1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "runtime/java.hpp"
  30 #include "runtime/os.hpp"
  31 #include "runtime/stubCodeGenerator.hpp"
  32 #include "vm_version_x86.hpp"
  33 
  34 
  35 int VM_Version::_cpu;
  36 int VM_Version::_model;
  37 int VM_Version::_stepping;
  38 VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, };
  39 
  40 // Address of instruction which causes SEGV
  41 address VM_Version::_cpuinfo_segv_addr = 0;
  42 // Address of instruction after the one which causes SEGV
  43 address VM_Version::_cpuinfo_cont_addr = 0;
  44 
  45 static BufferBlob* stub_blob;
  46 static const int stub_size = 1000;
  47 
  48 extern "C" {
  49   typedef void (*get_cpu_info_stub_t)(void*);
  50 }
  51 static get_cpu_info_stub_t get_cpu_info_stub = NULL;
  52 
  53 
  54 class VM_Version_StubGenerator: public StubCodeGenerator {
  55  public:
  56 
  57   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
  58 
  59   address generate_get_cpu_info() {
  60     // Flags to test CPU type.
  61     const uint32_t HS_EFL_AC = 0x40000;
  62     const uint32_t HS_EFL_ID = 0x200000;
  63     // Values for when we don't have a CPUID instruction.
  64     const int      CPU_FAMILY_SHIFT = 8;
  65     const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT);
  66     const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT);
  67 
  68     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
  69     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done, wrapup;
  70     Label legacy_setup, save_restore_except, legacy_save_restore, start_simd_check;
  71 
  72     StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub");
  73 #   define __ _masm->
  74 
  75     address start = __ pc();
  76 
  77     //
  78     // void get_cpu_info(VM_Version::CpuidInfo* cpuid_info);
  79     //
  80     // LP64: rcx and rdx are first and second argument registers on windows
  81 
  82     __ push(rbp);
  83 #ifdef _LP64
  84     __ mov(rbp, c_rarg0); // cpuid_info address
  85 #else
  86     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
  87 #endif
  88     __ push(rbx);
  89     __ push(rsi);
  90     __ pushf();          // preserve rbx, and flags
  91     __ pop(rax);
  92     __ push(rax);
  93     __ mov(rcx, rax);
  94     //
  95     // if we are unable to change the AC flag, we have a 386
  96     //
  97     __ xorl(rax, HS_EFL_AC);
  98     __ push(rax);
  99     __ popf();
 100     __ pushf();
 101     __ pop(rax);
 102     __ cmpptr(rax, rcx);
 103     __ jccb(Assembler::notEqual, detect_486);
 104 
 105     __ movl(rax, CPU_FAMILY_386);
 106     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 107     __ jmp(done);
 108 
 109     //
 110     // If we are unable to change the ID flag, we have a 486 which does
 111     // not support the "cpuid" instruction.
 112     //
 113     __ bind(detect_486);
 114     __ mov(rax, rcx);
 115     __ xorl(rax, HS_EFL_ID);
 116     __ push(rax);
 117     __ popf();
 118     __ pushf();
 119     __ pop(rax);
 120     __ cmpptr(rcx, rax);
 121     __ jccb(Assembler::notEqual, detect_586);
 122 
 123     __ bind(cpu486);
 124     __ movl(rax, CPU_FAMILY_486);
 125     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 126     __ jmp(done);
 127 
 128     //
 129     // At this point, we have a chip which supports the "cpuid" instruction
 130     //
 131     __ bind(detect_586);
 132     __ xorl(rax, rax);
 133     __ cpuid();
 134     __ orl(rax, rax);
 135     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
 136                                         // value of at least 1, we give up and
 137                                         // assume a 486
 138     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 139     __ movl(Address(rsi, 0), rax);
 140     __ movl(Address(rsi, 4), rbx);
 141     __ movl(Address(rsi, 8), rcx);
 142     __ movl(Address(rsi,12), rdx);
 143 
 144     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
 145     __ jccb(Assembler::belowEqual, std_cpuid4);
 146 
 147     //
 148     // cpuid(0xB) Processor Topology
 149     //
 150     __ movl(rax, 0xb);
 151     __ xorl(rcx, rcx);   // Threads level
 152     __ cpuid();
 153 
 154     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
 155     __ movl(Address(rsi, 0), rax);
 156     __ movl(Address(rsi, 4), rbx);
 157     __ movl(Address(rsi, 8), rcx);
 158     __ movl(Address(rsi,12), rdx);
 159 
 160     __ movl(rax, 0xb);
 161     __ movl(rcx, 1);     // Cores level
 162     __ cpuid();
 163     __ push(rax);
 164     __ andl(rax, 0x1f);  // Determine if valid topology level
 165     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 166     __ andl(rax, 0xffff);
 167     __ pop(rax);
 168     __ jccb(Assembler::equal, std_cpuid4);
 169 
 170     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
 171     __ movl(Address(rsi, 0), rax);
 172     __ movl(Address(rsi, 4), rbx);
 173     __ movl(Address(rsi, 8), rcx);
 174     __ movl(Address(rsi,12), rdx);
 175 
 176     __ movl(rax, 0xb);
 177     __ movl(rcx, 2);     // Packages level
 178     __ cpuid();
 179     __ push(rax);
 180     __ andl(rax, 0x1f);  // Determine if valid topology level
 181     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 182     __ andl(rax, 0xffff);
 183     __ pop(rax);
 184     __ jccb(Assembler::equal, std_cpuid4);
 185 
 186     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
 187     __ movl(Address(rsi, 0), rax);
 188     __ movl(Address(rsi, 4), rbx);
 189     __ movl(Address(rsi, 8), rcx);
 190     __ movl(Address(rsi,12), rdx);
 191 
 192     //
 193     // cpuid(0x4) Deterministic cache params
 194     //
 195     __ bind(std_cpuid4);
 196     __ movl(rax, 4);
 197     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
 198     __ jccb(Assembler::greater, std_cpuid1);
 199 
 200     __ xorl(rcx, rcx);   // L1 cache
 201     __ cpuid();
 202     __ push(rax);
 203     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
 204     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
 205     __ pop(rax);
 206     __ jccb(Assembler::equal, std_cpuid1);
 207 
 208     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
 209     __ movl(Address(rsi, 0), rax);
 210     __ movl(Address(rsi, 4), rbx);
 211     __ movl(Address(rsi, 8), rcx);
 212     __ movl(Address(rsi,12), rdx);
 213 
 214     //
 215     // Standard cpuid(0x1)
 216     //
 217     __ bind(std_cpuid1);
 218     __ movl(rax, 1);
 219     __ cpuid();
 220     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 221     __ movl(Address(rsi, 0), rax);
 222     __ movl(Address(rsi, 4), rbx);
 223     __ movl(Address(rsi, 8), rcx);
 224     __ movl(Address(rsi,12), rdx);
 225 
 226     //
 227     // Check if OS has enabled XGETBV instruction to access XCR0
 228     // (OSXSAVE feature flag) and CPU supports AVX
 229     //
 230     __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
 231     __ cmpl(rcx, 0x18000000);
 232     __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
 233 
 234     //
 235     // XCR0, XFEATURE_ENABLED_MASK register
 236     //
 237     __ xorl(rcx, rcx);   // zero for XCR0 register
 238     __ xgetbv();
 239     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
 240     __ movl(Address(rsi, 0), rax);
 241     __ movl(Address(rsi, 4), rdx);
 242 
 243     //
 244     // cpuid(0x7) Structured Extended Features
 245     //
 246     __ bind(sef_cpuid);
 247     __ movl(rax, 7);
 248     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
 249     __ jccb(Assembler::greater, ext_cpuid);
 250 
 251     __ xorl(rcx, rcx);
 252     __ cpuid();
 253     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 254     __ movl(Address(rsi, 0), rax);
 255     __ movl(Address(rsi, 4), rbx);
 256 
 257     //
 258     // Extended cpuid(0x80000000)
 259     //
 260     __ bind(ext_cpuid);
 261     __ movl(rax, 0x80000000);
 262     __ cpuid();
 263     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
 264     __ jcc(Assembler::belowEqual, done);
 265     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
 266     __ jccb(Assembler::belowEqual, ext_cpuid1);
 267     __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
 268     __ jccb(Assembler::belowEqual, ext_cpuid5);
 269     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
 270     __ jccb(Assembler::belowEqual, ext_cpuid7);
 271     //
 272     // Extended cpuid(0x80000008)
 273     //
 274     __ movl(rax, 0x80000008);
 275     __ cpuid();
 276     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
 277     __ movl(Address(rsi, 0), rax);
 278     __ movl(Address(rsi, 4), rbx);
 279     __ movl(Address(rsi, 8), rcx);
 280     __ movl(Address(rsi,12), rdx);
 281 
 282     //
 283     // Extended cpuid(0x80000007)
 284     //
 285     __ bind(ext_cpuid7);
 286     __ movl(rax, 0x80000007);
 287     __ cpuid();
 288     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
 289     __ movl(Address(rsi, 0), rax);
 290     __ movl(Address(rsi, 4), rbx);
 291     __ movl(Address(rsi, 8), rcx);
 292     __ movl(Address(rsi,12), rdx);
 293 
 294     //
 295     // Extended cpuid(0x80000005)
 296     //
 297     __ bind(ext_cpuid5);
 298     __ movl(rax, 0x80000005);
 299     __ cpuid();
 300     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
 301     __ movl(Address(rsi, 0), rax);
 302     __ movl(Address(rsi, 4), rbx);
 303     __ movl(Address(rsi, 8), rcx);
 304     __ movl(Address(rsi,12), rdx);
 305 
 306     //
 307     // Extended cpuid(0x80000001)
 308     //
 309     __ bind(ext_cpuid1);
 310     __ movl(rax, 0x80000001);
 311     __ cpuid();
 312     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
 313     __ movl(Address(rsi, 0), rax);
 314     __ movl(Address(rsi, 4), rbx);
 315     __ movl(Address(rsi, 8), rcx);
 316     __ movl(Address(rsi,12), rdx);
 317 
 318     //
 319     // Check if OS has enabled XGETBV instruction to access XCR0
 320     // (OSXSAVE feature flag) and CPU supports AVX
 321     //
 322     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 323     __ movl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
 324     __ andl(rcx, Address(rsi, 8)); // cpuid1 bits osxsave | avx
 325     __ cmpl(rcx, 0x18000000);
 326     __ jccb(Assembler::notEqual, done); // jump if AVX is not supported
 327 
 328     __ movl(rax, 0x6);
 329     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 330     __ cmpl(rax, 0x6);
 331     __ jccb(Assembler::equal, start_simd_check); // return if AVX is not supported
 332 
 333     // we need to bridge farther than imm8, so we use this island as a thunk
 334     __ bind(done);
 335     __ jmp(wrapup);
 336 
 337     __ bind(start_simd_check);
 338     //
 339     // Some OSs have a bug when upper 128/256bits of YMM/ZMM
 340     // registers are not restored after a signal processing.
 341     // Generate SEGV here (reference through NULL)
 342     // and check upper YMM/ZMM bits after it.
 343     //
 344     intx saved_useavx = UseAVX;
 345     intx saved_usesse = UseSSE;
 346     // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
 347     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 348     __ movl(rax, 0x10000);
 349     __ andl(rax, Address(rsi, 4)); // xcr0 bits sse | ymm
 350     __ cmpl(rax, 0x10000);
 351     __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
 352     // check _cpuid_info.xem_xcr0_eax.bits.opmask
 353     // check _cpuid_info.xem_xcr0_eax.bits.zmm512
 354     // check _cpuid_info.xem_xcr0_eax.bits.zmm32
 355     __ movl(rax, 0xE0);
 356     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 357     __ cmpl(rax, 0xE0);
 358     __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
 359 
 360     // EVEX setup: run in lowest evex mode
 361     VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
 362     UseAVX = 3;
 363     UseSSE = 2;
 364     // load value into all 64 bytes of zmm7 register
 365     __ movl(rcx, VM_Version::ymm_test_value());
 366     __ movdl(xmm0, rcx);
 367     __ movl(rcx, 0xffff);
 368     __ kmovwl(k1, rcx);
 369     __ evpbroadcastd(xmm0, xmm0, Assembler::AVX_512bit);
 370     __ evmovdqul(xmm7, xmm0, Assembler::AVX_512bit);
 371 #ifdef _LP64
 372     __ evmovdqul(xmm8, xmm0, Assembler::AVX_512bit);
 373     __ evmovdqul(xmm31, xmm0, Assembler::AVX_512bit);
 374 #endif
 375     VM_Version::clean_cpuFeatures();
 376     __ jmp(save_restore_except);
 377 
 378     __ bind(legacy_setup);
 379     // AVX setup
 380     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
 381     UseAVX = 1;
 382     UseSSE = 2;
 383     // load value into all 32 bytes of ymm7 register
 384     __ movl(rcx, VM_Version::ymm_test_value());
 385 
 386     __ movdl(xmm0, rcx);
 387     __ pshufd(xmm0, xmm0, 0x00);
 388     __ vinsertf128_high(xmm0, xmm0);
 389     __ vmovdqu(xmm7, xmm0);
 390 #ifdef _LP64
 391     __ vmovdqu(xmm8, xmm0);
 392     __ vmovdqu(xmm15, xmm0);
 393 #endif
 394     VM_Version::clean_cpuFeatures();
 395 
 396     __ bind(save_restore_except);
 397     __ xorl(rsi, rsi);
 398     VM_Version::set_cpuinfo_segv_addr(__ pc());
 399     // Generate SEGV
 400     __ movl(rax, Address(rsi, 0));
 401 
 402     VM_Version::set_cpuinfo_cont_addr(__ pc());
 403     // Returns here after signal. Save xmm0 to check it later.
 404 
 405     // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
 406     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 407     __ movl(rax, 0x10000);
 408     __ andl(rax, Address(rsi, 4));
 409     __ cmpl(rax, 0x10000);
 410     __ jccb(Assembler::notEqual, legacy_save_restore);
 411     // check _cpuid_info.xem_xcr0_eax.bits.opmask
 412     // check _cpuid_info.xem_xcr0_eax.bits.zmm512
 413     // check _cpuid_info.xem_xcr0_eax.bits.zmm32
 414     __ movl(rax, 0xE0);
 415     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 416     __ cmpl(rax, 0xE0);
 417     __ jccb(Assembler::notEqual, legacy_save_restore);
 418 
 419     // EVEX check: run in lowest evex mode
 420     VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
 421     UseAVX = 3;
 422     UseSSE = 2;
 423     __ lea(rsi, Address(rbp, in_bytes(VM_Version::zmm_save_offset())));
 424     __ evmovdqul(Address(rsi, 0), xmm0, Assembler::AVX_512bit);
 425     __ evmovdqul(Address(rsi, 64), xmm7, Assembler::AVX_512bit);
 426 #ifdef _LP64
 427     __ evmovdqul(Address(rsi, 128), xmm8, Assembler::AVX_512bit);
 428     __ evmovdqul(Address(rsi, 192), xmm31, Assembler::AVX_512bit);
 429 #endif
 430     VM_Version::clean_cpuFeatures();
 431     UseAVX = saved_useavx;
 432     UseSSE = saved_usesse;
 433     __ jmp(wrapup);
 434 
 435     __ bind(legacy_save_restore);
 436     // AVX check
 437     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
 438     UseAVX = 1;
 439     UseSSE = 2;
 440     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
 441     __ vmovdqu(Address(rsi, 0), xmm0);
 442     __ vmovdqu(Address(rsi, 32), xmm7);
 443 #ifdef _LP64
 444     __ vmovdqu(Address(rsi, 64), xmm8);
 445     __ vmovdqu(Address(rsi, 96), xmm15);
 446 #endif
 447     VM_Version::clean_cpuFeatures();
 448     UseAVX = saved_useavx;
 449     UseSSE = saved_usesse;
 450 
 451     __ bind(wrapup);
 452     __ popf();
 453     __ pop(rsi);
 454     __ pop(rbx);
 455     __ pop(rbp);
 456     __ ret(0);
 457 
 458 #   undef __
 459 
 460     return start;
 461   };
 462 };
 463 
 464 void VM_Version::get_processor_features() {
 465 
 466   _cpu = 4; // 486 by default
 467   _model = 0;
 468   _stepping = 0;
 469   _features = 0;
 470   _logical_processors_per_package = 1;
 471   // i486 internal cache is both I&D and has a 16-byte line size
 472   _L1_data_cache_line_size = 16;
 473 
 474   // Get raw processor info
 475 
 476   get_cpu_info_stub(&_cpuid_info);
 477 
 478   assert_is_initialized();
 479   _cpu = extended_cpu_family();
 480   _model = extended_cpu_model();
 481   _stepping = cpu_stepping();
 482 
 483   if (cpu_family() > 4) { // it supports CPUID
 484     _features = feature_flags();
 485     // Logical processors are only available on P4s and above,
 486     // and only if hyperthreading is available.
 487     _logical_processors_per_package = logical_processor_count();
 488     _L1_data_cache_line_size = L1_line_size();
 489   }
 490 
 491   _supports_cx8 = supports_cmpxchg8();
 492   // xchg and xadd instructions
 493   _supports_atomic_getset4 = true;
 494   _supports_atomic_getadd4 = true;
 495   LP64_ONLY(_supports_atomic_getset8 = true);
 496   LP64_ONLY(_supports_atomic_getadd8 = true);
 497 
 498 #ifdef _LP64
 499   // OS should support SSE for x64 and hardware should support at least SSE2.
 500   if (!VM_Version::supports_sse2()) {
 501     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
 502   }
 503   // in 64 bit the use of SSE2 is the minimum
 504   if (UseSSE < 2) UseSSE = 2;
 505 #endif
 506 
 507 #ifdef AMD64
 508   // flush_icache_stub have to be generated first.
 509   // That is why Icache line size is hard coded in ICache class,
 510   // see icache_x86.hpp. It is also the reason why we can't use
 511   // clflush instruction in 32-bit VM since it could be running
 512   // on CPU which does not support it.
 513   //
 514   // The only thing we can do is to verify that flushed
 515   // ICache::line_size has correct value.
 516   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
 517   // clflush_size is size in quadwords (8 bytes).
 518   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
 519 #endif
 520 
 521   // If the OS doesn't support SSE, we can't use this feature even if the HW does
 522   if (!os::supports_sse())
 523     _features &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
 524 
 525   if (UseSSE < 4) {
 526     _features &= ~CPU_SSE4_1;
 527     _features &= ~CPU_SSE4_2;
 528   }
 529 
 530   if (UseSSE < 3) {
 531     _features &= ~CPU_SSE3;
 532     _features &= ~CPU_SSSE3;
 533     _features &= ~CPU_SSE4A;
 534   }
 535 
 536   if (UseSSE < 2)
 537     _features &= ~CPU_SSE2;
 538 
 539   if (UseSSE < 1)
 540     _features &= ~CPU_SSE;
 541 
 542   // first try initial setting and detect what we can support
 543   if (UseAVX > 0) {
 544     if (UseAVX > 2 && supports_evex()) {
 545       UseAVX = 3;
 546     } else if (UseAVX > 1 && supports_avx2()) {
 547       UseAVX = 2;
 548     } else if (UseAVX > 0 && supports_avx()) {
 549       UseAVX = 1;
 550     } else {
 551       UseAVX = 0;
 552     }
 553   } else if (UseAVX < 0) {
 554     UseAVX = 0;
 555   }
 556 
 557   if (UseAVX < 3) {
 558     _features &= ~CPU_AVX512F;
 559     _features &= ~CPU_AVX512DQ;
 560     _features &= ~CPU_AVX512CD;
 561     _features &= ~CPU_AVX512BW;
 562     _features &= ~CPU_AVX512VL;
 563   }
 564 
 565   if (UseAVX < 2)
 566     _features &= ~CPU_AVX2;
 567 
 568   if (UseAVX < 1)
 569     _features &= ~CPU_AVX;
 570 
 571   if (!UseAES && !FLAG_IS_DEFAULT(UseAES))
 572     _features &= ~CPU_AES;
 573 
 574   if (logical_processors_per_package() == 1) {
 575     // HT processor could be installed on a system which doesn't support HT.
 576     _features &= ~CPU_HT;
 577   }
 578 
 579   char buf[256];
 580   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
 581                cores_per_cpu(), threads_per_core(),
 582                cpu_family(), _model, _stepping,
 583                (supports_cmov() ? ", cmov" : ""),
 584                (supports_cmpxchg8() ? ", cx8" : ""),
 585                (supports_fxsr() ? ", fxsr" : ""),
 586                (supports_mmx()  ? ", mmx"  : ""),
 587                (supports_sse()  ? ", sse"  : ""),
 588                (supports_sse2() ? ", sse2" : ""),
 589                (supports_sse3() ? ", sse3" : ""),
 590                (supports_ssse3()? ", ssse3": ""),
 591                (supports_sse4_1() ? ", sse4.1" : ""),
 592                (supports_sse4_2() ? ", sse4.2" : ""),
 593                (supports_popcnt() ? ", popcnt" : ""),
 594                (supports_avx()    ? ", avx" : ""),
 595                (supports_avx2()   ? ", avx2" : ""),
 596                (supports_aes()    ? ", aes" : ""),
 597                (supports_clmul()  ? ", clmul" : ""),
 598                (supports_erms()   ? ", erms" : ""),
 599                (supports_rtm()    ? ", rtm" : ""),
 600                (supports_mmx_ext() ? ", mmxext" : ""),
 601                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
 602                (supports_lzcnt()   ? ", lzcnt": ""),
 603                (supports_sse4a()   ? ", sse4a": ""),
 604                (supports_ht() ? ", ht": ""),
 605                (supports_tsc() ? ", tsc": ""),
 606                (supports_tscinv_bit() ? ", tscinvbit": ""),
 607                (supports_tscinv() ? ", tscinv": ""),
 608                (supports_bmi1() ? ", bmi1" : ""),
 609                (supports_bmi2() ? ", bmi2" : ""),
 610                (supports_adx() ? ", adx" : ""),
 611                (supports_evex() ? ", evex" : ""),
 612                (supports_sha() ? ", sha" : ""));
 613   _features_string = os::strdup(buf);
 614 
 615   // UseSSE is set to the smaller of what hardware supports and what
 616   // the command line requires.  I.e., you cannot set UseSSE to 2 on
 617   // older Pentiums which do not support it.
 618   if (UseSSE > 4) UseSSE=4;
 619   if (UseSSE < 0) UseSSE=0;
 620   if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
 621     UseSSE = MIN2((intx)3,UseSSE);
 622   if (!supports_sse3()) // Drop to 2 if no SSE3 support
 623     UseSSE = MIN2((intx)2,UseSSE);
 624   if (!supports_sse2()) // Drop to 1 if no SSE2 support
 625     UseSSE = MIN2((intx)1,UseSSE);
 626   if (!supports_sse ()) // Drop to 0 if no SSE  support
 627     UseSSE = 0;
 628 
 629   // Use AES instructions if available.
 630   if (supports_aes()) {
 631     if (FLAG_IS_DEFAULT(UseAES)) {
 632       FLAG_SET_DEFAULT(UseAES, true);
 633     }
 634     if (!UseAES) {
 635       if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 636         warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled.");
 637       }
 638       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 639     } else {
 640       if (UseSSE > 2) {
 641         if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 642           FLAG_SET_DEFAULT(UseAESIntrinsics, true);
 643         }
 644       } else {
 645         // The AES intrinsic stubs require AES instruction support (of course)
 646         // but also require sse3 mode or higher for instructions it use.
 647         if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 648           warning("X86 AES intrinsics require SSE3 instructions or higher. Intrinsics will be disabled.");
 649         }
 650         FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 651       }
 652 
 653       // --AES-CTR begins--
 654       if (!UseAESIntrinsics) {
 655         if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 656           warning("AES-CTR intrinsics require UseAESIntrinsics flag to be enabled. Intrinsics will be disabled.");
 657           FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 658         }
 659       } else {
 660         if(supports_sse4_1() && UseSSE >= 4) {
 661           if (FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 662             FLAG_SET_DEFAULT(UseAESCTRIntrinsics, true);
 663           }
 664         } else {
 665            // The AES-CTR intrinsic stubs require AES instruction support (of course)
 666            // but also require sse4.1 mode or higher for instructions it use.
 667           if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 668              warning("X86 AES-CTR intrinsics require SSE4.1 instructions or higher. Intrinsics will be disabled.");
 669            }
 670            FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 671         }
 672       }
 673       // --AES-CTR ends--
 674     }
 675   } else if (UseAES || UseAESIntrinsics || UseAESCTRIntrinsics) {
 676     if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
 677       warning("AES instructions are not available on this CPU");
 678       FLAG_SET_DEFAULT(UseAES, false);
 679     }
 680     if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 681       warning("AES intrinsics are not available on this CPU");
 682       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 683     }
 684     if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 685       warning("AES-CTR intrinsics are not available on this CPU");
 686       FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 687     }
 688   }
 689 
 690   // Use CLMUL instructions if available.
 691   if (supports_clmul()) {
 692     if (FLAG_IS_DEFAULT(UseCLMUL)) {
 693       UseCLMUL = true;
 694     }
 695   } else if (UseCLMUL) {
 696     if (!FLAG_IS_DEFAULT(UseCLMUL))
 697       warning("CLMUL instructions not available on this CPU (AVX may also be required)");
 698     FLAG_SET_DEFAULT(UseCLMUL, false);
 699   }
 700 
 701   if (UseCLMUL && (UseSSE > 2)) {
 702     if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
 703       UseCRC32Intrinsics = true;
 704     }
 705   } else if (UseCRC32Intrinsics) {
 706     if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
 707       warning("CRC32 Intrinsics requires CLMUL instructions (not available on this CPU)");
 708     FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
 709   }
 710 
 711   if (supports_sse4_2()) {
 712     if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
 713       UseCRC32CIntrinsics = true;
 714     }
 715   }
 716   else if (UseCRC32CIntrinsics) {
 717     if (!FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
 718       warning("CRC32C intrinsics are not available on this CPU");
 719     }
 720     FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
 721   }
 722 
 723   // GHASH/GCM intrinsics
 724   if (UseCLMUL && (UseSSE > 2)) {
 725     if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
 726       UseGHASHIntrinsics = true;
 727     }
 728   } else if (UseGHASHIntrinsics) {
 729     if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics))
 730       warning("GHASH intrinsic requires CLMUL and SSE2 instructions on this CPU");
 731     FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
 732   }
 733 
 734   if (supports_sha() LP64_ONLY(|| supports_avx2() && supports_bmi2())) {
 735     if (FLAG_IS_DEFAULT(UseSHA)) {
 736       UseSHA = true;
 737     }
 738   } else if (UseSHA) {
 739     warning("SHA instructions are not available on this CPU");
 740     FLAG_SET_DEFAULT(UseSHA, false);
 741   }
 742 
 743   if (supports_sha() && UseSHA) {
 744     if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) {
 745       FLAG_SET_DEFAULT(UseSHA1Intrinsics, true);
 746     }
 747   } else if (UseSHA1Intrinsics) {
 748     warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
 749     FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
 750   }
 751 
 752   if (UseSHA) {
 753     if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) {
 754       FLAG_SET_DEFAULT(UseSHA256Intrinsics, true);
 755     }
 756   } else if (UseSHA256Intrinsics) {
 757     warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
 758     FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
 759   }
 760 
 761   if (UseSHA512Intrinsics) {
 762     warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
 763     FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
 764   }
 765 
 766   if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) {
 767     FLAG_SET_DEFAULT(UseSHA, false);
 768   }
 769 
 770   if (UseAdler32Intrinsics) {
 771     warning("Adler32Intrinsics not available on this CPU.");
 772     FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
 773   }
 774 
 775   // Adjust RTM (Restricted Transactional Memory) flags
 776   if (!supports_rtm() && UseRTMLocking) {
 777     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 778     // setting during arguments processing. See use_biased_locking().
 779     // VM_Version_init() is executed after UseBiasedLocking is used
 780     // in Thread::allocate().
 781     vm_exit_during_initialization("RTM instructions are not available on this CPU");
 782   }
 783 
 784 #if INCLUDE_RTM_OPT
 785   if (UseRTMLocking) {
 786     if (is_intel_family_core()) {
 787       if ((_model == CPU_MODEL_HASWELL_E3) ||
 788           (_model == CPU_MODEL_HASWELL_E7 && _stepping < 3) ||
 789           (_model == CPU_MODEL_BROADWELL  && _stepping < 4)) {
 790         // currently a collision between SKL and HSW_E3
 791         if (!UnlockExperimentalVMOptions && UseAVX < 3) {
 792           vm_exit_during_initialization("UseRTMLocking is only available as experimental option on this platform. It must be enabled via -XX:+UnlockExperimentalVMOptions flag.");
 793         } else {
 794           warning("UseRTMLocking is only available as experimental option on this platform.");
 795         }
 796       }
 797     }
 798     if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
 799       // RTM locking should be used only for applications with
 800       // high lock contention. For now we do not use it by default.
 801       vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
 802     }
 803     if (!is_power_of_2(RTMTotalCountIncrRate)) {
 804       warning("RTMTotalCountIncrRate must be a power of 2, resetting it to 64");
 805       FLAG_SET_DEFAULT(RTMTotalCountIncrRate, 64);
 806     }
 807     if (RTMAbortRatio < 0 || RTMAbortRatio > 100) {
 808       warning("RTMAbortRatio must be in the range 0 to 100, resetting it to 50");
 809       FLAG_SET_DEFAULT(RTMAbortRatio, 50);
 810     }
 811   } else { // !UseRTMLocking
 812     if (UseRTMForStackLocks) {
 813       if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
 814         warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
 815       }
 816       FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
 817     }
 818     if (UseRTMDeopt) {
 819       FLAG_SET_DEFAULT(UseRTMDeopt, false);
 820     }
 821     if (PrintPreciseRTMLockingStatistics) {
 822       FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
 823     }
 824   }
 825 #else
 826   if (UseRTMLocking) {
 827     // Only C2 does RTM locking optimization.
 828     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 829     // setting during arguments processing. See use_biased_locking().
 830     vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
 831   }
 832 #endif
 833 
 834 #ifdef COMPILER2
 835   if (UseFPUForSpilling) {
 836     if (UseSSE < 2) {
 837       // Only supported with SSE2+
 838       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
 839     }
 840   }
 841 #endif
 842 #if defined(COMPILER2) || INCLUDE_JVMCI
 843   if (MaxVectorSize > 0) {
 844     if (!is_power_of_2(MaxVectorSize)) {
 845       warning("MaxVectorSize must be a power of 2");
 846       FLAG_SET_DEFAULT(MaxVectorSize, 64);
 847     }
 848     if (MaxVectorSize > 64) {
 849       FLAG_SET_DEFAULT(MaxVectorSize, 64);
 850     }
 851     if (MaxVectorSize > 16 && (UseAVX == 0 || !os_supports_avx_vectors())) {
 852       // 32 bytes vectors (in YMM) are only supported with AVX+
 853       FLAG_SET_DEFAULT(MaxVectorSize, 16);
 854     }
 855     if (UseSSE < 2) {
 856       // Vectors (in XMM) are only supported with SSE2+
 857       FLAG_SET_DEFAULT(MaxVectorSize, 0);
 858     }
 859 #if defined(COMPILER2) && defined(ASSERT)
 860     if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
 861       tty->print_cr("State of YMM registers after signal handle:");
 862       int nreg = 2 LP64_ONLY(+2);
 863       const char* ymm_name[4] = {"0", "7", "8", "15"};
 864       for (int i = 0; i < nreg; i++) {
 865         tty->print("YMM%s:", ymm_name[i]);
 866         for (int j = 7; j >=0; j--) {
 867           tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
 868         }
 869         tty->cr();
 870       }
 871     }
 872 #endif // COMPILER2 && ASSERT
 873   }
 874 #endif // COMPILER2 || INCLUDE_JVMCI
 875 
 876 #ifdef COMPILER2
 877 #ifdef _LP64
 878   if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
 879     UseMultiplyToLenIntrinsic = true;
 880   }
 881   if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
 882     UseSquareToLenIntrinsic = true;
 883   }
 884   if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
 885     UseMulAddIntrinsic = true;
 886   }
 887   if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
 888     UseMontgomeryMultiplyIntrinsic = true;
 889   }
 890   if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
 891     UseMontgomerySquareIntrinsic = true;
 892   }
 893 #else
 894   if (UseMultiplyToLenIntrinsic) {
 895     if (!FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
 896       warning("multiplyToLen intrinsic is not available in 32-bit VM");
 897     }
 898     FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false);
 899   }
 900   if (UseMontgomeryMultiplyIntrinsic) {
 901     if (!FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
 902       warning("montgomeryMultiply intrinsic is not available in 32-bit VM");
 903     }
 904     FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, false);
 905   }
 906   if (UseMontgomerySquareIntrinsic) {
 907     if (!FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
 908       warning("montgomerySquare intrinsic is not available in 32-bit VM");
 909     }
 910     FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, false);
 911   }
 912   if (UseSquareToLenIntrinsic) {
 913     if (!FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
 914       warning("squareToLen intrinsic is not available in 32-bit VM");
 915     }
 916     FLAG_SET_DEFAULT(UseSquareToLenIntrinsic, false);
 917   }
 918   if (UseMulAddIntrinsic) {
 919     if (!FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
 920       warning("mulAdd intrinsic is not available in 32-bit VM");
 921     }
 922     FLAG_SET_DEFAULT(UseMulAddIntrinsic, false);
 923   }
 924 #endif
 925 #endif // COMPILER2
 926 
 927   // On new cpus instructions which update whole XMM register should be used
 928   // to prevent partial register stall due to dependencies on high half.
 929   //
 930   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
 931   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
 932   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
 933   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
 934 
 935   if( is_amd() ) { // AMD cpus specific settings
 936     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
 937       // Use it on new AMD cpus starting from Opteron.
 938       UseAddressNop = true;
 939     }
 940     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
 941       // Use it on new AMD cpus starting from Opteron.
 942       UseNewLongLShift = true;
 943     }
 944     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
 945       if (supports_sse4a()) {
 946         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
 947       } else {
 948         UseXmmLoadAndClearUpper = false;
 949       }
 950     }
 951     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
 952       if( supports_sse4a() ) {
 953         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
 954       } else {
 955         UseXmmRegToRegMoveAll = false;
 956       }
 957     }
 958     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
 959       if( supports_sse4a() ) {
 960         UseXmmI2F = true;
 961       } else {
 962         UseXmmI2F = false;
 963       }
 964     }
 965     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
 966       if( supports_sse4a() ) {
 967         UseXmmI2D = true;
 968       } else {
 969         UseXmmI2D = false;
 970       }
 971     }
 972     if (supports_sse4_2() && UseSSE >= 4) {
 973       if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
 974         FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
 975       }
 976     } else {
 977       if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 978         warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
 979       }
 980       FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
 981     }
 982 
 983     // some defaults for AMD family 15h
 984     if ( cpu_family() == 0x15 ) {
 985       // On family 15h processors default is no sw prefetch
 986       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
 987         AllocatePrefetchStyle = 0;
 988       }
 989       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
 990       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
 991         AllocatePrefetchInstr = 3;
 992       }
 993       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
 994       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
 995         UseXMMForArrayCopy = true;
 996       }
 997       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
 998         UseUnalignedLoadStores = true;
 999       }
1000     }
1001 
1002 #ifdef COMPILER2
1003     if (MaxVectorSize > 16) {
1004       // Limit vectors size to 16 bytes on current AMD cpus.
1005       FLAG_SET_DEFAULT(MaxVectorSize, 16);
1006     }
1007 #endif // COMPILER2
1008   }
1009 
1010   if( is_intel() ) { // Intel cpus specific settings
1011     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
1012       UseStoreImmI16 = false; // don't use it on Intel cpus
1013     }
1014     if( cpu_family() == 6 || cpu_family() == 15 ) {
1015       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
1016         // Use it on all Intel cpus starting from PentiumPro
1017         UseAddressNop = true;
1018       }
1019     }
1020     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
1021       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
1022     }
1023     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
1024       if( supports_sse3() ) {
1025         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
1026       } else {
1027         UseXmmRegToRegMoveAll = false;
1028       }
1029     }
1030     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
1031 #ifdef COMPILER2
1032       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
1033         // For new Intel cpus do the next optimization:
1034         // don't align the beginning of a loop if there are enough instructions
1035         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
1036         // in current fetch line (OptoLoopAlignment) or the padding
1037         // is big (> MaxLoopPad).
1038         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
1039         // generated NOP instructions. 11 is the largest size of one
1040         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
1041         MaxLoopPad = 11;
1042       }
1043 #endif // COMPILER2
1044       if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1045         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
1046       }
1047       if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
1048         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1049           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
1050         }
1051       }
1052       if (supports_sse4_2() && UseSSE >= 4) {
1053         if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
1054           FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
1055         }
1056       } else {
1057         if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
1058           warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
1059         }
1060         FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
1061       }
1062     }
1063     if ((cpu_family() == 0x06) &&
1064         ((extended_cpu_model() == 0x36) || // Centerton
1065          (extended_cpu_model() == 0x37) || // Silvermont
1066          (extended_cpu_model() == 0x4D))) {
1067 #ifdef COMPILER2
1068       if (FLAG_IS_DEFAULT(OptoScheduling)) {
1069         OptoScheduling = true;
1070       }
1071 #endif
1072       if (supports_sse4_2()) { // Silvermont
1073         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1074           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
1075         }
1076       }
1077     }
1078     if(FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
1079       AllocatePrefetchInstr = 3;
1080     }
1081   }
1082 
1083 #ifdef _LP64
1084   if (UseSSE42Intrinsics) {
1085     if (FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
1086       UseVectorizedMismatchIntrinsic = true;
1087     }
1088   } else if (UseVectorizedMismatchIntrinsic) {
1089     if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic))
1090       warning("vectorizedMismatch intrinsics are not available on this CPU");
1091     FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
1092   }
1093 #else
1094   if (UseVectorizedMismatchIntrinsic) {
1095     if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
1096       warning("vectorizedMismatch intrinsic is not available in 32-bit VM");
1097     }
1098     FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
1099   }
1100 #endif // _LP64
1101 
1102   // Use count leading zeros count instruction if available.
1103   if (supports_lzcnt()) {
1104     if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
1105       UseCountLeadingZerosInstruction = true;
1106     }
1107    } else if (UseCountLeadingZerosInstruction) {
1108     warning("lzcnt instruction is not available on this CPU");
1109     FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
1110   }
1111 
1112   // Use count trailing zeros instruction if available
1113   if (supports_bmi1()) {
1114     // tzcnt does not require VEX prefix
1115     if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
1116       if (!UseBMI1Instructions && !FLAG_IS_DEFAULT(UseBMI1Instructions)) {
1117         // Don't use tzcnt if BMI1 is switched off on command line.
1118         UseCountTrailingZerosInstruction = false;
1119       } else {
1120         UseCountTrailingZerosInstruction = true;
1121       }
1122     }
1123   } else if (UseCountTrailingZerosInstruction) {
1124     warning("tzcnt instruction is not available on this CPU");
1125     FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
1126   }
1127 
1128   // BMI instructions (except tzcnt) use an encoding with VEX prefix.
1129   // VEX prefix is generated only when AVX > 0.
1130   if (supports_bmi1() && supports_avx()) {
1131     if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
1132       UseBMI1Instructions = true;
1133     }
1134   } else if (UseBMI1Instructions) {
1135     warning("BMI1 instructions are not available on this CPU (AVX is also required)");
1136     FLAG_SET_DEFAULT(UseBMI1Instructions, false);
1137   }
1138 
1139   if (supports_bmi2() && supports_avx()) {
1140     if (FLAG_IS_DEFAULT(UseBMI2Instructions)) {
1141       UseBMI2Instructions = true;
1142     }
1143   } else if (UseBMI2Instructions) {
1144     warning("BMI2 instructions are not available on this CPU (AVX is also required)");
1145     FLAG_SET_DEFAULT(UseBMI2Instructions, false);
1146   }
1147 
1148   // Use population count instruction if available.
1149   if (supports_popcnt()) {
1150     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
1151       UsePopCountInstruction = true;
1152     }
1153   } else if (UsePopCountInstruction) {
1154     warning("POPCNT instruction is not available on this CPU");
1155     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
1156   }
1157 
1158   // Use fast-string operations if available.
1159   if (supports_erms()) {
1160     if (FLAG_IS_DEFAULT(UseFastStosb)) {
1161       UseFastStosb = true;
1162     }
1163   } else if (UseFastStosb) {
1164     warning("fast-string operations are not available on this CPU");
1165     FLAG_SET_DEFAULT(UseFastStosb, false);
1166   }
1167 
1168 #ifdef COMPILER2
1169   if (FLAG_IS_DEFAULT(AlignVector)) {
1170     // Modern processors allow misaligned memory operations for vectors.
1171     AlignVector = !UseUnalignedLoadStores;
1172   }
1173 #endif // COMPILER2
1174 
1175   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
1176   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
1177 
1178   // Allocation prefetch settings
1179   intx cache_line_size = prefetch_data_size();
1180   if( cache_line_size > AllocatePrefetchStepSize )
1181     AllocatePrefetchStepSize = cache_line_size;
1182 
1183   AllocatePrefetchDistance = allocate_prefetch_distance();
1184   AllocatePrefetchStyle    = allocate_prefetch_style();
1185 
1186   if (is_intel() && cpu_family() == 6 && supports_sse3()) {
1187     if (AllocatePrefetchStyle == 2) { // watermark prefetching on Core
1188 #ifdef _LP64
1189       AllocatePrefetchDistance = 384;
1190 #else
1191       AllocatePrefetchDistance = 320;
1192 #endif
1193     }
1194     if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus
1195       AllocatePrefetchDistance = 192;
1196       if (FLAG_IS_DEFAULT(AllocatePrefetchLines)) {
1197         FLAG_SET_DEFAULT(AllocatePrefetchLines, 4);
1198       }
1199     }
1200 #ifdef COMPILER2
1201     if (supports_sse4_2()) {
1202       if (FLAG_IS_DEFAULT(UseFPUForSpilling)) {
1203         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
1204       }
1205     }
1206 #endif
1207   }
1208 
1209 #ifdef _LP64
1210   // Prefetch settings
1211   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
1212   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
1213   PrefetchFieldsAhead         = prefetch_fields_ahead();
1214 #endif
1215 
1216   if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
1217      (cache_line_size > ContendedPaddingWidth))
1218      ContendedPaddingWidth = cache_line_size;
1219 
1220   // This machine allows unaligned memory accesses
1221   if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) {
1222     FLAG_SET_DEFAULT(UseUnalignedAccesses, true);
1223   }
1224 
1225 #ifndef PRODUCT
1226   if (PrintMiscellaneous && Verbose) {
1227     tty->print_cr("Logical CPUs per core: %u",
1228                   logical_processors_per_package());
1229     tty->print_cr("L1 data cache line size: %u", L1_data_cache_line_size());
1230     tty->print("UseSSE=%d", (int) UseSSE);
1231     if (UseAVX > 0) {
1232       tty->print("  UseAVX=%d", (int) UseAVX);
1233     }
1234     if (UseAES) {
1235       tty->print("  UseAES=1");
1236     }
1237 #ifdef COMPILER2
1238     if (MaxVectorSize > 0) {
1239       tty->print("  MaxVectorSize=%d", (int) MaxVectorSize);
1240     }
1241 #endif
1242     tty->cr();
1243     tty->print("Allocation");
1244     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
1245       tty->print_cr(": no prefetching");
1246     } else {
1247       tty->print(" prefetching: ");
1248       if (UseSSE == 0 && supports_3dnow_prefetch()) {
1249         tty->print("PREFETCHW");
1250       } else if (UseSSE >= 1) {
1251         if (AllocatePrefetchInstr == 0) {
1252           tty->print("PREFETCHNTA");
1253         } else if (AllocatePrefetchInstr == 1) {
1254           tty->print("PREFETCHT0");
1255         } else if (AllocatePrefetchInstr == 2) {
1256           tty->print("PREFETCHT2");
1257         } else if (AllocatePrefetchInstr == 3) {
1258           tty->print("PREFETCHW");
1259         }
1260       }
1261       if (AllocatePrefetchLines > 1) {
1262         tty->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize);
1263       } else {
1264         tty->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize);
1265       }
1266     }
1267 
1268     if (PrefetchCopyIntervalInBytes > 0) {
1269       tty->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
1270     }
1271     if (PrefetchScanIntervalInBytes > 0) {
1272       tty->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
1273     }
1274     if (PrefetchFieldsAhead > 0) {
1275       tty->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead);
1276     }
1277     if (ContendedPaddingWidth > 0) {
1278       tty->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
1279     }
1280   }
1281 #endif // !PRODUCT
1282 }
1283 
1284 bool VM_Version::use_biased_locking() {
1285 #if INCLUDE_RTM_OPT
1286   // RTM locking is most useful when there is high lock contention and
1287   // low data contention.  With high lock contention the lock is usually
1288   // inflated and biased locking is not suitable for that case.
1289   // RTM locking code requires that biased locking is off.
1290   // Note: we can't switch off UseBiasedLocking in get_processor_features()
1291   // because it is used by Thread::allocate() which is called before
1292   // VM_Version::initialize().
1293   if (UseRTMLocking && UseBiasedLocking) {
1294     if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
1295       FLAG_SET_DEFAULT(UseBiasedLocking, false);
1296     } else {
1297       warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
1298       UseBiasedLocking = false;
1299     }
1300   }
1301 #endif
1302   return UseBiasedLocking;
1303 }
1304 
1305 void VM_Version::initialize() {
1306   ResourceMark rm;
1307   // Making this stub must be FIRST use of assembler
1308 
1309   stub_blob = BufferBlob::create("get_cpu_info_stub", stub_size);
1310   if (stub_blob == NULL) {
1311     vm_exit_during_initialization("Unable to allocate get_cpu_info_stub");
1312   }
1313   CodeBuffer c(stub_blob);
1314   VM_Version_StubGenerator g(&c);
1315   get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t,
1316                                      g.generate_get_cpu_info());
1317 
1318   get_processor_features();
1319 }