1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  75   // The implementation is only non-empty for the InterpreterMacroAssembler,
  76   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  77   virtual void check_and_handle_popframe(Register java_thread);
  78   virtual void check_and_handle_earlyret(Register java_thread);
  79 
  80   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  81 
  82   // helpers for FPU flag access
  83   // tmp is a temporary register, if none is available use noreg
  84   void save_rax   (Register tmp);
  85   void restore_rax(Register tmp);
  86 
  87  public:
  88   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // Support optimal SSE move instructions.
 160   void movflt(XMMRegister dst, XMMRegister src) {
 161     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 162     else                       { movss (dst, src); return; }
 163   }
 164   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 165   void movflt(XMMRegister dst, AddressLiteral src);
 166   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 167 
 168   void movdbl(XMMRegister dst, XMMRegister src) {
 169     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 170     else                       { movsd (dst, src); return; }
 171   }
 172 
 173   void movdbl(XMMRegister dst, AddressLiteral src);
 174 
 175   void movdbl(XMMRegister dst, Address src) {
 176     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 177     else                         { movlpd(dst, src); return; }
 178   }
 179   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 180 
 181   void incrementl(AddressLiteral dst);
 182   void incrementl(ArrayAddress dst);
 183 
 184   void incrementq(AddressLiteral dst);
 185 
 186   // Alignment
 187   void align(int modulus);
 188   void align(int modulus, int target);
 189 
 190   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 191   void fat_nop();
 192 
 193   // Stack frame creation/removal
 194   void enter();
 195   void leave();
 196 
 197   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 198   // The pointer will be loaded into the thread register.
 199   void get_thread(Register thread);
 200 
 201 
 202   // Support for VM calls
 203   //
 204   // It is imperative that all calls into the VM are handled via the call_VM macros.
 205   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 206   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 207 
 208 
 209   void call_VM(Register oop_result,
 210                address entry_point,
 211                bool check_exceptions = true);
 212   void call_VM(Register oop_result,
 213                address entry_point,
 214                Register arg_1,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1, Register arg_2,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2, Register arg_3,
 223                bool check_exceptions = true);
 224 
 225   // Overloadings with last_Java_sp
 226   void call_VM(Register oop_result,
 227                Register last_java_sp,
 228                address entry_point,
 229                int number_of_arguments = 0,
 230                bool check_exceptions = true);
 231   void call_VM(Register oop_result,
 232                Register last_java_sp,
 233                address entry_point,
 234                Register arg_1, bool
 235                check_exceptions = true);
 236   void call_VM(Register oop_result,
 237                Register last_java_sp,
 238                address entry_point,
 239                Register arg_1, Register arg_2,
 240                bool check_exceptions = true);
 241   void call_VM(Register oop_result,
 242                Register last_java_sp,
 243                address entry_point,
 244                Register arg_1, Register arg_2, Register arg_3,
 245                bool check_exceptions = true);
 246 
 247   void get_vm_result  (Register oop_result, Register thread);
 248   void get_vm_result_2(Register metadata_result, Register thread);
 249 
 250   // These always tightly bind to MacroAssembler::call_VM_base
 251   // bypassing the virtual implementation
 252   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 253   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 254   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 255   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 257 
 258   void call_VM_leaf(address entry_point,
 259                     int number_of_arguments = 0);
 260   void call_VM_leaf(address entry_point,
 261                     Register arg_1);
 262   void call_VM_leaf(address entry_point,
 263                     Register arg_1, Register arg_2);
 264   void call_VM_leaf(address entry_point,
 265                     Register arg_1, Register arg_2, Register arg_3);
 266 
 267   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 268   // bypassing the virtual implementation
 269   void super_call_VM_leaf(address entry_point);
 270   void super_call_VM_leaf(address entry_point, Register arg_1);
 271   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 272   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 273   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 274 
 275   // last Java Frame (fills frame anchor)
 276   void set_last_Java_frame(Register thread,
 277                            Register last_java_sp,
 278                            Register last_java_fp,
 279                            address last_java_pc);
 280 
 281   // thread in the default location (r15_thread on 64bit)
 282   void set_last_Java_frame(Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
 287 
 288   // thread in the default location (r15_thread on 64bit)
 289   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
 290 
 291   // Stores
 292   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 293   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 294 
 295 #if INCLUDE_ALL_GCS
 296 
 297   void g1_write_barrier_pre(Register obj,
 298                             Register pre_val,
 299                             Register thread,
 300                             Register tmp,
 301                             bool tosca_live,
 302                             bool expand_call);
 303 
 304   void g1_write_barrier_post(Register store_addr,
 305                              Register new_val,
 306                              Register thread,
 307                              Register tmp,
 308                              Register tmp2);
 309 
 310 #endif // INCLUDE_ALL_GCS
 311 
 312   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 313   void c2bool(Register x);
 314 
 315   // C++ bool manipulation
 316 
 317   void movbool(Register dst, Address src);
 318   void movbool(Address dst, bool boolconst);
 319   void movbool(Address dst, Register src);
 320   void testbool(Register dst);
 321 
 322   // oop manipulations
 323   void load_klass(Register dst, Register src);
 324   void store_klass(Register dst, Register src);
 325 
 326   void load_heap_oop(Register dst, Address src);
 327   void load_heap_oop_not_null(Register dst, Address src);
 328   void store_heap_oop(Address dst, Register src);
 329   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 330 
 331   // Used for storing NULL. All other oop constants should be
 332   // stored using routines that take a jobject.
 333   void store_heap_oop_null(Address dst);
 334 
 335   void load_prototype_header(Register dst, Register src);
 336 
 337 #ifdef _LP64
 338   void store_klass_gap(Register dst, Register src);
 339 
 340   // This dummy is to prevent a call to store_heap_oop from
 341   // converting a zero (like NULL) into a Register by giving
 342   // the compiler two choices it can't resolve
 343 
 344   void store_heap_oop(Address dst, void* dummy);
 345 
 346   void encode_heap_oop(Register r);
 347   void decode_heap_oop(Register r);
 348   void encode_heap_oop_not_null(Register r);
 349   void decode_heap_oop_not_null(Register r);
 350   void encode_heap_oop_not_null(Register dst, Register src);
 351   void decode_heap_oop_not_null(Register dst, Register src);
 352 
 353   void set_narrow_oop(Register dst, jobject obj);
 354   void set_narrow_oop(Address dst, jobject obj);
 355   void cmp_narrow_oop(Register dst, jobject obj);
 356   void cmp_narrow_oop(Address dst, jobject obj);
 357 
 358   void encode_klass_not_null(Register r);
 359   void decode_klass_not_null(Register r);
 360   void encode_klass_not_null(Register dst, Register src);
 361   void decode_klass_not_null(Register dst, Register src);
 362   void set_narrow_klass(Register dst, Klass* k);
 363   void set_narrow_klass(Address dst, Klass* k);
 364   void cmp_narrow_klass(Register dst, Klass* k);
 365   void cmp_narrow_klass(Address dst, Klass* k);
 366 
 367   // Returns the byte size of the instructions generated by decode_klass_not_null()
 368   // when compressed klass pointers are being used.
 369   static int instr_size_for_decode_klass_not_null();
 370 
 371   // if heap base register is used - reinit it with the correct value
 372   void reinit_heapbase();
 373 
 374   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 375 
 376 #endif // _LP64
 377 
 378   // Int division/remainder for Java
 379   // (as idivl, but checks for special case as described in JVM spec.)
 380   // returns idivl instruction offset for implicit exception handling
 381   int corrected_idivl(Register reg);
 382 
 383   // Long division/remainder for Java
 384   // (as idivq, but checks for special case as described in JVM spec.)
 385   // returns idivq instruction offset for implicit exception handling
 386   int corrected_idivq(Register reg);
 387 
 388   void int3();
 389 
 390   // Long operation macros for a 32bit cpu
 391   // Long negation for Java
 392   void lneg(Register hi, Register lo);
 393 
 394   // Long multiplication for Java
 395   // (destroys contents of eax, ebx, ecx and edx)
 396   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 397 
 398   // Long shifts for Java
 399   // (semantics as described in JVM spec.)
 400   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 401   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 402 
 403   // Long compare for Java
 404   // (semantics as described in JVM spec.)
 405   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 406 
 407 
 408   // misc
 409 
 410   // Sign extension
 411   void sign_extend_short(Register reg);
 412   void sign_extend_byte(Register reg);
 413 
 414   // Division by power of 2, rounding towards 0
 415   void division_with_shift(Register reg, int shift_value);
 416 
 417   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 418   //
 419   // CF (corresponds to C0) if x < y
 420   // PF (corresponds to C2) if unordered
 421   // ZF (corresponds to C3) if x = y
 422   //
 423   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 424   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 425   void fcmp(Register tmp);
 426   // Variant of the above which allows y to be further down the stack
 427   // and which only pops x and y if specified. If pop_right is
 428   // specified then pop_left must also be specified.
 429   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 430 
 431   // Floating-point comparison for Java
 432   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 433   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 434   // (semantics as described in JVM spec.)
 435   void fcmp2int(Register dst, bool unordered_is_less);
 436   // Variant of the above which allows y to be further down the stack
 437   // and which only pops x and y if specified. If pop_right is
 438   // specified then pop_left must also be specified.
 439   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 440 
 441   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 442   // tmp is a temporary register, if none is available use noreg
 443   void fremr(Register tmp);
 444 
 445 
 446   // same as fcmp2int, but using SSE2
 447   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 448   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 449 
 450   // Inlined sin/cos generator for Java; must not use CPU instruction
 451   // directly on Intel as it does not have high enough precision
 452   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
 453   // number of FPU stack slots in use; all but the topmost will
 454   // require saving if a slow case is necessary. Assumes argument is
 455   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
 456   // this code.
 457   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
 458 
 459   // branch to L if FPU flag C2 is set/not set
 460   // tmp is a temporary register, if none is available use noreg
 461   void jC2 (Register tmp, Label& L);
 462   void jnC2(Register tmp, Label& L);
 463 
 464   // Pop ST (ffree & fincstp combined)
 465   void fpop();
 466 
 467   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 468   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 469   void load_float(Address src);
 470 
 471   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 472   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 473   void store_float(Address dst);
 474 
 475   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 476   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 477   void load_double(Address src);
 478 
 479   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 480   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 481   void store_double(Address dst);
 482 
 483   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 484   void push_fTOS();
 485 
 486   // pops double TOS element from CPU stack and pushes on FPU stack
 487   void pop_fTOS();
 488 
 489   void empty_FPU_stack();
 490 
 491   void push_IU_state();
 492   void pop_IU_state();
 493 
 494   void push_FPU_state();
 495   void pop_FPU_state();
 496 
 497   void push_CPU_state();
 498   void pop_CPU_state();
 499 
 500   // Round up to a power of two
 501   void round_to(Register reg, int modulus);
 502 
 503   // Callee saved registers handling
 504   void push_callee_saved_registers();
 505   void pop_callee_saved_registers();
 506 
 507   // allocation
 508   void eden_allocate(
 509     Register obj,                      // result: pointer to object after successful allocation
 510     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 511     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 512     Register t1,                       // temp register
 513     Label&   slow_case                 // continuation point if fast allocation fails
 514   );
 515   void tlab_allocate(
 516     Register obj,                      // result: pointer to object after successful allocation
 517     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 518     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 519     Register t1,                       // temp register
 520     Register t2,                       // temp register
 521     Label&   slow_case                 // continuation point if fast allocation fails
 522   );
 523   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 524   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 525 
 526   void incr_allocated_bytes(Register thread,
 527                             Register var_size_in_bytes, int con_size_in_bytes,
 528                             Register t1 = noreg);
 529 
 530   // interface method calling
 531   void lookup_interface_method(Register recv_klass,
 532                                Register intf_klass,
 533                                RegisterOrConstant itable_index,
 534                                Register method_result,
 535                                Register scan_temp,
 536                                Label& no_such_interface);
 537 
 538   // virtual method calling
 539   void lookup_virtual_method(Register recv_klass,
 540                              RegisterOrConstant vtable_index,
 541                              Register method_result);
 542 
 543   // Test sub_klass against super_klass, with fast and slow paths.
 544 
 545   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 546   // One of the three labels can be NULL, meaning take the fall-through.
 547   // If super_check_offset is -1, the value is loaded up from super_klass.
 548   // No registers are killed, except temp_reg.
 549   void check_klass_subtype_fast_path(Register sub_klass,
 550                                      Register super_klass,
 551                                      Register temp_reg,
 552                                      Label* L_success,
 553                                      Label* L_failure,
 554                                      Label* L_slow_path,
 555                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 556 
 557   // The rest of the type check; must be wired to a corresponding fast path.
 558   // It does not repeat the fast path logic, so don't use it standalone.
 559   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 560   // Updates the sub's secondary super cache as necessary.
 561   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 562   void check_klass_subtype_slow_path(Register sub_klass,
 563                                      Register super_klass,
 564                                      Register temp_reg,
 565                                      Register temp2_reg,
 566                                      Label* L_success,
 567                                      Label* L_failure,
 568                                      bool set_cond_codes = false);
 569 
 570   // Simplified, combined version, good for typical uses.
 571   // Falls through on failure.
 572   void check_klass_subtype(Register sub_klass,
 573                            Register super_klass,
 574                            Register temp_reg,
 575                            Label& L_success);
 576 
 577   // method handles (JSR 292)
 578   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 579 
 580   //----
 581   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 582 
 583   // Debugging
 584 
 585   // only if +VerifyOops
 586   // TODO: Make these macros with file and line like sparc version!
 587   void verify_oop(Register reg, const char* s = "broken oop");
 588   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 589 
 590   // TODO: verify method and klass metadata (compare against vptr?)
 591   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 592   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 593 
 594 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 595 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 596 
 597   // only if +VerifyFPU
 598   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 599 
 600   // Verify or restore cpu control state after JNI call
 601   void restore_cpu_control_state_after_jni();
 602 
 603   // prints msg, dumps registers and stops execution
 604   void stop(const char* msg);
 605 
 606   // prints msg and continues
 607   void warn(const char* msg);
 608 
 609   // dumps registers and other state
 610   void print_state();
 611 
 612   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 613   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 614   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 615   static void print_state64(int64_t pc, int64_t regs[]);
 616 
 617   void os_breakpoint();
 618 
 619   void untested()                                { stop("untested"); }
 620 
 621   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 622 
 623   void should_not_reach_here()                   { stop("should not reach here"); }
 624 
 625   void print_CPU_state();
 626 
 627   // Stack overflow checking
 628   void bang_stack_with_offset(int offset) {
 629     // stack grows down, caller passes positive offset
 630     assert(offset > 0, "must bang with negative offset");
 631     movl(Address(rsp, (-offset)), rax);
 632   }
 633 
 634   // Writes to stack successive pages until offset reached to check for
 635   // stack overflow + shadow pages.  Also, clobbers tmp
 636   void bang_stack_size(Register size, Register tmp);
 637 
 638   // Check for reserved stack access in method being exited (for JIT)
 639   void reserved_stack_check();
 640 
 641   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 642                                                 Register tmp,
 643                                                 int offset);
 644 
 645   // Support for serializing memory accesses between threads
 646   void serialize_memory(Register thread, Register tmp);
 647 
 648   void verify_tlab();
 649 
 650   // Biased locking support
 651   // lock_reg and obj_reg must be loaded up with the appropriate values.
 652   // swap_reg must be rax, and is killed.
 653   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 654   // be killed; if not supplied, push/pop will be used internally to
 655   // allocate a temporary (inefficient, avoid if possible).
 656   // Optional slow case is for implementations (interpreter and C1) which branch to
 657   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 658   // Returns offset of first potentially-faulting instruction for null
 659   // check info (currently consumed only by C1). If
 660   // swap_reg_contains_mark is true then returns -1 as it is assumed
 661   // the calling code has already passed any potential faults.
 662   int biased_locking_enter(Register lock_reg, Register obj_reg,
 663                            Register swap_reg, Register tmp_reg,
 664                            bool swap_reg_contains_mark,
 665                            Label& done, Label* slow_case = NULL,
 666                            BiasedLockingCounters* counters = NULL);
 667   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 668 #ifdef COMPILER2
 669   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 670   // See full desription in macroAssembler_x86.cpp.
 671   void fast_lock(Register obj, Register box, Register tmp,
 672                  Register scr, Register cx1, Register cx2,
 673                  BiasedLockingCounters* counters,
 674                  RTMLockingCounters* rtm_counters,
 675                  RTMLockingCounters* stack_rtm_counters,
 676                  Metadata* method_data,
 677                  bool use_rtm, bool profile_rtm);
 678   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 679 #if INCLUDE_RTM_OPT
 680   void rtm_counters_update(Register abort_status, Register rtm_counters);
 681   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 682   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 683                                    RTMLockingCounters* rtm_counters,
 684                                    Metadata* method_data);
 685   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 686                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 687   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 688   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 689   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 690                          Register retry_on_abort_count,
 691                          RTMLockingCounters* stack_rtm_counters,
 692                          Metadata* method_data, bool profile_rtm,
 693                          Label& DONE_LABEL, Label& IsInflated);
 694   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 695                             Register scr, Register retry_on_busy_count,
 696                             Register retry_on_abort_count,
 697                             RTMLockingCounters* rtm_counters,
 698                             Metadata* method_data, bool profile_rtm,
 699                             Label& DONE_LABEL);
 700 #endif
 701 #endif
 702 
 703   Condition negate_condition(Condition cond);
 704 
 705   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 706   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 707   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 708   // here in MacroAssembler. The major exception to this rule is call
 709 
 710   // Arithmetics
 711 
 712 
 713   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 714   void addptr(Address dst, Register src);
 715 
 716   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 717   void addptr(Register dst, int32_t src);
 718   void addptr(Register dst, Register src);
 719   void addptr(Register dst, RegisterOrConstant src) {
 720     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 721     else                   addptr(dst,       src.as_register());
 722   }
 723 
 724   void andptr(Register dst, int32_t src);
 725   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 726 
 727   void cmp8(AddressLiteral src1, int imm);
 728 
 729   // renamed to drag out the casting of address to int32_t/intptr_t
 730   void cmp32(Register src1, int32_t imm);
 731 
 732   void cmp32(AddressLiteral src1, int32_t imm);
 733   // compare reg - mem, or reg - &mem
 734   void cmp32(Register src1, AddressLiteral src2);
 735 
 736   void cmp32(Register src1, Address src2);
 737 
 738 #ifndef _LP64
 739   void cmpklass(Address dst, Metadata* obj);
 740   void cmpklass(Register dst, Metadata* obj);
 741   void cmpoop(Address dst, jobject obj);
 742   void cmpoop(Register dst, jobject obj);
 743 #endif // _LP64
 744 
 745   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 746   void cmpptr(Address src1, AddressLiteral src2);
 747 
 748   void cmpptr(Register src1, AddressLiteral src2);
 749 
 750   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 751   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 752   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 753 
 754   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 755   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 756 
 757   // cmp64 to avoild hiding cmpq
 758   void cmp64(Register src1, AddressLiteral src);
 759 
 760   void cmpxchgptr(Register reg, Address adr);
 761 
 762   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 763 
 764 
 765   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 766   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 767 
 768 
 769   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 770 
 771   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 772 
 773   void shlptr(Register dst, int32_t shift);
 774   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 775 
 776   void shrptr(Register dst, int32_t shift);
 777   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 778 
 779   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 780   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 781 
 782   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 783 
 784   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 785   void subptr(Register dst, int32_t src);
 786   // Force generation of a 4 byte immediate value even if it fits into 8bit
 787   void subptr_imm32(Register dst, int32_t src);
 788   void subptr(Register dst, Register src);
 789   void subptr(Register dst, RegisterOrConstant src) {
 790     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 791     else                   subptr(dst,       src.as_register());
 792   }
 793 
 794   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 795   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 796 
 797   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 798   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 799 
 800   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 801 
 802 
 803 
 804   // Helper functions for statistics gathering.
 805   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 806   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 807   // Unconditional atomic increment.
 808   void atomic_incl(Address counter_addr);
 809   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 810 #ifdef _LP64
 811   void atomic_incq(Address counter_addr);
 812   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 813 #endif
 814   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 815   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 816 
 817   void lea(Register dst, AddressLiteral adr);
 818   void lea(Address dst, AddressLiteral adr);
 819   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 820 
 821   void leal32(Register dst, Address src) { leal(dst, src); }
 822 
 823   // Import other testl() methods from the parent class or else
 824   // they will be hidden by the following overriding declaration.
 825   using Assembler::testl;
 826   void testl(Register dst, AddressLiteral src);
 827 
 828   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 829   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 830   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 831   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 832 
 833   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 834   void testptr(Register src1, Register src2);
 835 
 836   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 837   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 838 
 839   // Calls
 840 
 841   void call(Label& L, relocInfo::relocType rtype);
 842   void call(Register entry);
 843 
 844   // NOTE: this call tranfers to the effective address of entry NOT
 845   // the address contained by entry. This is because this is more natural
 846   // for jumps/calls.
 847   void call(AddressLiteral entry);
 848 
 849   // Emit the CompiledIC call idiom
 850   void ic_call(address entry, jint method_index = 0);
 851 
 852   // Jumps
 853 
 854   // NOTE: these jumps tranfer to the effective address of dst NOT
 855   // the address contained by dst. This is because this is more natural
 856   // for jumps/calls.
 857   void jump(AddressLiteral dst);
 858   void jump_cc(Condition cc, AddressLiteral dst);
 859 
 860   // 32bit can do a case table jump in one instruction but we no longer allow the base
 861   // to be installed in the Address class. This jump will tranfers to the address
 862   // contained in the location described by entry (not the address of entry)
 863   void jump(ArrayAddress entry);
 864 
 865   // Floating
 866 
 867   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 868   void andpd(XMMRegister dst, AddressLiteral src);
 869   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 870 
 871   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 872   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 873   void andps(XMMRegister dst, AddressLiteral src);
 874 
 875   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 876   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 877   void comiss(XMMRegister dst, AddressLiteral src);
 878 
 879   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 880   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 881   void comisd(XMMRegister dst, AddressLiteral src);
 882 
 883   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 884   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 885 
 886   void fldcw(Address src) { Assembler::fldcw(src); }
 887   void fldcw(AddressLiteral src);
 888 
 889   void fld_s(int index)   { Assembler::fld_s(index); }
 890   void fld_s(Address src) { Assembler::fld_s(src); }
 891   void fld_s(AddressLiteral src);
 892 
 893   void fld_d(Address src) { Assembler::fld_d(src); }
 894   void fld_d(AddressLiteral src);
 895 
 896   void fld_x(Address src) { Assembler::fld_x(src); }
 897   void fld_x(AddressLiteral src);
 898 
 899   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 900   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 901 
 902   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 903   void ldmxcsr(AddressLiteral src);
 904 
 905 #ifdef _LP64
 906  private:
 907   void sha256_AVX2_one_round_compute(
 908     Register  reg_old_h,
 909     Register  reg_a,
 910     Register  reg_b,
 911     Register  reg_c,
 912     Register  reg_d,
 913     Register  reg_e,
 914     Register  reg_f,
 915     Register  reg_g,
 916     Register  reg_h,
 917     int iter);
 918   void sha256_AVX2_four_rounds_compute_first(int start);
 919   void sha256_AVX2_four_rounds_compute_last(int start);
 920   void sha256_AVX2_one_round_and_sched(
 921         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 922         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 923         XMMRegister xmm_2,     /* ymm6 */
 924         XMMRegister xmm_3,     /* ymm7 */
 925         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 926         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 927         Register    reg_c,      /* edi */
 928         Register    reg_d,      /* esi */
 929         Register    reg_e,      /* r8d */
 930         Register    reg_f,      /* r9d */
 931         Register    reg_g,      /* r10d */
 932         Register    reg_h,      /* r11d */
 933         int iter);
 934 
 935   void addm(int disp, Register r1, Register r2);
 936 
 937  public:
 938   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 939                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 940                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 941                    bool multi_block, XMMRegister shuf_mask);
 942 #endif
 943 
 944   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 945                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 946                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 947                  bool multi_block);
 948 
 949 #ifdef _LP64
 950   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 951                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 952                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 953                    bool multi_block, XMMRegister shuf_mask);
 954 #else
 955   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 956                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 957                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 958                    bool multi_block);
 959 #endif
 960 
 961   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 962                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 963                 Register rax, Register rcx, Register rdx, Register tmp);
 964 
 965 #ifdef _LP64
 966   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 967                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 968                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 969 
 970   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 971                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 972                   Register rax, Register rcx, Register rdx, Register r11);
 973 
 974   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
 975                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
 976                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
 977 
 978   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 979                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 980                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
 981                 Register tmp3, Register tmp4);
 982 
 983   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 984                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 985                 Register rax, Register rcx, Register rdx, Register tmp1,
 986                 Register tmp2, Register tmp3, Register tmp4);
 987   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 988                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 989                 Register rax, Register rcx, Register rdx, Register tmp1,
 990                 Register tmp2, Register tmp3, Register tmp4);
 991 #else
 992   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 993                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 994                 Register rax, Register rcx, Register rdx, Register tmp1);
 995 
 996   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 997                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 998                 Register rax, Register rcx, Register rdx, Register tmp);
 999 
1000   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1001                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1002                 Register rdx, Register tmp);
1003 
1004   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1005                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1006                 Register rax, Register rbx, Register rdx);
1007 
1008   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1009                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1010                 Register rax, Register rcx, Register rdx, Register tmp);
1011 
1012   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1013                         Register edx, Register ebx, Register esi, Register edi,
1014                         Register ebp, Register esp);
1015 
1016   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1017                          Register esi, Register edi, Register ebp, Register esp);
1018 
1019   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1020                         Register edx, Register ebx, Register esi, Register edi,
1021                         Register ebp, Register esp);
1022 
1023   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1024                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1025                 Register rax, Register rcx, Register rdx, Register tmp);
1026 #endif
1027 
1028   void increase_precision();
1029   void restore_precision();
1030 
1031 private:
1032 
1033   // call runtime as a fallback for trig functions and pow/exp.
1034   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
1035 
1036   // these are private because users should be doing movflt/movdbl
1037 
1038   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1039   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1040   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1041   void movss(XMMRegister dst, AddressLiteral src);
1042 
1043   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1044   void movlpd(XMMRegister dst, AddressLiteral src);
1045 
1046 public:
1047 
1048   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1049   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1050   void addsd(XMMRegister dst, AddressLiteral src);
1051 
1052   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1053   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1054   void addss(XMMRegister dst, AddressLiteral src);
1055 
1056   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1057   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1058   void addpd(XMMRegister dst, AddressLiteral src);
1059 
1060   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1061   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1062   void divsd(XMMRegister dst, AddressLiteral src);
1063 
1064   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1065   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1066   void divss(XMMRegister dst, AddressLiteral src);
1067 
1068   // Move Unaligned Double Quadword
1069   void movdqu(Address     dst, XMMRegister src);
1070   void movdqu(XMMRegister dst, Address src);
1071   void movdqu(XMMRegister dst, XMMRegister src);
1072   void movdqu(XMMRegister dst, AddressLiteral src);
1073   // AVX Unaligned forms
1074   void vmovdqu(Address     dst, XMMRegister src);
1075   void vmovdqu(XMMRegister dst, Address src);
1076   void vmovdqu(XMMRegister dst, XMMRegister src);
1077   void vmovdqu(XMMRegister dst, AddressLiteral src);
1078 
1079   // Move Aligned Double Quadword
1080   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1081   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1082   void movdqa(XMMRegister dst, AddressLiteral src);
1083 
1084   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1085   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1086   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1087   void movsd(XMMRegister dst, AddressLiteral src);
1088 
1089   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1090   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1091   void mulpd(XMMRegister dst, AddressLiteral src);
1092 
1093   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1094   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1095   void mulsd(XMMRegister dst, AddressLiteral src);
1096 
1097   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1098   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1099   void mulss(XMMRegister dst, AddressLiteral src);
1100 
1101   // Carry-Less Multiplication Quadword
1102   void pclmulldq(XMMRegister dst, XMMRegister src) {
1103     // 0x00 - multiply lower 64 bits [0:63]
1104     Assembler::pclmulqdq(dst, src, 0x00);
1105   }
1106   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1107     // 0x11 - multiply upper 64 bits [64:127]
1108     Assembler::pclmulqdq(dst, src, 0x11);
1109   }
1110 
1111   void pcmpeqb(XMMRegister dst, XMMRegister src);
1112   void pcmpeqw(XMMRegister dst, XMMRegister src);
1113 
1114   void pcmpestri(XMMRegister dst, Address src, int imm8);
1115   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1116 
1117   void pmovzxbw(XMMRegister dst, XMMRegister src);
1118   void pmovzxbw(XMMRegister dst, Address src);
1119 
1120   void pmovmskb(Register dst, XMMRegister src);
1121 
1122   void ptest(XMMRegister dst, XMMRegister src);
1123 
1124   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1125   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1126   void sqrtsd(XMMRegister dst, AddressLiteral src);
1127 
1128   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1129   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1130   void sqrtss(XMMRegister dst, AddressLiteral src);
1131 
1132   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1133   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1134   void subsd(XMMRegister dst, AddressLiteral src);
1135 
1136   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1137   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1138   void subss(XMMRegister dst, AddressLiteral src);
1139 
1140   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1141   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1142   void ucomiss(XMMRegister dst, AddressLiteral src);
1143 
1144   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1145   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1146   void ucomisd(XMMRegister dst, AddressLiteral src);
1147 
1148   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1149   void xorpd(XMMRegister dst, XMMRegister src);
1150   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1151   void xorpd(XMMRegister dst, AddressLiteral src);
1152 
1153   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1154   void xorps(XMMRegister dst, XMMRegister src);
1155   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1156   void xorps(XMMRegister dst, AddressLiteral src);
1157 
1158   // Shuffle Bytes
1159   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1160   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1161   void pshufb(XMMRegister dst, AddressLiteral src);
1162   // AVX 3-operands instructions
1163 
1164   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1165   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1166   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1167 
1168   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1169   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1170   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1171 
1172   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1173   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1174 
1175   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1176   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1177 
1178   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1179   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1180 
1181   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1182 
1183   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1184   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1185 
1186   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1187   void vpmovmskb(Register dst, XMMRegister src);
1188 
1189   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1190   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1191 
1192   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1193   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1194 
1195   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1196   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1197 
1198   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1199   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1200 
1201   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1202   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1203 
1204   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1205   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1206 
1207   void vptest(XMMRegister dst, XMMRegister src);
1208 
1209   void punpcklbw(XMMRegister dst, XMMRegister src);
1210   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1211 
1212   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1213   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1214 
1215   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1216   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1217   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1218 
1219   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1220   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1221   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1222 
1223   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1224   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1225   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1226 
1227   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1228   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1229   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1230 
1231   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1232   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1233   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1234 
1235   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1236   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1237   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1238 
1239   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1240   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1241   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1242 
1243   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1244   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1245   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1246 
1247   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1248   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1249 
1250   // AVX Vector instructions
1251 
1252   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1253   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1254   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1255 
1256   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1257   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1258   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1259 
1260   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1261     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1262       Assembler::vpxor(dst, nds, src, vector_len);
1263     else
1264       Assembler::vxorpd(dst, nds, src, vector_len);
1265   }
1266   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1267     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1268       Assembler::vpxor(dst, nds, src, vector_len);
1269     else
1270       Assembler::vxorpd(dst, nds, src, vector_len);
1271   }
1272 
1273   // Simple version for AVX2 256bit vectors
1274   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1275   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1276 
1277   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1278     if (UseAVX > 2) {
1279       Assembler::vinserti32x4(dst, dst, src, imm8);
1280     } else if (UseAVX > 1) {
1281       // vinserti128 is available only in AVX2
1282       Assembler::vinserti128(dst, nds, src, imm8);
1283     } else {
1284       Assembler::vinsertf128(dst, nds, src, imm8);
1285     }
1286   }
1287 
1288   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1289     if (UseAVX > 2) {
1290       Assembler::vinserti32x4(dst, dst, src, imm8);
1291     } else if (UseAVX > 1) {
1292       // vinserti128 is available only in AVX2
1293       Assembler::vinserti128(dst, nds, src, imm8);
1294     } else {
1295       Assembler::vinsertf128(dst, nds, src, imm8);
1296     }
1297   }
1298 
1299   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1300     if (UseAVX > 2) {
1301       Assembler::vextracti32x4(dst, src, imm8);
1302     } else if (UseAVX > 1) {
1303       // vextracti128 is available only in AVX2
1304       Assembler::vextracti128(dst, src, imm8);
1305     } else {
1306       Assembler::vextractf128(dst, src, imm8);
1307     }
1308   }
1309 
1310   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1311     if (UseAVX > 2) {
1312       Assembler::vextracti32x4(dst, src, imm8);
1313     } else if (UseAVX > 1) {
1314       // vextracti128 is available only in AVX2
1315       Assembler::vextracti128(dst, src, imm8);
1316     } else {
1317       Assembler::vextractf128(dst, src, imm8);
1318     }
1319   }
1320 
1321   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1322   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1323     vinserti128(dst, dst, src, 1);
1324   }
1325   void vinserti128_high(XMMRegister dst, Address src) {
1326     vinserti128(dst, dst, src, 1);
1327   }
1328   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1329     vextracti128(dst, src, 1);
1330   }
1331   void vextracti128_high(Address dst, XMMRegister src) {
1332     vextracti128(dst, src, 1);
1333   }
1334 
1335   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1336     if (UseAVX > 2) {
1337       Assembler::vinsertf32x4(dst, dst, src, 1);
1338     } else {
1339       Assembler::vinsertf128(dst, dst, src, 1);
1340     }
1341   }
1342 
1343   void vinsertf128_high(XMMRegister dst, Address src) {
1344     if (UseAVX > 2) {
1345       Assembler::vinsertf32x4(dst, dst, src, 1);
1346     } else {
1347       Assembler::vinsertf128(dst, dst, src, 1);
1348     }
1349   }
1350 
1351   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1352     if (UseAVX > 2) {
1353       Assembler::vextractf32x4(dst, src, 1);
1354     } else {
1355       Assembler::vextractf128(dst, src, 1);
1356     }
1357   }
1358 
1359   void vextractf128_high(Address dst, XMMRegister src) {
1360     if (UseAVX > 2) {
1361       Assembler::vextractf32x4(dst, src, 1);
1362     } else {
1363       Assembler::vextractf128(dst, src, 1);
1364     }
1365   }
1366 
1367   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1368   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1369     Assembler::vinserti64x4(dst, dst, src, 1);
1370   }
1371   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1372     Assembler::vinsertf64x4(dst, dst, src, 1);
1373   }
1374   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1375     Assembler::vextracti64x4(dst, src, 1);
1376   }
1377   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1378     Assembler::vextractf64x4(dst, src, 1);
1379   }
1380   void vextractf64x4_high(Address dst, XMMRegister src) {
1381     Assembler::vextractf64x4(dst, src, 1);
1382   }
1383   void vinsertf64x4_high(XMMRegister dst, Address src) {
1384     Assembler::vinsertf64x4(dst, dst, src, 1);
1385   }
1386 
1387   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1388   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1389     vinserti128(dst, dst, src, 0);
1390   }
1391   void vinserti128_low(XMMRegister dst, Address src) {
1392     vinserti128(dst, dst, src, 0);
1393   }
1394   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1395     vextracti128(dst, src, 0);
1396   }
1397   void vextracti128_low(Address dst, XMMRegister src) {
1398     vextracti128(dst, src, 0);
1399   }
1400 
1401   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1402     if (UseAVX > 2) {
1403       Assembler::vinsertf32x4(dst, dst, src, 0);
1404     } else {
1405       Assembler::vinsertf128(dst, dst, src, 0);
1406     }
1407   }
1408 
1409   void vinsertf128_low(XMMRegister dst, Address src) {
1410     if (UseAVX > 2) {
1411       Assembler::vinsertf32x4(dst, dst, src, 0);
1412     } else {
1413       Assembler::vinsertf128(dst, dst, src, 0);
1414     }
1415   }
1416 
1417   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1418     if (UseAVX > 2) {
1419       Assembler::vextractf32x4(dst, src, 0);
1420     } else {
1421       Assembler::vextractf128(dst, src, 0);
1422     }
1423   }
1424 
1425   void vextractf128_low(Address dst, XMMRegister src) {
1426     if (UseAVX > 2) {
1427       Assembler::vextractf32x4(dst, src, 0);
1428     } else {
1429       Assembler::vextractf128(dst, src, 0);
1430     }
1431   }
1432 
1433   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1434   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1435     Assembler::vinserti64x4(dst, dst, src, 0);
1436   }
1437   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1438     Assembler::vinsertf64x4(dst, dst, src, 0);
1439   }
1440   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1441     Assembler::vextracti64x4(dst, src, 0);
1442   }
1443   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1444     Assembler::vextractf64x4(dst, src, 0);
1445   }
1446   void vextractf64x4_low(Address dst, XMMRegister src) {
1447     Assembler::vextractf64x4(dst, src, 0);
1448   }
1449   void vinsertf64x4_low(XMMRegister dst, Address src) {
1450     Assembler::vinsertf64x4(dst, dst, src, 0);
1451   }
1452 
1453   // Carry-Less Multiplication Quadword
1454   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1455     // 0x00 - multiply lower 64 bits [0:63]
1456     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1457   }
1458   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1459     // 0x11 - multiply upper 64 bits [64:127]
1460     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1461   }
1462 
1463   // Data
1464 
1465   void cmov32( Condition cc, Register dst, Address  src);
1466   void cmov32( Condition cc, Register dst, Register src);
1467 
1468   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1469 
1470   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1471   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1472 
1473   void movoop(Register dst, jobject obj);
1474   void movoop(Address dst, jobject obj);
1475 
1476   void mov_metadata(Register dst, Metadata* obj);
1477   void mov_metadata(Address dst, Metadata* obj);
1478 
1479   void movptr(ArrayAddress dst, Register src);
1480   // can this do an lea?
1481   void movptr(Register dst, ArrayAddress src);
1482 
1483   void movptr(Register dst, Address src);
1484 
1485 #ifdef _LP64
1486   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1487 #else
1488   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1489 #endif
1490 
1491   void movptr(Register dst, intptr_t src);
1492   void movptr(Register dst, Register src);
1493   void movptr(Address dst, intptr_t src);
1494 
1495   void movptr(Address dst, Register src);
1496 
1497   void movptr(Register dst, RegisterOrConstant src) {
1498     if (src.is_constant()) movptr(dst, src.as_constant());
1499     else                   movptr(dst, src.as_register());
1500   }
1501 
1502 #ifdef _LP64
1503   // Generally the next two are only used for moving NULL
1504   // Although there are situations in initializing the mark word where
1505   // they could be used. They are dangerous.
1506 
1507   // They only exist on LP64 so that int32_t and intptr_t are not the same
1508   // and we have ambiguous declarations.
1509 
1510   void movptr(Address dst, int32_t imm32);
1511   void movptr(Register dst, int32_t imm32);
1512 #endif // _LP64
1513 
1514   // to avoid hiding movl
1515   void mov32(AddressLiteral dst, Register src);
1516   void mov32(Register dst, AddressLiteral src);
1517 
1518   // to avoid hiding movb
1519   void movbyte(ArrayAddress dst, int src);
1520 
1521   // Import other mov() methods from the parent class or else
1522   // they will be hidden by the following overriding declaration.
1523   using Assembler::movdl;
1524   using Assembler::movq;
1525   void movdl(XMMRegister dst, AddressLiteral src);
1526   void movq(XMMRegister dst, AddressLiteral src);
1527 
1528   // Can push value or effective address
1529   void pushptr(AddressLiteral src);
1530 
1531   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1532   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1533 
1534   void pushoop(jobject obj);
1535   void pushklass(Metadata* obj);
1536 
1537   // sign extend as need a l to ptr sized element
1538   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1539   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1540 
1541   // C2 compiled method's prolog code.
1542   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1543 
1544   // clear memory of size 'cnt' qwords, starting at 'base';
1545   // if 'is_large' is set, do not try to produce short loop
1546   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1547 
1548 #ifdef COMPILER2
1549   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1550                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1551 
1552   // IndexOf strings.
1553   // Small strings are loaded through stack if they cross page boundary.
1554   void string_indexof(Register str1, Register str2,
1555                       Register cnt1, Register cnt2,
1556                       int int_cnt2,  Register result,
1557                       XMMRegister vec, Register tmp,
1558                       int ae);
1559 
1560   // IndexOf for constant substrings with size >= 8 elements
1561   // which don't need to be loaded through stack.
1562   void string_indexofC8(Register str1, Register str2,
1563                       Register cnt1, Register cnt2,
1564                       int int_cnt2,  Register result,
1565                       XMMRegister vec, Register tmp,
1566                       int ae);
1567 
1568     // Smallest code: we don't need to load through stack,
1569     // check string tail.
1570 
1571   // helper function for string_compare
1572   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1573                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1574                           Address::ScaleFactor scale2, Register index, int ae);
1575   // Compare strings.
1576   void string_compare(Register str1, Register str2,
1577                       Register cnt1, Register cnt2, Register result,
1578                       XMMRegister vec1, int ae);
1579 
1580   // Search for Non-ASCII character (Negative byte value) in a byte array,
1581   // return true if it has any and false otherwise.
1582   void has_negatives(Register ary1, Register len,
1583                      Register result, Register tmp1,
1584                      XMMRegister vec1, XMMRegister vec2);
1585 
1586   // Compare char[] or byte[] arrays.
1587   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1588                      Register limit, Register result, Register chr,
1589                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1590 
1591 #endif
1592 
1593   // Fill primitive arrays
1594   void generate_fill(BasicType t, bool aligned,
1595                      Register to, Register value, Register count,
1596                      Register rtmp, XMMRegister xtmp);
1597 
1598   void encode_iso_array(Register src, Register dst, Register len,
1599                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1600                         XMMRegister tmp4, Register tmp5, Register result);
1601 
1602 #ifdef _LP64
1603   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1604   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1605                              Register y, Register y_idx, Register z,
1606                              Register carry, Register product,
1607                              Register idx, Register kdx);
1608   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1609                               Register yz_idx, Register idx,
1610                               Register carry, Register product, int offset);
1611   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1612                                     Register carry, Register carry2,
1613                                     Register idx, Register jdx,
1614                                     Register yz_idx1, Register yz_idx2,
1615                                     Register tmp, Register tmp3, Register tmp4);
1616   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1617                                Register yz_idx, Register idx, Register jdx,
1618                                Register carry, Register product,
1619                                Register carry2);
1620   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1621                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1622   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1623                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1624   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1625                             Register tmp2);
1626   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1627                        Register rdxReg, Register raxReg);
1628   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1629   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1630                        Register tmp3, Register tmp4);
1631   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1632                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1633 
1634   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1635                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1636                Register raxReg);
1637   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1638                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1639                Register raxReg);
1640   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1641                            Register result, Register tmp1, Register tmp2,
1642                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1643 #endif
1644 
1645   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1646   void update_byte_crc32(Register crc, Register val, Register table);
1647   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1648   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1649   // Note on a naming convention:
1650   // Prefix w = register only used on a Westmere+ architecture
1651   // Prefix n = register only used on a Nehalem architecture
1652 #ifdef _LP64
1653   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1654                        Register tmp1, Register tmp2, Register tmp3);
1655 #else
1656   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1657                        Register tmp1, Register tmp2, Register tmp3,
1658                        XMMRegister xtmp1, XMMRegister xtmp2);
1659 #endif
1660   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1661                         Register in_out,
1662                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1663                         XMMRegister w_xtmp2,
1664                         Register tmp1,
1665                         Register n_tmp2, Register n_tmp3);
1666   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1667                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1668                        Register tmp1, Register tmp2,
1669                        Register n_tmp3);
1670   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1671                          Register in_out1, Register in_out2, Register in_out3,
1672                          Register tmp1, Register tmp2, Register tmp3,
1673                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1674                          Register tmp4, Register tmp5,
1675                          Register n_tmp6);
1676   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1677                             Register tmp1, Register tmp2, Register tmp3,
1678                             Register tmp4, Register tmp5, Register tmp6,
1679                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1680                             bool is_pclmulqdq_supported);
1681   // Fold 128-bit data chunk
1682   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1683   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1684   // Fold 8-bit data
1685   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1686   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1687 
1688   // Compress char[] array to byte[].
1689   void char_array_compress(Register src, Register dst, Register len,
1690                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1691                            XMMRegister tmp4, Register tmp5, Register result);
1692 
1693   // Inflate byte[] array to char[].
1694   void byte_array_inflate(Register src, Register dst, Register len,
1695                           XMMRegister tmp1, Register tmp2);
1696 
1697 };
1698 
1699 /**
1700  * class SkipIfEqual:
1701  *
1702  * Instantiating this class will result in assembly code being output that will
1703  * jump around any code emitted between the creation of the instance and it's
1704  * automatic destruction at the end of a scope block, depending on the value of
1705  * the flag passed to the constructor, which will be checked at run-time.
1706  */
1707 class SkipIfEqual {
1708  private:
1709   MacroAssembler* _masm;
1710   Label _label;
1711 
1712  public:
1713    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1714    ~SkipIfEqual();
1715 };
1716 
1717 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP