1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 398     int evex_encoding = _attributes->get_evex_encoding();
 399     int tuple_type = _attributes->get_tuple_type();
 400     switch (tuple_type) {
 401     case EVEX_FV:
 402       if ((evex_encoding & VEX_W) == VEX_W) {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 404       } else {
 405         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 406       }
 407       break;
 408 
 409     case EVEX_HV:
 410       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 411       break;
 412 
 413     case EVEX_FVM:
 414       break;
 415 
 416     case EVEX_T1S:
 417       switch (_attributes->get_input_size()) {
 418       case EVEX_8bit:
 419         break;
 420 
 421       case EVEX_16bit:
 422         mod_idx = 1;
 423         break;
 424 
 425       case EVEX_32bit:
 426         mod_idx = 2;
 427         break;
 428 
 429       case EVEX_64bit:
 430         mod_idx = 3;
 431         break;
 432       }
 433       break;
 434 
 435     case EVEX_T1F:
 436     case EVEX_T2:
 437     case EVEX_T4:
 438       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 439       break;
 440 
 441     case EVEX_T8:
 442       break;
 443 
 444     case EVEX_HVM:
 445       break;
 446 
 447     case EVEX_QVM:
 448       break;
 449 
 450     case EVEX_OVM:
 451       break;
 452 
 453     case EVEX_M128:
 454       break;
 455 
 456     case EVEX_DUP:
 457       break;
 458 
 459     default:
 460       assert(0, "no valid evex tuple_table entry");
 461       break;
 462     }
 463 
 464     int vector_len = _attributes->get_vector_len();
 465     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 466       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 467       if ((disp % disp_factor) == 0) {
 468         int new_disp = disp / disp_factor;
 469         if (is8bit(new_disp)) {
 470           disp = new_disp;
 471         }
 472       } else {
 473         return false;
 474       }
 475     }
 476   }
 477   return is8bit(disp);
 478 }
 479 
 480 
 481 void Assembler::emit_operand(Register reg, Register base, Register index,
 482                              Address::ScaleFactor scale, int disp,
 483                              RelocationHolder const& rspec,
 484                              int rip_relative_correction) {
 485   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 486 
 487   // Encode the registers as needed in the fields they are used in
 488 
 489   int regenc = encode(reg) << 3;
 490   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 491   int baseenc = base->is_valid() ? encode(base) : 0;
 492 
 493   if (base->is_valid()) {
 494     if (index->is_valid()) {
 495       assert(scale != Address::no_scale, "inconsistent address");
 496       // [base + index*scale + disp]
 497       if (disp == 0 && rtype == relocInfo::none  &&
 498           base != rbp LP64_ONLY(&& base != r13)) {
 499         // [base + index*scale]
 500         // [00 reg 100][ss index base]
 501         assert(index != rsp, "illegal addressing mode");
 502         emit_int8(0x04 | regenc);
 503         emit_int8(scale << 6 | indexenc | baseenc);
 504       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 505         // [base + index*scale + imm8]
 506         // [01 reg 100][ss index base] imm8
 507         assert(index != rsp, "illegal addressing mode");
 508         emit_int8(0x44 | regenc);
 509         emit_int8(scale << 6 | indexenc | baseenc);
 510         emit_int8(disp & 0xFF);
 511       } else {
 512         // [base + index*scale + disp32]
 513         // [10 reg 100][ss index base] disp32
 514         assert(index != rsp, "illegal addressing mode");
 515         emit_int8(0x84 | regenc);
 516         emit_int8(scale << 6 | indexenc | baseenc);
 517         emit_data(disp, rspec, disp32_operand);
 518       }
 519     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 520       // [rsp + disp]
 521       if (disp == 0 && rtype == relocInfo::none) {
 522         // [rsp]
 523         // [00 reg 100][00 100 100]
 524         emit_int8(0x04 | regenc);
 525         emit_int8(0x24);
 526       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 527         // [rsp + imm8]
 528         // [01 reg 100][00 100 100] disp8
 529         emit_int8(0x44 | regenc);
 530         emit_int8(0x24);
 531         emit_int8(disp & 0xFF);
 532       } else {
 533         // [rsp + imm32]
 534         // [10 reg 100][00 100 100] disp32
 535         emit_int8(0x84 | regenc);
 536         emit_int8(0x24);
 537         emit_data(disp, rspec, disp32_operand);
 538       }
 539     } else {
 540       // [base + disp]
 541       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 542       if (disp == 0 && rtype == relocInfo::none &&
 543           base != rbp LP64_ONLY(&& base != r13)) {
 544         // [base]
 545         // [00 reg base]
 546         emit_int8(0x00 | regenc | baseenc);
 547       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 548         // [base + disp8]
 549         // [01 reg base] disp8
 550         emit_int8(0x40 | regenc | baseenc);
 551         emit_int8(disp & 0xFF);
 552       } else {
 553         // [base + disp32]
 554         // [10 reg base] disp32
 555         emit_int8(0x80 | regenc | baseenc);
 556         emit_data(disp, rspec, disp32_operand);
 557       }
 558     }
 559   } else {
 560     if (index->is_valid()) {
 561       assert(scale != Address::no_scale, "inconsistent address");
 562       // [index*scale + disp]
 563       // [00 reg 100][ss index 101] disp32
 564       assert(index != rsp, "illegal addressing mode");
 565       emit_int8(0x04 | regenc);
 566       emit_int8(scale << 6 | indexenc | 0x05);
 567       emit_data(disp, rspec, disp32_operand);
 568     } else if (rtype != relocInfo::none ) {
 569       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 570       // [00 000 101] disp32
 571 
 572       emit_int8(0x05 | regenc);
 573       // Note that the RIP-rel. correction applies to the generated
 574       // disp field, but _not_ to the target address in the rspec.
 575 
 576       // disp was created by converting the target address minus the pc
 577       // at the start of the instruction. That needs more correction here.
 578       // intptr_t disp = target - next_ip;
 579       assert(inst_mark() != NULL, "must be inside InstructionMark");
 580       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 581       int64_t adjusted = disp;
 582       // Do rip-rel adjustment for 64bit
 583       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 584       assert(is_simm32(adjusted),
 585              "must be 32bit offset (RIP relative address)");
 586       emit_data((int32_t) adjusted, rspec, disp32_operand);
 587 
 588     } else {
 589       // 32bit never did this, did everything as the rip-rel/disp code above
 590       // [disp] ABSOLUTE
 591       // [00 reg 100][00 100 101] disp32
 592       emit_int8(0x04 | regenc);
 593       emit_int8(0x25);
 594       emit_data(disp, rspec, disp32_operand);
 595     }
 596   }
 597 }
 598 
 599 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 600                              Address::ScaleFactor scale, int disp,
 601                              RelocationHolder const& rspec) {
 602   if (UseAVX > 2) {
 603     int xreg_enc = reg->encoding();
 604     if (xreg_enc > 15) {
 605       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 606       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 607       return;
 608     }
 609   }
 610   emit_operand((Register)reg, base, index, scale, disp, rspec);
 611 }
 612 
 613 // Secret local extension to Assembler::WhichOperand:
 614 #define end_pc_operand (_WhichOperand_limit)
 615 
 616 address Assembler::locate_operand(address inst, WhichOperand which) {
 617   // Decode the given instruction, and return the address of
 618   // an embedded 32-bit operand word.
 619 
 620   // If "which" is disp32_operand, selects the displacement portion
 621   // of an effective address specifier.
 622   // If "which" is imm64_operand, selects the trailing immediate constant.
 623   // If "which" is call32_operand, selects the displacement of a call or jump.
 624   // Caller is responsible for ensuring that there is such an operand,
 625   // and that it is 32/64 bits wide.
 626 
 627   // If "which" is end_pc_operand, find the end of the instruction.
 628 
 629   address ip = inst;
 630   bool is_64bit = false;
 631 
 632   debug_only(bool has_disp32 = false);
 633   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 634 
 635   again_after_prefix:
 636   switch (0xFF & *ip++) {
 637 
 638   // These convenience macros generate groups of "case" labels for the switch.
 639 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 640 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 641              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 642 #define REP16(x) REP8((x)+0): \
 643               case REP8((x)+8)
 644 
 645   case CS_segment:
 646   case SS_segment:
 647   case DS_segment:
 648   case ES_segment:
 649   case FS_segment:
 650   case GS_segment:
 651     // Seems dubious
 652     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 653     assert(ip == inst+1, "only one prefix allowed");
 654     goto again_after_prefix;
 655 
 656   case 0x67:
 657   case REX:
 658   case REX_B:
 659   case REX_X:
 660   case REX_XB:
 661   case REX_R:
 662   case REX_RB:
 663   case REX_RX:
 664   case REX_RXB:
 665     NOT_LP64(assert(false, "64bit prefixes"));
 666     goto again_after_prefix;
 667 
 668   case REX_W:
 669   case REX_WB:
 670   case REX_WX:
 671   case REX_WXB:
 672   case REX_WR:
 673   case REX_WRB:
 674   case REX_WRX:
 675   case REX_WRXB:
 676     NOT_LP64(assert(false, "64bit prefixes"));
 677     is_64bit = true;
 678     goto again_after_prefix;
 679 
 680   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 681   case 0x88: // movb a, r
 682   case 0x89: // movl a, r
 683   case 0x8A: // movb r, a
 684   case 0x8B: // movl r, a
 685   case 0x8F: // popl a
 686     debug_only(has_disp32 = true);
 687     break;
 688 
 689   case 0x68: // pushq #32
 690     if (which == end_pc_operand) {
 691       return ip + 4;
 692     }
 693     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 694     return ip;                  // not produced by emit_operand
 695 
 696   case 0x66: // movw ... (size prefix)
 697     again_after_size_prefix2:
 698     switch (0xFF & *ip++) {
 699     case REX:
 700     case REX_B:
 701     case REX_X:
 702     case REX_XB:
 703     case REX_R:
 704     case REX_RB:
 705     case REX_RX:
 706     case REX_RXB:
 707     case REX_W:
 708     case REX_WB:
 709     case REX_WX:
 710     case REX_WXB:
 711     case REX_WR:
 712     case REX_WRB:
 713     case REX_WRX:
 714     case REX_WRXB:
 715       NOT_LP64(assert(false, "64bit prefix found"));
 716       goto again_after_size_prefix2;
 717     case 0x8B: // movw r, a
 718     case 0x89: // movw a, r
 719       debug_only(has_disp32 = true);
 720       break;
 721     case 0xC7: // movw a, #16
 722       debug_only(has_disp32 = true);
 723       tail_size = 2;  // the imm16
 724       break;
 725     case 0x0F: // several SSE/SSE2 variants
 726       ip--;    // reparse the 0x0F
 727       goto again_after_prefix;
 728     default:
 729       ShouldNotReachHere();
 730     }
 731     break;
 732 
 733   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 734     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 735     // these asserts are somewhat nonsensical
 736 #ifndef _LP64
 737     assert(which == imm_operand || which == disp32_operand,
 738            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 739 #else
 740     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 741            which == narrow_oop_operand && !is_64bit,
 742            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 743 #endif // _LP64
 744     return ip;
 745 
 746   case 0x69: // imul r, a, #32
 747   case 0xC7: // movl a, #32(oop?)
 748     tail_size = 4;
 749     debug_only(has_disp32 = true); // has both kinds of operands!
 750     break;
 751 
 752   case 0x0F: // movx..., etc.
 753     switch (0xFF & *ip++) {
 754     case 0x3A: // pcmpestri
 755       tail_size = 1;
 756     case 0x38: // ptest, pmovzxbw
 757       ip++; // skip opcode
 758       debug_only(has_disp32 = true); // has both kinds of operands!
 759       break;
 760 
 761     case 0x70: // pshufd r, r/a, #8
 762       debug_only(has_disp32 = true); // has both kinds of operands!
 763     case 0x73: // psrldq r, #8
 764       tail_size = 1;
 765       break;
 766 
 767     case 0x12: // movlps
 768     case 0x28: // movaps
 769     case 0x2E: // ucomiss
 770     case 0x2F: // comiss
 771     case 0x54: // andps
 772     case 0x55: // andnps
 773     case 0x56: // orps
 774     case 0x57: // xorps
 775     case 0x58: // addpd
 776     case 0x59: // mulpd
 777     case 0x6E: // movd
 778     case 0x7E: // movd
 779     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 780     case 0xFE: // paddd
 781       debug_only(has_disp32 = true);
 782       break;
 783 
 784     case 0xAD: // shrd r, a, %cl
 785     case 0xAF: // imul r, a
 786     case 0xBE: // movsbl r, a (movsxb)
 787     case 0xBF: // movswl r, a (movsxw)
 788     case 0xB6: // movzbl r, a (movzxb)
 789     case 0xB7: // movzwl r, a (movzxw)
 790     case REP16(0x40): // cmovl cc, r, a
 791     case 0xB0: // cmpxchgb
 792     case 0xB1: // cmpxchg
 793     case 0xC1: // xaddl
 794     case 0xC7: // cmpxchg8
 795     case REP16(0x90): // setcc a
 796       debug_only(has_disp32 = true);
 797       // fall out of the switch to decode the address
 798       break;
 799 
 800     case 0xC4: // pinsrw r, a, #8
 801       debug_only(has_disp32 = true);
 802     case 0xC5: // pextrw r, r, #8
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case 0xAC: // shrd r, a, #8
 807       debug_only(has_disp32 = true);
 808       tail_size = 1;  // the imm8
 809       break;
 810 
 811     case REP16(0x80): // jcc rdisp32
 812       if (which == end_pc_operand)  return ip + 4;
 813       assert(which == call32_operand, "jcc has no disp32 or imm");
 814       return ip;
 815     default:
 816       ShouldNotReachHere();
 817     }
 818     break;
 819 
 820   case 0x81: // addl a, #32; addl r, #32
 821     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 822     // on 32bit in the case of cmpl, the imm might be an oop
 823     tail_size = 4;
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     break;
 826 
 827   case 0x83: // addl a, #8; addl r, #8
 828     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 829     debug_only(has_disp32 = true); // has both kinds of operands!
 830     tail_size = 1;
 831     break;
 832 
 833   case 0x9B:
 834     switch (0xFF & *ip++) {
 835     case 0xD9: // fnstcw a
 836       debug_only(has_disp32 = true);
 837       break;
 838     default:
 839       ShouldNotReachHere();
 840     }
 841     break;
 842 
 843   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 844   case REP4(0x10): // adc...
 845   case REP4(0x20): // and...
 846   case REP4(0x30): // xor...
 847   case REP4(0x08): // or...
 848   case REP4(0x18): // sbb...
 849   case REP4(0x28): // sub...
 850   case 0xF7: // mull a
 851   case 0x8D: // lea r, a
 852   case 0x87: // xchg r, a
 853   case REP4(0x38): // cmp...
 854   case 0x85: // test r, a
 855     debug_only(has_disp32 = true); // has both kinds of operands!
 856     break;
 857 
 858   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 859   case 0xC6: // movb a, #8
 860   case 0x80: // cmpb a, #8
 861   case 0x6B: // imul r, a, #8
 862     debug_only(has_disp32 = true); // has both kinds of operands!
 863     tail_size = 1; // the imm8
 864     break;
 865 
 866   case 0xC4: // VEX_3bytes
 867   case 0xC5: // VEX_2bytes
 868     assert((UseAVX > 0), "shouldn't have VEX prefix");
 869     assert(ip == inst+1, "no prefixes allowed");
 870     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 871     // but they have prefix 0x0F and processed when 0x0F processed above.
 872     //
 873     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 874     // instructions (these instructions are not supported in 64-bit mode).
 875     // To distinguish them bits [7:6] are set in the VEX second byte since
 876     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 877     // those VEX bits REX and vvvv bits are inverted.
 878     //
 879     // Fortunately C2 doesn't generate these instructions so we don't need
 880     // to check for them in product version.
 881 
 882     // Check second byte
 883     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 884 
 885     int vex_opcode;
 886     // First byte
 887     if ((0xFF & *inst) == VEX_3bytes) {
 888       vex_opcode = VEX_OPCODE_MASK & *ip;
 889       ip++; // third byte
 890       is_64bit = ((VEX_W & *ip) == VEX_W);
 891     } else {
 892       vex_opcode = VEX_OPCODE_0F;
 893     }
 894     ip++; // opcode
 895     // To find the end of instruction (which == end_pc_operand).
 896     switch (vex_opcode) {
 897       case VEX_OPCODE_0F:
 898         switch (0xFF & *ip) {
 899         case 0x70: // pshufd r, r/a, #8
 900         case 0x71: // ps[rl|ra|ll]w r, #8
 901         case 0x72: // ps[rl|ra|ll]d r, #8
 902         case 0x73: // ps[rl|ra|ll]q r, #8
 903         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 904         case 0xC4: // pinsrw r, r, r/a, #8
 905         case 0xC5: // pextrw r/a, r, #8
 906         case 0xC6: // shufp[s|d] r, r, r/a, #8
 907           tail_size = 1;  // the imm8
 908           break;
 909         }
 910         break;
 911       case VEX_OPCODE_0F_3A:
 912         tail_size = 1;
 913         break;
 914     }
 915     ip++; // skip opcode
 916     debug_only(has_disp32 = true); // has both kinds of operands!
 917     break;
 918 
 919   case 0x62: // EVEX_4bytes
 920     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 921     assert(ip == inst+1, "no prefixes allowed");
 922     // no EVEX collisions, all instructions that have 0x62 opcodes
 923     // have EVEX versions and are subopcodes of 0x66
 924     ip++; // skip P0 and exmaine W in P1
 925     is_64bit = ((VEX_W & *ip) == VEX_W);
 926     ip++; // move to P2
 927     ip++; // skip P2, move to opcode
 928     // To find the end of instruction (which == end_pc_operand).
 929     switch (0xFF & *ip) {
 930     case 0x22: // pinsrd r, r/a, #8
 931     case 0x61: // pcmpestri r, r/a, #8
 932     case 0x70: // pshufd r, r/a, #8
 933     case 0x73: // psrldq r, #8
 934       tail_size = 1;  // the imm8
 935       break;
 936     default:
 937       break;
 938     }
 939     ip++; // skip opcode
 940     debug_only(has_disp32 = true); // has both kinds of operands!
 941     break;
 942 
 943   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 944   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 945   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 946   case 0xDD: // fld_d a; fst_d a; fstp_d a
 947   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 948   case 0xDF: // fild_d a; fistp_d a
 949   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 950   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 951   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 952     debug_only(has_disp32 = true);
 953     break;
 954 
 955   case 0xE8: // call rdisp32
 956   case 0xE9: // jmp  rdisp32
 957     if (which == end_pc_operand)  return ip + 4;
 958     assert(which == call32_operand, "call has no disp32 or imm");
 959     return ip;
 960 
 961   case 0xF0:                    // Lock
 962     assert(os::is_MP(), "only on MP");
 963     goto again_after_prefix;
 964 
 965   case 0xF3:                    // For SSE
 966   case 0xF2:                    // For SSE2
 967     switch (0xFF & *ip++) {
 968     case REX:
 969     case REX_B:
 970     case REX_X:
 971     case REX_XB:
 972     case REX_R:
 973     case REX_RB:
 974     case REX_RX:
 975     case REX_RXB:
 976     case REX_W:
 977     case REX_WB:
 978     case REX_WX:
 979     case REX_WXB:
 980     case REX_WR:
 981     case REX_WRB:
 982     case REX_WRX:
 983     case REX_WRXB:
 984       NOT_LP64(assert(false, "found 64bit prefix"));
 985       ip++;
 986     default:
 987       ip++;
 988     }
 989     debug_only(has_disp32 = true); // has both kinds of operands!
 990     break;
 991 
 992   default:
 993     ShouldNotReachHere();
 994 
 995 #undef REP8
 996 #undef REP16
 997   }
 998 
 999   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
1000 #ifdef _LP64
1001   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1002 #else
1003   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1004   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1005 #endif // LP64
1006   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1007 
1008   // parse the output of emit_operand
1009   int op2 = 0xFF & *ip++;
1010   int base = op2 & 0x07;
1011   int op3 = -1;
1012   const int b100 = 4;
1013   const int b101 = 5;
1014   if (base == b100 && (op2 >> 6) != 3) {
1015     op3 = 0xFF & *ip++;
1016     base = op3 & 0x07;   // refetch the base
1017   }
1018   // now ip points at the disp (if any)
1019 
1020   switch (op2 >> 6) {
1021   case 0:
1022     // [00 reg  100][ss index base]
1023     // [00 reg  100][00   100  esp]
1024     // [00 reg base]
1025     // [00 reg  100][ss index  101][disp32]
1026     // [00 reg  101]               [disp32]
1027 
1028     if (base == b101) {
1029       if (which == disp32_operand)
1030         return ip;              // caller wants the disp32
1031       ip += 4;                  // skip the disp32
1032     }
1033     break;
1034 
1035   case 1:
1036     // [01 reg  100][ss index base][disp8]
1037     // [01 reg  100][00   100  esp][disp8]
1038     // [01 reg base]               [disp8]
1039     ip += 1;                    // skip the disp8
1040     break;
1041 
1042   case 2:
1043     // [10 reg  100][ss index base][disp32]
1044     // [10 reg  100][00   100  esp][disp32]
1045     // [10 reg base]               [disp32]
1046     if (which == disp32_operand)
1047       return ip;                // caller wants the disp32
1048     ip += 4;                    // skip the disp32
1049     break;
1050 
1051   case 3:
1052     // [11 reg base]  (not a memory addressing mode)
1053     break;
1054   }
1055 
1056   if (which == end_pc_operand) {
1057     return ip + tail_size;
1058   }
1059 
1060 #ifdef _LP64
1061   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1062 #else
1063   assert(which == imm_operand, "instruction has only an imm field");
1064 #endif // LP64
1065   return ip;
1066 }
1067 
1068 address Assembler::locate_next_instruction(address inst) {
1069   // Secretly share code with locate_operand:
1070   return locate_operand(inst, end_pc_operand);
1071 }
1072 
1073 
1074 #ifdef ASSERT
1075 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1076   address inst = inst_mark();
1077   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1078   address opnd;
1079 
1080   Relocation* r = rspec.reloc();
1081   if (r->type() == relocInfo::none) {
1082     return;
1083   } else if (r->is_call() || format == call32_operand) {
1084     // assert(format == imm32_operand, "cannot specify a nonzero format");
1085     opnd = locate_operand(inst, call32_operand);
1086   } else if (r->is_data()) {
1087     assert(format == imm_operand || format == disp32_operand
1088            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1089     opnd = locate_operand(inst, (WhichOperand)format);
1090   } else {
1091     assert(format == imm_operand, "cannot specify a format");
1092     return;
1093   }
1094   assert(opnd == pc(), "must put operand where relocs can find it");
1095 }
1096 #endif // ASSERT
1097 
1098 void Assembler::emit_operand32(Register reg, Address adr) {
1099   assert(reg->encoding() < 8, "no extended registers");
1100   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1101   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1102                adr._rspec);
1103 }
1104 
1105 void Assembler::emit_operand(Register reg, Address adr,
1106                              int rip_relative_correction) {
1107   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1108                adr._rspec,
1109                rip_relative_correction);
1110 }
1111 
1112 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1113   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1114                adr._rspec);
1115 }
1116 
1117 // MMX operations
1118 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1119   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1120   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1121 }
1122 
1123 // work around gcc (3.2.1-7a) bug
1124 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1125   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1126   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1127 }
1128 
1129 
1130 void Assembler::emit_farith(int b1, int b2, int i) {
1131   assert(isByte(b1) && isByte(b2), "wrong opcode");
1132   assert(0 <= i &&  i < 8, "illegal stack offset");
1133   emit_int8(b1);
1134   emit_int8(b2 + i);
1135 }
1136 
1137 
1138 // Now the Assembler instructions (identical for 32/64 bits)
1139 
1140 void Assembler::adcl(Address dst, int32_t imm32) {
1141   InstructionMark im(this);
1142   prefix(dst);
1143   emit_arith_operand(0x81, rdx, dst, imm32);
1144 }
1145 
1146 void Assembler::adcl(Address dst, Register src) {
1147   InstructionMark im(this);
1148   prefix(dst, src);
1149   emit_int8(0x11);
1150   emit_operand(src, dst);
1151 }
1152 
1153 void Assembler::adcl(Register dst, int32_t imm32) {
1154   prefix(dst);
1155   emit_arith(0x81, 0xD0, dst, imm32);
1156 }
1157 
1158 void Assembler::adcl(Register dst, Address src) {
1159   InstructionMark im(this);
1160   prefix(src, dst);
1161   emit_int8(0x13);
1162   emit_operand(dst, src);
1163 }
1164 
1165 void Assembler::adcl(Register dst, Register src) {
1166   (void) prefix_and_encode(dst->encoding(), src->encoding());
1167   emit_arith(0x13, 0xC0, dst, src);
1168 }
1169 
1170 void Assembler::addl(Address dst, int32_t imm32) {
1171   InstructionMark im(this);
1172   prefix(dst);
1173   emit_arith_operand(0x81, rax, dst, imm32);
1174 }
1175 
1176 void Assembler::addl(Address dst, Register src) {
1177   InstructionMark im(this);
1178   prefix(dst, src);
1179   emit_int8(0x01);
1180   emit_operand(src, dst);
1181 }
1182 
1183 void Assembler::addl(Register dst, int32_t imm32) {
1184   prefix(dst);
1185   emit_arith(0x81, 0xC0, dst, imm32);
1186 }
1187 
1188 void Assembler::addl(Register dst, Address src) {
1189   InstructionMark im(this);
1190   prefix(src, dst);
1191   emit_int8(0x03);
1192   emit_operand(dst, src);
1193 }
1194 
1195 void Assembler::addl(Register dst, Register src) {
1196   (void) prefix_and_encode(dst->encoding(), src->encoding());
1197   emit_arith(0x03, 0xC0, dst, src);
1198 }
1199 
1200 void Assembler::addr_nop_4() {
1201   assert(UseAddressNop, "no CPU support");
1202   // 4 bytes: NOP DWORD PTR [EAX+0]
1203   emit_int8(0x0F);
1204   emit_int8(0x1F);
1205   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1206   emit_int8(0);    // 8-bits offset (1 byte)
1207 }
1208 
1209 void Assembler::addr_nop_5() {
1210   assert(UseAddressNop, "no CPU support");
1211   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1212   emit_int8(0x0F);
1213   emit_int8(0x1F);
1214   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1215   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1216   emit_int8(0);    // 8-bits offset (1 byte)
1217 }
1218 
1219 void Assembler::addr_nop_7() {
1220   assert(UseAddressNop, "no CPU support");
1221   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1222   emit_int8(0x0F);
1223   emit_int8(0x1F);
1224   emit_int8((unsigned char)0x80);
1225                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1226   emit_int32(0);   // 32-bits offset (4 bytes)
1227 }
1228 
1229 void Assembler::addr_nop_8() {
1230   assert(UseAddressNop, "no CPU support");
1231   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1232   emit_int8(0x0F);
1233   emit_int8(0x1F);
1234   emit_int8((unsigned char)0x84);
1235                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1236   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1237   emit_int32(0);   // 32-bits offset (4 bytes)
1238 }
1239 
1240 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1241   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1242   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1243   attributes.set_rex_vex_w_reverted();
1244   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1245   emit_int8(0x58);
1246   emit_int8((unsigned char)(0xC0 | encode));
1247 }
1248 
1249 void Assembler::addsd(XMMRegister dst, Address src) {
1250   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1251   InstructionMark im(this);
1252   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1253   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1254   attributes.set_rex_vex_w_reverted();
1255   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1256   emit_int8(0x58);
1257   emit_operand(dst, src);
1258 }
1259 
1260 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1261   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1262   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1263   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1264   emit_int8(0x58);
1265   emit_int8((unsigned char)(0xC0 | encode));
1266 }
1267 
1268 void Assembler::addss(XMMRegister dst, Address src) {
1269   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1270   InstructionMark im(this);
1271   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1272   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1273   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1274   emit_int8(0x58);
1275   emit_operand(dst, src);
1276 }
1277 
1278 void Assembler::aesdec(XMMRegister dst, Address src) {
1279   assert(VM_Version::supports_aes(), "");
1280   InstructionMark im(this);
1281   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1282   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1283   emit_int8((unsigned char)0xDE);
1284   emit_operand(dst, src);
1285 }
1286 
1287 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1288   assert(VM_Version::supports_aes(), "");
1289   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1290   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1291   emit_int8((unsigned char)0xDE);
1292   emit_int8(0xC0 | encode);
1293 }
1294 
1295 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1296   assert(VM_Version::supports_aes(), "");
1297   InstructionMark im(this);
1298   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1299   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1300   emit_int8((unsigned char)0xDF);
1301   emit_operand(dst, src);
1302 }
1303 
1304 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1305   assert(VM_Version::supports_aes(), "");
1306   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1307   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1308   emit_int8((unsigned char)0xDF);
1309   emit_int8((unsigned char)(0xC0 | encode));
1310 }
1311 
1312 void Assembler::aesenc(XMMRegister dst, Address src) {
1313   assert(VM_Version::supports_aes(), "");
1314   InstructionMark im(this);
1315   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1316   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1317   emit_int8((unsigned char)0xDC);
1318   emit_operand(dst, src);
1319 }
1320 
1321 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1322   assert(VM_Version::supports_aes(), "");
1323   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1324   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1325   emit_int8((unsigned char)0xDC);
1326   emit_int8(0xC0 | encode);
1327 }
1328 
1329 void Assembler::aesenclast(XMMRegister dst, Address src) {
1330   assert(VM_Version::supports_aes(), "");
1331   InstructionMark im(this);
1332   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1333   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1334   emit_int8((unsigned char)0xDD);
1335   emit_operand(dst, src);
1336 }
1337 
1338 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1339   assert(VM_Version::supports_aes(), "");
1340   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1341   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1342   emit_int8((unsigned char)0xDD);
1343   emit_int8((unsigned char)(0xC0 | encode));
1344 }
1345 
1346 void Assembler::andl(Address dst, int32_t imm32) {
1347   InstructionMark im(this);
1348   prefix(dst);
1349   emit_int8((unsigned char)0x81);
1350   emit_operand(rsp, dst, 4);
1351   emit_int32(imm32);
1352 }
1353 
1354 void Assembler::andl(Register dst, int32_t imm32) {
1355   prefix(dst);
1356   emit_arith(0x81, 0xE0, dst, imm32);
1357 }
1358 
1359 void Assembler::andl(Register dst, Address src) {
1360   InstructionMark im(this);
1361   prefix(src, dst);
1362   emit_int8(0x23);
1363   emit_operand(dst, src);
1364 }
1365 
1366 void Assembler::andl(Register dst, Register src) {
1367   (void) prefix_and_encode(dst->encoding(), src->encoding());
1368   emit_arith(0x23, 0xC0, dst, src);
1369 }
1370 
1371 void Assembler::andnl(Register dst, Register src1, Register src2) {
1372   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1373   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1374   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1375   emit_int8((unsigned char)0xF2);
1376   emit_int8((unsigned char)(0xC0 | encode));
1377 }
1378 
1379 void Assembler::andnl(Register dst, Register src1, Address src2) {
1380   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1381   InstructionMark im(this);
1382   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1383   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1384   emit_int8((unsigned char)0xF2);
1385   emit_operand(dst, src2);
1386 }
1387 
1388 void Assembler::bsfl(Register dst, Register src) {
1389   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1390   emit_int8(0x0F);
1391   emit_int8((unsigned char)0xBC);
1392   emit_int8((unsigned char)(0xC0 | encode));
1393 }
1394 
1395 void Assembler::bsrl(Register dst, Register src) {
1396   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1397   emit_int8(0x0F);
1398   emit_int8((unsigned char)0xBD);
1399   emit_int8((unsigned char)(0xC0 | encode));
1400 }
1401 
1402 void Assembler::bswapl(Register reg) { // bswap
1403   int encode = prefix_and_encode(reg->encoding());
1404   emit_int8(0x0F);
1405   emit_int8((unsigned char)(0xC8 | encode));
1406 }
1407 
1408 void Assembler::blsil(Register dst, Register src) {
1409   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1410   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1411   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1412   emit_int8((unsigned char)0xF3);
1413   emit_int8((unsigned char)(0xC0 | encode));
1414 }
1415 
1416 void Assembler::blsil(Register dst, Address src) {
1417   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1418   InstructionMark im(this);
1419   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1420   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1421   emit_int8((unsigned char)0xF3);
1422   emit_operand(rbx, src);
1423 }
1424 
1425 void Assembler::blsmskl(Register dst, Register src) {
1426   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1427   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1428   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1429   emit_int8((unsigned char)0xF3);
1430   emit_int8((unsigned char)(0xC0 | encode));
1431 }
1432 
1433 void Assembler::blsmskl(Register dst, Address src) {
1434   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1435   InstructionMark im(this);
1436   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1437   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1438   emit_int8((unsigned char)0xF3);
1439   emit_operand(rdx, src);
1440 }
1441 
1442 void Assembler::blsrl(Register dst, Register src) {
1443   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1444   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1445   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1446   emit_int8((unsigned char)0xF3);
1447   emit_int8((unsigned char)(0xC0 | encode));
1448 }
1449 
1450 void Assembler::blsrl(Register dst, Address src) {
1451   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1452   InstructionMark im(this);
1453   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1454   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1455   emit_int8((unsigned char)0xF3);
1456   emit_operand(rcx, src);
1457 }
1458 
1459 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1460   // suspect disp32 is always good
1461   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1462 
1463   if (L.is_bound()) {
1464     const int long_size = 5;
1465     int offs = (int)( target(L) - pc() );
1466     assert(offs <= 0, "assembler error");
1467     InstructionMark im(this);
1468     // 1110 1000 #32-bit disp
1469     emit_int8((unsigned char)0xE8);
1470     emit_data(offs - long_size, rtype, operand);
1471   } else {
1472     InstructionMark im(this);
1473     // 1110 1000 #32-bit disp
1474     L.add_patch_at(code(), locator());
1475 
1476     emit_int8((unsigned char)0xE8);
1477     emit_data(int(0), rtype, operand);
1478   }
1479 }
1480 
1481 void Assembler::call(Register dst) {
1482   int encode = prefix_and_encode(dst->encoding());
1483   emit_int8((unsigned char)0xFF);
1484   emit_int8((unsigned char)(0xD0 | encode));
1485 }
1486 
1487 
1488 void Assembler::call(Address adr) {
1489   InstructionMark im(this);
1490   prefix(adr);
1491   emit_int8((unsigned char)0xFF);
1492   emit_operand(rdx, adr);
1493 }
1494 
1495 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1496   assert(entry != NULL, "call most probably wrong");
1497   InstructionMark im(this);
1498   emit_int8((unsigned char)0xE8);
1499   intptr_t disp = entry - (pc() + sizeof(int32_t));
1500   assert(is_simm32(disp), "must be 32bit offset (call2)");
1501   // Technically, should use call32_operand, but this format is
1502   // implied by the fact that we're emitting a call instruction.
1503 
1504   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1505   emit_data((int) disp, rspec, operand);
1506 }
1507 
1508 void Assembler::cdql() {
1509   emit_int8((unsigned char)0x99);
1510 }
1511 
1512 void Assembler::cld() {
1513   emit_int8((unsigned char)0xFC);
1514 }
1515 
1516 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1517   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1518   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1519   emit_int8(0x0F);
1520   emit_int8(0x40 | cc);
1521   emit_int8((unsigned char)(0xC0 | encode));
1522 }
1523 
1524 
1525 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1526   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1527   prefix(src, dst);
1528   emit_int8(0x0F);
1529   emit_int8(0x40 | cc);
1530   emit_operand(dst, src);
1531 }
1532 
1533 void Assembler::cmpb(Address dst, int imm8) {
1534   InstructionMark im(this);
1535   prefix(dst);
1536   emit_int8((unsigned char)0x80);
1537   emit_operand(rdi, dst, 1);
1538   emit_int8(imm8);
1539 }
1540 
1541 void Assembler::cmpl(Address dst, int32_t imm32) {
1542   InstructionMark im(this);
1543   prefix(dst);
1544   emit_int8((unsigned char)0x81);
1545   emit_operand(rdi, dst, 4);
1546   emit_int32(imm32);
1547 }
1548 
1549 void Assembler::cmpl(Register dst, int32_t imm32) {
1550   prefix(dst);
1551   emit_arith(0x81, 0xF8, dst, imm32);
1552 }
1553 
1554 void Assembler::cmpl(Register dst, Register src) {
1555   (void) prefix_and_encode(dst->encoding(), src->encoding());
1556   emit_arith(0x3B, 0xC0, dst, src);
1557 }
1558 
1559 void Assembler::cmpl(Register dst, Address  src) {
1560   InstructionMark im(this);
1561   prefix(src, dst);
1562   emit_int8((unsigned char)0x3B);
1563   emit_operand(dst, src);
1564 }
1565 
1566 void Assembler::cmpw(Address dst, int imm16) {
1567   InstructionMark im(this);
1568   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1569   emit_int8(0x66);
1570   emit_int8((unsigned char)0x81);
1571   emit_operand(rdi, dst, 2);
1572   emit_int16(imm16);
1573 }
1574 
1575 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1576 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1577 // The ZF is set if the compared values were equal, and cleared otherwise.
1578 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1579   InstructionMark im(this);
1580   prefix(adr, reg);
1581   emit_int8(0x0F);
1582   emit_int8((unsigned char)0xB1);
1583   emit_operand(reg, adr);
1584 }
1585 
1586 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1587 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1588 // The ZF is set if the compared values were equal, and cleared otherwise.
1589 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1590   InstructionMark im(this);
1591   prefix(adr, reg, true);
1592   emit_int8(0x0F);
1593   emit_int8((unsigned char)0xB0);
1594   emit_operand(reg, adr);
1595 }
1596 
1597 void Assembler::comisd(XMMRegister dst, Address src) {
1598   // NOTE: dbx seems to decode this as comiss even though the
1599   // 0x66 is there. Strangly ucomisd comes out correct
1600   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1601   InstructionMark im(this);
1602   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1603   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1604   attributes.set_rex_vex_w_reverted();
1605   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1606   emit_int8(0x2F);
1607   emit_operand(dst, src);
1608 }
1609 
1610 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1611   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1612   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1613   attributes.set_rex_vex_w_reverted();
1614   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1615   emit_int8(0x2F);
1616   emit_int8((unsigned char)(0xC0 | encode));
1617 }
1618 
1619 void Assembler::comiss(XMMRegister dst, Address src) {
1620   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1621   InstructionMark im(this);
1622   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1623   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1624   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1625   emit_int8(0x2F);
1626   emit_operand(dst, src);
1627 }
1628 
1629 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1630   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1631   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1632   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1633   emit_int8(0x2F);
1634   emit_int8((unsigned char)(0xC0 | encode));
1635 }
1636 
1637 void Assembler::cpuid() {
1638   emit_int8(0x0F);
1639   emit_int8((unsigned char)0xA2);
1640 }
1641 
1642 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1643 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1644 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1645 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1646 //
1647 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1648 //
1649 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1650 //
1651 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1652 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1653   assert(VM_Version::supports_sse4_2(), "");
1654   int8_t w = 0x01;
1655   Prefix p = Prefix_EMPTY;
1656 
1657   emit_int8((int8_t)0xF2);
1658   switch (sizeInBytes) {
1659   case 1:
1660     w = 0;
1661     break;
1662   case 2:
1663   case 4:
1664     break;
1665   LP64_ONLY(case 8:)
1666     // This instruction is not valid in 32 bits
1667     // Note:
1668     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1669     //
1670     // Page B - 72   Vol. 2C says
1671     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1672     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1673     //                                                                            F0!!!
1674     // while 3 - 208 Vol. 2A
1675     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1676     //
1677     // the 0 on a last bit is reserved for a different flavor of this instruction :
1678     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1679     p = REX_W;
1680     break;
1681   default:
1682     assert(0, "Unsupported value for a sizeInBytes argument");
1683     break;
1684   }
1685   LP64_ONLY(prefix(crc, v, p);)
1686   emit_int8((int8_t)0x0F);
1687   emit_int8(0x38);
1688   emit_int8((int8_t)(0xF0 | w));
1689   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1690 }
1691 
1692 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1693   assert(VM_Version::supports_sse4_2(), "");
1694   InstructionMark im(this);
1695   int8_t w = 0x01;
1696   Prefix p = Prefix_EMPTY;
1697 
1698   emit_int8((int8_t)0xF2);
1699   switch (sizeInBytes) {
1700   case 1:
1701     w = 0;
1702     break;
1703   case 2:
1704   case 4:
1705     break;
1706   LP64_ONLY(case 8:)
1707     // This instruction is not valid in 32 bits
1708     p = REX_W;
1709     break;
1710   default:
1711     assert(0, "Unsupported value for a sizeInBytes argument");
1712     break;
1713   }
1714   LP64_ONLY(prefix(crc, adr, p);)
1715   emit_int8((int8_t)0x0F);
1716   emit_int8(0x38);
1717   emit_int8((int8_t)(0xF0 | w));
1718   emit_operand(crc, adr);
1719 }
1720 
1721 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1722   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1723   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1724   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1725   emit_int8((unsigned char)0xE6);
1726   emit_int8((unsigned char)(0xC0 | encode));
1727 }
1728 
1729 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1730   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1731   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1732   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1733   emit_int8(0x5B);
1734   emit_int8((unsigned char)(0xC0 | encode));
1735 }
1736 
1737 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1738   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1739   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1740   attributes.set_rex_vex_w_reverted();
1741   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1742   emit_int8(0x5A);
1743   emit_int8((unsigned char)(0xC0 | encode));
1744 }
1745 
1746 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1747   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1748   InstructionMark im(this);
1749   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1750   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1751   attributes.set_rex_vex_w_reverted();
1752   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1753   emit_int8(0x5A);
1754   emit_operand(dst, src);
1755 }
1756 
1757 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1758   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1759   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1760   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1761   emit_int8(0x2A);
1762   emit_int8((unsigned char)(0xC0 | encode));
1763 }
1764 
1765 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1766   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1767   InstructionMark im(this);
1768   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1769   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1770   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1771   emit_int8(0x2A);
1772   emit_operand(dst, src);
1773 }
1774 
1775 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1776   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1777   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1778   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1779   emit_int8(0x2A);
1780   emit_int8((unsigned char)(0xC0 | encode));
1781 }
1782 
1783 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1784   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1785   InstructionMark im(this);
1786   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1787   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1788   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1789   emit_int8(0x2A);
1790   emit_operand(dst, src);
1791 }
1792 
1793 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1794   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1795   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1796   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1797   emit_int8(0x2A);
1798   emit_int8((unsigned char)(0xC0 | encode));
1799 }
1800 
1801 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1802   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1803   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1804   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1805   emit_int8(0x5A);
1806   emit_int8((unsigned char)(0xC0 | encode));
1807 }
1808 
1809 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1810   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1811   InstructionMark im(this);
1812   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1813   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1814   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1815   emit_int8(0x5A);
1816   emit_operand(dst, src);
1817 }
1818 
1819 
1820 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1821   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1822   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1823   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1824   emit_int8(0x2C);
1825   emit_int8((unsigned char)(0xC0 | encode));
1826 }
1827 
1828 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1829   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1830   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1831   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1832   emit_int8(0x2C);
1833   emit_int8((unsigned char)(0xC0 | encode));
1834 }
1835 
1836 void Assembler::cvttpd2dq(XMMRegister dst, XMMRegister src) {
1837   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1838   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
1839   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1840   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1841   emit_int8((unsigned char)0xE6);
1842   emit_int8((unsigned char)(0xC0 | encode));
1843 }
1844 
1845 void Assembler::decl(Address dst) {
1846   // Don't use it directly. Use MacroAssembler::decrement() instead.
1847   InstructionMark im(this);
1848   prefix(dst);
1849   emit_int8((unsigned char)0xFF);
1850   emit_operand(rcx, dst);
1851 }
1852 
1853 void Assembler::divsd(XMMRegister dst, Address src) {
1854   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1855   InstructionMark im(this);
1856   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1857   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1858   attributes.set_rex_vex_w_reverted();
1859   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1860   emit_int8(0x5E);
1861   emit_operand(dst, src);
1862 }
1863 
1864 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1865   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1866   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1867   attributes.set_rex_vex_w_reverted();
1868   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1869   emit_int8(0x5E);
1870   emit_int8((unsigned char)(0xC0 | encode));
1871 }
1872 
1873 void Assembler::divss(XMMRegister dst, Address src) {
1874   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1875   InstructionMark im(this);
1876   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1877   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1878   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1879   emit_int8(0x5E);
1880   emit_operand(dst, src);
1881 }
1882 
1883 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1884   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1885   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1886   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1887   emit_int8(0x5E);
1888   emit_int8((unsigned char)(0xC0 | encode));
1889 }
1890 
1891 void Assembler::emms() {
1892   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1893   emit_int8(0x0F);
1894   emit_int8(0x77);
1895 }
1896 
1897 void Assembler::hlt() {
1898   emit_int8((unsigned char)0xF4);
1899 }
1900 
1901 void Assembler::idivl(Register src) {
1902   int encode = prefix_and_encode(src->encoding());
1903   emit_int8((unsigned char)0xF7);
1904   emit_int8((unsigned char)(0xF8 | encode));
1905 }
1906 
1907 void Assembler::divl(Register src) { // Unsigned
1908   int encode = prefix_and_encode(src->encoding());
1909   emit_int8((unsigned char)0xF7);
1910   emit_int8((unsigned char)(0xF0 | encode));
1911 }
1912 
1913 void Assembler::imull(Register src) {
1914   int encode = prefix_and_encode(src->encoding());
1915   emit_int8((unsigned char)0xF7);
1916   emit_int8((unsigned char)(0xE8 | encode));
1917 }
1918 
1919 void Assembler::imull(Register dst, Register src) {
1920   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1921   emit_int8(0x0F);
1922   emit_int8((unsigned char)0xAF);
1923   emit_int8((unsigned char)(0xC0 | encode));
1924 }
1925 
1926 
1927 void Assembler::imull(Register dst, Register src, int value) {
1928   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1929   if (is8bit(value)) {
1930     emit_int8(0x6B);
1931     emit_int8((unsigned char)(0xC0 | encode));
1932     emit_int8(value & 0xFF);
1933   } else {
1934     emit_int8(0x69);
1935     emit_int8((unsigned char)(0xC0 | encode));
1936     emit_int32(value);
1937   }
1938 }
1939 
1940 void Assembler::imull(Register dst, Address src) {
1941   InstructionMark im(this);
1942   prefix(src, dst);
1943   emit_int8(0x0F);
1944   emit_int8((unsigned char) 0xAF);
1945   emit_operand(dst, src);
1946 }
1947 
1948 
1949 void Assembler::incl(Address dst) {
1950   // Don't use it directly. Use MacroAssembler::increment() instead.
1951   InstructionMark im(this);
1952   prefix(dst);
1953   emit_int8((unsigned char)0xFF);
1954   emit_operand(rax, dst);
1955 }
1956 
1957 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1958   InstructionMark im(this);
1959   assert((0 <= cc) && (cc < 16), "illegal cc");
1960   if (L.is_bound()) {
1961     address dst = target(L);
1962     assert(dst != NULL, "jcc most probably wrong");
1963 
1964     const int short_size = 2;
1965     const int long_size = 6;
1966     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1967     if (maybe_short && is8bit(offs - short_size)) {
1968       // 0111 tttn #8-bit disp
1969       emit_int8(0x70 | cc);
1970       emit_int8((offs - short_size) & 0xFF);
1971     } else {
1972       // 0000 1111 1000 tttn #32-bit disp
1973       assert(is_simm32(offs - long_size),
1974              "must be 32bit offset (call4)");
1975       emit_int8(0x0F);
1976       emit_int8((unsigned char)(0x80 | cc));
1977       emit_int32(offs - long_size);
1978     }
1979   } else {
1980     // Note: could eliminate cond. jumps to this jump if condition
1981     //       is the same however, seems to be rather unlikely case.
1982     // Note: use jccb() if label to be bound is very close to get
1983     //       an 8-bit displacement
1984     L.add_patch_at(code(), locator());
1985     emit_int8(0x0F);
1986     emit_int8((unsigned char)(0x80 | cc));
1987     emit_int32(0);
1988   }
1989 }
1990 
1991 void Assembler::jccb(Condition cc, Label& L) {
1992   if (L.is_bound()) {
1993     const int short_size = 2;
1994     address entry = target(L);
1995 #ifdef ASSERT
1996     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1997     intptr_t delta = short_branch_delta();
1998     if (delta != 0) {
1999       dist += (dist < 0 ? (-delta) :delta);
2000     }
2001     assert(is8bit(dist), "Dispacement too large for a short jmp");
2002 #endif
2003     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
2004     // 0111 tttn #8-bit disp
2005     emit_int8(0x70 | cc);
2006     emit_int8((offs - short_size) & 0xFF);
2007   } else {
2008     InstructionMark im(this);
2009     L.add_patch_at(code(), locator());
2010     emit_int8(0x70 | cc);
2011     emit_int8(0);
2012   }
2013 }
2014 
2015 void Assembler::jmp(Address adr) {
2016   InstructionMark im(this);
2017   prefix(adr);
2018   emit_int8((unsigned char)0xFF);
2019   emit_operand(rsp, adr);
2020 }
2021 
2022 void Assembler::jmp(Label& L, bool maybe_short) {
2023   if (L.is_bound()) {
2024     address entry = target(L);
2025     assert(entry != NULL, "jmp most probably wrong");
2026     InstructionMark im(this);
2027     const int short_size = 2;
2028     const int long_size = 5;
2029     intptr_t offs = entry - pc();
2030     if (maybe_short && is8bit(offs - short_size)) {
2031       emit_int8((unsigned char)0xEB);
2032       emit_int8((offs - short_size) & 0xFF);
2033     } else {
2034       emit_int8((unsigned char)0xE9);
2035       emit_int32(offs - long_size);
2036     }
2037   } else {
2038     // By default, forward jumps are always 32-bit displacements, since
2039     // we can't yet know where the label will be bound.  If you're sure that
2040     // the forward jump will not run beyond 256 bytes, use jmpb to
2041     // force an 8-bit displacement.
2042     InstructionMark im(this);
2043     L.add_patch_at(code(), locator());
2044     emit_int8((unsigned char)0xE9);
2045     emit_int32(0);
2046   }
2047 }
2048 
2049 void Assembler::jmp(Register entry) {
2050   int encode = prefix_and_encode(entry->encoding());
2051   emit_int8((unsigned char)0xFF);
2052   emit_int8((unsigned char)(0xE0 | encode));
2053 }
2054 
2055 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2056   InstructionMark im(this);
2057   emit_int8((unsigned char)0xE9);
2058   assert(dest != NULL, "must have a target");
2059   intptr_t disp = dest - (pc() + sizeof(int32_t));
2060   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2061   emit_data(disp, rspec.reloc(), call32_operand);
2062 }
2063 
2064 void Assembler::jmpb(Label& L) {
2065   if (L.is_bound()) {
2066     const int short_size = 2;
2067     address entry = target(L);
2068     assert(entry != NULL, "jmp most probably wrong");
2069 #ifdef ASSERT
2070     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2071     intptr_t delta = short_branch_delta();
2072     if (delta != 0) {
2073       dist += (dist < 0 ? (-delta) :delta);
2074     }
2075     assert(is8bit(dist), "Dispacement too large for a short jmp");
2076 #endif
2077     intptr_t offs = entry - pc();
2078     emit_int8((unsigned char)0xEB);
2079     emit_int8((offs - short_size) & 0xFF);
2080   } else {
2081     InstructionMark im(this);
2082     L.add_patch_at(code(), locator());
2083     emit_int8((unsigned char)0xEB);
2084     emit_int8(0);
2085   }
2086 }
2087 
2088 void Assembler::ldmxcsr( Address src) {
2089   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2090   InstructionMark im(this);
2091   prefix(src);
2092   emit_int8(0x0F);
2093   emit_int8((unsigned char)0xAE);
2094   emit_operand(as_Register(2), src);
2095 }
2096 
2097 void Assembler::leal(Register dst, Address src) {
2098   InstructionMark im(this);
2099 #ifdef _LP64
2100   emit_int8(0x67); // addr32
2101   prefix(src, dst);
2102 #endif // LP64
2103   emit_int8((unsigned char)0x8D);
2104   emit_operand(dst, src);
2105 }
2106 
2107 void Assembler::lfence() {
2108   emit_int8(0x0F);
2109   emit_int8((unsigned char)0xAE);
2110   emit_int8((unsigned char)0xE8);
2111 }
2112 
2113 void Assembler::lock() {
2114   emit_int8((unsigned char)0xF0);
2115 }
2116 
2117 void Assembler::lzcntl(Register dst, Register src) {
2118   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2119   emit_int8((unsigned char)0xF3);
2120   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2121   emit_int8(0x0F);
2122   emit_int8((unsigned char)0xBD);
2123   emit_int8((unsigned char)(0xC0 | encode));
2124 }
2125 
2126 // Emit mfence instruction
2127 void Assembler::mfence() {
2128   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2129   emit_int8(0x0F);
2130   emit_int8((unsigned char)0xAE);
2131   emit_int8((unsigned char)0xF0);
2132 }
2133 
2134 void Assembler::mov(Register dst, Register src) {
2135   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2136 }
2137 
2138 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2139   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2140   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2141   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2142   attributes.set_rex_vex_w_reverted();
2143   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2144   emit_int8(0x28);
2145   emit_int8((unsigned char)(0xC0 | encode));
2146 }
2147 
2148 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2149   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2150   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2151   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2152   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2153   emit_int8(0x28);
2154   emit_int8((unsigned char)(0xC0 | encode));
2155 }
2156 
2157 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2158   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2159   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2160   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2161   emit_int8(0x16);
2162   emit_int8((unsigned char)(0xC0 | encode));
2163 }
2164 
2165 void Assembler::movb(Register dst, Address src) {
2166   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2167   InstructionMark im(this);
2168   prefix(src, dst, true);
2169   emit_int8((unsigned char)0x8A);
2170   emit_operand(dst, src);
2171 }
2172 
2173 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2174   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2175   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2176   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2177   attributes.set_rex_vex_w_reverted();
2178   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2179   emit_int8(0x12);
2180   emit_int8(0xC0 | encode);
2181 }
2182 
2183 void Assembler::kmovbl(KRegister dst, Register src) {
2184   assert(VM_Version::supports_avx512dq(), "");
2185   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2186   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2187   emit_int8((unsigned char)0x92);
2188   emit_int8((unsigned char)(0xC0 | encode));
2189 }
2190 
2191 void Assembler::kmovbl(Register dst, KRegister src) {
2192   assert(VM_Version::supports_avx512dq(), "");
2193   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2194   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2195   emit_int8((unsigned char)0x93);
2196   emit_int8((unsigned char)(0xC0 | encode));
2197 }
2198 
2199 void Assembler::kmovwl(KRegister dst, Register src) {
2200   assert(VM_Version::supports_evex(), "");
2201   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2202   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2203   emit_int8((unsigned char)0x92);
2204   emit_int8((unsigned char)(0xC0 | encode));
2205 }
2206 
2207 void Assembler::kmovwl(Register dst, KRegister src) {
2208   assert(VM_Version::supports_evex(), "");
2209   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2210   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2211   emit_int8((unsigned char)0x93);
2212   emit_int8((unsigned char)(0xC0 | encode));
2213 }
2214 
2215 void Assembler::kmovwl(KRegister dst, Address src) {
2216   assert(VM_Version::supports_evex(), "");
2217   InstructionMark im(this);
2218   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2219   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2220   emit_int8((unsigned char)0x90);
2221   emit_operand((Register)dst, src);
2222 }
2223 
2224 void Assembler::kmovdl(KRegister dst, Register src) {
2225   assert(VM_Version::supports_avx512bw(), "");
2226   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2227   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2228   emit_int8((unsigned char)0x92);
2229   emit_int8((unsigned char)(0xC0 | encode));
2230 }
2231 
2232 void Assembler::kmovdl(Register dst, KRegister src) {
2233   assert(VM_Version::supports_avx512bw(), "");
2234   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2235   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2236   emit_int8((unsigned char)0x93);
2237   emit_int8((unsigned char)(0xC0 | encode));
2238 }
2239 
2240 void Assembler::kmovql(KRegister dst, KRegister src) {
2241   assert(VM_Version::supports_avx512bw(), "");
2242   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2243   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2244   emit_int8((unsigned char)0x90);
2245   emit_int8((unsigned char)(0xC0 | encode));
2246 }
2247 
2248 void Assembler::kmovql(KRegister dst, Address src) {
2249   assert(VM_Version::supports_avx512bw(), "");
2250   InstructionMark im(this);
2251   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2252   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2253   emit_int8((unsigned char)0x90);
2254   emit_operand((Register)dst, src);
2255 }
2256 
2257 void Assembler::kmovql(Address dst, KRegister src) {
2258   assert(VM_Version::supports_avx512bw(), "");
2259   InstructionMark im(this);
2260   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2261   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2262   emit_int8((unsigned char)0x90);
2263   emit_operand((Register)src, dst);
2264 }
2265 
2266 void Assembler::kmovql(KRegister dst, Register src) {
2267   assert(VM_Version::supports_avx512bw(), "");
2268   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2269   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2270   emit_int8((unsigned char)0x92);
2271   emit_int8((unsigned char)(0xC0 | encode));
2272 }
2273 
2274 void Assembler::kmovql(Register dst, KRegister src) {
2275   assert(VM_Version::supports_avx512bw(), "");
2276   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2277   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2278   emit_int8((unsigned char)0x93);
2279   emit_int8((unsigned char)(0xC0 | encode));
2280 }
2281 
2282 void Assembler::knotwl(KRegister dst, KRegister src) {
2283   assert(VM_Version::supports_evex(), "");
2284   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2285   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2286   emit_int8((unsigned char)0x44);
2287   emit_int8((unsigned char)(0xC0 | encode));
2288 }
2289 
2290 // This instruction produces ZF or CF flags
2291 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2292   assert(VM_Version::supports_avx512dq(), "");
2293   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2294   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2295   emit_int8((unsigned char)0x98);
2296   emit_int8((unsigned char)(0xC0 | encode));
2297 }
2298 
2299 // This instruction produces ZF or CF flags
2300 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2301   assert(VM_Version::supports_evex(), "");
2302   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2303   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2304   emit_int8((unsigned char)0x98);
2305   emit_int8((unsigned char)(0xC0 | encode));
2306 }
2307 
2308 // This instruction produces ZF or CF flags
2309 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2310   assert(VM_Version::supports_avx512bw(), "");
2311   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2312   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2313   emit_int8((unsigned char)0x98);
2314   emit_int8((unsigned char)(0xC0 | encode));
2315 }
2316 
2317 // This instruction produces ZF or CF flags
2318 void Assembler::kortestql(KRegister src1, KRegister src2) {
2319   assert(VM_Version::supports_avx512bw(), "");
2320   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2321   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2322   emit_int8((unsigned char)0x98);
2323   emit_int8((unsigned char)(0xC0 | encode));
2324 }
2325 
2326 void Assembler::movb(Address dst, int imm8) {
2327   InstructionMark im(this);
2328    prefix(dst);
2329   emit_int8((unsigned char)0xC6);
2330   emit_operand(rax, dst, 1);
2331   emit_int8(imm8);
2332 }
2333 
2334 
2335 void Assembler::movb(Address dst, Register src) {
2336   assert(src->has_byte_register(), "must have byte register");
2337   InstructionMark im(this);
2338   prefix(dst, src, true);
2339   emit_int8((unsigned char)0x88);
2340   emit_operand(src, dst);
2341 }
2342 
2343 void Assembler::movdl(XMMRegister dst, Register src) {
2344   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2345   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2346   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2347   emit_int8(0x6E);
2348   emit_int8((unsigned char)(0xC0 | encode));
2349 }
2350 
2351 void Assembler::movdl(Register dst, XMMRegister src) {
2352   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2353   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2354   // swap src/dst to get correct prefix
2355   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2356   emit_int8(0x7E);
2357   emit_int8((unsigned char)(0xC0 | encode));
2358 }
2359 
2360 void Assembler::movdl(XMMRegister dst, Address src) {
2361   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2362   InstructionMark im(this);
2363   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2364   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2365   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2366   emit_int8(0x6E);
2367   emit_operand(dst, src);
2368 }
2369 
2370 void Assembler::movdl(Address dst, XMMRegister src) {
2371   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2372   InstructionMark im(this);
2373   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2374   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2375   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2376   emit_int8(0x7E);
2377   emit_operand(src, dst);
2378 }
2379 
2380 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2381   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2382   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2383   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2384   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2385   emit_int8(0x6F);
2386   emit_int8((unsigned char)(0xC0 | encode));
2387 }
2388 
2389 void Assembler::movdqa(XMMRegister dst, Address src) {
2390   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2391   InstructionMark im(this);
2392   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2393   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2394   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2395   emit_int8(0x6F);
2396   emit_operand(dst, src);
2397 }
2398 
2399 void Assembler::movdqu(XMMRegister dst, Address src) {
2400   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2401   InstructionMark im(this);
2402   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2403   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2404   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2405   emit_int8(0x6F);
2406   emit_operand(dst, src);
2407 }
2408 
2409 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2410   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2411   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2412   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2413   emit_int8(0x6F);
2414   emit_int8((unsigned char)(0xC0 | encode));
2415 }
2416 
2417 void Assembler::movdqu(Address dst, XMMRegister src) {
2418   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2419   InstructionMark im(this);
2420   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2421   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2422   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2423   emit_int8(0x7F);
2424   emit_operand(src, dst);
2425 }
2426 
2427 // Move Unaligned 256bit Vector
2428 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2429   assert(UseAVX > 0, "");
2430   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2431   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2432   emit_int8(0x6F);
2433   emit_int8((unsigned char)(0xC0 | encode));
2434 }
2435 
2436 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2437   assert(UseAVX > 0, "");
2438   InstructionMark im(this);
2439   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2440   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2441   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2442   emit_int8(0x6F);
2443   emit_operand(dst, src);
2444 }
2445 
2446 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2447   assert(UseAVX > 0, "");
2448   InstructionMark im(this);
2449   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2450   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2451   // swap src<->dst for encoding
2452   assert(src != xnoreg, "sanity");
2453   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2454   emit_int8(0x7F);
2455   emit_operand(src, dst);
2456 }
2457 
2458 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2459 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2460   assert(VM_Version::supports_evex(), "");
2461   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2462   attributes.set_is_evex_instruction();
2463   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2464   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2465   emit_int8(0x6F);
2466   emit_int8((unsigned char)(0xC0 | encode));
2467 }
2468 
2469 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2470   assert(VM_Version::supports_evex(), "");
2471   InstructionMark im(this);
2472   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2473   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2474   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2475   attributes.set_is_evex_instruction();
2476   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2477   emit_int8(0x6F);
2478   emit_operand(dst, src);
2479 }
2480 
2481 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2482   assert(VM_Version::supports_evex(), "");
2483   assert(src != xnoreg, "sanity");
2484   InstructionMark im(this);
2485   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2486   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2487   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2488   attributes.set_is_evex_instruction();
2489   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2490   emit_int8(0x7F);
2491   emit_operand(src, dst);
2492 }
2493 
2494 void Assembler::evmovdquw(XMMRegister dst, XMMRegister src, int vector_len) {
2495   assert(VM_Version::supports_evex(), "");
2496   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2497   attributes.set_is_evex_instruction();
2498   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2499   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2500   emit_int8(0x6F);
2501   emit_int8((unsigned char)(0xC0 | encode));
2502 }
2503 
2504 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2505   assert(VM_Version::supports_evex(), "");
2506   InstructionMark im(this);
2507   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2508   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2509   attributes.set_is_evex_instruction();
2510   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2511   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2512   emit_int8(0x6F);
2513   emit_operand(dst, src);
2514 }
2515 
2516 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2517   assert(VM_Version::supports_evex(), "");
2518   assert(src != xnoreg, "sanity");
2519   InstructionMark im(this);
2520   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2521   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2522   attributes.set_is_evex_instruction();
2523   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2524   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2525   emit_int8(0x7F);
2526   emit_operand(src, dst);
2527 }
2528 
2529 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2530   assert(VM_Version::supports_evex(), "");
2531   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2532   attributes.set_is_evex_instruction();
2533   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2534   emit_int8(0x6F);
2535   emit_int8((unsigned char)(0xC0 | encode));
2536 }
2537 
2538 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2539   assert(VM_Version::supports_evex(), "");
2540   InstructionMark im(this);
2541   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ true);
2542   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2543   attributes.set_is_evex_instruction();
2544   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2545   emit_int8(0x6F);
2546   emit_operand(dst, src);
2547 }
2548 
2549 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2550   assert(VM_Version::supports_evex(), "");
2551   assert(src != xnoreg, "sanity");
2552   InstructionMark im(this);
2553   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2554   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2555   attributes.set_is_evex_instruction();
2556   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2557   emit_int8(0x7F);
2558   emit_operand(src, dst);
2559 }
2560 
2561 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2562   assert(VM_Version::supports_evex(), "");
2563   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2564   attributes.set_is_evex_instruction();
2565   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2566   emit_int8(0x6F);
2567   emit_int8((unsigned char)(0xC0 | encode));
2568 }
2569 
2570 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2571   assert(VM_Version::supports_evex(), "");
2572   InstructionMark im(this);
2573   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2574   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2575   attributes.set_is_evex_instruction();
2576   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2577   emit_int8(0x6F);
2578   emit_operand(dst, src);
2579 }
2580 
2581 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2582   assert(VM_Version::supports_evex(), "");
2583   assert(src != xnoreg, "sanity");
2584   InstructionMark im(this);
2585   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2586   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2587   attributes.set_is_evex_instruction();
2588   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2589   emit_int8(0x7F);
2590   emit_operand(src, dst);
2591 }
2592 
2593 // Uses zero extension on 64bit
2594 
2595 void Assembler::movl(Register dst, int32_t imm32) {
2596   int encode = prefix_and_encode(dst->encoding());
2597   emit_int8((unsigned char)(0xB8 | encode));
2598   emit_int32(imm32);
2599 }
2600 
2601 void Assembler::movl(Register dst, Register src) {
2602   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2603   emit_int8((unsigned char)0x8B);
2604   emit_int8((unsigned char)(0xC0 | encode));
2605 }
2606 
2607 void Assembler::movl(Register dst, Address src) {
2608   InstructionMark im(this);
2609   prefix(src, dst);
2610   emit_int8((unsigned char)0x8B);
2611   emit_operand(dst, src);
2612 }
2613 
2614 void Assembler::movl(Address dst, int32_t imm32) {
2615   InstructionMark im(this);
2616   prefix(dst);
2617   emit_int8((unsigned char)0xC7);
2618   emit_operand(rax, dst, 4);
2619   emit_int32(imm32);
2620 }
2621 
2622 void Assembler::movl(Address dst, Register src) {
2623   InstructionMark im(this);
2624   prefix(dst, src);
2625   emit_int8((unsigned char)0x89);
2626   emit_operand(src, dst);
2627 }
2628 
2629 // New cpus require to use movsd and movss to avoid partial register stall
2630 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2631 // The selection is done in MacroAssembler::movdbl() and movflt().
2632 void Assembler::movlpd(XMMRegister dst, Address src) {
2633   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2634   InstructionMark im(this);
2635   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2636   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2637   attributes.set_rex_vex_w_reverted();
2638   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2639   emit_int8(0x12);
2640   emit_operand(dst, src);
2641 }
2642 
2643 void Assembler::movq( MMXRegister dst, Address src ) {
2644   assert( VM_Version::supports_mmx(), "" );
2645   emit_int8(0x0F);
2646   emit_int8(0x6F);
2647   emit_operand(dst, src);
2648 }
2649 
2650 void Assembler::movq( Address dst, MMXRegister src ) {
2651   assert( VM_Version::supports_mmx(), "" );
2652   emit_int8(0x0F);
2653   emit_int8(0x7F);
2654   // workaround gcc (3.2.1-7a) bug
2655   // In that version of gcc with only an emit_operand(MMX, Address)
2656   // gcc will tail jump and try and reverse the parameters completely
2657   // obliterating dst in the process. By having a version available
2658   // that doesn't need to swap the args at the tail jump the bug is
2659   // avoided.
2660   emit_operand(dst, src);
2661 }
2662 
2663 void Assembler::movq(XMMRegister dst, Address src) {
2664   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2665   InstructionMark im(this);
2666   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2667   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2668   attributes.set_rex_vex_w_reverted();
2669   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2670   emit_int8(0x7E);
2671   emit_operand(dst, src);
2672 }
2673 
2674 void Assembler::movq(Address dst, XMMRegister src) {
2675   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2676   InstructionMark im(this);
2677   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2678   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2679   attributes.set_rex_vex_w_reverted();
2680   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2681   emit_int8((unsigned char)0xD6);
2682   emit_operand(src, dst);
2683 }
2684 
2685 void Assembler::movsbl(Register dst, Address src) { // movsxb
2686   InstructionMark im(this);
2687   prefix(src, dst);
2688   emit_int8(0x0F);
2689   emit_int8((unsigned char)0xBE);
2690   emit_operand(dst, src);
2691 }
2692 
2693 void Assembler::movsbl(Register dst, Register src) { // movsxb
2694   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2695   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2696   emit_int8(0x0F);
2697   emit_int8((unsigned char)0xBE);
2698   emit_int8((unsigned char)(0xC0 | encode));
2699 }
2700 
2701 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2702   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2703   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2704   attributes.set_rex_vex_w_reverted();
2705   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2706   emit_int8(0x10);
2707   emit_int8((unsigned char)(0xC0 | encode));
2708 }
2709 
2710 void Assembler::movsd(XMMRegister dst, Address src) {
2711   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2712   InstructionMark im(this);
2713   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2714   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2715   attributes.set_rex_vex_w_reverted();
2716   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2717   emit_int8(0x10);
2718   emit_operand(dst, src);
2719 }
2720 
2721 void Assembler::movsd(Address dst, XMMRegister src) {
2722   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2723   InstructionMark im(this);
2724   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2725   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2726   attributes.set_rex_vex_w_reverted();
2727   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2728   emit_int8(0x11);
2729   emit_operand(src, dst);
2730 }
2731 
2732 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2733   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2734   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2735   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2736   emit_int8(0x10);
2737   emit_int8((unsigned char)(0xC0 | encode));
2738 }
2739 
2740 void Assembler::movss(XMMRegister dst, Address src) {
2741   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2742   InstructionMark im(this);
2743   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2744   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2745   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2746   emit_int8(0x10);
2747   emit_operand(dst, src);
2748 }
2749 
2750 void Assembler::movss(Address dst, XMMRegister src) {
2751   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2752   InstructionMark im(this);
2753   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2754   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2755   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2756   emit_int8(0x11);
2757   emit_operand(src, dst);
2758 }
2759 
2760 void Assembler::movswl(Register dst, Address src) { // movsxw
2761   InstructionMark im(this);
2762   prefix(src, dst);
2763   emit_int8(0x0F);
2764   emit_int8((unsigned char)0xBF);
2765   emit_operand(dst, src);
2766 }
2767 
2768 void Assembler::movswl(Register dst, Register src) { // movsxw
2769   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2770   emit_int8(0x0F);
2771   emit_int8((unsigned char)0xBF);
2772   emit_int8((unsigned char)(0xC0 | encode));
2773 }
2774 
2775 void Assembler::movw(Address dst, int imm16) {
2776   InstructionMark im(this);
2777 
2778   emit_int8(0x66); // switch to 16-bit mode
2779   prefix(dst);
2780   emit_int8((unsigned char)0xC7);
2781   emit_operand(rax, dst, 2);
2782   emit_int16(imm16);
2783 }
2784 
2785 void Assembler::movw(Register dst, Address src) {
2786   InstructionMark im(this);
2787   emit_int8(0x66);
2788   prefix(src, dst);
2789   emit_int8((unsigned char)0x8B);
2790   emit_operand(dst, src);
2791 }
2792 
2793 void Assembler::movw(Address dst, Register src) {
2794   InstructionMark im(this);
2795   emit_int8(0x66);
2796   prefix(dst, src);
2797   emit_int8((unsigned char)0x89);
2798   emit_operand(src, dst);
2799 }
2800 
2801 void Assembler::movzbl(Register dst, Address src) { // movzxb
2802   InstructionMark im(this);
2803   prefix(src, dst);
2804   emit_int8(0x0F);
2805   emit_int8((unsigned char)0xB6);
2806   emit_operand(dst, src);
2807 }
2808 
2809 void Assembler::movzbl(Register dst, Register src) { // movzxb
2810   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2811   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2812   emit_int8(0x0F);
2813   emit_int8((unsigned char)0xB6);
2814   emit_int8(0xC0 | encode);
2815 }
2816 
2817 void Assembler::movzwl(Register dst, Address src) { // movzxw
2818   InstructionMark im(this);
2819   prefix(src, dst);
2820   emit_int8(0x0F);
2821   emit_int8((unsigned char)0xB7);
2822   emit_operand(dst, src);
2823 }
2824 
2825 void Assembler::movzwl(Register dst, Register src) { // movzxw
2826   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2827   emit_int8(0x0F);
2828   emit_int8((unsigned char)0xB7);
2829   emit_int8(0xC0 | encode);
2830 }
2831 
2832 void Assembler::mull(Address src) {
2833   InstructionMark im(this);
2834   prefix(src);
2835   emit_int8((unsigned char)0xF7);
2836   emit_operand(rsp, src);
2837 }
2838 
2839 void Assembler::mull(Register src) {
2840   int encode = prefix_and_encode(src->encoding());
2841   emit_int8((unsigned char)0xF7);
2842   emit_int8((unsigned char)(0xE0 | encode));
2843 }
2844 
2845 void Assembler::mulsd(XMMRegister dst, Address src) {
2846   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2847   InstructionMark im(this);
2848   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2849   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2850   attributes.set_rex_vex_w_reverted();
2851   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2852   emit_int8(0x59);
2853   emit_operand(dst, src);
2854 }
2855 
2856 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2857   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2858   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2859   attributes.set_rex_vex_w_reverted();
2860   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2861   emit_int8(0x59);
2862   emit_int8((unsigned char)(0xC0 | encode));
2863 }
2864 
2865 void Assembler::mulss(XMMRegister dst, Address src) {
2866   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2867   InstructionMark im(this);
2868   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2869   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2870   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2871   emit_int8(0x59);
2872   emit_operand(dst, src);
2873 }
2874 
2875 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2876   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2877   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2878   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2879   emit_int8(0x59);
2880   emit_int8((unsigned char)(0xC0 | encode));
2881 }
2882 
2883 void Assembler::negl(Register dst) {
2884   int encode = prefix_and_encode(dst->encoding());
2885   emit_int8((unsigned char)0xF7);
2886   emit_int8((unsigned char)(0xD8 | encode));
2887 }
2888 
2889 void Assembler::nop(int i) {
2890 #ifdef ASSERT
2891   assert(i > 0, " ");
2892   // The fancy nops aren't currently recognized by debuggers making it a
2893   // pain to disassemble code while debugging. If asserts are on clearly
2894   // speed is not an issue so simply use the single byte traditional nop
2895   // to do alignment.
2896 
2897   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2898   return;
2899 
2900 #endif // ASSERT
2901 
2902   if (UseAddressNop && VM_Version::is_intel()) {
2903     //
2904     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2905     //  1: 0x90
2906     //  2: 0x66 0x90
2907     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2908     //  4: 0x0F 0x1F 0x40 0x00
2909     //  5: 0x0F 0x1F 0x44 0x00 0x00
2910     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2911     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2912     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2913     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2914     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2915     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2916 
2917     // The rest coding is Intel specific - don't use consecutive address nops
2918 
2919     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2920     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2921     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2922     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2923 
2924     while(i >= 15) {
2925       // For Intel don't generate consecutive addess nops (mix with regular nops)
2926       i -= 15;
2927       emit_int8(0x66);   // size prefix
2928       emit_int8(0x66);   // size prefix
2929       emit_int8(0x66);   // size prefix
2930       addr_nop_8();
2931       emit_int8(0x66);   // size prefix
2932       emit_int8(0x66);   // size prefix
2933       emit_int8(0x66);   // size prefix
2934       emit_int8((unsigned char)0x90);
2935                          // nop
2936     }
2937     switch (i) {
2938       case 14:
2939         emit_int8(0x66); // size prefix
2940       case 13:
2941         emit_int8(0x66); // size prefix
2942       case 12:
2943         addr_nop_8();
2944         emit_int8(0x66); // size prefix
2945         emit_int8(0x66); // size prefix
2946         emit_int8(0x66); // size prefix
2947         emit_int8((unsigned char)0x90);
2948                          // nop
2949         break;
2950       case 11:
2951         emit_int8(0x66); // size prefix
2952       case 10:
2953         emit_int8(0x66); // size prefix
2954       case 9:
2955         emit_int8(0x66); // size prefix
2956       case 8:
2957         addr_nop_8();
2958         break;
2959       case 7:
2960         addr_nop_7();
2961         break;
2962       case 6:
2963         emit_int8(0x66); // size prefix
2964       case 5:
2965         addr_nop_5();
2966         break;
2967       case 4:
2968         addr_nop_4();
2969         break;
2970       case 3:
2971         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2972         emit_int8(0x66); // size prefix
2973       case 2:
2974         emit_int8(0x66); // size prefix
2975       case 1:
2976         emit_int8((unsigned char)0x90);
2977                          // nop
2978         break;
2979       default:
2980         assert(i == 0, " ");
2981     }
2982     return;
2983   }
2984   if (UseAddressNop && VM_Version::is_amd()) {
2985     //
2986     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2987     //  1: 0x90
2988     //  2: 0x66 0x90
2989     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2990     //  4: 0x0F 0x1F 0x40 0x00
2991     //  5: 0x0F 0x1F 0x44 0x00 0x00
2992     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2993     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2994     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2995     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2996     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2997     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2998 
2999     // The rest coding is AMD specific - use consecutive address nops
3000 
3001     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3002     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3003     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3004     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3005     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3006     //     Size prefixes (0x66) are added for larger sizes
3007 
3008     while(i >= 22) {
3009       i -= 11;
3010       emit_int8(0x66); // size prefix
3011       emit_int8(0x66); // size prefix
3012       emit_int8(0x66); // size prefix
3013       addr_nop_8();
3014     }
3015     // Generate first nop for size between 21-12
3016     switch (i) {
3017       case 21:
3018         i -= 1;
3019         emit_int8(0x66); // size prefix
3020       case 20:
3021       case 19:
3022         i -= 1;
3023         emit_int8(0x66); // size prefix
3024       case 18:
3025       case 17:
3026         i -= 1;
3027         emit_int8(0x66); // size prefix
3028       case 16:
3029       case 15:
3030         i -= 8;
3031         addr_nop_8();
3032         break;
3033       case 14:
3034       case 13:
3035         i -= 7;
3036         addr_nop_7();
3037         break;
3038       case 12:
3039         i -= 6;
3040         emit_int8(0x66); // size prefix
3041         addr_nop_5();
3042         break;
3043       default:
3044         assert(i < 12, " ");
3045     }
3046 
3047     // Generate second nop for size between 11-1
3048     switch (i) {
3049       case 11:
3050         emit_int8(0x66); // size prefix
3051       case 10:
3052         emit_int8(0x66); // size prefix
3053       case 9:
3054         emit_int8(0x66); // size prefix
3055       case 8:
3056         addr_nop_8();
3057         break;
3058       case 7:
3059         addr_nop_7();
3060         break;
3061       case 6:
3062         emit_int8(0x66); // size prefix
3063       case 5:
3064         addr_nop_5();
3065         break;
3066       case 4:
3067         addr_nop_4();
3068         break;
3069       case 3:
3070         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3071         emit_int8(0x66); // size prefix
3072       case 2:
3073         emit_int8(0x66); // size prefix
3074       case 1:
3075         emit_int8((unsigned char)0x90);
3076                          // nop
3077         break;
3078       default:
3079         assert(i == 0, " ");
3080     }
3081     return;
3082   }
3083 
3084   // Using nops with size prefixes "0x66 0x90".
3085   // From AMD Optimization Guide:
3086   //  1: 0x90
3087   //  2: 0x66 0x90
3088   //  3: 0x66 0x66 0x90
3089   //  4: 0x66 0x66 0x66 0x90
3090   //  5: 0x66 0x66 0x90 0x66 0x90
3091   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3092   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3093   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3094   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3095   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3096   //
3097   while(i > 12) {
3098     i -= 4;
3099     emit_int8(0x66); // size prefix
3100     emit_int8(0x66);
3101     emit_int8(0x66);
3102     emit_int8((unsigned char)0x90);
3103                      // nop
3104   }
3105   // 1 - 12 nops
3106   if(i > 8) {
3107     if(i > 9) {
3108       i -= 1;
3109       emit_int8(0x66);
3110     }
3111     i -= 3;
3112     emit_int8(0x66);
3113     emit_int8(0x66);
3114     emit_int8((unsigned char)0x90);
3115   }
3116   // 1 - 8 nops
3117   if(i > 4) {
3118     if(i > 6) {
3119       i -= 1;
3120       emit_int8(0x66);
3121     }
3122     i -= 3;
3123     emit_int8(0x66);
3124     emit_int8(0x66);
3125     emit_int8((unsigned char)0x90);
3126   }
3127   switch (i) {
3128     case 4:
3129       emit_int8(0x66);
3130     case 3:
3131       emit_int8(0x66);
3132     case 2:
3133       emit_int8(0x66);
3134     case 1:
3135       emit_int8((unsigned char)0x90);
3136       break;
3137     default:
3138       assert(i == 0, " ");
3139   }
3140 }
3141 
3142 void Assembler::notl(Register dst) {
3143   int encode = prefix_and_encode(dst->encoding());
3144   emit_int8((unsigned char)0xF7);
3145   emit_int8((unsigned char)(0xD0 | encode));
3146 }
3147 
3148 void Assembler::orl(Address dst, int32_t imm32) {
3149   InstructionMark im(this);
3150   prefix(dst);
3151   emit_arith_operand(0x81, rcx, dst, imm32);
3152 }
3153 
3154 void Assembler::orl(Register dst, int32_t imm32) {
3155   prefix(dst);
3156   emit_arith(0x81, 0xC8, dst, imm32);
3157 }
3158 
3159 void Assembler::orl(Register dst, Address src) {
3160   InstructionMark im(this);
3161   prefix(src, dst);
3162   emit_int8(0x0B);
3163   emit_operand(dst, src);
3164 }
3165 
3166 void Assembler::orl(Register dst, Register src) {
3167   (void) prefix_and_encode(dst->encoding(), src->encoding());
3168   emit_arith(0x0B, 0xC0, dst, src);
3169 }
3170 
3171 void Assembler::orl(Address dst, Register src) {
3172   InstructionMark im(this);
3173   prefix(dst, src);
3174   emit_int8(0x09);
3175   emit_operand(src, dst);
3176 }
3177 
3178 void Assembler::packuswb(XMMRegister dst, Address src) {
3179   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3180   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3181   InstructionMark im(this);
3182   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3183   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3184   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3185   emit_int8(0x67);
3186   emit_operand(dst, src);
3187 }
3188 
3189 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3190   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3191   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3192   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3193   emit_int8(0x67);
3194   emit_int8((unsigned char)(0xC0 | encode));
3195 }
3196 
3197 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3198   assert(UseAVX > 0, "some form of AVX must be enabled");
3199   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3200   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3201   emit_int8(0x67);
3202   emit_int8((unsigned char)(0xC0 | encode));
3203 }
3204 
3205 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3206   assert(VM_Version::supports_avx2(), "");
3207   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3208   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3209   emit_int8(0x00);
3210   emit_int8(0xC0 | encode);
3211   emit_int8(imm8);
3212 }
3213 
3214 void Assembler::vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8) {
3215   assert(VM_Version::supports_avx2(), "");
3216   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3217   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3218   emit_int8(0x46);
3219   emit_int8(0xC0 | encode);
3220   emit_int8(imm8);
3221 }
3222 
3223 
3224 void Assembler::pause() {
3225   emit_int8((unsigned char)0xF3);
3226   emit_int8((unsigned char)0x90);
3227 }
3228 
3229 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3230   assert(VM_Version::supports_sse4_2(), "");
3231   InstructionMark im(this);
3232   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3233   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3234   emit_int8(0x61);
3235   emit_operand(dst, src);
3236   emit_int8(imm8);
3237 }
3238 
3239 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3240   assert(VM_Version::supports_sse4_2(), "");
3241   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3242   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3243   emit_int8(0x61);
3244   emit_int8((unsigned char)(0xC0 | encode));
3245   emit_int8(imm8);
3246 }
3247 
3248 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3249 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3250   assert(VM_Version::supports_sse2(), "");
3251   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3252   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3253   emit_int8(0x74);
3254   emit_int8((unsigned char)(0xC0 | encode));
3255 }
3256 
3257 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3258 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3259   assert(VM_Version::supports_avx(), "");
3260   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3261   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3262   emit_int8(0x74);
3263   emit_int8((unsigned char)(0xC0 | encode));
3264 }
3265 
3266 // In this context, kdst is written the mask used to process the equal components
3267 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3268   assert(VM_Version::supports_avx512bw(), "");
3269   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3270   attributes.set_is_evex_instruction();
3271   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3272   emit_int8(0x74);
3273   emit_int8((unsigned char)(0xC0 | encode));
3274 }
3275 
3276 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3277   assert(VM_Version::supports_avx512bw(), "");
3278   InstructionMark im(this);
3279   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3280   attributes.set_is_evex_instruction();
3281   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3282   int dst_enc = kdst->encoding();
3283   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3284   emit_int8(0x74);
3285   emit_operand(as_Register(dst_enc), src);
3286 }
3287 
3288 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3289 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3290   assert(VM_Version::supports_sse2(), "");
3291   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3292   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3293   emit_int8(0x75);
3294   emit_int8((unsigned char)(0xC0 | encode));
3295 }
3296 
3297 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3298 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3299   assert(VM_Version::supports_avx(), "");
3300   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3301   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3302   emit_int8(0x75);
3303   emit_int8((unsigned char)(0xC0 | encode));
3304 }
3305 
3306 // In this context, kdst is written the mask used to process the equal components
3307 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3308   assert(VM_Version::supports_avx512bw(), "");
3309   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3310   attributes.set_is_evex_instruction();
3311   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3312   emit_int8(0x75);
3313   emit_int8((unsigned char)(0xC0 | encode));
3314 }
3315 
3316 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3317   assert(VM_Version::supports_avx512bw(), "");
3318   InstructionMark im(this);
3319   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3320   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3321   attributes.set_is_evex_instruction();
3322   int dst_enc = kdst->encoding();
3323   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3324   emit_int8(0x75);
3325   emit_operand(as_Register(dst_enc), src);
3326 }
3327 
3328 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3329 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3330   assert(VM_Version::supports_sse2(), "");
3331   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3332   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3333   emit_int8(0x76);
3334   emit_int8((unsigned char)(0xC0 | encode));
3335 }
3336 
3337 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3338 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3339   assert(VM_Version::supports_avx(), "");
3340   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3341   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3342   emit_int8(0x76);
3343   emit_int8((unsigned char)(0xC0 | encode));
3344 }
3345 
3346 // In this context, kdst is written the mask used to process the equal components
3347 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3348   assert(VM_Version::supports_evex(), "");
3349   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3350   attributes.set_is_evex_instruction();
3351   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3352   emit_int8(0x76);
3353   emit_int8((unsigned char)(0xC0 | encode));
3354 }
3355 
3356 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3357   assert(VM_Version::supports_evex(), "");
3358   InstructionMark im(this);
3359   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3360   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3361   attributes.set_is_evex_instruction();
3362   int dst_enc = kdst->encoding();
3363   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3364   emit_int8(0x76);
3365   emit_operand(as_Register(dst_enc), src);
3366 }
3367 
3368 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3369 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3370   assert(VM_Version::supports_sse4_1(), "");
3371   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3372   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3373   emit_int8(0x29);
3374   emit_int8((unsigned char)(0xC0 | encode));
3375 }
3376 
3377 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3378 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3379   assert(VM_Version::supports_avx(), "");
3380   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3381   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3382   emit_int8(0x29);
3383   emit_int8((unsigned char)(0xC0 | encode));
3384 }
3385 
3386 // In this context, kdst is written the mask used to process the equal components
3387 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3388   assert(VM_Version::supports_evex(), "");
3389   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3390   attributes.set_is_evex_instruction();
3391   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3392   emit_int8(0x29);
3393   emit_int8((unsigned char)(0xC0 | encode));
3394 }
3395 
3396 // In this context, kdst is written the mask used to process the equal components
3397 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3398   assert(VM_Version::supports_evex(), "");
3399   InstructionMark im(this);
3400   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3401   attributes.set_is_evex_instruction();
3402   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3403   int dst_enc = kdst->encoding();
3404   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3405   emit_int8(0x29);
3406   emit_operand(as_Register(dst_enc), src);
3407 }
3408 
3409 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3410   assert(VM_Version::supports_sse2(), "");
3411   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3412   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3413   emit_int8((unsigned char)0xD7);
3414   emit_int8((unsigned char)(0xC0 | encode));
3415 }
3416 
3417 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3418   assert(VM_Version::supports_avx2(), "");
3419   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3420   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3421   emit_int8((unsigned char)0xD7);
3422   emit_int8((unsigned char)(0xC0 | encode));
3423 }
3424 
3425 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3426   assert(VM_Version::supports_sse4_1(), "");
3427   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3428   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3429   emit_int8(0x16);
3430   emit_int8((unsigned char)(0xC0 | encode));
3431   emit_int8(imm8);
3432 }
3433 
3434 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3435   assert(VM_Version::supports_sse4_1(), "");
3436   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3437   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3438   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3439   emit_int8(0x16);
3440   emit_operand(src, dst);
3441   emit_int8(imm8);
3442 }
3443 
3444 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3445   assert(VM_Version::supports_sse4_1(), "");
3446   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3447   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3448   emit_int8(0x16);
3449   emit_int8((unsigned char)(0xC0 | encode));
3450   emit_int8(imm8);
3451 }
3452 
3453 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3454   assert(VM_Version::supports_sse4_1(), "");
3455   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3456   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3457   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3458   emit_int8(0x16);
3459   emit_operand(src, dst);
3460   emit_int8(imm8);
3461 }
3462 
3463 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3464   assert(VM_Version::supports_sse2(), "");
3465   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3466   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3467   emit_int8((unsigned char)0xC5);
3468   emit_int8((unsigned char)(0xC0 | encode));
3469   emit_int8(imm8);
3470 }
3471 
3472 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3473   assert(VM_Version::supports_sse4_1(), "");
3474   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3475   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3476   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3477   emit_int8((unsigned char)0x15);
3478   emit_operand(src, dst);
3479   emit_int8(imm8);
3480 }
3481 
3482 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3483   assert(VM_Version::supports_sse4_1(), "");
3484   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3485   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3486   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3487   emit_int8(0x14);
3488   emit_operand(src, dst);
3489   emit_int8(imm8);
3490 }
3491 
3492 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3493   assert(VM_Version::supports_sse4_1(), "");
3494   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3495   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3496   emit_int8(0x22);
3497   emit_int8((unsigned char)(0xC0 | encode));
3498   emit_int8(imm8);
3499 }
3500 
3501 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3502   assert(VM_Version::supports_sse4_1(), "");
3503   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3504   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3505   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3506   emit_int8(0x22);
3507   emit_operand(dst,src);
3508   emit_int8(imm8);
3509 }
3510 
3511 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3512   assert(VM_Version::supports_sse4_1(), "");
3513   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3514   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3515   emit_int8(0x22);
3516   emit_int8((unsigned char)(0xC0 | encode));
3517   emit_int8(imm8);
3518 }
3519 
3520 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3521   assert(VM_Version::supports_sse4_1(), "");
3522   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3523   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3524   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3525   emit_int8(0x22);
3526   emit_operand(dst, src);
3527   emit_int8(imm8);
3528 }
3529 
3530 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3531   assert(VM_Version::supports_sse2(), "");
3532   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3533   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3534   emit_int8((unsigned char)0xC4);
3535   emit_int8((unsigned char)(0xC0 | encode));
3536   emit_int8(imm8);
3537 }
3538 
3539 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3540   assert(VM_Version::supports_sse2(), "");
3541   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3542   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3543   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3544   emit_int8((unsigned char)0xC4);
3545   emit_operand(dst, src);
3546   emit_int8(imm8);
3547 }
3548 
3549 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3550   assert(VM_Version::supports_sse4_1(), "");
3551   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3552   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3553   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3554   emit_int8(0x20);
3555   emit_operand(dst, src);
3556   emit_int8(imm8);
3557 }
3558 
3559 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3560   assert(VM_Version::supports_sse4_1(), "");
3561   InstructionMark im(this);
3562   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3563   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3564   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3565   emit_int8(0x30);
3566   emit_operand(dst, src);
3567 }
3568 
3569 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3570   assert(VM_Version::supports_sse4_1(), "");
3571   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3572   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3573   emit_int8(0x30);
3574   emit_int8((unsigned char)(0xC0 | encode));
3575 }
3576 
3577 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3578   assert(VM_Version::supports_avx(), "");
3579   InstructionMark im(this);
3580   assert(dst != xnoreg, "sanity");
3581   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3582   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3583   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3584   emit_int8(0x30);
3585   emit_operand(dst, src);
3586 }
3587 
3588 // generic
3589 void Assembler::pop(Register dst) {
3590   int encode = prefix_and_encode(dst->encoding());
3591   emit_int8(0x58 | encode);
3592 }
3593 
3594 void Assembler::popcntl(Register dst, Address src) {
3595   assert(VM_Version::supports_popcnt(), "must support");
3596   InstructionMark im(this);
3597   emit_int8((unsigned char)0xF3);
3598   prefix(src, dst);
3599   emit_int8(0x0F);
3600   emit_int8((unsigned char)0xB8);
3601   emit_operand(dst, src);
3602 }
3603 
3604 void Assembler::popcntl(Register dst, Register src) {
3605   assert(VM_Version::supports_popcnt(), "must support");
3606   emit_int8((unsigned char)0xF3);
3607   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3608   emit_int8(0x0F);
3609   emit_int8((unsigned char)0xB8);
3610   emit_int8((unsigned char)(0xC0 | encode));
3611 }
3612 
3613 void Assembler::popf() {
3614   emit_int8((unsigned char)0x9D);
3615 }
3616 
3617 #ifndef _LP64 // no 32bit push/pop on amd64
3618 void Assembler::popl(Address dst) {
3619   // NOTE: this will adjust stack by 8byte on 64bits
3620   InstructionMark im(this);
3621   prefix(dst);
3622   emit_int8((unsigned char)0x8F);
3623   emit_operand(rax, dst);
3624 }
3625 #endif
3626 
3627 void Assembler::prefetch_prefix(Address src) {
3628   prefix(src);
3629   emit_int8(0x0F);
3630 }
3631 
3632 void Assembler::prefetchnta(Address src) {
3633   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3634   InstructionMark im(this);
3635   prefetch_prefix(src);
3636   emit_int8(0x18);
3637   emit_operand(rax, src); // 0, src
3638 }
3639 
3640 void Assembler::prefetchr(Address src) {
3641   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3642   InstructionMark im(this);
3643   prefetch_prefix(src);
3644   emit_int8(0x0D);
3645   emit_operand(rax, src); // 0, src
3646 }
3647 
3648 void Assembler::prefetcht0(Address src) {
3649   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3650   InstructionMark im(this);
3651   prefetch_prefix(src);
3652   emit_int8(0x18);
3653   emit_operand(rcx, src); // 1, src
3654 }
3655 
3656 void Assembler::prefetcht1(Address src) {
3657   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3658   InstructionMark im(this);
3659   prefetch_prefix(src);
3660   emit_int8(0x18);
3661   emit_operand(rdx, src); // 2, src
3662 }
3663 
3664 void Assembler::prefetcht2(Address src) {
3665   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3666   InstructionMark im(this);
3667   prefetch_prefix(src);
3668   emit_int8(0x18);
3669   emit_operand(rbx, src); // 3, src
3670 }
3671 
3672 void Assembler::prefetchw(Address src) {
3673   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3674   InstructionMark im(this);
3675   prefetch_prefix(src);
3676   emit_int8(0x0D);
3677   emit_operand(rcx, src); // 1, src
3678 }
3679 
3680 void Assembler::prefix(Prefix p) {
3681   emit_int8(p);
3682 }
3683 
3684 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3685   assert(VM_Version::supports_ssse3(), "");
3686   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3687   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3688   emit_int8(0x00);
3689   emit_int8((unsigned char)(0xC0 | encode));
3690 }
3691 
3692 void Assembler::vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3693   assert(VM_Version::supports_ssse3(), "");
3694   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3695   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3696   emit_int8(0x00);
3697   emit_int8((unsigned char)(0xC0 | encode));
3698 }
3699 
3700 void Assembler::pshufb(XMMRegister dst, Address src) {
3701   assert(VM_Version::supports_ssse3(), "");
3702   InstructionMark im(this);
3703   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3704   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3705   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3706   emit_int8(0x00);
3707   emit_operand(dst, src);
3708 }
3709 
3710 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3711   assert(isByte(mode), "invalid value");
3712   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3713   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_128bit;
3714   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3715   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3716   emit_int8(0x70);
3717   emit_int8((unsigned char)(0xC0 | encode));
3718   emit_int8(mode & 0xFF);
3719 }
3720 
3721 void Assembler::vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len) {
3722   assert(isByte(mode), "invalid value");
3723   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3724   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3725   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3726   emit_int8(0x70);
3727   emit_int8((unsigned char)(0xC0 | encode));
3728   emit_int8(mode & 0xFF);
3729 }
3730 
3731 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3732   assert(isByte(mode), "invalid value");
3733   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3734   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3735   InstructionMark im(this);
3736   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3737   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3738   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3739   emit_int8(0x70);
3740   emit_operand(dst, src);
3741   emit_int8(mode & 0xFF);
3742 }
3743 
3744 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3745   assert(isByte(mode), "invalid value");
3746   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3747   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3748   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3749   emit_int8(0x70);
3750   emit_int8((unsigned char)(0xC0 | encode));
3751   emit_int8(mode & 0xFF);
3752 }
3753 
3754 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3755   assert(isByte(mode), "invalid value");
3756   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3757   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3758   InstructionMark im(this);
3759   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3760   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3761   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3762   emit_int8(0x70);
3763   emit_operand(dst, src);
3764   emit_int8(mode & 0xFF);
3765 }
3766 
3767 void Assembler::psrldq(XMMRegister dst, int shift) {
3768   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3769   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3770   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3771   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3772   emit_int8(0x73);
3773   emit_int8((unsigned char)(0xC0 | encode));
3774   emit_int8(shift);
3775 }
3776 
3777 void Assembler::pslldq(XMMRegister dst, int shift) {
3778   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3779   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3780   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3781   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
3782   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3783   emit_int8(0x73);
3784   emit_int8((unsigned char)(0xC0 | encode));
3785   emit_int8(shift);
3786 }
3787 
3788 void Assembler::ptest(XMMRegister dst, Address src) {
3789   assert(VM_Version::supports_sse4_1(), "");
3790   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3791   InstructionMark im(this);
3792   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3793   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3794   emit_int8(0x17);
3795   emit_operand(dst, src);
3796 }
3797 
3798 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3799   assert(VM_Version::supports_sse4_1(), "");
3800   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3801   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3802   emit_int8(0x17);
3803   emit_int8((unsigned char)(0xC0 | encode));
3804 }
3805 
3806 void Assembler::vptest(XMMRegister dst, Address src) {
3807   assert(VM_Version::supports_avx(), "");
3808   InstructionMark im(this);
3809   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3810   assert(dst != xnoreg, "sanity");
3811   // swap src<->dst for encoding
3812   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3813   emit_int8(0x17);
3814   emit_operand(dst, src);
3815 }
3816 
3817 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3818   assert(VM_Version::supports_avx(), "");
3819   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3820   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3821   emit_int8(0x17);
3822   emit_int8((unsigned char)(0xC0 | encode));
3823 }
3824 
3825 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3826   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3827   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3828   InstructionMark im(this);
3829   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3830   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3831   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3832   emit_int8(0x60);
3833   emit_operand(dst, src);
3834 }
3835 
3836 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3837   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3838   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3839   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3840   emit_int8(0x60);
3841   emit_int8((unsigned char)(0xC0 | encode));
3842 }
3843 
3844 void Assembler::punpckldq(XMMRegister dst, Address src) {
3845   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3846   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3847   InstructionMark im(this);
3848   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3849   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3850   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3851   emit_int8(0x62);
3852   emit_operand(dst, src);
3853 }
3854 
3855 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3856   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3857   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3858   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3859   emit_int8(0x62);
3860   emit_int8((unsigned char)(0xC0 | encode));
3861 }
3862 
3863 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3864   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3865   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3866   attributes.set_rex_vex_w_reverted();
3867   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3868   emit_int8(0x6C);
3869   emit_int8((unsigned char)(0xC0 | encode));
3870 }
3871 
3872 void Assembler::push(int32_t imm32) {
3873   // in 64bits we push 64bits onto the stack but only
3874   // take a 32bit immediate
3875   emit_int8(0x68);
3876   emit_int32(imm32);
3877 }
3878 
3879 void Assembler::push(Register src) {
3880   int encode = prefix_and_encode(src->encoding());
3881 
3882   emit_int8(0x50 | encode);
3883 }
3884 
3885 void Assembler::pushf() {
3886   emit_int8((unsigned char)0x9C);
3887 }
3888 
3889 #ifndef _LP64 // no 32bit push/pop on amd64
3890 void Assembler::pushl(Address src) {
3891   // Note this will push 64bit on 64bit
3892   InstructionMark im(this);
3893   prefix(src);
3894   emit_int8((unsigned char)0xFF);
3895   emit_operand(rsi, src);
3896 }
3897 #endif
3898 
3899 void Assembler::rcll(Register dst, int imm8) {
3900   assert(isShiftCount(imm8), "illegal shift count");
3901   int encode = prefix_and_encode(dst->encoding());
3902   if (imm8 == 1) {
3903     emit_int8((unsigned char)0xD1);
3904     emit_int8((unsigned char)(0xD0 | encode));
3905   } else {
3906     emit_int8((unsigned char)0xC1);
3907     emit_int8((unsigned char)0xD0 | encode);
3908     emit_int8(imm8);
3909   }
3910 }
3911 
3912 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
3913   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3914   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3915   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
3916   emit_int8(0x53);
3917   emit_int8((unsigned char)(0xC0 | encode));
3918 }
3919 
3920 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
3921   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3922   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3923   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3924   emit_int8(0x53);
3925   emit_int8((unsigned char)(0xC0 | encode));
3926 }
3927 
3928 void Assembler::rdtsc() {
3929   emit_int8((unsigned char)0x0F);
3930   emit_int8((unsigned char)0x31);
3931 }
3932 
3933 // copies data from [esi] to [edi] using rcx pointer sized words
3934 // generic
3935 void Assembler::rep_mov() {
3936   emit_int8((unsigned char)0xF3);
3937   // MOVSQ
3938   LP64_ONLY(prefix(REX_W));
3939   emit_int8((unsigned char)0xA5);
3940 }
3941 
3942 // sets rcx bytes with rax, value at [edi]
3943 void Assembler::rep_stosb() {
3944   emit_int8((unsigned char)0xF3); // REP
3945   LP64_ONLY(prefix(REX_W));
3946   emit_int8((unsigned char)0xAA); // STOSB
3947 }
3948 
3949 // sets rcx pointer sized words with rax, value at [edi]
3950 // generic
3951 void Assembler::rep_stos() {
3952   emit_int8((unsigned char)0xF3); // REP
3953   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3954   emit_int8((unsigned char)0xAB);
3955 }
3956 
3957 // scans rcx pointer sized words at [edi] for occurance of rax,
3958 // generic
3959 void Assembler::repne_scan() { // repne_scan
3960   emit_int8((unsigned char)0xF2);
3961   // SCASQ
3962   LP64_ONLY(prefix(REX_W));
3963   emit_int8((unsigned char)0xAF);
3964 }
3965 
3966 #ifdef _LP64
3967 // scans rcx 4 byte words at [edi] for occurance of rax,
3968 // generic
3969 void Assembler::repne_scanl() { // repne_scan
3970   emit_int8((unsigned char)0xF2);
3971   // SCASL
3972   emit_int8((unsigned char)0xAF);
3973 }
3974 #endif
3975 
3976 void Assembler::ret(int imm16) {
3977   if (imm16 == 0) {
3978     emit_int8((unsigned char)0xC3);
3979   } else {
3980     emit_int8((unsigned char)0xC2);
3981     emit_int16(imm16);
3982   }
3983 }
3984 
3985 void Assembler::sahf() {
3986 #ifdef _LP64
3987   // Not supported in 64bit mode
3988   ShouldNotReachHere();
3989 #endif
3990   emit_int8((unsigned char)0x9E);
3991 }
3992 
3993 void Assembler::sarl(Register dst, int imm8) {
3994   int encode = prefix_and_encode(dst->encoding());
3995   assert(isShiftCount(imm8), "illegal shift count");
3996   if (imm8 == 1) {
3997     emit_int8((unsigned char)0xD1);
3998     emit_int8((unsigned char)(0xF8 | encode));
3999   } else {
4000     emit_int8((unsigned char)0xC1);
4001     emit_int8((unsigned char)(0xF8 | encode));
4002     emit_int8(imm8);
4003   }
4004 }
4005 
4006 void Assembler::sarl(Register dst) {
4007   int encode = prefix_and_encode(dst->encoding());
4008   emit_int8((unsigned char)0xD3);
4009   emit_int8((unsigned char)(0xF8 | encode));
4010 }
4011 
4012 void Assembler::sbbl(Address dst, int32_t imm32) {
4013   InstructionMark im(this);
4014   prefix(dst);
4015   emit_arith_operand(0x81, rbx, dst, imm32);
4016 }
4017 
4018 void Assembler::sbbl(Register dst, int32_t imm32) {
4019   prefix(dst);
4020   emit_arith(0x81, 0xD8, dst, imm32);
4021 }
4022 
4023 
4024 void Assembler::sbbl(Register dst, Address src) {
4025   InstructionMark im(this);
4026   prefix(src, dst);
4027   emit_int8(0x1B);
4028   emit_operand(dst, src);
4029 }
4030 
4031 void Assembler::sbbl(Register dst, Register src) {
4032   (void) prefix_and_encode(dst->encoding(), src->encoding());
4033   emit_arith(0x1B, 0xC0, dst, src);
4034 }
4035 
4036 void Assembler::setb(Condition cc, Register dst) {
4037   assert(0 <= cc && cc < 16, "illegal cc");
4038   int encode = prefix_and_encode(dst->encoding(), true);
4039   emit_int8(0x0F);
4040   emit_int8((unsigned char)0x90 | cc);
4041   emit_int8((unsigned char)(0xC0 | encode));
4042 }
4043 
4044 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
4045   assert(VM_Version::supports_ssse3(), "");
4046   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
4047   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4048   emit_int8((unsigned char)0x0F);
4049   emit_int8((unsigned char)(0xC0 | encode));
4050   emit_int8(imm8);
4051 }
4052 
4053 void Assembler::vpalignr(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4054   assert(VM_Version::supports_ssse3(), "");
4055   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4056   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4057   emit_int8((unsigned char)0x0F);
4058   emit_int8((unsigned char)(0xC0 | encode));
4059   emit_int8(imm8);
4060 }
4061 
4062 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
4063   assert(VM_Version::supports_sse4_1(), "");
4064   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4065   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4066   emit_int8((unsigned char)0x0E);
4067   emit_int8((unsigned char)(0xC0 | encode));
4068   emit_int8(imm8);
4069 }
4070 
4071 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
4072   assert(VM_Version::supports_sha(), "");
4073   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4074   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_3A, &attributes);
4075   emit_int8((unsigned char)0xCC);
4076   emit_int8((unsigned char)(0xC0 | encode));
4077   emit_int8((unsigned char)imm8);
4078 }
4079 
4080 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
4081   assert(VM_Version::supports_sha(), "");
4082   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4083   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4084   emit_int8((unsigned char)0xC8);
4085   emit_int8((unsigned char)(0xC0 | encode));
4086 }
4087 
4088 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
4089   assert(VM_Version::supports_sha(), "");
4090   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4091   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4092   emit_int8((unsigned char)0xC9);
4093   emit_int8((unsigned char)(0xC0 | encode));
4094 }
4095 
4096 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4097   assert(VM_Version::supports_sha(), "");
4098   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4099   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4100   emit_int8((unsigned char)0xCA);
4101   emit_int8((unsigned char)(0xC0 | encode));
4102 }
4103 
4104 // xmm0 is implicit additional source to this instruction.
4105 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4106   assert(VM_Version::supports_sha(), "");
4107   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4108   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4109   emit_int8((unsigned char)0xCB);
4110   emit_int8((unsigned char)(0xC0 | encode));
4111 }
4112 
4113 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4114   assert(VM_Version::supports_sha(), "");
4115   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4116   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4117   emit_int8((unsigned char)0xCC);
4118   emit_int8((unsigned char)(0xC0 | encode));
4119 }
4120 
4121 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4122   assert(VM_Version::supports_sha(), "");
4123   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4124   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4125   emit_int8((unsigned char)0xCD);
4126   emit_int8((unsigned char)(0xC0 | encode));
4127 }
4128 
4129 
4130 void Assembler::shll(Register dst, int imm8) {
4131   assert(isShiftCount(imm8), "illegal shift count");
4132   int encode = prefix_and_encode(dst->encoding());
4133   if (imm8 == 1 ) {
4134     emit_int8((unsigned char)0xD1);
4135     emit_int8((unsigned char)(0xE0 | encode));
4136   } else {
4137     emit_int8((unsigned char)0xC1);
4138     emit_int8((unsigned char)(0xE0 | encode));
4139     emit_int8(imm8);
4140   }
4141 }
4142 
4143 void Assembler::shll(Register dst) {
4144   int encode = prefix_and_encode(dst->encoding());
4145   emit_int8((unsigned char)0xD3);
4146   emit_int8((unsigned char)(0xE0 | encode));
4147 }
4148 
4149 void Assembler::shrl(Register dst, int imm8) {
4150   assert(isShiftCount(imm8), "illegal shift count");
4151   int encode = prefix_and_encode(dst->encoding());
4152   emit_int8((unsigned char)0xC1);
4153   emit_int8((unsigned char)(0xE8 | encode));
4154   emit_int8(imm8);
4155 }
4156 
4157 void Assembler::shrl(Register dst) {
4158   int encode = prefix_and_encode(dst->encoding());
4159   emit_int8((unsigned char)0xD3);
4160   emit_int8((unsigned char)(0xE8 | encode));
4161 }
4162 
4163 // copies a single word from [esi] to [edi]
4164 void Assembler::smovl() {
4165   emit_int8((unsigned char)0xA5);
4166 }
4167 
4168 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4169   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4170   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4171   attributes.set_rex_vex_w_reverted();
4172   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4173   emit_int8(0x51);
4174   emit_int8((unsigned char)(0xC0 | encode));
4175 }
4176 
4177 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4178   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4179   InstructionMark im(this);
4180   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4181   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4182   attributes.set_rex_vex_w_reverted();
4183   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4184   emit_int8(0x51);
4185   emit_operand(dst, src);
4186 }
4187 
4188 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4189   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4190   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4191   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4192   emit_int8(0x51);
4193   emit_int8((unsigned char)(0xC0 | encode));
4194 }
4195 
4196 void Assembler::std() {
4197   emit_int8((unsigned char)0xFD);
4198 }
4199 
4200 void Assembler::sqrtss(XMMRegister dst, Address src) {
4201   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4202   InstructionMark im(this);
4203   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4204   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4205   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4206   emit_int8(0x51);
4207   emit_operand(dst, src);
4208 }
4209 
4210 void Assembler::stmxcsr( Address dst) {
4211   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4212   InstructionMark im(this);
4213   prefix(dst);
4214   emit_int8(0x0F);
4215   emit_int8((unsigned char)0xAE);
4216   emit_operand(as_Register(3), dst);
4217 }
4218 
4219 void Assembler::subl(Address dst, int32_t imm32) {
4220   InstructionMark im(this);
4221   prefix(dst);
4222   emit_arith_operand(0x81, rbp, dst, imm32);
4223 }
4224 
4225 void Assembler::subl(Address dst, Register src) {
4226   InstructionMark im(this);
4227   prefix(dst, src);
4228   emit_int8(0x29);
4229   emit_operand(src, dst);
4230 }
4231 
4232 void Assembler::subl(Register dst, int32_t imm32) {
4233   prefix(dst);
4234   emit_arith(0x81, 0xE8, dst, imm32);
4235 }
4236 
4237 // Force generation of a 4 byte immediate value even if it fits into 8bit
4238 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4239   prefix(dst);
4240   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4241 }
4242 
4243 void Assembler::subl(Register dst, Address src) {
4244   InstructionMark im(this);
4245   prefix(src, dst);
4246   emit_int8(0x2B);
4247   emit_operand(dst, src);
4248 }
4249 
4250 void Assembler::subl(Register dst, Register src) {
4251   (void) prefix_and_encode(dst->encoding(), src->encoding());
4252   emit_arith(0x2B, 0xC0, dst, src);
4253 }
4254 
4255 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4257   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4258   attributes.set_rex_vex_w_reverted();
4259   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4260   emit_int8(0x5C);
4261   emit_int8((unsigned char)(0xC0 | encode));
4262 }
4263 
4264 void Assembler::subsd(XMMRegister dst, Address src) {
4265   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4266   InstructionMark im(this);
4267   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4268   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4269   attributes.set_rex_vex_w_reverted();
4270   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4271   emit_int8(0x5C);
4272   emit_operand(dst, src);
4273 }
4274 
4275 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4276   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4277   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ false);
4278   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4279   emit_int8(0x5C);
4280   emit_int8((unsigned char)(0xC0 | encode));
4281 }
4282 
4283 void Assembler::subss(XMMRegister dst, Address src) {
4284   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4285   InstructionMark im(this);
4286   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4287   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4288   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4289   emit_int8(0x5C);
4290   emit_operand(dst, src);
4291 }
4292 
4293 void Assembler::testb(Register dst, int imm8) {
4294   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4295   (void) prefix_and_encode(dst->encoding(), true);
4296   emit_arith_b(0xF6, 0xC0, dst, imm8);
4297 }
4298 
4299 void Assembler::testb(Address dst, int imm8) {
4300   InstructionMark im(this);
4301   prefix(dst);
4302   emit_int8((unsigned char)0xF6);
4303   emit_operand(rax, dst, 1);
4304   emit_int8(imm8);
4305 }
4306 
4307 void Assembler::testl(Register dst, int32_t imm32) {
4308   // not using emit_arith because test
4309   // doesn't support sign-extension of
4310   // 8bit operands
4311   int encode = dst->encoding();
4312   if (encode == 0) {
4313     emit_int8((unsigned char)0xA9);
4314   } else {
4315     encode = prefix_and_encode(encode);
4316     emit_int8((unsigned char)0xF7);
4317     emit_int8((unsigned char)(0xC0 | encode));
4318   }
4319   emit_int32(imm32);
4320 }
4321 
4322 void Assembler::testl(Register dst, Register src) {
4323   (void) prefix_and_encode(dst->encoding(), src->encoding());
4324   emit_arith(0x85, 0xC0, dst, src);
4325 }
4326 
4327 void Assembler::testl(Register dst, Address src) {
4328   InstructionMark im(this);
4329   prefix(src, dst);
4330   emit_int8((unsigned char)0x85);
4331   emit_operand(dst, src);
4332 }
4333 
4334 void Assembler::tzcntl(Register dst, Register src) {
4335   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4336   emit_int8((unsigned char)0xF3);
4337   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4338   emit_int8(0x0F);
4339   emit_int8((unsigned char)0xBC);
4340   emit_int8((unsigned char)0xC0 | encode);
4341 }
4342 
4343 void Assembler::tzcntq(Register dst, Register src) {
4344   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4345   emit_int8((unsigned char)0xF3);
4346   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4347   emit_int8(0x0F);
4348   emit_int8((unsigned char)0xBC);
4349   emit_int8((unsigned char)(0xC0 | encode));
4350 }
4351 
4352 void Assembler::ucomisd(XMMRegister dst, Address src) {
4353   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4354   InstructionMark im(this);
4355   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4356   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4357   attributes.set_rex_vex_w_reverted();
4358   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4359   emit_int8(0x2E);
4360   emit_operand(dst, src);
4361 }
4362 
4363 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4364   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4365   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4366   attributes.set_rex_vex_w_reverted();
4367   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4368   emit_int8(0x2E);
4369   emit_int8((unsigned char)(0xC0 | encode));
4370 }
4371 
4372 void Assembler::ucomiss(XMMRegister dst, Address src) {
4373   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4374   InstructionMark im(this);
4375   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4376   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4377   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4378   emit_int8(0x2E);
4379   emit_operand(dst, src);
4380 }
4381 
4382 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4383   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4384   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4385   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4386   emit_int8(0x2E);
4387   emit_int8((unsigned char)(0xC0 | encode));
4388 }
4389 
4390 void Assembler::xabort(int8_t imm8) {
4391   emit_int8((unsigned char)0xC6);
4392   emit_int8((unsigned char)0xF8);
4393   emit_int8((unsigned char)(imm8 & 0xFF));
4394 }
4395 
4396 void Assembler::xaddl(Address dst, Register src) {
4397   InstructionMark im(this);
4398   prefix(dst, src);
4399   emit_int8(0x0F);
4400   emit_int8((unsigned char)0xC1);
4401   emit_operand(src, dst);
4402 }
4403 
4404 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4405   InstructionMark im(this);
4406   relocate(rtype);
4407   if (abort.is_bound()) {
4408     address entry = target(abort);
4409     assert(entry != NULL, "abort entry NULL");
4410     intptr_t offset = entry - pc();
4411     emit_int8((unsigned char)0xC7);
4412     emit_int8((unsigned char)0xF8);
4413     emit_int32(offset - 6); // 2 opcode + 4 address
4414   } else {
4415     abort.add_patch_at(code(), locator());
4416     emit_int8((unsigned char)0xC7);
4417     emit_int8((unsigned char)0xF8);
4418     emit_int32(0);
4419   }
4420 }
4421 
4422 void Assembler::xchgl(Register dst, Address src) { // xchg
4423   InstructionMark im(this);
4424   prefix(src, dst);
4425   emit_int8((unsigned char)0x87);
4426   emit_operand(dst, src);
4427 }
4428 
4429 void Assembler::xchgl(Register dst, Register src) {
4430   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4431   emit_int8((unsigned char)0x87);
4432   emit_int8((unsigned char)(0xC0 | encode));
4433 }
4434 
4435 void Assembler::xend() {
4436   emit_int8((unsigned char)0x0F);
4437   emit_int8((unsigned char)0x01);
4438   emit_int8((unsigned char)0xD5);
4439 }
4440 
4441 void Assembler::xgetbv() {
4442   emit_int8(0x0F);
4443   emit_int8(0x01);
4444   emit_int8((unsigned char)0xD0);
4445 }
4446 
4447 void Assembler::xorl(Register dst, int32_t imm32) {
4448   prefix(dst);
4449   emit_arith(0x81, 0xF0, dst, imm32);
4450 }
4451 
4452 void Assembler::xorl(Register dst, Address src) {
4453   InstructionMark im(this);
4454   prefix(src, dst);
4455   emit_int8(0x33);
4456   emit_operand(dst, src);
4457 }
4458 
4459 void Assembler::xorl(Register dst, Register src) {
4460   (void) prefix_and_encode(dst->encoding(), src->encoding());
4461   emit_arith(0x33, 0xC0, dst, src);
4462 }
4463 
4464 void Assembler::xorb(Register dst, Address src) {
4465   InstructionMark im(this);
4466   prefix(src, dst);
4467   emit_int8(0x32);
4468   emit_operand(dst, src);
4469 }
4470 
4471 // AVX 3-operands scalar float-point arithmetic instructions
4472 
4473 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4474   assert(VM_Version::supports_avx(), "");
4475   InstructionMark im(this);
4476   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4477   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4478   attributes.set_rex_vex_w_reverted();
4479   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4480   emit_int8(0x58);
4481   emit_operand(dst, src);
4482 }
4483 
4484 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4485   assert(VM_Version::supports_avx(), "");
4486   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4487   attributes.set_rex_vex_w_reverted();
4488   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4489   emit_int8(0x58);
4490   emit_int8((unsigned char)(0xC0 | encode));
4491 }
4492 
4493 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4494   assert(VM_Version::supports_avx(), "");
4495   InstructionMark im(this);
4496   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4497   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4498   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4499   emit_int8(0x58);
4500   emit_operand(dst, src);
4501 }
4502 
4503 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4504   assert(VM_Version::supports_avx(), "");
4505   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4506   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4507   emit_int8(0x58);
4508   emit_int8((unsigned char)(0xC0 | encode));
4509 }
4510 
4511 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4512   assert(VM_Version::supports_avx(), "");
4513   InstructionMark im(this);
4514   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4515   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4516   attributes.set_rex_vex_w_reverted();
4517   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4518   emit_int8(0x5E);
4519   emit_operand(dst, src);
4520 }
4521 
4522 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4523   assert(VM_Version::supports_avx(), "");
4524   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4525   attributes.set_rex_vex_w_reverted();
4526   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4527   emit_int8(0x5E);
4528   emit_int8((unsigned char)(0xC0 | encode));
4529 }
4530 
4531 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
4532   assert(VM_Version::supports_avx(), "");
4533   InstructionMark im(this);
4534   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4535   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4536   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4537   emit_int8(0x5E);
4538   emit_operand(dst, src);
4539 }
4540 
4541 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4542   assert(VM_Version::supports_avx(), "");
4543   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4544   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4545   emit_int8(0x5E);
4546   emit_int8((unsigned char)(0xC0 | encode));
4547 }
4548 
4549 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
4550   assert(VM_Version::supports_avx(), "");
4551   InstructionMark im(this);
4552   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4553   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4554   attributes.set_rex_vex_w_reverted();
4555   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4556   emit_int8(0x59);
4557   emit_operand(dst, src);
4558 }
4559 
4560 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4561   assert(VM_Version::supports_avx(), "");
4562   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4563   attributes.set_rex_vex_w_reverted();
4564   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4565   emit_int8(0x59);
4566   emit_int8((unsigned char)(0xC0 | encode));
4567 }
4568 
4569 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4570   assert(VM_Version::supports_avx(), "");
4571   InstructionMark im(this);
4572   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4573   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4574   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4575   emit_int8(0x59);
4576   emit_operand(dst, src);
4577 }
4578 
4579 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4580   assert(VM_Version::supports_avx(), "");
4581   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4582   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4583   emit_int8(0x59);
4584   emit_int8((unsigned char)(0xC0 | encode));
4585 }
4586 
4587 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4588   assert(VM_Version::supports_avx(), "");
4589   InstructionMark im(this);
4590   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4591   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4592   attributes.set_rex_vex_w_reverted();
4593   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4594   emit_int8(0x5C);
4595   emit_operand(dst, src);
4596 }
4597 
4598 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4599   assert(VM_Version::supports_avx(), "");
4600   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4601   attributes.set_rex_vex_w_reverted();
4602   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4603   emit_int8(0x5C);
4604   emit_int8((unsigned char)(0xC0 | encode));
4605 }
4606 
4607 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
4608   assert(VM_Version::supports_avx(), "");
4609   InstructionMark im(this);
4610   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4611   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4612   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4613   emit_int8(0x5C);
4614   emit_operand(dst, src);
4615 }
4616 
4617 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4618   assert(VM_Version::supports_avx(), "");
4619   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4620   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4621   emit_int8(0x5C);
4622   emit_int8((unsigned char)(0xC0 | encode));
4623 }
4624 
4625 //====================VECTOR ARITHMETIC=====================================
4626 
4627 // Float-point vector arithmetic
4628 
4629 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4630   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4631   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4632   attributes.set_rex_vex_w_reverted();
4633   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4634   emit_int8(0x58);
4635   emit_int8((unsigned char)(0xC0 | encode));
4636 }
4637 
4638 void Assembler::addpd(XMMRegister dst, Address src) {
4639   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4640   InstructionMark im(this);
4641   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4642   attributes.set_rex_vex_w_reverted();
4643   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4644   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4645   emit_int8(0x58);
4646   emit_operand(dst, src);
4647 }
4648 
4649 
4650 void Assembler::addps(XMMRegister dst, XMMRegister src) {
4651   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4652   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4653   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4654   emit_int8(0x58);
4655   emit_int8((unsigned char)(0xC0 | encode));
4656 }
4657 
4658 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4659   assert(VM_Version::supports_avx(), "");
4660   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4661   attributes.set_rex_vex_w_reverted();
4662   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4663   emit_int8(0x58);
4664   emit_int8((unsigned char)(0xC0 | encode));
4665 }
4666 
4667 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4668   assert(VM_Version::supports_avx(), "");
4669   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4670   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4671   emit_int8(0x58);
4672   emit_int8((unsigned char)(0xC0 | encode));
4673 }
4674 
4675 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4676   assert(VM_Version::supports_avx(), "");
4677   InstructionMark im(this);
4678   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4679   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4680   attributes.set_rex_vex_w_reverted();
4681   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4682   emit_int8(0x58);
4683   emit_operand(dst, src);
4684 }
4685 
4686 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4687   assert(VM_Version::supports_avx(), "");
4688   InstructionMark im(this);
4689   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4690   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4691   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4692   emit_int8(0x58);
4693   emit_operand(dst, src);
4694 }
4695 
4696 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
4697   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4698   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4699   attributes.set_rex_vex_w_reverted();
4700   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4701   emit_int8(0x5C);
4702   emit_int8((unsigned char)(0xC0 | encode));
4703 }
4704 
4705 void Assembler::subps(XMMRegister dst, XMMRegister src) {
4706   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4707   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4708   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4709   emit_int8(0x5C);
4710   emit_int8((unsigned char)(0xC0 | encode));
4711 }
4712 
4713 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4714   assert(VM_Version::supports_avx(), "");
4715   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4716   attributes.set_rex_vex_w_reverted();
4717   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4718   emit_int8(0x5C);
4719   emit_int8((unsigned char)(0xC0 | encode));
4720 }
4721 
4722 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4723   assert(VM_Version::supports_avx(), "");
4724   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4725   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4726   emit_int8(0x5C);
4727   emit_int8((unsigned char)(0xC0 | encode));
4728 }
4729 
4730 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4731   assert(VM_Version::supports_avx(), "");
4732   InstructionMark im(this);
4733   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4734   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4735   attributes.set_rex_vex_w_reverted();
4736   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4737   emit_int8(0x5C);
4738   emit_operand(dst, src);
4739 }
4740 
4741 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4742   assert(VM_Version::supports_avx(), "");
4743   InstructionMark im(this);
4744   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4745   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4746   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4747   emit_int8(0x5C);
4748   emit_operand(dst, src);
4749 }
4750 
4751 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
4752   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4753   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4754   attributes.set_rex_vex_w_reverted();
4755   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4756   emit_int8(0x59);
4757   emit_int8((unsigned char)(0xC0 | encode));
4758 }
4759 
4760 void Assembler::mulpd(XMMRegister dst, Address src) {
4761   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4762   InstructionMark im(this);
4763   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4764   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4765   attributes.set_rex_vex_w_reverted();
4766   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4767   emit_int8(0x59);
4768   emit_operand(dst, src);
4769 }
4770 
4771 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
4772   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4773   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4774   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4775   emit_int8(0x59);
4776   emit_int8((unsigned char)(0xC0 | encode));
4777 }
4778 
4779 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4780   assert(VM_Version::supports_avx(), "");
4781   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4782   attributes.set_rex_vex_w_reverted();
4783   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4784   emit_int8(0x59);
4785   emit_int8((unsigned char)(0xC0 | encode));
4786 }
4787 
4788 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4789   assert(VM_Version::supports_avx(), "");
4790   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4791   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4792   emit_int8(0x59);
4793   emit_int8((unsigned char)(0xC0 | encode));
4794 }
4795 
4796 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4797   assert(VM_Version::supports_avx(), "");
4798   InstructionMark im(this);
4799   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4800   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4801   attributes.set_rex_vex_w_reverted();
4802   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4803   emit_int8(0x59);
4804   emit_operand(dst, src);
4805 }
4806 
4807 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4808   assert(VM_Version::supports_avx(), "");
4809   InstructionMark im(this);
4810   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4811   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4812   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4813   emit_int8(0x59);
4814   emit_operand(dst, src);
4815 }
4816 
4817 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
4818   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4819   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4820   attributes.set_rex_vex_w_reverted();
4821   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4822   emit_int8(0x5E);
4823   emit_int8((unsigned char)(0xC0 | encode));
4824 }
4825 
4826 void Assembler::divps(XMMRegister dst, XMMRegister src) {
4827   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4828   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4829   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4830   emit_int8(0x5E);
4831   emit_int8((unsigned char)(0xC0 | encode));
4832 }
4833 
4834 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4835   assert(VM_Version::supports_avx(), "");
4836   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4837   attributes.set_rex_vex_w_reverted();
4838   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4839   emit_int8(0x5E);
4840   emit_int8((unsigned char)(0xC0 | encode));
4841 }
4842 
4843 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4844   assert(VM_Version::supports_avx(), "");
4845   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4846   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4847   emit_int8(0x5E);
4848   emit_int8((unsigned char)(0xC0 | encode));
4849 }
4850 
4851 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4852   assert(VM_Version::supports_avx(), "");
4853   InstructionMark im(this);
4854   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4855   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4856   attributes.set_rex_vex_w_reverted();
4857   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4858   emit_int8(0x5E);
4859   emit_operand(dst, src);
4860 }
4861 
4862 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4863   assert(VM_Version::supports_avx(), "");
4864   InstructionMark im(this);
4865   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4866   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4867   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4868   emit_int8(0x5E);
4869   emit_operand(dst, src);
4870 }
4871 
4872 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
4873   assert(VM_Version::supports_avx(), "");
4874   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4875   attributes.set_rex_vex_w_reverted();
4876   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4877   emit_int8(0x51);
4878   emit_int8((unsigned char)(0xC0 | encode));
4879 }
4880 
4881 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
4882   assert(VM_Version::supports_avx(), "");
4883   InstructionMark im(this);
4884   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4885   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4886   attributes.set_rex_vex_w_reverted();
4887   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4888   emit_int8(0x51);
4889   emit_operand(dst, src);
4890 }
4891 
4892 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
4893   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4894   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4895   attributes.set_rex_vex_w_reverted();
4896   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4897   emit_int8(0x54);
4898   emit_int8((unsigned char)(0xC0 | encode));
4899 }
4900 
4901 void Assembler::andps(XMMRegister dst, XMMRegister src) {
4902   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4903   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4904   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4905   emit_int8(0x54);
4906   emit_int8((unsigned char)(0xC0 | encode));
4907 }
4908 
4909 void Assembler::andps(XMMRegister dst, Address src) {
4910   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4911   InstructionMark im(this);
4912   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4913   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4914   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4915   emit_int8(0x54);
4916   emit_operand(dst, src);
4917 }
4918 
4919 void Assembler::andpd(XMMRegister dst, Address src) {
4920   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4921   InstructionMark im(this);
4922   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4923   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4924   attributes.set_rex_vex_w_reverted();
4925   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4926   emit_int8(0x54);
4927   emit_operand(dst, src);
4928 }
4929 
4930 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4931   assert(VM_Version::supports_avx(), "");
4932   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4933   attributes.set_rex_vex_w_reverted();
4934   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4935   emit_int8(0x54);
4936   emit_int8((unsigned char)(0xC0 | encode));
4937 }
4938 
4939 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4940   assert(VM_Version::supports_avx(), "");
4941   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4942   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4943   emit_int8(0x54);
4944   emit_int8((unsigned char)(0xC0 | encode));
4945 }
4946 
4947 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4948   assert(VM_Version::supports_avx(), "");
4949   InstructionMark im(this);
4950   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4951   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4952   attributes.set_rex_vex_w_reverted();
4953   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4954   emit_int8(0x54);
4955   emit_operand(dst, src);
4956 }
4957 
4958 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4959   assert(VM_Version::supports_avx(), "");
4960   InstructionMark im(this);
4961   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4962   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4963   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4964   emit_int8(0x54);
4965   emit_operand(dst, src);
4966 }
4967 
4968 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
4969   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4970   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4971   attributes.set_rex_vex_w_reverted();
4972   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4973   emit_int8(0x15);
4974   emit_int8((unsigned char)(0xC0 | encode));
4975 }
4976 
4977 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
4978   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4979   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4980   attributes.set_rex_vex_w_reverted();
4981   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4982   emit_int8(0x14);
4983   emit_int8((unsigned char)(0xC0 | encode));
4984 }
4985 
4986 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4988   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4989   attributes.set_rex_vex_w_reverted();
4990   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4991   emit_int8(0x57);
4992   emit_int8((unsigned char)(0xC0 | encode));
4993 }
4994 
4995 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4996   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4997   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4998   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4999   emit_int8(0x57);
5000   emit_int8((unsigned char)(0xC0 | encode));
5001 }
5002 
5003 void Assembler::xorpd(XMMRegister dst, Address src) {
5004   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5005   InstructionMark im(this);
5006   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5007   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5008   attributes.set_rex_vex_w_reverted();
5009   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5010   emit_int8(0x57);
5011   emit_operand(dst, src);
5012 }
5013 
5014 void Assembler::xorps(XMMRegister dst, Address src) {
5015   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5016   InstructionMark im(this);
5017   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5018   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5019   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5020   emit_int8(0x57);
5021   emit_operand(dst, src);
5022 }
5023 
5024 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5025   assert(VM_Version::supports_avx(), "");
5026   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5027   attributes.set_rex_vex_w_reverted();
5028   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5029   emit_int8(0x57);
5030   emit_int8((unsigned char)(0xC0 | encode));
5031 }
5032 
5033 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5034   assert(VM_Version::supports_avx(), "");
5035   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5036   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5037   emit_int8(0x57);
5038   emit_int8((unsigned char)(0xC0 | encode));
5039 }
5040 
5041 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5042   assert(VM_Version::supports_avx(), "");
5043   InstructionMark im(this);
5044   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5045   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5046   attributes.set_rex_vex_w_reverted();
5047   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5048   emit_int8(0x57);
5049   emit_operand(dst, src);
5050 }
5051 
5052 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5053   assert(VM_Version::supports_avx(), "");
5054   InstructionMark im(this);
5055   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5056   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5057   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5058   emit_int8(0x57);
5059   emit_operand(dst, src);
5060 }
5061 
5062 // Integer vector arithmetic
5063 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5064   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5065          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5066   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5067   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5068   emit_int8(0x01);
5069   emit_int8((unsigned char)(0xC0 | encode));
5070 }
5071 
5072 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5073   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5074          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5075   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5076   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5077   emit_int8(0x02);
5078   emit_int8((unsigned char)(0xC0 | encode));
5079 }
5080 
5081 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
5082   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5083   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5084   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5085   emit_int8((unsigned char)0xFC);
5086   emit_int8((unsigned char)(0xC0 | encode));
5087 }
5088 
5089 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
5090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5091   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5092   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5093   emit_int8((unsigned char)0xFD);
5094   emit_int8((unsigned char)(0xC0 | encode));
5095 }
5096 
5097 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
5098   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5099   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5100   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5101   emit_int8((unsigned char)0xFE);
5102   emit_int8((unsigned char)(0xC0 | encode));
5103 }
5104 
5105 void Assembler::paddd(XMMRegister dst, Address src) {
5106   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5107   InstructionMark im(this);
5108   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5109   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5110   emit_int8((unsigned char)0xFE);
5111   emit_operand(dst, src);
5112 }
5113 
5114 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
5115   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5116   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5117   attributes.set_rex_vex_w_reverted();
5118   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5119   emit_int8((unsigned char)0xD4);
5120   emit_int8((unsigned char)(0xC0 | encode));
5121 }
5122 
5123 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
5124   assert(VM_Version::supports_sse3(), "");
5125   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5126   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5127   emit_int8(0x01);
5128   emit_int8((unsigned char)(0xC0 | encode));
5129 }
5130 
5131 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5132   assert(VM_Version::supports_sse3(), "");
5133   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5134   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5135   emit_int8(0x02);
5136   emit_int8((unsigned char)(0xC0 | encode));
5137 }
5138 
5139 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5140   assert(UseAVX > 0, "requires some form of AVX");
5141   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5142   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5143   emit_int8((unsigned char)0xFC);
5144   emit_int8((unsigned char)(0xC0 | encode));
5145 }
5146 
5147 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5148   assert(UseAVX > 0, "requires some form of AVX");
5149   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5150   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5151   emit_int8((unsigned char)0xFD);
5152   emit_int8((unsigned char)(0xC0 | encode));
5153 }
5154 
5155 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5156   assert(UseAVX > 0, "requires some form of AVX");
5157   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5158   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5159   emit_int8((unsigned char)0xFE);
5160   emit_int8((unsigned char)(0xC0 | encode));
5161 }
5162 
5163 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5164   assert(UseAVX > 0, "requires some form of AVX");
5165   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5166   attributes.set_rex_vex_w_reverted();
5167   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5168   emit_int8((unsigned char)0xD4);
5169   emit_int8((unsigned char)(0xC0 | encode));
5170 }
5171 
5172 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5173   assert(UseAVX > 0, "requires some form of AVX");
5174   InstructionMark im(this);
5175   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5176   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5177   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5178   emit_int8((unsigned char)0xFC);
5179   emit_operand(dst, src);
5180 }
5181 
5182 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5183   assert(UseAVX > 0, "requires some form of AVX");
5184   InstructionMark im(this);
5185   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5186   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5187   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5188   emit_int8((unsigned char)0xFD);
5189   emit_operand(dst, src);
5190 }
5191 
5192 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5193   assert(UseAVX > 0, "requires some form of AVX");
5194   InstructionMark im(this);
5195   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5196   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5197   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5198   emit_int8((unsigned char)0xFE);
5199   emit_operand(dst, src);
5200 }
5201 
5202 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5203   assert(UseAVX > 0, "requires some form of AVX");
5204   InstructionMark im(this);
5205   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5206   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5207   attributes.set_rex_vex_w_reverted();
5208   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5209   emit_int8((unsigned char)0xD4);
5210   emit_operand(dst, src);
5211 }
5212 
5213 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5214   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5215   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5216   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5217   emit_int8((unsigned char)0xF8);
5218   emit_int8((unsigned char)(0xC0 | encode));
5219 }
5220 
5221 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5222   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5223   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5224   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5225   emit_int8((unsigned char)0xF9);
5226   emit_int8((unsigned char)(0xC0 | encode));
5227 }
5228 
5229 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5230   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5231   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5232   emit_int8((unsigned char)0xFA);
5233   emit_int8((unsigned char)(0xC0 | encode));
5234 }
5235 
5236 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5237   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5238   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5239   attributes.set_rex_vex_w_reverted();
5240   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5241   emit_int8((unsigned char)0xFB);
5242   emit_int8((unsigned char)(0xC0 | encode));
5243 }
5244 
5245 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5246   assert(UseAVX > 0, "requires some form of AVX");
5247   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5248   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5249   emit_int8((unsigned char)0xF8);
5250   emit_int8((unsigned char)(0xC0 | encode));
5251 }
5252 
5253 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5254   assert(UseAVX > 0, "requires some form of AVX");
5255   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5256   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5257   emit_int8((unsigned char)0xF9);
5258   emit_int8((unsigned char)(0xC0 | encode));
5259 }
5260 
5261 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5262   assert(UseAVX > 0, "requires some form of AVX");
5263   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5264   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5265   emit_int8((unsigned char)0xFA);
5266   emit_int8((unsigned char)(0xC0 | encode));
5267 }
5268 
5269 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5270   assert(UseAVX > 0, "requires some form of AVX");
5271   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5272   attributes.set_rex_vex_w_reverted();
5273   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5274   emit_int8((unsigned char)0xFB);
5275   emit_int8((unsigned char)(0xC0 | encode));
5276 }
5277 
5278 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5279   assert(UseAVX > 0, "requires some form of AVX");
5280   InstructionMark im(this);
5281   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5282   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5283   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5284   emit_int8((unsigned char)0xF8);
5285   emit_operand(dst, src);
5286 }
5287 
5288 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5289   assert(UseAVX > 0, "requires some form of AVX");
5290   InstructionMark im(this);
5291   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5292   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5293   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5294   emit_int8((unsigned char)0xF9);
5295   emit_operand(dst, src);
5296 }
5297 
5298 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5299   assert(UseAVX > 0, "requires some form of AVX");
5300   InstructionMark im(this);
5301   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5302   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5303   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5304   emit_int8((unsigned char)0xFA);
5305   emit_operand(dst, src);
5306 }
5307 
5308 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5309   assert(UseAVX > 0, "requires some form of AVX");
5310   InstructionMark im(this);
5311   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5312   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5313   attributes.set_rex_vex_w_reverted();
5314   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5315   emit_int8((unsigned char)0xFB);
5316   emit_operand(dst, src);
5317 }
5318 
5319 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5320   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5321   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5322   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5323   emit_int8((unsigned char)0xD5);
5324   emit_int8((unsigned char)(0xC0 | encode));
5325 }
5326 
5327 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5328   assert(VM_Version::supports_sse4_1(), "");
5329   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5330   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5331   emit_int8(0x40);
5332   emit_int8((unsigned char)(0xC0 | encode));
5333 }
5334 
5335 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5336   assert(UseAVX > 0, "requires some form of AVX");
5337   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5338   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5339   emit_int8((unsigned char)0xD5);
5340   emit_int8((unsigned char)(0xC0 | encode));
5341 }
5342 
5343 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5344   assert(UseAVX > 0, "requires some form of AVX");
5345   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5346   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5347   emit_int8(0x40);
5348   emit_int8((unsigned char)(0xC0 | encode));
5349 }
5350 
5351 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5352   assert(UseAVX > 2, "requires some form of EVEX");
5353   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5354   attributes.set_is_evex_instruction();
5355   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5356   emit_int8(0x40);
5357   emit_int8((unsigned char)(0xC0 | encode));
5358 }
5359 
5360 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5361   assert(UseAVX > 0, "requires some form of AVX");
5362   InstructionMark im(this);
5363   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5364   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5365   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5366   emit_int8((unsigned char)0xD5);
5367   emit_operand(dst, src);
5368 }
5369 
5370 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5371   assert(UseAVX > 0, "requires some form of AVX");
5372   InstructionMark im(this);
5373   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5374   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5375   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5376   emit_int8(0x40);
5377   emit_operand(dst, src);
5378 }
5379 
5380 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5381   assert(UseAVX > 2, "requires some form of EVEX");
5382   InstructionMark im(this);
5383   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5384   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5385   attributes.set_is_evex_instruction();
5386   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5387   emit_int8(0x40);
5388   emit_operand(dst, src);
5389 }
5390 
5391 // Shift packed integers left by specified number of bits.
5392 void Assembler::psllw(XMMRegister dst, int shift) {
5393   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5394   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5395   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5396   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5397   emit_int8(0x71);
5398   emit_int8((unsigned char)(0xC0 | encode));
5399   emit_int8(shift & 0xFF);
5400 }
5401 
5402 void Assembler::pslld(XMMRegister dst, int shift) {
5403   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5404   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5405   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5406   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5407   emit_int8(0x72);
5408   emit_int8((unsigned char)(0xC0 | encode));
5409   emit_int8(shift & 0xFF);
5410 }
5411 
5412 void Assembler::psllq(XMMRegister dst, int shift) {
5413   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5414   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5415   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5416   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5417   emit_int8(0x73);
5418   emit_int8((unsigned char)(0xC0 | encode));
5419   emit_int8(shift & 0xFF);
5420 }
5421 
5422 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5423   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5424   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5425   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5426   emit_int8((unsigned char)0xF1);
5427   emit_int8((unsigned char)(0xC0 | encode));
5428 }
5429 
5430 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5431   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5432   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5433   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5434   emit_int8((unsigned char)0xF2);
5435   emit_int8((unsigned char)(0xC0 | encode));
5436 }
5437 
5438 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5439   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5440   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5441   attributes.set_rex_vex_w_reverted();
5442   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5443   emit_int8((unsigned char)0xF3);
5444   emit_int8((unsigned char)(0xC0 | encode));
5445 }
5446 
5447 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5448   assert(UseAVX > 0, "requires some form of AVX");
5449   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5450   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5451   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5452   emit_int8(0x71);
5453   emit_int8((unsigned char)(0xC0 | encode));
5454   emit_int8(shift & 0xFF);
5455 }
5456 
5457 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5458   assert(UseAVX > 0, "requires some form of AVX");
5459   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5460   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5461   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5462   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5463   emit_int8(0x72);
5464   emit_int8((unsigned char)(0xC0 | encode));
5465   emit_int8(shift & 0xFF);
5466 }
5467 
5468 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5469   assert(UseAVX > 0, "requires some form of AVX");
5470   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5471   attributes.set_rex_vex_w_reverted();
5472   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5473   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5474   emit_int8(0x73);
5475   emit_int8((unsigned char)(0xC0 | encode));
5476   emit_int8(shift & 0xFF);
5477 }
5478 
5479 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5480   assert(UseAVX > 0, "requires some form of AVX");
5481   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5482   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5483   emit_int8((unsigned char)0xF1);
5484   emit_int8((unsigned char)(0xC0 | encode));
5485 }
5486 
5487 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5488   assert(UseAVX > 0, "requires some form of AVX");
5489   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5490   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5491   emit_int8((unsigned char)0xF2);
5492   emit_int8((unsigned char)(0xC0 | encode));
5493 }
5494 
5495 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5496   assert(UseAVX > 0, "requires some form of AVX");
5497   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5498   attributes.set_rex_vex_w_reverted();
5499   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5500   emit_int8((unsigned char)0xF3);
5501   emit_int8((unsigned char)(0xC0 | encode));
5502 }
5503 
5504 // Shift packed integers logically right by specified number of bits.
5505 void Assembler::psrlw(XMMRegister dst, int shift) {
5506   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5507   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5508   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5509   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5510   emit_int8(0x71);
5511   emit_int8((unsigned char)(0xC0 | encode));
5512   emit_int8(shift & 0xFF);
5513 }
5514 
5515 void Assembler::psrld(XMMRegister dst, int shift) {
5516   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5517   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5518   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5519   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5520   emit_int8(0x72);
5521   emit_int8((unsigned char)(0xC0 | encode));
5522   emit_int8(shift & 0xFF);
5523 }
5524 
5525 void Assembler::psrlq(XMMRegister dst, int shift) {
5526   // Do not confuse it with psrldq SSE2 instruction which
5527   // shifts 128 bit value in xmm register by number of bytes.
5528   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5529   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5530   attributes.set_rex_vex_w_reverted();
5531   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5532   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5533   emit_int8(0x73);
5534   emit_int8((unsigned char)(0xC0 | encode));
5535   emit_int8(shift & 0xFF);
5536 }
5537 
5538 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
5539   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5540   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5541   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5542   emit_int8((unsigned char)0xD1);
5543   emit_int8((unsigned char)(0xC0 | encode));
5544 }
5545 
5546 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
5547   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5548   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5549   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5550   emit_int8((unsigned char)0xD2);
5551   emit_int8((unsigned char)(0xC0 | encode));
5552 }
5553 
5554 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
5555   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5556   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5557   attributes.set_rex_vex_w_reverted();
5558   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5559   emit_int8((unsigned char)0xD3);
5560   emit_int8((unsigned char)(0xC0 | encode));
5561 }
5562 
5563 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5564   assert(UseAVX > 0, "requires some form of AVX");
5565   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5566   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5567   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5568   emit_int8(0x71);
5569   emit_int8((unsigned char)(0xC0 | encode));
5570   emit_int8(shift & 0xFF);
5571 }
5572 
5573 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5574   assert(UseAVX > 0, "requires some form of AVX");
5575   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5576   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5577   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5578   emit_int8(0x72);
5579   emit_int8((unsigned char)(0xC0 | encode));
5580   emit_int8(shift & 0xFF);
5581 }
5582 
5583 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5584   assert(UseAVX > 0, "requires some form of AVX");
5585   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5586   attributes.set_rex_vex_w_reverted();
5587   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5588   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5589   emit_int8(0x73);
5590   emit_int8((unsigned char)(0xC0 | encode));
5591   emit_int8(shift & 0xFF);
5592 }
5593 
5594 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5595   assert(UseAVX > 0, "requires some form of AVX");
5596   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5597   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5598   emit_int8((unsigned char)0xD1);
5599   emit_int8((unsigned char)(0xC0 | encode));
5600 }
5601 
5602 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5603   assert(UseAVX > 0, "requires some form of AVX");
5604   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5605   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5606   emit_int8((unsigned char)0xD2);
5607   emit_int8((unsigned char)(0xC0 | encode));
5608 }
5609 
5610 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5611   assert(UseAVX > 0, "requires some form of AVX");
5612   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5613   attributes.set_rex_vex_w_reverted();
5614   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5615   emit_int8((unsigned char)0xD3);
5616   emit_int8((unsigned char)(0xC0 | encode));
5617 }
5618 
5619 // Shift packed integers arithmetically right by specified number of bits.
5620 void Assembler::psraw(XMMRegister dst, int shift) {
5621   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5622   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5623   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5624   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5625   emit_int8(0x71);
5626   emit_int8((unsigned char)(0xC0 | encode));
5627   emit_int8(shift & 0xFF);
5628 }
5629 
5630 void Assembler::psrad(XMMRegister dst, int shift) {
5631   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5632   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5633   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
5634   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5635   emit_int8(0x72);
5636   emit_int8((unsigned char)(0xC0 | encode));
5637   emit_int8(shift & 0xFF);
5638 }
5639 
5640 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
5641   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5642   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5643   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5644   emit_int8((unsigned char)0xE1);
5645   emit_int8((unsigned char)(0xC0 | encode));
5646 }
5647 
5648 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
5649   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5650   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5651   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5652   emit_int8((unsigned char)0xE2);
5653   emit_int8((unsigned char)(0xC0 | encode));
5654 }
5655 
5656 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5657   assert(UseAVX > 0, "requires some form of AVX");
5658   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5659   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5660   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5661   emit_int8(0x71);
5662   emit_int8((unsigned char)(0xC0 | encode));
5663   emit_int8(shift & 0xFF);
5664 }
5665 
5666 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5667   assert(UseAVX > 0, "requires some form of AVX");
5668   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5669   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5670   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5671   emit_int8(0x72);
5672   emit_int8((unsigned char)(0xC0 | encode));
5673   emit_int8(shift & 0xFF);
5674 }
5675 
5676 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5677   assert(UseAVX > 0, "requires some form of AVX");
5678   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5679   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5680   emit_int8((unsigned char)0xE1);
5681   emit_int8((unsigned char)(0xC0 | encode));
5682 }
5683 
5684 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5685   assert(UseAVX > 0, "requires some form of AVX");
5686   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5687   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5688   emit_int8((unsigned char)0xE2);
5689   emit_int8((unsigned char)(0xC0 | encode));
5690 }
5691 
5692 
5693 // logical operations packed integers
5694 void Assembler::pand(XMMRegister dst, XMMRegister src) {
5695   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5696   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5697   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5698   emit_int8((unsigned char)0xDB);
5699   emit_int8((unsigned char)(0xC0 | encode));
5700 }
5701 
5702 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5703   assert(UseAVX > 0, "requires some form of AVX");
5704   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5705   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5706   emit_int8((unsigned char)0xDB);
5707   emit_int8((unsigned char)(0xC0 | encode));
5708 }
5709 
5710 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5711   assert(UseAVX > 0, "requires some form of AVX");
5712   InstructionMark im(this);
5713   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5714   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5715   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5716   emit_int8((unsigned char)0xDB);
5717   emit_operand(dst, src);
5718 }
5719 
5720 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
5721   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5722   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5723   attributes.set_rex_vex_w_reverted();
5724   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5725   emit_int8((unsigned char)0xDF);
5726   emit_int8((unsigned char)(0xC0 | encode));
5727 }
5728 
5729 void Assembler::por(XMMRegister dst, XMMRegister src) {
5730   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5731   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5732   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5733   emit_int8((unsigned char)0xEB);
5734   emit_int8((unsigned char)(0xC0 | encode));
5735 }
5736 
5737 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5738   assert(UseAVX > 0, "requires some form of AVX");
5739   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5740   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5741   emit_int8((unsigned char)0xEB);
5742   emit_int8((unsigned char)(0xC0 | encode));
5743 }
5744 
5745 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5746   assert(UseAVX > 0, "requires some form of AVX");
5747   InstructionMark im(this);
5748   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5749   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5750   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5751   emit_int8((unsigned char)0xEB);
5752   emit_operand(dst, src);
5753 }
5754 
5755 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
5756   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5757   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5758   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5759   emit_int8((unsigned char)0xEF);
5760   emit_int8((unsigned char)(0xC0 | encode));
5761 }
5762 
5763 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5764   assert(UseAVX > 0, "requires some form of AVX");
5765   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5766   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5767   emit_int8((unsigned char)0xEF);
5768   emit_int8((unsigned char)(0xC0 | encode));
5769 }
5770 
5771 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5772   assert(UseAVX > 0, "requires some form of AVX");
5773   InstructionMark im(this);
5774   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5775   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5776   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5777   emit_int8((unsigned char)0xEF);
5778   emit_operand(dst, src);
5779 }
5780 
5781 
5782 // vinserti forms
5783 
5784 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5785   assert(VM_Version::supports_avx2(), "");
5786   assert(imm8 <= 0x01, "imm8: %u", imm8);
5787   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5788   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5789   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5790   emit_int8(0x38);
5791   emit_int8((unsigned char)(0xC0 | encode));
5792   // 0x00 - insert into lower 128 bits
5793   // 0x01 - insert into upper 128 bits
5794   emit_int8(imm8 & 0x01);
5795 }
5796 
5797 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5798   assert(VM_Version::supports_avx2(), "");
5799   assert(dst != xnoreg, "sanity");
5800   assert(imm8 <= 0x01, "imm8: %u", imm8);
5801   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5802   InstructionMark im(this);
5803   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5804   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5805   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5806   emit_int8(0x38);
5807   emit_operand(dst, src);
5808   // 0x00 - insert into lower 128 bits
5809   // 0x01 - insert into upper 128 bits
5810   emit_int8(imm8 & 0x01);
5811 }
5812 
5813 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5814   assert(VM_Version::supports_evex(), "");
5815   assert(imm8 <= 0x03, "imm8: %u", imm8);
5816   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5817   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5818   emit_int8(0x38);
5819   emit_int8((unsigned char)(0xC0 | encode));
5820   // 0x00 - insert into q0 128 bits (0..127)
5821   // 0x01 - insert into q1 128 bits (128..255)
5822   // 0x02 - insert into q2 128 bits (256..383)
5823   // 0x03 - insert into q3 128 bits (384..511)
5824   emit_int8(imm8 & 0x03);
5825 }
5826 
5827 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5828   assert(VM_Version::supports_avx(), "");
5829   assert(dst != xnoreg, "sanity");
5830   assert(imm8 <= 0x03, "imm8: %u", imm8);
5831   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5832   InstructionMark im(this);
5833   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5834   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5835   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5836   emit_int8(0x18);
5837   emit_operand(dst, src);
5838   // 0x00 - insert into q0 128 bits (0..127)
5839   // 0x01 - insert into q1 128 bits (128..255)
5840   // 0x02 - insert into q2 128 bits (256..383)
5841   // 0x03 - insert into q3 128 bits (384..511)
5842   emit_int8(imm8 & 0x03);
5843 }
5844 
5845 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5846   assert(VM_Version::supports_evex(), "");
5847   assert(imm8 <= 0x01, "imm8: %u", imm8);
5848   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5849   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5850   emit_int8(0x38);
5851   emit_int8((unsigned char)(0xC0 | encode));
5852   // 0x00 - insert into lower 256 bits
5853   // 0x01 - insert into upper 256 bits
5854   emit_int8(imm8 & 0x01);
5855 }
5856 
5857 
5858 // vinsertf forms
5859 
5860 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5861   assert(VM_Version::supports_avx(), "");
5862   assert(imm8 <= 0x01, "imm8: %u", imm8);
5863   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5864   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5865   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5866   emit_int8(0x18);
5867   emit_int8((unsigned char)(0xC0 | encode));
5868   // 0x00 - insert into lower 128 bits
5869   // 0x01 - insert into upper 128 bits
5870   emit_int8(imm8 & 0x01);
5871 }
5872 
5873 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5874   assert(VM_Version::supports_avx(), "");
5875   assert(dst != xnoreg, "sanity");
5876   assert(imm8 <= 0x01, "imm8: %u", imm8);
5877   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5878   InstructionMark im(this);
5879   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5880   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5881   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5882   emit_int8(0x18);
5883   emit_operand(dst, src);
5884   // 0x00 - insert into lower 128 bits
5885   // 0x01 - insert into upper 128 bits
5886   emit_int8(imm8 & 0x01);
5887 }
5888 
5889 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5890   assert(VM_Version::supports_evex(), "");
5891   assert(imm8 <= 0x03, "imm8: %u", imm8);
5892   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5893   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5894   emit_int8(0x18);
5895   emit_int8((unsigned char)(0xC0 | encode));
5896   // 0x00 - insert into q0 128 bits (0..127)
5897   // 0x01 - insert into q1 128 bits (128..255)
5898   // 0x02 - insert into q2 128 bits (256..383)
5899   // 0x03 - insert into q3 128 bits (384..511)
5900   emit_int8(imm8 & 0x03);
5901 }
5902 
5903 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5904   assert(VM_Version::supports_avx(), "");
5905   assert(dst != xnoreg, "sanity");
5906   assert(imm8 <= 0x03, "imm8: %u", imm8);
5907   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5908   InstructionMark im(this);
5909   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5910   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5911   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5912   emit_int8(0x18);
5913   emit_operand(dst, src);
5914   // 0x00 - insert into q0 128 bits (0..127)
5915   // 0x01 - insert into q1 128 bits (128..255)
5916   // 0x02 - insert into q2 128 bits (256..383)
5917   // 0x03 - insert into q3 128 bits (384..511)
5918   emit_int8(imm8 & 0x03);
5919 }
5920 
5921 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5922   assert(VM_Version::supports_evex(), "");
5923   assert(imm8 <= 0x01, "imm8: %u", imm8);
5924   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5925   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5926   emit_int8(0x1A);
5927   emit_int8((unsigned char)(0xC0 | encode));
5928   // 0x00 - insert into lower 256 bits
5929   // 0x01 - insert into upper 256 bits
5930   emit_int8(imm8 & 0x01);
5931 }
5932 
5933 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5934   assert(VM_Version::supports_evex(), "");
5935   assert(dst != xnoreg, "sanity");
5936   assert(imm8 <= 0x01, "imm8: %u", imm8);
5937   InstructionMark im(this);
5938   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5939   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
5940   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5941   emit_int8(0x1A);
5942   emit_operand(dst, src);
5943   // 0x00 - insert into lower 256 bits
5944   // 0x01 - insert into upper 256 bits
5945   emit_int8(imm8 & 0x01);
5946 }
5947 
5948 
5949 // vextracti forms
5950 
5951 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5952   assert(VM_Version::supports_avx(), "");
5953   assert(imm8 <= 0x01, "imm8: %u", imm8);
5954   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5955   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5956   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5957   emit_int8(0x39);
5958   emit_int8((unsigned char)(0xC0 | encode));
5959   // 0x00 - extract from lower 128 bits
5960   // 0x01 - extract from upper 128 bits
5961   emit_int8(imm8 & 0x01);
5962 }
5963 
5964 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
5965   assert(VM_Version::supports_avx2(), "");
5966   assert(src != xnoreg, "sanity");
5967   assert(imm8 <= 0x01, "imm8: %u", imm8);
5968   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5969   InstructionMark im(this);
5970   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5971   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5972   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5973   emit_int8(0x39);
5974   emit_operand(src, dst);
5975   // 0x00 - extract from lower 128 bits
5976   // 0x01 - extract from upper 128 bits
5977   emit_int8(imm8 & 0x01);
5978 }
5979 
5980 void Assembler::vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5981   assert(VM_Version::supports_avx(), "");
5982   assert(imm8 <= 0x03, "imm8: %u", imm8);
5983   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5984   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5985   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5986   emit_int8(0x39);
5987   emit_int8((unsigned char)(0xC0 | encode));
5988   // 0x00 - extract from bits 127:0
5989   // 0x01 - extract from bits 255:128
5990   // 0x02 - extract from bits 383:256
5991   // 0x03 - extract from bits 511:384
5992   emit_int8(imm8 & 0x03);
5993 }
5994 
5995 void Assembler::vextracti32x4(Address dst, XMMRegister src, uint8_t imm8) {
5996   assert(VM_Version::supports_evex(), "");
5997   assert(src != xnoreg, "sanity");
5998   assert(imm8 <= 0x03, "imm8: %u", imm8);
5999   InstructionMark im(this);
6000   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6001   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6002   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6003   emit_int8(0x39);
6004   emit_operand(src, dst);
6005   // 0x00 - extract from bits 127:0
6006   // 0x01 - extract from bits 255:128
6007   // 0x02 - extract from bits 383:256
6008   // 0x03 - extract from bits 511:384
6009   emit_int8(imm8 & 0x03);
6010 }
6011 
6012 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6013   assert(VM_Version::supports_avx512dq(), "");
6014   assert(imm8 <= 0x03, "imm8: %u", imm8);
6015   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6016   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6017   emit_int8(0x39);
6018   emit_int8((unsigned char)(0xC0 | encode));
6019   // 0x00 - extract from bits 127:0
6020   // 0x01 - extract from bits 255:128
6021   // 0x02 - extract from bits 383:256
6022   // 0x03 - extract from bits 511:384
6023   emit_int8(imm8 & 0x03);
6024 }
6025 
6026 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6027   assert(VM_Version::supports_evex(), "");
6028   assert(imm8 <= 0x01, "imm8: %u", imm8);
6029   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6030   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6031   emit_int8(0x3B);
6032   emit_int8((unsigned char)(0xC0 | encode));
6033   // 0x00 - extract from lower 256 bits
6034   // 0x01 - extract from upper 256 bits
6035   emit_int8(imm8 & 0x01);
6036 }
6037 
6038 
6039 // vextractf forms
6040 
6041 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6042   assert(VM_Version::supports_avx(), "");
6043   assert(imm8 <= 0x01, "imm8: %u", imm8);
6044   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6045   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6046   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6047   emit_int8(0x19);
6048   emit_int8((unsigned char)(0xC0 | encode));
6049   // 0x00 - extract from lower 128 bits
6050   // 0x01 - extract from upper 128 bits
6051   emit_int8(imm8 & 0x01);
6052 }
6053 
6054 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
6055   assert(VM_Version::supports_avx(), "");
6056   assert(src != xnoreg, "sanity");
6057   assert(imm8 <= 0x01, "imm8: %u", imm8);
6058   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6059   InstructionMark im(this);
6060   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6061   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6062   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6063   emit_int8(0x19);
6064   emit_operand(src, dst);
6065   // 0x00 - extract from lower 128 bits
6066   // 0x01 - extract from upper 128 bits
6067   emit_int8(imm8 & 0x01);
6068 }
6069 
6070 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6071   assert(VM_Version::supports_avx(), "");
6072   assert(imm8 <= 0x03, "imm8: %u", imm8);
6073   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6074   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6075   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6076   emit_int8(0x19);
6077   emit_int8((unsigned char)(0xC0 | encode));
6078   // 0x00 - extract from bits 127:0
6079   // 0x01 - extract from bits 255:128
6080   // 0x02 - extract from bits 383:256
6081   // 0x03 - extract from bits 511:384
6082   emit_int8(imm8 & 0x03);
6083 }
6084 
6085 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
6086   assert(VM_Version::supports_evex(), "");
6087   assert(src != xnoreg, "sanity");
6088   assert(imm8 <= 0x03, "imm8: %u", imm8);
6089   InstructionMark im(this);
6090   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6091   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6092   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6093   emit_int8(0x19);
6094   emit_operand(src, dst);
6095   // 0x00 - extract from bits 127:0
6096   // 0x01 - extract from bits 255:128
6097   // 0x02 - extract from bits 383:256
6098   // 0x03 - extract from bits 511:384
6099   emit_int8(imm8 & 0x03);
6100 }
6101 
6102 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6103   assert(VM_Version::supports_avx512dq(), "");
6104   assert(imm8 <= 0x03, "imm8: %u", imm8);
6105   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6106   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6107   emit_int8(0x19);
6108   emit_int8((unsigned char)(0xC0 | encode));
6109   // 0x00 - extract from bits 127:0
6110   // 0x01 - extract from bits 255:128
6111   // 0x02 - extract from bits 383:256
6112   // 0x03 - extract from bits 511:384
6113   emit_int8(imm8 & 0x03);
6114 }
6115 
6116 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6117   assert(VM_Version::supports_evex(), "");
6118   assert(imm8 <= 0x01, "imm8: %u", imm8);
6119   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6120   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6121   emit_int8(0x1B);
6122   emit_int8((unsigned char)(0xC0 | encode));
6123   // 0x00 - extract from lower 256 bits
6124   // 0x01 - extract from upper 256 bits
6125   emit_int8(imm8 & 0x01);
6126 }
6127 
6128 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
6129   assert(VM_Version::supports_evex(), "");
6130   assert(src != xnoreg, "sanity");
6131   assert(imm8 <= 0x01, "imm8: %u", imm8);
6132   InstructionMark im(this);
6133   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6134   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
6135   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6136   emit_int8(0x1B);
6137   emit_operand(src, dst);
6138   // 0x00 - extract from lower 256 bits
6139   // 0x01 - extract from upper 256 bits
6140   emit_int8(imm8 & 0x01);
6141 }
6142 
6143 
6144 // legacy word/dword replicate
6145 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
6146   assert(VM_Version::supports_avx2(), "");
6147   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6148   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6149   emit_int8(0x79);
6150   emit_int8((unsigned char)(0xC0 | encode));
6151 }
6152 
6153 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
6154   assert(VM_Version::supports_avx2(), "");
6155   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6156   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6157   emit_int8(0x58);
6158   emit_int8((unsigned char)(0xC0 | encode));
6159 }
6160 
6161 
6162 // xmm/mem sourced byte/word/dword/qword replicate
6163 
6164 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6165 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6166   assert(VM_Version::supports_evex(), "");
6167   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6168   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6169   emit_int8(0x78);
6170   emit_int8((unsigned char)(0xC0 | encode));
6171 }
6172 
6173 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6174   assert(VM_Version::supports_evex(), "");
6175   assert(dst != xnoreg, "sanity");
6176   InstructionMark im(this);
6177   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6178   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6179   // swap src<->dst for encoding
6180   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6181   emit_int8(0x78);
6182   emit_operand(dst, src);
6183 }
6184 
6185 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6186 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6187   assert(VM_Version::supports_evex(), "");
6188   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6189   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6190   emit_int8(0x79);
6191   emit_int8((unsigned char)(0xC0 | encode));
6192 }
6193 
6194 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6195   assert(VM_Version::supports_evex(), "");
6196   assert(dst != xnoreg, "sanity");
6197   InstructionMark im(this);
6198   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6199   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6200   // swap src<->dst for encoding
6201   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6202   emit_int8(0x79);
6203   emit_operand(dst, src);
6204 }
6205 
6206 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6207 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6208   assert(VM_Version::supports_evex(), "");
6209   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6210   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6211   emit_int8(0x58);
6212   emit_int8((unsigned char)(0xC0 | encode));
6213 }
6214 
6215 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6216   assert(VM_Version::supports_evex(), "");
6217   assert(dst != xnoreg, "sanity");
6218   InstructionMark im(this);
6219   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6220   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6221   // swap src<->dst for encoding
6222   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6223   emit_int8(0x58);
6224   emit_operand(dst, src);
6225 }
6226 
6227 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6228 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6229   assert(VM_Version::supports_evex(), "");
6230   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6231   attributes.set_rex_vex_w_reverted();
6232   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6233   emit_int8(0x59);
6234   emit_int8((unsigned char)(0xC0 | encode));
6235 }
6236 
6237 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6238   assert(VM_Version::supports_evex(), "");
6239   assert(dst != xnoreg, "sanity");
6240   InstructionMark im(this);
6241   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6242   attributes.set_rex_vex_w_reverted();
6243   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6244   // swap src<->dst for encoding
6245   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6246   emit_int8(0x59);
6247   emit_operand(dst, src);
6248 }
6249 
6250 
6251 // scalar single/double precision replicate
6252 
6253 // duplicate single precision data from src into programmed locations in dest : requires AVX512VL
6254 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6255   assert(VM_Version::supports_evex(), "");
6256   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6257   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6258   emit_int8(0x18);
6259   emit_int8((unsigned char)(0xC0 | encode));
6260 }
6261 
6262 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
6263   assert(VM_Version::supports_evex(), "");
6264   assert(dst != xnoreg, "sanity");
6265   InstructionMark im(this);
6266   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6267   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6268   // swap src<->dst for encoding
6269   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6270   emit_int8(0x18);
6271   emit_operand(dst, src);
6272 }
6273 
6274 // duplicate double precision data from src into programmed locations in dest : requires AVX512VL
6275 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6276   assert(VM_Version::supports_evex(), "");
6277   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6278   attributes.set_rex_vex_w_reverted();
6279   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6280   emit_int8(0x19);
6281   emit_int8((unsigned char)(0xC0 | encode));
6282 }
6283 
6284 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6285   assert(VM_Version::supports_evex(), "");
6286   assert(dst != xnoreg, "sanity");
6287   InstructionMark im(this);
6288   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6289   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6290   attributes.set_rex_vex_w_reverted();
6291   // swap src<->dst for encoding
6292   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6293   emit_int8(0x19);
6294   emit_operand(dst, src);
6295 }
6296 
6297 
6298 // gpr source broadcast forms
6299 
6300 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6301 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6302   assert(VM_Version::supports_evex(), "");
6303   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6304   attributes.set_is_evex_instruction();
6305   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6306   emit_int8(0x7A);
6307   emit_int8((unsigned char)(0xC0 | encode));
6308 }
6309 
6310 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6311 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6312   assert(VM_Version::supports_evex(), "");
6313   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6314   attributes.set_is_evex_instruction();
6315   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6316   emit_int8(0x7B);
6317   emit_int8((unsigned char)(0xC0 | encode));
6318 }
6319 
6320 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6321 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6322   assert(VM_Version::supports_evex(), "");
6323   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6324   attributes.set_is_evex_instruction();
6325   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6326   emit_int8(0x7C);
6327   emit_int8((unsigned char)(0xC0 | encode));
6328 }
6329 
6330 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6331 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6332   assert(VM_Version::supports_evex(), "");
6333   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6334   attributes.set_is_evex_instruction();
6335   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6336   emit_int8(0x7C);
6337   emit_int8((unsigned char)(0xC0 | encode));
6338 }
6339 
6340 
6341 // Carry-Less Multiplication Quadword
6342 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
6343   assert(VM_Version::supports_clmul(), "");
6344   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6345   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6346   emit_int8(0x44);
6347   emit_int8((unsigned char)(0xC0 | encode));
6348   emit_int8((unsigned char)mask);
6349 }
6350 
6351 // Carry-Less Multiplication Quadword
6352 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
6353   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
6354   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6355   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6356   emit_int8(0x44);
6357   emit_int8((unsigned char)(0xC0 | encode));
6358   emit_int8((unsigned char)mask);
6359 }
6360 
6361 void Assembler::vzeroupper() {
6362   assert(VM_Version::supports_avx(), "");
6363   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6364   (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6365   emit_int8(0x77);
6366 }
6367 
6368 
6369 #ifndef _LP64
6370 // 32bit only pieces of the assembler
6371 
6372 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6373   // NO PREFIX AS NEVER 64BIT
6374   InstructionMark im(this);
6375   emit_int8((unsigned char)0x81);
6376   emit_int8((unsigned char)(0xF8 | src1->encoding()));
6377   emit_data(imm32, rspec, 0);
6378 }
6379 
6380 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6381   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
6382   InstructionMark im(this);
6383   emit_int8((unsigned char)0x81);
6384   emit_operand(rdi, src1);
6385   emit_data(imm32, rspec, 0);
6386 }
6387 
6388 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
6389 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
6390 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
6391 void Assembler::cmpxchg8(Address adr) {
6392   InstructionMark im(this);
6393   emit_int8(0x0F);
6394   emit_int8((unsigned char)0xC7);
6395   emit_operand(rcx, adr);
6396 }
6397 
6398 void Assembler::decl(Register dst) {
6399   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6400  emit_int8(0x48 | dst->encoding());
6401 }
6402 
6403 #endif // _LP64
6404 
6405 // 64bit typically doesn't use the x87 but needs to for the trig funcs
6406 
6407 void Assembler::fabs() {
6408   emit_int8((unsigned char)0xD9);
6409   emit_int8((unsigned char)0xE1);
6410 }
6411 
6412 void Assembler::fadd(int i) {
6413   emit_farith(0xD8, 0xC0, i);
6414 }
6415 
6416 void Assembler::fadd_d(Address src) {
6417   InstructionMark im(this);
6418   emit_int8((unsigned char)0xDC);
6419   emit_operand32(rax, src);
6420 }
6421 
6422 void Assembler::fadd_s(Address src) {
6423   InstructionMark im(this);
6424   emit_int8((unsigned char)0xD8);
6425   emit_operand32(rax, src);
6426 }
6427 
6428 void Assembler::fadda(int i) {
6429   emit_farith(0xDC, 0xC0, i);
6430 }
6431 
6432 void Assembler::faddp(int i) {
6433   emit_farith(0xDE, 0xC0, i);
6434 }
6435 
6436 void Assembler::fchs() {
6437   emit_int8((unsigned char)0xD9);
6438   emit_int8((unsigned char)0xE0);
6439 }
6440 
6441 void Assembler::fcom(int i) {
6442   emit_farith(0xD8, 0xD0, i);
6443 }
6444 
6445 void Assembler::fcomp(int i) {
6446   emit_farith(0xD8, 0xD8, i);
6447 }
6448 
6449 void Assembler::fcomp_d(Address src) {
6450   InstructionMark im(this);
6451   emit_int8((unsigned char)0xDC);
6452   emit_operand32(rbx, src);
6453 }
6454 
6455 void Assembler::fcomp_s(Address src) {
6456   InstructionMark im(this);
6457   emit_int8((unsigned char)0xD8);
6458   emit_operand32(rbx, src);
6459 }
6460 
6461 void Assembler::fcompp() {
6462   emit_int8((unsigned char)0xDE);
6463   emit_int8((unsigned char)0xD9);
6464 }
6465 
6466 void Assembler::fcos() {
6467   emit_int8((unsigned char)0xD9);
6468   emit_int8((unsigned char)0xFF);
6469 }
6470 
6471 void Assembler::fdecstp() {
6472   emit_int8((unsigned char)0xD9);
6473   emit_int8((unsigned char)0xF6);
6474 }
6475 
6476 void Assembler::fdiv(int i) {
6477   emit_farith(0xD8, 0xF0, i);
6478 }
6479 
6480 void Assembler::fdiv_d(Address src) {
6481   InstructionMark im(this);
6482   emit_int8((unsigned char)0xDC);
6483   emit_operand32(rsi, src);
6484 }
6485 
6486 void Assembler::fdiv_s(Address src) {
6487   InstructionMark im(this);
6488   emit_int8((unsigned char)0xD8);
6489   emit_operand32(rsi, src);
6490 }
6491 
6492 void Assembler::fdiva(int i) {
6493   emit_farith(0xDC, 0xF8, i);
6494 }
6495 
6496 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
6497 //       is erroneous for some of the floating-point instructions below.
6498 
6499 void Assembler::fdivp(int i) {
6500   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
6501 }
6502 
6503 void Assembler::fdivr(int i) {
6504   emit_farith(0xD8, 0xF8, i);
6505 }
6506 
6507 void Assembler::fdivr_d(Address src) {
6508   InstructionMark im(this);
6509   emit_int8((unsigned char)0xDC);
6510   emit_operand32(rdi, src);
6511 }
6512 
6513 void Assembler::fdivr_s(Address src) {
6514   InstructionMark im(this);
6515   emit_int8((unsigned char)0xD8);
6516   emit_operand32(rdi, src);
6517 }
6518 
6519 void Assembler::fdivra(int i) {
6520   emit_farith(0xDC, 0xF0, i);
6521 }
6522 
6523 void Assembler::fdivrp(int i) {
6524   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
6525 }
6526 
6527 void Assembler::ffree(int i) {
6528   emit_farith(0xDD, 0xC0, i);
6529 }
6530 
6531 void Assembler::fild_d(Address adr) {
6532   InstructionMark im(this);
6533   emit_int8((unsigned char)0xDF);
6534   emit_operand32(rbp, adr);
6535 }
6536 
6537 void Assembler::fild_s(Address adr) {
6538   InstructionMark im(this);
6539   emit_int8((unsigned char)0xDB);
6540   emit_operand32(rax, adr);
6541 }
6542 
6543 void Assembler::fincstp() {
6544   emit_int8((unsigned char)0xD9);
6545   emit_int8((unsigned char)0xF7);
6546 }
6547 
6548 void Assembler::finit() {
6549   emit_int8((unsigned char)0x9B);
6550   emit_int8((unsigned char)0xDB);
6551   emit_int8((unsigned char)0xE3);
6552 }
6553 
6554 void Assembler::fist_s(Address adr) {
6555   InstructionMark im(this);
6556   emit_int8((unsigned char)0xDB);
6557   emit_operand32(rdx, adr);
6558 }
6559 
6560 void Assembler::fistp_d(Address adr) {
6561   InstructionMark im(this);
6562   emit_int8((unsigned char)0xDF);
6563   emit_operand32(rdi, adr);
6564 }
6565 
6566 void Assembler::fistp_s(Address adr) {
6567   InstructionMark im(this);
6568   emit_int8((unsigned char)0xDB);
6569   emit_operand32(rbx, adr);
6570 }
6571 
6572 void Assembler::fld1() {
6573   emit_int8((unsigned char)0xD9);
6574   emit_int8((unsigned char)0xE8);
6575 }
6576 
6577 void Assembler::fld_d(Address adr) {
6578   InstructionMark im(this);
6579   emit_int8((unsigned char)0xDD);
6580   emit_operand32(rax, adr);
6581 }
6582 
6583 void Assembler::fld_s(Address adr) {
6584   InstructionMark im(this);
6585   emit_int8((unsigned char)0xD9);
6586   emit_operand32(rax, adr);
6587 }
6588 
6589 
6590 void Assembler::fld_s(int index) {
6591   emit_farith(0xD9, 0xC0, index);
6592 }
6593 
6594 void Assembler::fld_x(Address adr) {
6595   InstructionMark im(this);
6596   emit_int8((unsigned char)0xDB);
6597   emit_operand32(rbp, adr);
6598 }
6599 
6600 void Assembler::fldcw(Address src) {
6601   InstructionMark im(this);
6602   emit_int8((unsigned char)0xD9);
6603   emit_operand32(rbp, src);
6604 }
6605 
6606 void Assembler::fldenv(Address src) {
6607   InstructionMark im(this);
6608   emit_int8((unsigned char)0xD9);
6609   emit_operand32(rsp, src);
6610 }
6611 
6612 void Assembler::fldlg2() {
6613   emit_int8((unsigned char)0xD9);
6614   emit_int8((unsigned char)0xEC);
6615 }
6616 
6617 void Assembler::fldln2() {
6618   emit_int8((unsigned char)0xD9);
6619   emit_int8((unsigned char)0xED);
6620 }
6621 
6622 void Assembler::fldz() {
6623   emit_int8((unsigned char)0xD9);
6624   emit_int8((unsigned char)0xEE);
6625 }
6626 
6627 void Assembler::flog() {
6628   fldln2();
6629   fxch();
6630   fyl2x();
6631 }
6632 
6633 void Assembler::flog10() {
6634   fldlg2();
6635   fxch();
6636   fyl2x();
6637 }
6638 
6639 void Assembler::fmul(int i) {
6640   emit_farith(0xD8, 0xC8, i);
6641 }
6642 
6643 void Assembler::fmul_d(Address src) {
6644   InstructionMark im(this);
6645   emit_int8((unsigned char)0xDC);
6646   emit_operand32(rcx, src);
6647 }
6648 
6649 void Assembler::fmul_s(Address src) {
6650   InstructionMark im(this);
6651   emit_int8((unsigned char)0xD8);
6652   emit_operand32(rcx, src);
6653 }
6654 
6655 void Assembler::fmula(int i) {
6656   emit_farith(0xDC, 0xC8, i);
6657 }
6658 
6659 void Assembler::fmulp(int i) {
6660   emit_farith(0xDE, 0xC8, i);
6661 }
6662 
6663 void Assembler::fnsave(Address dst) {
6664   InstructionMark im(this);
6665   emit_int8((unsigned char)0xDD);
6666   emit_operand32(rsi, dst);
6667 }
6668 
6669 void Assembler::fnstcw(Address src) {
6670   InstructionMark im(this);
6671   emit_int8((unsigned char)0x9B);
6672   emit_int8((unsigned char)0xD9);
6673   emit_operand32(rdi, src);
6674 }
6675 
6676 void Assembler::fnstsw_ax() {
6677   emit_int8((unsigned char)0xDF);
6678   emit_int8((unsigned char)0xE0);
6679 }
6680 
6681 void Assembler::fprem() {
6682   emit_int8((unsigned char)0xD9);
6683   emit_int8((unsigned char)0xF8);
6684 }
6685 
6686 void Assembler::fprem1() {
6687   emit_int8((unsigned char)0xD9);
6688   emit_int8((unsigned char)0xF5);
6689 }
6690 
6691 void Assembler::frstor(Address src) {
6692   InstructionMark im(this);
6693   emit_int8((unsigned char)0xDD);
6694   emit_operand32(rsp, src);
6695 }
6696 
6697 void Assembler::fsin() {
6698   emit_int8((unsigned char)0xD9);
6699   emit_int8((unsigned char)0xFE);
6700 }
6701 
6702 void Assembler::fsqrt() {
6703   emit_int8((unsigned char)0xD9);
6704   emit_int8((unsigned char)0xFA);
6705 }
6706 
6707 void Assembler::fst_d(Address adr) {
6708   InstructionMark im(this);
6709   emit_int8((unsigned char)0xDD);
6710   emit_operand32(rdx, adr);
6711 }
6712 
6713 void Assembler::fst_s(Address adr) {
6714   InstructionMark im(this);
6715   emit_int8((unsigned char)0xD9);
6716   emit_operand32(rdx, adr);
6717 }
6718 
6719 void Assembler::fstp_d(Address adr) {
6720   InstructionMark im(this);
6721   emit_int8((unsigned char)0xDD);
6722   emit_operand32(rbx, adr);
6723 }
6724 
6725 void Assembler::fstp_d(int index) {
6726   emit_farith(0xDD, 0xD8, index);
6727 }
6728 
6729 void Assembler::fstp_s(Address adr) {
6730   InstructionMark im(this);
6731   emit_int8((unsigned char)0xD9);
6732   emit_operand32(rbx, adr);
6733 }
6734 
6735 void Assembler::fstp_x(Address adr) {
6736   InstructionMark im(this);
6737   emit_int8((unsigned char)0xDB);
6738   emit_operand32(rdi, adr);
6739 }
6740 
6741 void Assembler::fsub(int i) {
6742   emit_farith(0xD8, 0xE0, i);
6743 }
6744 
6745 void Assembler::fsub_d(Address src) {
6746   InstructionMark im(this);
6747   emit_int8((unsigned char)0xDC);
6748   emit_operand32(rsp, src);
6749 }
6750 
6751 void Assembler::fsub_s(Address src) {
6752   InstructionMark im(this);
6753   emit_int8((unsigned char)0xD8);
6754   emit_operand32(rsp, src);
6755 }
6756 
6757 void Assembler::fsuba(int i) {
6758   emit_farith(0xDC, 0xE8, i);
6759 }
6760 
6761 void Assembler::fsubp(int i) {
6762   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
6763 }
6764 
6765 void Assembler::fsubr(int i) {
6766   emit_farith(0xD8, 0xE8, i);
6767 }
6768 
6769 void Assembler::fsubr_d(Address src) {
6770   InstructionMark im(this);
6771   emit_int8((unsigned char)0xDC);
6772   emit_operand32(rbp, src);
6773 }
6774 
6775 void Assembler::fsubr_s(Address src) {
6776   InstructionMark im(this);
6777   emit_int8((unsigned char)0xD8);
6778   emit_operand32(rbp, src);
6779 }
6780 
6781 void Assembler::fsubra(int i) {
6782   emit_farith(0xDC, 0xE0, i);
6783 }
6784 
6785 void Assembler::fsubrp(int i) {
6786   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
6787 }
6788 
6789 void Assembler::ftan() {
6790   emit_int8((unsigned char)0xD9);
6791   emit_int8((unsigned char)0xF2);
6792   emit_int8((unsigned char)0xDD);
6793   emit_int8((unsigned char)0xD8);
6794 }
6795 
6796 void Assembler::ftst() {
6797   emit_int8((unsigned char)0xD9);
6798   emit_int8((unsigned char)0xE4);
6799 }
6800 
6801 void Assembler::fucomi(int i) {
6802   // make sure the instruction is supported (introduced for P6, together with cmov)
6803   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6804   emit_farith(0xDB, 0xE8, i);
6805 }
6806 
6807 void Assembler::fucomip(int i) {
6808   // make sure the instruction is supported (introduced for P6, together with cmov)
6809   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6810   emit_farith(0xDF, 0xE8, i);
6811 }
6812 
6813 void Assembler::fwait() {
6814   emit_int8((unsigned char)0x9B);
6815 }
6816 
6817 void Assembler::fxch(int i) {
6818   emit_farith(0xD9, 0xC8, i);
6819 }
6820 
6821 void Assembler::fyl2x() {
6822   emit_int8((unsigned char)0xD9);
6823   emit_int8((unsigned char)0xF1);
6824 }
6825 
6826 void Assembler::frndint() {
6827   emit_int8((unsigned char)0xD9);
6828   emit_int8((unsigned char)0xFC);
6829 }
6830 
6831 void Assembler::f2xm1() {
6832   emit_int8((unsigned char)0xD9);
6833   emit_int8((unsigned char)0xF0);
6834 }
6835 
6836 void Assembler::fldl2e() {
6837   emit_int8((unsigned char)0xD9);
6838   emit_int8((unsigned char)0xEA);
6839 }
6840 
6841 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
6842 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
6843 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
6844 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
6845 
6846 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
6847 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6848   if (pre > 0) {
6849     emit_int8(simd_pre[pre]);
6850   }
6851   if (rex_w) {
6852     prefixq(adr, xreg);
6853   } else {
6854     prefix(adr, xreg);
6855   }
6856   if (opc > 0) {
6857     emit_int8(0x0F);
6858     int opc2 = simd_opc[opc];
6859     if (opc2 > 0) {
6860       emit_int8(opc2);
6861     }
6862   }
6863 }
6864 
6865 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6866   if (pre > 0) {
6867     emit_int8(simd_pre[pre]);
6868   }
6869   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
6870   if (opc > 0) {
6871     emit_int8(0x0F);
6872     int opc2 = simd_opc[opc];
6873     if (opc2 > 0) {
6874       emit_int8(opc2);
6875     }
6876   }
6877   return encode;
6878 }
6879 
6880 
6881 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
6882   int vector_len = _attributes->get_vector_len();
6883   bool vex_w = _attributes->is_rex_vex_w();
6884   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
6885     prefix(VEX_3bytes);
6886 
6887     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
6888     byte1 = (~byte1) & 0xE0;
6889     byte1 |= opc;
6890     emit_int8(byte1);
6891 
6892     int byte2 = ((~nds_enc) & 0xf) << 3;
6893     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
6894     emit_int8(byte2);
6895   } else {
6896     prefix(VEX_2bytes);
6897 
6898     int byte1 = vex_r ? VEX_R : 0;
6899     byte1 = (~byte1) & 0x80;
6900     byte1 |= ((~nds_enc) & 0xf) << 3;
6901     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
6902     emit_int8(byte1);
6903   }
6904 }
6905 
6906 // This is a 4 byte encoding
6907 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
6908   // EVEX 0x62 prefix
6909   prefix(EVEX_4bytes);
6910   bool vex_w = _attributes->is_rex_vex_w();
6911   int evex_encoding = (vex_w ? VEX_W : 0);
6912   // EVEX.b is not currently used for broadcast of single element or data rounding modes
6913   _attributes->set_evex_encoding(evex_encoding);
6914 
6915   // P0: byte 2, initialized to RXBR`00mm
6916   // instead of not'd
6917   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
6918   byte2 = (~byte2) & 0xF0;
6919   // confine opc opcode extensions in mm bits to lower two bits
6920   // of form {0F, 0F_38, 0F_3A}
6921   byte2 |= opc;
6922   emit_int8(byte2);
6923 
6924   // P1: byte 3 as Wvvvv1pp
6925   int byte3 = ((~nds_enc) & 0xf) << 3;
6926   // p[10] is always 1
6927   byte3 |= EVEX_F;
6928   byte3 |= (vex_w & 1) << 7;
6929   // confine pre opcode extensions in pp bits to lower two bits
6930   // of form {66, F3, F2}
6931   byte3 |= pre;
6932   emit_int8(byte3);
6933 
6934   // P2: byte 4 as zL'Lbv'aaa
6935   int byte4 = (_attributes->is_no_reg_mask()) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
6936   // EVEX.v` for extending EVEX.vvvv or VIDX
6937   byte4 |= (evex_v ? 0: EVEX_V);
6938   // third EXEC.b for broadcast actions
6939   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
6940   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
6941   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
6942   // last is EVEX.z for zero/merge actions
6943   byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
6944   emit_int8(byte4);
6945 }
6946 
6947 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
6948   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
6949   bool vex_b = adr.base_needs_rex();
6950   bool vex_x = adr.index_needs_rex();
6951   set_attributes(attributes);
6952   attributes->set_current_assembler(this);
6953 
6954   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6955   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
6956     switch (attributes->get_vector_len()) {
6957     case AVX_128bit:
6958     case AVX_256bit:
6959       attributes->set_is_legacy_mode();
6960       break;
6961     }
6962   }
6963 
6964   // For pure EVEX check and see if this instruction
6965   // is allowed in legacy mode and has resources which will
6966   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
6967   // else that field is set when we encode to EVEX
6968   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
6969       !_is_managed && !attributes->is_evex_instruction()) {
6970     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
6971       bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
6972       if (check_register_bank) {
6973         // check nds_enc and xreg_enc for upper bank usage
6974         if (nds_enc < 16 && xreg_enc < 16) {
6975           attributes->set_is_legacy_mode();
6976         }
6977       } else {
6978         attributes->set_is_legacy_mode();
6979       }
6980     }
6981   }
6982 
6983   _is_managed = false;
6984   if (UseAVX > 2 && !attributes->is_legacy_mode())
6985   {
6986     bool evex_r = (xreg_enc >= 16);
6987     bool evex_v = (nds_enc >= 16);
6988     attributes->set_is_evex_instruction();
6989     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
6990   } else {
6991     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
6992       attributes->set_rex_vex_w(false);
6993     }
6994     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
6995   }
6996 }
6997 
6998 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
6999   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
7000   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
7001   bool vex_x = false;
7002   set_attributes(attributes);
7003   attributes->set_current_assembler(this);
7004   bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
7005 
7006   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
7007   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
7008     switch (attributes->get_vector_len()) {
7009     case AVX_128bit:
7010     case AVX_256bit:
7011       if (check_register_bank) {
7012         if (dst_enc >= 16 || nds_enc >= 16 || src_enc >= 16) {
7013           // up propagate arithmetic instructions to meet RA requirements
7014           attributes->set_vector_len(AVX_512bit);
7015         } else {
7016           attributes->set_is_legacy_mode();
7017         }
7018       } else {
7019         attributes->set_is_legacy_mode();
7020       }
7021       break;
7022     }
7023   }
7024 
7025   // For pure EVEX check and see if this instruction
7026   // is allowed in legacy mode and has resources which will
7027   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
7028   // else that field is set when we encode to EVEX
7029   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
7030       !_is_managed && !attributes->is_evex_instruction()) {
7031     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
7032       if (check_register_bank) {
7033         // check dst_enc, nds_enc and src_enc for upper bank usage
7034         if (dst_enc < 16 && nds_enc < 16 && src_enc < 16) {
7035           attributes->set_is_legacy_mode();
7036         }
7037       } else {
7038         attributes->set_is_legacy_mode();
7039       }
7040     }
7041   }
7042 
7043   _is_managed = false;
7044   if (UseAVX > 2 && !attributes->is_legacy_mode())
7045   {
7046     bool evex_r = (dst_enc >= 16);
7047     bool evex_v = (nds_enc >= 16);
7048     // can use vex_x as bank extender on rm encoding
7049     vex_x = (src_enc >= 16);
7050     attributes->set_is_evex_instruction();
7051     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7052   } else {
7053     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7054       attributes->set_rex_vex_w(false);
7055     }
7056     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7057   }
7058 
7059   // return modrm byte components for operands
7060   return (((dst_enc & 7) << 3) | (src_enc & 7));
7061 }
7062 
7063 
7064 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
7065                             VexOpcode opc, InstructionAttr *attributes) {
7066   if (UseAVX > 0) {
7067     int xreg_enc = xreg->encoding();
7068     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7069     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
7070   } else {
7071     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
7072     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
7073   }
7074 }
7075 
7076 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
7077                                       VexOpcode opc, InstructionAttr *attributes) {
7078   int dst_enc = dst->encoding();
7079   int src_enc = src->encoding();
7080   if (UseAVX > 0) {
7081     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7082     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
7083   } else {
7084     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
7085     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
7086   }
7087 }
7088 
7089 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7090   assert(VM_Version::supports_avx(), "");
7091   assert(!VM_Version::supports_evex(), "");
7092   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7093   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7094   emit_int8((unsigned char)0xC2);
7095   emit_int8((unsigned char)(0xC0 | encode));
7096   emit_int8((unsigned char)(0xF & cop));
7097 }
7098 
7099 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7100   assert(VM_Version::supports_avx(), "");
7101   assert(!VM_Version::supports_evex(), "");
7102   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7103   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7104   emit_int8((unsigned char)0x4B);
7105   emit_int8((unsigned char)(0xC0 | encode));
7106   int src2_enc = src2->encoding();
7107   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
7108 }
7109 
7110 void Assembler::shlxl(Register dst, Register src1, Register src2) {
7111   assert(VM_Version::supports_bmi2(), "");
7112   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7113   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7114   emit_int8((unsigned char)0xF7);
7115   emit_int8((unsigned char)(0xC0 | encode));
7116 }
7117 
7118 void Assembler::shlxq(Register dst, Register src1, Register src2) {
7119   assert(VM_Version::supports_bmi2(), "");
7120   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7121   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7122   emit_int8((unsigned char)0xF7);
7123   emit_int8((unsigned char)(0xC0 | encode));
7124 }
7125 
7126 #ifndef _LP64
7127 
7128 void Assembler::incl(Register dst) {
7129   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7130   emit_int8(0x40 | dst->encoding());
7131 }
7132 
7133 void Assembler::lea(Register dst, Address src) {
7134   leal(dst, src);
7135 }
7136 
7137 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
7138   InstructionMark im(this);
7139   emit_int8((unsigned char)0xC7);
7140   emit_operand(rax, dst);
7141   emit_data((int)imm32, rspec, 0);
7142 }
7143 
7144 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7145   InstructionMark im(this);
7146   int encode = prefix_and_encode(dst->encoding());
7147   emit_int8((unsigned char)(0xB8 | encode));
7148   emit_data((int)imm32, rspec, 0);
7149 }
7150 
7151 void Assembler::popa() { // 32bit
7152   emit_int8(0x61);
7153 }
7154 
7155 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
7156   InstructionMark im(this);
7157   emit_int8(0x68);
7158   emit_data(imm32, rspec, 0);
7159 }
7160 
7161 void Assembler::pusha() { // 32bit
7162   emit_int8(0x60);
7163 }
7164 
7165 void Assembler::set_byte_if_not_zero(Register dst) {
7166   emit_int8(0x0F);
7167   emit_int8((unsigned char)0x95);
7168   emit_int8((unsigned char)(0xE0 | dst->encoding()));
7169 }
7170 
7171 void Assembler::shldl(Register dst, Register src) {
7172   emit_int8(0x0F);
7173   emit_int8((unsigned char)0xA5);
7174   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7175 }
7176 
7177 // 0F A4 / r ib
7178 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
7179   emit_int8(0x0F);
7180   emit_int8((unsigned char)0xA4);
7181   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7182   emit_int8(imm8);
7183 }
7184 
7185 void Assembler::shrdl(Register dst, Register src) {
7186   emit_int8(0x0F);
7187   emit_int8((unsigned char)0xAD);
7188   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7189 }
7190 
7191 #else // LP64
7192 
7193 void Assembler::set_byte_if_not_zero(Register dst) {
7194   int enc = prefix_and_encode(dst->encoding(), true);
7195   emit_int8(0x0F);
7196   emit_int8((unsigned char)0x95);
7197   emit_int8((unsigned char)(0xE0 | enc));
7198 }
7199 
7200 // 64bit only pieces of the assembler
7201 // This should only be used by 64bit instructions that can use rip-relative
7202 // it cannot be used by instructions that want an immediate value.
7203 
7204 bool Assembler::reachable(AddressLiteral adr) {
7205   int64_t disp;
7206   // None will force a 64bit literal to the code stream. Likely a placeholder
7207   // for something that will be patched later and we need to certain it will
7208   // always be reachable.
7209   if (adr.reloc() == relocInfo::none) {
7210     return false;
7211   }
7212   if (adr.reloc() == relocInfo::internal_word_type) {
7213     // This should be rip relative and easily reachable.
7214     return true;
7215   }
7216   if (adr.reloc() == relocInfo::virtual_call_type ||
7217       adr.reloc() == relocInfo::opt_virtual_call_type ||
7218       adr.reloc() == relocInfo::static_call_type ||
7219       adr.reloc() == relocInfo::static_stub_type ) {
7220     // This should be rip relative within the code cache and easily
7221     // reachable until we get huge code caches. (At which point
7222     // ic code is going to have issues).
7223     return true;
7224   }
7225   if (adr.reloc() != relocInfo::external_word_type &&
7226       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
7227       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
7228       adr.reloc() != relocInfo::runtime_call_type ) {
7229     return false;
7230   }
7231 
7232   // Stress the correction code
7233   if (ForceUnreachable) {
7234     // Must be runtimecall reloc, see if it is in the codecache
7235     // Flipping stuff in the codecache to be unreachable causes issues
7236     // with things like inline caches where the additional instructions
7237     // are not handled.
7238     if (CodeCache::find_blob(adr._target) == NULL) {
7239       return false;
7240     }
7241   }
7242   // For external_word_type/runtime_call_type if it is reachable from where we
7243   // are now (possibly a temp buffer) and where we might end up
7244   // anywhere in the codeCache then we are always reachable.
7245   // This would have to change if we ever save/restore shared code
7246   // to be more pessimistic.
7247   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7248   if (!is_simm32(disp)) return false;
7249   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7250   if (!is_simm32(disp)) return false;
7251 
7252   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7253 
7254   // Because rip relative is a disp + address_of_next_instruction and we
7255   // don't know the value of address_of_next_instruction we apply a fudge factor
7256   // to make sure we will be ok no matter the size of the instruction we get placed into.
7257   // We don't have to fudge the checks above here because they are already worst case.
7258 
7259   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
7260   // + 4 because better safe than sorry.
7261   const int fudge = 12 + 4;
7262   if (disp < 0) {
7263     disp -= fudge;
7264   } else {
7265     disp += fudge;
7266   }
7267   return is_simm32(disp);
7268 }
7269 
7270 // Check if the polling page is not reachable from the code cache using rip-relative
7271 // addressing.
7272 bool Assembler::is_polling_page_far() {
7273   intptr_t addr = (intptr_t)os::get_polling_page();
7274   return ForceUnreachable ||
7275          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
7276          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
7277 }
7278 
7279 void Assembler::emit_data64(jlong data,
7280                             relocInfo::relocType rtype,
7281                             int format) {
7282   if (rtype == relocInfo::none) {
7283     emit_int64(data);
7284   } else {
7285     emit_data64(data, Relocation::spec_simple(rtype), format);
7286   }
7287 }
7288 
7289 void Assembler::emit_data64(jlong data,
7290                             RelocationHolder const& rspec,
7291                             int format) {
7292   assert(imm_operand == 0, "default format must be immediate in this file");
7293   assert(imm_operand == format, "must be immediate");
7294   assert(inst_mark() != NULL, "must be inside InstructionMark");
7295   // Do not use AbstractAssembler::relocate, which is not intended for
7296   // embedded words.  Instead, relocate to the enclosing instruction.
7297   code_section()->relocate(inst_mark(), rspec, format);
7298 #ifdef ASSERT
7299   check_relocation(rspec, format);
7300 #endif
7301   emit_int64(data);
7302 }
7303 
7304 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
7305   if (reg_enc >= 8) {
7306     prefix(REX_B);
7307     reg_enc -= 8;
7308   } else if (byteinst && reg_enc >= 4) {
7309     prefix(REX);
7310   }
7311   return reg_enc;
7312 }
7313 
7314 int Assembler::prefixq_and_encode(int reg_enc) {
7315   if (reg_enc < 8) {
7316     prefix(REX_W);
7317   } else {
7318     prefix(REX_WB);
7319     reg_enc -= 8;
7320   }
7321   return reg_enc;
7322 }
7323 
7324 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
7325   if (dst_enc < 8) {
7326     if (src_enc >= 8) {
7327       prefix(REX_B);
7328       src_enc -= 8;
7329     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
7330       prefix(REX);
7331     }
7332   } else {
7333     if (src_enc < 8) {
7334       prefix(REX_R);
7335     } else {
7336       prefix(REX_RB);
7337       src_enc -= 8;
7338     }
7339     dst_enc -= 8;
7340   }
7341   return dst_enc << 3 | src_enc;
7342 }
7343 
7344 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
7345   if (dst_enc < 8) {
7346     if (src_enc < 8) {
7347       prefix(REX_W);
7348     } else {
7349       prefix(REX_WB);
7350       src_enc -= 8;
7351     }
7352   } else {
7353     if (src_enc < 8) {
7354       prefix(REX_WR);
7355     } else {
7356       prefix(REX_WRB);
7357       src_enc -= 8;
7358     }
7359     dst_enc -= 8;
7360   }
7361   return dst_enc << 3 | src_enc;
7362 }
7363 
7364 void Assembler::prefix(Register reg) {
7365   if (reg->encoding() >= 8) {
7366     prefix(REX_B);
7367   }
7368 }
7369 
7370 void Assembler::prefix(Register dst, Register src, Prefix p) {
7371   if (src->encoding() >= 8) {
7372     p = (Prefix)(p | REX_B);
7373   }
7374   if (dst->encoding() >= 8) {
7375     p = (Prefix)( p | REX_R);
7376   }
7377   if (p != Prefix_EMPTY) {
7378     // do not generate an empty prefix
7379     prefix(p);
7380   }
7381 }
7382 
7383 void Assembler::prefix(Register dst, Address adr, Prefix p) {
7384   if (adr.base_needs_rex()) {
7385     if (adr.index_needs_rex()) {
7386       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7387     } else {
7388       prefix(REX_B);
7389     }
7390   } else {
7391     if (adr.index_needs_rex()) {
7392       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7393     }
7394   }
7395   if (dst->encoding() >= 8) {
7396     p = (Prefix)(p | REX_R);
7397   }
7398   if (p != Prefix_EMPTY) {
7399     // do not generate an empty prefix
7400     prefix(p);
7401   }
7402 }
7403 
7404 void Assembler::prefix(Address adr) {
7405   if (adr.base_needs_rex()) {
7406     if (adr.index_needs_rex()) {
7407       prefix(REX_XB);
7408     } else {
7409       prefix(REX_B);
7410     }
7411   } else {
7412     if (adr.index_needs_rex()) {
7413       prefix(REX_X);
7414     }
7415   }
7416 }
7417 
7418 void Assembler::prefixq(Address adr) {
7419   if (adr.base_needs_rex()) {
7420     if (adr.index_needs_rex()) {
7421       prefix(REX_WXB);
7422     } else {
7423       prefix(REX_WB);
7424     }
7425   } else {
7426     if (adr.index_needs_rex()) {
7427       prefix(REX_WX);
7428     } else {
7429       prefix(REX_W);
7430     }
7431   }
7432 }
7433 
7434 
7435 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
7436   if (reg->encoding() < 8) {
7437     if (adr.base_needs_rex()) {
7438       if (adr.index_needs_rex()) {
7439         prefix(REX_XB);
7440       } else {
7441         prefix(REX_B);
7442       }
7443     } else {
7444       if (adr.index_needs_rex()) {
7445         prefix(REX_X);
7446       } else if (byteinst && reg->encoding() >= 4 ) {
7447         prefix(REX);
7448       }
7449     }
7450   } else {
7451     if (adr.base_needs_rex()) {
7452       if (adr.index_needs_rex()) {
7453         prefix(REX_RXB);
7454       } else {
7455         prefix(REX_RB);
7456       }
7457     } else {
7458       if (adr.index_needs_rex()) {
7459         prefix(REX_RX);
7460       } else {
7461         prefix(REX_R);
7462       }
7463     }
7464   }
7465 }
7466 
7467 void Assembler::prefixq(Address adr, Register src) {
7468   if (src->encoding() < 8) {
7469     if (adr.base_needs_rex()) {
7470       if (adr.index_needs_rex()) {
7471         prefix(REX_WXB);
7472       } else {
7473         prefix(REX_WB);
7474       }
7475     } else {
7476       if (adr.index_needs_rex()) {
7477         prefix(REX_WX);
7478       } else {
7479         prefix(REX_W);
7480       }
7481     }
7482   } else {
7483     if (adr.base_needs_rex()) {
7484       if (adr.index_needs_rex()) {
7485         prefix(REX_WRXB);
7486       } else {
7487         prefix(REX_WRB);
7488       }
7489     } else {
7490       if (adr.index_needs_rex()) {
7491         prefix(REX_WRX);
7492       } else {
7493         prefix(REX_WR);
7494       }
7495     }
7496   }
7497 }
7498 
7499 void Assembler::prefix(Address adr, XMMRegister reg) {
7500   if (reg->encoding() < 8) {
7501     if (adr.base_needs_rex()) {
7502       if (adr.index_needs_rex()) {
7503         prefix(REX_XB);
7504       } else {
7505         prefix(REX_B);
7506       }
7507     } else {
7508       if (adr.index_needs_rex()) {
7509         prefix(REX_X);
7510       }
7511     }
7512   } else {
7513     if (adr.base_needs_rex()) {
7514       if (adr.index_needs_rex()) {
7515         prefix(REX_RXB);
7516       } else {
7517         prefix(REX_RB);
7518       }
7519     } else {
7520       if (adr.index_needs_rex()) {
7521         prefix(REX_RX);
7522       } else {
7523         prefix(REX_R);
7524       }
7525     }
7526   }
7527 }
7528 
7529 void Assembler::prefixq(Address adr, XMMRegister src) {
7530   if (src->encoding() < 8) {
7531     if (adr.base_needs_rex()) {
7532       if (adr.index_needs_rex()) {
7533         prefix(REX_WXB);
7534       } else {
7535         prefix(REX_WB);
7536       }
7537     } else {
7538       if (adr.index_needs_rex()) {
7539         prefix(REX_WX);
7540       } else {
7541         prefix(REX_W);
7542       }
7543     }
7544   } else {
7545     if (adr.base_needs_rex()) {
7546       if (adr.index_needs_rex()) {
7547         prefix(REX_WRXB);
7548       } else {
7549         prefix(REX_WRB);
7550       }
7551     } else {
7552       if (adr.index_needs_rex()) {
7553         prefix(REX_WRX);
7554       } else {
7555         prefix(REX_WR);
7556       }
7557     }
7558   }
7559 }
7560 
7561 void Assembler::adcq(Register dst, int32_t imm32) {
7562   (void) prefixq_and_encode(dst->encoding());
7563   emit_arith(0x81, 0xD0, dst, imm32);
7564 }
7565 
7566 void Assembler::adcq(Register dst, Address src) {
7567   InstructionMark im(this);
7568   prefixq(src, dst);
7569   emit_int8(0x13);
7570   emit_operand(dst, src);
7571 }
7572 
7573 void Assembler::adcq(Register dst, Register src) {
7574   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7575   emit_arith(0x13, 0xC0, dst, src);
7576 }
7577 
7578 void Assembler::addq(Address dst, int32_t imm32) {
7579   InstructionMark im(this);
7580   prefixq(dst);
7581   emit_arith_operand(0x81, rax, dst,imm32);
7582 }
7583 
7584 void Assembler::addq(Address dst, Register src) {
7585   InstructionMark im(this);
7586   prefixq(dst, src);
7587   emit_int8(0x01);
7588   emit_operand(src, dst);
7589 }
7590 
7591 void Assembler::addq(Register dst, int32_t imm32) {
7592   (void) prefixq_and_encode(dst->encoding());
7593   emit_arith(0x81, 0xC0, dst, imm32);
7594 }
7595 
7596 void Assembler::addq(Register dst, Address src) {
7597   InstructionMark im(this);
7598   prefixq(src, dst);
7599   emit_int8(0x03);
7600   emit_operand(dst, src);
7601 }
7602 
7603 void Assembler::addq(Register dst, Register src) {
7604   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7605   emit_arith(0x03, 0xC0, dst, src);
7606 }
7607 
7608 void Assembler::adcxq(Register dst, Register src) {
7609   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7610   emit_int8((unsigned char)0x66);
7611   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7612   emit_int8(0x0F);
7613   emit_int8(0x38);
7614   emit_int8((unsigned char)0xF6);
7615   emit_int8((unsigned char)(0xC0 | encode));
7616 }
7617 
7618 void Assembler::adoxq(Register dst, Register src) {
7619   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7620   emit_int8((unsigned char)0xF3);
7621   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7622   emit_int8(0x0F);
7623   emit_int8(0x38);
7624   emit_int8((unsigned char)0xF6);
7625   emit_int8((unsigned char)(0xC0 | encode));
7626 }
7627 
7628 void Assembler::andq(Address dst, int32_t imm32) {
7629   InstructionMark im(this);
7630   prefixq(dst);
7631   emit_int8((unsigned char)0x81);
7632   emit_operand(rsp, dst, 4);
7633   emit_int32(imm32);
7634 }
7635 
7636 void Assembler::andq(Register dst, int32_t imm32) {
7637   (void) prefixq_and_encode(dst->encoding());
7638   emit_arith(0x81, 0xE0, dst, imm32);
7639 }
7640 
7641 void Assembler::andq(Register dst, Address src) {
7642   InstructionMark im(this);
7643   prefixq(src, dst);
7644   emit_int8(0x23);
7645   emit_operand(dst, src);
7646 }
7647 
7648 void Assembler::andq(Register dst, Register src) {
7649   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7650   emit_arith(0x23, 0xC0, dst, src);
7651 }
7652 
7653 void Assembler::andnq(Register dst, Register src1, Register src2) {
7654   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7655   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7656   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7657   emit_int8((unsigned char)0xF2);
7658   emit_int8((unsigned char)(0xC0 | encode));
7659 }
7660 
7661 void Assembler::andnq(Register dst, Register src1, Address src2) {
7662   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7663   InstructionMark im(this);
7664   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7665   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7666   emit_int8((unsigned char)0xF2);
7667   emit_operand(dst, src2);
7668 }
7669 
7670 void Assembler::bsfq(Register dst, Register src) {
7671   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7672   emit_int8(0x0F);
7673   emit_int8((unsigned char)0xBC);
7674   emit_int8((unsigned char)(0xC0 | encode));
7675 }
7676 
7677 void Assembler::bsrq(Register dst, Register src) {
7678   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7679   emit_int8(0x0F);
7680   emit_int8((unsigned char)0xBD);
7681   emit_int8((unsigned char)(0xC0 | encode));
7682 }
7683 
7684 void Assembler::bswapq(Register reg) {
7685   int encode = prefixq_and_encode(reg->encoding());
7686   emit_int8(0x0F);
7687   emit_int8((unsigned char)(0xC8 | encode));
7688 }
7689 
7690 void Assembler::blsiq(Register dst, Register src) {
7691   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7692   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7693   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7694   emit_int8((unsigned char)0xF3);
7695   emit_int8((unsigned char)(0xC0 | encode));
7696 }
7697 
7698 void Assembler::blsiq(Register dst, Address src) {
7699   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7700   InstructionMark im(this);
7701   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7702   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7703   emit_int8((unsigned char)0xF3);
7704   emit_operand(rbx, src);
7705 }
7706 
7707 void Assembler::blsmskq(Register dst, Register src) {
7708   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7709   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7710   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7711   emit_int8((unsigned char)0xF3);
7712   emit_int8((unsigned char)(0xC0 | encode));
7713 }
7714 
7715 void Assembler::blsmskq(Register dst, Address src) {
7716   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7717   InstructionMark im(this);
7718   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7719   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7720   emit_int8((unsigned char)0xF3);
7721   emit_operand(rdx, src);
7722 }
7723 
7724 void Assembler::blsrq(Register dst, Register src) {
7725   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7726   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7727   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7728   emit_int8((unsigned char)0xF3);
7729   emit_int8((unsigned char)(0xC0 | encode));
7730 }
7731 
7732 void Assembler::blsrq(Register dst, Address src) {
7733   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7734   InstructionMark im(this);
7735   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7736   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7737   emit_int8((unsigned char)0xF3);
7738   emit_operand(rcx, src);
7739 }
7740 
7741 void Assembler::cdqq() {
7742   prefix(REX_W);
7743   emit_int8((unsigned char)0x99);
7744 }
7745 
7746 void Assembler::clflush(Address adr) {
7747   prefix(adr);
7748   emit_int8(0x0F);
7749   emit_int8((unsigned char)0xAE);
7750   emit_operand(rdi, adr);
7751 }
7752 
7753 void Assembler::cmovq(Condition cc, Register dst, Register src) {
7754   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7755   emit_int8(0x0F);
7756   emit_int8(0x40 | cc);
7757   emit_int8((unsigned char)(0xC0 | encode));
7758 }
7759 
7760 void Assembler::cmovq(Condition cc, Register dst, Address src) {
7761   InstructionMark im(this);
7762   prefixq(src, dst);
7763   emit_int8(0x0F);
7764   emit_int8(0x40 | cc);
7765   emit_operand(dst, src);
7766 }
7767 
7768 void Assembler::cmpq(Address dst, int32_t imm32) {
7769   InstructionMark im(this);
7770   prefixq(dst);
7771   emit_int8((unsigned char)0x81);
7772   emit_operand(rdi, dst, 4);
7773   emit_int32(imm32);
7774 }
7775 
7776 void Assembler::cmpq(Register dst, int32_t imm32) {
7777   (void) prefixq_and_encode(dst->encoding());
7778   emit_arith(0x81, 0xF8, dst, imm32);
7779 }
7780 
7781 void Assembler::cmpq(Address dst, Register src) {
7782   InstructionMark im(this);
7783   prefixq(dst, src);
7784   emit_int8(0x3B);
7785   emit_operand(src, dst);
7786 }
7787 
7788 void Assembler::cmpq(Register dst, Register src) {
7789   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7790   emit_arith(0x3B, 0xC0, dst, src);
7791 }
7792 
7793 void Assembler::cmpq(Register dst, Address  src) {
7794   InstructionMark im(this);
7795   prefixq(src, dst);
7796   emit_int8(0x3B);
7797   emit_operand(dst, src);
7798 }
7799 
7800 void Assembler::cmpxchgq(Register reg, Address adr) {
7801   InstructionMark im(this);
7802   prefixq(adr, reg);
7803   emit_int8(0x0F);
7804   emit_int8((unsigned char)0xB1);
7805   emit_operand(reg, adr);
7806 }
7807 
7808 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
7809   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7810   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7811   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7812   emit_int8(0x2A);
7813   emit_int8((unsigned char)(0xC0 | encode));
7814 }
7815 
7816 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
7817   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7818   InstructionMark im(this);
7819   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7820   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7821   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7822   emit_int8(0x2A);
7823   emit_operand(dst, src);
7824 }
7825 
7826 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
7827   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7828   InstructionMark im(this);
7829   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7830   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7831   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7832   emit_int8(0x2A);
7833   emit_operand(dst, src);
7834 }
7835 
7836 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
7837   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7838   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7839   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7840   emit_int8(0x2C);
7841   emit_int8((unsigned char)(0xC0 | encode));
7842 }
7843 
7844 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
7845   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7846   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7847   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7848   emit_int8(0x2C);
7849   emit_int8((unsigned char)(0xC0 | encode));
7850 }
7851 
7852 void Assembler::decl(Register dst) {
7853   // Don't use it directly. Use MacroAssembler::decrementl() instead.
7854   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
7855   int encode = prefix_and_encode(dst->encoding());
7856   emit_int8((unsigned char)0xFF);
7857   emit_int8((unsigned char)(0xC8 | encode));
7858 }
7859 
7860 void Assembler::decq(Register dst) {
7861   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7862   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7863   int encode = prefixq_and_encode(dst->encoding());
7864   emit_int8((unsigned char)0xFF);
7865   emit_int8(0xC8 | encode);
7866 }
7867 
7868 void Assembler::decq(Address dst) {
7869   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7870   InstructionMark im(this);
7871   prefixq(dst);
7872   emit_int8((unsigned char)0xFF);
7873   emit_operand(rcx, dst);
7874 }
7875 
7876 void Assembler::fxrstor(Address src) {
7877   prefixq(src);
7878   emit_int8(0x0F);
7879   emit_int8((unsigned char)0xAE);
7880   emit_operand(as_Register(1), src);
7881 }
7882 
7883 void Assembler::xrstor(Address src) {
7884   prefixq(src);
7885   emit_int8(0x0F);
7886   emit_int8((unsigned char)0xAE);
7887   emit_operand(as_Register(5), src);
7888 }
7889 
7890 void Assembler::fxsave(Address dst) {
7891   prefixq(dst);
7892   emit_int8(0x0F);
7893   emit_int8((unsigned char)0xAE);
7894   emit_operand(as_Register(0), dst);
7895 }
7896 
7897 void Assembler::xsave(Address dst) {
7898   prefixq(dst);
7899   emit_int8(0x0F);
7900   emit_int8((unsigned char)0xAE);
7901   emit_operand(as_Register(4), dst);
7902 }
7903 
7904 void Assembler::idivq(Register src) {
7905   int encode = prefixq_and_encode(src->encoding());
7906   emit_int8((unsigned char)0xF7);
7907   emit_int8((unsigned char)(0xF8 | encode));
7908 }
7909 
7910 void Assembler::imulq(Register dst, Register src) {
7911   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7912   emit_int8(0x0F);
7913   emit_int8((unsigned char)0xAF);
7914   emit_int8((unsigned char)(0xC0 | encode));
7915 }
7916 
7917 void Assembler::imulq(Register dst, Register src, int value) {
7918   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7919   if (is8bit(value)) {
7920     emit_int8(0x6B);
7921     emit_int8((unsigned char)(0xC0 | encode));
7922     emit_int8(value & 0xFF);
7923   } else {
7924     emit_int8(0x69);
7925     emit_int8((unsigned char)(0xC0 | encode));
7926     emit_int32(value);
7927   }
7928 }
7929 
7930 void Assembler::imulq(Register dst, Address src) {
7931   InstructionMark im(this);
7932   prefixq(src, dst);
7933   emit_int8(0x0F);
7934   emit_int8((unsigned char) 0xAF);
7935   emit_operand(dst, src);
7936 }
7937 
7938 void Assembler::incl(Register dst) {
7939   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7940   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7941   int encode = prefix_and_encode(dst->encoding());
7942   emit_int8((unsigned char)0xFF);
7943   emit_int8((unsigned char)(0xC0 | encode));
7944 }
7945 
7946 void Assembler::incq(Register dst) {
7947   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7948   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7949   int encode = prefixq_and_encode(dst->encoding());
7950   emit_int8((unsigned char)0xFF);
7951   emit_int8((unsigned char)(0xC0 | encode));
7952 }
7953 
7954 void Assembler::incq(Address dst) {
7955   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7956   InstructionMark im(this);
7957   prefixq(dst);
7958   emit_int8((unsigned char)0xFF);
7959   emit_operand(rax, dst);
7960 }
7961 
7962 void Assembler::lea(Register dst, Address src) {
7963   leaq(dst, src);
7964 }
7965 
7966 void Assembler::leaq(Register dst, Address src) {
7967   InstructionMark im(this);
7968   prefixq(src, dst);
7969   emit_int8((unsigned char)0x8D);
7970   emit_operand(dst, src);
7971 }
7972 
7973 void Assembler::mov64(Register dst, int64_t imm64) {
7974   InstructionMark im(this);
7975   int encode = prefixq_and_encode(dst->encoding());
7976   emit_int8((unsigned char)(0xB8 | encode));
7977   emit_int64(imm64);
7978 }
7979 
7980 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
7981   InstructionMark im(this);
7982   int encode = prefixq_and_encode(dst->encoding());
7983   emit_int8(0xB8 | encode);
7984   emit_data64(imm64, rspec);
7985 }
7986 
7987 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7988   InstructionMark im(this);
7989   int encode = prefix_and_encode(dst->encoding());
7990   emit_int8((unsigned char)(0xB8 | encode));
7991   emit_data((int)imm32, rspec, narrow_oop_operand);
7992 }
7993 
7994 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
7995   InstructionMark im(this);
7996   prefix(dst);
7997   emit_int8((unsigned char)0xC7);
7998   emit_operand(rax, dst, 4);
7999   emit_data((int)imm32, rspec, narrow_oop_operand);
8000 }
8001 
8002 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
8003   InstructionMark im(this);
8004   int encode = prefix_and_encode(src1->encoding());
8005   emit_int8((unsigned char)0x81);
8006   emit_int8((unsigned char)(0xF8 | encode));
8007   emit_data((int)imm32, rspec, narrow_oop_operand);
8008 }
8009 
8010 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
8011   InstructionMark im(this);
8012   prefix(src1);
8013   emit_int8((unsigned char)0x81);
8014   emit_operand(rax, src1, 4);
8015   emit_data((int)imm32, rspec, narrow_oop_operand);
8016 }
8017 
8018 void Assembler::lzcntq(Register dst, Register src) {
8019   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
8020   emit_int8((unsigned char)0xF3);
8021   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8022   emit_int8(0x0F);
8023   emit_int8((unsigned char)0xBD);
8024   emit_int8((unsigned char)(0xC0 | encode));
8025 }
8026 
8027 void Assembler::movdq(XMMRegister dst, Register src) {
8028   // table D-1 says MMX/SSE2
8029   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8030   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8031   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8032   emit_int8(0x6E);
8033   emit_int8((unsigned char)(0xC0 | encode));
8034 }
8035 
8036 void Assembler::movdq(Register dst, XMMRegister src) {
8037   // table D-1 says MMX/SSE2
8038   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8039   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8040   // swap src/dst to get correct prefix
8041   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8042   emit_int8(0x7E);
8043   emit_int8((unsigned char)(0xC0 | encode));
8044 }
8045 
8046 void Assembler::movq(Register dst, Register src) {
8047   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8048   emit_int8((unsigned char)0x8B);
8049   emit_int8((unsigned char)(0xC0 | encode));
8050 }
8051 
8052 void Assembler::movq(Register dst, Address src) {
8053   InstructionMark im(this);
8054   prefixq(src, dst);
8055   emit_int8((unsigned char)0x8B);
8056   emit_operand(dst, src);
8057 }
8058 
8059 void Assembler::movq(Address dst, Register src) {
8060   InstructionMark im(this);
8061   prefixq(dst, src);
8062   emit_int8((unsigned char)0x89);
8063   emit_operand(src, dst);
8064 }
8065 
8066 void Assembler::movsbq(Register dst, Address src) {
8067   InstructionMark im(this);
8068   prefixq(src, dst);
8069   emit_int8(0x0F);
8070   emit_int8((unsigned char)0xBE);
8071   emit_operand(dst, src);
8072 }
8073 
8074 void Assembler::movsbq(Register dst, Register src) {
8075   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8076   emit_int8(0x0F);
8077   emit_int8((unsigned char)0xBE);
8078   emit_int8((unsigned char)(0xC0 | encode));
8079 }
8080 
8081 void Assembler::movslq(Register dst, int32_t imm32) {
8082   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
8083   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
8084   // as a result we shouldn't use until tested at runtime...
8085   ShouldNotReachHere();
8086   InstructionMark im(this);
8087   int encode = prefixq_and_encode(dst->encoding());
8088   emit_int8((unsigned char)(0xC7 | encode));
8089   emit_int32(imm32);
8090 }
8091 
8092 void Assembler::movslq(Address dst, int32_t imm32) {
8093   assert(is_simm32(imm32), "lost bits");
8094   InstructionMark im(this);
8095   prefixq(dst);
8096   emit_int8((unsigned char)0xC7);
8097   emit_operand(rax, dst, 4);
8098   emit_int32(imm32);
8099 }
8100 
8101 void Assembler::movslq(Register dst, Address src) {
8102   InstructionMark im(this);
8103   prefixq(src, dst);
8104   emit_int8(0x63);
8105   emit_operand(dst, src);
8106 }
8107 
8108 void Assembler::movslq(Register dst, Register src) {
8109   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8110   emit_int8(0x63);
8111   emit_int8((unsigned char)(0xC0 | encode));
8112 }
8113 
8114 void Assembler::movswq(Register dst, Address src) {
8115   InstructionMark im(this);
8116   prefixq(src, dst);
8117   emit_int8(0x0F);
8118   emit_int8((unsigned char)0xBF);
8119   emit_operand(dst, src);
8120 }
8121 
8122 void Assembler::movswq(Register dst, Register src) {
8123   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8124   emit_int8((unsigned char)0x0F);
8125   emit_int8((unsigned char)0xBF);
8126   emit_int8((unsigned char)(0xC0 | encode));
8127 }
8128 
8129 void Assembler::movzbq(Register dst, Address src) {
8130   InstructionMark im(this);
8131   prefixq(src, dst);
8132   emit_int8((unsigned char)0x0F);
8133   emit_int8((unsigned char)0xB6);
8134   emit_operand(dst, src);
8135 }
8136 
8137 void Assembler::movzbq(Register dst, Register src) {
8138   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8139   emit_int8(0x0F);
8140   emit_int8((unsigned char)0xB6);
8141   emit_int8(0xC0 | encode);
8142 }
8143 
8144 void Assembler::movzwq(Register dst, Address src) {
8145   InstructionMark im(this);
8146   prefixq(src, dst);
8147   emit_int8((unsigned char)0x0F);
8148   emit_int8((unsigned char)0xB7);
8149   emit_operand(dst, src);
8150 }
8151 
8152 void Assembler::movzwq(Register dst, Register src) {
8153   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8154   emit_int8((unsigned char)0x0F);
8155   emit_int8((unsigned char)0xB7);
8156   emit_int8((unsigned char)(0xC0 | encode));
8157 }
8158 
8159 void Assembler::mulq(Address src) {
8160   InstructionMark im(this);
8161   prefixq(src);
8162   emit_int8((unsigned char)0xF7);
8163   emit_operand(rsp, src);
8164 }
8165 
8166 void Assembler::mulq(Register src) {
8167   int encode = prefixq_and_encode(src->encoding());
8168   emit_int8((unsigned char)0xF7);
8169   emit_int8((unsigned char)(0xE0 | encode));
8170 }
8171 
8172 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
8173   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8174   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8175   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
8176   emit_int8((unsigned char)0xF6);
8177   emit_int8((unsigned char)(0xC0 | encode));
8178 }
8179 
8180 void Assembler::negq(Register dst) {
8181   int encode = prefixq_and_encode(dst->encoding());
8182   emit_int8((unsigned char)0xF7);
8183   emit_int8((unsigned char)(0xD8 | encode));
8184 }
8185 
8186 void Assembler::notq(Register dst) {
8187   int encode = prefixq_and_encode(dst->encoding());
8188   emit_int8((unsigned char)0xF7);
8189   emit_int8((unsigned char)(0xD0 | encode));
8190 }
8191 
8192 void Assembler::orq(Address dst, int32_t imm32) {
8193   InstructionMark im(this);
8194   prefixq(dst);
8195   emit_int8((unsigned char)0x81);
8196   emit_operand(rcx, dst, 4);
8197   emit_int32(imm32);
8198 }
8199 
8200 void Assembler::orq(Register dst, int32_t imm32) {
8201   (void) prefixq_and_encode(dst->encoding());
8202   emit_arith(0x81, 0xC8, dst, imm32);
8203 }
8204 
8205 void Assembler::orq(Register dst, Address src) {
8206   InstructionMark im(this);
8207   prefixq(src, dst);
8208   emit_int8(0x0B);
8209   emit_operand(dst, src);
8210 }
8211 
8212 void Assembler::orq(Register dst, Register src) {
8213   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8214   emit_arith(0x0B, 0xC0, dst, src);
8215 }
8216 
8217 void Assembler::popa() { // 64bit
8218   movq(r15, Address(rsp, 0));
8219   movq(r14, Address(rsp, wordSize));
8220   movq(r13, Address(rsp, 2 * wordSize));
8221   movq(r12, Address(rsp, 3 * wordSize));
8222   movq(r11, Address(rsp, 4 * wordSize));
8223   movq(r10, Address(rsp, 5 * wordSize));
8224   movq(r9,  Address(rsp, 6 * wordSize));
8225   movq(r8,  Address(rsp, 7 * wordSize));
8226   movq(rdi, Address(rsp, 8 * wordSize));
8227   movq(rsi, Address(rsp, 9 * wordSize));
8228   movq(rbp, Address(rsp, 10 * wordSize));
8229   // skip rsp
8230   movq(rbx, Address(rsp, 12 * wordSize));
8231   movq(rdx, Address(rsp, 13 * wordSize));
8232   movq(rcx, Address(rsp, 14 * wordSize));
8233   movq(rax, Address(rsp, 15 * wordSize));
8234 
8235   addq(rsp, 16 * wordSize);
8236 }
8237 
8238 void Assembler::popcntq(Register dst, Address src) {
8239   assert(VM_Version::supports_popcnt(), "must support");
8240   InstructionMark im(this);
8241   emit_int8((unsigned char)0xF3);
8242   prefixq(src, dst);
8243   emit_int8((unsigned char)0x0F);
8244   emit_int8((unsigned char)0xB8);
8245   emit_operand(dst, src);
8246 }
8247 
8248 void Assembler::popcntq(Register dst, Register src) {
8249   assert(VM_Version::supports_popcnt(), "must support");
8250   emit_int8((unsigned char)0xF3);
8251   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8252   emit_int8((unsigned char)0x0F);
8253   emit_int8((unsigned char)0xB8);
8254   emit_int8((unsigned char)(0xC0 | encode));
8255 }
8256 
8257 void Assembler::popq(Address dst) {
8258   InstructionMark im(this);
8259   prefixq(dst);
8260   emit_int8((unsigned char)0x8F);
8261   emit_operand(rax, dst);
8262 }
8263 
8264 void Assembler::pusha() { // 64bit
8265   // we have to store original rsp.  ABI says that 128 bytes
8266   // below rsp are local scratch.
8267   movq(Address(rsp, -5 * wordSize), rsp);
8268 
8269   subq(rsp, 16 * wordSize);
8270 
8271   movq(Address(rsp, 15 * wordSize), rax);
8272   movq(Address(rsp, 14 * wordSize), rcx);
8273   movq(Address(rsp, 13 * wordSize), rdx);
8274   movq(Address(rsp, 12 * wordSize), rbx);
8275   // skip rsp
8276   movq(Address(rsp, 10 * wordSize), rbp);
8277   movq(Address(rsp, 9 * wordSize), rsi);
8278   movq(Address(rsp, 8 * wordSize), rdi);
8279   movq(Address(rsp, 7 * wordSize), r8);
8280   movq(Address(rsp, 6 * wordSize), r9);
8281   movq(Address(rsp, 5 * wordSize), r10);
8282   movq(Address(rsp, 4 * wordSize), r11);
8283   movq(Address(rsp, 3 * wordSize), r12);
8284   movq(Address(rsp, 2 * wordSize), r13);
8285   movq(Address(rsp, wordSize), r14);
8286   movq(Address(rsp, 0), r15);
8287 }
8288 
8289 void Assembler::pushq(Address src) {
8290   InstructionMark im(this);
8291   prefixq(src);
8292   emit_int8((unsigned char)0xFF);
8293   emit_operand(rsi, src);
8294 }
8295 
8296 void Assembler::rclq(Register dst, int imm8) {
8297   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8298   int encode = prefixq_and_encode(dst->encoding());
8299   if (imm8 == 1) {
8300     emit_int8((unsigned char)0xD1);
8301     emit_int8((unsigned char)(0xD0 | encode));
8302   } else {
8303     emit_int8((unsigned char)0xC1);
8304     emit_int8((unsigned char)(0xD0 | encode));
8305     emit_int8(imm8);
8306   }
8307 }
8308 
8309 void Assembler::rcrq(Register dst, int imm8) {
8310   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8311   int encode = prefixq_and_encode(dst->encoding());
8312   if (imm8 == 1) {
8313     emit_int8((unsigned char)0xD1);
8314     emit_int8((unsigned char)(0xD8 | encode));
8315   } else {
8316     emit_int8((unsigned char)0xC1);
8317     emit_int8((unsigned char)(0xD8 | encode));
8318     emit_int8(imm8);
8319   }
8320 }
8321 
8322 void Assembler::rorq(Register dst, int imm8) {
8323   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8324   int encode = prefixq_and_encode(dst->encoding());
8325   if (imm8 == 1) {
8326     emit_int8((unsigned char)0xD1);
8327     emit_int8((unsigned char)(0xC8 | encode));
8328   } else {
8329     emit_int8((unsigned char)0xC1);
8330     emit_int8((unsigned char)(0xc8 | encode));
8331     emit_int8(imm8);
8332   }
8333 }
8334 
8335 void Assembler::rorxq(Register dst, Register src, int imm8) {
8336   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8337   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8338   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8339   emit_int8((unsigned char)0xF0);
8340   emit_int8((unsigned char)(0xC0 | encode));
8341   emit_int8(imm8);
8342 }
8343 
8344 void Assembler::rorxd(Register dst, Register src, int imm8) {
8345   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8346   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8347   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8348   emit_int8((unsigned char)0xF0);
8349   emit_int8((unsigned char)(0xC0 | encode));
8350   emit_int8(imm8);
8351 }
8352 
8353 void Assembler::sarq(Register dst, int imm8) {
8354   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8355   int encode = prefixq_and_encode(dst->encoding());
8356   if (imm8 == 1) {
8357     emit_int8((unsigned char)0xD1);
8358     emit_int8((unsigned char)(0xF8 | encode));
8359   } else {
8360     emit_int8((unsigned char)0xC1);
8361     emit_int8((unsigned char)(0xF8 | encode));
8362     emit_int8(imm8);
8363   }
8364 }
8365 
8366 void Assembler::sarq(Register dst) {
8367   int encode = prefixq_and_encode(dst->encoding());
8368   emit_int8((unsigned char)0xD3);
8369   emit_int8((unsigned char)(0xF8 | encode));
8370 }
8371 
8372 void Assembler::sbbq(Address dst, int32_t imm32) {
8373   InstructionMark im(this);
8374   prefixq(dst);
8375   emit_arith_operand(0x81, rbx, dst, imm32);
8376 }
8377 
8378 void Assembler::sbbq(Register dst, int32_t imm32) {
8379   (void) prefixq_and_encode(dst->encoding());
8380   emit_arith(0x81, 0xD8, dst, imm32);
8381 }
8382 
8383 void Assembler::sbbq(Register dst, Address src) {
8384   InstructionMark im(this);
8385   prefixq(src, dst);
8386   emit_int8(0x1B);
8387   emit_operand(dst, src);
8388 }
8389 
8390 void Assembler::sbbq(Register dst, Register src) {
8391   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8392   emit_arith(0x1B, 0xC0, dst, src);
8393 }
8394 
8395 void Assembler::shlq(Register dst, int imm8) {
8396   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8397   int encode = prefixq_and_encode(dst->encoding());
8398   if (imm8 == 1) {
8399     emit_int8((unsigned char)0xD1);
8400     emit_int8((unsigned char)(0xE0 | encode));
8401   } else {
8402     emit_int8((unsigned char)0xC1);
8403     emit_int8((unsigned char)(0xE0 | encode));
8404     emit_int8(imm8);
8405   }
8406 }
8407 
8408 void Assembler::shlq(Register dst) {
8409   int encode = prefixq_and_encode(dst->encoding());
8410   emit_int8((unsigned char)0xD3);
8411   emit_int8((unsigned char)(0xE0 | encode));
8412 }
8413 
8414 void Assembler::shrq(Register dst, int imm8) {
8415   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8416   int encode = prefixq_and_encode(dst->encoding());
8417   emit_int8((unsigned char)0xC1);
8418   emit_int8((unsigned char)(0xE8 | encode));
8419   emit_int8(imm8);
8420 }
8421 
8422 void Assembler::shrq(Register dst) {
8423   int encode = prefixq_and_encode(dst->encoding());
8424   emit_int8((unsigned char)0xD3);
8425   emit_int8(0xE8 | encode);
8426 }
8427 
8428 void Assembler::subq(Address dst, int32_t imm32) {
8429   InstructionMark im(this);
8430   prefixq(dst);
8431   emit_arith_operand(0x81, rbp, dst, imm32);
8432 }
8433 
8434 void Assembler::subq(Address dst, Register src) {
8435   InstructionMark im(this);
8436   prefixq(dst, src);
8437   emit_int8(0x29);
8438   emit_operand(src, dst);
8439 }
8440 
8441 void Assembler::subq(Register dst, int32_t imm32) {
8442   (void) prefixq_and_encode(dst->encoding());
8443   emit_arith(0x81, 0xE8, dst, imm32);
8444 }
8445 
8446 // Force generation of a 4 byte immediate value even if it fits into 8bit
8447 void Assembler::subq_imm32(Register dst, int32_t imm32) {
8448   (void) prefixq_and_encode(dst->encoding());
8449   emit_arith_imm32(0x81, 0xE8, dst, imm32);
8450 }
8451 
8452 void Assembler::subq(Register dst, Address src) {
8453   InstructionMark im(this);
8454   prefixq(src, dst);
8455   emit_int8(0x2B);
8456   emit_operand(dst, src);
8457 }
8458 
8459 void Assembler::subq(Register dst, Register src) {
8460   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8461   emit_arith(0x2B, 0xC0, dst, src);
8462 }
8463 
8464 void Assembler::testq(Register dst, int32_t imm32) {
8465   // not using emit_arith because test
8466   // doesn't support sign-extension of
8467   // 8bit operands
8468   int encode = dst->encoding();
8469   if (encode == 0) {
8470     prefix(REX_W);
8471     emit_int8((unsigned char)0xA9);
8472   } else {
8473     encode = prefixq_and_encode(encode);
8474     emit_int8((unsigned char)0xF7);
8475     emit_int8((unsigned char)(0xC0 | encode));
8476   }
8477   emit_int32(imm32);
8478 }
8479 
8480 void Assembler::testq(Register dst, Register src) {
8481   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8482   emit_arith(0x85, 0xC0, dst, src);
8483 }
8484 
8485 void Assembler::xaddq(Address dst, Register src) {
8486   InstructionMark im(this);
8487   prefixq(dst, src);
8488   emit_int8(0x0F);
8489   emit_int8((unsigned char)0xC1);
8490   emit_operand(src, dst);
8491 }
8492 
8493 void Assembler::xchgq(Register dst, Address src) {
8494   InstructionMark im(this);
8495   prefixq(src, dst);
8496   emit_int8((unsigned char)0x87);
8497   emit_operand(dst, src);
8498 }
8499 
8500 void Assembler::xchgq(Register dst, Register src) {
8501   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8502   emit_int8((unsigned char)0x87);
8503   emit_int8((unsigned char)(0xc0 | encode));
8504 }
8505 
8506 void Assembler::xorq(Register dst, Register src) {
8507   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8508   emit_arith(0x33, 0xC0, dst, src);
8509 }
8510 
8511 void Assembler::xorq(Register dst, Address src) {
8512   InstructionMark im(this);
8513   prefixq(src, dst);
8514   emit_int8(0x33);
8515   emit_operand(dst, src);
8516 }
8517 
8518 #endif // !LP64