   void print_data_on(outputStream* st, const char* extra = NULL) const;
1347 };
1348 
1349 // VirtualCallData
1350 //
1351 // A VirtualCallData is used to access profiling information about a
1352 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
1353 class VirtualCallData : public ReceiverTypeData {
1354 public:
1355   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1356     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1357            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1358   }
1359 
1360   virtual bool is_VirtualCallData() const { return true; }
1361 
1362   static int static_cell_count() {
1363     // At this point we could add more profile state, e.g., for arguments.
1364     // But for now it's the same size as the base record type.
1365     return ReceiverTypeData::static_cell_count() JVMCI_ONLY(+ (uint) MethodProfileWidth * receiver_type_row_cell_count);
1366   }
1367 
1368   virtual int cell_count() const {
1369     return static_cell_count();
1370   }
1371 
1372   // Direct accessors
1373   static ByteSize virtual_call_data_size() {
1374     return cell_offset(static_cell_count());
1375   }
1376 
1377 #ifdef CC_INTERP
1378   static int virtual_call_data_size_in_bytes() {
1379     return cell_offset_in_bytes(static_cell_count());
1380   }
1381 
1382   static DataLayout* advance(DataLayout* layout) {
1383     return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
1384   }
1385 #endif // CC_INTERP
1386 
1387 #if INCLUDE_JVMCI
1388   static ByteSize method_offset(uint row) {
1389     return cell_offset(method_cell_index(row));
1390   }
1391   static ByteSize method_count_offset(uint row) {
1392     return cell_offset(method_count_cell_index(row));
1393   }
1394   static int method_cell_index(uint row) {
1395     return receiver0_offset + (row + TypeProfileWidth) * receiver_type_row_cell_count;
1396   }
1397   static int method_count_cell_index(uint row) {
1398     return count0_offset + (row + TypeProfileWidth) * receiver_type_row_cell_count;
1399   }
1400   static uint method_row_limit() {
1401     return MethodProfileWidth;
1402   }
1403 
1404   Method* method(uint row) const {
1405     assert(row < method_row_limit(), "oob");
1406 
1407     Method* method = (Method*)intptr_at(method_cell_index(row));
1408     assert(method == NULL || method->is_method(), "must be");
1409     return method;
1410   }
1411 
1412   uint method_count(uint row) const {
1413     assert(row < method_row_limit(), "oob");
1414     return uint_at(method_count_cell_index(row));
1415   }
1416 
1417   void set_method(uint row, Method* m) {
1418     assert((uint)row < method_row_limit(), "oob");
1419     set_intptr_at(method_cell_index(row), (uintptr_t)m);
1420   }
1421 
1422   void set_method_count(uint row, uint count) {
1423     assert(row < method_row_limit(), "oob");
1424     set_uint_at(method_count_cell_index(row), count);
1425   }
1426 
1427   void clear_method_row(uint row) {
1428     assert(row < method_row_limit(), "oob");
1429     // Clear total count - indicator of polymorphic call site (see comment for clear_row() in ReceiverTypeData).
1430     set_nonprofiled_count(0);
1431     set_method(row, NULL);
1432     set_method_count(row, 0);
1433   }
1434 
1435   // GC support
1436   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1437 
1438   // Redefinition support
1439   virtual void clean_weak_method_links();
1440 #endif // INCLUDE_JVMCI
1441 
1442   void print_method_data_on(outputStream* st) const NOT_JVMCI_RETURN;
1443   void print_data_on(outputStream* st, const char* extra = NULL) const;
1444 };
1445 
1446 // VirtualCallTypeData
1447 //
1448 // A VirtualCallTypeData is used to access profiling information about
1449 // a virtual call for which we collect type information about
1450 // arguments and return value.
1451 class VirtualCallTypeData : public VirtualCallData {
1452 private:
1453   // entries for arguments if any
1454   TypeStackSlotEntries _args;
1455   // entry for return type if any
1456   ReturnTypeEntry _ret;
1457 
1458   int cell_count_global_offset() const {
1459     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1460   }
1461 
1462   // number of cells not counting the header
1463   int cell_count_no_header() const {
1464     return uint_at(cell_count_global_offset());
1465   }
1466 
1467   void check_number_of_arguments(int total) {
1468     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1469   }
1470 
1471 public:
1472   VirtualCallTypeData(DataLayout* layout) :
1473     VirtualCallData(layout),
1474     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1475     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1476   {
1477     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1478     // Some compilers (VC++) don't want this passed in member initialization list
1479     _args.set_profile_data(this);
1480     _ret.set_profile_data(this);
1481   }
1482 
1483   const TypeStackSlotEntries* args() const {
1484     assert(has_arguments(), "no profiling of arguments");
1485     return &_args;
1486   }
1487 
1488   const ReturnTypeEntry* ret() const {
1489     assert(has_return(), "no profiling of return value");
1490     return &_ret;
1491   }
1492 
1493   virtual bool is_VirtualCallTypeData() const { return true; }
1494 
1495   static int static_cell_count() {
1496     return -1;
1497   }
1498 
1499   static int compute_cell_count(BytecodeStream* stream) {
1500     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1501   }
1502 
1503   static void initialize(DataLayout* dl, int cell_count) {
1504     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1505   }
1506 
1507   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1508 
1509   virtual int cell_count() const {
1510     return VirtualCallData::static_cell_count() +
1511       TypeEntriesAtCall::header_cell_count() +
1512       int_at_unchecked(cell_count_global_offset());
1513   }
1514 
1515   int number_of_arguments() const {
1516     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1517   }
1518 
1519   void set_argument_type(int i, Klass* k) {
1520     assert(has_arguments(), "no arguments!");
1521     intptr_t current = _args.type(i);
1522     _args.set_type(i, TypeEntries::with_status(k, current));
1523   }
1524 
1525   void set_return_type(Klass* k) {
1526     assert(has_return(), "no return!");
1527     intptr_t current = _ret.type();
1528     _ret.set_type(TypeEntries::with_status(k, current));
1529   }
1530 
1531   // An entry for a return value takes less space than an entry for an
1532   // argument, so if the remainder of the number of cells divided by
1533   // the number of cells for an argument is not null, a return value
1534   // is profiled in this object.
1535   bool has_return() const {
1536     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1537     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1538     return res;
1539   }
1540 
1541   // An entry for a return value takes less space than an entry for an
1542   // argument so if the number of cells exceeds the number of cells
1543   // needed for an argument, this object contains type information for
1544   // at least one argument.
1545   bool has_arguments() const {
1546     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1547     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1548     return res;
1549   }
1550 
1551   // Code generation support
1552   static ByteSize args_data_offset() {
1553     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1554   }
1555 
1556   ByteSize argument_type_offset(int i) {
1557     return _args.type_offset(i);
1558   }
1559 
1560   ByteSize return_type_offset() {
1561     return _ret.type_offset();
1562   }
1563 
1564   // GC support
1565   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1566     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
1567     if (has_arguments()) {
1568       _args.clean_weak_klass_links(is_alive_closure);
1569     }
1570     if (has_return()) {
1571       _ret.clean_weak_klass_links(is_alive_closure);
1572     }
1573   }
1574 
1575   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1576 };
1577 
1578 // RetData
1579 //
1580 // A RetData is used to access profiling information for a ret bytecode.
1581 // It is composed of a count of the number of times that the ret has
1582 // been executed, followed by a series of triples of the form
1583 // (bci, count, di) which count the number of times that some bci was the
1584 // target of the ret and cache a corresponding data displacement.
1585 class RetData : public CounterData {
1586 protected:
1587   enum {
1588     bci0_offset = counter_cell_count,
1589     count0_offset,
1590     displacement0_offset,
1591     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1592   };
1593 
1594   void set_bci(uint row, int bci) {
1595     assert((uint)row < row_limit(), "oob");
1596     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1597   }
1598   void release_set_bci(uint row, int bci) {
1599     assert((uint)row < row_limit(), "oob");
1600     // 'release' when setting the bci acts as a valid flag for other
1601     // threads wrt bci_count and bci_displacement.
1602     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1603   }
1604   void set_bci_count(uint row, uint count) {
1605     assert((uint)row < row_limit(), "oob");
1606     set_uint_at(count0_offset + row * ret_row_cell_count, count);
1607   }
1608   void set_bci_displacement(uint row, int disp) {
1609     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1610   }
1611 
1612 public:
1613   RetData(DataLayout* layout) : CounterData(layout) {
1614     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1615   }
1616 
1617   virtual bool is_RetData() const { return true; }
1618 
1619   enum {
1620     no_bci = -1 // value of bci when bci1/2 are not in use.
1621   };
1622 
1623   static int static_cell_count() {
1624     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1625   }
1626 
1627   virtual int cell_count() const {
1628     return static_cell_count();
1629   }
1630 
1631   static uint row_limit() {
1632     return BciProfileWidth;
1633   }
1634   static int bci_cell_index(uint row) {
1635     return bci0_offset + row * ret_row_cell_count;
1636   }
1637   static int bci_count_cell_index(uint row) {
1638     return count0_offset + row * ret_row_cell_count;
1639   }
1640   static int bci_displacement_cell_index(uint row) {
1641     return displacement0_offset + row * ret_row_cell_count;
1642   }
1643 
1644   // Direct accessors
1645   int bci(uint row) const {
1646     return int_at(bci_cell_index(row));
1647   }
1648   uint bci_count(uint row) const {
1649     return uint_at(bci_count_cell_index(row));
1650   }
1651   int bci_displacement(uint row) const {
1652     return int_at(bci_displacement_cell_index(row));
1653   }
1654 
1655   // Interpreter Runtime support
1656   address fixup_ret(int return_bci, MethodData* mdo);
1657 
1658   // Code generation support
1659   static ByteSize bci_offset(uint row) {
1660     return cell_offset(bci_cell_index(row));
1661   }
1662   static ByteSize bci_count_offset(uint row) {
1663     return cell_offset(bci_count_cell_index(row));
1664   }
1665   static ByteSize bci_displacement_offset(uint row) {
1666     return cell_offset(bci_displacement_cell_index(row));
1667   }
1668 
1669 #ifdef CC_INTERP
1670   static DataLayout* advance(MethodData *md, int bci);
1671 #endif // CC_INTERP
1672 
1673   // Specific initialization.
1674   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1675 
1676   void print_data_on(outputStream* st, const char* extra = NULL) const;
1677 };
1678 
1679 // BranchData
1680 //
1681 // A BranchData is used to access profiling data for a two-way branch.
1682 // It consists of taken and not_taken counts as well as a data displacement
1683 // for the taken case.
1684 class BranchData : public JumpData {
1685   friend class VMStructs;
1686 protected:
1687   enum {
1688     not_taken_off_set = jump_cell_count,
1689     branch_cell_count
1690   };
1691 
1692   void set_displacement(int displacement) {
1693     set_int_at(displacement_off_set, displacement);
1694   }
1695 
1696 public:
1697   BranchData(DataLayout* layout) : JumpData(layout) {
1698     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1699   }
1700 
1701   virtual bool is_BranchData() const { return true; }
1702 
1703   static int static_cell_count() {
1704     return branch_cell_count;
1705   }
1706 
1707   virtual int cell_count() const {
1708     return static_cell_count();
1709   }
1710 
1711   // Direct accessor
1712   uint not_taken() const {
1713     return uint_at(not_taken_off_set);
1714   }
1715 
1716   void set_not_taken(uint cnt) {
1717     set_uint_at(not_taken_off_set, cnt);
1718   }
1719 
1720   uint inc_not_taken() {
1721     uint cnt = not_taken() + 1;
1722     // Did we wrap? Will compiler screw us??
1723     if (cnt == 0) cnt--;
1724     set_uint_at(not_taken_off_set, cnt);
1725     return cnt;
1726   }
1727 
1728   // Code generation support
1729   static ByteSize not_taken_offset() {
1730     return cell_offset(not_taken_off_set);
1731   }
1732   static ByteSize branch_data_size() {
1733     return cell_offset(branch_cell_count);
1734   }
1735 
1736 #ifdef CC_INTERP
1737   static int branch_data_size_in_bytes() {
1738     return cell_offset_in_bytes(branch_cell_count);
1739   }
1740 
1741   static void increment_not_taken_count_no_overflow(DataLayout* layout) {
1742     increment_uint_at_no_overflow(layout, not_taken_off_set);
1743   }
1744 
1745   static DataLayout* advance_not_taken(DataLayout* layout) {
1746     return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
1747   }
1748 #endif // CC_INTERP
1749 
1750   // Specific initialization.
1751   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1752 
1753   void print_data_on(outputStream* st, const char* extra = NULL) const;
1754 };
1755 
1756 // ArrayData
1757 //
1758 // A ArrayData is a base class for accessing profiling data which does
1759 // not have a statically known size.  It consists of an array length
1760 // and an array start.
1761 class ArrayData : public ProfileData {
1762   friend class VMStructs;
1763 protected:
1764   friend class DataLayout;
1765 
1766   enum {
1767     array_len_off_set,
1768     array_start_off_set
1769   };
1770 
1771   uint array_uint_at(int index) const {
1772     int aindex = index + array_start_off_set;
1773     return uint_at(aindex);
1774   }
1775   int array_int_at(int index) const {
1776     int aindex = index + array_start_off_set;
1777     return int_at(aindex);
1778   }
1779   oop array_oop_at(int index) const {
1780     int aindex = index + array_start_off_set;
1781     return oop_at(aindex);
1782   }
1783   void array_set_int_at(int index, int value) {
1784     int aindex = index + array_start_off_set;
1785     set_int_at(aindex, value);
1786   }
1787 
1788 #ifdef CC_INTERP
1789   // Static low level accessors for DataLayout with ArrayData's semantics.
1790 
1791   static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
1792     int aindex = index + array_start_off_set;
1793     increment_uint_at_no_overflow(layout, aindex);
1794   }
1795 
1796   static int array_int_at(DataLayout* layout, int index) {
1797     int aindex = index + array_start_off_set;
1798     return int_at(layout, aindex);
1799   }
1800 #endif // CC_INTERP
1801 
1802   // Code generation support for subclasses.
1803   static ByteSize array_element_offset(int index) {
1804     return cell_offset(array_start_off_set + index);
1805   }
1806 
1807 public:
1808   ArrayData(DataLayout* layout) : ProfileData(layout) {}
1809 
1810   virtual bool is_ArrayData() const { return true; }
1811 
1812   static int static_cell_count() {
1813     return -1;
1814   }
1815 
1816   int array_len() const {
1817     return int_at_unchecked(array_len_off_set);
1818   }
1819 
1820   virtual int cell_count() const {
1821     return array_len() + 1;
1822   }
1823 
1824   // Code generation support
1825   static ByteSize array_len_offset() {
1826     return cell_offset(array_len_off_set);
1827   }
1828   static ByteSize array_start_offset() {
1829     return cell_offset(array_start_off_set);
1830   }
1831 };
1832 
1833 // MultiBranchData
1834 //
1835 // A MultiBranchData is used to access profiling information for
1836 // a multi-way branch (*switch bytecodes).  It consists of a series
1837 // of (count, displacement) pairs, which count the number of times each
1838 // case was taken and specify the data displacment for each branch target.
1839 class MultiBranchData : public ArrayData {
1840   friend class VMStructs;
1841 protected:
1842   enum {
1843     default_count_off_set,
1844     default_disaplacement_off_set,
1845     case_array_start
1846   };
1847   enum {
1848     relative_count_off_set,
1849     relative_displacement_off_set,
1850     per_case_cell_count
1851   };
1852 
1853   void set_default_displacement(int displacement) {
1854     array_set_int_at(default_disaplacement_off_set, displacement);
1855   }
1856   void set_displacement_at(int index, int displacement) {
1857     array_set_int_at(case_array_start +
1858                      index * per_case_cell_count +
1859                      relative_displacement_off_set,
1860                      displacement);
1861   }
1862 
1863 public:
1864   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1865     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1866   }
1867 
1868   virtual bool is_MultiBranchData() const { return true; }
1869 
1870   static int compute_cell_count(BytecodeStream* stream);
1871 
1872   int number_of_cases() const {
1873     int alen = array_len() - 2; // get rid of default case here.
1874     assert(alen % per_case_cell_count == 0, "must be even");
1875     return (alen / per_case_cell_count);
1876   }
1877 
1878   uint default_count() const {
1879     return array_uint_at(default_count_off_set);
1880   }
1881   int default_displacement() const {
1882     return array_int_at(default_disaplacement_off_set);
1883   }
1884 
1885   uint count_at(int index) const {
1886     return array_uint_at(case_array_start +
1887                          index * per_case_cell_count +
1888                          relative_count_off_set);
1889   }
1890   int displacement_at(int index) const {
1891     return array_int_at(case_array_start +
1892                         index * per_case_cell_count +
1893                         relative_displacement_off_set);
1894   }
1895 
1896   // Code generation support
1897   static ByteSize default_count_offset() {
1898     return array_element_offset(default_count_off_set);
1899   }
1900   static ByteSize default_displacement_offset() {
1901     return array_element_offset(default_disaplacement_off_set);
1902   }
1903   static ByteSize case_count_offset(int index) {
1904     return case_array_offset() +
1905            (per_case_size() * index) +
1906            relative_count_offset();
1907   }
1908   static ByteSize case_array_offset() {
1909     return array_element_offset(case_array_start);
1910   }
1911   static ByteSize per_case_size() {
1912     return in_ByteSize(per_case_cell_count) * cell_size;
1913   }
1914   static ByteSize relative_count_offset() {
1915     return in_ByteSize(relative_count_off_set) * cell_size;
1916   }
1917   static ByteSize relative_displacement_offset() {
1918     return in_ByteSize(relative_displacement_off_set) * cell_size;
1919   }
1920 
1921 #ifdef CC_INTERP
1922   static void increment_count_no_overflow(DataLayout* layout, int index) {
1923     if (index == -1) {
1924       increment_array_uint_at_no_overflow(layout, default_count_off_set);
1925     } else {
1926       increment_array_uint_at_no_overflow(layout, case_array_start +
1927                                                   index * per_case_cell_count +
1928                                                   relative_count_off_set);
1929     }
1930   }
1931 
1932   static DataLayout* advance(DataLayout* layout, int index) {
1933     if (index == -1) {
1934       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
1935     } else {
1936       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
1937                                                                               index * per_case_cell_count +
1938                                                                               relative_displacement_off_set));
1939     }
1940   }
1941 #endif // CC_INTERP
1942 
1943   // Specific initialization.
1944   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1945 
1946   void print_data_on(outputStream* st, const char* extra = NULL) const;
1947 };
1948 
1949 class ArgInfoData : public ArrayData {
1950 
1951 public:
1952   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1953     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1954   }
1955 
1956   virtual bool is_ArgInfoData() const { return true; }
1957 
1958 
1959   int number_of_args() const {
1960     return array_len();
1961   }
1962 
1963   uint arg_modified(int arg) const {
1964     return array_uint_at(arg);
1965   }
1966 
1967   void set_arg_modified(int arg, uint val) {
1968     array_set_int_at(arg, val);
1969   }
1970 
1971   void print_data_on(outputStream* st, const char* extra = NULL) const;
1972 };
1973 
1974 // ParametersTypeData
1975 //
1976 // A ParametersTypeData is used to access profiling information about
1977 // types of parameters to a method
1978 class ParametersTypeData : public ArrayData {
1979 
1980 private:
1981   TypeStackSlotEntries _parameters;
1982 
1983   static int stack_slot_local_offset(int i) {
1984     assert_profiling_enabled();
1985     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1986   }
1987 
1988   static int type_local_offset(int i) {
1989     assert_profiling_enabled();
1990     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
1991   }
1992 
1993   static bool profiling_enabled();
1994   static void assert_profiling_enabled() {
1995     assert(profiling_enabled(), "method parameters profiling should be on");
1996   }
1997 
1998 public:
1999   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
2000     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
2001     // Some compilers (VC++) don't want this passed in member initialization list
2002     _parameters.set_profile_data(this);
2003   }
2004 
2005   static int compute_cell_count(Method* m);
2006 
2007   virtual bool is_ParametersTypeData() const { return true; }
2008 
2009   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
2010 
2011   int number_of_parameters() const {
2012     return array_len() / TypeStackSlotEntries::per_arg_count();
2013   }
2014 
2015   const TypeStackSlotEntries* parameters() const { return &_parameters; }
2016 
2017   uint stack_slot(int i) const {
2018     return _parameters.stack_slot(i);
2019   }
2020 
2021   void set_type(int i, Klass* k) {
2022     intptr_t current = _parameters.type(i);
2023     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
2024   }
2025 
2026   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
2027     _parameters.clean_weak_klass_links(is_alive_closure);
2028   }
2029 
2030   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
2031 
2032   static ByteSize stack_slot_offset(int i) {
2033     return cell_offset(stack_slot_local_offset(i));
2034   }
2035 
2036   static ByteSize type_offset(int i) {
2037     return cell_offset(type_local_offset(i));
2038   }
2039 };
2040 
2041 // SpeculativeTrapData
2042 //
2043 // A SpeculativeTrapData is used to record traps due to type
2044 // speculation. It records the root of the compilation: that type
2045 // speculation is wrong in the context of one compilation (for
2046 // method1) doesn't mean it's wrong in the context of another one (for
2047 // method2). Type speculation could have more/different data in the
2048 // context of the compilation of method2 and it's worthwhile to try an
2049 // optimization that failed for compilation of method1 in the context
2050 // of compilation of method2.
2051 // Space for SpeculativeTrapData entries is allocated from the extra
2052 // data space in the MDO. If we run out of space, the trap data for
2053 // the ProfileData at that bci is updated.
2054 class SpeculativeTrapData : public ProfileData {
2055 protected:
2056   enum {
2057     speculative_trap_method,
2058     speculative_trap_cell_count
2059   };
2060 public:
2061   SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
2062     assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
2063   }
2064 
2065   virtual bool is_SpeculativeTrapData() const { return true; }
2066 
2067   static int static_cell_count() {
2068     return speculative_trap_cell_count;
2069   }
2070 
2071   virtual int cell_count() const {
2072     return static_cell_count();
2073   }
2074 
2075   // Direct accessor
2076   Method* method() const {
2077     return (Method*)intptr_at(speculative_trap_method);
2078   }
2079 
2080   void set_method(Method* m) {
2081     assert(!m->is_old(), "cannot add old methods");
2082     set_intptr_at(speculative_trap_method, (intptr_t)m);
2083   }
2084 
2085   static ByteSize method_offset() {
2086     return cell_offset(speculative_trap_method);
2087   }
2088 
2089   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
2090 };
2091 
2092 // MethodData*
2093 //
2094 // A MethodData* holds information which has been collected about
2095 // a method.  Its layout looks like this:
2096 //
2097 // -----------------------------
2098 // | header                    |
2099 // | klass                     |
2100 // -----------------------------
2101 // | method                    |
2102 // | size of the MethodData* |
2103 // -----------------------------
2104 // | Data entries...           |
2105 // |   (variable size)         |
2106 // |                           |
2107 // .                           .
2108 // .                           .
2109 // .                           .
2110 // |                           |
2111 // -----------------------------
2112 //
2113 // The data entry area is a heterogeneous array of DataLayouts. Each
2114 // DataLayout in the array corresponds to a specific bytecode in the
2115 // method.  The entries in the array are sorted by the corresponding
2116 // bytecode.  Access to the data is via resource-allocated ProfileData,
2117 // which point to the underlying blocks of DataLayout structures.
2118 //
2119 // During interpretation, if profiling in enabled, the interpreter
2120 // maintains a method data pointer (mdp), which points at the entry
2121 // in the array corresponding to the current bci.  In the course of
2122 // intepretation, when a bytecode is encountered that has profile data
2123 // associated with it, the entry pointed to by mdp is updated, then the
2124 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
2125 // is NULL to begin with, the interpreter assumes that the current method
2126 // is not (yet) being profiled.
2127 //
2128 // In MethodData* parlance, "dp" is a "data pointer", the actual address
2129 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
2130 // from the base of the data entry array.  A "displacement" is the byte offset
2131 // in certain ProfileData objects that indicate the amount the mdp must be
2132 // adjusted in the event of a change in control flow.
2133 //
2134 
2135 CC_INTERP_ONLY(class BytecodeInterpreter;)
2136 class CleanExtraDataClosure;
2137 
2138 class MethodData : public Metadata {
2139   friend class VMStructs;
2140   CC_INTERP_ONLY(friend class BytecodeInterpreter;)
2141 private:
2142   friend class ProfileData;
2143 
2144   // Back pointer to the Method*
2145   Method* _method;
2146 
2147   // Size of this oop in bytes
2148   int _size;
2149 
2150   // Cached hint for bci_to_dp and bci_to_data
2151   int _hint_di;
2152 
2153   Mutex _extra_data_lock;
2154 
2155   MethodData(methodHandle method, int size, TRAPS);
2156 public:
2157   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
2158   MethodData() : _extra_data_lock(Monitor::leaf, "MDO extra data lock") {}; // For ciMethodData
2159 
2160   bool is_methodData() const volatile { return true; }
2161   void initialize();
2162 
2163   // Whole-method sticky bits and flags
2164   enum {
2165     _trap_hist_limit    = 22 JVMCI_ONLY(+5),   // decoupled from Deoptimization::Reason_LIMIT
2166     _trap_hist_mask     = max_jubyte,
2167     _extra_data_count   = 4     // extra DataLayout headers, for trap history
2168   }; // Public flag values
2169 private:
2170   uint _nof_decompiles;             // count of all nmethod removals
2171   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
2172   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
2173   union {
2174     intptr_t _align;
2175     u1 _array[_trap_hist_limit];
2176   } _trap_hist;
2177 
2178   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2179   intx              _eflags;          // flags on escape information
2180   intx              _arg_local;       // bit set of non-escaping arguments
2181   intx              _arg_stack;       // bit set of stack-allocatable arguments
2182   intx              _arg_returned;    // bit set of returned arguments
2183 
2184   int _creation_mileage;              // method mileage at MDO creation
2185 
2186   // How many invocations has this MDO seen?
2187   // These counters are used to determine the exact age of MDO.
2188   // We need those because in tiered a method can be concurrently
2189   // executed at different levels.
2190   InvocationCounter _invocation_counter;
2191   // Same for backedges.
2192   InvocationCounter _backedge_counter;
2193   // Counter values at the time profiling started.
2194   int               _invocation_counter_start;
2195   int               _backedge_counter_start;
2196   uint              _tenure_traps;
2197   int               _invoke_mask;      // per-method Tier0InvokeNotifyFreqLog
2198   int               _backedge_mask;    // per-method Tier0BackedgeNotifyFreqLog
2199 
2200 #if INCLUDE_RTM_OPT
2201   // State of RTM code generation during compilation of the method
2202   int               _rtm_state;
2203 #endif
2204 
2205   // Number of loops and blocks is computed when compiling the first
2206   // time with C1. It is used to determine if method is trivial.
2207   short             _num_loops;
2208   short             _num_blocks;
2209   // Does this method contain anything worth profiling?
2210   enum WouldProfile {unknown, no_profile, profile};
2211   WouldProfile      _would_profile;
2212 
2213 #if INCLUDE_JVMCI
2214   // Support for HotSpotMethodData.setCompiledIRSize(int)
2215   int               _jvmci_ir_size;
2216 #endif
2217 
2218   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
2219   int _data_size;
2220 
2221   // data index for the area dedicated to parameters. -1 if no
2222   // parameter profiling.
2223   enum { no_parameters = -2, parameters_uninitialized = -1 };
2224   int _parameters_type_data_di;
2225   int parameters_size_in_bytes() const {
2226     ParametersTypeData* param = parameters_type_data();
2227     return param == NULL ? 0 : param->size_in_bytes();
2228   }
2229 
2230   // Beginning of the data entries
2231   intptr_t _data[1];
2232 
2233   // Helper for size computation
2234   static int compute_data_size(BytecodeStream* stream);
2235   static int bytecode_cell_count(Bytecodes::Code code);
2236   static bool is_speculative_trap_bytecode(Bytecodes::Code code);
2237   enum { no_profile_data = -1, variable_cell_count = -2 };
2238 
2239   // Helper for initialization
2240   DataLayout* data_layout_at(int data_index) const {
2241     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
2242     return (DataLayout*) (((address)_data) + data_index);
2243   }
2244 
2245   // Initialize an individual data segment.  Returns the size of
2246   // the segment in bytes.
2247   int initialize_data(BytecodeStream* stream, int data_index);
2248 
2249   // Helper for data_at
2250   DataLayout* limit_data_position() const {
2251     return data_layout_at(_data_size);
2252   }
2253   bool out_of_bounds(int data_index) const {
2254     return data_index >= data_size();
2255   }
2256 
2257   // Give each of the data entries a chance to perform specific
2258   // data initialization.
2259   void post_initialize(BytecodeStream* stream);
2260 
2261   // hint accessors
2262   int      hint_di() const  { return _hint_di; }
2263   void set_hint_di(int di)  {
2264     assert(!out_of_bounds(di), "hint_di out of bounds");
2265     _hint_di = di;
2266   }
2267   ProfileData* data_before(int bci) {
2268     // avoid SEGV on this edge case
2269     if (data_size() == 0)
2270       return NULL;
2271     int hint = hint_di();
2272     if (data_layout_at(hint)->bci() <= bci)
2273       return data_at(hint);
2274     return first_data();
2275   }
2276 
2277   // What is the index of the first data entry?
2278   int first_di() const { return 0; }
2279 
2280   ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
2281   // Find or create an extra ProfileData:
2282   ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
2283 
2284   // return the argument info cell
2285   ArgInfoData *arg_info();
2286 
2287   enum {
2288     no_type_profile = 0,
2289     type_profile_jsr292 = 1,
2290     type_profile_all = 2
2291   };
2292 
2293   static bool profile_jsr292(methodHandle m, int bci);
2294   static int profile_arguments_flag();
2295   static bool profile_all_arguments();
2296   static bool profile_arguments_for_invoke(methodHandle m, int bci);
2297   static int profile_return_flag();
2298   static bool profile_all_return();
2299   static bool profile_return_for_invoke(methodHandle m, int bci);
2300   static int profile_parameters_flag();
2301   static bool profile_parameters_jsr292_only();
2302   static bool profile_all_parameters();
2303 
2304   void clean_extra_data(CleanExtraDataClosure* cl);
2305   void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
2306   void verify_extra_data_clean(CleanExtraDataClosure* cl);
2307 
2308 public:
2309   static int header_size() {
2310     return sizeof(MethodData)/wordSize;
2311   }
2312 
2313   // Compute the size of a MethodData* before it is created.
2314   static int compute_allocation_size_in_bytes(methodHandle method);
2315   static int compute_allocation_size_in_words(methodHandle method);
2316   static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
2317 
2318   // Determine if a given bytecode can have profile information.
2319   static bool bytecode_has_profile(Bytecodes::Code code) {
2320     return bytecode_cell_count(code) != no_profile_data;
2321   }
2322 
2323   // reset into original state
2324   void init();
2325 
2326   // My size
2327   int size_in_bytes() const { return _size; }
2328   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
2329 #if INCLUDE_SERVICES
2330   void collect_statistics(KlassSizeStats *sz) const;
2331 #endif
2332 
2333   int      creation_mileage() const  { return _creation_mileage; }
2334   void set_creation_mileage(int x)   { _creation_mileage = x; }
2335 
2336   int invocation_count() {
2337     if (invocation_counter()->carry()) {
2338       return InvocationCounter::count_limit;
2339     }
2340     return invocation_counter()->count();
2341   }
2342   int backedge_count() {
2343     if (backedge_counter()->carry()) {
2344       return InvocationCounter::count_limit;
2345     }
2346     return backedge_counter()->count();
2347   }
2348 
2349   int invocation_count_start() {
2350     if (invocation_counter()->carry()) {
2351       return 0;
2352     }
2353     return _invocation_counter_start;
2354   }
2355 
2356   int backedge_count_start() {
2357     if (backedge_counter()->carry()) {
2358       return 0;
2359     }
2360     return _backedge_counter_start;
2361   }
2362 
2363   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
2364   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
2365 
2366   void reset_start_counters() {
2367     _invocation_counter_start = invocation_count();
2368     _backedge_counter_start = backedge_count();
2369   }
2370 
2371   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
2372   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
2373 
2374 #if INCLUDE_RTM_OPT
2375   int rtm_state() const {
2376     return _rtm_state;
2377   }
2378   void set_rtm_state(RTMState rstate) {
2379     _rtm_state = (int)rstate;
2380   }
2381   void atomic_set_rtm_state(RTMState rstate) {
2382     Atomic::store((int)rstate, &_rtm_state);
2383   }
2384 
2385   static int rtm_state_offset_in_bytes() {
2386     return offset_of(MethodData, _rtm_state);
2387   }
2388 #endif
2389 
2390   void set_would_profile(bool p)              { _would_profile = p ? profile : no_profile; }
2391   bool would_profile() const                  { return _would_profile != no_profile; }
2392 
2393   int num_loops() const                       { return _num_loops;  }
2394   void set_num_loops(int n)                   { _num_loops = n;     }
2395   int num_blocks() const                      { return _num_blocks; }
2396   void set_num_blocks(int n)                  { _num_blocks = n;    }
2397 
2398   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
2399   static int mileage_of(Method* m);
2400 
2401   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2402   enum EscapeFlag {
2403     estimated    = 1 << 0,
2404     return_local = 1 << 1,
2405     return_allocated = 1 << 2,
2406     allocated_escapes = 1 << 3,
2407     unknown_modified = 1 << 4
2408   };
2409 
2410   intx eflags()                                  { return _eflags; }
2411   intx arg_local()                               { return _arg_local; }
2412   intx arg_stack()                               { return _arg_stack; }
2413   intx arg_returned()                            { return _arg_returned; }
2414   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
2415                                                    assert(aid != NULL, "arg_info must be not null");
2416                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2417                                                    return aid->arg_modified(a); }
2418 
2419   void set_eflags(intx v)                        { _eflags = v; }
2420   void set_arg_local(intx v)                     { _arg_local = v; }
2421   void set_arg_stack(intx v)                     { _arg_stack = v; }
2422   void set_arg_returned(intx v)                  { _arg_returned = v; }
2423   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
2424                                                    assert(aid != NULL, "arg_info must be not null");
2425                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2426                                                    aid->set_arg_modified(a, v); }
2427 
2428   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2429 
2430   // Location and size of data area
2431   address data_base() const {
2432     return (address) _data;
2433   }
2434   int data_size() const {
2435     return _data_size;
2436   }
2437 
2438   // Accessors
2439   Method* method() const { return _method; }
2440 
2441   // Get the data at an arbitrary (sort of) data index.
2442   ProfileData* data_at(int data_index) const;
2443 
2444   // Walk through the data in order.
2445   ProfileData* first_data() const { return data_at(first_di()); }
2446   ProfileData* next_data(ProfileData* current) const;
2447   bool is_valid(ProfileData* current) const { return current != NULL; }
2448 
2449   // Convert a dp (data pointer) to a di (data index).
2450   int dp_to_di(address dp) const {
2451     return dp - ((address)_data);
2452   }
2453 
2454   // bci to di/dp conversion.
2455   address bci_to_dp(int bci);
2456   int bci_to_di(int bci) {
2457     return dp_to_di(bci_to_dp(bci));
2458   }
2459 
2460   // Get the data at an arbitrary bci, or NULL if there is none.
2461   ProfileData* bci_to_data(int bci);
2462 
2463   // Same, but try to create an extra_data record if one is needed:
2464   ProfileData* allocate_bci_to_data(int bci, Method* m) {
2465     ProfileData* data = NULL;
2466     // If m not NULL, try to allocate a SpeculativeTrapData entry
2467     if (m == NULL) {
2468       data = bci_to_data(bci);
2469     }
2470     if (data != NULL) {
2471       return data;
2472     }
2473     data = bci_to_extra_data(bci, m, true);
2474     if (data != NULL) {
2475       return data;
2476     }
2477     // If SpeculativeTrapData allocation fails try to allocate a
2478     // regular entry
2479     data = bci_to_data(bci);
2480     if (data != NULL) {
2481       return data;
2482     }
2483     return bci_to_extra_data(bci, NULL, true);
2484   }
2485 
2486   // Add a handful of extra data records, for trap tracking.
2487   DataLayout* extra_data_base() const  { return limit_data_position(); }
2488   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2489   DataLayout* args_data_limit() const  { return (DataLayout*)((address)this + size_in_bytes() -
2490                                                               parameters_size_in_bytes()); }
2491   int extra_data_size() const          { return (address)extra_data_limit() - (address)extra_data_base(); }
2492   static DataLayout* next_extra(DataLayout* dp);
2493 
2494   // Return (uint)-1 for overflow.
2495   uint trap_count(int reason) const {
2496     assert((uint)reason < JVMCI_ONLY(2*) _trap_hist_limit, "oob");
2497     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2498   }
2499   // For loops:
2500   static uint trap_reason_limit() { return _trap_hist_limit; }
2501   static uint trap_count_limit()  { return _trap_hist_mask; }
2502   uint inc_trap_count(int reason) {
2503     // Count another trap, anywhere in this method.
2504     assert(reason >= 0, "must be single trap");
2505     assert((uint)reason < JVMCI_ONLY(2*) _trap_hist_limit, "oob");
2506     uint cnt1 = 1 + _trap_hist._array[reason];
2507     if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
2508       _trap_hist._array[reason] = cnt1;
2509       return cnt1;
2510     } else {
2511       return _trap_hist_mask + (++_nof_overflow_traps);
2512     }
2513   }
2514 
2515   uint overflow_trap_count() const {
2516     return _nof_overflow_traps;
2517   }
2518   uint overflow_recompile_count() const {
2519     return _nof_overflow_recompiles;
2520   }
2521   void inc_overflow_recompile_count() {
2522     _nof_overflow_recompiles += 1;
2523   }
2524   uint decompile_count() const {
2525     return _nof_decompiles;
2526   }
2527   void inc_decompile_count() {
2528     _nof_decompiles += 1;
2529     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2530       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
2531     }
2532   }
2533   uint tenure_traps() const {
2534     return _tenure_traps;
2535   }
2536   void inc_tenure_traps() {
2537     _tenure_traps += 1;
2538   }
2539 
2540   // Return pointer to area dedicated to parameters in MDO
2541   ParametersTypeData* parameters_type_data() const {
2542     assert(_parameters_type_data_di != parameters_uninitialized, "called too early");
2543     return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
2544   }
2545 
2546   int parameters_type_data_di() const {
2547     assert(_parameters_type_data_di != parameters_uninitialized && _parameters_type_data_di != no_parameters, "no args type data");
2548     return _parameters_type_data_di;
2549   }
2550 
2551   // Support for code generation
2552   static ByteSize data_offset() {
2553     return byte_offset_of(MethodData, _data[0]);
2554   }
2555 
2556   static ByteSize trap_history_offset() {
2557     return byte_offset_of(MethodData, _trap_hist._array);
2558   }
2559 
2560   static ByteSize invocation_counter_offset() {
2561     return byte_offset_of(MethodData, _invocation_counter);
2562   }
2563 
2564   static ByteSize backedge_counter_offset() {
2565     return byte_offset_of(MethodData, _backedge_counter);
2566   }
2567 
2568   static ByteSize invoke_mask_offset() {
2569     return byte_offset_of(MethodData, _invoke_mask);
2570   }
2571 
2572   static ByteSize backedge_mask_offset() {
2573     return byte_offset_of(MethodData, _backedge_mask);
2574   }
2575 
2576   static ByteSize parameters_type_data_di_offset() {
2577     return byte_offset_of(MethodData, _parameters_type_data_di);
2578   }
2579 
2580   // Deallocation support - no pointer fields to deallocate
2581   void deallocate_contents(ClassLoaderData* loader_data) {}
2582 
2583   // GC support
2584   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2585 
2586   // Printing
2587   void print_on      (outputStream* st) const;
2588   void print_value_on(outputStream* st) const;
2589 
2590   // printing support for method data
2591   void print_data_on(outputStream* st) const;
2592 
2593   const char* internal_name() const { return "{method data}"; }
2594 
2595   // verification
2596   void verify_on(outputStream* st);
2597   void verify_data_on(outputStream* st);
2598 
2599   static bool profile_parameters_for_method(methodHandle m);
2600   static bool profile_arguments();
2601   static bool profile_arguments_jsr292_only();
2602   static bool profile_return();
2603   static bool profile_parameters();
2604   static bool profile_return_jsr292_only();
2605 
2606   void clean_method_data(BoolObjectClosure* is_alive);
2607   void clean_weak_method_links();
2608   DEBUG_ONLY(void verify_clean_weak_method_links();)
2609   Mutex* extra_data_lock() { return &_extra_data_lock; }
2610 };
2611 
2612 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP