1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_solaris.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "mutex_solaris.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_share_solaris.hpp"
  41 #include "os_solaris.inline.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm.h"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.inline.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "runtime/vm_version.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/decoder.hpp"
  69 #include "utilities/defaultStream.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <dlfcn.h>
  77 # include <errno.h>
  78 # include <exception>
  79 # include <link.h>
  80 # include <poll.h>
  81 # include <pthread.h>
  82 # include <pwd.h>
  83 # include <schedctl.h>
  84 # include <setjmp.h>
  85 # include <signal.h>
  86 # include <stdio.h>
  87 # include <alloca.h>
  88 # include <sys/filio.h>
  89 # include <sys/ipc.h>
  90 # include <sys/lwp.h>
  91 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  92 # include <sys/mman.h>
  93 # include <sys/processor.h>
  94 # include <sys/procset.h>
  95 # include <sys/pset.h>
  96 # include <sys/resource.h>
  97 # include <sys/shm.h>
  98 # include <sys/socket.h>
  99 # include <sys/stat.h>
 100 # include <sys/systeminfo.h>
 101 # include <sys/time.h>
 102 # include <sys/times.h>
 103 # include <sys/types.h>
 104 # include <sys/wait.h>
 105 # include <sys/utsname.h>
 106 # include <thread.h>
 107 # include <unistd.h>
 108 # include <sys/priocntl.h>
 109 # include <sys/rtpriocntl.h>
 110 # include <sys/tspriocntl.h>
 111 # include <sys/iapriocntl.h>
 112 # include <sys/fxpriocntl.h>
 113 # include <sys/loadavg.h>
 114 # include <string.h>
 115 # include <stdio.h>
 116 
 117 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 118 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 119 
 120 #define MAX_PATH (2 * K)
 121 
 122 // for timer info max values which include all bits
 123 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 124 
 125 
 126 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 127 // compile on older systems without this header file.
 128 
 129 #ifndef MADV_ACCESS_LWP
 130   #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
 131 #endif
 132 #ifndef MADV_ACCESS_MANY
 133   #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
 134 #endif
 135 
 136 #ifndef LGRP_RSRC_CPU
 137   #define LGRP_RSRC_CPU      0       /* CPU resources */
 138 #endif
 139 #ifndef LGRP_RSRC_MEM
 140   #define LGRP_RSRC_MEM      1       /* memory resources */
 141 #endif
 142 
 143 // Values for ThreadPriorityPolicy == 1
 144 int prio_policy1[CriticalPriority+1] = {
 145   -99999,  0, 16,  32,  48,  64,
 146           80, 96, 112, 124, 127, 127 };
 147 
 148 // System parameters used internally
 149 static clock_t clock_tics_per_sec = 100;
 150 
 151 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 152 static bool enabled_extended_FILE_stdio = false;
 153 
 154 // For diagnostics to print a message once. see run_periodic_checks
 155 static bool check_addr0_done = false;
 156 static sigset_t check_signal_done;
 157 static bool check_signals = true;
 158 
 159 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 160 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 161 
 162 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 163 
 164 os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
 165 
 166 // "default" initializers for missing libc APIs
 167 extern "C" {
 168   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 169   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 170 
 171   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 172   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 173 }
 174 
 175 // "default" initializers for pthread-based synchronization
 176 extern "C" {
 177   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 178   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 179 }
 180 
 181 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 182 
 183 static inline size_t adjust_stack_size(address base, size_t size) {
 184   if ((ssize_t)size < 0) {
 185     // 4759953: Compensate for ridiculous stack size.
 186     size = max_intx;
 187   }
 188   if (size > (size_t)base) {
 189     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 190     size = (size_t)base;
 191   }
 192   return size;
 193 }
 194 
 195 static inline stack_t get_stack_info() {
 196   stack_t st;
 197   int retval = thr_stksegment(&st);
 198   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 199   assert(retval == 0, "incorrect return value from thr_stksegment");
 200   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 201   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 202   return st;
 203 }
 204 
 205 address os::current_stack_base() {
 206   int r = thr_main();
 207   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 208   bool is_primordial_thread = r;
 209 
 210   // Workaround 4352906, avoid calls to thr_stksegment by
 211   // thr_main after the first one (it looks like we trash
 212   // some data, causing the value for ss_sp to be incorrect).
 213   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 214     stack_t st = get_stack_info();
 215     if (is_primordial_thread) {
 216       // cache initial value of stack base
 217       os::Solaris::_main_stack_base = (address)st.ss_sp;
 218     }
 219     return (address)st.ss_sp;
 220   } else {
 221     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 222     return os::Solaris::_main_stack_base;
 223   }
 224 }
 225 
 226 size_t os::current_stack_size() {
 227   size_t size;
 228 
 229   int r = thr_main();
 230   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 231   if (!r) {
 232     size = get_stack_info().ss_size;
 233   } else {
 234     struct rlimit limits;
 235     getrlimit(RLIMIT_STACK, &limits);
 236     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 237   }
 238   // base may not be page aligned
 239   address base = current_stack_base();
 240   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
 241   return (size_t)(base - bottom);
 242 }
 243 
 244 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 245   return localtime_r(clock, res);
 246 }
 247 
 248 void os::Solaris::try_enable_extended_io() {
 249   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 250 
 251   if (!UseExtendedFileIO) {
 252     return;
 253   }
 254 
 255   enable_extended_FILE_stdio_t enabler =
 256     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 257                                          "enable_extended_FILE_stdio");
 258   if (enabler) {
 259     enabler(-1, -1);
 260   }
 261 }
 262 
 263 static int _processors_online = 0;
 264 
 265 jint os::Solaris::_os_thread_limit = 0;
 266 volatile jint os::Solaris::_os_thread_count = 0;
 267 
 268 julong os::available_memory() {
 269   return Solaris::available_memory();
 270 }
 271 
 272 julong os::Solaris::available_memory() {
 273   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 274 }
 275 
 276 julong os::Solaris::_physical_memory = 0;
 277 
 278 julong os::physical_memory() {
 279   return Solaris::physical_memory();
 280 }
 281 
 282 static hrtime_t first_hrtime = 0;
 283 static const hrtime_t hrtime_hz = 1000*1000*1000;
 284 static volatile hrtime_t max_hrtime = 0;
 285 
 286 
 287 void os::Solaris::initialize_system_info() {
 288   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 289   _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
 290   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
 291                                      (julong)sysconf(_SC_PAGESIZE);
 292 }
 293 
 294 int os::active_processor_count() {
 295   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 296   pid_t pid = getpid();
 297   psetid_t pset = PS_NONE;
 298   // Are we running in a processor set or is there any processor set around?
 299   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 300     uint_t pset_cpus;
 301     // Query the number of cpus available to us.
 302     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 303       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 304       _processors_online = pset_cpus;
 305       return pset_cpus;
 306     }
 307   }
 308   // Otherwise return number of online cpus
 309   return online_cpus;
 310 }
 311 
 312 static bool find_processors_in_pset(psetid_t        pset,
 313                                     processorid_t** id_array,
 314                                     uint_t*         id_length) {
 315   bool result = false;
 316   // Find the number of processors in the processor set.
 317   if (pset_info(pset, NULL, id_length, NULL) == 0) {
 318     // Make up an array to hold their ids.
 319     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 320     // Fill in the array with their processor ids.
 321     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
 322       result = true;
 323     }
 324   }
 325   return result;
 326 }
 327 
 328 // Callers of find_processors_online() must tolerate imprecise results --
 329 // the system configuration can change asynchronously because of DR
 330 // or explicit psradm operations.
 331 //
 332 // We also need to take care that the loop (below) terminates as the
 333 // number of processors online can change between the _SC_NPROCESSORS_ONLN
 334 // request and the loop that builds the list of processor ids.   Unfortunately
 335 // there's no reliable way to determine the maximum valid processor id,
 336 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
 337 // man pages, which claim the processor id set is "sparse, but
 338 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
 339 // exit the loop.
 340 //
 341 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
 342 // not available on S8.0.
 343 
 344 static bool find_processors_online(processorid_t** id_array,
 345                                    uint*           id_length) {
 346   const processorid_t MAX_PROCESSOR_ID = 100000;
 347   // Find the number of processors online.
 348   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
 349   // Make up an array to hold their ids.
 350   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 351   // Processors need not be numbered consecutively.
 352   long found = 0;
 353   processorid_t next = 0;
 354   while (found < *id_length && next < MAX_PROCESSOR_ID) {
 355     processor_info_t info;
 356     if (processor_info(next, &info) == 0) {
 357       // NB, PI_NOINTR processors are effectively online ...
 358       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
 359         (*id_array)[found] = next;
 360         found += 1;
 361       }
 362     }
 363     next += 1;
 364   }
 365   if (found < *id_length) {
 366     // The loop above didn't identify the expected number of processors.
 367     // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
 368     // and re-running the loop, above, but there's no guarantee of progress
 369     // if the system configuration is in flux.  Instead, we just return what
 370     // we've got.  Note that in the worst case find_processors_online() could
 371     // return an empty set.  (As a fall-back in the case of the empty set we
 372     // could just return the ID of the current processor).
 373     *id_length = found;
 374   }
 375 
 376   return true;
 377 }
 378 
 379 static bool assign_distribution(processorid_t* id_array,
 380                                 uint           id_length,
 381                                 uint*          distribution,
 382                                 uint           distribution_length) {
 383   // We assume we can assign processorid_t's to uint's.
 384   assert(sizeof(processorid_t) == sizeof(uint),
 385          "can't convert processorid_t to uint");
 386   // Quick check to see if we won't succeed.
 387   if (id_length < distribution_length) {
 388     return false;
 389   }
 390   // Assign processor ids to the distribution.
 391   // Try to shuffle processors to distribute work across boards,
 392   // assuming 4 processors per board.
 393   const uint processors_per_board = ProcessDistributionStride;
 394   // Find the maximum processor id.
 395   processorid_t max_id = 0;
 396   for (uint m = 0; m < id_length; m += 1) {
 397     max_id = MAX2(max_id, id_array[m]);
 398   }
 399   // The next id, to limit loops.
 400   const processorid_t limit_id = max_id + 1;
 401   // Make up markers for available processors.
 402   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
 403   for (uint c = 0; c < limit_id; c += 1) {
 404     available_id[c] = false;
 405   }
 406   for (uint a = 0; a < id_length; a += 1) {
 407     available_id[id_array[a]] = true;
 408   }
 409   // Step by "boards", then by "slot", copying to "assigned".
 410   // NEEDS_CLEANUP: The assignment of processors should be stateful,
 411   //                remembering which processors have been assigned by
 412   //                previous calls, etc., so as to distribute several
 413   //                independent calls of this method.  What we'd like is
 414   //                It would be nice to have an API that let us ask
 415   //                how many processes are bound to a processor,
 416   //                but we don't have that, either.
 417   //                In the short term, "board" is static so that
 418   //                subsequent distributions don't all start at board 0.
 419   static uint board = 0;
 420   uint assigned = 0;
 421   // Until we've found enough processors ....
 422   while (assigned < distribution_length) {
 423     // ... find the next available processor in the board.
 424     for (uint slot = 0; slot < processors_per_board; slot += 1) {
 425       uint try_id = board * processors_per_board + slot;
 426       if ((try_id < limit_id) && (available_id[try_id] == true)) {
 427         distribution[assigned] = try_id;
 428         available_id[try_id] = false;
 429         assigned += 1;
 430         break;
 431       }
 432     }
 433     board += 1;
 434     if (board * processors_per_board + 0 >= limit_id) {
 435       board = 0;
 436     }
 437   }
 438   if (available_id != NULL) {
 439     FREE_C_HEAP_ARRAY(bool, available_id);
 440   }
 441   return true;
 442 }
 443 
 444 void os::set_native_thread_name(const char *name) {
 445   if (Solaris::_pthread_setname_np != NULL) {
 446     // Only the first 31 bytes of 'name' are processed by pthread_setname_np
 447     // but we explicitly copy into a size-limited buffer to avoid any
 448     // possible overflow.
 449     char buf[32];
 450     snprintf(buf, sizeof(buf), "%s", name);
 451     buf[sizeof(buf) - 1] = '\0';
 452     Solaris::_pthread_setname_np(pthread_self(), buf);
 453   }
 454 }
 455 
 456 bool os::distribute_processes(uint length, uint* distribution) {
 457   bool result = false;
 458   // Find the processor id's of all the available CPUs.
 459   processorid_t* id_array  = NULL;
 460   uint           id_length = 0;
 461   // There are some races between querying information and using it,
 462   // since processor sets can change dynamically.
 463   psetid_t pset = PS_NONE;
 464   // Are we running in a processor set?
 465   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
 466     result = find_processors_in_pset(pset, &id_array, &id_length);
 467   } else {
 468     result = find_processors_online(&id_array, &id_length);
 469   }
 470   if (result == true) {
 471     if (id_length >= length) {
 472       result = assign_distribution(id_array, id_length, distribution, length);
 473     } else {
 474       result = false;
 475     }
 476   }
 477   if (id_array != NULL) {
 478     FREE_C_HEAP_ARRAY(processorid_t, id_array);
 479   }
 480   return result;
 481 }
 482 
 483 bool os::bind_to_processor(uint processor_id) {
 484   // We assume that a processorid_t can be stored in a uint.
 485   assert(sizeof(uint) == sizeof(processorid_t),
 486          "can't convert uint to processorid_t");
 487   int bind_result =
 488     processor_bind(P_LWPID,                       // bind LWP.
 489                    P_MYID,                        // bind current LWP.
 490                    (processorid_t) processor_id,  // id.
 491                    NULL);                         // don't return old binding.
 492   return (bind_result == 0);
 493 }
 494 
 495 // Return true if user is running as root.
 496 
 497 bool os::have_special_privileges() {
 498   static bool init = false;
 499   static bool privileges = false;
 500   if (!init) {
 501     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 502     init = true;
 503   }
 504   return privileges;
 505 }
 506 
 507 
 508 void os::init_system_properties_values() {
 509   // The next steps are taken in the product version:
 510   //
 511   // Obtain the JAVA_HOME value from the location of libjvm.so.
 512   // This library should be located at:
 513   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 514   //
 515   // If "/jre/lib/" appears at the right place in the path, then we
 516   // assume libjvm.so is installed in a JDK and we use this path.
 517   //
 518   // Otherwise exit with message: "Could not create the Java virtual machine."
 519   //
 520   // The following extra steps are taken in the debugging version:
 521   //
 522   // If "/jre/lib/" does NOT appear at the right place in the path
 523   // instead of exit check for $JAVA_HOME environment variable.
 524   //
 525   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 526   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 527   // it looks like libjvm.so is installed there
 528   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 529   //
 530   // Otherwise exit.
 531   //
 532   // Important note: if the location of libjvm.so changes this
 533   // code needs to be changed accordingly.
 534 
 535 // Base path of extensions installed on the system.
 536 #define SYS_EXT_DIR     "/usr/jdk/packages"
 537 #define EXTENSIONS_DIR  "/lib/ext"
 538 
 539   char cpu_arch[12];
 540   // Buffer that fits several sprintfs.
 541   // Note that the space for the colon and the trailing null are provided
 542   // by the nulls included by the sizeof operator.
 543   const size_t bufsize =
 544     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 545          sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
 546          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 547   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 548 
 549   // sysclasspath, java_home, dll_dir
 550   {
 551     char *pslash;
 552     os::jvm_path(buf, bufsize);
 553 
 554     // Found the full path to libjvm.so.
 555     // Now cut the path to <java_home>/jre if we can.
 556     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 557     pslash = strrchr(buf, '/');
 558     if (pslash != NULL) {
 559       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 560     }
 561     Arguments::set_dll_dir(buf);
 562 
 563     if (pslash != NULL) {
 564       pslash = strrchr(buf, '/');
 565       if (pslash != NULL) {
 566         *pslash = '\0';          // Get rid of /<arch>.
 567         pslash = strrchr(buf, '/');
 568         if (pslash != NULL) {
 569           *pslash = '\0';        // Get rid of /lib.
 570         }
 571       }
 572     }
 573     Arguments::set_java_home(buf);
 574     set_boot_path('/', ':');
 575   }
 576 
 577   // Where to look for native libraries.
 578   {
 579     // Use dlinfo() to determine the correct java.library.path.
 580     //
 581     // If we're launched by the Java launcher, and the user
 582     // does not set java.library.path explicitly on the commandline,
 583     // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 584     // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 585     // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 586     // /usr/lib), which is exactly what we want.
 587     //
 588     // If the user does set java.library.path, it completely
 589     // overwrites this setting, and always has.
 590     //
 591     // If we're not launched by the Java launcher, we may
 592     // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 593     // settings.  Again, dlinfo does exactly what we want.
 594 
 595     Dl_serinfo     info_sz, *info = &info_sz;
 596     Dl_serpath     *path;
 597     char           *library_path;
 598     char           *common_path = buf;
 599 
 600     // Determine search path count and required buffer size.
 601     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 602       FREE_C_HEAP_ARRAY(char, buf);
 603       vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 604     }
 605 
 606     // Allocate new buffer and initialize.
 607     info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
 608     info->dls_size = info_sz.dls_size;
 609     info->dls_cnt = info_sz.dls_cnt;
 610 
 611     // Obtain search path information.
 612     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 613       FREE_C_HEAP_ARRAY(char, buf);
 614       FREE_C_HEAP_ARRAY(char, info);
 615       vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 616     }
 617 
 618     path = &info->dls_serpath[0];
 619 
 620     // Note: Due to a legacy implementation, most of the library path
 621     // is set in the launcher. This was to accomodate linking restrictions
 622     // on legacy Solaris implementations (which are no longer supported).
 623     // Eventually, all the library path setting will be done here.
 624     //
 625     // However, to prevent the proliferation of improperly built native
 626     // libraries, the new path component /usr/jdk/packages is added here.
 627 
 628     // Determine the actual CPU architecture.
 629     sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
 630 #ifdef _LP64
 631     // If we are a 64-bit vm, perform the following translations:
 632     //   sparc   -> sparcv9
 633     //   i386    -> amd64
 634     if (strcmp(cpu_arch, "sparc") == 0) {
 635       strcat(cpu_arch, "v9");
 636     } else if (strcmp(cpu_arch, "i386") == 0) {
 637       strcpy(cpu_arch, "amd64");
 638     }
 639 #endif
 640 
 641     // Construct the invariant part of ld_library_path.
 642     sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
 643 
 644     // Struct size is more than sufficient for the path components obtained
 645     // through the dlinfo() call, so only add additional space for the path
 646     // components explicitly added here.
 647     size_t library_path_size = info->dls_size + strlen(common_path);
 648     library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
 649     library_path[0] = '\0';
 650 
 651     // Construct the desired Java library path from the linker's library
 652     // search path.
 653     //
 654     // For compatibility, it is optimal that we insert the additional path
 655     // components specific to the Java VM after those components specified
 656     // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 657     // infrastructure.
 658     if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
 659       strcpy(library_path, common_path);
 660     } else {
 661       int inserted = 0;
 662       int i;
 663       for (i = 0; i < info->dls_cnt; i++, path++) {
 664         uint_t flags = path->dls_flags & LA_SER_MASK;
 665         if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 666           strcat(library_path, common_path);
 667           strcat(library_path, os::path_separator());
 668           inserted = 1;
 669         }
 670         strcat(library_path, path->dls_name);
 671         strcat(library_path, os::path_separator());
 672       }
 673       // Eliminate trailing path separator.
 674       library_path[strlen(library_path)-1] = '\0';
 675     }
 676 
 677     // happens before argument parsing - can't use a trace flag
 678     // tty->print_raw("init_system_properties_values: native lib path: ");
 679     // tty->print_raw_cr(library_path);
 680 
 681     // Callee copies into its own buffer.
 682     Arguments::set_library_path(library_path);
 683 
 684     FREE_C_HEAP_ARRAY(char, library_path);
 685     FREE_C_HEAP_ARRAY(char, info);
 686   }
 687 
 688   // Extensions directories.
 689   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 690   Arguments::set_ext_dirs(buf);
 691 
 692   FREE_C_HEAP_ARRAY(char, buf);
 693 
 694 #undef SYS_EXT_DIR
 695 #undef EXTENSIONS_DIR
 696 }
 697 
 698 void os::breakpoint() {
 699   BREAKPOINT;
 700 }
 701 
 702 bool os::obsolete_option(const JavaVMOption *option) {
 703   if (!strncmp(option->optionString, "-Xt", 3)) {
 704     return true;
 705   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
 706     return true;
 707   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
 708     return true;
 709   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
 710     return true;
 711   }
 712   return false;
 713 }
 714 
 715 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
 716   address  stackStart  = (address)thread->stack_base();
 717   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
 718   if (sp < stackStart && sp >= stackEnd) return true;
 719   return false;
 720 }
 721 
 722 extern "C" void breakpoint() {
 723   // use debugger to set breakpoint here
 724 }
 725 
 726 static thread_t main_thread;
 727 
 728 // Thread start routine for all newly created threads
 729 extern "C" void* thread_native_entry(void* thread_addr) {
 730   // Try to randomize the cache line index of hot stack frames.
 731   // This helps when threads of the same stack traces evict each other's
 732   // cache lines. The threads can be either from the same JVM instance, or
 733   // from different JVM instances. The benefit is especially true for
 734   // processors with hyperthreading technology.
 735   static int counter = 0;
 736   int pid = os::current_process_id();
 737   alloca(((pid ^ counter++) & 7) * 128);
 738 
 739   int prio;
 740   Thread* thread = (Thread*)thread_addr;
 741 
 742   thread->initialize_thread_current();
 743 
 744   OSThread* osthr = thread->osthread();
 745 
 746   osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
 747   thread->_schedctl = (void *) schedctl_init();
 748 
 749   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
 750     os::current_thread_id());
 751 
 752   if (UseNUMA) {
 753     int lgrp_id = os::numa_get_group_id();
 754     if (lgrp_id != -1) {
 755       thread->set_lgrp_id(lgrp_id);
 756     }
 757   }
 758 
 759   // If the creator called set priority before we started,
 760   // we need to call set_native_priority now that we have an lwp.
 761   // We used to get the priority from thr_getprio (we called
 762   // thr_setprio way back in create_thread) and pass it to
 763   // set_native_priority, but Solaris scales the priority
 764   // in java_to_os_priority, so when we read it back here,
 765   // we pass trash to set_native_priority instead of what's
 766   // in java_to_os_priority. So we save the native priority
 767   // in the osThread and recall it here.
 768 
 769   if (osthr->thread_id() != -1) {
 770     if (UseThreadPriorities) {
 771       int prio = osthr->native_priority();
 772       if (ThreadPriorityVerbose) {
 773         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
 774                       INTPTR_FORMAT ", setting priority: %d\n",
 775                       osthr->thread_id(), osthr->lwp_id(), prio);
 776       }
 777       os::set_native_priority(thread, prio);
 778     }
 779   } else if (ThreadPriorityVerbose) {
 780     warning("Can't set priority in _start routine, thread id hasn't been set\n");
 781   }
 782 
 783   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 784 
 785   // initialize signal mask for this thread
 786   os::Solaris::hotspot_sigmask(thread);
 787 
 788   thread->run();
 789 
 790   // One less thread is executing
 791   // When the VMThread gets here, the main thread may have already exited
 792   // which frees the CodeHeap containing the Atomic::dec code
 793   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 794     Atomic::dec(&os::Solaris::_os_thread_count);
 795   }
 796 
 797   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 798 
 799   // If a thread has not deleted itself ("delete this") as part of its
 800   // termination sequence, we have to ensure thread-local-storage is
 801   // cleared before we actually terminate. No threads should ever be
 802   // deleted asynchronously with respect to their termination.
 803   if (Thread::current_or_null_safe() != NULL) {
 804     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 805     thread->clear_thread_current();
 806   }
 807 
 808   if (UseDetachedThreads) {
 809     thr_exit(NULL);
 810     ShouldNotReachHere();
 811   }
 812   return NULL;
 813 }
 814 
 815 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
 816   // Allocate the OSThread object
 817   OSThread* osthread = new OSThread(NULL, NULL);
 818   if (osthread == NULL) return NULL;
 819 
 820   // Store info on the Solaris thread into the OSThread
 821   osthread->set_thread_id(thread_id);
 822   osthread->set_lwp_id(_lwp_self());
 823   thread->_schedctl = (void *) schedctl_init();
 824 
 825   if (UseNUMA) {
 826     int lgrp_id = os::numa_get_group_id();
 827     if (lgrp_id != -1) {
 828       thread->set_lgrp_id(lgrp_id);
 829     }
 830   }
 831 
 832   if (ThreadPriorityVerbose) {
 833     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
 834                   osthread->thread_id(), osthread->lwp_id());
 835   }
 836 
 837   // Initial thread state is INITIALIZED, not SUSPENDED
 838   osthread->set_state(INITIALIZED);
 839 
 840   return osthread;
 841 }
 842 
 843 void os::Solaris::hotspot_sigmask(Thread* thread) {
 844   //Save caller's signal mask
 845   sigset_t sigmask;
 846   pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
 847   OSThread *osthread = thread->osthread();
 848   osthread->set_caller_sigmask(sigmask);
 849 
 850   pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
 851   if (!ReduceSignalUsage) {
 852     if (thread->is_VM_thread()) {
 853       // Only the VM thread handles BREAK_SIGNAL ...
 854       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 855     } else {
 856       // ... all other threads block BREAK_SIGNAL
 857       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
 858       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 859     }
 860   }
 861 }
 862 
 863 bool os::create_attached_thread(JavaThread* thread) {
 864 #ifdef ASSERT
 865   thread->verify_not_published();
 866 #endif
 867   OSThread* osthread = create_os_thread(thread, thr_self());
 868   if (osthread == NULL) {
 869     return false;
 870   }
 871 
 872   // Initial thread state is RUNNABLE
 873   osthread->set_state(RUNNABLE);
 874   thread->set_osthread(osthread);
 875 
 876   // initialize signal mask for this thread
 877   // and save the caller's signal mask
 878   os::Solaris::hotspot_sigmask(thread);
 879 
 880   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 881     os::current_thread_id());
 882 
 883   return true;
 884 }
 885 
 886 bool os::create_main_thread(JavaThread* thread) {
 887 #ifdef ASSERT
 888   thread->verify_not_published();
 889 #endif
 890   if (_starting_thread == NULL) {
 891     _starting_thread = create_os_thread(thread, main_thread);
 892     if (_starting_thread == NULL) {
 893       return false;
 894     }
 895   }
 896 
 897   // The primodial thread is runnable from the start
 898   _starting_thread->set_state(RUNNABLE);
 899 
 900   thread->set_osthread(_starting_thread);
 901 
 902   // initialize signal mask for this thread
 903   // and save the caller's signal mask
 904   os::Solaris::hotspot_sigmask(thread);
 905 
 906   return true;
 907 }
 908 
 909 // Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
 910 static char* describe_thr_create_attributes(char* buf, size_t buflen,
 911                                             size_t stacksize, long flags) {
 912   stringStream ss(buf, buflen);
 913   ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 914   ss.print("flags: ");
 915   #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
 916   #define ALL(X) \
 917     X(THR_SUSPENDED) \
 918     X(THR_DETACHED) \
 919     X(THR_BOUND) \
 920     X(THR_NEW_LWP) \
 921     X(THR_DAEMON)
 922   ALL(PRINT_FLAG)
 923   #undef ALL
 924   #undef PRINT_FLAG
 925   return buf;
 926 }
 927 
 928 bool os::create_thread(Thread* thread, ThreadType thr_type,
 929                        size_t stack_size) {
 930   // Allocate the OSThread object
 931   OSThread* osthread = new OSThread(NULL, NULL);
 932   if (osthread == NULL) {
 933     return false;
 934   }
 935 
 936   if (ThreadPriorityVerbose) {
 937     char *thrtyp;
 938     switch (thr_type) {
 939     case vm_thread:
 940       thrtyp = (char *)"vm";
 941       break;
 942     case cgc_thread:
 943       thrtyp = (char *)"cgc";
 944       break;
 945     case pgc_thread:
 946       thrtyp = (char *)"pgc";
 947       break;
 948     case java_thread:
 949       thrtyp = (char *)"java";
 950       break;
 951     case compiler_thread:
 952       thrtyp = (char *)"compiler";
 953       break;
 954     case watcher_thread:
 955       thrtyp = (char *)"watcher";
 956       break;
 957     default:
 958       thrtyp = (char *)"unknown";
 959       break;
 960     }
 961     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
 962   }
 963 
 964   // Calculate stack size if it's not specified by caller.
 965   if (stack_size == 0) {
 966     // The default stack size 1M (2M for LP64).
 967     stack_size = (BytesPerWord >> 2) * K * K;
 968 
 969     switch (thr_type) {
 970     case os::java_thread:
 971       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 972       if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
 973       break;
 974     case os::compiler_thread:
 975       if (CompilerThreadStackSize > 0) {
 976         stack_size = (size_t)(CompilerThreadStackSize * K);
 977         break;
 978       } // else fall through:
 979         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 980     case os::vm_thread:
 981     case os::pgc_thread:
 982     case os::cgc_thread:
 983     case os::watcher_thread:
 984       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 985       break;
 986     }
 987   }
 988   stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
 989 
 990   // Initial state is ALLOCATED but not INITIALIZED
 991   osthread->set_state(ALLOCATED);
 992 
 993   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
 994     // We got lots of threads. Check if we still have some address space left.
 995     // Need to be at least 5Mb of unreserved address space. We do check by
 996     // trying to reserve some.
 997     const size_t VirtualMemoryBangSize = 20*K*K;
 998     char* mem = os::reserve_memory(VirtualMemoryBangSize);
 999     if (mem == NULL) {
1000       delete osthread;
1001       return false;
1002     } else {
1003       // Release the memory again
1004       os::release_memory(mem, VirtualMemoryBangSize);
1005     }
1006   }
1007 
1008   // Setup osthread because the child thread may need it.
1009   thread->set_osthread(osthread);
1010 
1011   // Create the Solaris thread
1012   thread_t tid = 0;
1013   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
1014   int      status;
1015 
1016   // Mark that we don't have an lwp or thread id yet.
1017   // In case we attempt to set the priority before the thread starts.
1018   osthread->set_lwp_id(-1);
1019   osthread->set_thread_id(-1);
1020 
1021   status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
1022 
1023   char buf[64];
1024   if (status == 0) {
1025     log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
1026       (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1027   } else {
1028     log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
1029       os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1030   }
1031 
1032   if (status != 0) {
1033     thread->set_osthread(NULL);
1034     // Need to clean up stuff we've allocated so far
1035     delete osthread;
1036     return false;
1037   }
1038 
1039   Atomic::inc(&os::Solaris::_os_thread_count);
1040 
1041   // Store info on the Solaris thread into the OSThread
1042   osthread->set_thread_id(tid);
1043 
1044   // Remember that we created this thread so we can set priority on it
1045   osthread->set_vm_created();
1046 
1047   // Initial thread state is INITIALIZED, not SUSPENDED
1048   osthread->set_state(INITIALIZED);
1049 
1050   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1051   return true;
1052 }
1053 
1054 // defined for >= Solaris 10. This allows builds on earlier versions
1055 // of Solaris to take advantage of the newly reserved Solaris JVM signals.
1056 // With SIGJVM1, SIGJVM2, ASYNC_SIGNAL is SIGJVM2. Previously INTERRUPT_SIGNAL
1057 // was SIGJVM1.
1058 //
1059 #if !defined(SIGJVM1)
1060   #define SIGJVM1 39
1061   #define SIGJVM2 40
1062 #endif
1063 
1064 debug_only(static bool signal_sets_initialized = false);
1065 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1066 
1067 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1068 
1069 bool os::Solaris::is_sig_ignored(int sig) {
1070   struct sigaction oact;
1071   sigaction(sig, (struct sigaction*)NULL, &oact);
1072   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1073                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1074   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1075     return true;
1076   } else {
1077     return false;
1078   }
1079 }
1080 
1081 // Note: SIGRTMIN is a macro that calls sysconf() so it will
1082 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1083 static bool isJVM1available() {
1084   return SIGJVM1 < SIGRTMIN;
1085 }
1086 
1087 void os::Solaris::signal_sets_init() {
1088   // Should also have an assertion stating we are still single-threaded.
1089   assert(!signal_sets_initialized, "Already initialized");
1090   // Fill in signals that are necessarily unblocked for all threads in
1091   // the VM. Currently, we unblock the following signals:
1092   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1093   //                         by -Xrs (=ReduceSignalUsage));
1094   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1095   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1096   // the dispositions or masks wrt these signals.
1097   // Programs embedding the VM that want to use the above signals for their
1098   // own purposes must, at this time, use the "-Xrs" option to prevent
1099   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1100   // (See bug 4345157, and other related bugs).
1101   // In reality, though, unblocking these signals is really a nop, since
1102   // these signals are not blocked by default.
1103   sigemptyset(&unblocked_sigs);
1104   sigemptyset(&allowdebug_blocked_sigs);
1105   sigaddset(&unblocked_sigs, SIGILL);
1106   sigaddset(&unblocked_sigs, SIGSEGV);
1107   sigaddset(&unblocked_sigs, SIGBUS);
1108   sigaddset(&unblocked_sigs, SIGFPE);
1109 
1110   // Always true on Solaris 10+
1111   guarantee(isJVM1available(), "SIGJVM1/2 missing!");
1112   os::Solaris::set_SIGasync(SIGJVM2);
1113 
1114   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1115 
1116   if (!ReduceSignalUsage) {
1117     if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1118       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1119       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1120     }
1121     if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1122       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1123       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1124     }
1125     if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1126       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1127       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1128     }
1129   }
1130   // Fill in signals that are blocked by all but the VM thread.
1131   sigemptyset(&vm_sigs);
1132   if (!ReduceSignalUsage) {
1133     sigaddset(&vm_sigs, BREAK_SIGNAL);
1134   }
1135   debug_only(signal_sets_initialized = true);
1136 
1137   // For diagnostics only used in run_periodic_checks
1138   sigemptyset(&check_signal_done);
1139 }
1140 
1141 // These are signals that are unblocked while a thread is running Java.
1142 // (For some reason, they get blocked by default.)
1143 sigset_t* os::Solaris::unblocked_signals() {
1144   assert(signal_sets_initialized, "Not initialized");
1145   return &unblocked_sigs;
1146 }
1147 
1148 // These are the signals that are blocked while a (non-VM) thread is
1149 // running Java. Only the VM thread handles these signals.
1150 sigset_t* os::Solaris::vm_signals() {
1151   assert(signal_sets_initialized, "Not initialized");
1152   return &vm_sigs;
1153 }
1154 
1155 // These are signals that are blocked during cond_wait to allow debugger in
1156 sigset_t* os::Solaris::allowdebug_blocked_signals() {
1157   assert(signal_sets_initialized, "Not initialized");
1158   return &allowdebug_blocked_sigs;
1159 }
1160 
1161 
1162 void _handle_uncaught_cxx_exception() {
1163   VMError::report_and_die("An uncaught C++ exception");
1164 }
1165 
1166 
1167 // First crack at OS-specific initialization, from inside the new thread.
1168 void os::initialize_thread(Thread* thr) {
1169   int r = thr_main();
1170   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1171   if (r) {
1172     JavaThread* jt = (JavaThread *)thr;
1173     assert(jt != NULL, "Sanity check");
1174     size_t stack_size;
1175     address base = jt->stack_base();
1176     if (Arguments::created_by_java_launcher()) {
1177       // Use 2MB to allow for Solaris 7 64 bit mode.
1178       stack_size = JavaThread::stack_size_at_create() == 0
1179         ? 2048*K : JavaThread::stack_size_at_create();
1180 
1181       // There are rare cases when we may have already used more than
1182       // the basic stack size allotment before this method is invoked.
1183       // Attempt to allow for a normally sized java_stack.
1184       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1185       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1186     } else {
1187       // 6269555: If we were not created by a Java launcher, i.e. if we are
1188       // running embedded in a native application, treat the primordial thread
1189       // as much like a native attached thread as possible.  This means using
1190       // the current stack size from thr_stksegment(), unless it is too large
1191       // to reliably setup guard pages.  A reasonable max size is 8MB.
1192       size_t current_size = current_stack_size();
1193       // This should never happen, but just in case....
1194       if (current_size == 0) current_size = 2 * K * K;
1195       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1196     }
1197     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1198     stack_size = (size_t)(base - bottom);
1199 
1200     assert(stack_size > 0, "Stack size calculation problem");
1201 
1202     if (stack_size > jt->stack_size()) {
1203 #ifndef PRODUCT
1204       struct rlimit limits;
1205       getrlimit(RLIMIT_STACK, &limits);
1206       size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1207       assert(size >= jt->stack_size(), "Stack size problem in main thread");
1208 #endif
1209       tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1210                     "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1211                     "See limit(1) to increase the stack size limit.",
1212                     stack_size / K, jt->stack_size() / K);
1213       vm_exit(1);
1214     }
1215     assert(jt->stack_size() >= stack_size,
1216            "Attempt to map more stack than was allocated");
1217     jt->set_stack_size(stack_size);
1218   }
1219 
1220   // With the T2 libthread (T1 is no longer supported) threads are always bound
1221   // and we use stackbanging in all cases.
1222 
1223   os::Solaris::init_thread_fpu_state();
1224   std::set_terminate(_handle_uncaught_cxx_exception);
1225 }
1226 
1227 
1228 
1229 // Free Solaris resources related to the OSThread
1230 void os::free_thread(OSThread* osthread) {
1231   assert(osthread != NULL, "os::free_thread but osthread not set");
1232 
1233   // We are told to free resources of the argument thread,
1234   // but we can only really operate on the current thread.
1235   assert(Thread::current()->osthread() == osthread,
1236          "os::free_thread but not current thread");
1237 
1238   // Restore caller's signal mask
1239   sigset_t sigmask = osthread->caller_sigmask();
1240   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1241 
1242   delete osthread;
1243 }
1244 
1245 void os::pd_start_thread(Thread* thread) {
1246   int status = thr_continue(thread->osthread()->thread_id());
1247   assert_status(status == 0, status, "thr_continue failed");
1248 }
1249 
1250 
1251 intx os::current_thread_id() {
1252   return (intx)thr_self();
1253 }
1254 
1255 static pid_t _initial_pid = 0;
1256 
1257 int os::current_process_id() {
1258   return (int)(_initial_pid ? _initial_pid : getpid());
1259 }
1260 
1261 // gethrtime() should be monotonic according to the documentation,
1262 // but some virtualized platforms are known to break this guarantee.
1263 // getTimeNanos() must be guaranteed not to move backwards, so we
1264 // are forced to add a check here.
1265 inline hrtime_t getTimeNanos() {
1266   const hrtime_t now = gethrtime();
1267   const hrtime_t prev = max_hrtime;
1268   if (now <= prev) {
1269     return prev;   // same or retrograde time;
1270   }
1271   const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1272   assert(obsv >= prev, "invariant");   // Monotonicity
1273   // If the CAS succeeded then we're done and return "now".
1274   // If the CAS failed and the observed value "obsv" is >= now then
1275   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1276   // some other thread raced this thread and installed a new value, in which case
1277   // we could either (a) retry the entire operation, (b) retry trying to install now
1278   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1279   // we might discard a higher "now" value in deference to a slightly lower but freshly
1280   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1281   // to (a) or (b) -- and greatly reduces coherence traffic.
1282   // We might also condition (c) on the magnitude of the delta between obsv and now.
1283   // Avoiding excessive CAS operations to hot RW locations is critical.
1284   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1285   return (prev == obsv) ? now : obsv;
1286 }
1287 
1288 // Time since start-up in seconds to a fine granularity.
1289 // Used by VMSelfDestructTimer and the MemProfiler.
1290 double os::elapsedTime() {
1291   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1292 }
1293 
1294 jlong os::elapsed_counter() {
1295   return (jlong)(getTimeNanos() - first_hrtime);
1296 }
1297 
1298 jlong os::elapsed_frequency() {
1299   return hrtime_hz;
1300 }
1301 
1302 // Return the real, user, and system times in seconds from an
1303 // arbitrary fixed point in the past.
1304 bool os::getTimesSecs(double* process_real_time,
1305                       double* process_user_time,
1306                       double* process_system_time) {
1307   struct tms ticks;
1308   clock_t real_ticks = times(&ticks);
1309 
1310   if (real_ticks == (clock_t) (-1)) {
1311     return false;
1312   } else {
1313     double ticks_per_second = (double) clock_tics_per_sec;
1314     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1315     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1316     // For consistency return the real time from getTimeNanos()
1317     // converted to seconds.
1318     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1319 
1320     return true;
1321   }
1322 }
1323 
1324 bool os::supports_vtime() { return true; }
1325 
1326 bool os::enable_vtime() {
1327   int fd = ::open("/proc/self/ctl", O_WRONLY);
1328   if (fd == -1) {
1329     return false;
1330   }
1331 
1332   long cmd[] = { PCSET, PR_MSACCT };
1333   int res = ::write(fd, cmd, sizeof(long) * 2);
1334   ::close(fd);
1335   if (res != sizeof(long) * 2) {
1336     return false;
1337   }
1338   return true;
1339 }
1340 
1341 bool os::vtime_enabled() {
1342   int fd = ::open("/proc/self/status", O_RDONLY);
1343   if (fd == -1) {
1344     return false;
1345   }
1346 
1347   pstatus_t status;
1348   int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1349   ::close(fd);
1350   if (res != sizeof(pstatus_t)) {
1351     return false;
1352   }
1353   return status.pr_flags & PR_MSACCT;
1354 }
1355 
1356 double os::elapsedVTime() {
1357   return (double)gethrvtime() / (double)hrtime_hz;
1358 }
1359 
1360 // in-memory timestamp support - has update accuracy of 1ms
1361 typedef void (*_get_nsec_fromepoch_func_t)(hrtime_t*);
1362 static _get_nsec_fromepoch_func_t _get_nsec_fromepoch = NULL;
1363 
1364 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1365 jlong os::javaTimeMillis() {
1366   if (_get_nsec_fromepoch != NULL) {
1367     hrtime_t now;
1368     _get_nsec_fromepoch(&now);
1369     return now / NANOSECS_PER_MILLISEC;
1370   }
1371   else {
1372     timeval t;
1373     if (gettimeofday(&t, NULL) == -1) {
1374       fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1375     }
1376     return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1377   }
1378 }
1379 
1380 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1381   timeval t;
1382   // can't use get_nsec_fromepoch here as we need better accuracy than 1ms
1383   if (gettimeofday(&t, NULL) == -1) {
1384     fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1385   }
1386   seconds = jlong(t.tv_sec);
1387   nanos = jlong(t.tv_usec) * 1000;
1388 }
1389 
1390 
1391 jlong os::javaTimeNanos() {
1392   return (jlong)getTimeNanos();
1393 }
1394 
1395 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1396   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1397   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1398   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1399   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1400 }
1401 
1402 char * os::local_time_string(char *buf, size_t buflen) {
1403   struct tm t;
1404   time_t long_time;
1405   time(&long_time);
1406   localtime_r(&long_time, &t);
1407   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1408                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1409                t.tm_hour, t.tm_min, t.tm_sec);
1410   return buf;
1411 }
1412 
1413 // Note: os::shutdown() might be called very early during initialization, or
1414 // called from signal handler. Before adding something to os::shutdown(), make
1415 // sure it is async-safe and can handle partially initialized VM.
1416 void os::shutdown() {
1417 
1418   // allow PerfMemory to attempt cleanup of any persistent resources
1419   perfMemory_exit();
1420 
1421   // needs to remove object in file system
1422   AttachListener::abort();
1423 
1424   // flush buffered output, finish log files
1425   ostream_abort();
1426 
1427   // Check for abort hook
1428   abort_hook_t abort_hook = Arguments::abort_hook();
1429   if (abort_hook != NULL) {
1430     abort_hook();
1431   }
1432 }
1433 
1434 // Note: os::abort() might be called very early during initialization, or
1435 // called from signal handler. Before adding something to os::abort(), make
1436 // sure it is async-safe and can handle partially initialized VM.
1437 void os::abort(bool dump_core, void* siginfo, const void* context) {
1438   os::shutdown();
1439   if (dump_core) {
1440 #ifndef PRODUCT
1441     fdStream out(defaultStream::output_fd());
1442     out.print_raw("Current thread is ");
1443     char buf[16];
1444     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1445     out.print_raw_cr(buf);
1446     out.print_raw_cr("Dumping core ...");
1447 #endif
1448     ::abort(); // dump core (for debugging)
1449   }
1450 
1451   ::exit(1);
1452 }
1453 
1454 // Die immediately, no exit hook, no abort hook, no cleanup.
1455 void os::die() {
1456   ::abort(); // dump core (for debugging)
1457 }
1458 
1459 // DLL functions
1460 
1461 const char* os::dll_file_extension() { return ".so"; }
1462 
1463 // This must be hard coded because it's the system's temporary
1464 // directory not the java application's temp directory, ala java.io.tmpdir.
1465 const char* os::get_temp_directory() { return "/tmp"; }
1466 
1467 static bool file_exists(const char* filename) {
1468   struct stat statbuf;
1469   if (filename == NULL || strlen(filename) == 0) {
1470     return false;
1471   }
1472   return os::stat(filename, &statbuf) == 0;
1473 }
1474 
1475 bool os::dll_build_name(char* buffer, size_t buflen,
1476                         const char* pname, const char* fname) {
1477   bool retval = false;
1478   const size_t pnamelen = pname ? strlen(pname) : 0;
1479 
1480   // Return error on buffer overflow.
1481   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1482     return retval;
1483   }
1484 
1485   if (pnamelen == 0) {
1486     snprintf(buffer, buflen, "lib%s.so", fname);
1487     retval = true;
1488   } else if (strchr(pname, *os::path_separator()) != NULL) {
1489     int n;
1490     char** pelements = split_path(pname, &n);
1491     if (pelements == NULL) {
1492       return false;
1493     }
1494     for (int i = 0; i < n; i++) {
1495       // really shouldn't be NULL but what the heck, check can't hurt
1496       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1497         continue; // skip the empty path values
1498       }
1499       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1500       if (file_exists(buffer)) {
1501         retval = true;
1502         break;
1503       }
1504     }
1505     // release the storage
1506     for (int i = 0; i < n; i++) {
1507       if (pelements[i] != NULL) {
1508         FREE_C_HEAP_ARRAY(char, pelements[i]);
1509       }
1510     }
1511     if (pelements != NULL) {
1512       FREE_C_HEAP_ARRAY(char*, pelements);
1513     }
1514   } else {
1515     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1516     retval = true;
1517   }
1518   return retval;
1519 }
1520 
1521 // check if addr is inside libjvm.so
1522 bool os::address_is_in_vm(address addr) {
1523   static address libjvm_base_addr;
1524   Dl_info dlinfo;
1525 
1526   if (libjvm_base_addr == NULL) {
1527     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1528       libjvm_base_addr = (address)dlinfo.dli_fbase;
1529     }
1530     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1531   }
1532 
1533   if (dladdr((void *)addr, &dlinfo) != 0) {
1534     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1535   }
1536 
1537   return false;
1538 }
1539 
1540 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1541 static dladdr1_func_type dladdr1_func = NULL;
1542 
1543 bool os::dll_address_to_function_name(address addr, char *buf,
1544                                       int buflen, int * offset,
1545                                       bool demangle) {
1546   // buf is not optional, but offset is optional
1547   assert(buf != NULL, "sanity check");
1548 
1549   Dl_info dlinfo;
1550 
1551   // dladdr1_func was initialized in os::init()
1552   if (dladdr1_func != NULL) {
1553     // yes, we have dladdr1
1554 
1555     // Support for dladdr1 is checked at runtime; it may be
1556     // available even if the vm is built on a machine that does
1557     // not have dladdr1 support.  Make sure there is a value for
1558     // RTLD_DL_SYMENT.
1559 #ifndef RTLD_DL_SYMENT
1560   #define RTLD_DL_SYMENT 1
1561 #endif
1562 #ifdef _LP64
1563     Elf64_Sym * info;
1564 #else
1565     Elf32_Sym * info;
1566 #endif
1567     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1568                      RTLD_DL_SYMENT) != 0) {
1569       // see if we have a matching symbol that covers our address
1570       if (dlinfo.dli_saddr != NULL &&
1571           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1572         if (dlinfo.dli_sname != NULL) {
1573           if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1574             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1575           }
1576           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1577           return true;
1578         }
1579       }
1580       // no matching symbol so try for just file info
1581       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1582         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1583                             buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1584           return true;
1585         }
1586       }
1587     }
1588     buf[0] = '\0';
1589     if (offset != NULL) *offset  = -1;
1590     return false;
1591   }
1592 
1593   // no, only dladdr is available
1594   if (dladdr((void *)addr, &dlinfo) != 0) {
1595     // see if we have a matching symbol
1596     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1597       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1598         jio_snprintf(buf, buflen, dlinfo.dli_sname);
1599       }
1600       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1601       return true;
1602     }
1603     // no matching symbol so try for just file info
1604     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1605       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1606                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1607         return true;
1608       }
1609     }
1610   }
1611   buf[0] = '\0';
1612   if (offset != NULL) *offset  = -1;
1613   return false;
1614 }
1615 
1616 bool os::dll_address_to_library_name(address addr, char* buf,
1617                                      int buflen, int* offset) {
1618   // buf is not optional, but offset is optional
1619   assert(buf != NULL, "sanity check");
1620 
1621   Dl_info dlinfo;
1622 
1623   if (dladdr((void*)addr, &dlinfo) != 0) {
1624     if (dlinfo.dli_fname != NULL) {
1625       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1626     }
1627     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1628       *offset = addr - (address)dlinfo.dli_fbase;
1629     }
1630     return true;
1631   }
1632 
1633   buf[0] = '\0';
1634   if (offset) *offset = -1;
1635   return false;
1636 }
1637 
1638 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1639   Dl_info dli;
1640   // Sanity check?
1641   if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1642       dli.dli_fname == NULL) {
1643     return 1;
1644   }
1645 
1646   void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1647   if (handle == NULL) {
1648     return 1;
1649   }
1650 
1651   Link_map *map;
1652   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1653   if (map == NULL) {
1654     dlclose(handle);
1655     return 1;
1656   }
1657 
1658   while (map->l_prev != NULL) {
1659     map = map->l_prev;
1660   }
1661 
1662   while (map != NULL) {
1663     // Iterate through all map entries and call callback with fields of interest
1664     if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1665       dlclose(handle);
1666       return 1;
1667     }
1668     map = map->l_next;
1669   }
1670 
1671   dlclose(handle);
1672   return 0;
1673 }
1674 
1675 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1676   outputStream * out = (outputStream *) param;
1677   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1678   return 0;
1679 }
1680 
1681 void os::print_dll_info(outputStream * st) {
1682   st->print_cr("Dynamic libraries:"); st->flush();
1683   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1684     st->print_cr("Error: Cannot print dynamic libraries.");
1685   }
1686 }
1687 
1688 // Loads .dll/.so and
1689 // in case of error it checks if .dll/.so was built for the
1690 // same architecture as Hotspot is running on
1691 
1692 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1693   void * result= ::dlopen(filename, RTLD_LAZY);
1694   if (result != NULL) {
1695     // Successful loading
1696     return result;
1697   }
1698 
1699   Elf32_Ehdr elf_head;
1700 
1701   // Read system error message into ebuf
1702   // It may or may not be overwritten below
1703   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1704   ebuf[ebuflen-1]='\0';
1705   int diag_msg_max_length=ebuflen-strlen(ebuf);
1706   char* diag_msg_buf=ebuf+strlen(ebuf);
1707 
1708   if (diag_msg_max_length==0) {
1709     // No more space in ebuf for additional diagnostics message
1710     return NULL;
1711   }
1712 
1713 
1714   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1715 
1716   if (file_descriptor < 0) {
1717     // Can't open library, report dlerror() message
1718     return NULL;
1719   }
1720 
1721   bool failed_to_read_elf_head=
1722     (sizeof(elf_head)!=
1723      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1724 
1725   ::close(file_descriptor);
1726   if (failed_to_read_elf_head) {
1727     // file i/o error - report dlerror() msg
1728     return NULL;
1729   }
1730 
1731   typedef struct {
1732     Elf32_Half  code;         // Actual value as defined in elf.h
1733     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1734     char        elf_class;    // 32 or 64 bit
1735     char        endianess;    // MSB or LSB
1736     char*       name;         // String representation
1737   } arch_t;
1738 
1739   static const arch_t arch_array[]={
1740     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1741     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1742     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1743     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1744     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1745     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1746     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1747     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1748     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1749     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1750   };
1751 
1752 #if  (defined IA32)
1753   static  Elf32_Half running_arch_code=EM_386;
1754 #elif   (defined AMD64)
1755   static  Elf32_Half running_arch_code=EM_X86_64;
1756 #elif  (defined IA64)
1757   static  Elf32_Half running_arch_code=EM_IA_64;
1758 #elif  (defined __sparc) && (defined _LP64)
1759   static  Elf32_Half running_arch_code=EM_SPARCV9;
1760 #elif  (defined __sparc) && (!defined _LP64)
1761   static  Elf32_Half running_arch_code=EM_SPARC;
1762 #elif  (defined __powerpc64__)
1763   static  Elf32_Half running_arch_code=EM_PPC64;
1764 #elif  (defined __powerpc__)
1765   static  Elf32_Half running_arch_code=EM_PPC;
1766 #elif (defined ARM)
1767   static  Elf32_Half running_arch_code=EM_ARM;
1768 #else
1769   #error Method os::dll_load requires that one of following is defined:\
1770        IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1771 #endif
1772 
1773   // Identify compatability class for VM's architecture and library's architecture
1774   // Obtain string descriptions for architectures
1775 
1776   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1777   int running_arch_index=-1;
1778 
1779   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1780     if (running_arch_code == arch_array[i].code) {
1781       running_arch_index    = i;
1782     }
1783     if (lib_arch.code == arch_array[i].code) {
1784       lib_arch.compat_class = arch_array[i].compat_class;
1785       lib_arch.name         = arch_array[i].name;
1786     }
1787   }
1788 
1789   assert(running_arch_index != -1,
1790          "Didn't find running architecture code (running_arch_code) in arch_array");
1791   if (running_arch_index == -1) {
1792     // Even though running architecture detection failed
1793     // we may still continue with reporting dlerror() message
1794     return NULL;
1795   }
1796 
1797   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1798     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1799     return NULL;
1800   }
1801 
1802   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1803     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1804     return NULL;
1805   }
1806 
1807   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1808     if (lib_arch.name!=NULL) {
1809       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1810                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1811                  lib_arch.name, arch_array[running_arch_index].name);
1812     } else {
1813       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1814                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1815                  lib_arch.code,
1816                  arch_array[running_arch_index].name);
1817     }
1818   }
1819 
1820   return NULL;
1821 }
1822 
1823 void* os::dll_lookup(void* handle, const char* name) {
1824   return dlsym(handle, name);
1825 }
1826 
1827 void* os::get_default_process_handle() {
1828   return (void*)::dlopen(NULL, RTLD_LAZY);
1829 }
1830 
1831 int os::stat(const char *path, struct stat *sbuf) {
1832   char pathbuf[MAX_PATH];
1833   if (strlen(path) > MAX_PATH - 1) {
1834     errno = ENAMETOOLONG;
1835     return -1;
1836   }
1837   os::native_path(strcpy(pathbuf, path));
1838   return ::stat(pathbuf, sbuf);
1839 }
1840 
1841 static inline time_t get_mtime(const char* filename) {
1842   struct stat st;
1843   int ret = os::stat(filename, &st);
1844   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1845   return st.st_mtime;
1846 }
1847 
1848 int os::compare_file_modified_times(const char* file1, const char* file2) {
1849   time_t t1 = get_mtime(file1);
1850   time_t t2 = get_mtime(file2);
1851   return t1 - t2;
1852 }
1853 
1854 static bool _print_ascii_file(const char* filename, outputStream* st) {
1855   int fd = ::open(filename, O_RDONLY);
1856   if (fd == -1) {
1857     return false;
1858   }
1859 
1860   char buf[32];
1861   int bytes;
1862   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1863     st->print_raw(buf, bytes);
1864   }
1865 
1866   ::close(fd);
1867 
1868   return true;
1869 }
1870 
1871 void os::print_os_info_brief(outputStream* st) {
1872   os::Solaris::print_distro_info(st);
1873 
1874   os::Posix::print_uname_info(st);
1875 
1876   os::Solaris::print_libversion_info(st);
1877 }
1878 
1879 void os::print_os_info(outputStream* st) {
1880   st->print("OS:");
1881 
1882   os::Solaris::print_distro_info(st);
1883 
1884   os::Posix::print_uname_info(st);
1885 
1886   os::Solaris::print_libversion_info(st);
1887 
1888   os::Posix::print_rlimit_info(st);
1889 
1890   os::Posix::print_load_average(st);
1891 }
1892 
1893 void os::Solaris::print_distro_info(outputStream* st) {
1894   if (!_print_ascii_file("/etc/release", st)) {
1895     st->print("Solaris");
1896   }
1897   st->cr();
1898 }
1899 
1900 void os::get_summary_os_info(char* buf, size_t buflen) {
1901   strncpy(buf, "Solaris", buflen);  // default to plain solaris
1902   FILE* fp = fopen("/etc/release", "r");
1903   if (fp != NULL) {
1904     char tmp[256];
1905     // Only get the first line and chop out everything but the os name.
1906     if (fgets(tmp, sizeof(tmp), fp)) {
1907       char* ptr = tmp;
1908       // skip past whitespace characters
1909       while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1910       if (*ptr != '\0') {
1911         char* nl = strchr(ptr, '\n');
1912         if (nl != NULL) *nl = '\0';
1913         strncpy(buf, ptr, buflen);
1914       }
1915     }
1916     fclose(fp);
1917   }
1918 }
1919 
1920 void os::Solaris::print_libversion_info(outputStream* st) {
1921   st->print("  (T2 libthread)");
1922   st->cr();
1923 }
1924 
1925 static bool check_addr0(outputStream* st) {
1926   jboolean status = false;
1927   const int read_chunk = 200;
1928   int ret = 0;
1929   int nmap = 0;
1930   int fd = ::open("/proc/self/map",O_RDONLY);
1931   if (fd >= 0) {
1932     prmap_t *p = NULL;
1933     char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1934     if (NULL == mbuff) {
1935       ::close(fd);
1936       return status;
1937     }
1938     while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1939       //check if read() has not read partial data
1940       if( 0 != ret % sizeof(prmap_t)){
1941         break;
1942       }
1943       nmap = ret / sizeof(prmap_t);
1944       p = (prmap_t *)mbuff;
1945       for(int i = 0; i < nmap; i++){
1946         if (p->pr_vaddr == 0x0) {
1947           st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1948           st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1949           st->print("Access: ");
1950           st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1951           st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1952           st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1953           st->cr();
1954           status = true;
1955         }
1956         p++;
1957       }
1958     }
1959     free(mbuff);
1960     ::close(fd);
1961   }
1962   return status;
1963 }
1964 
1965 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1966   // Get MHz with system call. We don't seem to already have this.
1967   processor_info_t stats;
1968   processorid_t id = getcpuid();
1969   int clock = 0;
1970   if (processor_info(id, &stats) != -1) {
1971     clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1972   }
1973 #ifdef AMD64
1974   snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1975 #else
1976   // must be sparc
1977   snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1978 #endif
1979 }
1980 
1981 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1982   // Nothing to do for now.
1983 }
1984 
1985 void os::print_memory_info(outputStream* st) {
1986   st->print("Memory:");
1987   st->print(" %dk page", os::vm_page_size()>>10);
1988   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1989   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1990   st->cr();
1991   (void) check_addr0(st);
1992 }
1993 
1994 // Moved from whole group, because we need them here for diagnostic
1995 // prints.
1996 #define OLDMAXSIGNUM 32
1997 static int Maxsignum = 0;
1998 static int *ourSigFlags = NULL;
1999 
2000 int os::Solaris::get_our_sigflags(int sig) {
2001   assert(ourSigFlags!=NULL, "signal data structure not initialized");
2002   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2003   return ourSigFlags[sig];
2004 }
2005 
2006 void os::Solaris::set_our_sigflags(int sig, int flags) {
2007   assert(ourSigFlags!=NULL, "signal data structure not initialized");
2008   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2009   ourSigFlags[sig] = flags;
2010 }
2011 
2012 
2013 static const char* get_signal_handler_name(address handler,
2014                                            char* buf, int buflen) {
2015   int offset;
2016   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
2017   if (found) {
2018     // skip directory names
2019     const char *p1, *p2;
2020     p1 = buf;
2021     size_t len = strlen(os::file_separator());
2022     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
2023     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
2024   } else {
2025     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
2026   }
2027   return buf;
2028 }
2029 
2030 static void print_signal_handler(outputStream* st, int sig,
2031                                  char* buf, size_t buflen) {
2032   struct sigaction sa;
2033 
2034   sigaction(sig, NULL, &sa);
2035 
2036   st->print("%s: ", os::exception_name(sig, buf, buflen));
2037 
2038   address handler = (sa.sa_flags & SA_SIGINFO)
2039                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
2040                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
2041 
2042   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
2043     st->print("SIG_DFL");
2044   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
2045     st->print("SIG_IGN");
2046   } else {
2047     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
2048   }
2049 
2050   st->print(", sa_mask[0]=");
2051   os::Posix::print_signal_set_short(st, &sa.sa_mask);
2052 
2053   address rh = VMError::get_resetted_sighandler(sig);
2054   // May be, handler was resetted by VMError?
2055   if (rh != NULL) {
2056     handler = rh;
2057     sa.sa_flags = VMError::get_resetted_sigflags(sig);
2058   }
2059 
2060   st->print(", sa_flags=");
2061   os::Posix::print_sa_flags(st, sa.sa_flags);
2062 
2063   // Check: is it our handler?
2064   if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
2065     // It is our signal handler
2066     // check for flags
2067     if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2068       st->print(
2069                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2070                 os::Solaris::get_our_sigflags(sig));
2071     }
2072   }
2073   st->cr();
2074 }
2075 
2076 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2077   st->print_cr("Signal Handlers:");
2078   print_signal_handler(st, SIGSEGV, buf, buflen);
2079   print_signal_handler(st, SIGBUS , buf, buflen);
2080   print_signal_handler(st, SIGFPE , buf, buflen);
2081   print_signal_handler(st, SIGPIPE, buf, buflen);
2082   print_signal_handler(st, SIGXFSZ, buf, buflen);
2083   print_signal_handler(st, SIGILL , buf, buflen);
2084   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2085   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2086   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2087   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2088   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2089   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2090 }
2091 
2092 static char saved_jvm_path[MAXPATHLEN] = { 0 };
2093 
2094 // Find the full path to the current module, libjvm.so
2095 void os::jvm_path(char *buf, jint buflen) {
2096   // Error checking.
2097   if (buflen < MAXPATHLEN) {
2098     assert(false, "must use a large-enough buffer");
2099     buf[0] = '\0';
2100     return;
2101   }
2102   // Lazy resolve the path to current module.
2103   if (saved_jvm_path[0] != 0) {
2104     strcpy(buf, saved_jvm_path);
2105     return;
2106   }
2107 
2108   Dl_info dlinfo;
2109   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2110   assert(ret != 0, "cannot locate libjvm");
2111   if (ret != 0 && dlinfo.dli_fname != NULL) {
2112     realpath((char *)dlinfo.dli_fname, buf);
2113   } else {
2114     buf[0] = '\0';
2115     return;
2116   }
2117 
2118   if (Arguments::sun_java_launcher_is_altjvm()) {
2119     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2120     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2121     // If "/jre/lib/" appears at the right place in the string, then
2122     // assume we are installed in a JDK and we're done.  Otherwise, check
2123     // for a JAVA_HOME environment variable and fix up the path so it
2124     // looks like libjvm.so is installed there (append a fake suffix
2125     // hotspot/libjvm.so).
2126     const char *p = buf + strlen(buf) - 1;
2127     for (int count = 0; p > buf && count < 5; ++count) {
2128       for (--p; p > buf && *p != '/'; --p)
2129         /* empty */ ;
2130     }
2131 
2132     if (strncmp(p, "/jre/lib/", 9) != 0) {
2133       // Look for JAVA_HOME in the environment.
2134       char* java_home_var = ::getenv("JAVA_HOME");
2135       if (java_home_var != NULL && java_home_var[0] != 0) {
2136         char cpu_arch[12];
2137         char* jrelib_p;
2138         int   len;
2139         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2140 #ifdef _LP64
2141         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2142         if (strcmp(cpu_arch, "sparc") == 0) {
2143           strcat(cpu_arch, "v9");
2144         } else if (strcmp(cpu_arch, "i386") == 0) {
2145           strcpy(cpu_arch, "amd64");
2146         }
2147 #endif
2148         // Check the current module name "libjvm.so".
2149         p = strrchr(buf, '/');
2150         assert(strstr(p, "/libjvm") == p, "invalid library name");
2151 
2152         realpath(java_home_var, buf);
2153         // determine if this is a legacy image or modules image
2154         // modules image doesn't have "jre" subdirectory
2155         len = strlen(buf);
2156         assert(len < buflen, "Ran out of buffer space");
2157         jrelib_p = buf + len;
2158         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2159         if (0 != access(buf, F_OK)) {
2160           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2161         }
2162 
2163         if (0 == access(buf, F_OK)) {
2164           // Use current module name "libjvm.so"
2165           len = strlen(buf);
2166           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2167         } else {
2168           // Go back to path of .so
2169           realpath((char *)dlinfo.dli_fname, buf);
2170         }
2171       }
2172     }
2173   }
2174 
2175   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2176   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2177 }
2178 
2179 
2180 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2181   // no prefix required, not even "_"
2182 }
2183 
2184 
2185 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2186   // no suffix required
2187 }
2188 
2189 // This method is a copy of JDK's sysGetLastErrorString
2190 // from src/solaris/hpi/src/system_md.c
2191 
2192 size_t os::lasterror(char *buf, size_t len) {
2193   if (errno == 0)  return 0;
2194 
2195   const char *s = os::strerror(errno);
2196   size_t n = ::strlen(s);
2197   if (n >= len) {
2198     n = len - 1;
2199   }
2200   ::strncpy(buf, s, n);
2201   buf[n] = '\0';
2202   return n;
2203 }
2204 
2205 
2206 // sun.misc.Signal
2207 
2208 extern "C" {
2209   static void UserHandler(int sig, void *siginfo, void *context) {
2210     // Ctrl-C is pressed during error reporting, likely because the error
2211     // handler fails to abort. Let VM die immediately.
2212     if (sig == SIGINT && is_error_reported()) {
2213       os::die();
2214     }
2215 
2216     os::signal_notify(sig);
2217     // We do not need to reinstate the signal handler each time...
2218   }
2219 }
2220 
2221 void* os::user_handler() {
2222   return CAST_FROM_FN_PTR(void*, UserHandler);
2223 }
2224 
2225 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2226   struct timespec ts;
2227   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2228 
2229   return ts;
2230 }
2231 
2232 extern "C" {
2233   typedef void (*sa_handler_t)(int);
2234   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2235 }
2236 
2237 void* os::signal(int signal_number, void* handler) {
2238   struct sigaction sigAct, oldSigAct;
2239   sigfillset(&(sigAct.sa_mask));
2240   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2241   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2242 
2243   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2244     // -1 means registration failed
2245     return (void *)-1;
2246   }
2247 
2248   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2249 }
2250 
2251 void os::signal_raise(int signal_number) {
2252   raise(signal_number);
2253 }
2254 
2255 // The following code is moved from os.cpp for making this
2256 // code platform specific, which it is by its very nature.
2257 
2258 // a counter for each possible signal value
2259 static int Sigexit = 0;
2260 static int Maxlibjsigsigs;
2261 static jint *pending_signals = NULL;
2262 static int *preinstalled_sigs = NULL;
2263 static struct sigaction *chainedsigactions = NULL;
2264 static sema_t sig_sem;
2265 typedef int (*version_getting_t)();
2266 version_getting_t os::Solaris::get_libjsig_version = NULL;
2267 static int libjsigversion = NULL;
2268 
2269 int os::sigexitnum_pd() {
2270   assert(Sigexit > 0, "signal memory not yet initialized");
2271   return Sigexit;
2272 }
2273 
2274 void os::Solaris::init_signal_mem() {
2275   // Initialize signal structures
2276   Maxsignum = SIGRTMAX;
2277   Sigexit = Maxsignum+1;
2278   assert(Maxsignum >0, "Unable to obtain max signal number");
2279 
2280   Maxlibjsigsigs = Maxsignum;
2281 
2282   // pending_signals has one int per signal
2283   // The additional signal is for SIGEXIT - exit signal to signal_thread
2284   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2285   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2286 
2287   if (UseSignalChaining) {
2288     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2289                                                    * (Maxsignum + 1), mtInternal);
2290     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2291     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2292     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2293   }
2294   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2295   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2296 }
2297 
2298 void os::signal_init_pd() {
2299   int ret;
2300 
2301   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2302   assert(ret == 0, "sema_init() failed");
2303 }
2304 
2305 void os::signal_notify(int signal_number) {
2306   int ret;
2307 
2308   Atomic::inc(&pending_signals[signal_number]);
2309   ret = ::sema_post(&sig_sem);
2310   assert(ret == 0, "sema_post() failed");
2311 }
2312 
2313 static int check_pending_signals(bool wait_for_signal) {
2314   int ret;
2315   while (true) {
2316     for (int i = 0; i < Sigexit + 1; i++) {
2317       jint n = pending_signals[i];
2318       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2319         return i;
2320       }
2321     }
2322     if (!wait_for_signal) {
2323       return -1;
2324     }
2325     JavaThread *thread = JavaThread::current();
2326     ThreadBlockInVM tbivm(thread);
2327 
2328     bool threadIsSuspended;
2329     do {
2330       thread->set_suspend_equivalent();
2331       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2332       while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2333         ;
2334       assert(ret == 0, "sema_wait() failed");
2335 
2336       // were we externally suspended while we were waiting?
2337       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2338       if (threadIsSuspended) {
2339         // The semaphore has been incremented, but while we were waiting
2340         // another thread suspended us. We don't want to continue running
2341         // while suspended because that would surprise the thread that
2342         // suspended us.
2343         ret = ::sema_post(&sig_sem);
2344         assert(ret == 0, "sema_post() failed");
2345 
2346         thread->java_suspend_self();
2347       }
2348     } while (threadIsSuspended);
2349   }
2350 }
2351 
2352 int os::signal_lookup() {
2353   return check_pending_signals(false);
2354 }
2355 
2356 int os::signal_wait() {
2357   return check_pending_signals(true);
2358 }
2359 
2360 ////////////////////////////////////////////////////////////////////////////////
2361 // Virtual Memory
2362 
2363 static int page_size = -1;
2364 
2365 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2366 // clear this var if support is not available.
2367 static bool has_map_align = true;
2368 
2369 int os::vm_page_size() {
2370   assert(page_size != -1, "must call os::init");
2371   return page_size;
2372 }
2373 
2374 // Solaris allocates memory by pages.
2375 int os::vm_allocation_granularity() {
2376   assert(page_size != -1, "must call os::init");
2377   return page_size;
2378 }
2379 
2380 static bool recoverable_mmap_error(int err) {
2381   // See if the error is one we can let the caller handle. This
2382   // list of errno values comes from the Solaris mmap(2) man page.
2383   switch (err) {
2384   case EBADF:
2385   case EINVAL:
2386   case ENOTSUP:
2387     // let the caller deal with these errors
2388     return true;
2389 
2390   default:
2391     // Any remaining errors on this OS can cause our reserved mapping
2392     // to be lost. That can cause confusion where different data
2393     // structures think they have the same memory mapped. The worst
2394     // scenario is if both the VM and a library think they have the
2395     // same memory mapped.
2396     return false;
2397   }
2398 }
2399 
2400 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2401                                     int err) {
2402   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2403           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2404           os::strerror(err), err);
2405 }
2406 
2407 static void warn_fail_commit_memory(char* addr, size_t bytes,
2408                                     size_t alignment_hint, bool exec,
2409                                     int err) {
2410   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2411           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2412           alignment_hint, exec, os::strerror(err), err);
2413 }
2414 
2415 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2416   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2417   size_t size = bytes;
2418   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2419   if (res != NULL) {
2420     if (UseNUMAInterleaving) {
2421       numa_make_global(addr, bytes);
2422     }
2423     return 0;
2424   }
2425 
2426   int err = errno;  // save errno from mmap() call in mmap_chunk()
2427 
2428   if (!recoverable_mmap_error(err)) {
2429     warn_fail_commit_memory(addr, bytes, exec, err);
2430     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2431   }
2432 
2433   return err;
2434 }
2435 
2436 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2437   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2438 }
2439 
2440 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2441                                   const char* mesg) {
2442   assert(mesg != NULL, "mesg must be specified");
2443   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2444   if (err != 0) {
2445     // the caller wants all commit errors to exit with the specified mesg:
2446     warn_fail_commit_memory(addr, bytes, exec, err);
2447     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2448   }
2449 }
2450 
2451 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2452   assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2453          SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2454          alignment, (size_t) vm_page_size());
2455 
2456   for (int i = 0; _page_sizes[i] != 0; i++) {
2457     if (is_size_aligned(alignment, _page_sizes[i])) {
2458       return _page_sizes[i];
2459     }
2460   }
2461 
2462   return (size_t) vm_page_size();
2463 }
2464 
2465 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2466                                     size_t alignment_hint, bool exec) {
2467   int err = Solaris::commit_memory_impl(addr, bytes, exec);
2468   if (err == 0 && UseLargePages && alignment_hint > 0) {
2469     assert(is_size_aligned(bytes, alignment_hint),
2470            SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2471 
2472     // The syscall memcntl requires an exact page size (see man memcntl for details).
2473     size_t page_size = page_size_for_alignment(alignment_hint);
2474     if (page_size > (size_t) vm_page_size()) {
2475       (void)Solaris::setup_large_pages(addr, bytes, page_size);
2476     }
2477   }
2478   return err;
2479 }
2480 
2481 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2482                           bool exec) {
2483   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2484 }
2485 
2486 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2487                                   size_t alignment_hint, bool exec,
2488                                   const char* mesg) {
2489   assert(mesg != NULL, "mesg must be specified");
2490   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2491   if (err != 0) {
2492     // the caller wants all commit errors to exit with the specified mesg:
2493     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2494     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2495   }
2496 }
2497 
2498 // Uncommit the pages in a specified region.
2499 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2500   if (madvise(addr, bytes, MADV_FREE) < 0) {
2501     debug_only(warning("MADV_FREE failed."));
2502     return;
2503   }
2504 }
2505 
2506 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2507   return os::commit_memory(addr, size, !ExecMem);
2508 }
2509 
2510 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2511   return os::uncommit_memory(addr, size);
2512 }
2513 
2514 // Change the page size in a given range.
2515 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2516   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2517   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2518   if (UseLargePages) {
2519     size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2520     if (page_size > (size_t) vm_page_size()) {
2521       Solaris::setup_large_pages(addr, bytes, page_size);
2522     }
2523   }
2524 }
2525 
2526 // Tell the OS to make the range local to the first-touching LWP
2527 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2528   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2529   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2530     debug_only(warning("MADV_ACCESS_LWP failed."));
2531   }
2532 }
2533 
2534 // Tell the OS that this range would be accessed from different LWPs.
2535 void os::numa_make_global(char *addr, size_t bytes) {
2536   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2537   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2538     debug_only(warning("MADV_ACCESS_MANY failed."));
2539   }
2540 }
2541 
2542 // Get the number of the locality groups.
2543 size_t os::numa_get_groups_num() {
2544   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2545   return n != -1 ? n : 1;
2546 }
2547 
2548 // Get a list of leaf locality groups. A leaf lgroup is group that
2549 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2550 // board. An LWP is assigned to one of these groups upon creation.
2551 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2552   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2553     ids[0] = 0;
2554     return 1;
2555   }
2556   int result_size = 0, top = 1, bottom = 0, cur = 0;
2557   for (int k = 0; k < size; k++) {
2558     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2559                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2560     if (r == -1) {
2561       ids[0] = 0;
2562       return 1;
2563     }
2564     if (!r) {
2565       // That's a leaf node.
2566       assert(bottom <= cur, "Sanity check");
2567       // Check if the node has memory
2568       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2569                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2570         ids[bottom++] = ids[cur];
2571       }
2572     }
2573     top += r;
2574     cur++;
2575   }
2576   if (bottom == 0) {
2577     // Handle a situation, when the OS reports no memory available.
2578     // Assume UMA architecture.
2579     ids[0] = 0;
2580     return 1;
2581   }
2582   return bottom;
2583 }
2584 
2585 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2586 bool os::numa_topology_changed() {
2587   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2588   if (is_stale != -1 && is_stale) {
2589     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2590     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2591     assert(c != 0, "Failure to initialize LGRP API");
2592     Solaris::set_lgrp_cookie(c);
2593     return true;
2594   }
2595   return false;
2596 }
2597 
2598 // Get the group id of the current LWP.
2599 int os::numa_get_group_id() {
2600   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2601   if (lgrp_id == -1) {
2602     return 0;
2603   }
2604   const int size = os::numa_get_groups_num();
2605   int *ids = (int*)alloca(size * sizeof(int));
2606 
2607   // Get the ids of all lgroups with memory; r is the count.
2608   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2609                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2610   if (r <= 0) {
2611     return 0;
2612   }
2613   return ids[os::random() % r];
2614 }
2615 
2616 // Request information about the page.
2617 bool os::get_page_info(char *start, page_info* info) {
2618   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2619   uint64_t addr = (uintptr_t)start;
2620   uint64_t outdata[2];
2621   uint_t validity = 0;
2622 
2623   if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2624     return false;
2625   }
2626 
2627   info->size = 0;
2628   info->lgrp_id = -1;
2629 
2630   if ((validity & 1) != 0) {
2631     if ((validity & 2) != 0) {
2632       info->lgrp_id = outdata[0];
2633     }
2634     if ((validity & 4) != 0) {
2635       info->size = outdata[1];
2636     }
2637     return true;
2638   }
2639   return false;
2640 }
2641 
2642 // Scan the pages from start to end until a page different than
2643 // the one described in the info parameter is encountered.
2644 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2645                      page_info* page_found) {
2646   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2647   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2648   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2649   uint_t validity[MAX_MEMINFO_CNT];
2650 
2651   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2652   uint64_t p = (uint64_t)start;
2653   while (p < (uint64_t)end) {
2654     addrs[0] = p;
2655     size_t addrs_count = 1;
2656     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2657       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2658       addrs_count++;
2659     }
2660 
2661     if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2662       return NULL;
2663     }
2664 
2665     size_t i = 0;
2666     for (; i < addrs_count; i++) {
2667       if ((validity[i] & 1) != 0) {
2668         if ((validity[i] & 4) != 0) {
2669           if (outdata[types * i + 1] != page_expected->size) {
2670             break;
2671           }
2672         } else if (page_expected->size != 0) {
2673           break;
2674         }
2675 
2676         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2677           if (outdata[types * i] != page_expected->lgrp_id) {
2678             break;
2679           }
2680         }
2681       } else {
2682         return NULL;
2683       }
2684     }
2685 
2686     if (i < addrs_count) {
2687       if ((validity[i] & 2) != 0) {
2688         page_found->lgrp_id = outdata[types * i];
2689       } else {
2690         page_found->lgrp_id = -1;
2691       }
2692       if ((validity[i] & 4) != 0) {
2693         page_found->size = outdata[types * i + 1];
2694       } else {
2695         page_found->size = 0;
2696       }
2697       return (char*)addrs[i];
2698     }
2699 
2700     p = addrs[addrs_count - 1] + page_size;
2701   }
2702   return end;
2703 }
2704 
2705 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2706   size_t size = bytes;
2707   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2708   // uncommitted page. Otherwise, the read/write might succeed if we
2709   // have enough swap space to back the physical page.
2710   return
2711     NULL != Solaris::mmap_chunk(addr, size,
2712                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2713                                 PROT_NONE);
2714 }
2715 
2716 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2717   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2718 
2719   if (b == MAP_FAILED) {
2720     return NULL;
2721   }
2722   return b;
2723 }
2724 
2725 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2726                              size_t alignment_hint, bool fixed) {
2727   char* addr = requested_addr;
2728   int flags = MAP_PRIVATE | MAP_NORESERVE;
2729 
2730   assert(!(fixed && (alignment_hint > 0)),
2731          "alignment hint meaningless with fixed mmap");
2732 
2733   if (fixed) {
2734     flags |= MAP_FIXED;
2735   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2736     flags |= MAP_ALIGN;
2737     addr = (char*) alignment_hint;
2738   }
2739 
2740   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2741   // uncommitted page. Otherwise, the read/write might succeed if we
2742   // have enough swap space to back the physical page.
2743   return mmap_chunk(addr, bytes, flags, PROT_NONE);
2744 }
2745 
2746 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2747                             size_t alignment_hint) {
2748   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2749                                   (requested_addr != NULL));
2750 
2751   guarantee(requested_addr == NULL || requested_addr == addr,
2752             "OS failed to return requested mmap address.");
2753   return addr;
2754 }
2755 
2756 // Reserve memory at an arbitrary address, only if that area is
2757 // available (and not reserved for something else).
2758 
2759 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2760   const int max_tries = 10;
2761   char* base[max_tries];
2762   size_t size[max_tries];
2763 
2764   // Solaris adds a gap between mmap'ed regions.  The size of the gap
2765   // is dependent on the requested size and the MMU.  Our initial gap
2766   // value here is just a guess and will be corrected later.
2767   bool had_top_overlap = false;
2768   bool have_adjusted_gap = false;
2769   size_t gap = 0x400000;
2770 
2771   // Assert only that the size is a multiple of the page size, since
2772   // that's all that mmap requires, and since that's all we really know
2773   // about at this low abstraction level.  If we need higher alignment,
2774   // we can either pass an alignment to this method or verify alignment
2775   // in one of the methods further up the call chain.  See bug 5044738.
2776   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2777 
2778   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2779   // Give it a try, if the kernel honors the hint we can return immediately.
2780   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2781 
2782   volatile int err = errno;
2783   if (addr == requested_addr) {
2784     return addr;
2785   } else if (addr != NULL) {
2786     pd_unmap_memory(addr, bytes);
2787   }
2788 
2789   if (log_is_enabled(Warning, os)) {
2790     char buf[256];
2791     buf[0] = '\0';
2792     if (addr == NULL) {
2793       jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
2794     }
2795     log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2796             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2797             "%s", bytes, requested_addr, addr, buf);
2798   }
2799 
2800   // Address hint method didn't work.  Fall back to the old method.
2801   // In theory, once SNV becomes our oldest supported platform, this
2802   // code will no longer be needed.
2803   //
2804   // Repeatedly allocate blocks until the block is allocated at the
2805   // right spot. Give up after max_tries.
2806   int i;
2807   for (i = 0; i < max_tries; ++i) {
2808     base[i] = reserve_memory(bytes);
2809 
2810     if (base[i] != NULL) {
2811       // Is this the block we wanted?
2812       if (base[i] == requested_addr) {
2813         size[i] = bytes;
2814         break;
2815       }
2816 
2817       // check that the gap value is right
2818       if (had_top_overlap && !have_adjusted_gap) {
2819         size_t actual_gap = base[i-1] - base[i] - bytes;
2820         if (gap != actual_gap) {
2821           // adjust the gap value and retry the last 2 allocations
2822           assert(i > 0, "gap adjustment code problem");
2823           have_adjusted_gap = true;  // adjust the gap only once, just in case
2824           gap = actual_gap;
2825           log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2826           unmap_memory(base[i], bytes);
2827           unmap_memory(base[i-1], size[i-1]);
2828           i-=2;
2829           continue;
2830         }
2831       }
2832 
2833       // Does this overlap the block we wanted? Give back the overlapped
2834       // parts and try again.
2835       //
2836       // There is still a bug in this code: if top_overlap == bytes,
2837       // the overlap is offset from requested region by the value of gap.
2838       // In this case giving back the overlapped part will not work,
2839       // because we'll give back the entire block at base[i] and
2840       // therefore the subsequent allocation will not generate a new gap.
2841       // This could be fixed with a new algorithm that used larger
2842       // or variable size chunks to find the requested region -
2843       // but such a change would introduce additional complications.
2844       // It's rare enough that the planets align for this bug,
2845       // so we'll just wait for a fix for 6204603/5003415 which
2846       // will provide a mmap flag to allow us to avoid this business.
2847 
2848       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2849       if (top_overlap >= 0 && top_overlap < bytes) {
2850         had_top_overlap = true;
2851         unmap_memory(base[i], top_overlap);
2852         base[i] += top_overlap;
2853         size[i] = bytes - top_overlap;
2854       } else {
2855         size_t bottom_overlap = base[i] + bytes - requested_addr;
2856         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2857           if (bottom_overlap == 0) {
2858             log_info(os)("attempt_reserve_memory_at: possible alignment bug");
2859           }
2860           unmap_memory(requested_addr, bottom_overlap);
2861           size[i] = bytes - bottom_overlap;
2862         } else {
2863           size[i] = bytes;
2864         }
2865       }
2866     }
2867   }
2868 
2869   // Give back the unused reserved pieces.
2870 
2871   for (int j = 0; j < i; ++j) {
2872     if (base[j] != NULL) {
2873       unmap_memory(base[j], size[j]);
2874     }
2875   }
2876 
2877   return (i < max_tries) ? requested_addr : NULL;
2878 }
2879 
2880 bool os::pd_release_memory(char* addr, size_t bytes) {
2881   size_t size = bytes;
2882   return munmap(addr, size) == 0;
2883 }
2884 
2885 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2886   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2887          "addr must be page aligned");
2888   int retVal = mprotect(addr, bytes, prot);
2889   return retVal == 0;
2890 }
2891 
2892 // Protect memory (Used to pass readonly pages through
2893 // JNI GetArray<type>Elements with empty arrays.)
2894 // Also, used for serialization page and for compressed oops null pointer
2895 // checking.
2896 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2897                         bool is_committed) {
2898   unsigned int p = 0;
2899   switch (prot) {
2900   case MEM_PROT_NONE: p = PROT_NONE; break;
2901   case MEM_PROT_READ: p = PROT_READ; break;
2902   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2903   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2904   default:
2905     ShouldNotReachHere();
2906   }
2907   // is_committed is unused.
2908   return solaris_mprotect(addr, bytes, p);
2909 }
2910 
2911 // guard_memory and unguard_memory only happens within stack guard pages.
2912 // Since ISM pertains only to the heap, guard and unguard memory should not
2913 /// happen with an ISM region.
2914 bool os::guard_memory(char* addr, size_t bytes) {
2915   return solaris_mprotect(addr, bytes, PROT_NONE);
2916 }
2917 
2918 bool os::unguard_memory(char* addr, size_t bytes) {
2919   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2920 }
2921 
2922 // Large page support
2923 static size_t _large_page_size = 0;
2924 
2925 // Insertion sort for small arrays (descending order).
2926 static void insertion_sort_descending(size_t* array, int len) {
2927   for (int i = 0; i < len; i++) {
2928     size_t val = array[i];
2929     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2930       size_t tmp = array[key];
2931       array[key] = array[key - 1];
2932       array[key - 1] = tmp;
2933     }
2934   }
2935 }
2936 
2937 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2938   const unsigned int usable_count = VM_Version::page_size_count();
2939   if (usable_count == 1) {
2940     return false;
2941   }
2942 
2943   // Find the right getpagesizes interface.  When solaris 11 is the minimum
2944   // build platform, getpagesizes() (without the '2') can be called directly.
2945   typedef int (*gps_t)(size_t[], int);
2946   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2947   if (gps_func == NULL) {
2948     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2949     if (gps_func == NULL) {
2950       if (warn) {
2951         warning("MPSS is not supported by the operating system.");
2952       }
2953       return false;
2954     }
2955   }
2956 
2957   // Fill the array of page sizes.
2958   int n = (*gps_func)(_page_sizes, page_sizes_max);
2959   assert(n > 0, "Solaris bug?");
2960 
2961   if (n == page_sizes_max) {
2962     // Add a sentinel value (necessary only if the array was completely filled
2963     // since it is static (zeroed at initialization)).
2964     _page_sizes[--n] = 0;
2965     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2966   }
2967   assert(_page_sizes[n] == 0, "missing sentinel");
2968   trace_page_sizes("available page sizes", _page_sizes, n);
2969 
2970   if (n == 1) return false;     // Only one page size available.
2971 
2972   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2973   // select up to usable_count elements.  First sort the array, find the first
2974   // acceptable value, then copy the usable sizes to the top of the array and
2975   // trim the rest.  Make sure to include the default page size :-).
2976   //
2977   // A better policy could get rid of the 4M limit by taking the sizes of the
2978   // important VM memory regions (java heap and possibly the code cache) into
2979   // account.
2980   insertion_sort_descending(_page_sizes, n);
2981   const size_t size_limit =
2982     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2983   int beg;
2984   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2985   const int end = MIN2((int)usable_count, n) - 1;
2986   for (int cur = 0; cur < end; ++cur, ++beg) {
2987     _page_sizes[cur] = _page_sizes[beg];
2988   }
2989   _page_sizes[end] = vm_page_size();
2990   _page_sizes[end + 1] = 0;
2991 
2992   if (_page_sizes[end] > _page_sizes[end - 1]) {
2993     // Default page size is not the smallest; sort again.
2994     insertion_sort_descending(_page_sizes, end + 1);
2995   }
2996   *page_size = _page_sizes[0];
2997 
2998   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2999   return true;
3000 }
3001 
3002 void os::large_page_init() {
3003   if (UseLargePages) {
3004     // print a warning if any large page related flag is specified on command line
3005     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
3006                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3007 
3008     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
3009   }
3010 }
3011 
3012 bool os::Solaris::is_valid_page_size(size_t bytes) {
3013   for (int i = 0; _page_sizes[i] != 0; i++) {
3014     if (_page_sizes[i] == bytes) {
3015       return true;
3016     }
3017   }
3018   return false;
3019 }
3020 
3021 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
3022   assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
3023   assert(is_ptr_aligned((void*) start, align),
3024          PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
3025   assert(is_size_aligned(bytes, align),
3026          SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
3027 
3028   // Signal to OS that we want large pages for addresses
3029   // from addr, addr + bytes
3030   struct memcntl_mha mpss_struct;
3031   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
3032   mpss_struct.mha_pagesize = align;
3033   mpss_struct.mha_flags = 0;
3034   // Upon successful completion, memcntl() returns 0
3035   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
3036     debug_only(warning("Attempt to use MPSS failed."));
3037     return false;
3038   }
3039   return true;
3040 }
3041 
3042 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
3043   fatal("os::reserve_memory_special should not be called on Solaris.");
3044   return NULL;
3045 }
3046 
3047 bool os::release_memory_special(char* base, size_t bytes) {
3048   fatal("os::release_memory_special should not be called on Solaris.");
3049   return false;
3050 }
3051 
3052 size_t os::large_page_size() {
3053   return _large_page_size;
3054 }
3055 
3056 // MPSS allows application to commit large page memory on demand; with ISM
3057 // the entire memory region must be allocated as shared memory.
3058 bool os::can_commit_large_page_memory() {
3059   return true;
3060 }
3061 
3062 bool os::can_execute_large_page_memory() {
3063   return true;
3064 }
3065 
3066 // Read calls from inside the vm need to perform state transitions
3067 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3068   size_t res;
3069   JavaThread* thread = (JavaThread*)Thread::current();
3070   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3071   ThreadBlockInVM tbiv(thread);
3072   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3073   return res;
3074 }
3075 
3076 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3077   size_t res;
3078   JavaThread* thread = (JavaThread*)Thread::current();
3079   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3080   ThreadBlockInVM tbiv(thread);
3081   RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
3082   return res;
3083 }
3084 
3085 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3086   size_t res;
3087   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3088          "Assumed _thread_in_native");
3089   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3090   return res;
3091 }
3092 
3093 void os::naked_short_sleep(jlong ms) {
3094   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3095 
3096   // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3097   // Solaris requires -lrt for this.
3098   usleep((ms * 1000));
3099 
3100   return;
3101 }
3102 
3103 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3104 void os::infinite_sleep() {
3105   while (true) {    // sleep forever ...
3106     ::sleep(100);   // ... 100 seconds at a time
3107   }
3108 }
3109 
3110 // Used to convert frequent JVM_Yield() to nops
3111 bool os::dont_yield() {
3112   if (DontYieldALot) {
3113     static hrtime_t last_time = 0;
3114     hrtime_t diff = getTimeNanos() - last_time;
3115 
3116     if (diff < DontYieldALotInterval * 1000000) {
3117       return true;
3118     }
3119 
3120     last_time += diff;
3121 
3122     return false;
3123   } else {
3124     return false;
3125   }
3126 }
3127 
3128 // Note that yield semantics are defined by the scheduling class to which
3129 // the thread currently belongs.  Typically, yield will _not yield to
3130 // other equal or higher priority threads that reside on the dispatch queues
3131 // of other CPUs.
3132 
3133 void os::naked_yield() {
3134   thr_yield();
3135 }
3136 
3137 // Interface for setting lwp priorities.  If we are using T2 libthread,
3138 // which forces the use of BoundThreads or we manually set UseBoundThreads,
3139 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
3140 // function is meaningless in this mode so we must adjust the real lwp's priority
3141 // The routines below implement the getting and setting of lwp priorities.
3142 //
3143 // Note: T2 is now the only supported libthread. UseBoundThreads flag is
3144 //       being deprecated and all threads are now BoundThreads
3145 //
3146 // Note: There are three priority scales used on Solaris.  Java priotities
3147 //       which range from 1 to 10, libthread "thr_setprio" scale which range
3148 //       from 0 to 127, and the current scheduling class of the process we
3149 //       are running in.  This is typically from -60 to +60.
3150 //       The setting of the lwp priorities in done after a call to thr_setprio
3151 //       so Java priorities are mapped to libthread priorities and we map from
3152 //       the latter to lwp priorities.  We don't keep priorities stored in
3153 //       Java priorities since some of our worker threads want to set priorities
3154 //       higher than all Java threads.
3155 //
3156 // For related information:
3157 // (1)  man -s 2 priocntl
3158 // (2)  man -s 4 priocntl
3159 // (3)  man dispadmin
3160 // =    librt.so
3161 // =    libthread/common/rtsched.c - thrp_setlwpprio().
3162 // =    ps -cL <pid> ... to validate priority.
3163 // =    sched_get_priority_min and _max
3164 //              pthread_create
3165 //              sched_setparam
3166 //              pthread_setschedparam
3167 //
3168 // Assumptions:
3169 // +    We assume that all threads in the process belong to the same
3170 //              scheduling class.   IE. an homogenous process.
3171 // +    Must be root or in IA group to change change "interactive" attribute.
3172 //              Priocntl() will fail silently.  The only indication of failure is when
3173 //              we read-back the value and notice that it hasn't changed.
3174 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
3175 // +    For RT, change timeslice as well.  Invariant:
3176 //              constant "priority integral"
3177 //              Konst == TimeSlice * (60-Priority)
3178 //              Given a priority, compute appropriate timeslice.
3179 // +    Higher numerical values have higher priority.
3180 
3181 // sched class attributes
3182 typedef struct {
3183   int   schedPolicy;              // classID
3184   int   maxPrio;
3185   int   minPrio;
3186 } SchedInfo;
3187 
3188 
3189 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3190 
3191 #ifdef ASSERT
3192 static int  ReadBackValidate = 1;
3193 #endif
3194 static int  myClass     = 0;
3195 static int  myMin       = 0;
3196 static int  myMax       = 0;
3197 static int  myCur       = 0;
3198 static bool priocntl_enable = false;
3199 
3200 static const int criticalPrio = FXCriticalPriority;
3201 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3202 
3203 
3204 // lwp_priocntl_init
3205 //
3206 // Try to determine the priority scale for our process.
3207 //
3208 // Return errno or 0 if OK.
3209 //
3210 static int lwp_priocntl_init() {
3211   int rslt;
3212   pcinfo_t ClassInfo;
3213   pcparms_t ParmInfo;
3214   int i;
3215 
3216   if (!UseThreadPriorities) return 0;
3217 
3218   // If ThreadPriorityPolicy is 1, switch tables
3219   if (ThreadPriorityPolicy == 1) {
3220     for (i = 0; i < CriticalPriority+1; i++)
3221       os::java_to_os_priority[i] = prio_policy1[i];
3222   }
3223   if (UseCriticalJavaThreadPriority) {
3224     // MaxPriority always maps to the FX scheduling class and criticalPrio.
3225     // See set_native_priority() and set_lwp_class_and_priority().
3226     // Save original MaxPriority mapping in case attempt to
3227     // use critical priority fails.
3228     java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3229     // Set negative to distinguish from other priorities
3230     os::java_to_os_priority[MaxPriority] = -criticalPrio;
3231   }
3232 
3233   // Get IDs for a set of well-known scheduling classes.
3234   // TODO-FIXME: GETCLINFO returns the current # of classes in the
3235   // the system.  We should have a loop that iterates over the
3236   // classID values, which are known to be "small" integers.
3237 
3238   strcpy(ClassInfo.pc_clname, "TS");
3239   ClassInfo.pc_cid = -1;
3240   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3241   if (rslt < 0) return errno;
3242   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3243   tsLimits.schedPolicy = ClassInfo.pc_cid;
3244   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3245   tsLimits.minPrio = -tsLimits.maxPrio;
3246 
3247   strcpy(ClassInfo.pc_clname, "IA");
3248   ClassInfo.pc_cid = -1;
3249   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3250   if (rslt < 0) return errno;
3251   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3252   iaLimits.schedPolicy = ClassInfo.pc_cid;
3253   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3254   iaLimits.minPrio = -iaLimits.maxPrio;
3255 
3256   strcpy(ClassInfo.pc_clname, "RT");
3257   ClassInfo.pc_cid = -1;
3258   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3259   if (rslt < 0) return errno;
3260   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3261   rtLimits.schedPolicy = ClassInfo.pc_cid;
3262   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3263   rtLimits.minPrio = 0;
3264 
3265   strcpy(ClassInfo.pc_clname, "FX");
3266   ClassInfo.pc_cid = -1;
3267   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3268   if (rslt < 0) return errno;
3269   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3270   fxLimits.schedPolicy = ClassInfo.pc_cid;
3271   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3272   fxLimits.minPrio = 0;
3273 
3274   // Query our "current" scheduling class.
3275   // This will normally be IA, TS or, rarely, FX or RT.
3276   memset(&ParmInfo, 0, sizeof(ParmInfo));
3277   ParmInfo.pc_cid = PC_CLNULL;
3278   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3279   if (rslt < 0) return errno;
3280   myClass = ParmInfo.pc_cid;
3281 
3282   // We now know our scheduling classId, get specific information
3283   // about the class.
3284   ClassInfo.pc_cid = myClass;
3285   ClassInfo.pc_clname[0] = 0;
3286   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3287   if (rslt < 0) return errno;
3288 
3289   if (ThreadPriorityVerbose) {
3290     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3291   }
3292 
3293   memset(&ParmInfo, 0, sizeof(pcparms_t));
3294   ParmInfo.pc_cid = PC_CLNULL;
3295   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3296   if (rslt < 0) return errno;
3297 
3298   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3299     myMin = rtLimits.minPrio;
3300     myMax = rtLimits.maxPrio;
3301   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3302     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3303     myMin = iaLimits.minPrio;
3304     myMax = iaLimits.maxPrio;
3305     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3306   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3307     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3308     myMin = tsLimits.minPrio;
3309     myMax = tsLimits.maxPrio;
3310     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3311   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3312     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3313     myMin = fxLimits.minPrio;
3314     myMax = fxLimits.maxPrio;
3315     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3316   } else {
3317     // No clue - punt
3318     if (ThreadPriorityVerbose) {
3319       tty->print_cr("Unknown scheduling class: %s ... \n",
3320                     ClassInfo.pc_clname);
3321     }
3322     return EINVAL;      // no clue, punt
3323   }
3324 
3325   if (ThreadPriorityVerbose) {
3326     tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3327   }
3328 
3329   priocntl_enable = true;  // Enable changing priorities
3330   return 0;
3331 }
3332 
3333 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3334 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3335 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3336 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3337 
3338 
3339 // scale_to_lwp_priority
3340 //
3341 // Convert from the libthread "thr_setprio" scale to our current
3342 // lwp scheduling class scale.
3343 //
3344 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3345   int v;
3346 
3347   if (x == 127) return rMax;            // avoid round-down
3348   v = (((x*(rMax-rMin)))/128)+rMin;
3349   return v;
3350 }
3351 
3352 
3353 // set_lwp_class_and_priority
3354 int set_lwp_class_and_priority(int ThreadID, int lwpid,
3355                                int newPrio, int new_class, bool scale) {
3356   int rslt;
3357   int Actual, Expected, prv;
3358   pcparms_t ParmInfo;                   // for GET-SET
3359 #ifdef ASSERT
3360   pcparms_t ReadBack;                   // for readback
3361 #endif
3362 
3363   // Set priority via PC_GETPARMS, update, PC_SETPARMS
3364   // Query current values.
3365   // TODO: accelerate this by eliminating the PC_GETPARMS call.
3366   // Cache "pcparms_t" in global ParmCache.
3367   // TODO: elide set-to-same-value
3368 
3369   // If something went wrong on init, don't change priorities.
3370   if (!priocntl_enable) {
3371     if (ThreadPriorityVerbose) {
3372       tty->print_cr("Trying to set priority but init failed, ignoring");
3373     }
3374     return EINVAL;
3375   }
3376 
3377   // If lwp hasn't started yet, just return
3378   // the _start routine will call us again.
3379   if (lwpid <= 0) {
3380     if (ThreadPriorityVerbose) {
3381       tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3382                     INTPTR_FORMAT " to %d, lwpid not set",
3383                     ThreadID, newPrio);
3384     }
3385     return 0;
3386   }
3387 
3388   if (ThreadPriorityVerbose) {
3389     tty->print_cr ("set_lwp_class_and_priority("
3390                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3391                    ThreadID, lwpid, newPrio);
3392   }
3393 
3394   memset(&ParmInfo, 0, sizeof(pcparms_t));
3395   ParmInfo.pc_cid = PC_CLNULL;
3396   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3397   if (rslt < 0) return errno;
3398 
3399   int cur_class = ParmInfo.pc_cid;
3400   ParmInfo.pc_cid = (id_t)new_class;
3401 
3402   if (new_class == rtLimits.schedPolicy) {
3403     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3404     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3405                                                        rtLimits.maxPrio, newPrio)
3406                                : newPrio;
3407     rtInfo->rt_tqsecs  = RT_NOCHANGE;
3408     rtInfo->rt_tqnsecs = RT_NOCHANGE;
3409     if (ThreadPriorityVerbose) {
3410       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3411     }
3412   } else if (new_class == iaLimits.schedPolicy) {
3413     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3414     int maxClamped     = MIN2(iaLimits.maxPrio,
3415                               cur_class == new_class
3416                               ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3417     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3418                                                        maxClamped, newPrio)
3419                                : newPrio;
3420     iaInfo->ia_uprilim = cur_class == new_class
3421                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3422     iaInfo->ia_mode    = IA_NOCHANGE;
3423     if (ThreadPriorityVerbose) {
3424       tty->print_cr("IA: [%d...%d] %d->%d\n",
3425                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3426     }
3427   } else if (new_class == tsLimits.schedPolicy) {
3428     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3429     int maxClamped     = MIN2(tsLimits.maxPrio,
3430                               cur_class == new_class
3431                               ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3432     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3433                                                        maxClamped, newPrio)
3434                                : newPrio;
3435     tsInfo->ts_uprilim = cur_class == new_class
3436                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3437     if (ThreadPriorityVerbose) {
3438       tty->print_cr("TS: [%d...%d] %d->%d\n",
3439                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3440     }
3441   } else if (new_class == fxLimits.schedPolicy) {
3442     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3443     int maxClamped     = MIN2(fxLimits.maxPrio,
3444                               cur_class == new_class
3445                               ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3446     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3447                                                        maxClamped, newPrio)
3448                                : newPrio;
3449     fxInfo->fx_uprilim = cur_class == new_class
3450                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3451     fxInfo->fx_tqsecs  = FX_NOCHANGE;
3452     fxInfo->fx_tqnsecs = FX_NOCHANGE;
3453     if (ThreadPriorityVerbose) {
3454       tty->print_cr("FX: [%d...%d] %d->%d\n",
3455                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3456     }
3457   } else {
3458     if (ThreadPriorityVerbose) {
3459       tty->print_cr("Unknown new scheduling class %d\n", new_class);
3460     }
3461     return EINVAL;    // no clue, punt
3462   }
3463 
3464   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3465   if (ThreadPriorityVerbose && rslt) {
3466     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3467   }
3468   if (rslt < 0) return errno;
3469 
3470 #ifdef ASSERT
3471   // Sanity check: read back what we just attempted to set.
3472   // In theory it could have changed in the interim ...
3473   //
3474   // The priocntl system call is tricky.
3475   // Sometimes it'll validate the priority value argument and
3476   // return EINVAL if unhappy.  At other times it fails silently.
3477   // Readbacks are prudent.
3478 
3479   if (!ReadBackValidate) return 0;
3480 
3481   memset(&ReadBack, 0, sizeof(pcparms_t));
3482   ReadBack.pc_cid = PC_CLNULL;
3483   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3484   assert(rslt >= 0, "priocntl failed");
3485   Actual = Expected = 0xBAD;
3486   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3487   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3488     Actual   = RTPRI(ReadBack)->rt_pri;
3489     Expected = RTPRI(ParmInfo)->rt_pri;
3490   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3491     Actual   = IAPRI(ReadBack)->ia_upri;
3492     Expected = IAPRI(ParmInfo)->ia_upri;
3493   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3494     Actual   = TSPRI(ReadBack)->ts_upri;
3495     Expected = TSPRI(ParmInfo)->ts_upri;
3496   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3497     Actual   = FXPRI(ReadBack)->fx_upri;
3498     Expected = FXPRI(ParmInfo)->fx_upri;
3499   } else {
3500     if (ThreadPriorityVerbose) {
3501       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3502                     ParmInfo.pc_cid);
3503     }
3504   }
3505 
3506   if (Actual != Expected) {
3507     if (ThreadPriorityVerbose) {
3508       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3509                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3510     }
3511   }
3512 #endif
3513 
3514   return 0;
3515 }
3516 
3517 // Solaris only gives access to 128 real priorities at a time,
3518 // so we expand Java's ten to fill this range.  This would be better
3519 // if we dynamically adjusted relative priorities.
3520 //
3521 // The ThreadPriorityPolicy option allows us to select 2 different
3522 // priority scales.
3523 //
3524 // ThreadPriorityPolicy=0
3525 // Since the Solaris' default priority is MaximumPriority, we do not
3526 // set a priority lower than Max unless a priority lower than
3527 // NormPriority is requested.
3528 //
3529 // ThreadPriorityPolicy=1
3530 // This mode causes the priority table to get filled with
3531 // linear values.  NormPriority get's mapped to 50% of the
3532 // Maximum priority an so on.  This will cause VM threads
3533 // to get unfair treatment against other Solaris processes
3534 // which do not explicitly alter their thread priorities.
3535 
3536 int os::java_to_os_priority[CriticalPriority + 1] = {
3537   -99999,         // 0 Entry should never be used
3538 
3539   0,              // 1 MinPriority
3540   32,             // 2
3541   64,             // 3
3542 
3543   96,             // 4
3544   127,            // 5 NormPriority
3545   127,            // 6
3546 
3547   127,            // 7
3548   127,            // 8
3549   127,            // 9 NearMaxPriority
3550 
3551   127,            // 10 MaxPriority
3552 
3553   -criticalPrio   // 11 CriticalPriority
3554 };
3555 
3556 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3557   OSThread* osthread = thread->osthread();
3558 
3559   // Save requested priority in case the thread hasn't been started
3560   osthread->set_native_priority(newpri);
3561 
3562   // Check for critical priority request
3563   bool fxcritical = false;
3564   if (newpri == -criticalPrio) {
3565     fxcritical = true;
3566     newpri = criticalPrio;
3567   }
3568 
3569   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3570   if (!UseThreadPriorities) return OS_OK;
3571 
3572   int status = 0;
3573 
3574   if (!fxcritical) {
3575     // Use thr_setprio only if we have a priority that thr_setprio understands
3576     status = thr_setprio(thread->osthread()->thread_id(), newpri);
3577   }
3578 
3579   int lwp_status =
3580           set_lwp_class_and_priority(osthread->thread_id(),
3581                                      osthread->lwp_id(),
3582                                      newpri,
3583                                      fxcritical ? fxLimits.schedPolicy : myClass,
3584                                      !fxcritical);
3585   if (lwp_status != 0 && fxcritical) {
3586     // Try again, this time without changing the scheduling class
3587     newpri = java_MaxPriority_to_os_priority;
3588     lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3589                                             osthread->lwp_id(),
3590                                             newpri, myClass, false);
3591   }
3592   status |= lwp_status;
3593   return (status == 0) ? OS_OK : OS_ERR;
3594 }
3595 
3596 
3597 OSReturn os::get_native_priority(const Thread* const thread,
3598                                  int *priority_ptr) {
3599   int p;
3600   if (!UseThreadPriorities) {
3601     *priority_ptr = NormalPriority;
3602     return OS_OK;
3603   }
3604   int status = thr_getprio(thread->osthread()->thread_id(), &p);
3605   if (status != 0) {
3606     return OS_ERR;
3607   }
3608   *priority_ptr = p;
3609   return OS_OK;
3610 }
3611 
3612 
3613 // Hint to the underlying OS that a task switch would not be good.
3614 // Void return because it's a hint and can fail.
3615 void os::hint_no_preempt() {
3616   schedctl_start(schedctl_init());
3617 }
3618 
3619 static void resume_clear_context(OSThread *osthread) {
3620   osthread->set_ucontext(NULL);
3621 }
3622 
3623 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3624   osthread->set_ucontext(context);
3625 }
3626 
3627 static PosixSemaphore sr_semaphore;
3628 
3629 void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3630   // Save and restore errno to avoid confusing native code with EINTR
3631   // after sigsuspend.
3632   int old_errno = errno;
3633 
3634   OSThread* osthread = thread->osthread();
3635   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3636 
3637   os::SuspendResume::State current = osthread->sr.state();
3638   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3639     suspend_save_context(osthread, uc);
3640 
3641     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3642     os::SuspendResume::State state = osthread->sr.suspended();
3643     if (state == os::SuspendResume::SR_SUSPENDED) {
3644       sigset_t suspend_set;  // signals for sigsuspend()
3645 
3646       // get current set of blocked signals and unblock resume signal
3647       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3648       sigdelset(&suspend_set, os::Solaris::SIGasync());
3649 
3650       sr_semaphore.signal();
3651       // wait here until we are resumed
3652       while (1) {
3653         sigsuspend(&suspend_set);
3654 
3655         os::SuspendResume::State result = osthread->sr.running();
3656         if (result == os::SuspendResume::SR_RUNNING) {
3657           sr_semaphore.signal();
3658           break;
3659         }
3660       }
3661 
3662     } else if (state == os::SuspendResume::SR_RUNNING) {
3663       // request was cancelled, continue
3664     } else {
3665       ShouldNotReachHere();
3666     }
3667 
3668     resume_clear_context(osthread);
3669   } else if (current == os::SuspendResume::SR_RUNNING) {
3670     // request was cancelled, continue
3671   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3672     // ignore
3673   } else {
3674     // ignore
3675   }
3676 
3677   errno = old_errno;
3678 }
3679 
3680 void os::print_statistics() {
3681 }
3682 
3683 bool os::message_box(const char* title, const char* message) {
3684   int i;
3685   fdStream err(defaultStream::error_fd());
3686   for (i = 0; i < 78; i++) err.print_raw("=");
3687   err.cr();
3688   err.print_raw_cr(title);
3689   for (i = 0; i < 78; i++) err.print_raw("-");
3690   err.cr();
3691   err.print_raw_cr(message);
3692   for (i = 0; i < 78; i++) err.print_raw("=");
3693   err.cr();
3694 
3695   char buf[16];
3696   // Prevent process from exiting upon "read error" without consuming all CPU
3697   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3698 
3699   return buf[0] == 'y' || buf[0] == 'Y';
3700 }
3701 
3702 static int sr_notify(OSThread* osthread) {
3703   int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3704   assert_status(status == 0, status, "thr_kill");
3705   return status;
3706 }
3707 
3708 // "Randomly" selected value for how long we want to spin
3709 // before bailing out on suspending a thread, also how often
3710 // we send a signal to a thread we want to resume
3711 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3712 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3713 
3714 static bool do_suspend(OSThread* osthread) {
3715   assert(osthread->sr.is_running(), "thread should be running");
3716   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3717 
3718   // mark as suspended and send signal
3719   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3720     // failed to switch, state wasn't running?
3721     ShouldNotReachHere();
3722     return false;
3723   }
3724 
3725   if (sr_notify(osthread) != 0) {
3726     ShouldNotReachHere();
3727   }
3728 
3729   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3730   while (true) {
3731     if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3732       break;
3733     } else {
3734       // timeout
3735       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3736       if (cancelled == os::SuspendResume::SR_RUNNING) {
3737         return false;
3738       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3739         // make sure that we consume the signal on the semaphore as well
3740         sr_semaphore.wait();
3741         break;
3742       } else {
3743         ShouldNotReachHere();
3744         return false;
3745       }
3746     }
3747   }
3748 
3749   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3750   return true;
3751 }
3752 
3753 static void do_resume(OSThread* osthread) {
3754   assert(osthread->sr.is_suspended(), "thread should be suspended");
3755   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3756 
3757   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3758     // failed to switch to WAKEUP_REQUEST
3759     ShouldNotReachHere();
3760     return;
3761   }
3762 
3763   while (true) {
3764     if (sr_notify(osthread) == 0) {
3765       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3766         if (osthread->sr.is_running()) {
3767           return;
3768         }
3769       }
3770     } else {
3771       ShouldNotReachHere();
3772     }
3773   }
3774 
3775   guarantee(osthread->sr.is_running(), "Must be running!");
3776 }
3777 
3778 void os::SuspendedThreadTask::internal_do_task() {
3779   if (do_suspend(_thread->osthread())) {
3780     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3781     do_task(context);
3782     do_resume(_thread->osthread());
3783   }
3784 }
3785 
3786 class PcFetcher : public os::SuspendedThreadTask {
3787  public:
3788   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3789   ExtendedPC result();
3790  protected:
3791   void do_task(const os::SuspendedThreadTaskContext& context);
3792  private:
3793   ExtendedPC _epc;
3794 };
3795 
3796 ExtendedPC PcFetcher::result() {
3797   guarantee(is_done(), "task is not done yet.");
3798   return _epc;
3799 }
3800 
3801 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3802   Thread* thread = context.thread();
3803   OSThread* osthread = thread->osthread();
3804   if (osthread->ucontext() != NULL) {
3805     _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3806   } else {
3807     // NULL context is unexpected, double-check this is the VMThread
3808     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3809   }
3810 }
3811 
3812 // A lightweight implementation that does not suspend the target thread and
3813 // thus returns only a hint. Used for profiling only!
3814 ExtendedPC os::get_thread_pc(Thread* thread) {
3815   // Make sure that it is called by the watcher and the Threads lock is owned.
3816   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3817   // For now, is only used to profile the VM Thread
3818   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3819   PcFetcher fetcher(thread);
3820   fetcher.run();
3821   return fetcher.result();
3822 }
3823 
3824 
3825 // This does not do anything on Solaris. This is basically a hook for being
3826 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3827 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3828                               const methodHandle& method, JavaCallArguments* args,
3829                               Thread* thread) {
3830   f(value, method, args, thread);
3831 }
3832 
3833 // This routine may be used by user applications as a "hook" to catch signals.
3834 // The user-defined signal handler must pass unrecognized signals to this
3835 // routine, and if it returns true (non-zero), then the signal handler must
3836 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3837 // routine will never retun false (zero), but instead will execute a VM panic
3838 // routine kill the process.
3839 //
3840 // If this routine returns false, it is OK to call it again.  This allows
3841 // the user-defined signal handler to perform checks either before or after
3842 // the VM performs its own checks.  Naturally, the user code would be making
3843 // a serious error if it tried to handle an exception (such as a null check
3844 // or breakpoint) that the VM was generating for its own correct operation.
3845 //
3846 // This routine may recognize any of the following kinds of signals:
3847 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3848 // os::Solaris::SIGasync
3849 // It should be consulted by handlers for any of those signals.
3850 //
3851 // The caller of this routine must pass in the three arguments supplied
3852 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3853 // field of the structure passed to sigaction().  This routine assumes that
3854 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3855 //
3856 // Note that the VM will print warnings if it detects conflicting signal
3857 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3858 //
3859 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3860                                                    siginfo_t* siginfo,
3861                                                    void* ucontext,
3862                                                    int abort_if_unrecognized);
3863 
3864 
3865 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3866   int orig_errno = errno;  // Preserve errno value over signal handler.
3867   JVM_handle_solaris_signal(sig, info, ucVoid, true);
3868   errno = orig_errno;
3869 }
3870 
3871 // This boolean allows users to forward their own non-matching signals
3872 // to JVM_handle_solaris_signal, harmlessly.
3873 bool os::Solaris::signal_handlers_are_installed = false;
3874 
3875 // For signal-chaining
3876 bool os::Solaris::libjsig_is_loaded = false;
3877 typedef struct sigaction *(*get_signal_t)(int);
3878 get_signal_t os::Solaris::get_signal_action = NULL;
3879 
3880 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3881   struct sigaction *actp = NULL;
3882 
3883   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3884     // Retrieve the old signal handler from libjsig
3885     actp = (*get_signal_action)(sig);
3886   }
3887   if (actp == NULL) {
3888     // Retrieve the preinstalled signal handler from jvm
3889     actp = get_preinstalled_handler(sig);
3890   }
3891 
3892   return actp;
3893 }
3894 
3895 static bool call_chained_handler(struct sigaction *actp, int sig,
3896                                  siginfo_t *siginfo, void *context) {
3897   // Call the old signal handler
3898   if (actp->sa_handler == SIG_DFL) {
3899     // It's more reasonable to let jvm treat it as an unexpected exception
3900     // instead of taking the default action.
3901     return false;
3902   } else if (actp->sa_handler != SIG_IGN) {
3903     if ((actp->sa_flags & SA_NODEFER) == 0) {
3904       // automaticlly block the signal
3905       sigaddset(&(actp->sa_mask), sig);
3906     }
3907 
3908     sa_handler_t hand;
3909     sa_sigaction_t sa;
3910     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3911     // retrieve the chained handler
3912     if (siginfo_flag_set) {
3913       sa = actp->sa_sigaction;
3914     } else {
3915       hand = actp->sa_handler;
3916     }
3917 
3918     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3919       actp->sa_handler = SIG_DFL;
3920     }
3921 
3922     // try to honor the signal mask
3923     sigset_t oset;
3924     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3925 
3926     // call into the chained handler
3927     if (siginfo_flag_set) {
3928       (*sa)(sig, siginfo, context);
3929     } else {
3930       (*hand)(sig);
3931     }
3932 
3933     // restore the signal mask
3934     pthread_sigmask(SIG_SETMASK, &oset, 0);
3935   }
3936   // Tell jvm's signal handler the signal is taken care of.
3937   return true;
3938 }
3939 
3940 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3941   bool chained = false;
3942   // signal-chaining
3943   if (UseSignalChaining) {
3944     struct sigaction *actp = get_chained_signal_action(sig);
3945     if (actp != NULL) {
3946       chained = call_chained_handler(actp, sig, siginfo, context);
3947     }
3948   }
3949   return chained;
3950 }
3951 
3952 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3953   assert((chainedsigactions != (struct sigaction *)NULL) &&
3954          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3955   if (preinstalled_sigs[sig] != 0) {
3956     return &chainedsigactions[sig];
3957   }
3958   return NULL;
3959 }
3960 
3961 void os::Solaris::save_preinstalled_handler(int sig,
3962                                             struct sigaction& oldAct) {
3963   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3964   assert((chainedsigactions != (struct sigaction *)NULL) &&
3965          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3966   chainedsigactions[sig] = oldAct;
3967   preinstalled_sigs[sig] = 1;
3968 }
3969 
3970 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3971                                      bool oktochain) {
3972   // Check for overwrite.
3973   struct sigaction oldAct;
3974   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3975   void* oldhand =
3976       oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3977                           : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3978   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3979       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3980       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3981     if (AllowUserSignalHandlers || !set_installed) {
3982       // Do not overwrite; user takes responsibility to forward to us.
3983       return;
3984     } else if (UseSignalChaining) {
3985       if (oktochain) {
3986         // save the old handler in jvm
3987         save_preinstalled_handler(sig, oldAct);
3988       } else {
3989         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3990       }
3991       // libjsig also interposes the sigaction() call below and saves the
3992       // old sigaction on it own.
3993     } else {
3994       fatal("Encountered unexpected pre-existing sigaction handler "
3995             "%#lx for signal %d.", (long)oldhand, sig);
3996     }
3997   }
3998 
3999   struct sigaction sigAct;
4000   sigfillset(&(sigAct.sa_mask));
4001   sigAct.sa_handler = SIG_DFL;
4002 
4003   sigAct.sa_sigaction = signalHandler;
4004   // Handle SIGSEGV on alternate signal stack if
4005   // not using stack banging
4006   if (!UseStackBanging && sig == SIGSEGV) {
4007     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
4008   } else {
4009     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
4010   }
4011   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
4012 
4013   sigaction(sig, &sigAct, &oldAct);
4014 
4015   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4016                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4017   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4018 }
4019 
4020 
4021 #define DO_SIGNAL_CHECK(sig)                      \
4022   do {                                            \
4023     if (!sigismember(&check_signal_done, sig)) {  \
4024       os::Solaris::check_signal_handler(sig);     \
4025     }                                             \
4026   } while (0)
4027 
4028 // This method is a periodic task to check for misbehaving JNI applications
4029 // under CheckJNI, we can add any periodic checks here
4030 
4031 void os::run_periodic_checks() {
4032   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
4033   // thereby preventing a NULL checks.
4034   if (!check_addr0_done) check_addr0_done = check_addr0(tty);
4035 
4036   if (check_signals == false) return;
4037 
4038   // SEGV and BUS if overridden could potentially prevent
4039   // generation of hs*.log in the event of a crash, debugging
4040   // such a case can be very challenging, so we absolutely
4041   // check for the following for a good measure:
4042   DO_SIGNAL_CHECK(SIGSEGV);
4043   DO_SIGNAL_CHECK(SIGILL);
4044   DO_SIGNAL_CHECK(SIGFPE);
4045   DO_SIGNAL_CHECK(SIGBUS);
4046   DO_SIGNAL_CHECK(SIGPIPE);
4047   DO_SIGNAL_CHECK(SIGXFSZ);
4048 
4049   // ReduceSignalUsage allows the user to override these handlers
4050   // see comments at the very top and jvm_solaris.h
4051   if (!ReduceSignalUsage) {
4052     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4053     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4054     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4055     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4056   }
4057 
4058   // See comments above for using JVM1/JVM2
4059   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4060 
4061 }
4062 
4063 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4064 
4065 static os_sigaction_t os_sigaction = NULL;
4066 
4067 void os::Solaris::check_signal_handler(int sig) {
4068   char buf[O_BUFLEN];
4069   address jvmHandler = NULL;
4070 
4071   struct sigaction act;
4072   if (os_sigaction == NULL) {
4073     // only trust the default sigaction, in case it has been interposed
4074     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4075     if (os_sigaction == NULL) return;
4076   }
4077 
4078   os_sigaction(sig, (struct sigaction*)NULL, &act);
4079 
4080   address thisHandler = (act.sa_flags & SA_SIGINFO)
4081     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4082     : CAST_FROM_FN_PTR(address, act.sa_handler);
4083 
4084 
4085   switch (sig) {
4086   case SIGSEGV:
4087   case SIGBUS:
4088   case SIGFPE:
4089   case SIGPIPE:
4090   case SIGXFSZ:
4091   case SIGILL:
4092     jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4093     break;
4094 
4095   case SHUTDOWN1_SIGNAL:
4096   case SHUTDOWN2_SIGNAL:
4097   case SHUTDOWN3_SIGNAL:
4098   case BREAK_SIGNAL:
4099     jvmHandler = (address)user_handler();
4100     break;
4101 
4102   default:
4103     int asynsig = os::Solaris::SIGasync();
4104 
4105     if (sig == asynsig) {
4106       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4107     } else {
4108       return;
4109     }
4110     break;
4111   }
4112 
4113 
4114   if (thisHandler != jvmHandler) {
4115     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4116     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4117     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4118     // No need to check this sig any longer
4119     sigaddset(&check_signal_done, sig);
4120     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4121     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4122       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4123                     exception_name(sig, buf, O_BUFLEN));
4124     }
4125   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4126     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4127     tty->print("expected:");
4128     os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
4129     tty->cr();
4130     tty->print("  found:");
4131     os::Posix::print_sa_flags(tty, act.sa_flags);
4132     tty->cr();
4133     // No need to check this sig any longer
4134     sigaddset(&check_signal_done, sig);
4135   }
4136 
4137   // Print all the signal handler state
4138   if (sigismember(&check_signal_done, sig)) {
4139     print_signal_handlers(tty, buf, O_BUFLEN);
4140   }
4141 
4142 }
4143 
4144 void os::Solaris::install_signal_handlers() {
4145   bool libjsigdone = false;
4146   signal_handlers_are_installed = true;
4147 
4148   // signal-chaining
4149   typedef void (*signal_setting_t)();
4150   signal_setting_t begin_signal_setting = NULL;
4151   signal_setting_t end_signal_setting = NULL;
4152   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4153                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4154   if (begin_signal_setting != NULL) {
4155     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4156                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4157     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4158                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4159     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4160                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4161     libjsig_is_loaded = true;
4162     if (os::Solaris::get_libjsig_version != NULL) {
4163       libjsigversion =  (*os::Solaris::get_libjsig_version)();
4164     }
4165     assert(UseSignalChaining, "should enable signal-chaining");
4166   }
4167   if (libjsig_is_loaded) {
4168     // Tell libjsig jvm is setting signal handlers
4169     (*begin_signal_setting)();
4170   }
4171 
4172   set_signal_handler(SIGSEGV, true, true);
4173   set_signal_handler(SIGPIPE, true, true);
4174   set_signal_handler(SIGXFSZ, true, true);
4175   set_signal_handler(SIGBUS, true, true);
4176   set_signal_handler(SIGILL, true, true);
4177   set_signal_handler(SIGFPE, true, true);
4178 
4179 
4180   if (os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4181     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4182     // can not register overridable signals which might be > 32
4183     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4184       // Tell libjsig jvm has finished setting signal handlers
4185       (*end_signal_setting)();
4186       libjsigdone = true;
4187     }
4188   }
4189 
4190   set_signal_handler(os::Solaris::SIGasync(), true, true);
4191 
4192   if (libjsig_is_loaded && !libjsigdone) {
4193     // Tell libjsig jvm finishes setting signal handlers
4194     (*end_signal_setting)();
4195   }
4196 
4197   // We don't activate signal checker if libjsig is in place, we trust ourselves
4198   // and if UserSignalHandler is installed all bets are off.
4199   // Log that signal checking is off only if -verbose:jni is specified.
4200   if (CheckJNICalls) {
4201     if (libjsig_is_loaded) {
4202       if (PrintJNIResolving) {
4203         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4204       }
4205       check_signals = false;
4206     }
4207     if (AllowUserSignalHandlers) {
4208       if (PrintJNIResolving) {
4209         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4210       }
4211       check_signals = false;
4212     }
4213   }
4214 }
4215 
4216 
4217 void report_error(const char* file_name, int line_no, const char* title,
4218                   const char* format, ...);
4219 
4220 // (Static) wrapper for getisax(2) call.
4221 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4222 
4223 // (Static) wrappers for the liblgrp API
4224 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4225 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4226 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4227 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4228 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4229 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4230 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4231 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4232 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4233 
4234 // (Static) wrapper for meminfo() call.
4235 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4236 
4237 static address resolve_symbol_lazy(const char* name) {
4238   address addr = (address) dlsym(RTLD_DEFAULT, name);
4239   if (addr == NULL) {
4240     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4241     addr = (address) dlsym(RTLD_NEXT, name);
4242   }
4243   return addr;
4244 }
4245 
4246 static address resolve_symbol(const char* name) {
4247   address addr = resolve_symbol_lazy(name);
4248   if (addr == NULL) {
4249     fatal(dlerror());
4250   }
4251   return addr;
4252 }
4253 
4254 void os::Solaris::libthread_init() {
4255   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4256 
4257   lwp_priocntl_init();
4258 
4259   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4260   if (func == NULL) {
4261     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4262     // Guarantee that this VM is running on an new enough OS (5.6 or
4263     // later) that it will have a new enough libthread.so.
4264     guarantee(func != NULL, "libthread.so is too old.");
4265   }
4266 
4267   int size;
4268   void (*handler_info_func)(address *, int *);
4269   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4270   handler_info_func(&handler_start, &size);
4271   handler_end = handler_start + size;
4272 }
4273 
4274 
4275 int_fnP_mutex_tP os::Solaris::_mutex_lock;
4276 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4277 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4278 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4279 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4280 int os::Solaris::_mutex_scope = USYNC_THREAD;
4281 
4282 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4283 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4284 int_fnP_cond_tP os::Solaris::_cond_signal;
4285 int_fnP_cond_tP os::Solaris::_cond_broadcast;
4286 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4287 int_fnP_cond_tP os::Solaris::_cond_destroy;
4288 int os::Solaris::_cond_scope = USYNC_THREAD;
4289 
4290 void os::Solaris::synchronization_init() {
4291   if (UseLWPSynchronization) {
4292     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4293     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4294     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4295     os::Solaris::set_mutex_init(lwp_mutex_init);
4296     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4297     os::Solaris::set_mutex_scope(USYNC_THREAD);
4298 
4299     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4300     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4301     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4302     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4303     os::Solaris::set_cond_init(lwp_cond_init);
4304     os::Solaris::set_cond_destroy(lwp_cond_destroy);
4305     os::Solaris::set_cond_scope(USYNC_THREAD);
4306   } else {
4307     os::Solaris::set_mutex_scope(USYNC_THREAD);
4308     os::Solaris::set_cond_scope(USYNC_THREAD);
4309 
4310     if (UsePthreads) {
4311       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4312       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4313       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4314       os::Solaris::set_mutex_init(pthread_mutex_default_init);
4315       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4316 
4317       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4318       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4319       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4320       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4321       os::Solaris::set_cond_init(pthread_cond_default_init);
4322       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4323     } else {
4324       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4325       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4326       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4327       os::Solaris::set_mutex_init(::mutex_init);
4328       os::Solaris::set_mutex_destroy(::mutex_destroy);
4329 
4330       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4331       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4332       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4333       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4334       os::Solaris::set_cond_init(::cond_init);
4335       os::Solaris::set_cond_destroy(::cond_destroy);
4336     }
4337   }
4338 }
4339 
4340 bool os::Solaris::liblgrp_init() {
4341   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4342   if (handle != NULL) {
4343     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4344     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4345     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4346     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4347     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4348     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4349     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4350     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4351                                                       dlsym(handle, "lgrp_cookie_stale")));
4352 
4353     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4354     set_lgrp_cookie(c);
4355     return true;
4356   }
4357   return false;
4358 }
4359 
4360 void os::Solaris::misc_sym_init() {
4361   address func;
4362 
4363   // getisax
4364   func = resolve_symbol_lazy("getisax");
4365   if (func != NULL) {
4366     os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4367   }
4368 
4369   // meminfo
4370   func = resolve_symbol_lazy("meminfo");
4371   if (func != NULL) {
4372     os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4373   }
4374 }
4375 
4376 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4377   assert(_getisax != NULL, "_getisax not set");
4378   return _getisax(array, n);
4379 }
4380 
4381 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4382 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4383 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4384 
4385 void init_pset_getloadavg_ptr(void) {
4386   pset_getloadavg_ptr =
4387     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4388   if (pset_getloadavg_ptr == NULL) {
4389     log_warning(os)("pset_getloadavg function not found");
4390   }
4391 }
4392 
4393 int os::Solaris::_dev_zero_fd = -1;
4394 
4395 // this is called _before_ the global arguments have been parsed
4396 void os::init(void) {
4397   _initial_pid = getpid();
4398 
4399   max_hrtime = first_hrtime = gethrtime();
4400 
4401   init_random(1234567);
4402 
4403   page_size = sysconf(_SC_PAGESIZE);
4404   if (page_size == -1) {
4405     fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4406   }
4407   init_page_sizes((size_t) page_size);
4408 
4409   Solaris::initialize_system_info();
4410 
4411   // Initialize misc. symbols as soon as possible, so we can use them
4412   // if we need them.
4413   Solaris::misc_sym_init();
4414 
4415   int fd = ::open("/dev/zero", O_RDWR);
4416   if (fd < 0) {
4417     fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4418   } else {
4419     Solaris::set_dev_zero_fd(fd);
4420 
4421     // Close on exec, child won't inherit.
4422     fcntl(fd, F_SETFD, FD_CLOEXEC);
4423   }
4424 
4425   clock_tics_per_sec = CLK_TCK;
4426 
4427   // check if dladdr1() exists; dladdr1 can provide more information than
4428   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4429   // and is available on linker patches for 5.7 and 5.8.
4430   // libdl.so must have been loaded, this call is just an entry lookup
4431   void * hdl = dlopen("libdl.so", RTLD_NOW);
4432   if (hdl) {
4433     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4434   }
4435 
4436   // (Solaris only) this switches to calls that actually do locking.
4437   ThreadCritical::initialize();
4438 
4439   main_thread = thr_self();
4440 
4441   // Constant minimum stack size allowed. It must be at least
4442   // the minimum of what the OS supports (thr_min_stack()), and
4443   // enough to allow the thread to get to user bytecode execution.
4444   Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
4445 
4446   // dynamic lookup of functions that may not be available in our lowest
4447   // supported Solaris release
4448   void * handle = dlopen("libc.so.1", RTLD_LAZY);
4449   if (handle != NULL) {
4450     Solaris::_pthread_setname_np =  // from 11.3
4451         (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4452 
4453     _get_nsec_fromepoch =           // from 11.3.6
4454         (_get_nsec_fromepoch_func_t) dlsym(handle, "get_nsec_fromepoch");
4455   }
4456 }
4457 
4458 // To install functions for atexit system call
4459 extern "C" {
4460   static void perfMemory_exit_helper() {
4461     perfMemory_exit();
4462   }
4463 }
4464 
4465 // this is called _after_ the global arguments have been parsed
4466 jint os::init_2(void) {
4467   // try to enable extended file IO ASAP, see 6431278
4468   os::Solaris::try_enable_extended_io();
4469 
4470   // Allocate a single page and mark it as readable for safepoint polling.  Also
4471   // use this first mmap call to check support for MAP_ALIGN.
4472   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4473                                                       page_size,
4474                                                       MAP_PRIVATE | MAP_ALIGN,
4475                                                       PROT_READ);
4476   if (polling_page == NULL) {
4477     has_map_align = false;
4478     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4479                                                 PROT_READ);
4480   }
4481 
4482   os::set_polling_page(polling_page);
4483   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4484 
4485   if (!UseMembar) {
4486     address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4487     guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4488     os::set_memory_serialize_page(mem_serialize_page);
4489     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4490   }
4491 
4492   // Check minimum allowable stack size for thread creation and to initialize
4493   // the java system classes, including StackOverflowError - depends on page
4494   // size.  Add a page for compiler2 recursion in main thread.
4495   // Add in 2*BytesPerWord times page size to account for VM stack during
4496   // class initialization depending on 32 or 64 bit VM.
4497   os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
4498                                         JavaThread::stack_guard_zone_size() +
4499                                         JavaThread::stack_shadow_zone_size() +
4500                                         (2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
4501 
4502   size_t threadStackSizeInBytes = ThreadStackSize * K;
4503   if (threadStackSizeInBytes != 0 &&
4504       threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
4505     tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
4506                   os::Solaris::min_stack_allowed/K);
4507     return JNI_ERR;
4508   }
4509 
4510   // For 64kbps there will be a 64kb page size, which makes
4511   // the usable default stack size quite a bit less.  Increase the
4512   // stack for 64kb (or any > than 8kb) pages, this increases
4513   // virtual memory fragmentation (since we're not creating the
4514   // stack on a power of 2 boundary.  The real fix for this
4515   // should be to fix the guard page mechanism.
4516 
4517   if (vm_page_size() > 8*K) {
4518     threadStackSizeInBytes = (threadStackSizeInBytes != 0)
4519        ? threadStackSizeInBytes +
4520          JavaThread::stack_red_zone_size() +
4521          JavaThread::stack_yellow_zone_size()
4522        : 0;
4523     ThreadStackSize = threadStackSizeInBytes/K;
4524   }
4525 
4526   // Make the stack size a multiple of the page size so that
4527   // the yellow/red zones can be guarded.
4528   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4529                                                 vm_page_size()));
4530 
4531   Solaris::libthread_init();
4532 
4533   if (UseNUMA) {
4534     if (!Solaris::liblgrp_init()) {
4535       UseNUMA = false;
4536     } else {
4537       size_t lgrp_limit = os::numa_get_groups_num();
4538       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4539       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4540       FREE_C_HEAP_ARRAY(int, lgrp_ids);
4541       if (lgrp_num < 2) {
4542         // There's only one locality group, disable NUMA.
4543         UseNUMA = false;
4544       }
4545     }
4546     if (!UseNUMA && ForceNUMA) {
4547       UseNUMA = true;
4548     }
4549   }
4550 
4551   Solaris::signal_sets_init();
4552   Solaris::init_signal_mem();
4553   Solaris::install_signal_handlers();
4554 
4555   if (libjsigversion < JSIG_VERSION_1_4_1) {
4556     Maxlibjsigsigs = OLDMAXSIGNUM;
4557   }
4558 
4559   // initialize synchronization primitives to use either thread or
4560   // lwp synchronization (controlled by UseLWPSynchronization)
4561   Solaris::synchronization_init();
4562 
4563   if (MaxFDLimit) {
4564     // set the number of file descriptors to max. print out error
4565     // if getrlimit/setrlimit fails but continue regardless.
4566     struct rlimit nbr_files;
4567     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4568     if (status != 0) {
4569       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4570     } else {
4571       nbr_files.rlim_cur = nbr_files.rlim_max;
4572       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4573       if (status != 0) {
4574         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4575       }
4576     }
4577   }
4578 
4579   // Calculate theoretical max. size of Threads to guard gainst
4580   // artifical out-of-memory situations, where all available address-
4581   // space has been reserved by thread stacks. Default stack size is 1Mb.
4582   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4583     JavaThread::stack_size_at_create() : (1*K*K);
4584   assert(pre_thread_stack_size != 0, "Must have a stack");
4585   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4586   // we should start doing Virtual Memory banging. Currently when the threads will
4587   // have used all but 200Mb of space.
4588   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4589   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4590 
4591   // at-exit methods are called in the reverse order of their registration.
4592   // In Solaris 7 and earlier, atexit functions are called on return from
4593   // main or as a result of a call to exit(3C). There can be only 32 of
4594   // these functions registered and atexit() does not set errno. In Solaris
4595   // 8 and later, there is no limit to the number of functions registered
4596   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4597   // functions are called upon dlclose(3DL) in addition to return from main
4598   // and exit(3C).
4599 
4600   if (PerfAllowAtExitRegistration) {
4601     // only register atexit functions if PerfAllowAtExitRegistration is set.
4602     // atexit functions can be delayed until process exit time, which
4603     // can be problematic for embedded VM situations. Embedded VMs should
4604     // call DestroyJavaVM() to assure that VM resources are released.
4605 
4606     // note: perfMemory_exit_helper atexit function may be removed in
4607     // the future if the appropriate cleanup code can be added to the
4608     // VM_Exit VMOperation's doit method.
4609     if (atexit(perfMemory_exit_helper) != 0) {
4610       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4611     }
4612   }
4613 
4614   // Init pset_loadavg function pointer
4615   init_pset_getloadavg_ptr();
4616 
4617   return JNI_OK;
4618 }
4619 
4620 // Mark the polling page as unreadable
4621 void os::make_polling_page_unreadable(void) {
4622   if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4623     fatal("Could not disable polling page");
4624   }
4625 }
4626 
4627 // Mark the polling page as readable
4628 void os::make_polling_page_readable(void) {
4629   if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4630     fatal("Could not enable polling page");
4631   }
4632 }
4633 
4634 // OS interface.
4635 
4636 bool os::check_heap(bool force) { return true; }
4637 
4638 // Is a (classpath) directory empty?
4639 bool os::dir_is_empty(const char* path) {
4640   DIR *dir = NULL;
4641   struct dirent *ptr;
4642 
4643   dir = opendir(path);
4644   if (dir == NULL) return true;
4645 
4646   // Scan the directory
4647   bool result = true;
4648   char buf[sizeof(struct dirent) + MAX_PATH];
4649   struct dirent *dbuf = (struct dirent *) buf;
4650   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4651     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4652       result = false;
4653     }
4654   }
4655   closedir(dir);
4656   return result;
4657 }
4658 
4659 // This code originates from JDK's sysOpen and open64_w
4660 // from src/solaris/hpi/src/system_md.c
4661 
4662 int os::open(const char *path, int oflag, int mode) {
4663   if (strlen(path) > MAX_PATH - 1) {
4664     errno = ENAMETOOLONG;
4665     return -1;
4666   }
4667   int fd;
4668 
4669   fd = ::open64(path, oflag, mode);
4670   if (fd == -1) return -1;
4671 
4672   // If the open succeeded, the file might still be a directory
4673   {
4674     struct stat64 buf64;
4675     int ret = ::fstat64(fd, &buf64);
4676     int st_mode = buf64.st_mode;
4677 
4678     if (ret != -1) {
4679       if ((st_mode & S_IFMT) == S_IFDIR) {
4680         errno = EISDIR;
4681         ::close(fd);
4682         return -1;
4683       }
4684     } else {
4685       ::close(fd);
4686       return -1;
4687     }
4688   }
4689 
4690   // 32-bit Solaris systems suffer from:
4691   //
4692   // - an historical default soft limit of 256 per-process file
4693   //   descriptors that is too low for many Java programs.
4694   //
4695   // - a design flaw where file descriptors created using stdio
4696   //   fopen must be less than 256, _even_ when the first limit above
4697   //   has been raised.  This can cause calls to fopen (but not calls to
4698   //   open, for example) to fail mysteriously, perhaps in 3rd party
4699   //   native code (although the JDK itself uses fopen).  One can hardly
4700   //   criticize them for using this most standard of all functions.
4701   //
4702   // We attempt to make everything work anyways by:
4703   //
4704   // - raising the soft limit on per-process file descriptors beyond
4705   //   256
4706   //
4707   // - As of Solaris 10u4, we can request that Solaris raise the 256
4708   //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4709   //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4710   //
4711   // - If we are stuck on an old (pre 10u4) Solaris system, we can
4712   //   workaround the bug by remapping non-stdio file descriptors below
4713   //   256 to ones beyond 256, which is done below.
4714   //
4715   // See:
4716   // 1085341: 32-bit stdio routines should support file descriptors >255
4717   // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4718   // 6431278: Netbeans crash on 32 bit Solaris: need to call
4719   //          enable_extended_FILE_stdio() in VM initialisation
4720   // Giri Mandalika's blog
4721   // http://technopark02.blogspot.com/2005_05_01_archive.html
4722   //
4723 #ifndef  _LP64
4724   if ((!enabled_extended_FILE_stdio) && fd < 256) {
4725     int newfd = ::fcntl(fd, F_DUPFD, 256);
4726     if (newfd != -1) {
4727       ::close(fd);
4728       fd = newfd;
4729     }
4730   }
4731 #endif // 32-bit Solaris
4732 
4733   // All file descriptors that are opened in the JVM and not
4734   // specifically destined for a subprocess should have the
4735   // close-on-exec flag set.  If we don't set it, then careless 3rd
4736   // party native code might fork and exec without closing all
4737   // appropriate file descriptors (e.g. as we do in closeDescriptors in
4738   // UNIXProcess.c), and this in turn might:
4739   //
4740   // - cause end-of-file to fail to be detected on some file
4741   //   descriptors, resulting in mysterious hangs, or
4742   //
4743   // - might cause an fopen in the subprocess to fail on a system
4744   //   suffering from bug 1085341.
4745   //
4746   // (Yes, the default setting of the close-on-exec flag is a Unix
4747   // design flaw)
4748   //
4749   // See:
4750   // 1085341: 32-bit stdio routines should support file descriptors >255
4751   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4752   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4753   //
4754 #ifdef FD_CLOEXEC
4755   {
4756     int flags = ::fcntl(fd, F_GETFD);
4757     if (flags != -1) {
4758       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4759     }
4760   }
4761 #endif
4762 
4763   return fd;
4764 }
4765 
4766 // create binary file, rewriting existing file if required
4767 int os::create_binary_file(const char* path, bool rewrite_existing) {
4768   int oflags = O_WRONLY | O_CREAT;
4769   if (!rewrite_existing) {
4770     oflags |= O_EXCL;
4771   }
4772   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4773 }
4774 
4775 // return current position of file pointer
4776 jlong os::current_file_offset(int fd) {
4777   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4778 }
4779 
4780 // move file pointer to the specified offset
4781 jlong os::seek_to_file_offset(int fd, jlong offset) {
4782   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4783 }
4784 
4785 jlong os::lseek(int fd, jlong offset, int whence) {
4786   return (jlong) ::lseek64(fd, offset, whence);
4787 }
4788 
4789 char * os::native_path(char *path) {
4790   return path;
4791 }
4792 
4793 int os::ftruncate(int fd, jlong length) {
4794   return ::ftruncate64(fd, length);
4795 }
4796 
4797 int os::fsync(int fd)  {
4798   RESTARTABLE_RETURN_INT(::fsync(fd));
4799 }
4800 
4801 int os::available(int fd, jlong *bytes) {
4802   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4803          "Assumed _thread_in_native");
4804   jlong cur, end;
4805   int mode;
4806   struct stat64 buf64;
4807 
4808   if (::fstat64(fd, &buf64) >= 0) {
4809     mode = buf64.st_mode;
4810     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4811       int n,ioctl_return;
4812 
4813       RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4814       if (ioctl_return>= 0) {
4815         *bytes = n;
4816         return 1;
4817       }
4818     }
4819   }
4820   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4821     return 0;
4822   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4823     return 0;
4824   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4825     return 0;
4826   }
4827   *bytes = end - cur;
4828   return 1;
4829 }
4830 
4831 // Map a block of memory.
4832 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4833                         char *addr, size_t bytes, bool read_only,
4834                         bool allow_exec) {
4835   int prot;
4836   int flags;
4837 
4838   if (read_only) {
4839     prot = PROT_READ;
4840     flags = MAP_SHARED;
4841   } else {
4842     prot = PROT_READ | PROT_WRITE;
4843     flags = MAP_PRIVATE;
4844   }
4845 
4846   if (allow_exec) {
4847     prot |= PROT_EXEC;
4848   }
4849 
4850   if (addr != NULL) {
4851     flags |= MAP_FIXED;
4852   }
4853 
4854   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4855                                      fd, file_offset);
4856   if (mapped_address == MAP_FAILED) {
4857     return NULL;
4858   }
4859   return mapped_address;
4860 }
4861 
4862 
4863 // Remap a block of memory.
4864 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4865                           char *addr, size_t bytes, bool read_only,
4866                           bool allow_exec) {
4867   // same as map_memory() on this OS
4868   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4869                         allow_exec);
4870 }
4871 
4872 
4873 // Unmap a block of memory.
4874 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4875   return munmap(addr, bytes) == 0;
4876 }
4877 
4878 void os::pause() {
4879   char filename[MAX_PATH];
4880   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4881     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4882   } else {
4883     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4884   }
4885 
4886   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4887   if (fd != -1) {
4888     struct stat buf;
4889     ::close(fd);
4890     while (::stat(filename, &buf) == 0) {
4891       (void)::poll(NULL, 0, 100);
4892     }
4893   } else {
4894     jio_fprintf(stderr,
4895                 "Could not open pause file '%s', continuing immediately.\n", filename);
4896   }
4897 }
4898 
4899 #ifndef PRODUCT
4900 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4901 // Turn this on if you need to trace synch operations.
4902 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4903 // and call record_synch_enable and record_synch_disable
4904 // around the computation of interest.
4905 
4906 void record_synch(char* name, bool returning);  // defined below
4907 
4908 class RecordSynch {
4909   char* _name;
4910  public:
4911   RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4912   ~RecordSynch()                       { record_synch(_name, true); }
4913 };
4914 
4915 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4916 extern "C" ret name params {                                    \
4917   typedef ret name##_t params;                                  \
4918   static name##_t* implem = NULL;                               \
4919   static int callcount = 0;                                     \
4920   if (implem == NULL) {                                         \
4921     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4922     if (implem == NULL)  fatal(dlerror());                      \
4923   }                                                             \
4924   ++callcount;                                                  \
4925   RecordSynch _rs(#name);                                       \
4926   inner;                                                        \
4927   return implem args;                                           \
4928 }
4929 // in dbx, examine callcounts this way:
4930 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4931 
4932 #define CHECK_POINTER_OK(p) \
4933   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4934 #define CHECK_MU \
4935   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4936 #define CHECK_CV \
4937   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4938 #define CHECK_P(p) \
4939   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4940 
4941 #define CHECK_MUTEX(mutex_op) \
4942   CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4943 
4944 CHECK_MUTEX(   mutex_lock)
4945 CHECK_MUTEX(  _mutex_lock)
4946 CHECK_MUTEX( mutex_unlock)
4947 CHECK_MUTEX(_mutex_unlock)
4948 CHECK_MUTEX( mutex_trylock)
4949 CHECK_MUTEX(_mutex_trylock)
4950 
4951 #define CHECK_COND(cond_op) \
4952   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4953 
4954 CHECK_COND( cond_wait);
4955 CHECK_COND(_cond_wait);
4956 CHECK_COND(_cond_wait_cancel);
4957 
4958 #define CHECK_COND2(cond_op) \
4959   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4960 
4961 CHECK_COND2( cond_timedwait);
4962 CHECK_COND2(_cond_timedwait);
4963 CHECK_COND2(_cond_timedwait_cancel);
4964 
4965 // do the _lwp_* versions too
4966 #define mutex_t lwp_mutex_t
4967 #define cond_t  lwp_cond_t
4968 CHECK_MUTEX(  _lwp_mutex_lock)
4969 CHECK_MUTEX(  _lwp_mutex_unlock)
4970 CHECK_MUTEX(  _lwp_mutex_trylock)
4971 CHECK_MUTEX( __lwp_mutex_lock)
4972 CHECK_MUTEX( __lwp_mutex_unlock)
4973 CHECK_MUTEX( __lwp_mutex_trylock)
4974 CHECK_MUTEX(___lwp_mutex_lock)
4975 CHECK_MUTEX(___lwp_mutex_unlock)
4976 
4977 CHECK_COND(  _lwp_cond_wait);
4978 CHECK_COND( __lwp_cond_wait);
4979 CHECK_COND(___lwp_cond_wait);
4980 
4981 CHECK_COND2(  _lwp_cond_timedwait);
4982 CHECK_COND2( __lwp_cond_timedwait);
4983 #undef mutex_t
4984 #undef cond_t
4985 
4986 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4987 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4988 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4989 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4990 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4991 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4992 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4993 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4994 
4995 
4996 // recording machinery:
4997 
4998 enum { RECORD_SYNCH_LIMIT = 200 };
4999 char* record_synch_name[RECORD_SYNCH_LIMIT];
5000 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
5001 bool record_synch_returning[RECORD_SYNCH_LIMIT];
5002 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
5003 int record_synch_count = 0;
5004 bool record_synch_enabled = false;
5005 
5006 // in dbx, examine recorded data this way:
5007 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
5008 
5009 void record_synch(char* name, bool returning) {
5010   if (record_synch_enabled) {
5011     if (record_synch_count < RECORD_SYNCH_LIMIT) {
5012       record_synch_name[record_synch_count] = name;
5013       record_synch_returning[record_synch_count] = returning;
5014       record_synch_thread[record_synch_count] = thr_self();
5015       record_synch_arg0ptr[record_synch_count] = &name;
5016       record_synch_count++;
5017     }
5018     // put more checking code here:
5019     // ...
5020   }
5021 }
5022 
5023 void record_synch_enable() {
5024   // start collecting trace data, if not already doing so
5025   if (!record_synch_enabled)  record_synch_count = 0;
5026   record_synch_enabled = true;
5027 }
5028 
5029 void record_synch_disable() {
5030   // stop collecting trace data
5031   record_synch_enabled = false;
5032 }
5033 
5034 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5035 #endif // PRODUCT
5036 
5037 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5038 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
5039                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5040 
5041 
5042 // JVMTI & JVM monitoring and management support
5043 // The thread_cpu_time() and current_thread_cpu_time() are only
5044 // supported if is_thread_cpu_time_supported() returns true.
5045 // They are not supported on Solaris T1.
5046 
5047 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5048 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5049 // of a thread.
5050 //
5051 // current_thread_cpu_time() and thread_cpu_time(Thread *)
5052 // returns the fast estimate available on the platform.
5053 
5054 // hrtime_t gethrvtime() return value includes
5055 // user time but does not include system time
5056 jlong os::current_thread_cpu_time() {
5057   return (jlong) gethrvtime();
5058 }
5059 
5060 jlong os::thread_cpu_time(Thread *thread) {
5061   // return user level CPU time only to be consistent with
5062   // what current_thread_cpu_time returns.
5063   // thread_cpu_time_info() must be changed if this changes
5064   return os::thread_cpu_time(thread, false /* user time only */);
5065 }
5066 
5067 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5068   if (user_sys_cpu_time) {
5069     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5070   } else {
5071     return os::current_thread_cpu_time();
5072   }
5073 }
5074 
5075 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5076   char proc_name[64];
5077   int count;
5078   prusage_t prusage;
5079   jlong lwp_time;
5080   int fd;
5081 
5082   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5083           getpid(),
5084           thread->osthread()->lwp_id());
5085   fd = ::open(proc_name, O_RDONLY);
5086   if (fd == -1) return -1;
5087 
5088   do {
5089     count = ::pread(fd,
5090                     (void *)&prusage.pr_utime,
5091                     thr_time_size,
5092                     thr_time_off);
5093   } while (count < 0 && errno == EINTR);
5094   ::close(fd);
5095   if (count < 0) return -1;
5096 
5097   if (user_sys_cpu_time) {
5098     // user + system CPU time
5099     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5100                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5101                  (jlong)prusage.pr_stime.tv_nsec +
5102                  (jlong)prusage.pr_utime.tv_nsec;
5103   } else {
5104     // user level CPU time only
5105     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5106                 (jlong)prusage.pr_utime.tv_nsec;
5107   }
5108 
5109   return (lwp_time);
5110 }
5111 
5112 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5113   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5114   info_ptr->may_skip_backward = false;    // elapsed time not wall time
5115   info_ptr->may_skip_forward = false;     // elapsed time not wall time
5116   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5117 }
5118 
5119 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5120   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5121   info_ptr->may_skip_backward = false;    // elapsed time not wall time
5122   info_ptr->may_skip_forward = false;     // elapsed time not wall time
5123   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5124 }
5125 
5126 bool os::is_thread_cpu_time_supported() {
5127   return true;
5128 }
5129 
5130 // System loadavg support.  Returns -1 if load average cannot be obtained.
5131 // Return the load average for our processor set if the primitive exists
5132 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
5133 int os::loadavg(double loadavg[], int nelem) {
5134   if (pset_getloadavg_ptr != NULL) {
5135     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5136   } else {
5137     return ::getloadavg(loadavg, nelem);
5138   }
5139 }
5140 
5141 //---------------------------------------------------------------------------------
5142 
5143 bool os::find(address addr, outputStream* st) {
5144   Dl_info dlinfo;
5145   memset(&dlinfo, 0, sizeof(dlinfo));
5146   if (dladdr(addr, &dlinfo) != 0) {
5147     st->print(PTR_FORMAT ": ", addr);
5148     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5149       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5150     } else if (dlinfo.dli_fbase != NULL) {
5151       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5152     } else {
5153       st->print("<absolute address>");
5154     }
5155     if (dlinfo.dli_fname != NULL) {
5156       st->print(" in %s", dlinfo.dli_fname);
5157     }
5158     if (dlinfo.dli_fbase != NULL) {
5159       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5160     }
5161     st->cr();
5162 
5163     if (Verbose) {
5164       // decode some bytes around the PC
5165       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5166       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5167       address       lowest = (address) dlinfo.dli_sname;
5168       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5169       if (begin < lowest)  begin = lowest;
5170       Dl_info dlinfo2;
5171       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5172           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5173         end = (address) dlinfo2.dli_saddr;
5174       }
5175       Disassembler::decode(begin, end, st);
5176     }
5177     return true;
5178   }
5179   return false;
5180 }
5181 
5182 // Following function has been added to support HotSparc's libjvm.so running
5183 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5184 // src/solaris/hpi/native_threads in the EVM codebase.
5185 //
5186 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5187 // libraries and should thus be removed. We will leave it behind for a while
5188 // until we no longer want to able to run on top of 1.3.0 Solaris production
5189 // JDK. See 4341971.
5190 
5191 #define STACK_SLACK 0x800
5192 
5193 extern "C" {
5194   intptr_t sysThreadAvailableStackWithSlack() {
5195     stack_t st;
5196     intptr_t retval, stack_top;
5197     retval = thr_stksegment(&st);
5198     assert(retval == 0, "incorrect return value from thr_stksegment");
5199     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5200     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5201     stack_top=(intptr_t)st.ss_sp-st.ss_size;
5202     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5203   }
5204 }
5205 
5206 // ObjectMonitor park-unpark infrastructure ...
5207 //
5208 // We implement Solaris and Linux PlatformEvents with the
5209 // obvious condvar-mutex-flag triple.
5210 // Another alternative that works quite well is pipes:
5211 // Each PlatformEvent consists of a pipe-pair.
5212 // The thread associated with the PlatformEvent
5213 // calls park(), which reads from the input end of the pipe.
5214 // Unpark() writes into the other end of the pipe.
5215 // The write-side of the pipe must be set NDELAY.
5216 // Unfortunately pipes consume a large # of handles.
5217 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
5218 // Using pipes for the 1st few threads might be workable, however.
5219 //
5220 // park() is permitted to return spuriously.
5221 // Callers of park() should wrap the call to park() in
5222 // an appropriate loop.  A litmus test for the correct
5223 // usage of park is the following: if park() were modified
5224 // to immediately return 0 your code should still work,
5225 // albeit degenerating to a spin loop.
5226 //
5227 // In a sense, park()-unpark() just provides more polite spinning
5228 // and polling with the key difference over naive spinning being
5229 // that a parked thread needs to be explicitly unparked() in order
5230 // to wake up and to poll the underlying condition.
5231 //
5232 // Assumption:
5233 //    Only one parker can exist on an event, which is why we allocate
5234 //    them per-thread. Multiple unparkers can coexist.
5235 //
5236 // _Event transitions in park()
5237 //   -1 => -1 : illegal
5238 //    1 =>  0 : pass - return immediately
5239 //    0 => -1 : block; then set _Event to 0 before returning
5240 //
5241 // _Event transitions in unpark()
5242 //    0 => 1 : just return
5243 //    1 => 1 : just return
5244 //   -1 => either 0 or 1; must signal target thread
5245 //         That is, we can safely transition _Event from -1 to either
5246 //         0 or 1.
5247 //
5248 // _Event serves as a restricted-range semaphore.
5249 //   -1 : thread is blocked, i.e. there is a waiter
5250 //    0 : neutral: thread is running or ready,
5251 //        could have been signaled after a wait started
5252 //    1 : signaled - thread is running or ready
5253 //
5254 // Another possible encoding of _Event would be with
5255 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5256 //
5257 // TODO-FIXME: add DTRACE probes for:
5258 // 1.   Tx parks
5259 // 2.   Ty unparks Tx
5260 // 3.   Tx resumes from park
5261 
5262 
5263 // value determined through experimentation
5264 #define ROUNDINGFIX 11
5265 
5266 // utility to compute the abstime argument to timedwait.
5267 // TODO-FIXME: switch from compute_abstime() to unpackTime().
5268 
5269 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5270   // millis is the relative timeout time
5271   // abstime will be the absolute timeout time
5272   if (millis < 0)  millis = 0;
5273   struct timeval now;
5274   int status = gettimeofday(&now, NULL);
5275   assert(status == 0, "gettimeofday");
5276   jlong seconds = millis / 1000;
5277   jlong max_wait_period;
5278 
5279   if (UseLWPSynchronization) {
5280     // forward port of fix for 4275818 (not sleeping long enough)
5281     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5282     // _lwp_cond_timedwait() used a round_down algorithm rather
5283     // than a round_up. For millis less than our roundfactor
5284     // it rounded down to 0 which doesn't meet the spec.
5285     // For millis > roundfactor we may return a bit sooner, but
5286     // since we can not accurately identify the patch level and
5287     // this has already been fixed in Solaris 9 and 8 we will
5288     // leave it alone rather than always rounding down.
5289 
5290     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5291     // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5292     // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5293     max_wait_period = 21000000;
5294   } else {
5295     max_wait_period = 50000000;
5296   }
5297   millis %= 1000;
5298   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5299     seconds = max_wait_period;
5300   }
5301   abstime->tv_sec = now.tv_sec  + seconds;
5302   long       usec = now.tv_usec + millis * 1000;
5303   if (usec >= 1000000) {
5304     abstime->tv_sec += 1;
5305     usec -= 1000000;
5306   }
5307   abstime->tv_nsec = usec * 1000;
5308   return abstime;
5309 }
5310 
5311 void os::PlatformEvent::park() {           // AKA: down()
5312   // Transitions for _Event:
5313   //   -1 => -1 : illegal
5314   //    1 =>  0 : pass - return immediately
5315   //    0 => -1 : block; then set _Event to 0 before returning
5316 
5317   // Invariant: Only the thread associated with the Event/PlatformEvent
5318   // may call park().
5319   assert(_nParked == 0, "invariant");
5320 
5321   int v;
5322   for (;;) {
5323     v = _Event;
5324     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5325   }
5326   guarantee(v >= 0, "invariant");
5327   if (v == 0) {
5328     // Do this the hard way by blocking ...
5329     // See http://monaco.sfbay/detail.jsf?cr=5094058.
5330     // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5331     // Only for SPARC >= V8PlusA
5332 #if defined(__sparc) && defined(COMPILER2)
5333     if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5334 #endif
5335     int status = os::Solaris::mutex_lock(_mutex);
5336     assert_status(status == 0, status, "mutex_lock");
5337     guarantee(_nParked == 0, "invariant");
5338     ++_nParked;
5339     while (_Event < 0) {
5340       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5341       // Treat this the same as if the wait was interrupted
5342       // With usr/lib/lwp going to kernel, always handle ETIME
5343       status = os::Solaris::cond_wait(_cond, _mutex);
5344       if (status == ETIME) status = EINTR;
5345       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5346     }
5347     --_nParked;
5348     _Event = 0;
5349     status = os::Solaris::mutex_unlock(_mutex);
5350     assert_status(status == 0, status, "mutex_unlock");
5351     // Paranoia to ensure our locked and lock-free paths interact
5352     // correctly with each other.
5353     OrderAccess::fence();
5354   }
5355 }
5356 
5357 int os::PlatformEvent::park(jlong millis) {
5358   // Transitions for _Event:
5359   //   -1 => -1 : illegal
5360   //    1 =>  0 : pass - return immediately
5361   //    0 => -1 : block; then set _Event to 0 before returning
5362 
5363   guarantee(_nParked == 0, "invariant");
5364   int v;
5365   for (;;) {
5366     v = _Event;
5367     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5368   }
5369   guarantee(v >= 0, "invariant");
5370   if (v != 0) return OS_OK;
5371 
5372   int ret = OS_TIMEOUT;
5373   timestruc_t abst;
5374   compute_abstime(&abst, millis);
5375 
5376   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5377   // For Solaris SPARC set fprs.FEF=0 prior to parking.
5378   // Only for SPARC >= V8PlusA
5379 #if defined(__sparc) && defined(COMPILER2)
5380   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5381 #endif
5382   int status = os::Solaris::mutex_lock(_mutex);
5383   assert_status(status == 0, status, "mutex_lock");
5384   guarantee(_nParked == 0, "invariant");
5385   ++_nParked;
5386   while (_Event < 0) {
5387     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5388     assert_status(status == 0 || status == EINTR ||
5389                   status == ETIME || status == ETIMEDOUT,
5390                   status, "cond_timedwait");
5391     if (!FilterSpuriousWakeups) break;                // previous semantics
5392     if (status == ETIME || status == ETIMEDOUT) break;
5393     // We consume and ignore EINTR and spurious wakeups.
5394   }
5395   --_nParked;
5396   if (_Event >= 0) ret = OS_OK;
5397   _Event = 0;
5398   status = os::Solaris::mutex_unlock(_mutex);
5399   assert_status(status == 0, status, "mutex_unlock");
5400   // Paranoia to ensure our locked and lock-free paths interact
5401   // correctly with each other.
5402   OrderAccess::fence();
5403   return ret;
5404 }
5405 
5406 void os::PlatformEvent::unpark() {
5407   // Transitions for _Event:
5408   //    0 => 1 : just return
5409   //    1 => 1 : just return
5410   //   -1 => either 0 or 1; must signal target thread
5411   //         That is, we can safely transition _Event from -1 to either
5412   //         0 or 1.
5413   // See also: "Semaphores in Plan 9" by Mullender & Cox
5414   //
5415   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5416   // that it will take two back-to-back park() calls for the owning
5417   // thread to block. This has the benefit of forcing a spurious return
5418   // from the first park() call after an unpark() call which will help
5419   // shake out uses of park() and unpark() without condition variables.
5420 
5421   if (Atomic::xchg(1, &_Event) >= 0) return;
5422 
5423   // If the thread associated with the event was parked, wake it.
5424   // Wait for the thread assoc with the PlatformEvent to vacate.
5425   int status = os::Solaris::mutex_lock(_mutex);
5426   assert_status(status == 0, status, "mutex_lock");
5427   int AnyWaiters = _nParked;
5428   status = os::Solaris::mutex_unlock(_mutex);
5429   assert_status(status == 0, status, "mutex_unlock");
5430   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5431   if (AnyWaiters != 0) {
5432     // Note that we signal() *after* dropping the lock for "immortal" Events.
5433     // This is safe and avoids a common class of  futile wakeups.  In rare
5434     // circumstances this can cause a thread to return prematurely from
5435     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5436     // will simply re-test the condition and re-park itself.
5437     // This provides particular benefit if the underlying platform does not
5438     // provide wait morphing.
5439     status = os::Solaris::cond_signal(_cond);
5440     assert_status(status == 0, status, "cond_signal");
5441   }
5442 }
5443 
5444 // JSR166
5445 // -------------------------------------------------------
5446 
5447 // The solaris and linux implementations of park/unpark are fairly
5448 // conservative for now, but can be improved. They currently use a
5449 // mutex/condvar pair, plus _counter.
5450 // Park decrements _counter if > 0, else does a condvar wait.  Unpark
5451 // sets count to 1 and signals condvar.  Only one thread ever waits
5452 // on the condvar. Contention seen when trying to park implies that someone
5453 // is unparking you, so don't wait. And spurious returns are fine, so there
5454 // is no need to track notifications.
5455 
5456 #define MAX_SECS 100000000
5457 
5458 // This code is common to linux and solaris and will be moved to a
5459 // common place in dolphin.
5460 //
5461 // The passed in time value is either a relative time in nanoseconds
5462 // or an absolute time in milliseconds. Either way it has to be unpacked
5463 // into suitable seconds and nanoseconds components and stored in the
5464 // given timespec structure.
5465 // Given time is a 64-bit value and the time_t used in the timespec is only
5466 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5467 // overflow if times way in the future are given. Further on Solaris versions
5468 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5469 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5470 // As it will be 28 years before "now + 100000000" will overflow we can
5471 // ignore overflow and just impose a hard-limit on seconds using the value
5472 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5473 // years from "now".
5474 //
5475 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5476   assert(time > 0, "convertTime");
5477 
5478   struct timeval now;
5479   int status = gettimeofday(&now, NULL);
5480   assert(status == 0, "gettimeofday");
5481 
5482   time_t max_secs = now.tv_sec + MAX_SECS;
5483 
5484   if (isAbsolute) {
5485     jlong secs = time / 1000;
5486     if (secs > max_secs) {
5487       absTime->tv_sec = max_secs;
5488     } else {
5489       absTime->tv_sec = secs;
5490     }
5491     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5492   } else {
5493     jlong secs = time / NANOSECS_PER_SEC;
5494     if (secs >= MAX_SECS) {
5495       absTime->tv_sec = max_secs;
5496       absTime->tv_nsec = 0;
5497     } else {
5498       absTime->tv_sec = now.tv_sec + secs;
5499       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5500       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5501         absTime->tv_nsec -= NANOSECS_PER_SEC;
5502         ++absTime->tv_sec; // note: this must be <= max_secs
5503       }
5504     }
5505   }
5506   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5507   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5508   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5509   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5510 }
5511 
5512 void Parker::park(bool isAbsolute, jlong time) {
5513   // Ideally we'd do something useful while spinning, such
5514   // as calling unpackTime().
5515 
5516   // Optional fast-path check:
5517   // Return immediately if a permit is available.
5518   // We depend on Atomic::xchg() having full barrier semantics
5519   // since we are doing a lock-free update to _counter.
5520   if (Atomic::xchg(0, &_counter) > 0) return;
5521 
5522   // Optional fast-exit: Check interrupt before trying to wait
5523   Thread* thread = Thread::current();
5524   assert(thread->is_Java_thread(), "Must be JavaThread");
5525   JavaThread *jt = (JavaThread *)thread;
5526   if (Thread::is_interrupted(thread, false)) {
5527     return;
5528   }
5529 
5530   // First, demultiplex/decode time arguments
5531   timespec absTime;
5532   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5533     return;
5534   }
5535   if (time > 0) {
5536     // Warning: this code might be exposed to the old Solaris time
5537     // round-down bugs.  Grep "roundingFix" for details.
5538     unpackTime(&absTime, isAbsolute, time);
5539   }
5540 
5541   // Enter safepoint region
5542   // Beware of deadlocks such as 6317397.
5543   // The per-thread Parker:: _mutex is a classic leaf-lock.
5544   // In particular a thread must never block on the Threads_lock while
5545   // holding the Parker:: mutex.  If safepoints are pending both the
5546   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5547   ThreadBlockInVM tbivm(jt);
5548 
5549   // Don't wait if cannot get lock since interference arises from
5550   // unblocking.  Also. check interrupt before trying wait
5551   if (Thread::is_interrupted(thread, false) ||
5552       os::Solaris::mutex_trylock(_mutex) != 0) {
5553     return;
5554   }
5555 
5556   int status;
5557 
5558   if (_counter > 0)  { // no wait needed
5559     _counter = 0;
5560     status = os::Solaris::mutex_unlock(_mutex);
5561     assert(status == 0, "invariant");
5562     // Paranoia to ensure our locked and lock-free paths interact
5563     // correctly with each other and Java-level accesses.
5564     OrderAccess::fence();
5565     return;
5566   }
5567 
5568 #ifdef ASSERT
5569   // Don't catch signals while blocked; let the running threads have the signals.
5570   // (This allows a debugger to break into the running thread.)
5571   sigset_t oldsigs;
5572   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5573   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5574 #endif
5575 
5576   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5577   jt->set_suspend_equivalent();
5578   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5579 
5580   // Do this the hard way by blocking ...
5581   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5582   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5583   // Only for SPARC >= V8PlusA
5584 #if defined(__sparc) && defined(COMPILER2)
5585   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5586 #endif
5587 
5588   if (time == 0) {
5589     status = os::Solaris::cond_wait(_cond, _mutex);
5590   } else {
5591     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5592   }
5593   // Note that an untimed cond_wait() can sometimes return ETIME on older
5594   // versions of the Solaris.
5595   assert_status(status == 0 || status == EINTR ||
5596                 status == ETIME || status == ETIMEDOUT,
5597                 status, "cond_timedwait");
5598 
5599 #ifdef ASSERT
5600   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5601 #endif
5602   _counter = 0;
5603   status = os::Solaris::mutex_unlock(_mutex);
5604   assert_status(status == 0, status, "mutex_unlock");
5605   // Paranoia to ensure our locked and lock-free paths interact
5606   // correctly with each other and Java-level accesses.
5607   OrderAccess::fence();
5608 
5609   // If externally suspended while waiting, re-suspend
5610   if (jt->handle_special_suspend_equivalent_condition()) {
5611     jt->java_suspend_self();
5612   }
5613 }
5614 
5615 void Parker::unpark() {
5616   int status = os::Solaris::mutex_lock(_mutex);
5617   assert(status == 0, "invariant");
5618   const int s = _counter;
5619   _counter = 1;
5620   status = os::Solaris::mutex_unlock(_mutex);
5621   assert(status == 0, "invariant");
5622 
5623   if (s < 1) {
5624     status = os::Solaris::cond_signal(_cond);
5625     assert(status == 0, "invariant");
5626   }
5627 }
5628 
5629 extern char** environ;
5630 
5631 // Run the specified command in a separate process. Return its exit value,
5632 // or -1 on failure (e.g. can't fork a new process).
5633 // Unlike system(), this function can be called from signal handler. It
5634 // doesn't block SIGINT et al.
5635 int os::fork_and_exec(char* cmd) {
5636   char * argv[4];
5637   argv[0] = (char *)"sh";
5638   argv[1] = (char *)"-c";
5639   argv[2] = cmd;
5640   argv[3] = NULL;
5641 
5642   // fork is async-safe, fork1 is not so can't use in signal handler
5643   pid_t pid;
5644   Thread* t = Thread::current_or_null_safe();
5645   if (t != NULL && t->is_inside_signal_handler()) {
5646     pid = fork();
5647   } else {
5648     pid = fork1();
5649   }
5650 
5651   if (pid < 0) {
5652     // fork failed
5653     warning("fork failed: %s", os::strerror(errno));
5654     return -1;
5655 
5656   } else if (pid == 0) {
5657     // child process
5658 
5659     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5660     execve("/usr/bin/sh", argv, environ);
5661 
5662     // execve failed
5663     _exit(-1);
5664 
5665   } else  {
5666     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5667     // care about the actual exit code, for now.
5668 
5669     int status;
5670 
5671     // Wait for the child process to exit.  This returns immediately if
5672     // the child has already exited. */
5673     while (waitpid(pid, &status, 0) < 0) {
5674       switch (errno) {
5675       case ECHILD: return 0;
5676       case EINTR: break;
5677       default: return -1;
5678       }
5679     }
5680 
5681     if (WIFEXITED(status)) {
5682       // The child exited normally; get its exit code.
5683       return WEXITSTATUS(status);
5684     } else if (WIFSIGNALED(status)) {
5685       // The child exited because of a signal
5686       // The best value to return is 0x80 + signal number,
5687       // because that is what all Unix shells do, and because
5688       // it allows callers to distinguish between process exit and
5689       // process death by signal.
5690       return 0x80 + WTERMSIG(status);
5691     } else {
5692       // Unknown exit code; pass it through
5693       return status;
5694     }
5695   }
5696 }
5697 
5698 // is_headless_jre()
5699 //
5700 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5701 // in order to report if we are running in a headless jre
5702 //
5703 // Since JDK8 xawt/libmawt.so was moved into the same directory
5704 // as libawt.so, and renamed libawt_xawt.so
5705 //
5706 bool os::is_headless_jre() {
5707   struct stat statbuf;
5708   char buf[MAXPATHLEN];
5709   char libmawtpath[MAXPATHLEN];
5710   const char *xawtstr  = "/xawt/libmawt.so";
5711   const char *new_xawtstr = "/libawt_xawt.so";
5712   char *p;
5713 
5714   // Get path to libjvm.so
5715   os::jvm_path(buf, sizeof(buf));
5716 
5717   // Get rid of libjvm.so
5718   p = strrchr(buf, '/');
5719   if (p == NULL) {
5720     return false;
5721   } else {
5722     *p = '\0';
5723   }
5724 
5725   // Get rid of client or server
5726   p = strrchr(buf, '/');
5727   if (p == NULL) {
5728     return false;
5729   } else {
5730     *p = '\0';
5731   }
5732 
5733   // check xawt/libmawt.so
5734   strcpy(libmawtpath, buf);
5735   strcat(libmawtpath, xawtstr);
5736   if (::stat(libmawtpath, &statbuf) == 0) return false;
5737 
5738   // check libawt_xawt.so
5739   strcpy(libmawtpath, buf);
5740   strcat(libmawtpath, new_xawtstr);
5741   if (::stat(libmawtpath, &statbuf) == 0) return false;
5742 
5743   return true;
5744 }
5745 
5746 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5747   size_t res;
5748   RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5749   return res;
5750 }
5751 
5752 int os::close(int fd) {
5753   return ::close(fd);
5754 }
5755 
5756 int os::socket_close(int fd) {
5757   return ::close(fd);
5758 }
5759 
5760 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5761   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5762          "Assumed _thread_in_native");
5763   RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5764 }
5765 
5766 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5767   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5768          "Assumed _thread_in_native");
5769   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5770 }
5771 
5772 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5773   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5774 }
5775 
5776 // As both poll and select can be interrupted by signals, we have to be
5777 // prepared to restart the system call after updating the timeout, unless
5778 // a poll() is done with timeout == -1, in which case we repeat with this
5779 // "wait forever" value.
5780 
5781 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5782   int _result;
5783   _result = ::connect(fd, him, len);
5784 
5785   // On Solaris, when a connect() call is interrupted, the connection
5786   // can be established asynchronously (see 6343810). Subsequent calls
5787   // to connect() must check the errno value which has the semantic
5788   // described below (copied from the connect() man page). Handling
5789   // of asynchronously established connections is required for both
5790   // blocking and non-blocking sockets.
5791   //     EINTR            The  connection  attempt  was   interrupted
5792   //                      before  any data arrived by the delivery of
5793   //                      a signal. The connection, however, will  be
5794   //                      established asynchronously.
5795   //
5796   //     EINPROGRESS      The socket is non-blocking, and the connec-
5797   //                      tion  cannot  be completed immediately.
5798   //
5799   //     EALREADY         The socket is non-blocking,  and a previous
5800   //                      connection  attempt  has  not yet been com-
5801   //                      pleted.
5802   //
5803   //     EISCONN          The socket is already connected.
5804   if (_result == OS_ERR && errno == EINTR) {
5805     // restarting a connect() changes its errno semantics
5806     RESTARTABLE(::connect(fd, him, len), _result);
5807     // undo these changes
5808     if (_result == OS_ERR) {
5809       if (errno == EALREADY) {
5810         errno = EINPROGRESS; // fall through
5811       } else if (errno == EISCONN) {
5812         errno = 0;
5813         return OS_OK;
5814       }
5815     }
5816   }
5817   return _result;
5818 }
5819 
5820 // Get the default path to the core file
5821 // Returns the length of the string
5822 int os::get_core_path(char* buffer, size_t bufferSize) {
5823   const char* p = get_current_directory(buffer, bufferSize);
5824 
5825   if (p == NULL) {
5826     assert(p != NULL, "failed to get current directory");
5827     return 0;
5828   }
5829 
5830   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5831                                               p, current_process_id());
5832 
5833   return strlen(buffer);
5834 }
5835 
5836 #ifndef PRODUCT
5837 void TestReserveMemorySpecial_test() {
5838   // No tests available for this platform
5839 }
5840 #endif
5841 
5842 bool os::start_debugging(char *buf, int buflen) {
5843   int len = (int)strlen(buf);
5844   char *p = &buf[len];
5845 
5846   jio_snprintf(p, buflen-len,
5847                "\n\n"
5848                "Do you want to debug the problem?\n\n"
5849                "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5850                "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5851                "Otherwise, press RETURN to abort...",
5852                os::current_process_id(), os::current_thread_id());
5853 
5854   bool yes = os::message_box("Unexpected Error", buf);
5855 
5856   if (yes) {
5857     // yes, user asked VM to launch debugger
5858     jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5859 
5860     os::fork_and_exec(buf);
5861     yes = false;
5862   }
5863   return yes;
5864 }
5865 
5866 bool os::map_memory_to_file(char* base, size_t size, const char* backingFileDir) {
5867   VMError::report_and_die("Allocating object heap with backing file is not supported for Solaris");
5868   return false;
5869 }