1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/thread.hpp"
  43 #include "utilities/macros.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/g1CollectedHeap.inline.hpp"
  46 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  47 #include "gc/g1/heapRegion.hpp"
  48 #endif // INCLUDE_ALL_GCS
  49 #include "crc32c.h"
  50 #ifdef COMPILER2
  51 #include "opto/intrinsicnode.hpp"
  52 #endif
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) /* nothing */
  56 #define STOP(error) stop(error)
  57 #else
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define STOP(error) block_comment(error); stop(error)
  60 #endif
  61 
  62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 #ifdef ASSERT
  65 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  66 #endif
  67 
  68 static Assembler::Condition reverse[] = {
  69     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  70     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  71     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  72     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  73     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  74     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  75     Assembler::above          /* belowEqual    = 0x6 */ ,
  76     Assembler::belowEqual     /* above         = 0x7 */ ,
  77     Assembler::positive       /* negative      = 0x8 */ ,
  78     Assembler::negative       /* positive      = 0x9 */ ,
  79     Assembler::noParity       /* parity        = 0xa */ ,
  80     Assembler::parity         /* noParity      = 0xb */ ,
  81     Assembler::greaterEqual   /* less          = 0xc */ ,
  82     Assembler::less           /* greaterEqual  = 0xd */ ,
  83     Assembler::greater        /* lessEqual     = 0xe */ ,
  84     Assembler::lessEqual      /* greater       = 0xf, */
  85 
  86 };
  87 
  88 
  89 // Implementation of MacroAssembler
  90 
  91 // First all the versions that have distinct versions depending on 32/64 bit
  92 // Unless the difference is trivial (1 line or so).
  93 
  94 #ifndef _LP64
  95 
  96 // 32bit versions
  97 
  98 Address MacroAssembler::as_Address(AddressLiteral adr) {
  99   return Address(adr.target(), adr.rspec());
 100 }
 101 
 102 Address MacroAssembler::as_Address(ArrayAddress adr) {
 103   return Address::make_array(adr);
 104 }
 105 
 106 void MacroAssembler::call_VM_leaf_base(address entry_point,
 107                                        int number_of_arguments) {
 108   call(RuntimeAddress(entry_point));
 109   increment(rsp, number_of_arguments * wordSize);
 110 }
 111 
 112 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 117   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 125   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 126 }
 127 
 128 void MacroAssembler::extend_sign(Register hi, Register lo) {
 129   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 130   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 131     cdql();
 132   } else {
 133     movl(hi, lo);
 134     sarl(hi, 31);
 135   }
 136 }
 137 
 138 void MacroAssembler::jC2(Register tmp, Label& L) {
 139   // set parity bit if FPU flag C2 is set (via rax)
 140   save_rax(tmp);
 141   fwait(); fnstsw_ax();
 142   sahf();
 143   restore_rax(tmp);
 144   // branch
 145   jcc(Assembler::parity, L);
 146 }
 147 
 148 void MacroAssembler::jnC2(Register tmp, Label& L) {
 149   // set parity bit if FPU flag C2 is set (via rax)
 150   save_rax(tmp);
 151   fwait(); fnstsw_ax();
 152   sahf();
 153   restore_rax(tmp);
 154   // branch
 155   jcc(Assembler::noParity, L);
 156 }
 157 
 158 // 32bit can do a case table jump in one instruction but we no longer allow the base
 159 // to be installed in the Address class
 160 void MacroAssembler::jump(ArrayAddress entry) {
 161   jmp(as_Address(entry));
 162 }
 163 
 164 // Note: y_lo will be destroyed
 165 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 166   // Long compare for Java (semantics as described in JVM spec.)
 167   Label high, low, done;
 168 
 169   cmpl(x_hi, y_hi);
 170   jcc(Assembler::less, low);
 171   jcc(Assembler::greater, high);
 172   // x_hi is the return register
 173   xorl(x_hi, x_hi);
 174   cmpl(x_lo, y_lo);
 175   jcc(Assembler::below, low);
 176   jcc(Assembler::equal, done);
 177 
 178   bind(high);
 179   xorl(x_hi, x_hi);
 180   increment(x_hi);
 181   jmp(done);
 182 
 183   bind(low);
 184   xorl(x_hi, x_hi);
 185   decrementl(x_hi);
 186 
 187   bind(done);
 188 }
 189 
 190 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 191     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 192 }
 193 
 194 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 195   // leal(dst, as_Address(adr));
 196   // see note in movl as to why we must use a move
 197   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 198 }
 199 
 200 void MacroAssembler::leave() {
 201   mov(rsp, rbp);
 202   pop(rbp);
 203 }
 204 
 205 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 206   // Multiplication of two Java long values stored on the stack
 207   // as illustrated below. Result is in rdx:rax.
 208   //
 209   // rsp ---> [  ??  ] \               \
 210   //            ....    | y_rsp_offset  |
 211   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 212   //          [ y_hi ]                  | (in bytes)
 213   //            ....                    |
 214   //          [ x_lo ]                 /
 215   //          [ x_hi ]
 216   //            ....
 217   //
 218   // Basic idea: lo(result) = lo(x_lo * y_lo)
 219   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 220   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 221   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 222   Label quick;
 223   // load x_hi, y_hi and check if quick
 224   // multiplication is possible
 225   movl(rbx, x_hi);
 226   movl(rcx, y_hi);
 227   movl(rax, rbx);
 228   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 229   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 230   // do full multiplication
 231   // 1st step
 232   mull(y_lo);                                    // x_hi * y_lo
 233   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 234   // 2nd step
 235   movl(rax, x_lo);
 236   mull(rcx);                                     // x_lo * y_hi
 237   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 238   // 3rd step
 239   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 240   movl(rax, x_lo);
 241   mull(y_lo);                                    // x_lo * y_lo
 242   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 243 }
 244 
 245 void MacroAssembler::lneg(Register hi, Register lo) {
 246   negl(lo);
 247   adcl(hi, 0);
 248   negl(hi);
 249 }
 250 
 251 void MacroAssembler::lshl(Register hi, Register lo) {
 252   // Java shift left long support (semantics as described in JVM spec., p.305)
 253   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 254   // shift value is in rcx !
 255   assert(hi != rcx, "must not use rcx");
 256   assert(lo != rcx, "must not use rcx");
 257   const Register s = rcx;                        // shift count
 258   const int      n = BitsPerWord;
 259   Label L;
 260   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 261   cmpl(s, n);                                    // if (s < n)
 262   jcc(Assembler::less, L);                       // else (s >= n)
 263   movl(hi, lo);                                  // x := x << n
 264   xorl(lo, lo);
 265   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 266   bind(L);                                       // s (mod n) < n
 267   shldl(hi, lo);                                 // x := x << s
 268   shll(lo);
 269 }
 270 
 271 
 272 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 273   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 274   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 275   assert(hi != rcx, "must not use rcx");
 276   assert(lo != rcx, "must not use rcx");
 277   const Register s = rcx;                        // shift count
 278   const int      n = BitsPerWord;
 279   Label L;
 280   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 281   cmpl(s, n);                                    // if (s < n)
 282   jcc(Assembler::less, L);                       // else (s >= n)
 283   movl(lo, hi);                                  // x := x >> n
 284   if (sign_extension) sarl(hi, 31);
 285   else                xorl(hi, hi);
 286   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 287   bind(L);                                       // s (mod n) < n
 288   shrdl(lo, hi);                                 // x := x >> s
 289   if (sign_extension) sarl(hi);
 290   else                shrl(hi);
 291 }
 292 
 293 void MacroAssembler::movoop(Register dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::movoop(Address dst, jobject obj) {
 298   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 306   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 310   // scratch register is not used,
 311   // it is defined to match parameters of 64-bit version of this method.
 312   if (src.is_lval()) {
 313     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 314   } else {
 315     movl(dst, as_Address(src));
 316   }
 317 }
 318 
 319 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 320   movl(as_Address(dst), src);
 321 }
 322 
 323 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 324   movl(dst, as_Address(src));
 325 }
 326 
 327 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 328 void MacroAssembler::movptr(Address dst, intptr_t src) {
 329   movl(dst, src);
 330 }
 331 
 332 
 333 void MacroAssembler::pop_callee_saved_registers() {
 334   pop(rcx);
 335   pop(rdx);
 336   pop(rdi);
 337   pop(rsi);
 338 }
 339 
 340 void MacroAssembler::pop_fTOS() {
 341   fld_d(Address(rsp, 0));
 342   addl(rsp, 2 * wordSize);
 343 }
 344 
 345 void MacroAssembler::push_callee_saved_registers() {
 346   push(rsi);
 347   push(rdi);
 348   push(rdx);
 349   push(rcx);
 350 }
 351 
 352 void MacroAssembler::push_fTOS() {
 353   subl(rsp, 2 * wordSize);
 354   fstp_d(Address(rsp, 0));
 355 }
 356 
 357 
 358 void MacroAssembler::pushoop(jobject obj) {
 359   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushklass(Metadata* obj) {
 363   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 364 }
 365 
 366 void MacroAssembler::pushptr(AddressLiteral src) {
 367   if (src.is_lval()) {
 368     push_literal32((int32_t)src.target(), src.rspec());
 369   } else {
 370     pushl(as_Address(src));
 371   }
 372 }
 373 
 374 void MacroAssembler::set_word_if_not_zero(Register dst) {
 375   xorl(dst, dst);
 376   set_byte_if_not_zero(dst);
 377 }
 378 
 379 static void pass_arg0(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg1(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg2(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 static void pass_arg3(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 #ifndef PRODUCT
 396 extern "C" void findpc(intptr_t x);
 397 #endif
 398 
 399 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 400   // In order to get locks to work, we need to fake a in_VM state
 401   JavaThread* thread = JavaThread::current();
 402   JavaThreadState saved_state = thread->thread_state();
 403   thread->set_thread_state(_thread_in_vm);
 404   if (ShowMessageBoxOnError) {
 405     JavaThread* thread = JavaThread::current();
 406     JavaThreadState saved_state = thread->thread_state();
 407     thread->set_thread_state(_thread_in_vm);
 408     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 409       ttyLocker ttyl;
 410       BytecodeCounter::print();
 411     }
 412     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 413     // This is the value of eip which points to where verify_oop will return.
 414     if (os::message_box(msg, "Execution stopped, print registers?")) {
 415       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 416       BREAKPOINT;
 417     }
 418   } else {
 419     ttyLocker ttyl;
 420     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 421   }
 422   // Don't assert holding the ttyLock
 423     assert(false, "DEBUG MESSAGE: %s", msg);
 424   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 425 }
 426 
 427 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 428   ttyLocker ttyl;
 429   FlagSetting fs(Debugging, true);
 430   tty->print_cr("eip = 0x%08x", eip);
 431 #ifndef PRODUCT
 432   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 433     tty->cr();
 434     findpc(eip);
 435     tty->cr();
 436   }
 437 #endif
 438 #define PRINT_REG(rax) \
 439   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 440   PRINT_REG(rax);
 441   PRINT_REG(rbx);
 442   PRINT_REG(rcx);
 443   PRINT_REG(rdx);
 444   PRINT_REG(rdi);
 445   PRINT_REG(rsi);
 446   PRINT_REG(rbp);
 447   PRINT_REG(rsp);
 448 #undef PRINT_REG
 449   // Print some words near top of staack.
 450   int* dump_sp = (int*) rsp;
 451   for (int col1 = 0; col1 < 8; col1++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     os::print_location(tty, *dump_sp++);
 454   }
 455   for (int row = 0; row < 16; row++) {
 456     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 457     for (int col = 0; col < 8; col++) {
 458       tty->print(" 0x%08x", *dump_sp++);
 459     }
 460     tty->cr();
 461   }
 462   // Print some instructions around pc:
 463   Disassembler::decode((address)eip-64, (address)eip);
 464   tty->print_cr("--------");
 465   Disassembler::decode((address)eip, (address)eip+32);
 466 }
 467 
 468 void MacroAssembler::stop(const char* msg) {
 469   ExternalAddress message((address)msg);
 470   // push address of message
 471   pushptr(message.addr());
 472   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 473   pusha();                                            // push registers
 474   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 475   hlt();
 476 }
 477 
 478 void MacroAssembler::warn(const char* msg) {
 479   push_CPU_state();
 480 
 481   ExternalAddress message((address) msg);
 482   // push address of message
 483   pushptr(message.addr());
 484 
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 486   addl(rsp, wordSize);       // discard argument
 487   pop_CPU_state();
 488 }
 489 
 490 void MacroAssembler::print_state() {
 491   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 492   pusha();                                            // push registers
 493 
 494   push_CPU_state();
 495   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 496   pop_CPU_state();
 497 
 498   popa();
 499   addl(rsp, wordSize);
 500 }
 501 
 502 #else // _LP64
 503 
 504 // 64 bit versions
 505 
 506 Address MacroAssembler::as_Address(AddressLiteral adr) {
 507   // amd64 always does this as a pc-rel
 508   // we can be absolute or disp based on the instruction type
 509   // jmp/call are displacements others are absolute
 510   assert(!adr.is_lval(), "must be rval");
 511   assert(reachable(adr), "must be");
 512   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 513 
 514 }
 515 
 516 Address MacroAssembler::as_Address(ArrayAddress adr) {
 517   AddressLiteral base = adr.base();
 518   lea(rscratch1, base);
 519   Address index = adr.index();
 520   assert(index._disp == 0, "must not have disp"); // maybe it can?
 521   Address array(rscratch1, index._index, index._scale, index._disp);
 522   return array;
 523 }
 524 
 525 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 526   Label L, E;
 527 
 528 #ifdef _WIN64
 529   // Windows always allocates space for it's register args
 530   assert(num_args <= 4, "only register arguments supported");
 531   subq(rsp,  frame::arg_reg_save_area_bytes);
 532 #endif
 533 
 534   // Align stack if necessary
 535   testl(rsp, 15);
 536   jcc(Assembler::zero, L);
 537 
 538   subq(rsp, 8);
 539   {
 540     call(RuntimeAddress(entry_point));
 541   }
 542   addq(rsp, 8);
 543   jmp(E);
 544 
 545   bind(L);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549 
 550   bind(E);
 551 
 552 #ifdef _WIN64
 553   // restore stack pointer
 554   addq(rsp, frame::arg_reg_save_area_bytes);
 555 #endif
 556 
 557 }
 558 
 559 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 560   assert(!src2.is_lval(), "should use cmpptr");
 561 
 562   if (reachable(src2)) {
 563     cmpq(src1, as_Address(src2));
 564   } else {
 565     lea(rscratch1, src2);
 566     Assembler::cmpq(src1, Address(rscratch1, 0));
 567   }
 568 }
 569 
 570 int MacroAssembler::corrected_idivq(Register reg) {
 571   // Full implementation of Java ldiv and lrem; checks for special
 572   // case as described in JVM spec., p.243 & p.271.  The function
 573   // returns the (pc) offset of the idivl instruction - may be needed
 574   // for implicit exceptions.
 575   //
 576   //         normal case                           special case
 577   //
 578   // input : rax: dividend                         min_long
 579   //         reg: divisor   (may not be eax/edx)   -1
 580   //
 581   // output: rax: quotient  (= rax idiv reg)       min_long
 582   //         rdx: remainder (= rax irem reg)       0
 583   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 584   static const int64_t min_long = 0x8000000000000000;
 585   Label normal_case, special_case;
 586 
 587   // check for special case
 588   cmp64(rax, ExternalAddress((address) &min_long));
 589   jcc(Assembler::notEqual, normal_case);
 590   xorl(rdx, rdx); // prepare rdx for possible special case (where
 591                   // remainder = 0)
 592   cmpq(reg, -1);
 593   jcc(Assembler::equal, special_case);
 594 
 595   // handle normal case
 596   bind(normal_case);
 597   cdqq();
 598   int idivq_offset = offset();
 599   idivq(reg);
 600 
 601   // normal and special case exit
 602   bind(special_case);
 603 
 604   return idivq_offset;
 605 }
 606 
 607 void MacroAssembler::decrementq(Register reg, int value) {
 608   if (value == min_jint) { subq(reg, value); return; }
 609   if (value <  0) { incrementq(reg, -value); return; }
 610   if (value == 0) {                        ; return; }
 611   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 612   /* else */      { subq(reg, value)       ; return; }
 613 }
 614 
 615 void MacroAssembler::decrementq(Address dst, int value) {
 616   if (value == min_jint) { subq(dst, value); return; }
 617   if (value <  0) { incrementq(dst, -value); return; }
 618   if (value == 0) {                        ; return; }
 619   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 620   /* else */      { subq(dst, value)       ; return; }
 621 }
 622 
 623 void MacroAssembler::incrementq(AddressLiteral dst) {
 624   if (reachable(dst)) {
 625     incrementq(as_Address(dst));
 626   } else {
 627     lea(rscratch1, dst);
 628     incrementq(Address(rscratch1, 0));
 629   }
 630 }
 631 
 632 void MacroAssembler::incrementq(Register reg, int value) {
 633   if (value == min_jint) { addq(reg, value); return; }
 634   if (value <  0) { decrementq(reg, -value); return; }
 635   if (value == 0) {                        ; return; }
 636   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 637   /* else */      { addq(reg, value)       ; return; }
 638 }
 639 
 640 void MacroAssembler::incrementq(Address dst, int value) {
 641   if (value == min_jint) { addq(dst, value); return; }
 642   if (value <  0) { decrementq(dst, -value); return; }
 643   if (value == 0) {                        ; return; }
 644   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 645   /* else */      { addq(dst, value)       ; return; }
 646 }
 647 
 648 // 32bit can do a case table jump in one instruction but we no longer allow the base
 649 // to be installed in the Address class
 650 void MacroAssembler::jump(ArrayAddress entry) {
 651   lea(rscratch1, entry.base());
 652   Address dispatch = entry.index();
 653   assert(dispatch._base == noreg, "must be");
 654   dispatch._base = rscratch1;
 655   jmp(dispatch);
 656 }
 657 
 658 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 659   ShouldNotReachHere(); // 64bit doesn't use two regs
 660   cmpq(x_lo, y_lo);
 661 }
 662 
 663 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 664     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 665 }
 666 
 667 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 668   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 669   movptr(dst, rscratch1);
 670 }
 671 
 672 void MacroAssembler::leave() {
 673   // %%% is this really better? Why not on 32bit too?
 674   emit_int8((unsigned char)0xC9); // LEAVE
 675 }
 676 
 677 void MacroAssembler::lneg(Register hi, Register lo) {
 678   ShouldNotReachHere(); // 64bit doesn't use two regs
 679   negq(lo);
 680 }
 681 
 682 void MacroAssembler::movoop(Register dst, jobject obj) {
 683   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684 }
 685 
 686 void MacroAssembler::movoop(Address dst, jobject obj) {
 687   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 688   movq(dst, rscratch1);
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 692   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693 }
 694 
 695 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 696   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 697   movq(dst, rscratch1);
 698 }
 699 
 700 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 701   if (src.is_lval()) {
 702     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 703   } else {
 704     if (reachable(src)) {
 705       movq(dst, as_Address(src));
 706     } else {
 707       lea(scratch, src);
 708       movq(dst, Address(scratch, 0));
 709     }
 710   }
 711 }
 712 
 713 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 714   movq(as_Address(dst), src);
 715 }
 716 
 717 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 718   movq(dst, as_Address(src));
 719 }
 720 
 721 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 722 void MacroAssembler::movptr(Address dst, intptr_t src) {
 723   mov64(rscratch1, src);
 724   movq(dst, rscratch1);
 725 }
 726 
 727 // These are mostly for initializing NULL
 728 void MacroAssembler::movptr(Address dst, int32_t src) {
 729   movslq(dst, src);
 730 }
 731 
 732 void MacroAssembler::movptr(Register dst, int32_t src) {
 733   mov64(dst, (intptr_t)src);
 734 }
 735 
 736 void MacroAssembler::pushoop(jobject obj) {
 737   movoop(rscratch1, obj);
 738   push(rscratch1);
 739 }
 740 
 741 void MacroAssembler::pushklass(Metadata* obj) {
 742   mov_metadata(rscratch1, obj);
 743   push(rscratch1);
 744 }
 745 
 746 void MacroAssembler::pushptr(AddressLiteral src) {
 747   lea(rscratch1, src);
 748   if (src.is_lval()) {
 749     push(rscratch1);
 750   } else {
 751     pushq(Address(rscratch1, 0));
 752   }
 753 }
 754 
 755 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 756                                            bool clear_pc) {
 757   // we must set sp to zero to clear frame
 758   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 759   // must clear fp, so that compiled frames are not confused; it is
 760   // possible that we need it only for debugging
 761   if (clear_fp) {
 762     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 763   }
 764 
 765   if (clear_pc) {
 766     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 767   }
 768 }
 769 
 770 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 771                                          Register last_java_fp,
 772                                          address  last_java_pc) {
 773   // determine last_java_sp register
 774   if (!last_java_sp->is_valid()) {
 775     last_java_sp = rsp;
 776   }
 777 
 778   // last_java_fp is optional
 779   if (last_java_fp->is_valid()) {
 780     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 781            last_java_fp);
 782   }
 783 
 784   // last_java_pc is optional
 785   if (last_java_pc != NULL) {
 786     Address java_pc(r15_thread,
 787                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 788     lea(rscratch1, InternalAddress(last_java_pc));
 789     movptr(java_pc, rscratch1);
 790   }
 791 
 792   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 793 }
 794 
 795 static void pass_arg0(MacroAssembler* masm, Register arg) {
 796   if (c_rarg0 != arg ) {
 797     masm->mov(c_rarg0, arg);
 798   }
 799 }
 800 
 801 static void pass_arg1(MacroAssembler* masm, Register arg) {
 802   if (c_rarg1 != arg ) {
 803     masm->mov(c_rarg1, arg);
 804   }
 805 }
 806 
 807 static void pass_arg2(MacroAssembler* masm, Register arg) {
 808   if (c_rarg2 != arg ) {
 809     masm->mov(c_rarg2, arg);
 810   }
 811 }
 812 
 813 static void pass_arg3(MacroAssembler* masm, Register arg) {
 814   if (c_rarg3 != arg ) {
 815     masm->mov(c_rarg3, arg);
 816   }
 817 }
 818 
 819 void MacroAssembler::stop(const char* msg) {
 820   address rip = pc();
 821   pusha(); // get regs on stack
 822   lea(c_rarg0, ExternalAddress((address) msg));
 823   lea(c_rarg1, InternalAddress(rip));
 824   movq(c_rarg2, rsp); // pass pointer to regs array
 825   andq(rsp, -16); // align stack as required by ABI
 826   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 827   hlt();
 828 }
 829 
 830 void MacroAssembler::warn(const char* msg) {
 831   push(rbp);
 832   movq(rbp, rsp);
 833   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 834   push_CPU_state();   // keeps alignment at 16 bytes
 835   lea(c_rarg0, ExternalAddress((address) msg));
 836   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 837   pop_CPU_state();
 838   mov(rsp, rbp);
 839   pop(rbp);
 840 }
 841 
 842 void MacroAssembler::print_state() {
 843   address rip = pc();
 844   pusha();            // get regs on stack
 845   push(rbp);
 846   movq(rbp, rsp);
 847   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 848   push_CPU_state();   // keeps alignment at 16 bytes
 849 
 850   lea(c_rarg0, InternalAddress(rip));
 851   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 852   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 853 
 854   pop_CPU_state();
 855   mov(rsp, rbp);
 856   pop(rbp);
 857   popa();
 858 }
 859 
 860 #ifndef PRODUCT
 861 extern "C" void findpc(intptr_t x);
 862 #endif
 863 
 864 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 865   // In order to get locks to work, we need to fake a in_VM state
 866   if (ShowMessageBoxOnError) {
 867     JavaThread* thread = JavaThread::current();
 868     JavaThreadState saved_state = thread->thread_state();
 869     thread->set_thread_state(_thread_in_vm);
 870 #ifndef PRODUCT
 871     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 872       ttyLocker ttyl;
 873       BytecodeCounter::print();
 874     }
 875 #endif
 876     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 877     // XXX correct this offset for amd64
 878     // This is the value of eip which points to where verify_oop will return.
 879     if (os::message_box(msg, "Execution stopped, print registers?")) {
 880       print_state64(pc, regs);
 881       BREAKPOINT;
 882       assert(false, "start up GDB");
 883     }
 884     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 885   } else {
 886     ttyLocker ttyl;
 887     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 888                     msg);
 889     assert(false, "DEBUG MESSAGE: %s", msg);
 890   }
 891 }
 892 
 893 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 894   ttyLocker ttyl;
 895   FlagSetting fs(Debugging, true);
 896   tty->print_cr("rip = 0x%016lx", pc);
 897 #ifndef PRODUCT
 898   tty->cr();
 899   findpc(pc);
 900   tty->cr();
 901 #endif
 902 #define PRINT_REG(rax, value) \
 903   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 904   PRINT_REG(rax, regs[15]);
 905   PRINT_REG(rbx, regs[12]);
 906   PRINT_REG(rcx, regs[14]);
 907   PRINT_REG(rdx, regs[13]);
 908   PRINT_REG(rdi, regs[8]);
 909   PRINT_REG(rsi, regs[9]);
 910   PRINT_REG(rbp, regs[10]);
 911   PRINT_REG(rsp, regs[11]);
 912   PRINT_REG(r8 , regs[7]);
 913   PRINT_REG(r9 , regs[6]);
 914   PRINT_REG(r10, regs[5]);
 915   PRINT_REG(r11, regs[4]);
 916   PRINT_REG(r12, regs[3]);
 917   PRINT_REG(r13, regs[2]);
 918   PRINT_REG(r14, regs[1]);
 919   PRINT_REG(r15, regs[0]);
 920 #undef PRINT_REG
 921   // Print some words near top of staack.
 922   int64_t* rsp = (int64_t*) regs[11];
 923   int64_t* dump_sp = rsp;
 924   for (int col1 = 0; col1 < 8; col1++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     os::print_location(tty, *dump_sp++);
 927   }
 928   for (int row = 0; row < 25; row++) {
 929     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 930     for (int col = 0; col < 4; col++) {
 931       tty->print(" 0x%016lx", *dump_sp++);
 932     }
 933     tty->cr();
 934   }
 935   // Print some instructions around pc:
 936   Disassembler::decode((address)pc-64, (address)pc);
 937   tty->print_cr("--------");
 938   Disassembler::decode((address)pc, (address)pc+32);
 939 }
 940 
 941 #endif // _LP64
 942 
 943 // Now versions that are common to 32/64 bit
 944 
 945 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 946   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 947 }
 948 
 949 void MacroAssembler::addptr(Register dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addptr(Address dst, Register src) {
 954   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 955 }
 956 
 957 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 958   if (reachable(src)) {
 959     Assembler::addsd(dst, as_Address(src));
 960   } else {
 961     lea(rscratch1, src);
 962     Assembler::addsd(dst, Address(rscratch1, 0));
 963   }
 964 }
 965 
 966 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 967   if (reachable(src)) {
 968     addss(dst, as_Address(src));
 969   } else {
 970     lea(rscratch1, src);
 971     addss(dst, Address(rscratch1, 0));
 972   }
 973 }
 974 
 975 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 976   if (reachable(src)) {
 977     Assembler::addpd(dst, as_Address(src));
 978   } else {
 979     lea(rscratch1, src);
 980     Assembler::addpd(dst, Address(rscratch1, 0));
 981   }
 982 }
 983 
 984 void MacroAssembler::align(int modulus) {
 985   align(modulus, offset());
 986 }
 987 
 988 void MacroAssembler::align(int modulus, int target) {
 989   if (target % modulus != 0) {
 990     nop(modulus - (target % modulus));
 991   }
 992 }
 993 
 994 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 995   // Used in sign-masking with aligned address.
 996   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 997   if (reachable(src)) {
 998     Assembler::andpd(dst, as_Address(src));
 999   } else {
1000     lea(rscratch1, src);
1001     Assembler::andpd(dst, Address(rscratch1, 0));
1002   }
1003 }
1004 
1005 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1006   // Used in sign-masking with aligned address.
1007   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1008   if (reachable(src)) {
1009     Assembler::andps(dst, as_Address(src));
1010   } else {
1011     lea(rscratch1, src);
1012     Assembler::andps(dst, Address(rscratch1, 0));
1013   }
1014 }
1015 
1016 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1017   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1018 }
1019 
1020 void MacroAssembler::atomic_incl(Address counter_addr) {
1021   if (os::is_MP())
1022     lock();
1023   incrementl(counter_addr);
1024 }
1025 
1026 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1027   if (reachable(counter_addr)) {
1028     atomic_incl(as_Address(counter_addr));
1029   } else {
1030     lea(scr, counter_addr);
1031     atomic_incl(Address(scr, 0));
1032   }
1033 }
1034 
1035 #ifdef _LP64
1036 void MacroAssembler::atomic_incq(Address counter_addr) {
1037   if (os::is_MP())
1038     lock();
1039   incrementq(counter_addr);
1040 }
1041 
1042 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1043   if (reachable(counter_addr)) {
1044     atomic_incq(as_Address(counter_addr));
1045   } else {
1046     lea(scr, counter_addr);
1047     atomic_incq(Address(scr, 0));
1048   }
1049 }
1050 #endif
1051 
1052 // Writes to stack successive pages until offset reached to check for
1053 // stack overflow + shadow pages.  This clobbers tmp.
1054 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1055   movptr(tmp, rsp);
1056   // Bang stack for total size given plus shadow page size.
1057   // Bang one page at a time because large size can bang beyond yellow and
1058   // red zones.
1059   Label loop;
1060   bind(loop);
1061   movl(Address(tmp, (-os::vm_page_size())), size );
1062   subptr(tmp, os::vm_page_size());
1063   subl(size, os::vm_page_size());
1064   jcc(Assembler::greater, loop);
1065 
1066   // Bang down shadow pages too.
1067   // At this point, (tmp-0) is the last address touched, so don't
1068   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1069   // was post-decremented.)  Skip this address by starting at i=1, and
1070   // touch a few more pages below.  N.B.  It is important to touch all
1071   // the way down including all pages in the shadow zone.
1072   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1073     // this could be any sized move but this is can be a debugging crumb
1074     // so the bigger the better.
1075     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1076   }
1077 }
1078 
1079 void MacroAssembler::reserved_stack_check() {
1080     // testing if reserved zone needs to be enabled
1081     Label no_reserved_zone_enabling;
1082     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1083     NOT_LP64(get_thread(rsi);)
1084 
1085     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1086     jcc(Assembler::below, no_reserved_zone_enabling);
1087 
1088     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1089     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1090     should_not_reach_here();
1091 
1092     bind(no_reserved_zone_enabling);
1093 }
1094 
1095 int MacroAssembler::biased_locking_enter(Register lock_reg,
1096                                          Register obj_reg,
1097                                          Register swap_reg,
1098                                          Register tmp_reg,
1099                                          bool swap_reg_contains_mark,
1100                                          Label& done,
1101                                          Label* slow_case,
1102                                          BiasedLockingCounters* counters) {
1103   assert(UseBiasedLocking, "why call this otherwise?");
1104   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1105   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1106   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1107   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1108   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1109   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1110 
1111   if (PrintBiasedLockingStatistics && counters == NULL) {
1112     counters = BiasedLocking::counters();
1113   }
1114   // Biased locking
1115   // See whether the lock is currently biased toward our thread and
1116   // whether the epoch is still valid
1117   // Note that the runtime guarantees sufficient alignment of JavaThread
1118   // pointers to allow age to be placed into low bits
1119   // First check to see whether biasing is even enabled for this object
1120   Label cas_label;
1121   int null_check_offset = -1;
1122   if (!swap_reg_contains_mark) {
1123     null_check_offset = offset();
1124     movptr(swap_reg, mark_addr);
1125   }
1126   movptr(tmp_reg, swap_reg);
1127   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1128   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1129   jcc(Assembler::notEqual, cas_label);
1130   // The bias pattern is present in the object's header. Need to check
1131   // whether the bias owner and the epoch are both still current.
1132 #ifndef _LP64
1133   // Note that because there is no current thread register on x86_32 we
1134   // need to store off the mark word we read out of the object to
1135   // avoid reloading it and needing to recheck invariants below. This
1136   // store is unfortunate but it makes the overall code shorter and
1137   // simpler.
1138   movptr(saved_mark_addr, swap_reg);
1139 #endif
1140   if (swap_reg_contains_mark) {
1141     null_check_offset = offset();
1142   }
1143   load_prototype_header(tmp_reg, obj_reg);
1144 #ifdef _LP64
1145   orptr(tmp_reg, r15_thread);
1146   xorptr(tmp_reg, swap_reg);
1147   Register header_reg = tmp_reg;
1148 #else
1149   xorptr(tmp_reg, swap_reg);
1150   get_thread(swap_reg);
1151   xorptr(swap_reg, tmp_reg);
1152   Register header_reg = swap_reg;
1153 #endif
1154   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1155   if (counters != NULL) {
1156     cond_inc32(Assembler::zero,
1157                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1158   }
1159   jcc(Assembler::equal, done);
1160 
1161   Label try_revoke_bias;
1162   Label try_rebias;
1163 
1164   // At this point we know that the header has the bias pattern and
1165   // that we are not the bias owner in the current epoch. We need to
1166   // figure out more details about the state of the header in order to
1167   // know what operations can be legally performed on the object's
1168   // header.
1169 
1170   // If the low three bits in the xor result aren't clear, that means
1171   // the prototype header is no longer biased and we have to revoke
1172   // the bias on this object.
1173   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1174   jccb(Assembler::notZero, try_revoke_bias);
1175 
1176   // Biasing is still enabled for this data type. See whether the
1177   // epoch of the current bias is still valid, meaning that the epoch
1178   // bits of the mark word are equal to the epoch bits of the
1179   // prototype header. (Note that the prototype header's epoch bits
1180   // only change at a safepoint.) If not, attempt to rebias the object
1181   // toward the current thread. Note that we must be absolutely sure
1182   // that the current epoch is invalid in order to do this because
1183   // otherwise the manipulations it performs on the mark word are
1184   // illegal.
1185   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1186   jccb(Assembler::notZero, try_rebias);
1187 
1188   // The epoch of the current bias is still valid but we know nothing
1189   // about the owner; it might be set or it might be clear. Try to
1190   // acquire the bias of the object using an atomic operation. If this
1191   // fails we will go in to the runtime to revoke the object's bias.
1192   // Note that we first construct the presumed unbiased header so we
1193   // don't accidentally blow away another thread's valid bias.
1194   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1195   andptr(swap_reg,
1196          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1197 #ifdef _LP64
1198   movptr(tmp_reg, swap_reg);
1199   orptr(tmp_reg, r15_thread);
1200 #else
1201   get_thread(tmp_reg);
1202   orptr(tmp_reg, swap_reg);
1203 #endif
1204   if (os::is_MP()) {
1205     lock();
1206   }
1207   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1208   // If the biasing toward our thread failed, this means that
1209   // another thread succeeded in biasing it toward itself and we
1210   // need to revoke that bias. The revocation will occur in the
1211   // interpreter runtime in the slow case.
1212   if (counters != NULL) {
1213     cond_inc32(Assembler::zero,
1214                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1215   }
1216   if (slow_case != NULL) {
1217     jcc(Assembler::notZero, *slow_case);
1218   }
1219   jmp(done);
1220 
1221   bind(try_rebias);
1222   // At this point we know the epoch has expired, meaning that the
1223   // current "bias owner", if any, is actually invalid. Under these
1224   // circumstances _only_, we are allowed to use the current header's
1225   // value as the comparison value when doing the cas to acquire the
1226   // bias in the current epoch. In other words, we allow transfer of
1227   // the bias from one thread to another directly in this situation.
1228   //
1229   // FIXME: due to a lack of registers we currently blow away the age
1230   // bits in this situation. Should attempt to preserve them.
1231   load_prototype_header(tmp_reg, obj_reg);
1232 #ifdef _LP64
1233   orptr(tmp_reg, r15_thread);
1234 #else
1235   get_thread(swap_reg);
1236   orptr(tmp_reg, swap_reg);
1237   movptr(swap_reg, saved_mark_addr);
1238 #endif
1239   if (os::is_MP()) {
1240     lock();
1241   }
1242   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1243   // If the biasing toward our thread failed, then another thread
1244   // succeeded in biasing it toward itself and we need to revoke that
1245   // bias. The revocation will occur in the runtime in the slow case.
1246   if (counters != NULL) {
1247     cond_inc32(Assembler::zero,
1248                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1249   }
1250   if (slow_case != NULL) {
1251     jcc(Assembler::notZero, *slow_case);
1252   }
1253   jmp(done);
1254 
1255   bind(try_revoke_bias);
1256   // The prototype mark in the klass doesn't have the bias bit set any
1257   // more, indicating that objects of this data type are not supposed
1258   // to be biased any more. We are going to try to reset the mark of
1259   // this object to the prototype value and fall through to the
1260   // CAS-based locking scheme. Note that if our CAS fails, it means
1261   // that another thread raced us for the privilege of revoking the
1262   // bias of this particular object, so it's okay to continue in the
1263   // normal locking code.
1264   //
1265   // FIXME: due to a lack of registers we currently blow away the age
1266   // bits in this situation. Should attempt to preserve them.
1267   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1268   load_prototype_header(tmp_reg, obj_reg);
1269   if (os::is_MP()) {
1270     lock();
1271   }
1272   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1273   // Fall through to the normal CAS-based lock, because no matter what
1274   // the result of the above CAS, some thread must have succeeded in
1275   // removing the bias bit from the object's header.
1276   if (counters != NULL) {
1277     cond_inc32(Assembler::zero,
1278                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1279   }
1280 
1281   bind(cas_label);
1282 
1283   return null_check_offset;
1284 }
1285 
1286 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1287   assert(UseBiasedLocking, "why call this otherwise?");
1288 
1289   // Check for biased locking unlock case, which is a no-op
1290   // Note: we do not have to check the thread ID for two reasons.
1291   // First, the interpreter checks for IllegalMonitorStateException at
1292   // a higher level. Second, if the bias was revoked while we held the
1293   // lock, the object could not be rebiased toward another thread, so
1294   // the bias bit would be clear.
1295   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1296   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1297   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1298   jcc(Assembler::equal, done);
1299 }
1300 
1301 #ifdef COMPILER2
1302 
1303 #if INCLUDE_RTM_OPT
1304 
1305 // Update rtm_counters based on abort status
1306 // input: abort_status
1307 //        rtm_counters (RTMLockingCounters*)
1308 // flags are killed
1309 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1310 
1311   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1312   if (PrintPreciseRTMLockingStatistics) {
1313     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1314       Label check_abort;
1315       testl(abort_status, (1<<i));
1316       jccb(Assembler::equal, check_abort);
1317       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1318       bind(check_abort);
1319     }
1320   }
1321 }
1322 
1323 // Branch if (random & (count-1) != 0), count is 2^n
1324 // tmp, scr and flags are killed
1325 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1326   assert(tmp == rax, "");
1327   assert(scr == rdx, "");
1328   rdtsc(); // modifies EDX:EAX
1329   andptr(tmp, count-1);
1330   jccb(Assembler::notZero, brLabel);
1331 }
1332 
1333 // Perform abort ratio calculation, set no_rtm bit if high ratio
1334 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1335 // tmpReg, rtm_counters_Reg and flags are killed
1336 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1337                                                  Register rtm_counters_Reg,
1338                                                  RTMLockingCounters* rtm_counters,
1339                                                  Metadata* method_data) {
1340   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1341 
1342   if (RTMLockingCalculationDelay > 0) {
1343     // Delay calculation
1344     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1345     testptr(tmpReg, tmpReg);
1346     jccb(Assembler::equal, L_done);
1347   }
1348   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1349   //   Aborted transactions = abort_count * 100
1350   //   All transactions = total_count *  RTMTotalCountIncrRate
1351   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1352 
1353   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1354   cmpptr(tmpReg, RTMAbortThreshold);
1355   jccb(Assembler::below, L_check_always_rtm2);
1356   imulptr(tmpReg, tmpReg, 100);
1357 
1358   Register scrReg = rtm_counters_Reg;
1359   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1360   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1361   imulptr(scrReg, scrReg, RTMAbortRatio);
1362   cmpptr(tmpReg, scrReg);
1363   jccb(Assembler::below, L_check_always_rtm1);
1364   if (method_data != NULL) {
1365     // set rtm_state to "no rtm" in MDO
1366     mov_metadata(tmpReg, method_data);
1367     if (os::is_MP()) {
1368       lock();
1369     }
1370     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1371   }
1372   jmpb(L_done);
1373   bind(L_check_always_rtm1);
1374   // Reload RTMLockingCounters* address
1375   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1376   bind(L_check_always_rtm2);
1377   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1378   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1379   jccb(Assembler::below, L_done);
1380   if (method_data != NULL) {
1381     // set rtm_state to "always rtm" in MDO
1382     mov_metadata(tmpReg, method_data);
1383     if (os::is_MP()) {
1384       lock();
1385     }
1386     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1387   }
1388   bind(L_done);
1389 }
1390 
1391 // Update counters and perform abort ratio calculation
1392 // input:  abort_status_Reg
1393 // rtm_counters_Reg, flags are killed
1394 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1395                                    Register rtm_counters_Reg,
1396                                    RTMLockingCounters* rtm_counters,
1397                                    Metadata* method_data,
1398                                    bool profile_rtm) {
1399 
1400   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1401   // update rtm counters based on rax value at abort
1402   // reads abort_status_Reg, updates flags
1403   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1404   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1405   if (profile_rtm) {
1406     // Save abort status because abort_status_Reg is used by following code.
1407     if (RTMRetryCount > 0) {
1408       push(abort_status_Reg);
1409     }
1410     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1411     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1412     // restore abort status
1413     if (RTMRetryCount > 0) {
1414       pop(abort_status_Reg);
1415     }
1416   }
1417 }
1418 
1419 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1420 // inputs: retry_count_Reg
1421 //       : abort_status_Reg
1422 // output: retry_count_Reg decremented by 1
1423 // flags are killed
1424 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1425   Label doneRetry;
1426   assert(abort_status_Reg == rax, "");
1427   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1428   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1429   // if reason is in 0x6 and retry count != 0 then retry
1430   andptr(abort_status_Reg, 0x6);
1431   jccb(Assembler::zero, doneRetry);
1432   testl(retry_count_Reg, retry_count_Reg);
1433   jccb(Assembler::zero, doneRetry);
1434   pause();
1435   decrementl(retry_count_Reg);
1436   jmp(retryLabel);
1437   bind(doneRetry);
1438 }
1439 
1440 // Spin and retry if lock is busy,
1441 // inputs: box_Reg (monitor address)
1442 //       : retry_count_Reg
1443 // output: retry_count_Reg decremented by 1
1444 //       : clear z flag if retry count exceeded
1445 // tmp_Reg, scr_Reg, flags are killed
1446 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1447                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1448   Label SpinLoop, SpinExit, doneRetry;
1449   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1450 
1451   testl(retry_count_Reg, retry_count_Reg);
1452   jccb(Assembler::zero, doneRetry);
1453   decrementl(retry_count_Reg);
1454   movptr(scr_Reg, RTMSpinLoopCount);
1455 
1456   bind(SpinLoop);
1457   pause();
1458   decrementl(scr_Reg);
1459   jccb(Assembler::lessEqual, SpinExit);
1460   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1461   testptr(tmp_Reg, tmp_Reg);
1462   jccb(Assembler::notZero, SpinLoop);
1463 
1464   bind(SpinExit);
1465   jmp(retryLabel);
1466   bind(doneRetry);
1467   incrementl(retry_count_Reg); // clear z flag
1468 }
1469 
1470 // Use RTM for normal stack locks
1471 // Input: objReg (object to lock)
1472 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1473                                        Register retry_on_abort_count_Reg,
1474                                        RTMLockingCounters* stack_rtm_counters,
1475                                        Metadata* method_data, bool profile_rtm,
1476                                        Label& DONE_LABEL, Label& IsInflated) {
1477   assert(UseRTMForStackLocks, "why call this otherwise?");
1478   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1479   assert(tmpReg == rax, "");
1480   assert(scrReg == rdx, "");
1481   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1482 
1483   if (RTMRetryCount > 0) {
1484     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1485     bind(L_rtm_retry);
1486   }
1487   movptr(tmpReg, Address(objReg, 0));
1488   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1489   jcc(Assembler::notZero, IsInflated);
1490 
1491   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1492     Label L_noincrement;
1493     if (RTMTotalCountIncrRate > 1) {
1494       // tmpReg, scrReg and flags are killed
1495       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1496     }
1497     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1498     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1499     bind(L_noincrement);
1500   }
1501   xbegin(L_on_abort);
1502   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1503   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1504   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1505   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1506 
1507   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1508   if (UseRTMXendForLockBusy) {
1509     xend();
1510     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1511     jmp(L_decrement_retry);
1512   }
1513   else {
1514     xabort(0);
1515   }
1516   bind(L_on_abort);
1517   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1518     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1519   }
1520   bind(L_decrement_retry);
1521   if (RTMRetryCount > 0) {
1522     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1523     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1524   }
1525 }
1526 
1527 // Use RTM for inflating locks
1528 // inputs: objReg (object to lock)
1529 //         boxReg (on-stack box address (displaced header location) - KILLED)
1530 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1531 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1532                                           Register scrReg, Register retry_on_busy_count_Reg,
1533                                           Register retry_on_abort_count_Reg,
1534                                           RTMLockingCounters* rtm_counters,
1535                                           Metadata* method_data, bool profile_rtm,
1536                                           Label& DONE_LABEL) {
1537   assert(UseRTMLocking, "why call this otherwise?");
1538   assert(tmpReg == rax, "");
1539   assert(scrReg == rdx, "");
1540   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1541   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1542 
1543   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1544   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1545   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1546 
1547   if (RTMRetryCount > 0) {
1548     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1549     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1550     bind(L_rtm_retry);
1551   }
1552   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1553     Label L_noincrement;
1554     if (RTMTotalCountIncrRate > 1) {
1555       // tmpReg, scrReg and flags are killed
1556       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1557     }
1558     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1559     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1560     bind(L_noincrement);
1561   }
1562   xbegin(L_on_abort);
1563   movptr(tmpReg, Address(objReg, 0));
1564   movptr(tmpReg, Address(tmpReg, owner_offset));
1565   testptr(tmpReg, tmpReg);
1566   jcc(Assembler::zero, DONE_LABEL);
1567   if (UseRTMXendForLockBusy) {
1568     xend();
1569     jmp(L_decrement_retry);
1570   }
1571   else {
1572     xabort(0);
1573   }
1574   bind(L_on_abort);
1575   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1576   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1577     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1578   }
1579   if (RTMRetryCount > 0) {
1580     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1581     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1582   }
1583 
1584   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1585   testptr(tmpReg, tmpReg) ;
1586   jccb(Assembler::notZero, L_decrement_retry) ;
1587 
1588   // Appears unlocked - try to swing _owner from null to non-null.
1589   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1590 #ifdef _LP64
1591   Register threadReg = r15_thread;
1592 #else
1593   get_thread(scrReg);
1594   Register threadReg = scrReg;
1595 #endif
1596   if (os::is_MP()) {
1597     lock();
1598   }
1599   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1600 
1601   if (RTMRetryCount > 0) {
1602     // success done else retry
1603     jccb(Assembler::equal, DONE_LABEL) ;
1604     bind(L_decrement_retry);
1605     // Spin and retry if lock is busy.
1606     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1607   }
1608   else {
1609     bind(L_decrement_retry);
1610   }
1611 }
1612 
1613 #endif //  INCLUDE_RTM_OPT
1614 
1615 // Fast_Lock and Fast_Unlock used by C2
1616 
1617 // Because the transitions from emitted code to the runtime
1618 // monitorenter/exit helper stubs are so slow it's critical that
1619 // we inline both the stack-locking fast-path and the inflated fast path.
1620 //
1621 // See also: cmpFastLock and cmpFastUnlock.
1622 //
1623 // What follows is a specialized inline transliteration of the code
1624 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1625 // another option would be to emit TrySlowEnter and TrySlowExit methods
1626 // at startup-time.  These methods would accept arguments as
1627 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1628 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1629 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1630 // In practice, however, the # of lock sites is bounded and is usually small.
1631 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1632 // if the processor uses simple bimodal branch predictors keyed by EIP
1633 // Since the helper routines would be called from multiple synchronization
1634 // sites.
1635 //
1636 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1637 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1638 // to those specialized methods.  That'd give us a mostly platform-independent
1639 // implementation that the JITs could optimize and inline at their pleasure.
1640 // Done correctly, the only time we'd need to cross to native could would be
1641 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1642 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1643 // (b) explicit barriers or fence operations.
1644 //
1645 // TODO:
1646 //
1647 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1648 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1649 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1650 //    the lock operators would typically be faster than reifying Self.
1651 //
1652 // *  Ideally I'd define the primitives as:
1653 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1654 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1655 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1656 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1657 //    Furthermore the register assignments are overconstrained, possibly resulting in
1658 //    sub-optimal code near the synchronization site.
1659 //
1660 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1661 //    Alternately, use a better sp-proximity test.
1662 //
1663 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1664 //    Either one is sufficient to uniquely identify a thread.
1665 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1666 //
1667 // *  Intrinsify notify() and notifyAll() for the common cases where the
1668 //    object is locked by the calling thread but the waitlist is empty.
1669 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1670 //
1671 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1672 //    But beware of excessive branch density on AMD Opterons.
1673 //
1674 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1675 //    or failure of the fast-path.  If the fast-path fails then we pass
1676 //    control to the slow-path, typically in C.  In Fast_Lock and
1677 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1678 //    will emit a conditional branch immediately after the node.
1679 //    So we have branches to branches and lots of ICC.ZF games.
1680 //    Instead, it might be better to have C2 pass a "FailureLabel"
1681 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1682 //    will drop through the node.  ICC.ZF is undefined at exit.
1683 //    In the case of failure, the node will branch directly to the
1684 //    FailureLabel
1685 
1686 
1687 // obj: object to lock
1688 // box: on-stack box address (displaced header location) - KILLED
1689 // rax,: tmp -- KILLED
1690 // scr: tmp -- KILLED
1691 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1692                                Register scrReg, Register cx1Reg, Register cx2Reg,
1693                                BiasedLockingCounters* counters,
1694                                RTMLockingCounters* rtm_counters,
1695                                RTMLockingCounters* stack_rtm_counters,
1696                                Metadata* method_data,
1697                                bool use_rtm, bool profile_rtm) {
1698   // Ensure the register assignments are disjoint
1699   assert(tmpReg == rax, "");
1700 
1701   if (use_rtm) {
1702     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1703   } else {
1704     assert(cx1Reg == noreg, "");
1705     assert(cx2Reg == noreg, "");
1706     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1707   }
1708 
1709   if (counters != NULL) {
1710     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1711   }
1712   if (EmitSync & 1) {
1713       // set box->dhw = markOopDesc::unused_mark()
1714       // Force all sync thru slow-path: slow_enter() and slow_exit()
1715       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1716       cmpptr (rsp, (int32_t)NULL_WORD);
1717   } else {
1718     // Possible cases that we'll encounter in fast_lock
1719     // ------------------------------------------------
1720     // * Inflated
1721     //    -- unlocked
1722     //    -- Locked
1723     //       = by self
1724     //       = by other
1725     // * biased
1726     //    -- by Self
1727     //    -- by other
1728     // * neutral
1729     // * stack-locked
1730     //    -- by self
1731     //       = sp-proximity test hits
1732     //       = sp-proximity test generates false-negative
1733     //    -- by other
1734     //
1735 
1736     Label IsInflated, DONE_LABEL;
1737 
1738     // it's stack-locked, biased or neutral
1739     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1740     // order to reduce the number of conditional branches in the most common cases.
1741     // Beware -- there's a subtle invariant that fetch of the markword
1742     // at [FETCH], below, will never observe a biased encoding (*101b).
1743     // If this invariant is not held we risk exclusion (safety) failure.
1744     if (UseBiasedLocking && !UseOptoBiasInlining) {
1745       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1746     }
1747 
1748 #if INCLUDE_RTM_OPT
1749     if (UseRTMForStackLocks && use_rtm) {
1750       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1751                         stack_rtm_counters, method_data, profile_rtm,
1752                         DONE_LABEL, IsInflated);
1753     }
1754 #endif // INCLUDE_RTM_OPT
1755 
1756     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1757     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1758     jccb(Assembler::notZero, IsInflated);
1759 
1760     // Attempt stack-locking ...
1761     orptr (tmpReg, markOopDesc::unlocked_value);
1762     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1763     if (os::is_MP()) {
1764       lock();
1765     }
1766     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1767     if (counters != NULL) {
1768       cond_inc32(Assembler::equal,
1769                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1770     }
1771     jcc(Assembler::equal, DONE_LABEL);           // Success
1772 
1773     // Recursive locking.
1774     // The object is stack-locked: markword contains stack pointer to BasicLock.
1775     // Locked by current thread if difference with current SP is less than one page.
1776     subptr(tmpReg, rsp);
1777     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1778     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1779     movptr(Address(boxReg, 0), tmpReg);
1780     if (counters != NULL) {
1781       cond_inc32(Assembler::equal,
1782                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1783     }
1784     jmp(DONE_LABEL);
1785 
1786     bind(IsInflated);
1787     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1788 
1789 #if INCLUDE_RTM_OPT
1790     // Use the same RTM locking code in 32- and 64-bit VM.
1791     if (use_rtm) {
1792       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1793                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1794     } else {
1795 #endif // INCLUDE_RTM_OPT
1796 
1797 #ifndef _LP64
1798     // The object is inflated.
1799 
1800     // boxReg refers to the on-stack BasicLock in the current frame.
1801     // We'd like to write:
1802     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1803     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1804     // additional latency as we have another ST in the store buffer that must drain.
1805 
1806     if (EmitSync & 8192) {
1807        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1808        get_thread (scrReg);
1809        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1810        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1811        if (os::is_MP()) {
1812          lock();
1813        }
1814        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1815     } else
1816     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1817        // register juggle because we need tmpReg for cmpxchgptr below
1818        movptr(scrReg, boxReg);
1819        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1820 
1821        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1822        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1823           // prefetchw [eax + Offset(_owner)-2]
1824           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1825        }
1826 
1827        if ((EmitSync & 64) == 0) {
1828          // Optimistic form: consider XORL tmpReg,tmpReg
1829          movptr(tmpReg, NULL_WORD);
1830        } else {
1831          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1832          // Test-And-CAS instead of CAS
1833          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1834          testptr(tmpReg, tmpReg);                   // Locked ?
1835          jccb  (Assembler::notZero, DONE_LABEL);
1836        }
1837 
1838        // Appears unlocked - try to swing _owner from null to non-null.
1839        // Ideally, I'd manifest "Self" with get_thread and then attempt
1840        // to CAS the register containing Self into m->Owner.
1841        // But we don't have enough registers, so instead we can either try to CAS
1842        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1843        // we later store "Self" into m->Owner.  Transiently storing a stack address
1844        // (rsp or the address of the box) into  m->owner is harmless.
1845        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1846        if (os::is_MP()) {
1847          lock();
1848        }
1849        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1850        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1851        // If we weren't able to swing _owner from NULL to the BasicLock
1852        // then take the slow path.
1853        jccb  (Assembler::notZero, DONE_LABEL);
1854        // update _owner from BasicLock to thread
1855        get_thread (scrReg);                    // beware: clobbers ICCs
1856        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1857        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1858 
1859        // If the CAS fails we can either retry or pass control to the slow-path.
1860        // We use the latter tactic.
1861        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1862        // If the CAS was successful ...
1863        //   Self has acquired the lock
1864        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1865        // Intentional fall-through into DONE_LABEL ...
1866     } else {
1867        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1868        movptr(boxReg, tmpReg);
1869 
1870        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1871        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1872           // prefetchw [eax + Offset(_owner)-2]
1873           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1874        }
1875 
1876        if ((EmitSync & 64) == 0) {
1877          // Optimistic form
1878          xorptr  (tmpReg, tmpReg);
1879        } else {
1880          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1881          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1882          testptr(tmpReg, tmpReg);                   // Locked ?
1883          jccb  (Assembler::notZero, DONE_LABEL);
1884        }
1885 
1886        // Appears unlocked - try to swing _owner from null to non-null.
1887        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1888        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1889        get_thread (scrReg);
1890        if (os::is_MP()) {
1891          lock();
1892        }
1893        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1894 
1895        // If the CAS fails we can either retry or pass control to the slow-path.
1896        // We use the latter tactic.
1897        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1898        // If the CAS was successful ...
1899        //   Self has acquired the lock
1900        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1901        // Intentional fall-through into DONE_LABEL ...
1902     }
1903 #else // _LP64
1904     // It's inflated
1905     movq(scrReg, tmpReg);
1906     xorq(tmpReg, tmpReg);
1907 
1908     if (os::is_MP()) {
1909       lock();
1910     }
1911     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1912     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1913     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1914     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1915     // Intentional fall-through into DONE_LABEL ...
1916     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1917 #endif // _LP64
1918 #if INCLUDE_RTM_OPT
1919     } // use_rtm()
1920 #endif
1921     // DONE_LABEL is a hot target - we'd really like to place it at the
1922     // start of cache line by padding with NOPs.
1923     // See the AMD and Intel software optimization manuals for the
1924     // most efficient "long" NOP encodings.
1925     // Unfortunately none of our alignment mechanisms suffice.
1926     bind(DONE_LABEL);
1927 
1928     // At DONE_LABEL the icc ZFlag is set as follows ...
1929     // Fast_Unlock uses the same protocol.
1930     // ZFlag == 1 -> Success
1931     // ZFlag == 0 -> Failure - force control through the slow-path
1932   }
1933 }
1934 
1935 // obj: object to unlock
1936 // box: box address (displaced header location), killed.  Must be EAX.
1937 // tmp: killed, cannot be obj nor box.
1938 //
1939 // Some commentary on balanced locking:
1940 //
1941 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1942 // Methods that don't have provably balanced locking are forced to run in the
1943 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1944 // The interpreter provides two properties:
1945 // I1:  At return-time the interpreter automatically and quietly unlocks any
1946 //      objects acquired the current activation (frame).  Recall that the
1947 //      interpreter maintains an on-stack list of locks currently held by
1948 //      a frame.
1949 // I2:  If a method attempts to unlock an object that is not held by the
1950 //      the frame the interpreter throws IMSX.
1951 //
1952 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1953 // B() doesn't have provably balanced locking so it runs in the interpreter.
1954 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1955 // is still locked by A().
1956 //
1957 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1958 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1959 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1960 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1961 // Arguably given that the spec legislates the JNI case as undefined our implementation
1962 // could reasonably *avoid* checking owner in Fast_Unlock().
1963 // In the interest of performance we elide m->Owner==Self check in unlock.
1964 // A perfectly viable alternative is to elide the owner check except when
1965 // Xcheck:jni is enabled.
1966 
1967 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1968   assert(boxReg == rax, "");
1969   assert_different_registers(objReg, boxReg, tmpReg);
1970 
1971   if (EmitSync & 4) {
1972     // Disable - inhibit all inlining.  Force control through the slow-path
1973     cmpptr (rsp, 0);
1974   } else {
1975     Label DONE_LABEL, Stacked, CheckSucc;
1976 
1977     // Critically, the biased locking test must have precedence over
1978     // and appear before the (box->dhw == 0) recursive stack-lock test.
1979     if (UseBiasedLocking && !UseOptoBiasInlining) {
1980        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1981     }
1982 
1983 #if INCLUDE_RTM_OPT
1984     if (UseRTMForStackLocks && use_rtm) {
1985       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1986       Label L_regular_unlock;
1987       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1988       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1989       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1990       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1991       xend();                                       // otherwise end...
1992       jmp(DONE_LABEL);                              // ... and we're done
1993       bind(L_regular_unlock);
1994     }
1995 #endif
1996 
1997     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1998     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1999     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
2000     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2001     jccb  (Assembler::zero, Stacked);
2002 
2003     // It's inflated.
2004 #if INCLUDE_RTM_OPT
2005     if (use_rtm) {
2006       Label L_regular_inflated_unlock;
2007       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2008       movptr(boxReg, Address(tmpReg, owner_offset));
2009       testptr(boxReg, boxReg);
2010       jccb(Assembler::notZero, L_regular_inflated_unlock);
2011       xend();
2012       jmpb(DONE_LABEL);
2013       bind(L_regular_inflated_unlock);
2014     }
2015 #endif
2016 
2017     // Despite our balanced locking property we still check that m->_owner == Self
2018     // as java routines or native JNI code called by this thread might
2019     // have released the lock.
2020     // Refer to the comments in synchronizer.cpp for how we might encode extra
2021     // state in _succ so we can avoid fetching EntryList|cxq.
2022     //
2023     // I'd like to add more cases in fast_lock() and fast_unlock() --
2024     // such as recursive enter and exit -- but we have to be wary of
2025     // I$ bloat, T$ effects and BP$ effects.
2026     //
2027     // If there's no contention try a 1-0 exit.  That is, exit without
2028     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2029     // we detect and recover from the race that the 1-0 exit admits.
2030     //
2031     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2032     // before it STs null into _owner, releasing the lock.  Updates
2033     // to data protected by the critical section must be visible before
2034     // we drop the lock (and thus before any other thread could acquire
2035     // the lock and observe the fields protected by the lock).
2036     // IA32's memory-model is SPO, so STs are ordered with respect to
2037     // each other and there's no need for an explicit barrier (fence).
2038     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2039 #ifndef _LP64
2040     get_thread (boxReg);
2041     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2042       // prefetchw [ebx + Offset(_owner)-2]
2043       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2044     }
2045 
2046     // Note that we could employ various encoding schemes to reduce
2047     // the number of loads below (currently 4) to just 2 or 3.
2048     // Refer to the comments in synchronizer.cpp.
2049     // In practice the chain of fetches doesn't seem to impact performance, however.
2050     xorptr(boxReg, boxReg);
2051     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2052        // Attempt to reduce branch density - AMD's branch predictor.
2053        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2054        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2055        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2056        jccb  (Assembler::notZero, DONE_LABEL);
2057        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2058        jmpb  (DONE_LABEL);
2059     } else {
2060        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2061        jccb  (Assembler::notZero, DONE_LABEL);
2062        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2063        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2064        jccb  (Assembler::notZero, CheckSucc);
2065        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2066        jmpb  (DONE_LABEL);
2067     }
2068 
2069     // The Following code fragment (EmitSync & 65536) improves the performance of
2070     // contended applications and contended synchronization microbenchmarks.
2071     // Unfortunately the emission of the code - even though not executed - causes regressions
2072     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2073     // with an equal number of never-executed NOPs results in the same regression.
2074     // We leave it off by default.
2075 
2076     if ((EmitSync & 65536) != 0) {
2077        Label LSuccess, LGoSlowPath ;
2078 
2079        bind  (CheckSucc);
2080 
2081        // Optional pre-test ... it's safe to elide this
2082        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2083        jccb(Assembler::zero, LGoSlowPath);
2084 
2085        // We have a classic Dekker-style idiom:
2086        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2087        // There are a number of ways to implement the barrier:
2088        // (1) lock:andl &m->_owner, 0
2089        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2090        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2091        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2092        // (2) If supported, an explicit MFENCE is appealing.
2093        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2094        //     particularly if the write-buffer is full as might be the case if
2095        //     if stores closely precede the fence or fence-equivalent instruction.
2096        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2097        //     as the situation has changed with Nehalem and Shanghai.
2098        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2099        //     The $lines underlying the top-of-stack should be in M-state.
2100        //     The locked add instruction is serializing, of course.
2101        // (4) Use xchg, which is serializing
2102        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2103        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2104        //     The integer condition codes will tell us if succ was 0.
2105        //     Since _succ and _owner should reside in the same $line and
2106        //     we just stored into _owner, it's likely that the $line
2107        //     remains in M-state for the lock:orl.
2108        //
2109        // We currently use (3), although it's likely that switching to (2)
2110        // is correct for the future.
2111 
2112        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2113        if (os::is_MP()) {
2114          lock(); addptr(Address(rsp, 0), 0);
2115        }
2116        // Ratify _succ remains non-null
2117        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2118        jccb  (Assembler::notZero, LSuccess);
2119 
2120        xorptr(boxReg, boxReg);                  // box is really EAX
2121        if (os::is_MP()) { lock(); }
2122        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2123        // There's no successor so we tried to regrab the lock with the
2124        // placeholder value. If that didn't work, then another thread
2125        // grabbed the lock so we're done (and exit was a success).
2126        jccb  (Assembler::notEqual, LSuccess);
2127        // Since we're low on registers we installed rsp as a placeholding in _owner.
2128        // Now install Self over rsp.  This is safe as we're transitioning from
2129        // non-null to non=null
2130        get_thread (boxReg);
2131        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2132        // Intentional fall-through into LGoSlowPath ...
2133 
2134        bind  (LGoSlowPath);
2135        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2136        jmpb  (DONE_LABEL);
2137 
2138        bind  (LSuccess);
2139        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2140        jmpb  (DONE_LABEL);
2141     }
2142 
2143     bind (Stacked);
2144     // It's not inflated and it's not recursively stack-locked and it's not biased.
2145     // It must be stack-locked.
2146     // Try to reset the header to displaced header.
2147     // The "box" value on the stack is stable, so we can reload
2148     // and be assured we observe the same value as above.
2149     movptr(tmpReg, Address(boxReg, 0));
2150     if (os::is_MP()) {
2151       lock();
2152     }
2153     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2154     // Intention fall-thru into DONE_LABEL
2155 
2156     // DONE_LABEL is a hot target - we'd really like to place it at the
2157     // start of cache line by padding with NOPs.
2158     // See the AMD and Intel software optimization manuals for the
2159     // most efficient "long" NOP encodings.
2160     // Unfortunately none of our alignment mechanisms suffice.
2161     if ((EmitSync & 65536) == 0) {
2162        bind (CheckSucc);
2163     }
2164 #else // _LP64
2165     // It's inflated
2166     if (EmitSync & 1024) {
2167       // Emit code to check that _owner == Self
2168       // We could fold the _owner test into subsequent code more efficiently
2169       // than using a stand-alone check, but since _owner checking is off by
2170       // default we don't bother. We also might consider predicating the
2171       // _owner==Self check on Xcheck:jni or running on a debug build.
2172       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2173       xorptr(boxReg, r15_thread);
2174     } else {
2175       xorptr(boxReg, boxReg);
2176     }
2177     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2178     jccb  (Assembler::notZero, DONE_LABEL);
2179     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2180     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2181     jccb  (Assembler::notZero, CheckSucc);
2182     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2183     jmpb  (DONE_LABEL);
2184 
2185     if ((EmitSync & 65536) == 0) {
2186       // Try to avoid passing control into the slow_path ...
2187       Label LSuccess, LGoSlowPath ;
2188       bind  (CheckSucc);
2189 
2190       // The following optional optimization can be elided if necessary
2191       // Effectively: if (succ == null) goto SlowPath
2192       // The code reduces the window for a race, however,
2193       // and thus benefits performance.
2194       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2195       jccb  (Assembler::zero, LGoSlowPath);
2196 
2197       xorptr(boxReg, boxReg);
2198       if ((EmitSync & 16) && os::is_MP()) {
2199         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2200       } else {
2201         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2202         if (os::is_MP()) {
2203           // Memory barrier/fence
2204           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2205           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2206           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2207           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2208           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2209           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2210           lock(); addl(Address(rsp, 0), 0);
2211         }
2212       }
2213       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2214       jccb  (Assembler::notZero, LSuccess);
2215 
2216       // Rare inopportune interleaving - race.
2217       // The successor vanished in the small window above.
2218       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2219       // We need to ensure progress and succession.
2220       // Try to reacquire the lock.
2221       // If that fails then the new owner is responsible for succession and this
2222       // thread needs to take no further action and can exit via the fast path (success).
2223       // If the re-acquire succeeds then pass control into the slow path.
2224       // As implemented, this latter mode is horrible because we generated more
2225       // coherence traffic on the lock *and* artifically extended the critical section
2226       // length while by virtue of passing control into the slow path.
2227 
2228       // box is really RAX -- the following CMPXCHG depends on that binding
2229       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2230       if (os::is_MP()) { lock(); }
2231       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2232       // There's no successor so we tried to regrab the lock.
2233       // If that didn't work, then another thread grabbed the
2234       // lock so we're done (and exit was a success).
2235       jccb  (Assembler::notEqual, LSuccess);
2236       // Intentional fall-through into slow-path
2237 
2238       bind  (LGoSlowPath);
2239       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2240       jmpb  (DONE_LABEL);
2241 
2242       bind  (LSuccess);
2243       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2244       jmpb  (DONE_LABEL);
2245     }
2246 
2247     bind  (Stacked);
2248     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2249     if (os::is_MP()) { lock(); }
2250     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2251 
2252     if (EmitSync & 65536) {
2253        bind (CheckSucc);
2254     }
2255 #endif
2256     bind(DONE_LABEL);
2257   }
2258 }
2259 #endif // COMPILER2
2260 
2261 void MacroAssembler::c2bool(Register x) {
2262   // implements x == 0 ? 0 : 1
2263   // note: must only look at least-significant byte of x
2264   //       since C-style booleans are stored in one byte
2265   //       only! (was bug)
2266   andl(x, 0xFF);
2267   setb(Assembler::notZero, x);
2268 }
2269 
2270 // Wouldn't need if AddressLiteral version had new name
2271 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2272   Assembler::call(L, rtype);
2273 }
2274 
2275 void MacroAssembler::call(Register entry) {
2276   Assembler::call(entry);
2277 }
2278 
2279 void MacroAssembler::call(AddressLiteral entry) {
2280   if (reachable(entry)) {
2281     Assembler::call_literal(entry.target(), entry.rspec());
2282   } else {
2283     lea(rscratch1, entry);
2284     Assembler::call(rscratch1);
2285   }
2286 }
2287 
2288 void MacroAssembler::ic_call(address entry, jint method_index) {
2289   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2290   movptr(rax, (intptr_t)Universe::non_oop_word());
2291   call(AddressLiteral(entry, rh));
2292 }
2293 
2294 // Implementation of call_VM versions
2295 
2296 void MacroAssembler::call_VM(Register oop_result,
2297                              address entry_point,
2298                              bool check_exceptions) {
2299   Label C, E;
2300   call(C, relocInfo::none);
2301   jmp(E);
2302 
2303   bind(C);
2304   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2305   ret(0);
2306 
2307   bind(E);
2308 }
2309 
2310 void MacroAssembler::call_VM(Register oop_result,
2311                              address entry_point,
2312                              Register arg_1,
2313                              bool check_exceptions) {
2314   Label C, E;
2315   call(C, relocInfo::none);
2316   jmp(E);
2317 
2318   bind(C);
2319   pass_arg1(this, arg_1);
2320   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2321   ret(0);
2322 
2323   bind(E);
2324 }
2325 
2326 void MacroAssembler::call_VM(Register oop_result,
2327                              address entry_point,
2328                              Register arg_1,
2329                              Register arg_2,
2330                              bool check_exceptions) {
2331   Label C, E;
2332   call(C, relocInfo::none);
2333   jmp(E);
2334 
2335   bind(C);
2336 
2337   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2338 
2339   pass_arg2(this, arg_2);
2340   pass_arg1(this, arg_1);
2341   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2342   ret(0);
2343 
2344   bind(E);
2345 }
2346 
2347 void MacroAssembler::call_VM(Register oop_result,
2348                              address entry_point,
2349                              Register arg_1,
2350                              Register arg_2,
2351                              Register arg_3,
2352                              bool check_exceptions) {
2353   Label C, E;
2354   call(C, relocInfo::none);
2355   jmp(E);
2356 
2357   bind(C);
2358 
2359   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2360   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2361   pass_arg3(this, arg_3);
2362 
2363   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2364   pass_arg2(this, arg_2);
2365 
2366   pass_arg1(this, arg_1);
2367   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2368   ret(0);
2369 
2370   bind(E);
2371 }
2372 
2373 void MacroAssembler::call_VM(Register oop_result,
2374                              Register last_java_sp,
2375                              address entry_point,
2376                              int number_of_arguments,
2377                              bool check_exceptions) {
2378   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2379   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2380 }
2381 
2382 void MacroAssembler::call_VM(Register oop_result,
2383                              Register last_java_sp,
2384                              address entry_point,
2385                              Register arg_1,
2386                              bool check_exceptions) {
2387   pass_arg1(this, arg_1);
2388   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2389 }
2390 
2391 void MacroAssembler::call_VM(Register oop_result,
2392                              Register last_java_sp,
2393                              address entry_point,
2394                              Register arg_1,
2395                              Register arg_2,
2396                              bool check_exceptions) {
2397 
2398   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2399   pass_arg2(this, arg_2);
2400   pass_arg1(this, arg_1);
2401   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2402 }
2403 
2404 void MacroAssembler::call_VM(Register oop_result,
2405                              Register last_java_sp,
2406                              address entry_point,
2407                              Register arg_1,
2408                              Register arg_2,
2409                              Register arg_3,
2410                              bool check_exceptions) {
2411   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2412   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2413   pass_arg3(this, arg_3);
2414   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2415   pass_arg2(this, arg_2);
2416   pass_arg1(this, arg_1);
2417   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2418 }
2419 
2420 void MacroAssembler::super_call_VM(Register oop_result,
2421                                    Register last_java_sp,
2422                                    address entry_point,
2423                                    int number_of_arguments,
2424                                    bool check_exceptions) {
2425   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2426   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2427 }
2428 
2429 void MacroAssembler::super_call_VM(Register oop_result,
2430                                    Register last_java_sp,
2431                                    address entry_point,
2432                                    Register arg_1,
2433                                    bool check_exceptions) {
2434   pass_arg1(this, arg_1);
2435   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2436 }
2437 
2438 void MacroAssembler::super_call_VM(Register oop_result,
2439                                    Register last_java_sp,
2440                                    address entry_point,
2441                                    Register arg_1,
2442                                    Register arg_2,
2443                                    bool check_exceptions) {
2444 
2445   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2446   pass_arg2(this, arg_2);
2447   pass_arg1(this, arg_1);
2448   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2449 }
2450 
2451 void MacroAssembler::super_call_VM(Register oop_result,
2452                                    Register last_java_sp,
2453                                    address entry_point,
2454                                    Register arg_1,
2455                                    Register arg_2,
2456                                    Register arg_3,
2457                                    bool check_exceptions) {
2458   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2459   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2460   pass_arg3(this, arg_3);
2461   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2462   pass_arg2(this, arg_2);
2463   pass_arg1(this, arg_1);
2464   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2465 }
2466 
2467 void MacroAssembler::call_VM_base(Register oop_result,
2468                                   Register java_thread,
2469                                   Register last_java_sp,
2470                                   address  entry_point,
2471                                   int      number_of_arguments,
2472                                   bool     check_exceptions) {
2473   // determine java_thread register
2474   if (!java_thread->is_valid()) {
2475 #ifdef _LP64
2476     java_thread = r15_thread;
2477 #else
2478     java_thread = rdi;
2479     get_thread(java_thread);
2480 #endif // LP64
2481   }
2482   // determine last_java_sp register
2483   if (!last_java_sp->is_valid()) {
2484     last_java_sp = rsp;
2485   }
2486   // debugging support
2487   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2488   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2489 #ifdef ASSERT
2490   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2491   // r12 is the heapbase.
2492   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2493 #endif // ASSERT
2494 
2495   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2496   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2497 
2498   // push java thread (becomes first argument of C function)
2499 
2500   NOT_LP64(push(java_thread); number_of_arguments++);
2501   LP64_ONLY(mov(c_rarg0, r15_thread));
2502 
2503   // set last Java frame before call
2504   assert(last_java_sp != rbp, "can't use ebp/rbp");
2505 
2506   // Only interpreter should have to set fp
2507   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2508 
2509   // do the call, remove parameters
2510   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2511 
2512   // restore the thread (cannot use the pushed argument since arguments
2513   // may be overwritten by C code generated by an optimizing compiler);
2514   // however can use the register value directly if it is callee saved.
2515   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2516     // rdi & rsi (also r15) are callee saved -> nothing to do
2517 #ifdef ASSERT
2518     guarantee(java_thread != rax, "change this code");
2519     push(rax);
2520     { Label L;
2521       get_thread(rax);
2522       cmpptr(java_thread, rax);
2523       jcc(Assembler::equal, L);
2524       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2525       bind(L);
2526     }
2527     pop(rax);
2528 #endif
2529   } else {
2530     get_thread(java_thread);
2531   }
2532   // reset last Java frame
2533   // Only interpreter should have to clear fp
2534   reset_last_Java_frame(java_thread, true, false);
2535 
2536    // C++ interp handles this in the interpreter
2537   check_and_handle_popframe(java_thread);
2538   check_and_handle_earlyret(java_thread);
2539 
2540   if (check_exceptions) {
2541     // check for pending exceptions (java_thread is set upon return)
2542     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2543 #ifndef _LP64
2544     jump_cc(Assembler::notEqual,
2545             RuntimeAddress(StubRoutines::forward_exception_entry()));
2546 #else
2547     // This used to conditionally jump to forward_exception however it is
2548     // possible if we relocate that the branch will not reach. So we must jump
2549     // around so we can always reach
2550 
2551     Label ok;
2552     jcc(Assembler::equal, ok);
2553     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2554     bind(ok);
2555 #endif // LP64
2556   }
2557 
2558   // get oop result if there is one and reset the value in the thread
2559   if (oop_result->is_valid()) {
2560     get_vm_result(oop_result, java_thread);
2561   }
2562 }
2563 
2564 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2565 
2566   // Calculate the value for last_Java_sp
2567   // somewhat subtle. call_VM does an intermediate call
2568   // which places a return address on the stack just under the
2569   // stack pointer as the user finsihed with it. This allows
2570   // use to retrieve last_Java_pc from last_Java_sp[-1].
2571   // On 32bit we then have to push additional args on the stack to accomplish
2572   // the actual requested call. On 64bit call_VM only can use register args
2573   // so the only extra space is the return address that call_VM created.
2574   // This hopefully explains the calculations here.
2575 
2576 #ifdef _LP64
2577   // We've pushed one address, correct last_Java_sp
2578   lea(rax, Address(rsp, wordSize));
2579 #else
2580   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2581 #endif // LP64
2582 
2583   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2584 
2585 }
2586 
2587 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2588   call_VM_leaf_base(entry_point, number_of_arguments);
2589 }
2590 
2591 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2592   pass_arg0(this, arg_0);
2593   call_VM_leaf(entry_point, 1);
2594 }
2595 
2596 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2597 
2598   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2599   pass_arg1(this, arg_1);
2600   pass_arg0(this, arg_0);
2601   call_VM_leaf(entry_point, 2);
2602 }
2603 
2604 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2605   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2606   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2607   pass_arg2(this, arg_2);
2608   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2609   pass_arg1(this, arg_1);
2610   pass_arg0(this, arg_0);
2611   call_VM_leaf(entry_point, 3);
2612 }
2613 
2614 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2615   pass_arg0(this, arg_0);
2616   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2617 }
2618 
2619 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2620 
2621   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2622   pass_arg1(this, arg_1);
2623   pass_arg0(this, arg_0);
2624   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2625 }
2626 
2627 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2628   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2629   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2630   pass_arg2(this, arg_2);
2631   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2632   pass_arg1(this, arg_1);
2633   pass_arg0(this, arg_0);
2634   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2635 }
2636 
2637 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2638   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2639   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2640   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2641   pass_arg3(this, arg_3);
2642   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2643   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2644   pass_arg2(this, arg_2);
2645   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2646   pass_arg1(this, arg_1);
2647   pass_arg0(this, arg_0);
2648   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2649 }
2650 
2651 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2652   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2653   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2654   verify_oop(oop_result, "broken oop in call_VM_base");
2655 }
2656 
2657 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2658   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2659   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2660 }
2661 
2662 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2663 }
2664 
2665 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2666 }
2667 
2668 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2669   if (reachable(src1)) {
2670     cmpl(as_Address(src1), imm);
2671   } else {
2672     lea(rscratch1, src1);
2673     cmpl(Address(rscratch1, 0), imm);
2674   }
2675 }
2676 
2677 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2678   assert(!src2.is_lval(), "use cmpptr");
2679   if (reachable(src2)) {
2680     cmpl(src1, as_Address(src2));
2681   } else {
2682     lea(rscratch1, src2);
2683     cmpl(src1, Address(rscratch1, 0));
2684   }
2685 }
2686 
2687 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2688   Assembler::cmpl(src1, imm);
2689 }
2690 
2691 void MacroAssembler::cmp32(Register src1, Address src2) {
2692   Assembler::cmpl(src1, src2);
2693 }
2694 
2695 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2696   ucomisd(opr1, opr2);
2697 
2698   Label L;
2699   if (unordered_is_less) {
2700     movl(dst, -1);
2701     jcc(Assembler::parity, L);
2702     jcc(Assembler::below , L);
2703     movl(dst, 0);
2704     jcc(Assembler::equal , L);
2705     increment(dst);
2706   } else { // unordered is greater
2707     movl(dst, 1);
2708     jcc(Assembler::parity, L);
2709     jcc(Assembler::above , L);
2710     movl(dst, 0);
2711     jcc(Assembler::equal , L);
2712     decrementl(dst);
2713   }
2714   bind(L);
2715 }
2716 
2717 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2718   ucomiss(opr1, opr2);
2719 
2720   Label L;
2721   if (unordered_is_less) {
2722     movl(dst, -1);
2723     jcc(Assembler::parity, L);
2724     jcc(Assembler::below , L);
2725     movl(dst, 0);
2726     jcc(Assembler::equal , L);
2727     increment(dst);
2728   } else { // unordered is greater
2729     movl(dst, 1);
2730     jcc(Assembler::parity, L);
2731     jcc(Assembler::above , L);
2732     movl(dst, 0);
2733     jcc(Assembler::equal , L);
2734     decrementl(dst);
2735   }
2736   bind(L);
2737 }
2738 
2739 
2740 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2741   if (reachable(src1)) {
2742     cmpb(as_Address(src1), imm);
2743   } else {
2744     lea(rscratch1, src1);
2745     cmpb(Address(rscratch1, 0), imm);
2746   }
2747 }
2748 
2749 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2750 #ifdef _LP64
2751   if (src2.is_lval()) {
2752     movptr(rscratch1, src2);
2753     Assembler::cmpq(src1, rscratch1);
2754   } else if (reachable(src2)) {
2755     cmpq(src1, as_Address(src2));
2756   } else {
2757     lea(rscratch1, src2);
2758     Assembler::cmpq(src1, Address(rscratch1, 0));
2759   }
2760 #else
2761   if (src2.is_lval()) {
2762     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2763   } else {
2764     cmpl(src1, as_Address(src2));
2765   }
2766 #endif // _LP64
2767 }
2768 
2769 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2770   assert(src2.is_lval(), "not a mem-mem compare");
2771 #ifdef _LP64
2772   // moves src2's literal address
2773   movptr(rscratch1, src2);
2774   Assembler::cmpq(src1, rscratch1);
2775 #else
2776   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2777 #endif // _LP64
2778 }
2779 
2780 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2781   if (reachable(adr)) {
2782     if (os::is_MP())
2783       lock();
2784     cmpxchgptr(reg, as_Address(adr));
2785   } else {
2786     lea(rscratch1, adr);
2787     if (os::is_MP())
2788       lock();
2789     cmpxchgptr(reg, Address(rscratch1, 0));
2790   }
2791 }
2792 
2793 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2794   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2795 }
2796 
2797 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2798   if (reachable(src)) {
2799     Assembler::comisd(dst, as_Address(src));
2800   } else {
2801     lea(rscratch1, src);
2802     Assembler::comisd(dst, Address(rscratch1, 0));
2803   }
2804 }
2805 
2806 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2807   if (reachable(src)) {
2808     Assembler::comiss(dst, as_Address(src));
2809   } else {
2810     lea(rscratch1, src);
2811     Assembler::comiss(dst, Address(rscratch1, 0));
2812   }
2813 }
2814 
2815 
2816 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2817   Condition negated_cond = negate_condition(cond);
2818   Label L;
2819   jcc(negated_cond, L);
2820   pushf(); // Preserve flags
2821   atomic_incl(counter_addr);
2822   popf();
2823   bind(L);
2824 }
2825 
2826 int MacroAssembler::corrected_idivl(Register reg) {
2827   // Full implementation of Java idiv and irem; checks for
2828   // special case as described in JVM spec., p.243 & p.271.
2829   // The function returns the (pc) offset of the idivl
2830   // instruction - may be needed for implicit exceptions.
2831   //
2832   //         normal case                           special case
2833   //
2834   // input : rax,: dividend                         min_int
2835   //         reg: divisor   (may not be rax,/rdx)   -1
2836   //
2837   // output: rax,: quotient  (= rax, idiv reg)       min_int
2838   //         rdx: remainder (= rax, irem reg)       0
2839   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2840   const int min_int = 0x80000000;
2841   Label normal_case, special_case;
2842 
2843   // check for special case
2844   cmpl(rax, min_int);
2845   jcc(Assembler::notEqual, normal_case);
2846   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2847   cmpl(reg, -1);
2848   jcc(Assembler::equal, special_case);
2849 
2850   // handle normal case
2851   bind(normal_case);
2852   cdql();
2853   int idivl_offset = offset();
2854   idivl(reg);
2855 
2856   // normal and special case exit
2857   bind(special_case);
2858 
2859   return idivl_offset;
2860 }
2861 
2862 
2863 
2864 void MacroAssembler::decrementl(Register reg, int value) {
2865   if (value == min_jint) {subl(reg, value) ; return; }
2866   if (value <  0) { incrementl(reg, -value); return; }
2867   if (value == 0) {                        ; return; }
2868   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2869   /* else */      { subl(reg, value)       ; return; }
2870 }
2871 
2872 void MacroAssembler::decrementl(Address dst, int value) {
2873   if (value == min_jint) {subl(dst, value) ; return; }
2874   if (value <  0) { incrementl(dst, -value); return; }
2875   if (value == 0) {                        ; return; }
2876   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2877   /* else */      { subl(dst, value)       ; return; }
2878 }
2879 
2880 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2881   assert (shift_value > 0, "illegal shift value");
2882   Label _is_positive;
2883   testl (reg, reg);
2884   jcc (Assembler::positive, _is_positive);
2885   int offset = (1 << shift_value) - 1 ;
2886 
2887   if (offset == 1) {
2888     incrementl(reg);
2889   } else {
2890     addl(reg, offset);
2891   }
2892 
2893   bind (_is_positive);
2894   sarl(reg, shift_value);
2895 }
2896 
2897 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2898   if (reachable(src)) {
2899     Assembler::divsd(dst, as_Address(src));
2900   } else {
2901     lea(rscratch1, src);
2902     Assembler::divsd(dst, Address(rscratch1, 0));
2903   }
2904 }
2905 
2906 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2907   if (reachable(src)) {
2908     Assembler::divss(dst, as_Address(src));
2909   } else {
2910     lea(rscratch1, src);
2911     Assembler::divss(dst, Address(rscratch1, 0));
2912   }
2913 }
2914 
2915 // !defined(COMPILER2) is because of stupid core builds
2916 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2917 void MacroAssembler::empty_FPU_stack() {
2918   if (VM_Version::supports_mmx()) {
2919     emms();
2920   } else {
2921     for (int i = 8; i-- > 0; ) ffree(i);
2922   }
2923 }
2924 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2925 
2926 
2927 // Defines obj, preserves var_size_in_bytes
2928 void MacroAssembler::eden_allocate(Register obj,
2929                                    Register var_size_in_bytes,
2930                                    int con_size_in_bytes,
2931                                    Register t1,
2932                                    Label& slow_case) {
2933   assert(obj == rax, "obj must be in rax, for cmpxchg");
2934   assert_different_registers(obj, var_size_in_bytes, t1);
2935   if (!Universe::heap()->supports_inline_contig_alloc()) {
2936     jmp(slow_case);
2937   } else {
2938     Register end = t1;
2939     Label retry;
2940     bind(retry);
2941     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2942     movptr(obj, heap_top);
2943     if (var_size_in_bytes == noreg) {
2944       lea(end, Address(obj, con_size_in_bytes));
2945     } else {
2946       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2947     }
2948     // if end < obj then we wrapped around => object too long => slow case
2949     cmpptr(end, obj);
2950     jcc(Assembler::below, slow_case);
2951     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2952     jcc(Assembler::above, slow_case);
2953     // Compare obj with the top addr, and if still equal, store the new top addr in
2954     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2955     // it otherwise. Use lock prefix for atomicity on MPs.
2956     locked_cmpxchgptr(end, heap_top);
2957     jcc(Assembler::notEqual, retry);
2958   }
2959 }
2960 
2961 void MacroAssembler::enter() {
2962   push(rbp);
2963   mov(rbp, rsp);
2964 }
2965 
2966 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2967 void MacroAssembler::fat_nop() {
2968   if (UseAddressNop) {
2969     addr_nop_5();
2970   } else {
2971     emit_int8(0x26); // es:
2972     emit_int8(0x2e); // cs:
2973     emit_int8(0x64); // fs:
2974     emit_int8(0x65); // gs:
2975     emit_int8((unsigned char)0x90);
2976   }
2977 }
2978 
2979 void MacroAssembler::fcmp(Register tmp) {
2980   fcmp(tmp, 1, true, true);
2981 }
2982 
2983 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2984   assert(!pop_right || pop_left, "usage error");
2985   if (VM_Version::supports_cmov()) {
2986     assert(tmp == noreg, "unneeded temp");
2987     if (pop_left) {
2988       fucomip(index);
2989     } else {
2990       fucomi(index);
2991     }
2992     if (pop_right) {
2993       fpop();
2994     }
2995   } else {
2996     assert(tmp != noreg, "need temp");
2997     if (pop_left) {
2998       if (pop_right) {
2999         fcompp();
3000       } else {
3001         fcomp(index);
3002       }
3003     } else {
3004       fcom(index);
3005     }
3006     // convert FPU condition into eflags condition via rax,
3007     save_rax(tmp);
3008     fwait(); fnstsw_ax();
3009     sahf();
3010     restore_rax(tmp);
3011   }
3012   // condition codes set as follows:
3013   //
3014   // CF (corresponds to C0) if x < y
3015   // PF (corresponds to C2) if unordered
3016   // ZF (corresponds to C3) if x = y
3017 }
3018 
3019 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3020   fcmp2int(dst, unordered_is_less, 1, true, true);
3021 }
3022 
3023 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3024   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3025   Label L;
3026   if (unordered_is_less) {
3027     movl(dst, -1);
3028     jcc(Assembler::parity, L);
3029     jcc(Assembler::below , L);
3030     movl(dst, 0);
3031     jcc(Assembler::equal , L);
3032     increment(dst);
3033   } else { // unordered is greater
3034     movl(dst, 1);
3035     jcc(Assembler::parity, L);
3036     jcc(Assembler::above , L);
3037     movl(dst, 0);
3038     jcc(Assembler::equal , L);
3039     decrementl(dst);
3040   }
3041   bind(L);
3042 }
3043 
3044 void MacroAssembler::fld_d(AddressLiteral src) {
3045   fld_d(as_Address(src));
3046 }
3047 
3048 void MacroAssembler::fld_s(AddressLiteral src) {
3049   fld_s(as_Address(src));
3050 }
3051 
3052 void MacroAssembler::fld_x(AddressLiteral src) {
3053   Assembler::fld_x(as_Address(src));
3054 }
3055 
3056 void MacroAssembler::fldcw(AddressLiteral src) {
3057   Assembler::fldcw(as_Address(src));
3058 }
3059 
3060 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3061   if (reachable(src)) {
3062     Assembler::mulpd(dst, as_Address(src));
3063   } else {
3064     lea(rscratch1, src);
3065     Assembler::mulpd(dst, Address(rscratch1, 0));
3066   }
3067 }
3068 
3069 void MacroAssembler::increase_precision() {
3070   subptr(rsp, BytesPerWord);
3071   fnstcw(Address(rsp, 0));
3072   movl(rax, Address(rsp, 0));
3073   orl(rax, 0x300);
3074   push(rax);
3075   fldcw(Address(rsp, 0));
3076   pop(rax);
3077 }
3078 
3079 void MacroAssembler::restore_precision() {
3080   fldcw(Address(rsp, 0));
3081   addptr(rsp, BytesPerWord);
3082 }
3083 
3084 void MacroAssembler::fpop() {
3085   ffree();
3086   fincstp();
3087 }
3088 
3089 void MacroAssembler::load_float(Address src) {
3090   if (UseSSE >= 1) {
3091     movflt(xmm0, src);
3092   } else {
3093     LP64_ONLY(ShouldNotReachHere());
3094     NOT_LP64(fld_s(src));
3095   }
3096 }
3097 
3098 void MacroAssembler::store_float(Address dst) {
3099   if (UseSSE >= 1) {
3100     movflt(dst, xmm0);
3101   } else {
3102     LP64_ONLY(ShouldNotReachHere());
3103     NOT_LP64(fstp_s(dst));
3104   }
3105 }
3106 
3107 void MacroAssembler::load_double(Address src) {
3108   if (UseSSE >= 2) {
3109     movdbl(xmm0, src);
3110   } else {
3111     LP64_ONLY(ShouldNotReachHere());
3112     NOT_LP64(fld_d(src));
3113   }
3114 }
3115 
3116 void MacroAssembler::store_double(Address dst) {
3117   if (UseSSE >= 2) {
3118     movdbl(dst, xmm0);
3119   } else {
3120     LP64_ONLY(ShouldNotReachHere());
3121     NOT_LP64(fstp_d(dst));
3122   }
3123 }
3124 
3125 void MacroAssembler::fremr(Register tmp) {
3126   save_rax(tmp);
3127   { Label L;
3128     bind(L);
3129     fprem();
3130     fwait(); fnstsw_ax();
3131 #ifdef _LP64
3132     testl(rax, 0x400);
3133     jcc(Assembler::notEqual, L);
3134 #else
3135     sahf();
3136     jcc(Assembler::parity, L);
3137 #endif // _LP64
3138   }
3139   restore_rax(tmp);
3140   // Result is in ST0.
3141   // Note: fxch & fpop to get rid of ST1
3142   // (otherwise FPU stack could overflow eventually)
3143   fxch(1);
3144   fpop();
3145 }
3146 
3147 
3148 void MacroAssembler::incrementl(AddressLiteral dst) {
3149   if (reachable(dst)) {
3150     incrementl(as_Address(dst));
3151   } else {
3152     lea(rscratch1, dst);
3153     incrementl(Address(rscratch1, 0));
3154   }
3155 }
3156 
3157 void MacroAssembler::incrementl(ArrayAddress dst) {
3158   incrementl(as_Address(dst));
3159 }
3160 
3161 void MacroAssembler::incrementl(Register reg, int value) {
3162   if (value == min_jint) {addl(reg, value) ; return; }
3163   if (value <  0) { decrementl(reg, -value); return; }
3164   if (value == 0) {                        ; return; }
3165   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3166   /* else */      { addl(reg, value)       ; return; }
3167 }
3168 
3169 void MacroAssembler::incrementl(Address dst, int value) {
3170   if (value == min_jint) {addl(dst, value) ; return; }
3171   if (value <  0) { decrementl(dst, -value); return; }
3172   if (value == 0) {                        ; return; }
3173   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3174   /* else */      { addl(dst, value)       ; return; }
3175 }
3176 
3177 void MacroAssembler::jump(AddressLiteral dst) {
3178   if (reachable(dst)) {
3179     jmp_literal(dst.target(), dst.rspec());
3180   } else {
3181     lea(rscratch1, dst);
3182     jmp(rscratch1);
3183   }
3184 }
3185 
3186 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3187   if (reachable(dst)) {
3188     InstructionMark im(this);
3189     relocate(dst.reloc());
3190     const int short_size = 2;
3191     const int long_size = 6;
3192     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3193     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3194       // 0111 tttn #8-bit disp
3195       emit_int8(0x70 | cc);
3196       emit_int8((offs - short_size) & 0xFF);
3197     } else {
3198       // 0000 1111 1000 tttn #32-bit disp
3199       emit_int8(0x0F);
3200       emit_int8((unsigned char)(0x80 | cc));
3201       emit_int32(offs - long_size);
3202     }
3203   } else {
3204 #ifdef ASSERT
3205     warning("reversing conditional branch");
3206 #endif /* ASSERT */
3207     Label skip;
3208     jccb(reverse[cc], skip);
3209     lea(rscratch1, dst);
3210     Assembler::jmp(rscratch1);
3211     bind(skip);
3212   }
3213 }
3214 
3215 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3216   if (reachable(src)) {
3217     Assembler::ldmxcsr(as_Address(src));
3218   } else {
3219     lea(rscratch1, src);
3220     Assembler::ldmxcsr(Address(rscratch1, 0));
3221   }
3222 }
3223 
3224 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3225   int off;
3226   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3227     off = offset();
3228     movsbl(dst, src); // movsxb
3229   } else {
3230     off = load_unsigned_byte(dst, src);
3231     shll(dst, 24);
3232     sarl(dst, 24);
3233   }
3234   return off;
3235 }
3236 
3237 // Note: load_signed_short used to be called load_signed_word.
3238 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3239 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3240 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3241 int MacroAssembler::load_signed_short(Register dst, Address src) {
3242   int off;
3243   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3244     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3245     // version but this is what 64bit has always done. This seems to imply
3246     // that users are only using 32bits worth.
3247     off = offset();
3248     movswl(dst, src); // movsxw
3249   } else {
3250     off = load_unsigned_short(dst, src);
3251     shll(dst, 16);
3252     sarl(dst, 16);
3253   }
3254   return off;
3255 }
3256 
3257 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3258   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3259   // and "3.9 Partial Register Penalties", p. 22).
3260   int off;
3261   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3262     off = offset();
3263     movzbl(dst, src); // movzxb
3264   } else {
3265     xorl(dst, dst);
3266     off = offset();
3267     movb(dst, src);
3268   }
3269   return off;
3270 }
3271 
3272 // Note: load_unsigned_short used to be called load_unsigned_word.
3273 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3274   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3275   // and "3.9 Partial Register Penalties", p. 22).
3276   int off;
3277   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3278     off = offset();
3279     movzwl(dst, src); // movzxw
3280   } else {
3281     xorl(dst, dst);
3282     off = offset();
3283     movw(dst, src);
3284   }
3285   return off;
3286 }
3287 
3288 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3289   switch (size_in_bytes) {
3290 #ifndef _LP64
3291   case  8:
3292     assert(dst2 != noreg, "second dest register required");
3293     movl(dst,  src);
3294     movl(dst2, src.plus_disp(BytesPerInt));
3295     break;
3296 #else
3297   case  8:  movq(dst, src); break;
3298 #endif
3299   case  4:  movl(dst, src); break;
3300   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3301   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3302   default:  ShouldNotReachHere();
3303   }
3304 }
3305 
3306 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3307   switch (size_in_bytes) {
3308 #ifndef _LP64
3309   case  8:
3310     assert(src2 != noreg, "second source register required");
3311     movl(dst,                        src);
3312     movl(dst.plus_disp(BytesPerInt), src2);
3313     break;
3314 #else
3315   case  8:  movq(dst, src); break;
3316 #endif
3317   case  4:  movl(dst, src); break;
3318   case  2:  movw(dst, src); break;
3319   case  1:  movb(dst, src); break;
3320   default:  ShouldNotReachHere();
3321   }
3322 }
3323 
3324 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3325   if (reachable(dst)) {
3326     movl(as_Address(dst), src);
3327   } else {
3328     lea(rscratch1, dst);
3329     movl(Address(rscratch1, 0), src);
3330   }
3331 }
3332 
3333 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3334   if (reachable(src)) {
3335     movl(dst, as_Address(src));
3336   } else {
3337     lea(rscratch1, src);
3338     movl(dst, Address(rscratch1, 0));
3339   }
3340 }
3341 
3342 // C++ bool manipulation
3343 
3344 void MacroAssembler::movbool(Register dst, Address src) {
3345   if(sizeof(bool) == 1)
3346     movb(dst, src);
3347   else if(sizeof(bool) == 2)
3348     movw(dst, src);
3349   else if(sizeof(bool) == 4)
3350     movl(dst, src);
3351   else
3352     // unsupported
3353     ShouldNotReachHere();
3354 }
3355 
3356 void MacroAssembler::movbool(Address dst, bool boolconst) {
3357   if(sizeof(bool) == 1)
3358     movb(dst, (int) boolconst);
3359   else if(sizeof(bool) == 2)
3360     movw(dst, (int) boolconst);
3361   else if(sizeof(bool) == 4)
3362     movl(dst, (int) boolconst);
3363   else
3364     // unsupported
3365     ShouldNotReachHere();
3366 }
3367 
3368 void MacroAssembler::movbool(Address dst, Register src) {
3369   if(sizeof(bool) == 1)
3370     movb(dst, src);
3371   else if(sizeof(bool) == 2)
3372     movw(dst, src);
3373   else if(sizeof(bool) == 4)
3374     movl(dst, src);
3375   else
3376     // unsupported
3377     ShouldNotReachHere();
3378 }
3379 
3380 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3381   movb(as_Address(dst), src);
3382 }
3383 
3384 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3385   if (reachable(src)) {
3386     movdl(dst, as_Address(src));
3387   } else {
3388     lea(rscratch1, src);
3389     movdl(dst, Address(rscratch1, 0));
3390   }
3391 }
3392 
3393 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3394   if (reachable(src)) {
3395     movq(dst, as_Address(src));
3396   } else {
3397     lea(rscratch1, src);
3398     movq(dst, Address(rscratch1, 0));
3399   }
3400 }
3401 
3402 void MacroAssembler::setvectmask(Register dst, Register src) {
3403   Assembler::movl(dst, 1);
3404   Assembler::shlxl(dst, dst, src);
3405   Assembler::decl(dst);
3406   Assembler::kmovdl(k1, dst);
3407   Assembler::movl(dst, src);
3408 }
3409 
3410 void MacroAssembler::restorevectmask() {
3411   Assembler::knotwl(k1, k0);
3412 }
3413 
3414 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3415   if (reachable(src)) {
3416     if (UseXmmLoadAndClearUpper) {
3417       movsd (dst, as_Address(src));
3418     } else {
3419       movlpd(dst, as_Address(src));
3420     }
3421   } else {
3422     lea(rscratch1, src);
3423     if (UseXmmLoadAndClearUpper) {
3424       movsd (dst, Address(rscratch1, 0));
3425     } else {
3426       movlpd(dst, Address(rscratch1, 0));
3427     }
3428   }
3429 }
3430 
3431 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3432   if (reachable(src)) {
3433     movss(dst, as_Address(src));
3434   } else {
3435     lea(rscratch1, src);
3436     movss(dst, Address(rscratch1, 0));
3437   }
3438 }
3439 
3440 void MacroAssembler::movptr(Register dst, Register src) {
3441   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3442 }
3443 
3444 void MacroAssembler::movptr(Register dst, Address src) {
3445   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3446 }
3447 
3448 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3449 void MacroAssembler::movptr(Register dst, intptr_t src) {
3450   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3451 }
3452 
3453 void MacroAssembler::movptr(Address dst, Register src) {
3454   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3455 }
3456 
3457 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3458   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3459     Assembler::vextractf32x4(dst, src, 0);
3460   } else {
3461     Assembler::movdqu(dst, src);
3462   }
3463 }
3464 
3465 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3466   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3467     Assembler::vinsertf32x4(dst, dst, src, 0);
3468   } else {
3469     Assembler::movdqu(dst, src);
3470   }
3471 }
3472 
3473 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3474   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3475     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3476   } else {
3477     Assembler::movdqu(dst, src);
3478   }
3479 }
3480 
3481 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3482   if (reachable(src)) {
3483     movdqu(dst, as_Address(src));
3484   } else {
3485     lea(rscratch1, src);
3486     movdqu(dst, Address(rscratch1, 0));
3487   }
3488 }
3489 
3490 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3491   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3492     vextractf64x4_low(dst, src);
3493   } else {
3494     Assembler::vmovdqu(dst, src);
3495   }
3496 }
3497 
3498 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3499   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3500     vinsertf64x4_low(dst, src);
3501   } else {
3502     Assembler::vmovdqu(dst, src);
3503   }
3504 }
3505 
3506 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3507   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3508     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3509   }
3510   else {
3511     Assembler::vmovdqu(dst, src);
3512   }
3513 }
3514 
3515 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3516   if (reachable(src)) {
3517     vmovdqu(dst, as_Address(src));
3518   }
3519   else {
3520     lea(rscratch1, src);
3521     vmovdqu(dst, Address(rscratch1, 0));
3522   }
3523 }
3524 
3525 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3526   if (reachable(src)) {
3527     Assembler::movdqa(dst, as_Address(src));
3528   } else {
3529     lea(rscratch1, src);
3530     Assembler::movdqa(dst, Address(rscratch1, 0));
3531   }
3532 }
3533 
3534 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3535   if (reachable(src)) {
3536     Assembler::movsd(dst, as_Address(src));
3537   } else {
3538     lea(rscratch1, src);
3539     Assembler::movsd(dst, Address(rscratch1, 0));
3540   }
3541 }
3542 
3543 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3544   if (reachable(src)) {
3545     Assembler::movss(dst, as_Address(src));
3546   } else {
3547     lea(rscratch1, src);
3548     Assembler::movss(dst, Address(rscratch1, 0));
3549   }
3550 }
3551 
3552 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3553   if (reachable(src)) {
3554     Assembler::mulsd(dst, as_Address(src));
3555   } else {
3556     lea(rscratch1, src);
3557     Assembler::mulsd(dst, Address(rscratch1, 0));
3558   }
3559 }
3560 
3561 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3562   if (reachable(src)) {
3563     Assembler::mulss(dst, as_Address(src));
3564   } else {
3565     lea(rscratch1, src);
3566     Assembler::mulss(dst, Address(rscratch1, 0));
3567   }
3568 }
3569 
3570 void MacroAssembler::null_check(Register reg, int offset) {
3571   if (needs_explicit_null_check(offset)) {
3572     // provoke OS NULL exception if reg = NULL by
3573     // accessing M[reg] w/o changing any (non-CC) registers
3574     // NOTE: cmpl is plenty here to provoke a segv
3575     cmpptr(rax, Address(reg, 0));
3576     // Note: should probably use testl(rax, Address(reg, 0));
3577     //       may be shorter code (however, this version of
3578     //       testl needs to be implemented first)
3579   } else {
3580     // nothing to do, (later) access of M[reg + offset]
3581     // will provoke OS NULL exception if reg = NULL
3582   }
3583 }
3584 
3585 void MacroAssembler::os_breakpoint() {
3586   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3587   // (e.g., MSVC can't call ps() otherwise)
3588   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3589 }
3590 
3591 #ifdef _LP64
3592 #define XSTATE_BV 0x200
3593 #endif
3594 
3595 void MacroAssembler::pop_CPU_state() {
3596   pop_FPU_state();
3597   pop_IU_state();
3598 }
3599 
3600 void MacroAssembler::pop_FPU_state() {
3601 #ifndef _LP64
3602   frstor(Address(rsp, 0));
3603 #else
3604   fxrstor(Address(rsp, 0));
3605 #endif
3606   addptr(rsp, FPUStateSizeInWords * wordSize);
3607 }
3608 
3609 void MacroAssembler::pop_IU_state() {
3610   popa();
3611   LP64_ONLY(addq(rsp, 8));
3612   popf();
3613 }
3614 
3615 // Save Integer and Float state
3616 // Warning: Stack must be 16 byte aligned (64bit)
3617 void MacroAssembler::push_CPU_state() {
3618   push_IU_state();
3619   push_FPU_state();
3620 }
3621 
3622 void MacroAssembler::push_FPU_state() {
3623   subptr(rsp, FPUStateSizeInWords * wordSize);
3624 #ifndef _LP64
3625   fnsave(Address(rsp, 0));
3626   fwait();
3627 #else
3628   fxsave(Address(rsp, 0));
3629 #endif // LP64
3630 }
3631 
3632 void MacroAssembler::push_IU_state() {
3633   // Push flags first because pusha kills them
3634   pushf();
3635   // Make sure rsp stays 16-byte aligned
3636   LP64_ONLY(subq(rsp, 8));
3637   pusha();
3638 }
3639 
3640 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3641   // determine java_thread register
3642   if (!java_thread->is_valid()) {
3643     java_thread = rdi;
3644     get_thread(java_thread);
3645   }
3646   // we must set sp to zero to clear frame
3647   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3648   if (clear_fp) {
3649     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3650   }
3651 
3652   if (clear_pc)
3653     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3654 
3655 }
3656 
3657 void MacroAssembler::restore_rax(Register tmp) {
3658   if (tmp == noreg) pop(rax);
3659   else if (tmp != rax) mov(rax, tmp);
3660 }
3661 
3662 void MacroAssembler::round_to(Register reg, int modulus) {
3663   addptr(reg, modulus - 1);
3664   andptr(reg, -modulus);
3665 }
3666 
3667 void MacroAssembler::save_rax(Register tmp) {
3668   if (tmp == noreg) push(rax);
3669   else if (tmp != rax) mov(tmp, rax);
3670 }
3671 
3672 // Write serialization page so VM thread can do a pseudo remote membar.
3673 // We use the current thread pointer to calculate a thread specific
3674 // offset to write to within the page. This minimizes bus traffic
3675 // due to cache line collision.
3676 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3677   movl(tmp, thread);
3678   shrl(tmp, os::get_serialize_page_shift_count());
3679   andl(tmp, (os::vm_page_size() - sizeof(int)));
3680 
3681   Address index(noreg, tmp, Address::times_1);
3682   ExternalAddress page(os::get_memory_serialize_page());
3683 
3684   // Size of store must match masking code above
3685   movl(as_Address(ArrayAddress(page, index)), tmp);
3686 }
3687 
3688 // Calls to C land
3689 //
3690 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3691 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3692 // has to be reset to 0. This is required to allow proper stack traversal.
3693 void MacroAssembler::set_last_Java_frame(Register java_thread,
3694                                          Register last_java_sp,
3695                                          Register last_java_fp,
3696                                          address  last_java_pc) {
3697   // determine java_thread register
3698   if (!java_thread->is_valid()) {
3699     java_thread = rdi;
3700     get_thread(java_thread);
3701   }
3702   // determine last_java_sp register
3703   if (!last_java_sp->is_valid()) {
3704     last_java_sp = rsp;
3705   }
3706 
3707   // last_java_fp is optional
3708 
3709   if (last_java_fp->is_valid()) {
3710     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3711   }
3712 
3713   // last_java_pc is optional
3714 
3715   if (last_java_pc != NULL) {
3716     lea(Address(java_thread,
3717                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3718         InternalAddress(last_java_pc));
3719 
3720   }
3721   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3722 }
3723 
3724 void MacroAssembler::shlptr(Register dst, int imm8) {
3725   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3726 }
3727 
3728 void MacroAssembler::shrptr(Register dst, int imm8) {
3729   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3730 }
3731 
3732 void MacroAssembler::sign_extend_byte(Register reg) {
3733   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3734     movsbl(reg, reg); // movsxb
3735   } else {
3736     shll(reg, 24);
3737     sarl(reg, 24);
3738   }
3739 }
3740 
3741 void MacroAssembler::sign_extend_short(Register reg) {
3742   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3743     movswl(reg, reg); // movsxw
3744   } else {
3745     shll(reg, 16);
3746     sarl(reg, 16);
3747   }
3748 }
3749 
3750 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3751   assert(reachable(src), "Address should be reachable");
3752   testl(dst, as_Address(src));
3753 }
3754 
3755 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3756   int dst_enc = dst->encoding();
3757   int src_enc = src->encoding();
3758   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3759     Assembler::pcmpeqb(dst, src);
3760   } else if ((dst_enc < 16) && (src_enc < 16)) {
3761     Assembler::pcmpeqb(dst, src);
3762   } else if (src_enc < 16) {
3763     subptr(rsp, 64);
3764     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3765     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3766     Assembler::pcmpeqb(xmm0, src);
3767     movdqu(dst, xmm0);
3768     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3769     addptr(rsp, 64);
3770   } else if (dst_enc < 16) {
3771     subptr(rsp, 64);
3772     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3773     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3774     Assembler::pcmpeqb(dst, xmm0);
3775     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3776     addptr(rsp, 64);
3777   } else {
3778     subptr(rsp, 64);
3779     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3780     subptr(rsp, 64);
3781     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3782     movdqu(xmm0, src);
3783     movdqu(xmm1, dst);
3784     Assembler::pcmpeqb(xmm1, xmm0);
3785     movdqu(dst, xmm1);
3786     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3787     addptr(rsp, 64);
3788     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3789     addptr(rsp, 64);
3790   }
3791 }
3792 
3793 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3794   int dst_enc = dst->encoding();
3795   int src_enc = src->encoding();
3796   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3797     Assembler::pcmpeqw(dst, src);
3798   } else if ((dst_enc < 16) && (src_enc < 16)) {
3799     Assembler::pcmpeqw(dst, src);
3800   } else if (src_enc < 16) {
3801     subptr(rsp, 64);
3802     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3803     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3804     Assembler::pcmpeqw(xmm0, src);
3805     movdqu(dst, xmm0);
3806     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3807     addptr(rsp, 64);
3808   } else if (dst_enc < 16) {
3809     subptr(rsp, 64);
3810     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3811     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3812     Assembler::pcmpeqw(dst, xmm0);
3813     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3814     addptr(rsp, 64);
3815   } else {
3816     subptr(rsp, 64);
3817     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3818     subptr(rsp, 64);
3819     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3820     movdqu(xmm0, src);
3821     movdqu(xmm1, dst);
3822     Assembler::pcmpeqw(xmm1, xmm0);
3823     movdqu(dst, xmm1);
3824     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3825     addptr(rsp, 64);
3826     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3827     addptr(rsp, 64);
3828   }
3829 }
3830 
3831 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3832   int dst_enc = dst->encoding();
3833   if (dst_enc < 16) {
3834     Assembler::pcmpestri(dst, src, imm8);
3835   } else {
3836     subptr(rsp, 64);
3837     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3838     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3839     Assembler::pcmpestri(xmm0, src, imm8);
3840     movdqu(dst, xmm0);
3841     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3842     addptr(rsp, 64);
3843   }
3844 }
3845 
3846 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3847   int dst_enc = dst->encoding();
3848   int src_enc = src->encoding();
3849   if ((dst_enc < 16) && (src_enc < 16)) {
3850     Assembler::pcmpestri(dst, src, imm8);
3851   } else if (src_enc < 16) {
3852     subptr(rsp, 64);
3853     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3854     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3855     Assembler::pcmpestri(xmm0, src, imm8);
3856     movdqu(dst, xmm0);
3857     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3858     addptr(rsp, 64);
3859   } else if (dst_enc < 16) {
3860     subptr(rsp, 64);
3861     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3862     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3863     Assembler::pcmpestri(dst, xmm0, imm8);
3864     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3865     addptr(rsp, 64);
3866   } else {
3867     subptr(rsp, 64);
3868     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3869     subptr(rsp, 64);
3870     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3871     movdqu(xmm0, src);
3872     movdqu(xmm1, dst);
3873     Assembler::pcmpestri(xmm1, xmm0, imm8);
3874     movdqu(dst, xmm1);
3875     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3876     addptr(rsp, 64);
3877     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3878     addptr(rsp, 64);
3879   }
3880 }
3881 
3882 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3883   int dst_enc = dst->encoding();
3884   int src_enc = src->encoding();
3885   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3886     Assembler::pmovzxbw(dst, src);
3887   } else if ((dst_enc < 16) && (src_enc < 16)) {
3888     Assembler::pmovzxbw(dst, src);
3889   } else if (src_enc < 16) {
3890     subptr(rsp, 64);
3891     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3892     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3893     Assembler::pmovzxbw(xmm0, src);
3894     movdqu(dst, xmm0);
3895     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3896     addptr(rsp, 64);
3897   } else if (dst_enc < 16) {
3898     subptr(rsp, 64);
3899     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3900     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3901     Assembler::pmovzxbw(dst, xmm0);
3902     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3903     addptr(rsp, 64);
3904   } else {
3905     subptr(rsp, 64);
3906     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3907     subptr(rsp, 64);
3908     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3909     movdqu(xmm0, src);
3910     movdqu(xmm1, dst);
3911     Assembler::pmovzxbw(xmm1, xmm0);
3912     movdqu(dst, xmm1);
3913     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3914     addptr(rsp, 64);
3915     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3916     addptr(rsp, 64);
3917   }
3918 }
3919 
3920 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3921   int dst_enc = dst->encoding();
3922   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3923     Assembler::pmovzxbw(dst, src);
3924   } else if (dst_enc < 16) {
3925     Assembler::pmovzxbw(dst, src);
3926   } else {
3927     subptr(rsp, 64);
3928     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3929     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3930     Assembler::pmovzxbw(xmm0, src);
3931     movdqu(dst, xmm0);
3932     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3933     addptr(rsp, 64);
3934   }
3935 }
3936 
3937 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3938   int src_enc = src->encoding();
3939   if (src_enc < 16) {
3940     Assembler::pmovmskb(dst, src);
3941   } else {
3942     subptr(rsp, 64);
3943     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3944     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3945     Assembler::pmovmskb(dst, xmm0);
3946     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3947     addptr(rsp, 64);
3948   }
3949 }
3950 
3951 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3952   int dst_enc = dst->encoding();
3953   int src_enc = src->encoding();
3954   if ((dst_enc < 16) && (src_enc < 16)) {
3955     Assembler::ptest(dst, src);
3956   } else if (src_enc < 16) {
3957     subptr(rsp, 64);
3958     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3959     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3960     Assembler::ptest(xmm0, src);
3961     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3962     addptr(rsp, 64);
3963   } else if (dst_enc < 16) {
3964     subptr(rsp, 64);
3965     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3966     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3967     Assembler::ptest(dst, xmm0);
3968     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3969     addptr(rsp, 64);
3970   } else {
3971     subptr(rsp, 64);
3972     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3973     subptr(rsp, 64);
3974     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3975     movdqu(xmm0, src);
3976     movdqu(xmm1, dst);
3977     Assembler::ptest(xmm1, xmm0);
3978     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3979     addptr(rsp, 64);
3980     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3981     addptr(rsp, 64);
3982   }
3983 }
3984 
3985 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3986   if (reachable(src)) {
3987     Assembler::sqrtsd(dst, as_Address(src));
3988   } else {
3989     lea(rscratch1, src);
3990     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3991   }
3992 }
3993 
3994 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3995   if (reachable(src)) {
3996     Assembler::sqrtss(dst, as_Address(src));
3997   } else {
3998     lea(rscratch1, src);
3999     Assembler::sqrtss(dst, Address(rscratch1, 0));
4000   }
4001 }
4002 
4003 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
4004   if (reachable(src)) {
4005     Assembler::subsd(dst, as_Address(src));
4006   } else {
4007     lea(rscratch1, src);
4008     Assembler::subsd(dst, Address(rscratch1, 0));
4009   }
4010 }
4011 
4012 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4013   if (reachable(src)) {
4014     Assembler::subss(dst, as_Address(src));
4015   } else {
4016     lea(rscratch1, src);
4017     Assembler::subss(dst, Address(rscratch1, 0));
4018   }
4019 }
4020 
4021 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4022   if (reachable(src)) {
4023     Assembler::ucomisd(dst, as_Address(src));
4024   } else {
4025     lea(rscratch1, src);
4026     Assembler::ucomisd(dst, Address(rscratch1, 0));
4027   }
4028 }
4029 
4030 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4031   if (reachable(src)) {
4032     Assembler::ucomiss(dst, as_Address(src));
4033   } else {
4034     lea(rscratch1, src);
4035     Assembler::ucomiss(dst, Address(rscratch1, 0));
4036   }
4037 }
4038 
4039 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4040   // Used in sign-bit flipping with aligned address.
4041   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4042   if (reachable(src)) {
4043     Assembler::xorpd(dst, as_Address(src));
4044   } else {
4045     lea(rscratch1, src);
4046     Assembler::xorpd(dst, Address(rscratch1, 0));
4047   }
4048 }
4049 
4050 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4051   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4052     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4053   }
4054   else {
4055     Assembler::xorpd(dst, src);
4056   }
4057 }
4058 
4059 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4060   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4061     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4062   } else {
4063     Assembler::xorps(dst, src);
4064   }
4065 }
4066 
4067 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4068   // Used in sign-bit flipping with aligned address.
4069   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4070   if (reachable(src)) {
4071     Assembler::xorps(dst, as_Address(src));
4072   } else {
4073     lea(rscratch1, src);
4074     Assembler::xorps(dst, Address(rscratch1, 0));
4075   }
4076 }
4077 
4078 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4079   // Used in sign-bit flipping with aligned address.
4080   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4081   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4082   if (reachable(src)) {
4083     Assembler::pshufb(dst, as_Address(src));
4084   } else {
4085     lea(rscratch1, src);
4086     Assembler::pshufb(dst, Address(rscratch1, 0));
4087   }
4088 }
4089 
4090 // AVX 3-operands instructions
4091 
4092 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4093   if (reachable(src)) {
4094     vaddsd(dst, nds, as_Address(src));
4095   } else {
4096     lea(rscratch1, src);
4097     vaddsd(dst, nds, Address(rscratch1, 0));
4098   }
4099 }
4100 
4101 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4102   if (reachable(src)) {
4103     vaddss(dst, nds, as_Address(src));
4104   } else {
4105     lea(rscratch1, src);
4106     vaddss(dst, nds, Address(rscratch1, 0));
4107   }
4108 }
4109 
4110 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4111   int dst_enc = dst->encoding();
4112   int nds_enc = nds->encoding();
4113   int src_enc = src->encoding();
4114   if ((dst_enc < 16) && (nds_enc < 16)) {
4115     vandps(dst, nds, negate_field, vector_len);
4116   } else if ((src_enc < 16) && (dst_enc < 16)) {
4117     movss(src, nds);
4118     vandps(dst, src, negate_field, vector_len);
4119   } else if (src_enc < 16) {
4120     movss(src, nds);
4121     vandps(src, src, negate_field, vector_len);
4122     movss(dst, src);
4123   } else if (dst_enc < 16) {
4124     movdqu(src, xmm0);
4125     movss(xmm0, nds);
4126     vandps(dst, xmm0, negate_field, vector_len);
4127     movdqu(xmm0, src);
4128   } else if (nds_enc < 16) {
4129     movdqu(src, xmm0);
4130     vandps(xmm0, nds, negate_field, vector_len);
4131     movss(dst, xmm0);
4132     movdqu(xmm0, src);
4133   } else {
4134     movdqu(src, xmm0);
4135     movss(xmm0, nds);
4136     vandps(xmm0, xmm0, negate_field, vector_len);
4137     movss(dst, xmm0);
4138     movdqu(xmm0, src);
4139   }
4140 }
4141 
4142 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4143   int dst_enc = dst->encoding();
4144   int nds_enc = nds->encoding();
4145   int src_enc = src->encoding();
4146   if ((dst_enc < 16) && (nds_enc < 16)) {
4147     vandpd(dst, nds, negate_field, vector_len);
4148   } else if ((src_enc < 16) && (dst_enc < 16)) {
4149     movsd(src, nds);
4150     vandpd(dst, src, negate_field, vector_len);
4151   } else if (src_enc < 16) {
4152     movsd(src, nds);
4153     vandpd(src, src, negate_field, vector_len);
4154     movsd(dst, src);
4155   } else if (dst_enc < 16) {
4156     movdqu(src, xmm0);
4157     movsd(xmm0, nds);
4158     vandpd(dst, xmm0, negate_field, vector_len);
4159     movdqu(xmm0, src);
4160   } else if (nds_enc < 16) {
4161     movdqu(src, xmm0);
4162     vandpd(xmm0, nds, negate_field, vector_len);
4163     movsd(dst, xmm0);
4164     movdqu(xmm0, src);
4165   } else {
4166     movdqu(src, xmm0);
4167     movsd(xmm0, nds);
4168     vandpd(xmm0, xmm0, negate_field, vector_len);
4169     movsd(dst, xmm0);
4170     movdqu(xmm0, src);
4171   }
4172 }
4173 
4174 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4175   int dst_enc = dst->encoding();
4176   int nds_enc = nds->encoding();
4177   int src_enc = src->encoding();
4178   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4179     Assembler::vpaddb(dst, nds, src, vector_len);
4180   } else if ((dst_enc < 16) && (src_enc < 16)) {
4181     Assembler::vpaddb(dst, dst, src, vector_len);
4182   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4183     // use nds as scratch for src
4184     evmovdqul(nds, src, Assembler::AVX_512bit);
4185     Assembler::vpaddb(dst, dst, nds, vector_len);
4186   } else if ((src_enc < 16) && (nds_enc < 16)) {
4187     // use nds as scratch for dst
4188     evmovdqul(nds, dst, Assembler::AVX_512bit);
4189     Assembler::vpaddb(nds, nds, src, vector_len);
4190     evmovdqul(dst, nds, Assembler::AVX_512bit);
4191   } else if (dst_enc < 16) {
4192     // use nds as scatch for xmm0 to hold src
4193     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4194     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4195     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4196     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4197   } else {
4198     // worse case scenario, all regs are in the upper bank
4199     subptr(rsp, 64);
4200     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4201     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4202     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4203     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4204     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4205     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4206     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4207     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4208     addptr(rsp, 64);
4209   }
4210 }
4211 
4212 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4213   int dst_enc = dst->encoding();
4214   int nds_enc = nds->encoding();
4215   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4216     Assembler::vpaddb(dst, nds, src, vector_len);
4217   } else if (dst_enc < 16) {
4218     Assembler::vpaddb(dst, dst, src, vector_len);
4219   } else if (nds_enc < 16) {
4220     // implies dst_enc in upper bank with src as scratch
4221     evmovdqul(nds, dst, Assembler::AVX_512bit);
4222     Assembler::vpaddb(nds, nds, src, vector_len);
4223     evmovdqul(dst, nds, Assembler::AVX_512bit);
4224   } else {
4225     // worse case scenario, all regs in upper bank
4226     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4227     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4228     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4229     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4230   }
4231 }
4232 
4233 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4234   int dst_enc = dst->encoding();
4235   int nds_enc = nds->encoding();
4236   int src_enc = src->encoding();
4237   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4238     Assembler::vpaddw(dst, nds, src, vector_len);
4239   } else if ((dst_enc < 16) && (src_enc < 16)) {
4240     Assembler::vpaddw(dst, dst, src, vector_len);
4241   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4242     // use nds as scratch for src
4243     evmovdqul(nds, src, Assembler::AVX_512bit);
4244     Assembler::vpaddw(dst, dst, nds, vector_len);
4245   } else if ((src_enc < 16) && (nds_enc < 16)) {
4246     // use nds as scratch for dst
4247     evmovdqul(nds, dst, Assembler::AVX_512bit);
4248     Assembler::vpaddw(nds, nds, src, vector_len);
4249     evmovdqul(dst, nds, Assembler::AVX_512bit);
4250   } else if (dst_enc < 16) {
4251     // use nds as scatch for xmm0 to hold src
4252     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4253     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4254     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4255     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4256   } else {
4257     // worse case scenario, all regs are in the upper bank
4258     subptr(rsp, 64);
4259     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4260     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4261     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4262     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4263     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4264     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4265     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4266     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4267     addptr(rsp, 64);
4268   }
4269 }
4270 
4271 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4272   int dst_enc = dst->encoding();
4273   int nds_enc = nds->encoding();
4274   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4275     Assembler::vpaddw(dst, nds, src, vector_len);
4276   } else if (dst_enc < 16) {
4277     Assembler::vpaddw(dst, dst, src, vector_len);
4278   } else if (nds_enc < 16) {
4279     // implies dst_enc in upper bank with src as scratch
4280     evmovdqul(nds, dst, Assembler::AVX_512bit);
4281     Assembler::vpaddw(nds, nds, src, vector_len);
4282     evmovdqul(dst, nds, Assembler::AVX_512bit);
4283   } else {
4284     // worse case scenario, all regs in upper bank
4285     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4286     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4287     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4288     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4289   }
4290 }
4291 
4292 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4293   int dst_enc = dst->encoding();
4294   int src_enc = src->encoding();
4295   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4296     Assembler::vpbroadcastw(dst, src);
4297   } else if ((dst_enc < 16) && (src_enc < 16)) {
4298     Assembler::vpbroadcastw(dst, src);
4299   } else if (src_enc < 16) {
4300     subptr(rsp, 64);
4301     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4302     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4303     Assembler::vpbroadcastw(xmm0, src);
4304     movdqu(dst, xmm0);
4305     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4306     addptr(rsp, 64);
4307   } else if (dst_enc < 16) {
4308     subptr(rsp, 64);
4309     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4310     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4311     Assembler::vpbroadcastw(dst, xmm0);
4312     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4313     addptr(rsp, 64);
4314   } else {
4315     subptr(rsp, 64);
4316     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4317     subptr(rsp, 64);
4318     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4319     movdqu(xmm0, src);
4320     movdqu(xmm1, dst);
4321     Assembler::vpbroadcastw(xmm1, xmm0);
4322     movdqu(dst, xmm1);
4323     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4324     addptr(rsp, 64);
4325     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4326     addptr(rsp, 64);
4327   }
4328 }
4329 
4330 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4331   int dst_enc = dst->encoding();
4332   int nds_enc = nds->encoding();
4333   int src_enc = src->encoding();
4334   assert(dst_enc == nds_enc, "");
4335   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4336     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4337   } else if ((dst_enc < 16) && (src_enc < 16)) {
4338     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4339   } else if (src_enc < 16) {
4340     subptr(rsp, 64);
4341     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4342     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4343     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4344     movdqu(dst, xmm0);
4345     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4346     addptr(rsp, 64);
4347   } else if (dst_enc < 16) {
4348     subptr(rsp, 64);
4349     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4350     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4351     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4352     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4353     addptr(rsp, 64);
4354   } else {
4355     subptr(rsp, 64);
4356     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4357     subptr(rsp, 64);
4358     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4359     movdqu(xmm0, src);
4360     movdqu(xmm1, dst);
4361     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4362     movdqu(dst, xmm1);
4363     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4364     addptr(rsp, 64);
4365     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4366     addptr(rsp, 64);
4367   }
4368 }
4369 
4370 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4371   int dst_enc = dst->encoding();
4372   int nds_enc = nds->encoding();
4373   int src_enc = src->encoding();
4374   assert(dst_enc == nds_enc, "");
4375   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4376     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4377   } else if ((dst_enc < 16) && (src_enc < 16)) {
4378     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4379   } else if (src_enc < 16) {
4380     subptr(rsp, 64);
4381     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4382     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4383     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4384     movdqu(dst, xmm0);
4385     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4386     addptr(rsp, 64);
4387   } else if (dst_enc < 16) {
4388     subptr(rsp, 64);
4389     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4390     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4391     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4392     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4393     addptr(rsp, 64);
4394   } else {
4395     subptr(rsp, 64);
4396     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4397     subptr(rsp, 64);
4398     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4399     movdqu(xmm0, src);
4400     movdqu(xmm1, dst);
4401     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4402     movdqu(dst, xmm1);
4403     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4404     addptr(rsp, 64);
4405     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4406     addptr(rsp, 64);
4407   }
4408 }
4409 
4410 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4411   int dst_enc = dst->encoding();
4412   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4413     Assembler::vpmovzxbw(dst, src, vector_len);
4414   } else if (dst_enc < 16) {
4415     Assembler::vpmovzxbw(dst, src, vector_len);
4416   } else {
4417     subptr(rsp, 64);
4418     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4419     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4420     Assembler::vpmovzxbw(xmm0, src, vector_len);
4421     movdqu(dst, xmm0);
4422     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4423     addptr(rsp, 64);
4424   }
4425 }
4426 
4427 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4428   int src_enc = src->encoding();
4429   if (src_enc < 16) {
4430     Assembler::vpmovmskb(dst, src);
4431   } else {
4432     subptr(rsp, 64);
4433     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4434     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4435     Assembler::vpmovmskb(dst, xmm0);
4436     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4437     addptr(rsp, 64);
4438   }
4439 }
4440 
4441 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4442   int dst_enc = dst->encoding();
4443   int nds_enc = nds->encoding();
4444   int src_enc = src->encoding();
4445   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4446     Assembler::vpmullw(dst, nds, src, vector_len);
4447   } else if ((dst_enc < 16) && (src_enc < 16)) {
4448     Assembler::vpmullw(dst, dst, src, vector_len);
4449   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4450     // use nds as scratch for src
4451     evmovdqul(nds, src, Assembler::AVX_512bit);
4452     Assembler::vpmullw(dst, dst, nds, vector_len);
4453   } else if ((src_enc < 16) && (nds_enc < 16)) {
4454     // use nds as scratch for dst
4455     evmovdqul(nds, dst, Assembler::AVX_512bit);
4456     Assembler::vpmullw(nds, nds, src, vector_len);
4457     evmovdqul(dst, nds, Assembler::AVX_512bit);
4458   } else if (dst_enc < 16) {
4459     // use nds as scatch for xmm0 to hold src
4460     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4461     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4462     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4463     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4464   } else {
4465     // worse case scenario, all regs are in the upper bank
4466     subptr(rsp, 64);
4467     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4468     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4469     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4470     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4471     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4472     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4473     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4474     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4475     addptr(rsp, 64);
4476   }
4477 }
4478 
4479 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4480   int dst_enc = dst->encoding();
4481   int nds_enc = nds->encoding();
4482   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4483     Assembler::vpmullw(dst, nds, src, vector_len);
4484   } else if (dst_enc < 16) {
4485     Assembler::vpmullw(dst, dst, src, vector_len);
4486   } else if (nds_enc < 16) {
4487     // implies dst_enc in upper bank with src as scratch
4488     evmovdqul(nds, dst, Assembler::AVX_512bit);
4489     Assembler::vpmullw(nds, nds, src, vector_len);
4490     evmovdqul(dst, nds, Assembler::AVX_512bit);
4491   } else {
4492     // worse case scenario, all regs in upper bank
4493     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4494     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4495     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4496     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4497   }
4498 }
4499 
4500 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4501   int dst_enc = dst->encoding();
4502   int nds_enc = nds->encoding();
4503   int src_enc = src->encoding();
4504   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4505     Assembler::vpsubb(dst, nds, src, vector_len);
4506   } else if ((dst_enc < 16) && (src_enc < 16)) {
4507     Assembler::vpsubb(dst, dst, src, vector_len);
4508   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4509     // use nds as scratch for src
4510     evmovdqul(nds, src, Assembler::AVX_512bit);
4511     Assembler::vpsubb(dst, dst, nds, vector_len);
4512   } else if ((src_enc < 16) && (nds_enc < 16)) {
4513     // use nds as scratch for dst
4514     evmovdqul(nds, dst, Assembler::AVX_512bit);
4515     Assembler::vpsubb(nds, nds, src, vector_len);
4516     evmovdqul(dst, nds, Assembler::AVX_512bit);
4517   } else if (dst_enc < 16) {
4518     // use nds as scatch for xmm0 to hold src
4519     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4520     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4521     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4522     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4523   } else {
4524     // worse case scenario, all regs are in the upper bank
4525     subptr(rsp, 64);
4526     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4527     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4528     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4529     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4530     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4531     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4532     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4533     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4534     addptr(rsp, 64);
4535   }
4536 }
4537 
4538 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4539   int dst_enc = dst->encoding();
4540   int nds_enc = nds->encoding();
4541   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4542     Assembler::vpsubb(dst, nds, src, vector_len);
4543   } else if (dst_enc < 16) {
4544     Assembler::vpsubb(dst, dst, src, vector_len);
4545   } else if (nds_enc < 16) {
4546     // implies dst_enc in upper bank with src as scratch
4547     evmovdqul(nds, dst, Assembler::AVX_512bit);
4548     Assembler::vpsubb(nds, nds, src, vector_len);
4549     evmovdqul(dst, nds, Assembler::AVX_512bit);
4550   } else {
4551     // worse case scenario, all regs in upper bank
4552     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4553     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4554     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4555     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4556   }
4557 }
4558 
4559 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4560   int dst_enc = dst->encoding();
4561   int nds_enc = nds->encoding();
4562   int src_enc = src->encoding();
4563   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4564     Assembler::vpsubw(dst, nds, src, vector_len);
4565   } else if ((dst_enc < 16) && (src_enc < 16)) {
4566     Assembler::vpsubw(dst, dst, src, vector_len);
4567   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4568     // use nds as scratch for src
4569     evmovdqul(nds, src, Assembler::AVX_512bit);
4570     Assembler::vpsubw(dst, dst, nds, vector_len);
4571   } else if ((src_enc < 16) && (nds_enc < 16)) {
4572     // use nds as scratch for dst
4573     evmovdqul(nds, dst, Assembler::AVX_512bit);
4574     Assembler::vpsubw(nds, nds, src, vector_len);
4575     evmovdqul(dst, nds, Assembler::AVX_512bit);
4576   } else if (dst_enc < 16) {
4577     // use nds as scatch for xmm0 to hold src
4578     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4579     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4580     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4581     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4582   } else {
4583     // worse case scenario, all regs are in the upper bank
4584     subptr(rsp, 64);
4585     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4586     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4587     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4588     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4589     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4590     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4591     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4592     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4593     addptr(rsp, 64);
4594   }
4595 }
4596 
4597 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4598   int dst_enc = dst->encoding();
4599   int nds_enc = nds->encoding();
4600   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4601     Assembler::vpsubw(dst, nds, src, vector_len);
4602   } else if (dst_enc < 16) {
4603     Assembler::vpsubw(dst, dst, src, vector_len);
4604   } else if (nds_enc < 16) {
4605     // implies dst_enc in upper bank with src as scratch
4606     evmovdqul(nds, dst, Assembler::AVX_512bit);
4607     Assembler::vpsubw(nds, nds, src, vector_len);
4608     evmovdqul(dst, nds, Assembler::AVX_512bit);
4609   } else {
4610     // worse case scenario, all regs in upper bank
4611     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4612     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4613     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4614     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4615   }
4616 }
4617 
4618 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4619   int dst_enc = dst->encoding();
4620   int nds_enc = nds->encoding();
4621   int shift_enc = shift->encoding();
4622   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4623     Assembler::vpsraw(dst, nds, shift, vector_len);
4624   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4625     Assembler::vpsraw(dst, dst, shift, vector_len);
4626   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4627     // use nds_enc as scratch with shift
4628     evmovdqul(nds, shift, Assembler::AVX_512bit);
4629     Assembler::vpsraw(dst, dst, nds, vector_len);
4630   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4631     // use nds as scratch with dst
4632     evmovdqul(nds, dst, Assembler::AVX_512bit);
4633     Assembler::vpsraw(nds, nds, shift, vector_len);
4634     evmovdqul(dst, nds, Assembler::AVX_512bit);
4635   } else if (dst_enc < 16) {
4636     // use nds to save a copy of xmm0 and hold shift
4637     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4638     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4639     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4640     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4641   } else if (nds_enc < 16) {
4642     // use nds as dest as temps
4643     evmovdqul(nds, dst, Assembler::AVX_512bit);
4644     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4645     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4646     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4647     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4648     evmovdqul(dst, nds, Assembler::AVX_512bit);
4649   } else {
4650     // worse case scenario, all regs are in the upper bank
4651     subptr(rsp, 64);
4652     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4653     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4654     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4655     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4656     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4657     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4658     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4659     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4660     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4661     addptr(rsp, 64);
4662   }
4663 }
4664 
4665 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4666   int dst_enc = dst->encoding();
4667   int nds_enc = nds->encoding();
4668   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4669     Assembler::vpsraw(dst, nds, shift, vector_len);
4670   } else if (dst_enc < 16) {
4671     Assembler::vpsraw(dst, dst, shift, vector_len);
4672   } else if (nds_enc < 16) {
4673     // use nds as scratch
4674     evmovdqul(nds, dst, Assembler::AVX_512bit);
4675     Assembler::vpsraw(nds, nds, shift, vector_len);
4676     evmovdqul(dst, nds, Assembler::AVX_512bit);
4677   } else {
4678     // use nds as scratch for xmm0
4679     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4680     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4681     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4682     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4683   }
4684 }
4685 
4686 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4687   int dst_enc = dst->encoding();
4688   int nds_enc = nds->encoding();
4689   int shift_enc = shift->encoding();
4690   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4691     Assembler::vpsrlw(dst, nds, shift, vector_len);
4692   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4693     Assembler::vpsrlw(dst, dst, shift, vector_len);
4694   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4695     // use nds_enc as scratch with shift
4696     evmovdqul(nds, shift, Assembler::AVX_512bit);
4697     Assembler::vpsrlw(dst, dst, nds, vector_len);
4698   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4699     // use nds as scratch with dst
4700     evmovdqul(nds, dst, Assembler::AVX_512bit);
4701     Assembler::vpsrlw(nds, nds, shift, vector_len);
4702     evmovdqul(dst, nds, Assembler::AVX_512bit);
4703   } else if (dst_enc < 16) {
4704     // use nds to save a copy of xmm0 and hold shift
4705     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4706     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4707     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4708     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4709   } else if (nds_enc < 16) {
4710     // use nds as dest as temps
4711     evmovdqul(nds, dst, Assembler::AVX_512bit);
4712     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4713     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4714     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4715     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4716     evmovdqul(dst, nds, Assembler::AVX_512bit);
4717   } else {
4718     // worse case scenario, all regs are in the upper bank
4719     subptr(rsp, 64);
4720     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4721     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4722     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4723     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4724     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4725     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4726     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4727     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4728     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4729     addptr(rsp, 64);
4730   }
4731 }
4732 
4733 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4734   int dst_enc = dst->encoding();
4735   int nds_enc = nds->encoding();
4736   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4737     Assembler::vpsrlw(dst, nds, shift, vector_len);
4738   } else if (dst_enc < 16) {
4739     Assembler::vpsrlw(dst, dst, shift, vector_len);
4740   } else if (nds_enc < 16) {
4741     // use nds as scratch
4742     evmovdqul(nds, dst, Assembler::AVX_512bit);
4743     Assembler::vpsrlw(nds, nds, shift, vector_len);
4744     evmovdqul(dst, nds, Assembler::AVX_512bit);
4745   } else {
4746     // use nds as scratch for xmm0
4747     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4748     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4749     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4750     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4751   }
4752 }
4753 
4754 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4755   int dst_enc = dst->encoding();
4756   int nds_enc = nds->encoding();
4757   int shift_enc = shift->encoding();
4758   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4759     Assembler::vpsllw(dst, nds, shift, vector_len);
4760   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4761     Assembler::vpsllw(dst, dst, shift, vector_len);
4762   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4763     // use nds_enc as scratch with shift
4764     evmovdqul(nds, shift, Assembler::AVX_512bit);
4765     Assembler::vpsllw(dst, dst, nds, vector_len);
4766   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4767     // use nds as scratch with dst
4768     evmovdqul(nds, dst, Assembler::AVX_512bit);
4769     Assembler::vpsllw(nds, nds, shift, vector_len);
4770     evmovdqul(dst, nds, Assembler::AVX_512bit);
4771   } else if (dst_enc < 16) {
4772     // use nds to save a copy of xmm0 and hold shift
4773     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4774     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4775     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4776     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4777   } else if (nds_enc < 16) {
4778     // use nds as dest as temps
4779     evmovdqul(nds, dst, Assembler::AVX_512bit);
4780     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4781     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4782     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4783     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4784     evmovdqul(dst, nds, Assembler::AVX_512bit);
4785   } else {
4786     // worse case scenario, all regs are in the upper bank
4787     subptr(rsp, 64);
4788     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4789     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4790     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4791     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4792     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4793     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4794     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4795     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4796     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4797     addptr(rsp, 64);
4798   }
4799 }
4800 
4801 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4802   int dst_enc = dst->encoding();
4803   int nds_enc = nds->encoding();
4804   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4805     Assembler::vpsllw(dst, nds, shift, vector_len);
4806   } else if (dst_enc < 16) {
4807     Assembler::vpsllw(dst, dst, shift, vector_len);
4808   } else if (nds_enc < 16) {
4809     // use nds as scratch
4810     evmovdqul(nds, dst, Assembler::AVX_512bit);
4811     Assembler::vpsllw(nds, nds, shift, vector_len);
4812     evmovdqul(dst, nds, Assembler::AVX_512bit);
4813   } else {
4814     // use nds as scratch for xmm0
4815     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4816     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4817     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4818     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4819   }
4820 }
4821 
4822 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4823   int dst_enc = dst->encoding();
4824   int src_enc = src->encoding();
4825   if ((dst_enc < 16) && (src_enc < 16)) {
4826     Assembler::vptest(dst, src);
4827   } else if (src_enc < 16) {
4828     subptr(rsp, 64);
4829     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4830     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4831     Assembler::vptest(xmm0, src);
4832     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4833     addptr(rsp, 64);
4834   } else if (dst_enc < 16) {
4835     subptr(rsp, 64);
4836     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4837     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4838     Assembler::vptest(dst, xmm0);
4839     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4840     addptr(rsp, 64);
4841   } else {
4842     subptr(rsp, 64);
4843     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4844     subptr(rsp, 64);
4845     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4846     movdqu(xmm0, src);
4847     movdqu(xmm1, dst);
4848     Assembler::vptest(xmm1, xmm0);
4849     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4850     addptr(rsp, 64);
4851     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4852     addptr(rsp, 64);
4853   }
4854 }
4855 
4856 // This instruction exists within macros, ergo we cannot control its input
4857 // when emitted through those patterns.
4858 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4859   if (VM_Version::supports_avx512nobw()) {
4860     int dst_enc = dst->encoding();
4861     int src_enc = src->encoding();
4862     if (dst_enc == src_enc) {
4863       if (dst_enc < 16) {
4864         Assembler::punpcklbw(dst, src);
4865       } else {
4866         subptr(rsp, 64);
4867         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4868         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4869         Assembler::punpcklbw(xmm0, xmm0);
4870         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4871         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4872         addptr(rsp, 64);
4873       }
4874     } else {
4875       if ((src_enc < 16) && (dst_enc < 16)) {
4876         Assembler::punpcklbw(dst, src);
4877       } else if (src_enc < 16) {
4878         subptr(rsp, 64);
4879         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4880         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4881         Assembler::punpcklbw(xmm0, src);
4882         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4883         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4884         addptr(rsp, 64);
4885       } else if (dst_enc < 16) {
4886         subptr(rsp, 64);
4887         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4888         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4889         Assembler::punpcklbw(dst, xmm0);
4890         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4891         addptr(rsp, 64);
4892       } else {
4893         subptr(rsp, 64);
4894         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4895         subptr(rsp, 64);
4896         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4897         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4898         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4899         Assembler::punpcklbw(xmm0, xmm1);
4900         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4901         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4902         addptr(rsp, 64);
4903         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4904         addptr(rsp, 64);
4905       }
4906     }
4907   } else {
4908     Assembler::punpcklbw(dst, src);
4909   }
4910 }
4911 
4912 // This instruction exists within macros, ergo we cannot control its input
4913 // when emitted through those patterns.
4914 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4915   if (VM_Version::supports_avx512nobw()) {
4916     int dst_enc = dst->encoding();
4917     int src_enc = src->encoding();
4918     if (dst_enc == src_enc) {
4919       if (dst_enc < 16) {
4920         Assembler::pshuflw(dst, src, mode);
4921       } else {
4922         subptr(rsp, 64);
4923         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4924         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4925         Assembler::pshuflw(xmm0, xmm0, mode);
4926         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4927         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4928         addptr(rsp, 64);
4929       }
4930     } else {
4931       if ((src_enc < 16) && (dst_enc < 16)) {
4932         Assembler::pshuflw(dst, src, mode);
4933       } else if (src_enc < 16) {
4934         subptr(rsp, 64);
4935         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4936         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4937         Assembler::pshuflw(xmm0, src, mode);
4938         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4939         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4940         addptr(rsp, 64);
4941       } else if (dst_enc < 16) {
4942         subptr(rsp, 64);
4943         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4944         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4945         Assembler::pshuflw(dst, xmm0, mode);
4946         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4947         addptr(rsp, 64);
4948       } else {
4949         subptr(rsp, 64);
4950         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4951         subptr(rsp, 64);
4952         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4953         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4954         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4955         Assembler::pshuflw(xmm0, xmm1, mode);
4956         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4957         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4958         addptr(rsp, 64);
4959         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4960         addptr(rsp, 64);
4961       }
4962     }
4963   } else {
4964     Assembler::pshuflw(dst, src, mode);
4965   }
4966 }
4967 
4968 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4969   if (reachable(src)) {
4970     vandpd(dst, nds, as_Address(src), vector_len);
4971   } else {
4972     lea(rscratch1, src);
4973     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
4974   }
4975 }
4976 
4977 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4978   if (reachable(src)) {
4979     vandps(dst, nds, as_Address(src), vector_len);
4980   } else {
4981     lea(rscratch1, src);
4982     vandps(dst, nds, Address(rscratch1, 0), vector_len);
4983   }
4984 }
4985 
4986 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4987   if (reachable(src)) {
4988     vdivsd(dst, nds, as_Address(src));
4989   } else {
4990     lea(rscratch1, src);
4991     vdivsd(dst, nds, Address(rscratch1, 0));
4992   }
4993 }
4994 
4995 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4996   if (reachable(src)) {
4997     vdivss(dst, nds, as_Address(src));
4998   } else {
4999     lea(rscratch1, src);
5000     vdivss(dst, nds, Address(rscratch1, 0));
5001   }
5002 }
5003 
5004 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5005   if (reachable(src)) {
5006     vmulsd(dst, nds, as_Address(src));
5007   } else {
5008     lea(rscratch1, src);
5009     vmulsd(dst, nds, Address(rscratch1, 0));
5010   }
5011 }
5012 
5013 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5014   if (reachable(src)) {
5015     vmulss(dst, nds, as_Address(src));
5016   } else {
5017     lea(rscratch1, src);
5018     vmulss(dst, nds, Address(rscratch1, 0));
5019   }
5020 }
5021 
5022 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5023   if (reachable(src)) {
5024     vsubsd(dst, nds, as_Address(src));
5025   } else {
5026     lea(rscratch1, src);
5027     vsubsd(dst, nds, Address(rscratch1, 0));
5028   }
5029 }
5030 
5031 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5032   if (reachable(src)) {
5033     vsubss(dst, nds, as_Address(src));
5034   } else {
5035     lea(rscratch1, src);
5036     vsubss(dst, nds, Address(rscratch1, 0));
5037   }
5038 }
5039 
5040 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5041   int nds_enc = nds->encoding();
5042   int dst_enc = dst->encoding();
5043   bool dst_upper_bank = (dst_enc > 15);
5044   bool nds_upper_bank = (nds_enc > 15);
5045   if (VM_Version::supports_avx512novl() &&
5046       (nds_upper_bank || dst_upper_bank)) {
5047     if (dst_upper_bank) {
5048       subptr(rsp, 64);
5049       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5050       movflt(xmm0, nds);
5051       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5052       movflt(dst, xmm0);
5053       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5054       addptr(rsp, 64);
5055     } else {
5056       movflt(dst, nds);
5057       vxorps(dst, dst, src, Assembler::AVX_128bit);
5058     }
5059   } else {
5060     vxorps(dst, nds, src, Assembler::AVX_128bit);
5061   }
5062 }
5063 
5064 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5065   int nds_enc = nds->encoding();
5066   int dst_enc = dst->encoding();
5067   bool dst_upper_bank = (dst_enc > 15);
5068   bool nds_upper_bank = (nds_enc > 15);
5069   if (VM_Version::supports_avx512novl() &&
5070       (nds_upper_bank || dst_upper_bank)) {
5071     if (dst_upper_bank) {
5072       subptr(rsp, 64);
5073       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5074       movdbl(xmm0, nds);
5075       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5076       movdbl(dst, xmm0);
5077       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5078       addptr(rsp, 64);
5079     } else {
5080       movdbl(dst, nds);
5081       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5082     }
5083   } else {
5084     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5085   }
5086 }
5087 
5088 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5089   if (reachable(src)) {
5090     vxorpd(dst, nds, as_Address(src), vector_len);
5091   } else {
5092     lea(rscratch1, src);
5093     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5094   }
5095 }
5096 
5097 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5098   if (reachable(src)) {
5099     vxorps(dst, nds, as_Address(src), vector_len);
5100   } else {
5101     lea(rscratch1, src);
5102     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5103   }
5104 }
5105 
5106 
5107 //////////////////////////////////////////////////////////////////////////////////
5108 #if INCLUDE_ALL_GCS
5109 
5110 void MacroAssembler::g1_write_barrier_pre(Register obj,
5111                                           Register pre_val,
5112                                           Register thread,
5113                                           Register tmp,
5114                                           bool tosca_live,
5115                                           bool expand_call) {
5116 
5117   // If expand_call is true then we expand the call_VM_leaf macro
5118   // directly to skip generating the check by
5119   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
5120 
5121 #ifdef _LP64
5122   assert(thread == r15_thread, "must be");
5123 #endif // _LP64
5124 
5125   Label done;
5126   Label runtime;
5127 
5128   assert(pre_val != noreg, "check this code");
5129 
5130   if (obj != noreg) {
5131     assert_different_registers(obj, pre_val, tmp);
5132     assert(pre_val != rax, "check this code");
5133   }
5134 
5135   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5136                                        SATBMarkQueue::byte_offset_of_active()));
5137   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5138                                        SATBMarkQueue::byte_offset_of_index()));
5139   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5140                                        SATBMarkQueue::byte_offset_of_buf()));
5141 
5142 
5143   // Is marking active?
5144   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
5145     cmpl(in_progress, 0);
5146   } else {
5147     assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
5148     cmpb(in_progress, 0);
5149   }
5150   jcc(Assembler::equal, done);
5151 
5152   // Do we need to load the previous value?
5153   if (obj != noreg) {
5154     load_heap_oop(pre_val, Address(obj, 0));
5155   }
5156 
5157   // Is the previous value null?
5158   cmpptr(pre_val, (int32_t) NULL_WORD);
5159   jcc(Assembler::equal, done);
5160 
5161   // Can we store original value in the thread's buffer?
5162   // Is index == 0?
5163   // (The index field is typed as size_t.)
5164 
5165   movptr(tmp, index);                   // tmp := *index_adr
5166   cmpptr(tmp, 0);                       // tmp == 0?
5167   jcc(Assembler::equal, runtime);       // If yes, goto runtime
5168 
5169   subptr(tmp, wordSize);                // tmp := tmp - wordSize
5170   movptr(index, tmp);                   // *index_adr := tmp
5171   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
5172 
5173   // Record the previous value
5174   movptr(Address(tmp, 0), pre_val);
5175   jmp(done);
5176 
5177   bind(runtime);
5178   // save the live input values
5179   if(tosca_live) push(rax);
5180 
5181   if (obj != noreg && obj != rax)
5182     push(obj);
5183 
5184   if (pre_val != rax)
5185     push(pre_val);
5186 
5187   // Calling the runtime using the regular call_VM_leaf mechanism generates
5188   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
5189   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
5190   //
5191   // If we care generating the pre-barrier without a frame (e.g. in the
5192   // intrinsified Reference.get() routine) then ebp might be pointing to
5193   // the caller frame and so this check will most likely fail at runtime.
5194   //
5195   // Expanding the call directly bypasses the generation of the check.
5196   // So when we do not have have a full interpreter frame on the stack
5197   // expand_call should be passed true.
5198 
5199   NOT_LP64( push(thread); )
5200 
5201   if (expand_call) {
5202     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
5203     pass_arg1(this, thread);
5204     pass_arg0(this, pre_val);
5205     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
5206   } else {
5207     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
5208   }
5209 
5210   NOT_LP64( pop(thread); )
5211 
5212   // save the live input values
5213   if (pre_val != rax)
5214     pop(pre_val);
5215 
5216   if (obj != noreg && obj != rax)
5217     pop(obj);
5218 
5219   if(tosca_live) pop(rax);
5220 
5221   bind(done);
5222 }
5223 
5224 void MacroAssembler::g1_write_barrier_post(Register store_addr,
5225                                            Register new_val,
5226                                            Register thread,
5227                                            Register tmp,
5228                                            Register tmp2) {
5229 #ifdef _LP64
5230   assert(thread == r15_thread, "must be");
5231 #endif // _LP64
5232 
5233   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5234                                        DirtyCardQueue::byte_offset_of_index()));
5235   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5236                                        DirtyCardQueue::byte_offset_of_buf()));
5237 
5238   CardTableModRefBS* ct =
5239     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
5240   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5241 
5242   Label done;
5243   Label runtime;
5244 
5245   // Does store cross heap regions?
5246 
5247   movptr(tmp, store_addr);
5248   xorptr(tmp, new_val);
5249   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
5250   jcc(Assembler::equal, done);
5251 
5252   // crosses regions, storing NULL?
5253 
5254   cmpptr(new_val, (int32_t) NULL_WORD);
5255   jcc(Assembler::equal, done);
5256 
5257   // storing region crossing non-NULL, is card already dirty?
5258 
5259   const Register card_addr = tmp;
5260   const Register cardtable = tmp2;
5261 
5262   movptr(card_addr, store_addr);
5263   shrptr(card_addr, CardTableModRefBS::card_shift);
5264   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
5265   // a valid address and therefore is not properly handled by the relocation code.
5266   movptr(cardtable, (intptr_t)ct->byte_map_base);
5267   addptr(card_addr, cardtable);
5268 
5269   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
5270   jcc(Assembler::equal, done);
5271 
5272   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
5273   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5274   jcc(Assembler::equal, done);
5275 
5276 
5277   // storing a region crossing, non-NULL oop, card is clean.
5278   // dirty card and log.
5279 
5280   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5281 
5282   cmpl(queue_index, 0);
5283   jcc(Assembler::equal, runtime);
5284   subl(queue_index, wordSize);
5285   movptr(tmp2, buffer);
5286 #ifdef _LP64
5287   movslq(rscratch1, queue_index);
5288   addq(tmp2, rscratch1);
5289   movq(Address(tmp2, 0), card_addr);
5290 #else
5291   addl(tmp2, queue_index);
5292   movl(Address(tmp2, 0), card_addr);
5293 #endif
5294   jmp(done);
5295 
5296   bind(runtime);
5297   // save the live input values
5298   push(store_addr);
5299   push(new_val);
5300 #ifdef _LP64
5301   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
5302 #else
5303   push(thread);
5304   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
5305   pop(thread);
5306 #endif
5307   pop(new_val);
5308   pop(store_addr);
5309 
5310   bind(done);
5311 }
5312 
5313 #endif // INCLUDE_ALL_GCS
5314 //////////////////////////////////////////////////////////////////////////////////
5315 
5316 
5317 void MacroAssembler::store_check(Register obj, Address dst) {
5318   store_check(obj);
5319 }
5320 
5321 void MacroAssembler::store_check(Register obj) {
5322   // Does a store check for the oop in register obj. The content of
5323   // register obj is destroyed afterwards.
5324   BarrierSet* bs = Universe::heap()->barrier_set();
5325   assert(bs->kind() == BarrierSet::CardTableForRS ||
5326          bs->kind() == BarrierSet::CardTableExtension,
5327          "Wrong barrier set kind");
5328 
5329   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
5330   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5331 
5332   shrptr(obj, CardTableModRefBS::card_shift);
5333 
5334   Address card_addr;
5335 
5336   // The calculation for byte_map_base is as follows:
5337   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
5338   // So this essentially converts an address to a displacement and it will
5339   // never need to be relocated. On 64bit however the value may be too
5340   // large for a 32bit displacement.
5341   intptr_t disp = (intptr_t) ct->byte_map_base;
5342   if (is_simm32(disp)) {
5343     card_addr = Address(noreg, obj, Address::times_1, disp);
5344   } else {
5345     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
5346     // displacement and done in a single instruction given favorable mapping and a
5347     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
5348     // entry and that entry is not properly handled by the relocation code.
5349     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
5350     Address index(noreg, obj, Address::times_1);
5351     card_addr = as_Address(ArrayAddress(cardtable, index));
5352   }
5353 
5354   int dirty = CardTableModRefBS::dirty_card_val();
5355   if (UseCondCardMark) {
5356     Label L_already_dirty;
5357     if (UseConcMarkSweepGC) {
5358       membar(Assembler::StoreLoad);
5359     }
5360     cmpb(card_addr, dirty);
5361     jcc(Assembler::equal, L_already_dirty);
5362     movb(card_addr, dirty);
5363     bind(L_already_dirty);
5364   } else {
5365     movb(card_addr, dirty);
5366   }
5367 }
5368 
5369 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5370   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5371 }
5372 
5373 // Force generation of a 4 byte immediate value even if it fits into 8bit
5374 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5375   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5376 }
5377 
5378 void MacroAssembler::subptr(Register dst, Register src) {
5379   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5380 }
5381 
5382 // C++ bool manipulation
5383 void MacroAssembler::testbool(Register dst) {
5384   if(sizeof(bool) == 1)
5385     testb(dst, 0xff);
5386   else if(sizeof(bool) == 2) {
5387     // testw implementation needed for two byte bools
5388     ShouldNotReachHere();
5389   } else if(sizeof(bool) == 4)
5390     testl(dst, dst);
5391   else
5392     // unsupported
5393     ShouldNotReachHere();
5394 }
5395 
5396 void MacroAssembler::testptr(Register dst, Register src) {
5397   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5398 }
5399 
5400 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5401 void MacroAssembler::tlab_allocate(Register obj,
5402                                    Register var_size_in_bytes,
5403                                    int con_size_in_bytes,
5404                                    Register t1,
5405                                    Register t2,
5406                                    Label& slow_case) {
5407   assert_different_registers(obj, t1, t2);
5408   assert_different_registers(obj, var_size_in_bytes, t1);
5409   Register end = t2;
5410   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
5411 
5412   verify_tlab();
5413 
5414   NOT_LP64(get_thread(thread));
5415 
5416   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
5417   if (var_size_in_bytes == noreg) {
5418     lea(end, Address(obj, con_size_in_bytes));
5419   } else {
5420     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
5421   }
5422   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
5423   jcc(Assembler::above, slow_case);
5424 
5425   // update the tlab top pointer
5426   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
5427 
5428   // recover var_size_in_bytes if necessary
5429   if (var_size_in_bytes == end) {
5430     subptr(var_size_in_bytes, obj);
5431   }
5432   verify_tlab();
5433 }
5434 
5435 // Preserves rbx, and rdx.
5436 Register MacroAssembler::tlab_refill(Label& retry,
5437                                      Label& try_eden,
5438                                      Label& slow_case) {
5439   Register top = rax;
5440   Register t1  = rcx; // object size
5441   Register t2  = rsi;
5442   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
5443   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
5444   Label do_refill, discard_tlab;
5445 
5446   if (!Universe::heap()->supports_inline_contig_alloc()) {
5447     // No allocation in the shared eden.
5448     jmp(slow_case);
5449   }
5450 
5451   NOT_LP64(get_thread(thread_reg));
5452 
5453   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5454   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5455 
5456   // calculate amount of free space
5457   subptr(t1, top);
5458   shrptr(t1, LogHeapWordSize);
5459 
5460   // Retain tlab and allocate object in shared space if
5461   // the amount free in the tlab is too large to discard.
5462   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
5463   jcc(Assembler::lessEqual, discard_tlab);
5464 
5465   // Retain
5466   // %%% yuck as movptr...
5467   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
5468   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
5469   if (TLABStats) {
5470     // increment number of slow_allocations
5471     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
5472   }
5473   jmp(try_eden);
5474 
5475   bind(discard_tlab);
5476   if (TLABStats) {
5477     // increment number of refills
5478     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
5479     // accumulate wastage -- t1 is amount free in tlab
5480     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
5481   }
5482 
5483   // if tlab is currently allocated (top or end != null) then
5484   // fill [top, end + alignment_reserve) with array object
5485   testptr(top, top);
5486   jcc(Assembler::zero, do_refill);
5487 
5488   // set up the mark word
5489   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
5490   // set the length to the remaining space
5491   subptr(t1, typeArrayOopDesc::header_size(T_INT));
5492   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
5493   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
5494   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
5495   // set klass to intArrayKlass
5496   // dubious reloc why not an oop reloc?
5497   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
5498   // store klass last.  concurrent gcs assumes klass length is valid if
5499   // klass field is not null.
5500   store_klass(top, t1);
5501 
5502   movptr(t1, top);
5503   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5504   incr_allocated_bytes(thread_reg, t1, 0);
5505 
5506   // refill the tlab with an eden allocation
5507   bind(do_refill);
5508   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5509   shlptr(t1, LogHeapWordSize);
5510   // allocate new tlab, address returned in top
5511   eden_allocate(top, t1, 0, t2, slow_case);
5512 
5513   // Check that t1 was preserved in eden_allocate.
5514 #ifdef ASSERT
5515   if (UseTLAB) {
5516     Label ok;
5517     Register tsize = rsi;
5518     assert_different_registers(tsize, thread_reg, t1);
5519     push(tsize);
5520     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5521     shlptr(tsize, LogHeapWordSize);
5522     cmpptr(t1, tsize);
5523     jcc(Assembler::equal, ok);
5524     STOP("assert(t1 != tlab size)");
5525     should_not_reach_here();
5526 
5527     bind(ok);
5528     pop(tsize);
5529   }
5530 #endif
5531   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
5532   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
5533   addptr(top, t1);
5534   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
5535   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
5536 
5537   if (ZeroTLAB) {
5538     // This is a fast TLAB refill, therefore the GC is not notified of it.
5539     // So compiled code must fill the new TLAB with zeroes.
5540     movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5541     zero_memory(top, t1, 0, t2);
5542   }
5543 
5544   verify_tlab();
5545   jmp(retry);
5546 
5547   return thread_reg; // for use by caller
5548 }
5549 
5550 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5551 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5552   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5553   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5554   Label done;
5555 
5556   testptr(length_in_bytes, length_in_bytes);
5557   jcc(Assembler::zero, done);
5558 
5559   // initialize topmost word, divide index by 2, check if odd and test if zero
5560   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5561 #ifdef ASSERT
5562   {
5563     Label L;
5564     testptr(length_in_bytes, BytesPerWord - 1);
5565     jcc(Assembler::zero, L);
5566     stop("length must be a multiple of BytesPerWord");
5567     bind(L);
5568   }
5569 #endif
5570   Register index = length_in_bytes;
5571   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5572   if (UseIncDec) {
5573     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5574   } else {
5575     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5576     shrptr(index, 1);
5577   }
5578 #ifndef _LP64
5579   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5580   {
5581     Label even;
5582     // note: if index was a multiple of 8, then it cannot
5583     //       be 0 now otherwise it must have been 0 before
5584     //       => if it is even, we don't need to check for 0 again
5585     jcc(Assembler::carryClear, even);
5586     // clear topmost word (no jump would be needed if conditional assignment worked here)
5587     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5588     // index could be 0 now, must check again
5589     jcc(Assembler::zero, done);
5590     bind(even);
5591   }
5592 #endif // !_LP64
5593   // initialize remaining object fields: index is a multiple of 2 now
5594   {
5595     Label loop;
5596     bind(loop);
5597     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5598     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5599     decrement(index);
5600     jcc(Assembler::notZero, loop);
5601   }
5602 
5603   bind(done);
5604 }
5605 
5606 void MacroAssembler::incr_allocated_bytes(Register thread,
5607                                           Register var_size_in_bytes,
5608                                           int con_size_in_bytes,
5609                                           Register t1) {
5610   if (!thread->is_valid()) {
5611 #ifdef _LP64
5612     thread = r15_thread;
5613 #else
5614     assert(t1->is_valid(), "need temp reg");
5615     thread = t1;
5616     get_thread(thread);
5617 #endif
5618   }
5619 
5620 #ifdef _LP64
5621   if (var_size_in_bytes->is_valid()) {
5622     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5623   } else {
5624     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5625   }
5626 #else
5627   if (var_size_in_bytes->is_valid()) {
5628     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5629   } else {
5630     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5631   }
5632   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
5633 #endif
5634 }
5635 
5636 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
5637   pusha();
5638 
5639   // if we are coming from c1, xmm registers may be live
5640   int num_xmm_regs = LP64_ONLY(16) NOT_LP64(8);
5641   if (UseAVX > 2) {
5642     num_xmm_regs = LP64_ONLY(32) NOT_LP64(8);
5643   }
5644 
5645   if (UseSSE == 1)  {
5646     subptr(rsp, sizeof(jdouble)*8);
5647     for (int n = 0; n < 8; n++) {
5648       movflt(Address(rsp, n*sizeof(jdouble)), as_XMMRegister(n));
5649     }
5650   } else if (UseSSE >= 2)  {
5651     if (UseAVX > 2) {
5652       push(rbx);
5653       movl(rbx, 0xffff);
5654       kmovwl(k1, rbx);
5655       pop(rbx);
5656     }
5657 #ifdef COMPILER2
5658     if (MaxVectorSize > 16) {
5659       if(UseAVX > 2) {
5660         // Save upper half of ZMM registers
5661         subptr(rsp, 32*num_xmm_regs);
5662         for (int n = 0; n < num_xmm_regs; n++) {
5663           vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
5664         }
5665       }
5666       assert(UseAVX > 0, "256 bit vectors are supported only with AVX");
5667       // Save upper half of YMM registers
5668       subptr(rsp, 16*num_xmm_regs);
5669       for (int n = 0; n < num_xmm_regs; n++) {
5670         vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
5671       }
5672     }
5673 #endif
5674     // Save whole 128bit (16 bytes) XMM registers
5675     subptr(rsp, 16*num_xmm_regs);
5676 #ifdef _LP64
5677     if (VM_Version::supports_evex()) {
5678       for (int n = 0; n < num_xmm_regs; n++) {
5679         vextractf32x4(Address(rsp, n*16), as_XMMRegister(n), 0);
5680       }
5681     } else {
5682       for (int n = 0; n < num_xmm_regs; n++) {
5683         movdqu(Address(rsp, n*16), as_XMMRegister(n));
5684       }
5685     }
5686 #else
5687     for (int n = 0; n < num_xmm_regs; n++) {
5688       movdqu(Address(rsp, n*16), as_XMMRegister(n));
5689     }
5690 #endif
5691   }
5692 
5693   // Preserve registers across runtime call
5694   int incoming_argument_and_return_value_offset = -1;
5695   if (num_fpu_regs_in_use > 1) {
5696     // Must preserve all other FPU regs (could alternatively convert
5697     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
5698     // FPU state, but can not trust C compiler)
5699     NEEDS_CLEANUP;
5700     // NOTE that in this case we also push the incoming argument(s) to
5701     // the stack and restore it later; we also use this stack slot to
5702     // hold the return value from dsin, dcos etc.
5703     for (int i = 0; i < num_fpu_regs_in_use; i++) {
5704       subptr(rsp, sizeof(jdouble));
5705       fstp_d(Address(rsp, 0));
5706     }
5707     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
5708     for (int i = nb_args-1; i >= 0; i--) {
5709       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
5710     }
5711   }
5712 
5713   subptr(rsp, nb_args*sizeof(jdouble));
5714   for (int i = 0; i < nb_args; i++) {
5715     fstp_d(Address(rsp, i*sizeof(jdouble)));
5716   }
5717 
5718 #ifdef _LP64
5719   if (nb_args > 0) {
5720     movdbl(xmm0, Address(rsp, 0));
5721   }
5722   if (nb_args > 1) {
5723     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
5724   }
5725   assert(nb_args <= 2, "unsupported number of args");
5726 #endif // _LP64
5727 
5728   // NOTE: we must not use call_VM_leaf here because that requires a
5729   // complete interpreter frame in debug mode -- same bug as 4387334
5730   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
5731   // do proper 64bit abi
5732 
5733   NEEDS_CLEANUP;
5734   // Need to add stack banging before this runtime call if it needs to
5735   // be taken; however, there is no generic stack banging routine at
5736   // the MacroAssembler level
5737 
5738   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
5739 
5740 #ifdef _LP64
5741   movsd(Address(rsp, 0), xmm0);
5742   fld_d(Address(rsp, 0));
5743 #endif // _LP64
5744   addptr(rsp, sizeof(jdouble)*nb_args);
5745   if (num_fpu_regs_in_use > 1) {
5746     // Must save return value to stack and then restore entire FPU
5747     // stack except incoming arguments
5748     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
5749     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
5750       fld_d(Address(rsp, 0));
5751       addptr(rsp, sizeof(jdouble));
5752     }
5753     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
5754     addptr(rsp, sizeof(jdouble)*nb_args);
5755   }
5756 
5757   if (UseSSE == 1)  {
5758     for (int n = 0; n < 8; n++) {
5759       movflt(as_XMMRegister(n), Address(rsp, n*sizeof(jdouble)));
5760     }
5761     addptr(rsp, sizeof(jdouble)*8);
5762   } else if (UseSSE >= 2)  {
5763     // Restore whole 128bit (16 bytes) XMM registers
5764 #ifdef _LP64
5765   if (VM_Version::supports_evex()) {
5766     for (int n = 0; n < num_xmm_regs; n++) {
5767       vinsertf32x4(as_XMMRegister(n), as_XMMRegister(n), Address(rsp, n*16), 0);
5768     }
5769   } else {
5770     for (int n = 0; n < num_xmm_regs; n++) {
5771       movdqu(as_XMMRegister(n), Address(rsp, n*16));
5772     }
5773   }
5774 #else
5775   for (int n = 0; n < num_xmm_regs; n++) {
5776     movdqu(as_XMMRegister(n), Address(rsp, n*16));
5777   }
5778 #endif
5779     addptr(rsp, 16*num_xmm_regs);
5780 
5781 #ifdef COMPILER2
5782     if (MaxVectorSize > 16) {
5783       // Restore upper half of YMM registers.
5784       for (int n = 0; n < num_xmm_regs; n++) {
5785         vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16));
5786       }
5787       addptr(rsp, 16*num_xmm_regs);
5788       if(UseAVX > 2) {
5789         for (int n = 0; n < num_xmm_regs; n++) {
5790           vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32));
5791         }
5792         addptr(rsp, 32*num_xmm_regs);
5793       }
5794     }
5795 #endif
5796   }
5797   popa();
5798 }
5799 
5800 static const double     pi_4 =  0.7853981633974483;
5801 
5802 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
5803   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
5804   // was attempted in this code; unfortunately it appears that the
5805   // switch to 80-bit precision and back causes this to be
5806   // unprofitable compared with simply performing a runtime call if
5807   // the argument is out of the (-pi/4, pi/4) range.
5808 
5809   Register tmp = noreg;
5810   if (!VM_Version::supports_cmov()) {
5811     // fcmp needs a temporary so preserve rbx,
5812     tmp = rbx;
5813     push(tmp);
5814   }
5815 
5816   Label slow_case, done;
5817   if (trig == 't') {
5818     ExternalAddress pi4_adr = (address)&pi_4;
5819     if (reachable(pi4_adr)) {
5820       // x ?<= pi/4
5821       fld_d(pi4_adr);
5822       fld_s(1);                // Stack:  X  PI/4  X
5823       fabs();                  // Stack: |X| PI/4  X
5824       fcmp(tmp);
5825       jcc(Assembler::above, slow_case);
5826 
5827       // fastest case: -pi/4 <= x <= pi/4
5828       ftan();
5829 
5830       jmp(done);
5831     }
5832   }
5833   // slow case: runtime call
5834   bind(slow_case);
5835 
5836   switch(trig) {
5837   case 's':
5838     {
5839       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
5840     }
5841     break;
5842   case 'c':
5843     {
5844       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
5845     }
5846     break;
5847   case 't':
5848     {
5849       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
5850     }
5851     break;
5852   default:
5853     assert(false, "bad intrinsic");
5854     break;
5855   }
5856 
5857   // Come here with result in F-TOS
5858   bind(done);
5859 
5860   if (tmp != noreg) {
5861     pop(tmp);
5862   }
5863 }
5864 
5865 // Look up the method for a megamorphic invokeinterface call.
5866 // The target method is determined by <intf_klass, itable_index>.
5867 // The receiver klass is in recv_klass.
5868 // On success, the result will be in method_result, and execution falls through.
5869 // On failure, execution transfers to the given label.
5870 void MacroAssembler::lookup_interface_method(Register recv_klass,
5871                                              Register intf_klass,
5872                                              RegisterOrConstant itable_index,
5873                                              Register method_result,
5874                                              Register scan_temp,
5875                                              Label& L_no_such_interface) {
5876   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
5877   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5878          "caller must use same register for non-constant itable index as for method");
5879 
5880   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5881   int vtable_base = in_bytes(Klass::vtable_start_offset());
5882   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5883   int scan_step   = itableOffsetEntry::size() * wordSize;
5884   int vte_size    = vtableEntry::size_in_bytes();
5885   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5886   assert(vte_size == wordSize, "else adjust times_vte_scale");
5887 
5888   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
5889 
5890   // %%% Could store the aligned, prescaled offset in the klassoop.
5891   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5892 
5893   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5894   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5895   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5896 
5897   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5898   //   if (scan->interface() == intf) {
5899   //     result = (klass + scan->offset() + itable_index);
5900   //   }
5901   // }
5902   Label search, found_method;
5903 
5904   for (int peel = 1; peel >= 0; peel--) {
5905     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5906     cmpptr(intf_klass, method_result);
5907 
5908     if (peel) {
5909       jccb(Assembler::equal, found_method);
5910     } else {
5911       jccb(Assembler::notEqual, search);
5912       // (invert the test to fall through to found_method...)
5913     }
5914 
5915     if (!peel)  break;
5916 
5917     bind(search);
5918 
5919     // Check that the previous entry is non-null.  A null entry means that
5920     // the receiver class doesn't implement the interface, and wasn't the
5921     // same as when the caller was compiled.
5922     testptr(method_result, method_result);
5923     jcc(Assembler::zero, L_no_such_interface);
5924     addptr(scan_temp, scan_step);
5925   }
5926 
5927   bind(found_method);
5928 
5929   // Got a hit.
5930   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5931   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5932 }
5933 
5934 
5935 // virtual method calling
5936 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5937                                            RegisterOrConstant vtable_index,
5938                                            Register method_result) {
5939   const int base = in_bytes(Klass::vtable_start_offset());
5940   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5941   Address vtable_entry_addr(recv_klass,
5942                             vtable_index, Address::times_ptr,
5943                             base + vtableEntry::method_offset_in_bytes());
5944   movptr(method_result, vtable_entry_addr);
5945 }
5946 
5947 
5948 void MacroAssembler::check_klass_subtype(Register sub_klass,
5949                            Register super_klass,
5950                            Register temp_reg,
5951                            Label& L_success) {
5952   Label L_failure;
5953   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5954   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5955   bind(L_failure);
5956 }
5957 
5958 
5959 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5960                                                    Register super_klass,
5961                                                    Register temp_reg,
5962                                                    Label* L_success,
5963                                                    Label* L_failure,
5964                                                    Label* L_slow_path,
5965                                         RegisterOrConstant super_check_offset) {
5966   assert_different_registers(sub_klass, super_klass, temp_reg);
5967   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5968   if (super_check_offset.is_register()) {
5969     assert_different_registers(sub_klass, super_klass,
5970                                super_check_offset.as_register());
5971   } else if (must_load_sco) {
5972     assert(temp_reg != noreg, "supply either a temp or a register offset");
5973   }
5974 
5975   Label L_fallthrough;
5976   int label_nulls = 0;
5977   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5978   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5979   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5980   assert(label_nulls <= 1, "at most one NULL in the batch");
5981 
5982   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5983   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5984   Address super_check_offset_addr(super_klass, sco_offset);
5985 
5986   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5987   // range of a jccb.  If this routine grows larger, reconsider at
5988   // least some of these.
5989 #define local_jcc(assembler_cond, label)                                \
5990   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5991   else                             jcc( assembler_cond, label) /*omit semi*/
5992 
5993   // Hacked jmp, which may only be used just before L_fallthrough.
5994 #define final_jmp(label)                                                \
5995   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5996   else                            jmp(label)                /*omit semi*/
5997 
5998   // If the pointers are equal, we are done (e.g., String[] elements).
5999   // This self-check enables sharing of secondary supertype arrays among
6000   // non-primary types such as array-of-interface.  Otherwise, each such
6001   // type would need its own customized SSA.
6002   // We move this check to the front of the fast path because many
6003   // type checks are in fact trivially successful in this manner,
6004   // so we get a nicely predicted branch right at the start of the check.
6005   cmpptr(sub_klass, super_klass);
6006   local_jcc(Assembler::equal, *L_success);
6007 
6008   // Check the supertype display:
6009   if (must_load_sco) {
6010     // Positive movl does right thing on LP64.
6011     movl(temp_reg, super_check_offset_addr);
6012     super_check_offset = RegisterOrConstant(temp_reg);
6013   }
6014   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
6015   cmpptr(super_klass, super_check_addr); // load displayed supertype
6016 
6017   // This check has worked decisively for primary supers.
6018   // Secondary supers are sought in the super_cache ('super_cache_addr').
6019   // (Secondary supers are interfaces and very deeply nested subtypes.)
6020   // This works in the same check above because of a tricky aliasing
6021   // between the super_cache and the primary super display elements.
6022   // (The 'super_check_addr' can address either, as the case requires.)
6023   // Note that the cache is updated below if it does not help us find
6024   // what we need immediately.
6025   // So if it was a primary super, we can just fail immediately.
6026   // Otherwise, it's the slow path for us (no success at this point).
6027 
6028   if (super_check_offset.is_register()) {
6029     local_jcc(Assembler::equal, *L_success);
6030     cmpl(super_check_offset.as_register(), sc_offset);
6031     if (L_failure == &L_fallthrough) {
6032       local_jcc(Assembler::equal, *L_slow_path);
6033     } else {
6034       local_jcc(Assembler::notEqual, *L_failure);
6035       final_jmp(*L_slow_path);
6036     }
6037   } else if (super_check_offset.as_constant() == sc_offset) {
6038     // Need a slow path; fast failure is impossible.
6039     if (L_slow_path == &L_fallthrough) {
6040       local_jcc(Assembler::equal, *L_success);
6041     } else {
6042       local_jcc(Assembler::notEqual, *L_slow_path);
6043       final_jmp(*L_success);
6044     }
6045   } else {
6046     // No slow path; it's a fast decision.
6047     if (L_failure == &L_fallthrough) {
6048       local_jcc(Assembler::equal, *L_success);
6049     } else {
6050       local_jcc(Assembler::notEqual, *L_failure);
6051       final_jmp(*L_success);
6052     }
6053   }
6054 
6055   bind(L_fallthrough);
6056 
6057 #undef local_jcc
6058 #undef final_jmp
6059 }
6060 
6061 
6062 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
6063                                                    Register super_klass,
6064                                                    Register temp_reg,
6065                                                    Register temp2_reg,
6066                                                    Label* L_success,
6067                                                    Label* L_failure,
6068                                                    bool set_cond_codes) {
6069   assert_different_registers(sub_klass, super_klass, temp_reg);
6070   if (temp2_reg != noreg)
6071     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
6072 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
6073 
6074   Label L_fallthrough;
6075   int label_nulls = 0;
6076   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
6077   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
6078   assert(label_nulls <= 1, "at most one NULL in the batch");
6079 
6080   // a couple of useful fields in sub_klass:
6081   int ss_offset = in_bytes(Klass::secondary_supers_offset());
6082   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
6083   Address secondary_supers_addr(sub_klass, ss_offset);
6084   Address super_cache_addr(     sub_klass, sc_offset);
6085 
6086   // Do a linear scan of the secondary super-klass chain.
6087   // This code is rarely used, so simplicity is a virtue here.
6088   // The repne_scan instruction uses fixed registers, which we must spill.
6089   // Don't worry too much about pre-existing connections with the input regs.
6090 
6091   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
6092   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
6093 
6094   // Get super_klass value into rax (even if it was in rdi or rcx).
6095   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
6096   if (super_klass != rax || UseCompressedOops) {
6097     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
6098     mov(rax, super_klass);
6099   }
6100   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
6101   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
6102 
6103 #ifndef PRODUCT
6104   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
6105   ExternalAddress pst_counter_addr((address) pst_counter);
6106   NOT_LP64(  incrementl(pst_counter_addr) );
6107   LP64_ONLY( lea(rcx, pst_counter_addr) );
6108   LP64_ONLY( incrementl(Address(rcx, 0)) );
6109 #endif //PRODUCT
6110 
6111   // We will consult the secondary-super array.
6112   movptr(rdi, secondary_supers_addr);
6113   // Load the array length.  (Positive movl does right thing on LP64.)
6114   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
6115   // Skip to start of data.
6116   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
6117 
6118   // Scan RCX words at [RDI] for an occurrence of RAX.
6119   // Set NZ/Z based on last compare.
6120   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
6121   // not change flags (only scas instruction which is repeated sets flags).
6122   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
6123 
6124     testptr(rax,rax); // Set Z = 0
6125     repne_scan();
6126 
6127   // Unspill the temp. registers:
6128   if (pushed_rdi)  pop(rdi);
6129   if (pushed_rcx)  pop(rcx);
6130   if (pushed_rax)  pop(rax);
6131 
6132   if (set_cond_codes) {
6133     // Special hack for the AD files:  rdi is guaranteed non-zero.
6134     assert(!pushed_rdi, "rdi must be left non-NULL");
6135     // Also, the condition codes are properly set Z/NZ on succeed/failure.
6136   }
6137 
6138   if (L_failure == &L_fallthrough)
6139         jccb(Assembler::notEqual, *L_failure);
6140   else  jcc(Assembler::notEqual, *L_failure);
6141 
6142   // Success.  Cache the super we found and proceed in triumph.
6143   movptr(super_cache_addr, super_klass);
6144 
6145   if (L_success != &L_fallthrough) {
6146     jmp(*L_success);
6147   }
6148 
6149 #undef IS_A_TEMP
6150 
6151   bind(L_fallthrough);
6152 }
6153 
6154 
6155 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
6156   if (VM_Version::supports_cmov()) {
6157     cmovl(cc, dst, src);
6158   } else {
6159     Label L;
6160     jccb(negate_condition(cc), L);
6161     movl(dst, src);
6162     bind(L);
6163   }
6164 }
6165 
6166 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
6167   if (VM_Version::supports_cmov()) {
6168     cmovl(cc, dst, src);
6169   } else {
6170     Label L;
6171     jccb(negate_condition(cc), L);
6172     movl(dst, src);
6173     bind(L);
6174   }
6175 }
6176 
6177 void MacroAssembler::verify_oop(Register reg, const char* s) {
6178   if (!VerifyOops) return;
6179 
6180   // Pass register number to verify_oop_subroutine
6181   const char* b = NULL;
6182   {
6183     ResourceMark rm;
6184     stringStream ss;
6185     ss.print("verify_oop: %s: %s", reg->name(), s);
6186     b = code_string(ss.as_string());
6187   }
6188   BLOCK_COMMENT("verify_oop {");
6189 #ifdef _LP64
6190   push(rscratch1);                    // save r10, trashed by movptr()
6191 #endif
6192   push(rax);                          // save rax,
6193   push(reg);                          // pass register argument
6194   ExternalAddress buffer((address) b);
6195   // avoid using pushptr, as it modifies scratch registers
6196   // and our contract is not to modify anything
6197   movptr(rax, buffer.addr());
6198   push(rax);
6199   // call indirectly to solve generation ordering problem
6200   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6201   call(rax);
6202   // Caller pops the arguments (oop, message) and restores rax, r10
6203   BLOCK_COMMENT("} verify_oop");
6204 }
6205 
6206 
6207 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
6208                                                       Register tmp,
6209                                                       int offset) {
6210   intptr_t value = *delayed_value_addr;
6211   if (value != 0)
6212     return RegisterOrConstant(value + offset);
6213 
6214   // load indirectly to solve generation ordering problem
6215   movptr(tmp, ExternalAddress((address) delayed_value_addr));
6216 
6217 #ifdef ASSERT
6218   { Label L;
6219     testptr(tmp, tmp);
6220     if (WizardMode) {
6221       const char* buf = NULL;
6222       {
6223         ResourceMark rm;
6224         stringStream ss;
6225         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
6226         buf = code_string(ss.as_string());
6227       }
6228       jcc(Assembler::notZero, L);
6229       STOP(buf);
6230     } else {
6231       jccb(Assembler::notZero, L);
6232       hlt();
6233     }
6234     bind(L);
6235   }
6236 #endif
6237 
6238   if (offset != 0)
6239     addptr(tmp, offset);
6240 
6241   return RegisterOrConstant(tmp);
6242 }
6243 
6244 
6245 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
6246                                          int extra_slot_offset) {
6247   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
6248   int stackElementSize = Interpreter::stackElementSize;
6249   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
6250 #ifdef ASSERT
6251   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
6252   assert(offset1 - offset == stackElementSize, "correct arithmetic");
6253 #endif
6254   Register             scale_reg    = noreg;
6255   Address::ScaleFactor scale_factor = Address::no_scale;
6256   if (arg_slot.is_constant()) {
6257     offset += arg_slot.as_constant() * stackElementSize;
6258   } else {
6259     scale_reg    = arg_slot.as_register();
6260     scale_factor = Address::times(stackElementSize);
6261   }
6262   offset += wordSize;           // return PC is on stack
6263   return Address(rsp, scale_reg, scale_factor, offset);
6264 }
6265 
6266 
6267 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
6268   if (!VerifyOops) return;
6269 
6270   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
6271   // Pass register number to verify_oop_subroutine
6272   const char* b = NULL;
6273   {
6274     ResourceMark rm;
6275     stringStream ss;
6276     ss.print("verify_oop_addr: %s", s);
6277     b = code_string(ss.as_string());
6278   }
6279 #ifdef _LP64
6280   push(rscratch1);                    // save r10, trashed by movptr()
6281 #endif
6282   push(rax);                          // save rax,
6283   // addr may contain rsp so we will have to adjust it based on the push
6284   // we just did (and on 64 bit we do two pushes)
6285   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
6286   // stores rax into addr which is backwards of what was intended.
6287   if (addr.uses(rsp)) {
6288     lea(rax, addr);
6289     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
6290   } else {
6291     pushptr(addr);
6292   }
6293 
6294   ExternalAddress buffer((address) b);
6295   // pass msg argument
6296   // avoid using pushptr, as it modifies scratch registers
6297   // and our contract is not to modify anything
6298   movptr(rax, buffer.addr());
6299   push(rax);
6300 
6301   // call indirectly to solve generation ordering problem
6302   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6303   call(rax);
6304   // Caller pops the arguments (addr, message) and restores rax, r10.
6305 }
6306 
6307 void MacroAssembler::verify_tlab() {
6308 #ifdef ASSERT
6309   if (UseTLAB && VerifyOops) {
6310     Label next, ok;
6311     Register t1 = rsi;
6312     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
6313 
6314     push(t1);
6315     NOT_LP64(push(thread_reg));
6316     NOT_LP64(get_thread(thread_reg));
6317 
6318     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6319     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
6320     jcc(Assembler::aboveEqual, next);
6321     STOP("assert(top >= start)");
6322     should_not_reach_here();
6323 
6324     bind(next);
6325     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
6326     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6327     jcc(Assembler::aboveEqual, ok);
6328     STOP("assert(top <= end)");
6329     should_not_reach_here();
6330 
6331     bind(ok);
6332     NOT_LP64(pop(thread_reg));
6333     pop(t1);
6334   }
6335 #endif
6336 }
6337 
6338 class ControlWord {
6339  public:
6340   int32_t _value;
6341 
6342   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
6343   int  precision_control() const       { return  (_value >>  8) & 3      ; }
6344   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6345   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6346   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6347   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6348   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6349   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6350 
6351   void print() const {
6352     // rounding control
6353     const char* rc;
6354     switch (rounding_control()) {
6355       case 0: rc = "round near"; break;
6356       case 1: rc = "round down"; break;
6357       case 2: rc = "round up  "; break;
6358       case 3: rc = "chop      "; break;
6359     };
6360     // precision control
6361     const char* pc;
6362     switch (precision_control()) {
6363       case 0: pc = "24 bits "; break;
6364       case 1: pc = "reserved"; break;
6365       case 2: pc = "53 bits "; break;
6366       case 3: pc = "64 bits "; break;
6367     };
6368     // flags
6369     char f[9];
6370     f[0] = ' ';
6371     f[1] = ' ';
6372     f[2] = (precision   ()) ? 'P' : 'p';
6373     f[3] = (underflow   ()) ? 'U' : 'u';
6374     f[4] = (overflow    ()) ? 'O' : 'o';
6375     f[5] = (zero_divide ()) ? 'Z' : 'z';
6376     f[6] = (denormalized()) ? 'D' : 'd';
6377     f[7] = (invalid     ()) ? 'I' : 'i';
6378     f[8] = '\x0';
6379     // output
6380     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
6381   }
6382 
6383 };
6384 
6385 class StatusWord {
6386  public:
6387   int32_t _value;
6388 
6389   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
6390   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
6391   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
6392   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
6393   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
6394   int  top() const                     { return  (_value >> 11) & 7      ; }
6395   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
6396   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
6397   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6398   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6399   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6400   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6401   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6402   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6403 
6404   void print() const {
6405     // condition codes
6406     char c[5];
6407     c[0] = (C3()) ? '3' : '-';
6408     c[1] = (C2()) ? '2' : '-';
6409     c[2] = (C1()) ? '1' : '-';
6410     c[3] = (C0()) ? '0' : '-';
6411     c[4] = '\x0';
6412     // flags
6413     char f[9];
6414     f[0] = (error_status()) ? 'E' : '-';
6415     f[1] = (stack_fault ()) ? 'S' : '-';
6416     f[2] = (precision   ()) ? 'P' : '-';
6417     f[3] = (underflow   ()) ? 'U' : '-';
6418     f[4] = (overflow    ()) ? 'O' : '-';
6419     f[5] = (zero_divide ()) ? 'Z' : '-';
6420     f[6] = (denormalized()) ? 'D' : '-';
6421     f[7] = (invalid     ()) ? 'I' : '-';
6422     f[8] = '\x0';
6423     // output
6424     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
6425   }
6426 
6427 };
6428 
6429 class TagWord {
6430  public:
6431   int32_t _value;
6432 
6433   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
6434 
6435   void print() const {
6436     printf("%04x", _value & 0xFFFF);
6437   }
6438 
6439 };
6440 
6441 class FPU_Register {
6442  public:
6443   int32_t _m0;
6444   int32_t _m1;
6445   int16_t _ex;
6446 
6447   bool is_indefinite() const           {
6448     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
6449   }
6450 
6451   void print() const {
6452     char  sign = (_ex < 0) ? '-' : '+';
6453     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
6454     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
6455   };
6456 
6457 };
6458 
6459 class FPU_State {
6460  public:
6461   enum {
6462     register_size       = 10,
6463     number_of_registers =  8,
6464     register_mask       =  7
6465   };
6466 
6467   ControlWord  _control_word;
6468   StatusWord   _status_word;
6469   TagWord      _tag_word;
6470   int32_t      _error_offset;
6471   int32_t      _error_selector;
6472   int32_t      _data_offset;
6473   int32_t      _data_selector;
6474   int8_t       _register[register_size * number_of_registers];
6475 
6476   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
6477   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
6478 
6479   const char* tag_as_string(int tag) const {
6480     switch (tag) {
6481       case 0: return "valid";
6482       case 1: return "zero";
6483       case 2: return "special";
6484       case 3: return "empty";
6485     }
6486     ShouldNotReachHere();
6487     return NULL;
6488   }
6489 
6490   void print() const {
6491     // print computation registers
6492     { int t = _status_word.top();
6493       for (int i = 0; i < number_of_registers; i++) {
6494         int j = (i - t) & register_mask;
6495         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
6496         st(j)->print();
6497         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
6498       }
6499     }
6500     printf("\n");
6501     // print control registers
6502     printf("ctrl = "); _control_word.print(); printf("\n");
6503     printf("stat = "); _status_word .print(); printf("\n");
6504     printf("tags = "); _tag_word    .print(); printf("\n");
6505   }
6506 
6507 };
6508 
6509 class Flag_Register {
6510  public:
6511   int32_t _value;
6512 
6513   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
6514   bool direction() const               { return ((_value >> 10) & 1) != 0; }
6515   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
6516   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
6517   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
6518   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
6519   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
6520 
6521   void print() const {
6522     // flags
6523     char f[8];
6524     f[0] = (overflow       ()) ? 'O' : '-';
6525     f[1] = (direction      ()) ? 'D' : '-';
6526     f[2] = (sign           ()) ? 'S' : '-';
6527     f[3] = (zero           ()) ? 'Z' : '-';
6528     f[4] = (auxiliary_carry()) ? 'A' : '-';
6529     f[5] = (parity         ()) ? 'P' : '-';
6530     f[6] = (carry          ()) ? 'C' : '-';
6531     f[7] = '\x0';
6532     // output
6533     printf("%08x  flags = %s", _value, f);
6534   }
6535 
6536 };
6537 
6538 class IU_Register {
6539  public:
6540   int32_t _value;
6541 
6542   void print() const {
6543     printf("%08x  %11d", _value, _value);
6544   }
6545 
6546 };
6547 
6548 class IU_State {
6549  public:
6550   Flag_Register _eflags;
6551   IU_Register   _rdi;
6552   IU_Register   _rsi;
6553   IU_Register   _rbp;
6554   IU_Register   _rsp;
6555   IU_Register   _rbx;
6556   IU_Register   _rdx;
6557   IU_Register   _rcx;
6558   IU_Register   _rax;
6559 
6560   void print() const {
6561     // computation registers
6562     printf("rax,  = "); _rax.print(); printf("\n");
6563     printf("rbx,  = "); _rbx.print(); printf("\n");
6564     printf("rcx  = "); _rcx.print(); printf("\n");
6565     printf("rdx  = "); _rdx.print(); printf("\n");
6566     printf("rdi  = "); _rdi.print(); printf("\n");
6567     printf("rsi  = "); _rsi.print(); printf("\n");
6568     printf("rbp,  = "); _rbp.print(); printf("\n");
6569     printf("rsp  = "); _rsp.print(); printf("\n");
6570     printf("\n");
6571     // control registers
6572     printf("flgs = "); _eflags.print(); printf("\n");
6573   }
6574 };
6575 
6576 
6577 class CPU_State {
6578  public:
6579   FPU_State _fpu_state;
6580   IU_State  _iu_state;
6581 
6582   void print() const {
6583     printf("--------------------------------------------------\n");
6584     _iu_state .print();
6585     printf("\n");
6586     _fpu_state.print();
6587     printf("--------------------------------------------------\n");
6588   }
6589 
6590 };
6591 
6592 
6593 static void _print_CPU_state(CPU_State* state) {
6594   state->print();
6595 };
6596 
6597 
6598 void MacroAssembler::print_CPU_state() {
6599   push_CPU_state();
6600   push(rsp);                // pass CPU state
6601   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6602   addptr(rsp, wordSize);       // discard argument
6603   pop_CPU_state();
6604 }
6605 
6606 
6607 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6608   static int counter = 0;
6609   FPU_State* fs = &state->_fpu_state;
6610   counter++;
6611   // For leaf calls, only verify that the top few elements remain empty.
6612   // We only need 1 empty at the top for C2 code.
6613   if( stack_depth < 0 ) {
6614     if( fs->tag_for_st(7) != 3 ) {
6615       printf("FPR7 not empty\n");
6616       state->print();
6617       assert(false, "error");
6618       return false;
6619     }
6620     return true;                // All other stack states do not matter
6621   }
6622 
6623   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6624          "bad FPU control word");
6625 
6626   // compute stack depth
6627   int i = 0;
6628   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6629   int d = i;
6630   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6631   // verify findings
6632   if (i != FPU_State::number_of_registers) {
6633     // stack not contiguous
6634     printf("%s: stack not contiguous at ST%d\n", s, i);
6635     state->print();
6636     assert(false, "error");
6637     return false;
6638   }
6639   // check if computed stack depth corresponds to expected stack depth
6640   if (stack_depth < 0) {
6641     // expected stack depth is -stack_depth or less
6642     if (d > -stack_depth) {
6643       // too many elements on the stack
6644       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6645       state->print();
6646       assert(false, "error");
6647       return false;
6648     }
6649   } else {
6650     // expected stack depth is stack_depth
6651     if (d != stack_depth) {
6652       // wrong stack depth
6653       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6654       state->print();
6655       assert(false, "error");
6656       return false;
6657     }
6658   }
6659   // everything is cool
6660   return true;
6661 }
6662 
6663 
6664 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6665   if (!VerifyFPU) return;
6666   push_CPU_state();
6667   push(rsp);                // pass CPU state
6668   ExternalAddress msg((address) s);
6669   // pass message string s
6670   pushptr(msg.addr());
6671   push(stack_depth);        // pass stack depth
6672   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6673   addptr(rsp, 3 * wordSize);   // discard arguments
6674   // check for error
6675   { Label L;
6676     testl(rax, rax);
6677     jcc(Assembler::notZero, L);
6678     int3();                  // break if error condition
6679     bind(L);
6680   }
6681   pop_CPU_state();
6682 }
6683 
6684 void MacroAssembler::restore_cpu_control_state_after_jni() {
6685   // Either restore the MXCSR register after returning from the JNI Call
6686   // or verify that it wasn't changed (with -Xcheck:jni flag).
6687   if (VM_Version::supports_sse()) {
6688     if (RestoreMXCSROnJNICalls) {
6689       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6690     } else if (CheckJNICalls) {
6691       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6692     }
6693   }
6694   if (VM_Version::supports_avx()) {
6695     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6696     vzeroupper();
6697   }
6698 
6699 #ifndef _LP64
6700   // Either restore the x87 floating pointer control word after returning
6701   // from the JNI call or verify that it wasn't changed.
6702   if (CheckJNICalls) {
6703     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6704   }
6705 #endif // _LP64
6706 }
6707 
6708 
6709 void MacroAssembler::load_klass(Register dst, Register src) {
6710 #ifdef _LP64
6711   if (UseCompressedClassPointers) {
6712     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6713     decode_klass_not_null(dst);
6714   } else
6715 #endif
6716     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6717 }
6718 
6719 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6720   load_klass(dst, src);
6721   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6722 }
6723 
6724 void MacroAssembler::store_klass(Register dst, Register src) {
6725 #ifdef _LP64
6726   if (UseCompressedClassPointers) {
6727     encode_klass_not_null(src);
6728     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6729   } else
6730 #endif
6731     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6732 }
6733 
6734 void MacroAssembler::load_heap_oop(Register dst, Address src) {
6735 #ifdef _LP64
6736   // FIXME: Must change all places where we try to load the klass.
6737   if (UseCompressedOops) {
6738     movl(dst, src);
6739     decode_heap_oop(dst);
6740   } else
6741 #endif
6742     movptr(dst, src);
6743 }
6744 
6745 // Doesn't do verfication, generates fixed size code
6746 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
6747 #ifdef _LP64
6748   if (UseCompressedOops) {
6749     movl(dst, src);
6750     decode_heap_oop_not_null(dst);
6751   } else
6752 #endif
6753     movptr(dst, src);
6754 }
6755 
6756 void MacroAssembler::store_heap_oop(Address dst, Register src) {
6757 #ifdef _LP64
6758   if (UseCompressedOops) {
6759     assert(!dst.uses(src), "not enough registers");
6760     encode_heap_oop(src);
6761     movl(dst, src);
6762   } else
6763 #endif
6764     movptr(dst, src);
6765 }
6766 
6767 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
6768   assert_different_registers(src1, tmp);
6769 #ifdef _LP64
6770   if (UseCompressedOops) {
6771     bool did_push = false;
6772     if (tmp == noreg) {
6773       tmp = rax;
6774       push(tmp);
6775       did_push = true;
6776       assert(!src2.uses(rsp), "can't push");
6777     }
6778     load_heap_oop(tmp, src2);
6779     cmpptr(src1, tmp);
6780     if (did_push)  pop(tmp);
6781   } else
6782 #endif
6783     cmpptr(src1, src2);
6784 }
6785 
6786 // Used for storing NULLs.
6787 void MacroAssembler::store_heap_oop_null(Address dst) {
6788 #ifdef _LP64
6789   if (UseCompressedOops) {
6790     movl(dst, (int32_t)NULL_WORD);
6791   } else {
6792     movslq(dst, (int32_t)NULL_WORD);
6793   }
6794 #else
6795   movl(dst, (int32_t)NULL_WORD);
6796 #endif
6797 }
6798 
6799 #ifdef _LP64
6800 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6801   if (UseCompressedClassPointers) {
6802     // Store to klass gap in destination
6803     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6804   }
6805 }
6806 
6807 #ifdef ASSERT
6808 void MacroAssembler::verify_heapbase(const char* msg) {
6809   assert (UseCompressedOops, "should be compressed");
6810   assert (Universe::heap() != NULL, "java heap should be initialized");
6811   if (CheckCompressedOops) {
6812     Label ok;
6813     push(rscratch1); // cmpptr trashes rscratch1
6814     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6815     jcc(Assembler::equal, ok);
6816     STOP(msg);
6817     bind(ok);
6818     pop(rscratch1);
6819   }
6820 }
6821 #endif
6822 
6823 // Algorithm must match oop.inline.hpp encode_heap_oop.
6824 void MacroAssembler::encode_heap_oop(Register r) {
6825 #ifdef ASSERT
6826   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6827 #endif
6828   verify_oop(r, "broken oop in encode_heap_oop");
6829   if (Universe::narrow_oop_base() == NULL) {
6830     if (Universe::narrow_oop_shift() != 0) {
6831       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6832       shrq(r, LogMinObjAlignmentInBytes);
6833     }
6834     return;
6835   }
6836   testq(r, r);
6837   cmovq(Assembler::equal, r, r12_heapbase);
6838   subq(r, r12_heapbase);
6839   shrq(r, LogMinObjAlignmentInBytes);
6840 }
6841 
6842 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6843 #ifdef ASSERT
6844   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6845   if (CheckCompressedOops) {
6846     Label ok;
6847     testq(r, r);
6848     jcc(Assembler::notEqual, ok);
6849     STOP("null oop passed to encode_heap_oop_not_null");
6850     bind(ok);
6851   }
6852 #endif
6853   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6854   if (Universe::narrow_oop_base() != NULL) {
6855     subq(r, r12_heapbase);
6856   }
6857   if (Universe::narrow_oop_shift() != 0) {
6858     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6859     shrq(r, LogMinObjAlignmentInBytes);
6860   }
6861 }
6862 
6863 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6864 #ifdef ASSERT
6865   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6866   if (CheckCompressedOops) {
6867     Label ok;
6868     testq(src, src);
6869     jcc(Assembler::notEqual, ok);
6870     STOP("null oop passed to encode_heap_oop_not_null2");
6871     bind(ok);
6872   }
6873 #endif
6874   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6875   if (dst != src) {
6876     movq(dst, src);
6877   }
6878   if (Universe::narrow_oop_base() != NULL) {
6879     subq(dst, r12_heapbase);
6880   }
6881   if (Universe::narrow_oop_shift() != 0) {
6882     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6883     shrq(dst, LogMinObjAlignmentInBytes);
6884   }
6885 }
6886 
6887 void  MacroAssembler::decode_heap_oop(Register r) {
6888 #ifdef ASSERT
6889   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6890 #endif
6891   if (Universe::narrow_oop_base() == NULL) {
6892     if (Universe::narrow_oop_shift() != 0) {
6893       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6894       shlq(r, LogMinObjAlignmentInBytes);
6895     }
6896   } else {
6897     Label done;
6898     shlq(r, LogMinObjAlignmentInBytes);
6899     jccb(Assembler::equal, done);
6900     addq(r, r12_heapbase);
6901     bind(done);
6902   }
6903   verify_oop(r, "broken oop in decode_heap_oop");
6904 }
6905 
6906 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6907   // Note: it will change flags
6908   assert (UseCompressedOops, "should only be used for compressed headers");
6909   assert (Universe::heap() != NULL, "java heap should be initialized");
6910   // Cannot assert, unverified entry point counts instructions (see .ad file)
6911   // vtableStubs also counts instructions in pd_code_size_limit.
6912   // Also do not verify_oop as this is called by verify_oop.
6913   if (Universe::narrow_oop_shift() != 0) {
6914     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6915     shlq(r, LogMinObjAlignmentInBytes);
6916     if (Universe::narrow_oop_base() != NULL) {
6917       addq(r, r12_heapbase);
6918     }
6919   } else {
6920     assert (Universe::narrow_oop_base() == NULL, "sanity");
6921   }
6922 }
6923 
6924 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6925   // Note: it will change flags
6926   assert (UseCompressedOops, "should only be used for compressed headers");
6927   assert (Universe::heap() != NULL, "java heap should be initialized");
6928   // Cannot assert, unverified entry point counts instructions (see .ad file)
6929   // vtableStubs also counts instructions in pd_code_size_limit.
6930   // Also do not verify_oop as this is called by verify_oop.
6931   if (Universe::narrow_oop_shift() != 0) {
6932     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6933     if (LogMinObjAlignmentInBytes == Address::times_8) {
6934       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6935     } else {
6936       if (dst != src) {
6937         movq(dst, src);
6938       }
6939       shlq(dst, LogMinObjAlignmentInBytes);
6940       if (Universe::narrow_oop_base() != NULL) {
6941         addq(dst, r12_heapbase);
6942       }
6943     }
6944   } else {
6945     assert (Universe::narrow_oop_base() == NULL, "sanity");
6946     if (dst != src) {
6947       movq(dst, src);
6948     }
6949   }
6950 }
6951 
6952 void MacroAssembler::encode_klass_not_null(Register r) {
6953   if (Universe::narrow_klass_base() != NULL) {
6954     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6955     assert(r != r12_heapbase, "Encoding a klass in r12");
6956     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6957     subq(r, r12_heapbase);
6958   }
6959   if (Universe::narrow_klass_shift() != 0) {
6960     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6961     shrq(r, LogKlassAlignmentInBytes);
6962   }
6963   if (Universe::narrow_klass_base() != NULL) {
6964     reinit_heapbase();
6965   }
6966 }
6967 
6968 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6969   if (dst == src) {
6970     encode_klass_not_null(src);
6971   } else {
6972     if (Universe::narrow_klass_base() != NULL) {
6973       mov64(dst, (int64_t)Universe::narrow_klass_base());
6974       negq(dst);
6975       addq(dst, src);
6976     } else {
6977       movptr(dst, src);
6978     }
6979     if (Universe::narrow_klass_shift() != 0) {
6980       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6981       shrq(dst, LogKlassAlignmentInBytes);
6982     }
6983   }
6984 }
6985 
6986 // Function instr_size_for_decode_klass_not_null() counts the instructions
6987 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6988 // when (Universe::heap() != NULL).  Hence, if the instructions they
6989 // generate change, then this method needs to be updated.
6990 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6991   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6992   if (Universe::narrow_klass_base() != NULL) {
6993     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6994     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6995   } else {
6996     // longest load decode klass function, mov64, leaq
6997     return 16;
6998   }
6999 }
7000 
7001 // !!! If the instructions that get generated here change then function
7002 // instr_size_for_decode_klass_not_null() needs to get updated.
7003 void  MacroAssembler::decode_klass_not_null(Register r) {
7004   // Note: it will change flags
7005   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7006   assert(r != r12_heapbase, "Decoding a klass in r12");
7007   // Cannot assert, unverified entry point counts instructions (see .ad file)
7008   // vtableStubs also counts instructions in pd_code_size_limit.
7009   // Also do not verify_oop as this is called by verify_oop.
7010   if (Universe::narrow_klass_shift() != 0) {
7011     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
7012     shlq(r, LogKlassAlignmentInBytes);
7013   }
7014   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
7015   if (Universe::narrow_klass_base() != NULL) {
7016     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
7017     addq(r, r12_heapbase);
7018     reinit_heapbase();
7019   }
7020 }
7021 
7022 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
7023   // Note: it will change flags
7024   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7025   if (dst == src) {
7026     decode_klass_not_null(dst);
7027   } else {
7028     // Cannot assert, unverified entry point counts instructions (see .ad file)
7029     // vtableStubs also counts instructions in pd_code_size_limit.
7030     // Also do not verify_oop as this is called by verify_oop.
7031     mov64(dst, (int64_t)Universe::narrow_klass_base());
7032     if (Universe::narrow_klass_shift() != 0) {
7033       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
7034       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
7035       leaq(dst, Address(dst, src, Address::times_8, 0));
7036     } else {
7037       addq(dst, src);
7038     }
7039   }
7040 }
7041 
7042 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
7043   assert (UseCompressedOops, "should only be used for compressed headers");
7044   assert (Universe::heap() != NULL, "java heap should be initialized");
7045   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7046   int oop_index = oop_recorder()->find_index(obj);
7047   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7048   mov_narrow_oop(dst, oop_index, rspec);
7049 }
7050 
7051 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
7052   assert (UseCompressedOops, "should only be used for compressed headers");
7053   assert (Universe::heap() != NULL, "java heap should be initialized");
7054   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7055   int oop_index = oop_recorder()->find_index(obj);
7056   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7057   mov_narrow_oop(dst, oop_index, rspec);
7058 }
7059 
7060 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
7061   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7062   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7063   int klass_index = oop_recorder()->find_index(k);
7064   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7065   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
7066 }
7067 
7068 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
7069   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7070   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7071   int klass_index = oop_recorder()->find_index(k);
7072   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7073   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
7074 }
7075 
7076 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
7077   assert (UseCompressedOops, "should only be used for compressed headers");
7078   assert (Universe::heap() != NULL, "java heap should be initialized");
7079   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7080   int oop_index = oop_recorder()->find_index(obj);
7081   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7082   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
7083 }
7084 
7085 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
7086   assert (UseCompressedOops, "should only be used for compressed headers");
7087   assert (Universe::heap() != NULL, "java heap should be initialized");
7088   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7089   int oop_index = oop_recorder()->find_index(obj);
7090   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7091   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
7092 }
7093 
7094 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
7095   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7096   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7097   int klass_index = oop_recorder()->find_index(k);
7098   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7099   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
7100 }
7101 
7102 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
7103   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7104   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7105   int klass_index = oop_recorder()->find_index(k);
7106   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7107   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
7108 }
7109 
7110 void MacroAssembler::reinit_heapbase() {
7111   if (UseCompressedOops || UseCompressedClassPointers) {
7112     if (Universe::heap() != NULL) {
7113       if (Universe::narrow_oop_base() == NULL) {
7114         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
7115       } else {
7116         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
7117       }
7118     } else {
7119       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
7120     }
7121   }
7122 }
7123 
7124 #endif // _LP64
7125 
7126 
7127 // C2 compiled method's prolog code.
7128 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
7129 
7130   // WARNING: Initial instruction MUST be 5 bytes or longer so that
7131   // NativeJump::patch_verified_entry will be able to patch out the entry
7132   // code safely. The push to verify stack depth is ok at 5 bytes,
7133   // the frame allocation can be either 3 or 6 bytes. So if we don't do
7134   // stack bang then we must use the 6 byte frame allocation even if
7135   // we have no frame. :-(
7136   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
7137 
7138   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
7139   // Remove word for return addr
7140   framesize -= wordSize;
7141   stack_bang_size -= wordSize;
7142 
7143   // Calls to C2R adapters often do not accept exceptional returns.
7144   // We require that their callers must bang for them.  But be careful, because
7145   // some VM calls (such as call site linkage) can use several kilobytes of
7146   // stack.  But the stack safety zone should account for that.
7147   // See bugs 4446381, 4468289, 4497237.
7148   if (stack_bang_size > 0) {
7149     generate_stack_overflow_check(stack_bang_size);
7150 
7151     // We always push rbp, so that on return to interpreter rbp, will be
7152     // restored correctly and we can correct the stack.
7153     push(rbp);
7154     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7155     if (PreserveFramePointer) {
7156       mov(rbp, rsp);
7157     }
7158     // Remove word for ebp
7159     framesize -= wordSize;
7160 
7161     // Create frame
7162     if (framesize) {
7163       subptr(rsp, framesize);
7164     }
7165   } else {
7166     // Create frame (force generation of a 4 byte immediate value)
7167     subptr_imm32(rsp, framesize);
7168 
7169     // Save RBP register now.
7170     framesize -= wordSize;
7171     movptr(Address(rsp, framesize), rbp);
7172     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7173     if (PreserveFramePointer) {
7174       movptr(rbp, rsp);
7175       if (framesize > 0) {
7176         addptr(rbp, framesize);
7177       }
7178     }
7179   }
7180 
7181   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
7182     framesize -= wordSize;
7183     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
7184   }
7185 
7186 #ifndef _LP64
7187   // If method sets FPU control word do it now
7188   if (fp_mode_24b) {
7189     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
7190   }
7191   if (UseSSE >= 2 && VerifyFPU) {
7192     verify_FPU(0, "FPU stack must be clean on entry");
7193   }
7194 #endif
7195 
7196 #ifdef ASSERT
7197   if (VerifyStackAtCalls) {
7198     Label L;
7199     push(rax);
7200     mov(rax, rsp);
7201     andptr(rax, StackAlignmentInBytes-1);
7202     cmpptr(rax, StackAlignmentInBytes-wordSize);
7203     pop(rax);
7204     jcc(Assembler::equal, L);
7205     STOP("Stack is not properly aligned!");
7206     bind(L);
7207   }
7208 #endif
7209 
7210 }
7211 
7212 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, bool is_large) {
7213   // cnt - number of qwords (8-byte words).
7214   // base - start address, qword aligned.
7215   // is_large - if optimizers know cnt is larger than InitArrayShortSize
7216   assert(base==rdi, "base register must be edi for rep stos");
7217   assert(tmp==rax,   "tmp register must be eax for rep stos");
7218   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
7219   assert(InitArrayShortSize % BytesPerLong == 0,
7220     "InitArrayShortSize should be the multiple of BytesPerLong");
7221 
7222   Label DONE;
7223 
7224   xorptr(tmp, tmp);
7225 
7226   if (!is_large) {
7227     Label LOOP, LONG;
7228     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
7229     jccb(Assembler::greater, LONG);
7230 
7231     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7232 
7233     decrement(cnt);
7234     jccb(Assembler::negative, DONE); // Zero length
7235 
7236     // Use individual pointer-sized stores for small counts:
7237     BIND(LOOP);
7238     movptr(Address(base, cnt, Address::times_ptr), tmp);
7239     decrement(cnt);
7240     jccb(Assembler::greaterEqual, LOOP);
7241     jmpb(DONE);
7242 
7243     BIND(LONG);
7244   }
7245 
7246   // Use longer rep-prefixed ops for non-small counts:
7247   if (UseFastStosb) {
7248     shlptr(cnt, 3); // convert to number of bytes
7249     rep_stosb();
7250   } else {
7251     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7252     rep_stos();
7253   }
7254 
7255   BIND(DONE);
7256 }
7257 
7258 #ifdef COMPILER2
7259 
7260 // IndexOf for constant substrings with size >= 8 chars
7261 // which don't need to be loaded through stack.
7262 void MacroAssembler::string_indexofC8(Register str1, Register str2,
7263                                       Register cnt1, Register cnt2,
7264                                       int int_cnt2,  Register result,
7265                                       XMMRegister vec, Register tmp,
7266                                       int ae) {
7267   ShortBranchVerifier sbv(this);
7268   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7269   assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7270   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7271 
7272   // This method uses the pcmpestri instruction with bound registers
7273   //   inputs:
7274   //     xmm - substring
7275   //     rax - substring length (elements count)
7276   //     mem - scanned string
7277   //     rdx - string length (elements count)
7278   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7279   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7280   //   outputs:
7281   //     rcx - matched index in string
7282   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7283   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7284   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7285   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7286   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7287 
7288   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
7289         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
7290         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
7291 
7292   // Note, inline_string_indexOf() generates checks:
7293   // if (substr.count > string.count) return -1;
7294   // if (substr.count == 0) return 0;
7295   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
7296 
7297   // Load substring.
7298   if (ae == StrIntrinsicNode::UL) {
7299     pmovzxbw(vec, Address(str2, 0));
7300   } else {
7301     movdqu(vec, Address(str2, 0));
7302   }
7303   movl(cnt2, int_cnt2);
7304   movptr(result, str1); // string addr
7305 
7306   if (int_cnt2 > stride) {
7307     jmpb(SCAN_TO_SUBSTR);
7308 
7309     // Reload substr for rescan, this code
7310     // is executed only for large substrings (> 8 chars)
7311     bind(RELOAD_SUBSTR);
7312     if (ae == StrIntrinsicNode::UL) {
7313       pmovzxbw(vec, Address(str2, 0));
7314     } else {
7315       movdqu(vec, Address(str2, 0));
7316     }
7317     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
7318 
7319     bind(RELOAD_STR);
7320     // We came here after the beginning of the substring was
7321     // matched but the rest of it was not so we need to search
7322     // again. Start from the next element after the previous match.
7323 
7324     // cnt2 is number of substring reminding elements and
7325     // cnt1 is number of string reminding elements when cmp failed.
7326     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
7327     subl(cnt1, cnt2);
7328     addl(cnt1, int_cnt2);
7329     movl(cnt2, int_cnt2); // Now restore cnt2
7330 
7331     decrementl(cnt1);     // Shift to next element
7332     cmpl(cnt1, cnt2);
7333     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7334 
7335     addptr(result, (1<<scale1));
7336 
7337   } // (int_cnt2 > 8)
7338 
7339   // Scan string for start of substr in 16-byte vectors
7340   bind(SCAN_TO_SUBSTR);
7341   pcmpestri(vec, Address(result, 0), mode);
7342   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7343   subl(cnt1, stride);
7344   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7345   cmpl(cnt1, cnt2);
7346   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7347   addptr(result, 16);
7348   jmpb(SCAN_TO_SUBSTR);
7349 
7350   // Found a potential substr
7351   bind(FOUND_CANDIDATE);
7352   // Matched whole vector if first element matched (tmp(rcx) == 0).
7353   if (int_cnt2 == stride) {
7354     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
7355   } else { // int_cnt2 > 8
7356     jccb(Assembler::overflow, FOUND_SUBSTR);
7357   }
7358   // After pcmpestri tmp(rcx) contains matched element index
7359   // Compute start addr of substr
7360   lea(result, Address(result, tmp, scale1));
7361 
7362   // Make sure string is still long enough
7363   subl(cnt1, tmp);
7364   cmpl(cnt1, cnt2);
7365   if (int_cnt2 == stride) {
7366     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7367   } else { // int_cnt2 > 8
7368     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
7369   }
7370   // Left less then substring.
7371 
7372   bind(RET_NOT_FOUND);
7373   movl(result, -1);
7374   jmpb(EXIT);
7375 
7376   if (int_cnt2 > stride) {
7377     // This code is optimized for the case when whole substring
7378     // is matched if its head is matched.
7379     bind(MATCH_SUBSTR_HEAD);
7380     pcmpestri(vec, Address(result, 0), mode);
7381     // Reload only string if does not match
7382     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
7383 
7384     Label CONT_SCAN_SUBSTR;
7385     // Compare the rest of substring (> 8 chars).
7386     bind(FOUND_SUBSTR);
7387     // First 8 chars are already matched.
7388     negptr(cnt2);
7389     addptr(cnt2, stride);
7390 
7391     bind(SCAN_SUBSTR);
7392     subl(cnt1, stride);
7393     cmpl(cnt2, -stride); // Do not read beyond substring
7394     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
7395     // Back-up strings to avoid reading beyond substring:
7396     // cnt1 = cnt1 - cnt2 + 8
7397     addl(cnt1, cnt2); // cnt2 is negative
7398     addl(cnt1, stride);
7399     movl(cnt2, stride); negptr(cnt2);
7400     bind(CONT_SCAN_SUBSTR);
7401     if (int_cnt2 < (int)G) {
7402       int tail_off1 = int_cnt2<<scale1;
7403       int tail_off2 = int_cnt2<<scale2;
7404       if (ae == StrIntrinsicNode::UL) {
7405         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
7406       } else {
7407         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
7408       }
7409       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
7410     } else {
7411       // calculate index in register to avoid integer overflow (int_cnt2*2)
7412       movl(tmp, int_cnt2);
7413       addptr(tmp, cnt2);
7414       if (ae == StrIntrinsicNode::UL) {
7415         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
7416       } else {
7417         movdqu(vec, Address(str2, tmp, scale2, 0));
7418       }
7419       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
7420     }
7421     // Need to reload strings pointers if not matched whole vector
7422     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7423     addptr(cnt2, stride);
7424     jcc(Assembler::negative, SCAN_SUBSTR);
7425     // Fall through if found full substring
7426 
7427   } // (int_cnt2 > 8)
7428 
7429   bind(RET_FOUND);
7430   // Found result if we matched full small substring.
7431   // Compute substr offset
7432   subptr(result, str1);
7433   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7434     shrl(result, 1); // index
7435   }
7436   bind(EXIT);
7437 
7438 } // string_indexofC8
7439 
7440 // Small strings are loaded through stack if they cross page boundary.
7441 void MacroAssembler::string_indexof(Register str1, Register str2,
7442                                     Register cnt1, Register cnt2,
7443                                     int int_cnt2,  Register result,
7444                                     XMMRegister vec, Register tmp,
7445                                     int ae) {
7446   ShortBranchVerifier sbv(this);
7447   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7448   assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7449   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7450 
7451   //
7452   // int_cnt2 is length of small (< 8 chars) constant substring
7453   // or (-1) for non constant substring in which case its length
7454   // is in cnt2 register.
7455   //
7456   // Note, inline_string_indexOf() generates checks:
7457   // if (substr.count > string.count) return -1;
7458   // if (substr.count == 0) return 0;
7459   //
7460   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7461   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
7462   // This method uses the pcmpestri instruction with bound registers
7463   //   inputs:
7464   //     xmm - substring
7465   //     rax - substring length (elements count)
7466   //     mem - scanned string
7467   //     rdx - string length (elements count)
7468   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7469   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7470   //   outputs:
7471   //     rcx - matched index in string
7472   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7473   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7474   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7475   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7476 
7477   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
7478         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
7479         FOUND_CANDIDATE;
7480 
7481   { //========================================================
7482     // We don't know where these strings are located
7483     // and we can't read beyond them. Load them through stack.
7484     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
7485 
7486     movptr(tmp, rsp); // save old SP
7487 
7488     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
7489       if (int_cnt2 == (1>>scale2)) { // One byte
7490         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
7491         load_unsigned_byte(result, Address(str2, 0));
7492         movdl(vec, result); // move 32 bits
7493       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
7494         // Not enough header space in 32-bit VM: 12+3 = 15.
7495         movl(result, Address(str2, -1));
7496         shrl(result, 8);
7497         movdl(vec, result); // move 32 bits
7498       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
7499         load_unsigned_short(result, Address(str2, 0));
7500         movdl(vec, result); // move 32 bits
7501       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
7502         movdl(vec, Address(str2, 0)); // move 32 bits
7503       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
7504         movq(vec, Address(str2, 0));  // move 64 bits
7505       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
7506         // Array header size is 12 bytes in 32-bit VM
7507         // + 6 bytes for 3 chars == 18 bytes,
7508         // enough space to load vec and shift.
7509         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
7510         if (ae == StrIntrinsicNode::UL) {
7511           int tail_off = int_cnt2-8;
7512           pmovzxbw(vec, Address(str2, tail_off));
7513           psrldq(vec, -2*tail_off);
7514         }
7515         else {
7516           int tail_off = int_cnt2*(1<<scale2);
7517           movdqu(vec, Address(str2, tail_off-16));
7518           psrldq(vec, 16-tail_off);
7519         }
7520       }
7521     } else { // not constant substring
7522       cmpl(cnt2, stride);
7523       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
7524 
7525       // We can read beyond string if srt+16 does not cross page boundary
7526       // since heaps are aligned and mapped by pages.
7527       assert(os::vm_page_size() < (int)G, "default page should be small");
7528       movl(result, str2); // We need only low 32 bits
7529       andl(result, (os::vm_page_size()-1));
7530       cmpl(result, (os::vm_page_size()-16));
7531       jccb(Assembler::belowEqual, CHECK_STR);
7532 
7533       // Move small strings to stack to allow load 16 bytes into vec.
7534       subptr(rsp, 16);
7535       int stk_offset = wordSize-(1<<scale2);
7536       push(cnt2);
7537 
7538       bind(COPY_SUBSTR);
7539       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7540         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7541         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7542       } else if (ae == StrIntrinsicNode::UU) {
7543         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7544         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7545       }
7546       decrement(cnt2);
7547       jccb(Assembler::notZero, COPY_SUBSTR);
7548 
7549       pop(cnt2);
7550       movptr(str2, rsp);  // New substring address
7551     } // non constant
7552 
7553     bind(CHECK_STR);
7554     cmpl(cnt1, stride);
7555     jccb(Assembler::aboveEqual, BIG_STRINGS);
7556 
7557     // Check cross page boundary.
7558     movl(result, str1); // We need only low 32 bits
7559     andl(result, (os::vm_page_size()-1));
7560     cmpl(result, (os::vm_page_size()-16));
7561     jccb(Assembler::belowEqual, BIG_STRINGS);
7562 
7563     subptr(rsp, 16);
7564     int stk_offset = -(1<<scale1);
7565     if (int_cnt2 < 0) { // not constant
7566       push(cnt2);
7567       stk_offset += wordSize;
7568     }
7569     movl(cnt2, cnt1);
7570 
7571     bind(COPY_STR);
7572     if (ae == StrIntrinsicNode::LL) {
7573       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7574       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7575     } else {
7576       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7577       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7578     }
7579     decrement(cnt2);
7580     jccb(Assembler::notZero, COPY_STR);
7581 
7582     if (int_cnt2 < 0) { // not constant
7583       pop(cnt2);
7584     }
7585     movptr(str1, rsp);  // New string address
7586 
7587     bind(BIG_STRINGS);
7588     // Load substring.
7589     if (int_cnt2 < 0) { // -1
7590       if (ae == StrIntrinsicNode::UL) {
7591         pmovzxbw(vec, Address(str2, 0));
7592       } else {
7593         movdqu(vec, Address(str2, 0));
7594       }
7595       push(cnt2);       // substr count
7596       push(str2);       // substr addr
7597       push(str1);       // string addr
7598     } else {
7599       // Small (< 8 chars) constant substrings are loaded already.
7600       movl(cnt2, int_cnt2);
7601     }
7602     push(tmp);  // original SP
7603 
7604   } // Finished loading
7605 
7606   //========================================================
7607   // Start search
7608   //
7609 
7610   movptr(result, str1); // string addr
7611 
7612   if (int_cnt2  < 0) {  // Only for non constant substring
7613     jmpb(SCAN_TO_SUBSTR);
7614 
7615     // SP saved at sp+0
7616     // String saved at sp+1*wordSize
7617     // Substr saved at sp+2*wordSize
7618     // Substr count saved at sp+3*wordSize
7619 
7620     // Reload substr for rescan, this code
7621     // is executed only for large substrings (> 8 chars)
7622     bind(RELOAD_SUBSTR);
7623     movptr(str2, Address(rsp, 2*wordSize));
7624     movl(cnt2, Address(rsp, 3*wordSize));
7625     if (ae == StrIntrinsicNode::UL) {
7626       pmovzxbw(vec, Address(str2, 0));
7627     } else {
7628       movdqu(vec, Address(str2, 0));
7629     }
7630     // We came here after the beginning of the substring was
7631     // matched but the rest of it was not so we need to search
7632     // again. Start from the next element after the previous match.
7633     subptr(str1, result); // Restore counter
7634     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7635       shrl(str1, 1);
7636     }
7637     addl(cnt1, str1);
7638     decrementl(cnt1);   // Shift to next element
7639     cmpl(cnt1, cnt2);
7640     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7641 
7642     addptr(result, (1<<scale1));
7643   } // non constant
7644 
7645   // Scan string for start of substr in 16-byte vectors
7646   bind(SCAN_TO_SUBSTR);
7647   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7648   pcmpestri(vec, Address(result, 0), mode);
7649   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7650   subl(cnt1, stride);
7651   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7652   cmpl(cnt1, cnt2);
7653   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7654   addptr(result, 16);
7655 
7656   bind(ADJUST_STR);
7657   cmpl(cnt1, stride); // Do not read beyond string
7658   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7659   // Back-up string to avoid reading beyond string.
7660   lea(result, Address(result, cnt1, scale1, -16));
7661   movl(cnt1, stride);
7662   jmpb(SCAN_TO_SUBSTR);
7663 
7664   // Found a potential substr
7665   bind(FOUND_CANDIDATE);
7666   // After pcmpestri tmp(rcx) contains matched element index
7667 
7668   // Make sure string is still long enough
7669   subl(cnt1, tmp);
7670   cmpl(cnt1, cnt2);
7671   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7672   // Left less then substring.
7673 
7674   bind(RET_NOT_FOUND);
7675   movl(result, -1);
7676   jmpb(CLEANUP);
7677 
7678   bind(FOUND_SUBSTR);
7679   // Compute start addr of substr
7680   lea(result, Address(result, tmp, scale1));
7681   if (int_cnt2 > 0) { // Constant substring
7682     // Repeat search for small substring (< 8 chars)
7683     // from new point without reloading substring.
7684     // Have to check that we don't read beyond string.
7685     cmpl(tmp, stride-int_cnt2);
7686     jccb(Assembler::greater, ADJUST_STR);
7687     // Fall through if matched whole substring.
7688   } else { // non constant
7689     assert(int_cnt2 == -1, "should be != 0");
7690 
7691     addl(tmp, cnt2);
7692     // Found result if we matched whole substring.
7693     cmpl(tmp, stride);
7694     jccb(Assembler::lessEqual, RET_FOUND);
7695 
7696     // Repeat search for small substring (<= 8 chars)
7697     // from new point 'str1' without reloading substring.
7698     cmpl(cnt2, stride);
7699     // Have to check that we don't read beyond string.
7700     jccb(Assembler::lessEqual, ADJUST_STR);
7701 
7702     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7703     // Compare the rest of substring (> 8 chars).
7704     movptr(str1, result);
7705 
7706     cmpl(tmp, cnt2);
7707     // First 8 chars are already matched.
7708     jccb(Assembler::equal, CHECK_NEXT);
7709 
7710     bind(SCAN_SUBSTR);
7711     pcmpestri(vec, Address(str1, 0), mode);
7712     // Need to reload strings pointers if not matched whole vector
7713     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7714 
7715     bind(CHECK_NEXT);
7716     subl(cnt2, stride);
7717     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7718     addptr(str1, 16);
7719     if (ae == StrIntrinsicNode::UL) {
7720       addptr(str2, 8);
7721     } else {
7722       addptr(str2, 16);
7723     }
7724     subl(cnt1, stride);
7725     cmpl(cnt2, stride); // Do not read beyond substring
7726     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7727     // Back-up strings to avoid reading beyond substring.
7728 
7729     if (ae == StrIntrinsicNode::UL) {
7730       lea(str2, Address(str2, cnt2, scale2, -8));
7731       lea(str1, Address(str1, cnt2, scale1, -16));
7732     } else {
7733       lea(str2, Address(str2, cnt2, scale2, -16));
7734       lea(str1, Address(str1, cnt2, scale1, -16));
7735     }
7736     subl(cnt1, cnt2);
7737     movl(cnt2, stride);
7738     addl(cnt1, stride);
7739     bind(CONT_SCAN_SUBSTR);
7740     if (ae == StrIntrinsicNode::UL) {
7741       pmovzxbw(vec, Address(str2, 0));
7742     } else {
7743       movdqu(vec, Address(str2, 0));
7744     }
7745     jmpb(SCAN_SUBSTR);
7746 
7747     bind(RET_FOUND_LONG);
7748     movptr(str1, Address(rsp, wordSize));
7749   } // non constant
7750 
7751   bind(RET_FOUND);
7752   // Compute substr offset
7753   subptr(result, str1);
7754   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7755     shrl(result, 1); // index
7756   }
7757   bind(CLEANUP);
7758   pop(rsp); // restore SP
7759 
7760 } // string_indexof
7761 
7762 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7763                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7764   ShortBranchVerifier sbv(this);
7765   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7766   assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7767 
7768   int stride = 8;
7769 
7770   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7771         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7772         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7773         FOUND_SEQ_CHAR, DONE_LABEL;
7774 
7775   movptr(result, str1);
7776   if (UseAVX >= 2) {
7777     cmpl(cnt1, stride);
7778     jccb(Assembler::less, SCAN_TO_CHAR_LOOP);
7779     cmpl(cnt1, 2*stride);
7780     jccb(Assembler::less, SCAN_TO_8_CHAR_INIT);
7781     movdl(vec1, ch);
7782     vpbroadcastw(vec1, vec1);
7783     vpxor(vec2, vec2);
7784     movl(tmp, cnt1);
7785     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7786     andl(cnt1,0x0000000F);  //tail count (in chars)
7787 
7788     bind(SCAN_TO_16_CHAR_LOOP);
7789     vmovdqu(vec3, Address(result, 0));
7790     vpcmpeqw(vec3, vec3, vec1, 1);
7791     vptest(vec2, vec3);
7792     jcc(Assembler::carryClear, FOUND_CHAR);
7793     addptr(result, 32);
7794     subl(tmp, 2*stride);
7795     jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7796     jmp(SCAN_TO_8_CHAR);
7797     bind(SCAN_TO_8_CHAR_INIT);
7798     movdl(vec1, ch);
7799     pshuflw(vec1, vec1, 0x00);
7800     pshufd(vec1, vec1, 0);
7801     pxor(vec2, vec2);
7802   }
7803   bind(SCAN_TO_8_CHAR);
7804   cmpl(cnt1, stride);
7805   if (UseAVX >= 2) {
7806     jccb(Assembler::less, SCAN_TO_CHAR);
7807   } else {
7808     jccb(Assembler::less, SCAN_TO_CHAR_LOOP);
7809     movdl(vec1, ch);
7810     pshuflw(vec1, vec1, 0x00);
7811     pshufd(vec1, vec1, 0);
7812     pxor(vec2, vec2);
7813   }
7814   movl(tmp, cnt1);
7815   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7816   andl(cnt1,0x00000007);  //tail count (in chars)
7817 
7818   bind(SCAN_TO_8_CHAR_LOOP);
7819   movdqu(vec3, Address(result, 0));
7820   pcmpeqw(vec3, vec1);
7821   ptest(vec2, vec3);
7822   jcc(Assembler::carryClear, FOUND_CHAR);
7823   addptr(result, 16);
7824   subl(tmp, stride);
7825   jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7826   bind(SCAN_TO_CHAR);
7827   testl(cnt1, cnt1);
7828   jcc(Assembler::zero, RET_NOT_FOUND);
7829   bind(SCAN_TO_CHAR_LOOP);
7830   load_unsigned_short(tmp, Address(result, 0));
7831   cmpl(ch, tmp);
7832   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7833   addptr(result, 2);
7834   subl(cnt1, 1);
7835   jccb(Assembler::zero, RET_NOT_FOUND);
7836   jmp(SCAN_TO_CHAR_LOOP);
7837 
7838   bind(RET_NOT_FOUND);
7839   movl(result, -1);
7840   jmpb(DONE_LABEL);
7841 
7842   bind(FOUND_CHAR);
7843   if (UseAVX >= 2) {
7844     vpmovmskb(tmp, vec3);
7845   } else {
7846     pmovmskb(tmp, vec3);
7847   }
7848   bsfl(ch, tmp);
7849   addl(result, ch);
7850 
7851   bind(FOUND_SEQ_CHAR);
7852   subptr(result, str1);
7853   shrl(result, 1);
7854 
7855   bind(DONE_LABEL);
7856 } // string_indexof_char
7857 
7858 // helper function for string_compare
7859 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7860                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7861                                         Address::ScaleFactor scale2, Register index, int ae) {
7862   if (ae == StrIntrinsicNode::LL) {
7863     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7864     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7865   } else if (ae == StrIntrinsicNode::UU) {
7866     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7867     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7868   } else {
7869     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7870     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7871   }
7872 }
7873 
7874 // Compare strings, used for char[] and byte[].
7875 void MacroAssembler::string_compare(Register str1, Register str2,
7876                                     Register cnt1, Register cnt2, Register result,
7877                                     XMMRegister vec1, int ae) {
7878   ShortBranchVerifier sbv(this);
7879   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7880   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7881   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7882   int stride2x2 = 0x40;
7883   Address::ScaleFactor scale = Address::no_scale;
7884   Address::ScaleFactor scale1 = Address::no_scale;
7885   Address::ScaleFactor scale2 = Address::no_scale;
7886 
7887   if (ae != StrIntrinsicNode::LL) {
7888     stride2x2 = 0x20;
7889   }
7890 
7891   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7892     shrl(cnt2, 1);
7893   }
7894   // Compute the minimum of the string lengths and the
7895   // difference of the string lengths (stack).
7896   // Do the conditional move stuff
7897   movl(result, cnt1);
7898   subl(cnt1, cnt2);
7899   push(cnt1);
7900   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7901 
7902   // Is the minimum length zero?
7903   testl(cnt2, cnt2);
7904   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7905   if (ae == StrIntrinsicNode::LL) {
7906     // Load first bytes
7907     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7908     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7909   } else if (ae == StrIntrinsicNode::UU) {
7910     // Load first characters
7911     load_unsigned_short(result, Address(str1, 0));
7912     load_unsigned_short(cnt1, Address(str2, 0));
7913   } else {
7914     load_unsigned_byte(result, Address(str1, 0));
7915     load_unsigned_short(cnt1, Address(str2, 0));
7916   }
7917   subl(result, cnt1);
7918   jcc(Assembler::notZero,  POP_LABEL);
7919 
7920   if (ae == StrIntrinsicNode::UU) {
7921     // Divide length by 2 to get number of chars
7922     shrl(cnt2, 1);
7923   }
7924   cmpl(cnt2, 1);
7925   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7926 
7927   // Check if the strings start at the same location and setup scale and stride
7928   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7929     cmpptr(str1, str2);
7930     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7931     if (ae == StrIntrinsicNode::LL) {
7932       scale = Address::times_1;
7933       stride = 16;
7934     } else {
7935       scale = Address::times_2;
7936       stride = 8;
7937     }
7938   } else {
7939     scale1 = Address::times_1;
7940     scale2 = Address::times_2;
7941     // scale not used
7942     stride = 8;
7943   }
7944 
7945   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7946     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7947     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7948     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7949     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7950     Label COMPARE_TAIL_LONG;
7951     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7952 
7953     int pcmpmask = 0x19;
7954     if (ae == StrIntrinsicNode::LL) {
7955       pcmpmask &= ~0x01;
7956     }
7957 
7958     // Setup to compare 16-chars (32-bytes) vectors,
7959     // start from first character again because it has aligned address.
7960     if (ae == StrIntrinsicNode::LL) {
7961       stride2 = 32;
7962     } else {
7963       stride2 = 16;
7964     }
7965     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7966       adr_stride = stride << scale;
7967     } else {
7968       adr_stride1 = 8;  //stride << scale1;
7969       adr_stride2 = 16; //stride << scale2;
7970     }
7971 
7972     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7973     // rax and rdx are used by pcmpestri as elements counters
7974     movl(result, cnt2);
7975     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7976     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7977 
7978     // fast path : compare first 2 8-char vectors.
7979     bind(COMPARE_16_CHARS);
7980     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7981       movdqu(vec1, Address(str1, 0));
7982     } else {
7983       pmovzxbw(vec1, Address(str1, 0));
7984     }
7985     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7986     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7987 
7988     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7989       movdqu(vec1, Address(str1, adr_stride));
7990       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7991     } else {
7992       pmovzxbw(vec1, Address(str1, adr_stride1));
7993       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7994     }
7995     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7996     addl(cnt1, stride);
7997 
7998     // Compare the characters at index in cnt1
7999     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
8000     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
8001     subl(result, cnt2);
8002     jmp(POP_LABEL);
8003 
8004     // Setup the registers to start vector comparison loop
8005     bind(COMPARE_WIDE_VECTORS);
8006     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8007       lea(str1, Address(str1, result, scale));
8008       lea(str2, Address(str2, result, scale));
8009     } else {
8010       lea(str1, Address(str1, result, scale1));
8011       lea(str2, Address(str2, result, scale2));
8012     }
8013     subl(result, stride2);
8014     subl(cnt2, stride2);
8015     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
8016     negptr(result);
8017 
8018     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
8019     bind(COMPARE_WIDE_VECTORS_LOOP);
8020 
8021 #ifdef _LP64
8022     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8023       cmpl(cnt2, stride2x2);
8024       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8025       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
8026       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
8027 
8028       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8029       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8030         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
8031         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
8032       } else {
8033         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
8034         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
8035       }
8036       kortestql(k7, k7);
8037       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
8038       addptr(result, stride2x2);  // update since we already compared at this addr
8039       subl(cnt2, stride2x2);      // and sub the size too
8040       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8041 
8042       vpxor(vec1, vec1);
8043       jmpb(COMPARE_WIDE_TAIL);
8044     }//if (VM_Version::supports_avx512vlbw())
8045 #endif // _LP64
8046 
8047 
8048     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8049     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8050       vmovdqu(vec1, Address(str1, result, scale));
8051       vpxor(vec1, Address(str2, result, scale));
8052     } else {
8053       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
8054       vpxor(vec1, Address(str2, result, scale2));
8055     }
8056     vptest(vec1, vec1);
8057     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
8058     addptr(result, stride2);
8059     subl(cnt2, stride2);
8060     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
8061     // clean upper bits of YMM registers
8062     vpxor(vec1, vec1);
8063 
8064     // compare wide vectors tail
8065     bind(COMPARE_WIDE_TAIL);
8066     testptr(result, result);
8067     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
8068 
8069     movl(result, stride2);
8070     movl(cnt2, result);
8071     negptr(result);
8072     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8073 
8074     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
8075     bind(VECTOR_NOT_EQUAL);
8076     // clean upper bits of YMM registers
8077     vpxor(vec1, vec1);
8078     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8079       lea(str1, Address(str1, result, scale));
8080       lea(str2, Address(str2, result, scale));
8081     } else {
8082       lea(str1, Address(str1, result, scale1));
8083       lea(str2, Address(str2, result, scale2));
8084     }
8085     jmp(COMPARE_16_CHARS);
8086 
8087     // Compare tail chars, length between 1 to 15 chars
8088     bind(COMPARE_TAIL_LONG);
8089     movl(cnt2, result);
8090     cmpl(cnt2, stride);
8091     jccb(Assembler::less, COMPARE_SMALL_STR);
8092 
8093     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8094       movdqu(vec1, Address(str1, 0));
8095     } else {
8096       pmovzxbw(vec1, Address(str1, 0));
8097     }
8098     pcmpestri(vec1, Address(str2, 0), pcmpmask);
8099     jcc(Assembler::below, COMPARE_INDEX_CHAR);
8100     subptr(cnt2, stride);
8101     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
8102     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8103       lea(str1, Address(str1, result, scale));
8104       lea(str2, Address(str2, result, scale));
8105     } else {
8106       lea(str1, Address(str1, result, scale1));
8107       lea(str2, Address(str2, result, scale2));
8108     }
8109     negptr(cnt2);
8110     jmpb(WHILE_HEAD_LABEL);
8111 
8112     bind(COMPARE_SMALL_STR);
8113   } else if (UseSSE42Intrinsics) {
8114     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
8115     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
8116     int pcmpmask = 0x19;
8117     // Setup to compare 8-char (16-byte) vectors,
8118     // start from first character again because it has aligned address.
8119     movl(result, cnt2);
8120     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
8121     if (ae == StrIntrinsicNode::LL) {
8122       pcmpmask &= ~0x01;
8123     }
8124     jccb(Assembler::zero, COMPARE_TAIL);
8125     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8126       lea(str1, Address(str1, result, scale));
8127       lea(str2, Address(str2, result, scale));
8128     } else {
8129       lea(str1, Address(str1, result, scale1));
8130       lea(str2, Address(str2, result, scale2));
8131     }
8132     negptr(result);
8133 
8134     // pcmpestri
8135     //   inputs:
8136     //     vec1- substring
8137     //     rax - negative string length (elements count)
8138     //     mem - scanned string
8139     //     rdx - string length (elements count)
8140     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
8141     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
8142     //   outputs:
8143     //     rcx - first mismatched element index
8144     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
8145 
8146     bind(COMPARE_WIDE_VECTORS);
8147     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8148       movdqu(vec1, Address(str1, result, scale));
8149       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8150     } else {
8151       pmovzxbw(vec1, Address(str1, result, scale1));
8152       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8153     }
8154     // After pcmpestri cnt1(rcx) contains mismatched element index
8155 
8156     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
8157     addptr(result, stride);
8158     subptr(cnt2, stride);
8159     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
8160 
8161     // compare wide vectors tail
8162     testptr(result, result);
8163     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
8164 
8165     movl(cnt2, stride);
8166     movl(result, stride);
8167     negptr(result);
8168     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8169       movdqu(vec1, Address(str1, result, scale));
8170       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8171     } else {
8172       pmovzxbw(vec1, Address(str1, result, scale1));
8173       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8174     }
8175     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
8176 
8177     // Mismatched characters in the vectors
8178     bind(VECTOR_NOT_EQUAL);
8179     addptr(cnt1, result);
8180     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
8181     subl(result, cnt2);
8182     jmpb(POP_LABEL);
8183 
8184     bind(COMPARE_TAIL); // limit is zero
8185     movl(cnt2, result);
8186     // Fallthru to tail compare
8187   }
8188   // Shift str2 and str1 to the end of the arrays, negate min
8189   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8190     lea(str1, Address(str1, cnt2, scale));
8191     lea(str2, Address(str2, cnt2, scale));
8192   } else {
8193     lea(str1, Address(str1, cnt2, scale1));
8194     lea(str2, Address(str2, cnt2, scale2));
8195   }
8196   decrementl(cnt2);  // first character was compared already
8197   negptr(cnt2);
8198 
8199   // Compare the rest of the elements
8200   bind(WHILE_HEAD_LABEL);
8201   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
8202   subl(result, cnt1);
8203   jccb(Assembler::notZero, POP_LABEL);
8204   increment(cnt2);
8205   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
8206 
8207   // Strings are equal up to min length.  Return the length difference.
8208   bind(LENGTH_DIFF_LABEL);
8209   pop(result);
8210   if (ae == StrIntrinsicNode::UU) {
8211     // Divide diff by 2 to get number of chars
8212     sarl(result, 1);
8213   }
8214   jmpb(DONE_LABEL);
8215 
8216 #ifdef _LP64
8217   if (VM_Version::supports_avx512vlbw()) {
8218 
8219     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
8220 
8221     kmovql(cnt1, k7);
8222     notq(cnt1);
8223     bsfq(cnt2, cnt1);
8224     if (ae != StrIntrinsicNode::LL) {
8225       // Divide diff by 2 to get number of chars
8226       sarl(cnt2, 1);
8227     }
8228     addq(result, cnt2);
8229     if (ae == StrIntrinsicNode::LL) {
8230       load_unsigned_byte(cnt1, Address(str2, result));
8231       load_unsigned_byte(result, Address(str1, result));
8232     } else if (ae == StrIntrinsicNode::UU) {
8233       load_unsigned_short(cnt1, Address(str2, result, scale));
8234       load_unsigned_short(result, Address(str1, result, scale));
8235     } else {
8236       load_unsigned_short(cnt1, Address(str2, result, scale2));
8237       load_unsigned_byte(result, Address(str1, result, scale1));
8238     }
8239     subl(result, cnt1);
8240     jmpb(POP_LABEL);
8241   }//if (VM_Version::supports_avx512vlbw())
8242 #endif // _LP64
8243 
8244   // Discard the stored length difference
8245   bind(POP_LABEL);
8246   pop(cnt1);
8247 
8248   // That's it
8249   bind(DONE_LABEL);
8250   if(ae == StrIntrinsicNode::UL) {
8251     negl(result);
8252   }
8253 
8254 }
8255 
8256 // Search for Non-ASCII character (Negative byte value) in a byte array,
8257 // return true if it has any and false otherwise.
8258 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
8259 //   @HotSpotIntrinsicCandidate
8260 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
8261 //     for (int i = off; i < off + len; i++) {
8262 //       if (ba[i] < 0) {
8263 //         return true;
8264 //       }
8265 //     }
8266 //     return false;
8267 //   }
8268 void MacroAssembler::has_negatives(Register ary1, Register len,
8269   Register result, Register tmp1,
8270   XMMRegister vec1, XMMRegister vec2) {
8271   // rsi: byte array
8272   // rcx: len
8273   // rax: result
8274   ShortBranchVerifier sbv(this);
8275   assert_different_registers(ary1, len, result, tmp1);
8276   assert_different_registers(vec1, vec2);
8277   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
8278 
8279   // len == 0
8280   testl(len, len);
8281   jcc(Assembler::zero, FALSE_LABEL);
8282 
8283   if ((UseAVX > 2) && // AVX512
8284     VM_Version::supports_avx512vlbw() &&
8285     VM_Version::supports_bmi2()) {
8286 
8287     set_vector_masking();  // opening of the stub context for programming mask registers
8288 
8289     Label test_64_loop, test_tail;
8290     Register tmp3_aliased = len;
8291 
8292     movl(tmp1, len);
8293     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
8294 
8295     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
8296     andl(len, ~(64 - 1));    // vector count (in chars)
8297     jccb(Assembler::zero, test_tail);
8298 
8299     lea(ary1, Address(ary1, len, Address::times_1));
8300     negptr(len);
8301 
8302     bind(test_64_loop);
8303     // Check whether our 64 elements of size byte contain negatives
8304     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
8305     kortestql(k2, k2);
8306     jcc(Assembler::notZero, TRUE_LABEL);
8307 
8308     addptr(len, 64);
8309     jccb(Assembler::notZero, test_64_loop);
8310 
8311 
8312     bind(test_tail);
8313     // bail out when there is nothing to be done
8314     testl(tmp1, -1);
8315     jcc(Assembler::zero, FALSE_LABEL);
8316 
8317     // Save k1
8318     kmovql(k3, k1);
8319 
8320     // ~(~0 << len) applied up to two times (for 32-bit scenario)
8321   #ifdef _LP64
8322       mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
8323       shlxq(tmp3_aliased, tmp3_aliased, tmp1);
8324       notq(tmp3_aliased);
8325       kmovql(k1, tmp3_aliased);
8326   #else
8327     Label k_init;
8328     jmp(k_init);
8329 
8330     // We could not read 64-bits from a general purpose register thus we move
8331     // data required to compose 64 1's to the instruction stream
8332     // We emit 64 byte wide series of elements from 0..63 which later on would
8333     // be used as a compare targets with tail count contained in tmp1 register.
8334     // Result would be a k1 register having tmp1 consecutive number or 1
8335     // counting from least significant bit.
8336     address tmp = pc();
8337     emit_int64(0x0706050403020100);
8338     emit_int64(0x0F0E0D0C0B0A0908);
8339     emit_int64(0x1716151413121110);
8340     emit_int64(0x1F1E1D1C1B1A1918);
8341     emit_int64(0x2726252423222120);
8342     emit_int64(0x2F2E2D2C2B2A2928);
8343     emit_int64(0x3736353433323130);
8344     emit_int64(0x3F3E3D3C3B3A3938);
8345 
8346     bind(k_init);
8347     lea(len, InternalAddress(tmp));
8348     // create mask to test for negative byte inside a vector
8349     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
8350     evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
8351 
8352 #endif
8353     evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
8354     ktestq(k2, k1);
8355     // Restore k1
8356     kmovql(k1, k3);
8357     jcc(Assembler::notZero, TRUE_LABEL);
8358 
8359     jmp(FALSE_LABEL);
8360 
8361     clear_vector_masking();   // closing of the stub context for programming mask registers
8362   } else {
8363     movl(result, len); // copy
8364 
8365     if (UseAVX == 2 && UseSSE >= 2) {
8366       // With AVX2, use 32-byte vector compare
8367       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8368 
8369       // Compare 32-byte vectors
8370       andl(result, 0x0000001f);  //   tail count (in bytes)
8371       andl(len, 0xffffffe0);   // vector count (in bytes)
8372       jccb(Assembler::zero, COMPARE_TAIL);
8373 
8374       lea(ary1, Address(ary1, len, Address::times_1));
8375       negptr(len);
8376 
8377       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
8378       movdl(vec2, tmp1);
8379       vpbroadcastd(vec2, vec2);
8380 
8381       bind(COMPARE_WIDE_VECTORS);
8382       vmovdqu(vec1, Address(ary1, len, Address::times_1));
8383       vptest(vec1, vec2);
8384       jccb(Assembler::notZero, TRUE_LABEL);
8385       addptr(len, 32);
8386       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8387 
8388       testl(result, result);
8389       jccb(Assembler::zero, FALSE_LABEL);
8390 
8391       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8392       vptest(vec1, vec2);
8393       jccb(Assembler::notZero, TRUE_LABEL);
8394       jmpb(FALSE_LABEL);
8395 
8396       bind(COMPARE_TAIL); // len is zero
8397       movl(len, result);
8398       // Fallthru to tail compare
8399     } else if (UseSSE42Intrinsics) {
8400       assert(UseSSE >= 4, "SSE4 must be  for SSE4.2 intrinsics to be available");
8401       // With SSE4.2, use double quad vector compare
8402       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8403 
8404       // Compare 16-byte vectors
8405       andl(result, 0x0000000f);  //   tail count (in bytes)
8406       andl(len, 0xfffffff0);   // vector count (in bytes)
8407       jccb(Assembler::zero, COMPARE_TAIL);
8408 
8409       lea(ary1, Address(ary1, len, Address::times_1));
8410       negptr(len);
8411 
8412       movl(tmp1, 0x80808080);
8413       movdl(vec2, tmp1);
8414       pshufd(vec2, vec2, 0);
8415 
8416       bind(COMPARE_WIDE_VECTORS);
8417       movdqu(vec1, Address(ary1, len, Address::times_1));
8418       ptest(vec1, vec2);
8419       jccb(Assembler::notZero, TRUE_LABEL);
8420       addptr(len, 16);
8421       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8422 
8423       testl(result, result);
8424       jccb(Assembler::zero, FALSE_LABEL);
8425 
8426       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8427       ptest(vec1, vec2);
8428       jccb(Assembler::notZero, TRUE_LABEL);
8429       jmpb(FALSE_LABEL);
8430 
8431       bind(COMPARE_TAIL); // len is zero
8432       movl(len, result);
8433       // Fallthru to tail compare
8434     }
8435   }
8436   // Compare 4-byte vectors
8437   andl(len, 0xfffffffc); // vector count (in bytes)
8438   jccb(Assembler::zero, COMPARE_CHAR);
8439 
8440   lea(ary1, Address(ary1, len, Address::times_1));
8441   negptr(len);
8442 
8443   bind(COMPARE_VECTORS);
8444   movl(tmp1, Address(ary1, len, Address::times_1));
8445   andl(tmp1, 0x80808080);
8446   jccb(Assembler::notZero, TRUE_LABEL);
8447   addptr(len, 4);
8448   jcc(Assembler::notZero, COMPARE_VECTORS);
8449 
8450   // Compare trailing char (final 2 bytes), if any
8451   bind(COMPARE_CHAR);
8452   testl(result, 0x2);   // tail  char
8453   jccb(Assembler::zero, COMPARE_BYTE);
8454   load_unsigned_short(tmp1, Address(ary1, 0));
8455   andl(tmp1, 0x00008080);
8456   jccb(Assembler::notZero, TRUE_LABEL);
8457   subptr(result, 2);
8458   lea(ary1, Address(ary1, 2));
8459 
8460   bind(COMPARE_BYTE);
8461   testl(result, 0x1);   // tail  byte
8462   jccb(Assembler::zero, FALSE_LABEL);
8463   load_unsigned_byte(tmp1, Address(ary1, 0));
8464   andl(tmp1, 0x00000080);
8465   jccb(Assembler::notEqual, TRUE_LABEL);
8466   jmpb(FALSE_LABEL);
8467 
8468   bind(TRUE_LABEL);
8469   movl(result, 1);   // return true
8470   jmpb(DONE);
8471 
8472   bind(FALSE_LABEL);
8473   xorl(result, result); // return false
8474 
8475   // That's it
8476   bind(DONE);
8477   if (UseAVX >= 2 && UseSSE >= 2) {
8478     // clean upper bits of YMM registers
8479     vpxor(vec1, vec1);
8480     vpxor(vec2, vec2);
8481   }
8482 }
8483 
8484 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
8485 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8486                                    Register limit, Register result, Register chr,
8487                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
8488   ShortBranchVerifier sbv(this);
8489   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
8490 
8491   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8492   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
8493 
8494   if (is_array_equ) {
8495     // Check the input args
8496     cmpptr(ary1, ary2);
8497     jcc(Assembler::equal, TRUE_LABEL);
8498 
8499     // Need additional checks for arrays_equals.
8500     testptr(ary1, ary1);
8501     jcc(Assembler::zero, FALSE_LABEL);
8502     testptr(ary2, ary2);
8503     jcc(Assembler::zero, FALSE_LABEL);
8504 
8505     // Check the lengths
8506     movl(limit, Address(ary1, length_offset));
8507     cmpl(limit, Address(ary2, length_offset));
8508     jcc(Assembler::notEqual, FALSE_LABEL);
8509   }
8510 
8511   // count == 0
8512   testl(limit, limit);
8513   jcc(Assembler::zero, TRUE_LABEL);
8514 
8515   if (is_array_equ) {
8516     // Load array address
8517     lea(ary1, Address(ary1, base_offset));
8518     lea(ary2, Address(ary2, base_offset));
8519   }
8520 
8521   if (is_array_equ && is_char) {
8522     // arrays_equals when used for char[].
8523     shll(limit, 1);      // byte count != 0
8524   }
8525   movl(result, limit); // copy
8526 
8527   if (UseAVX >= 2) {
8528     // With AVX2, use 32-byte vector compare
8529     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8530 
8531     // Compare 32-byte vectors
8532     andl(result, 0x0000001f);  //   tail count (in bytes)
8533     andl(limit, 0xffffffe0);   // vector count (in bytes)
8534     jcc(Assembler::zero, COMPARE_TAIL);
8535 
8536     lea(ary1, Address(ary1, limit, Address::times_1));
8537     lea(ary2, Address(ary2, limit, Address::times_1));
8538     negptr(limit);
8539 
8540     bind(COMPARE_WIDE_VECTORS);
8541 
8542 #ifdef _LP64
8543     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8544       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8545 
8546       cmpl(limit, -64);
8547       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8548 
8549       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8550 
8551       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8552       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8553       kortestql(k7, k7);
8554       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8555       addptr(limit, 64);  // update since we already compared at this addr
8556       cmpl(limit, -64);
8557       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8558 
8559       // At this point we may still need to compare -limit+result bytes.
8560       // We could execute the next two instruction and just continue via non-wide path:
8561       //  cmpl(limit, 0);
8562       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8563       // But since we stopped at the points ary{1,2}+limit which are
8564       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8565       // (|limit| <= 32 and result < 32),
8566       // we may just compare the last 64 bytes.
8567       //
8568       addptr(result, -64);   // it is safe, bc we just came from this area
8569       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8570       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8571       kortestql(k7, k7);
8572       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8573 
8574       jmp(TRUE_LABEL);
8575 
8576       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8577 
8578     }//if (VM_Version::supports_avx512vlbw())
8579 #endif //_LP64
8580 
8581     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8582     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8583     vpxor(vec1, vec2);
8584 
8585     vptest(vec1, vec1);
8586     jccb(Assembler::notZero, FALSE_LABEL);
8587     addptr(limit, 32);
8588     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8589 
8590     testl(result, result);
8591     jccb(Assembler::zero, TRUE_LABEL);
8592 
8593     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8594     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8595     vpxor(vec1, vec2);
8596 
8597     vptest(vec1, vec1);
8598     jccb(Assembler::notZero, FALSE_LABEL);
8599     jmpb(TRUE_LABEL);
8600 
8601     bind(COMPARE_TAIL); // limit is zero
8602     movl(limit, result);
8603     // Fallthru to tail compare
8604   } else if (UseSSE42Intrinsics) {
8605     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
8606     // With SSE4.2, use double quad vector compare
8607     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8608 
8609     // Compare 16-byte vectors
8610     andl(result, 0x0000000f);  //   tail count (in bytes)
8611     andl(limit, 0xfffffff0);   // vector count (in bytes)
8612     jccb(Assembler::zero, COMPARE_TAIL);
8613 
8614     lea(ary1, Address(ary1, limit, Address::times_1));
8615     lea(ary2, Address(ary2, limit, Address::times_1));
8616     negptr(limit);
8617 
8618     bind(COMPARE_WIDE_VECTORS);
8619     movdqu(vec1, Address(ary1, limit, Address::times_1));
8620     movdqu(vec2, Address(ary2, limit, Address::times_1));
8621     pxor(vec1, vec2);
8622 
8623     ptest(vec1, vec1);
8624     jccb(Assembler::notZero, FALSE_LABEL);
8625     addptr(limit, 16);
8626     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8627 
8628     testl(result, result);
8629     jccb(Assembler::zero, TRUE_LABEL);
8630 
8631     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8632     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8633     pxor(vec1, vec2);
8634 
8635     ptest(vec1, vec1);
8636     jccb(Assembler::notZero, FALSE_LABEL);
8637     jmpb(TRUE_LABEL);
8638 
8639     bind(COMPARE_TAIL); // limit is zero
8640     movl(limit, result);
8641     // Fallthru to tail compare
8642   }
8643 
8644   // Compare 4-byte vectors
8645   andl(limit, 0xfffffffc); // vector count (in bytes)
8646   jccb(Assembler::zero, COMPARE_CHAR);
8647 
8648   lea(ary1, Address(ary1, limit, Address::times_1));
8649   lea(ary2, Address(ary2, limit, Address::times_1));
8650   negptr(limit);
8651 
8652   bind(COMPARE_VECTORS);
8653   movl(chr, Address(ary1, limit, Address::times_1));
8654   cmpl(chr, Address(ary2, limit, Address::times_1));
8655   jccb(Assembler::notEqual, FALSE_LABEL);
8656   addptr(limit, 4);
8657   jcc(Assembler::notZero, COMPARE_VECTORS);
8658 
8659   // Compare trailing char (final 2 bytes), if any
8660   bind(COMPARE_CHAR);
8661   testl(result, 0x2);   // tail  char
8662   jccb(Assembler::zero, COMPARE_BYTE);
8663   load_unsigned_short(chr, Address(ary1, 0));
8664   load_unsigned_short(limit, Address(ary2, 0));
8665   cmpl(chr, limit);
8666   jccb(Assembler::notEqual, FALSE_LABEL);
8667 
8668   if (is_array_equ && is_char) {
8669     bind(COMPARE_BYTE);
8670   } else {
8671     lea(ary1, Address(ary1, 2));
8672     lea(ary2, Address(ary2, 2));
8673 
8674     bind(COMPARE_BYTE);
8675     testl(result, 0x1);   // tail  byte
8676     jccb(Assembler::zero, TRUE_LABEL);
8677     load_unsigned_byte(chr, Address(ary1, 0));
8678     load_unsigned_byte(limit, Address(ary2, 0));
8679     cmpl(chr, limit);
8680     jccb(Assembler::notEqual, FALSE_LABEL);
8681   }
8682   bind(TRUE_LABEL);
8683   movl(result, 1);   // return true
8684   jmpb(DONE);
8685 
8686   bind(FALSE_LABEL);
8687   xorl(result, result); // return false
8688 
8689   // That's it
8690   bind(DONE);
8691   if (UseAVX >= 2) {
8692     // clean upper bits of YMM registers
8693     vpxor(vec1, vec1);
8694     vpxor(vec2, vec2);
8695   }
8696 }
8697 
8698 #endif
8699 
8700 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8701                                    Register to, Register value, Register count,
8702                                    Register rtmp, XMMRegister xtmp) {
8703   ShortBranchVerifier sbv(this);
8704   assert_different_registers(to, value, count, rtmp);
8705   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8706   Label L_fill_2_bytes, L_fill_4_bytes;
8707 
8708   int shift = -1;
8709   switch (t) {
8710     case T_BYTE:
8711       shift = 2;
8712       break;
8713     case T_SHORT:
8714       shift = 1;
8715       break;
8716     case T_INT:
8717       shift = 0;
8718       break;
8719     default: ShouldNotReachHere();
8720   }
8721 
8722   if (t == T_BYTE) {
8723     andl(value, 0xff);
8724     movl(rtmp, value);
8725     shll(rtmp, 8);
8726     orl(value, rtmp);
8727   }
8728   if (t == T_SHORT) {
8729     andl(value, 0xffff);
8730   }
8731   if (t == T_BYTE || t == T_SHORT) {
8732     movl(rtmp, value);
8733     shll(rtmp, 16);
8734     orl(value, rtmp);
8735   }
8736 
8737   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8738   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8739   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8740     // align source address at 4 bytes address boundary
8741     if (t == T_BYTE) {
8742       // One byte misalignment happens only for byte arrays
8743       testptr(to, 1);
8744       jccb(Assembler::zero, L_skip_align1);
8745       movb(Address(to, 0), value);
8746       increment(to);
8747       decrement(count);
8748       BIND(L_skip_align1);
8749     }
8750     // Two bytes misalignment happens only for byte and short (char) arrays
8751     testptr(to, 2);
8752     jccb(Assembler::zero, L_skip_align2);
8753     movw(Address(to, 0), value);
8754     addptr(to, 2);
8755     subl(count, 1<<(shift-1));
8756     BIND(L_skip_align2);
8757   }
8758   if (UseSSE < 2) {
8759     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8760     // Fill 32-byte chunks
8761     subl(count, 8 << shift);
8762     jcc(Assembler::less, L_check_fill_8_bytes);
8763     align(16);
8764 
8765     BIND(L_fill_32_bytes_loop);
8766 
8767     for (int i = 0; i < 32; i += 4) {
8768       movl(Address(to, i), value);
8769     }
8770 
8771     addptr(to, 32);
8772     subl(count, 8 << shift);
8773     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8774     BIND(L_check_fill_8_bytes);
8775     addl(count, 8 << shift);
8776     jccb(Assembler::zero, L_exit);
8777     jmpb(L_fill_8_bytes);
8778 
8779     //
8780     // length is too short, just fill qwords
8781     //
8782     BIND(L_fill_8_bytes_loop);
8783     movl(Address(to, 0), value);
8784     movl(Address(to, 4), value);
8785     addptr(to, 8);
8786     BIND(L_fill_8_bytes);
8787     subl(count, 1 << (shift + 1));
8788     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8789     // fall through to fill 4 bytes
8790   } else {
8791     Label L_fill_32_bytes;
8792     if (!UseUnalignedLoadStores) {
8793       // align to 8 bytes, we know we are 4 byte aligned to start
8794       testptr(to, 4);
8795       jccb(Assembler::zero, L_fill_32_bytes);
8796       movl(Address(to, 0), value);
8797       addptr(to, 4);
8798       subl(count, 1<<shift);
8799     }
8800     BIND(L_fill_32_bytes);
8801     {
8802       assert( UseSSE >= 2, "supported cpu only" );
8803       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8804       if (UseAVX > 2) {
8805         movl(rtmp, 0xffff);
8806         kmovwl(k1, rtmp);
8807       }
8808       movdl(xtmp, value);
8809       if (UseAVX > 2 && UseUnalignedLoadStores) {
8810         // Fill 64-byte chunks
8811         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8812         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8813 
8814         subl(count, 16 << shift);
8815         jcc(Assembler::less, L_check_fill_32_bytes);
8816         align(16);
8817 
8818         BIND(L_fill_64_bytes_loop);
8819         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8820         addptr(to, 64);
8821         subl(count, 16 << shift);
8822         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8823 
8824         BIND(L_check_fill_32_bytes);
8825         addl(count, 8 << shift);
8826         jccb(Assembler::less, L_check_fill_8_bytes);
8827         vmovdqu(Address(to, 0), xtmp);
8828         addptr(to, 32);
8829         subl(count, 8 << shift);
8830 
8831         BIND(L_check_fill_8_bytes);
8832       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8833         // Fill 64-byte chunks
8834         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8835         vpbroadcastd(xtmp, xtmp);
8836 
8837         subl(count, 16 << shift);
8838         jcc(Assembler::less, L_check_fill_32_bytes);
8839         align(16);
8840 
8841         BIND(L_fill_64_bytes_loop);
8842         vmovdqu(Address(to, 0), xtmp);
8843         vmovdqu(Address(to, 32), xtmp);
8844         addptr(to, 64);
8845         subl(count, 16 << shift);
8846         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8847 
8848         BIND(L_check_fill_32_bytes);
8849         addl(count, 8 << shift);
8850         jccb(Assembler::less, L_check_fill_8_bytes);
8851         vmovdqu(Address(to, 0), xtmp);
8852         addptr(to, 32);
8853         subl(count, 8 << shift);
8854 
8855         BIND(L_check_fill_8_bytes);
8856         // clean upper bits of YMM registers
8857         movdl(xtmp, value);
8858         pshufd(xtmp, xtmp, 0);
8859       } else {
8860         // Fill 32-byte chunks
8861         pshufd(xtmp, xtmp, 0);
8862 
8863         subl(count, 8 << shift);
8864         jcc(Assembler::less, L_check_fill_8_bytes);
8865         align(16);
8866 
8867         BIND(L_fill_32_bytes_loop);
8868 
8869         if (UseUnalignedLoadStores) {
8870           movdqu(Address(to, 0), xtmp);
8871           movdqu(Address(to, 16), xtmp);
8872         } else {
8873           movq(Address(to, 0), xtmp);
8874           movq(Address(to, 8), xtmp);
8875           movq(Address(to, 16), xtmp);
8876           movq(Address(to, 24), xtmp);
8877         }
8878 
8879         addptr(to, 32);
8880         subl(count, 8 << shift);
8881         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8882 
8883         BIND(L_check_fill_8_bytes);
8884       }
8885       addl(count, 8 << shift);
8886       jccb(Assembler::zero, L_exit);
8887       jmpb(L_fill_8_bytes);
8888 
8889       //
8890       // length is too short, just fill qwords
8891       //
8892       BIND(L_fill_8_bytes_loop);
8893       movq(Address(to, 0), xtmp);
8894       addptr(to, 8);
8895       BIND(L_fill_8_bytes);
8896       subl(count, 1 << (shift + 1));
8897       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8898     }
8899   }
8900   // fill trailing 4 bytes
8901   BIND(L_fill_4_bytes);
8902   testl(count, 1<<shift);
8903   jccb(Assembler::zero, L_fill_2_bytes);
8904   movl(Address(to, 0), value);
8905   if (t == T_BYTE || t == T_SHORT) {
8906     addptr(to, 4);
8907     BIND(L_fill_2_bytes);
8908     // fill trailing 2 bytes
8909     testl(count, 1<<(shift-1));
8910     jccb(Assembler::zero, L_fill_byte);
8911     movw(Address(to, 0), value);
8912     if (t == T_BYTE) {
8913       addptr(to, 2);
8914       BIND(L_fill_byte);
8915       // fill trailing byte
8916       testl(count, 1);
8917       jccb(Assembler::zero, L_exit);
8918       movb(Address(to, 0), value);
8919     } else {
8920       BIND(L_fill_byte);
8921     }
8922   } else {
8923     BIND(L_fill_2_bytes);
8924   }
8925   BIND(L_exit);
8926 }
8927 
8928 // encode char[] to byte[] in ISO_8859_1
8929    //@HotSpotIntrinsicCandidate
8930    //private static int implEncodeISOArray(byte[] sa, int sp,
8931    //byte[] da, int dp, int len) {
8932    //  int i = 0;
8933    //  for (; i < len; i++) {
8934    //    char c = StringUTF16.getChar(sa, sp++);
8935    //    if (c > '\u00FF')
8936    //      break;
8937    //    da[dp++] = (byte)c;
8938    //  }
8939    //  return i;
8940    //}
8941 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8942   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8943   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8944   Register tmp5, Register result) {
8945 
8946   // rsi: src
8947   // rdi: dst
8948   // rdx: len
8949   // rcx: tmp5
8950   // rax: result
8951   ShortBranchVerifier sbv(this);
8952   assert_different_registers(src, dst, len, tmp5, result);
8953   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8954 
8955   // set result
8956   xorl(result, result);
8957   // check for zero length
8958   testl(len, len);
8959   jcc(Assembler::zero, L_done);
8960 
8961   movl(result, len);
8962 
8963   // Setup pointers
8964   lea(src, Address(src, len, Address::times_2)); // char[]
8965   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8966   negptr(len);
8967 
8968   if (UseSSE42Intrinsics || UseAVX >= 2) {
8969     assert(UseSSE42Intrinsics ? UseSSE >= 4 : true, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
8970     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8971     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8972 
8973     if (UseAVX >= 2) {
8974       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8975       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8976       movdl(tmp1Reg, tmp5);
8977       vpbroadcastd(tmp1Reg, tmp1Reg);
8978       jmpb(L_chars_32_check);
8979 
8980       bind(L_copy_32_chars);
8981       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8982       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8983       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8984       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8985       jccb(Assembler::notZero, L_copy_32_chars_exit);
8986       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8987       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8988       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8989 
8990       bind(L_chars_32_check);
8991       addptr(len, 32);
8992       jccb(Assembler::lessEqual, L_copy_32_chars);
8993 
8994       bind(L_copy_32_chars_exit);
8995       subptr(len, 16);
8996       jccb(Assembler::greater, L_copy_16_chars_exit);
8997 
8998     } else if (UseSSE42Intrinsics) {
8999       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
9000       movdl(tmp1Reg, tmp5);
9001       pshufd(tmp1Reg, tmp1Reg, 0);
9002       jmpb(L_chars_16_check);
9003     }
9004 
9005     bind(L_copy_16_chars);
9006     if (UseAVX >= 2) {
9007       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
9008       vptest(tmp2Reg, tmp1Reg);
9009       jccb(Assembler::notZero, L_copy_16_chars_exit);
9010       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
9011       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
9012     } else {
9013       if (UseAVX > 0) {
9014         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
9015         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
9016         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
9017       } else {
9018         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
9019         por(tmp2Reg, tmp3Reg);
9020         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
9021         por(tmp2Reg, tmp4Reg);
9022       }
9023       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
9024       jccb(Assembler::notZero, L_copy_16_chars_exit);
9025       packuswb(tmp3Reg, tmp4Reg);
9026     }
9027     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
9028 
9029     bind(L_chars_16_check);
9030     addptr(len, 16);
9031     jccb(Assembler::lessEqual, L_copy_16_chars);
9032 
9033     bind(L_copy_16_chars_exit);
9034     if (UseAVX >= 2) {
9035       // clean upper bits of YMM registers
9036       vpxor(tmp2Reg, tmp2Reg);
9037       vpxor(tmp3Reg, tmp3Reg);
9038       vpxor(tmp4Reg, tmp4Reg);
9039       movdl(tmp1Reg, tmp5);
9040       pshufd(tmp1Reg, tmp1Reg, 0);
9041     }
9042     subptr(len, 8);
9043     jccb(Assembler::greater, L_copy_8_chars_exit);
9044 
9045     bind(L_copy_8_chars);
9046     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
9047     ptest(tmp3Reg, tmp1Reg);
9048     jccb(Assembler::notZero, L_copy_8_chars_exit);
9049     packuswb(tmp3Reg, tmp1Reg);
9050     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
9051     addptr(len, 8);
9052     jccb(Assembler::lessEqual, L_copy_8_chars);
9053 
9054     bind(L_copy_8_chars_exit);
9055     subptr(len, 8);
9056     jccb(Assembler::zero, L_done);
9057   }
9058 
9059   bind(L_copy_1_char);
9060   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
9061   testl(tmp5, 0xff00);      // check if Unicode char
9062   jccb(Assembler::notZero, L_copy_1_char_exit);
9063   movb(Address(dst, len, Address::times_1, 0), tmp5);
9064   addptr(len, 1);
9065   jccb(Assembler::less, L_copy_1_char);
9066 
9067   bind(L_copy_1_char_exit);
9068   addptr(result, len); // len is negative count of not processed elements
9069 
9070   bind(L_done);
9071 }
9072 
9073 #ifdef _LP64
9074 /**
9075  * Helper for multiply_to_len().
9076  */
9077 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
9078   addq(dest_lo, src1);
9079   adcq(dest_hi, 0);
9080   addq(dest_lo, src2);
9081   adcq(dest_hi, 0);
9082 }
9083 
9084 /**
9085  * Multiply 64 bit by 64 bit first loop.
9086  */
9087 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
9088                                            Register y, Register y_idx, Register z,
9089                                            Register carry, Register product,
9090                                            Register idx, Register kdx) {
9091   //
9092   //  jlong carry, x[], y[], z[];
9093   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
9094   //    huge_128 product = y[idx] * x[xstart] + carry;
9095   //    z[kdx] = (jlong)product;
9096   //    carry  = (jlong)(product >>> 64);
9097   //  }
9098   //  z[xstart] = carry;
9099   //
9100 
9101   Label L_first_loop, L_first_loop_exit;
9102   Label L_one_x, L_one_y, L_multiply;
9103 
9104   decrementl(xstart);
9105   jcc(Assembler::negative, L_one_x);
9106 
9107   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9108   rorq(x_xstart, 32); // convert big-endian to little-endian
9109 
9110   bind(L_first_loop);
9111   decrementl(idx);
9112   jcc(Assembler::negative, L_first_loop_exit);
9113   decrementl(idx);
9114   jcc(Assembler::negative, L_one_y);
9115   movq(y_idx, Address(y, idx, Address::times_4,  0));
9116   rorq(y_idx, 32); // convert big-endian to little-endian
9117   bind(L_multiply);
9118   movq(product, x_xstart);
9119   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
9120   addq(product, carry);
9121   adcq(rdx, 0);
9122   subl(kdx, 2);
9123   movl(Address(z, kdx, Address::times_4,  4), product);
9124   shrq(product, 32);
9125   movl(Address(z, kdx, Address::times_4,  0), product);
9126   movq(carry, rdx);
9127   jmp(L_first_loop);
9128 
9129   bind(L_one_y);
9130   movl(y_idx, Address(y,  0));
9131   jmp(L_multiply);
9132 
9133   bind(L_one_x);
9134   movl(x_xstart, Address(x,  0));
9135   jmp(L_first_loop);
9136 
9137   bind(L_first_loop_exit);
9138 }
9139 
9140 /**
9141  * Multiply 64 bit by 64 bit and add 128 bit.
9142  */
9143 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
9144                                             Register yz_idx, Register idx,
9145                                             Register carry, Register product, int offset) {
9146   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
9147   //     z[kdx] = (jlong)product;
9148 
9149   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
9150   rorq(yz_idx, 32); // convert big-endian to little-endian
9151   movq(product, x_xstart);
9152   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
9153   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
9154   rorq(yz_idx, 32); // convert big-endian to little-endian
9155 
9156   add2_with_carry(rdx, product, carry, yz_idx);
9157 
9158   movl(Address(z, idx, Address::times_4,  offset+4), product);
9159   shrq(product, 32);
9160   movl(Address(z, idx, Address::times_4,  offset), product);
9161 
9162 }
9163 
9164 /**
9165  * Multiply 128 bit by 128 bit. Unrolled inner loop.
9166  */
9167 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
9168                                              Register yz_idx, Register idx, Register jdx,
9169                                              Register carry, Register product,
9170                                              Register carry2) {
9171   //   jlong carry, x[], y[], z[];
9172   //   int kdx = ystart+1;
9173   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9174   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
9175   //     z[kdx+idx+1] = (jlong)product;
9176   //     jlong carry2  = (jlong)(product >>> 64);
9177   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
9178   //     z[kdx+idx] = (jlong)product;
9179   //     carry  = (jlong)(product >>> 64);
9180   //   }
9181   //   idx += 2;
9182   //   if (idx > 0) {
9183   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
9184   //     z[kdx+idx] = (jlong)product;
9185   //     carry  = (jlong)(product >>> 64);
9186   //   }
9187   //
9188 
9189   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9190 
9191   movl(jdx, idx);
9192   andl(jdx, 0xFFFFFFFC);
9193   shrl(jdx, 2);
9194 
9195   bind(L_third_loop);
9196   subl(jdx, 1);
9197   jcc(Assembler::negative, L_third_loop_exit);
9198   subl(idx, 4);
9199 
9200   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
9201   movq(carry2, rdx);
9202 
9203   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
9204   movq(carry, rdx);
9205   jmp(L_third_loop);
9206 
9207   bind (L_third_loop_exit);
9208 
9209   andl (idx, 0x3);
9210   jcc(Assembler::zero, L_post_third_loop_done);
9211 
9212   Label L_check_1;
9213   subl(idx, 2);
9214   jcc(Assembler::negative, L_check_1);
9215 
9216   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
9217   movq(carry, rdx);
9218 
9219   bind (L_check_1);
9220   addl (idx, 0x2);
9221   andl (idx, 0x1);
9222   subl(idx, 1);
9223   jcc(Assembler::negative, L_post_third_loop_done);
9224 
9225   movl(yz_idx, Address(y, idx, Address::times_4,  0));
9226   movq(product, x_xstart);
9227   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
9228   movl(yz_idx, Address(z, idx, Address::times_4,  0));
9229 
9230   add2_with_carry(rdx, product, yz_idx, carry);
9231 
9232   movl(Address(z, idx, Address::times_4,  0), product);
9233   shrq(product, 32);
9234 
9235   shlq(rdx, 32);
9236   orq(product, rdx);
9237   movq(carry, product);
9238 
9239   bind(L_post_third_loop_done);
9240 }
9241 
9242 /**
9243  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
9244  *
9245  */
9246 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
9247                                                   Register carry, Register carry2,
9248                                                   Register idx, Register jdx,
9249                                                   Register yz_idx1, Register yz_idx2,
9250                                                   Register tmp, Register tmp3, Register tmp4) {
9251   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
9252 
9253   //   jlong carry, x[], y[], z[];
9254   //   int kdx = ystart+1;
9255   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9256   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
9257   //     jlong carry2  = (jlong)(tmp3 >>> 64);
9258   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
9259   //     carry  = (jlong)(tmp4 >>> 64);
9260   //     z[kdx+idx+1] = (jlong)tmp3;
9261   //     z[kdx+idx] = (jlong)tmp4;
9262   //   }
9263   //   idx += 2;
9264   //   if (idx > 0) {
9265   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
9266   //     z[kdx+idx] = (jlong)yz_idx1;
9267   //     carry  = (jlong)(yz_idx1 >>> 64);
9268   //   }
9269   //
9270 
9271   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9272 
9273   movl(jdx, idx);
9274   andl(jdx, 0xFFFFFFFC);
9275   shrl(jdx, 2);
9276 
9277   bind(L_third_loop);
9278   subl(jdx, 1);
9279   jcc(Assembler::negative, L_third_loop_exit);
9280   subl(idx, 4);
9281 
9282   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
9283   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
9284   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
9285   rorxq(yz_idx2, yz_idx2, 32);
9286 
9287   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
9288   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
9289 
9290   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
9291   rorxq(yz_idx1, yz_idx1, 32);
9292   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9293   rorxq(yz_idx2, yz_idx2, 32);
9294 
9295   if (VM_Version::supports_adx()) {
9296     adcxq(tmp3, carry);
9297     adoxq(tmp3, yz_idx1);
9298 
9299     adcxq(tmp4, tmp);
9300     adoxq(tmp4, yz_idx2);
9301 
9302     movl(carry, 0); // does not affect flags
9303     adcxq(carry2, carry);
9304     adoxq(carry2, carry);
9305   } else {
9306     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
9307     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
9308   }
9309   movq(carry, carry2);
9310 
9311   movl(Address(z, idx, Address::times_4, 12), tmp3);
9312   shrq(tmp3, 32);
9313   movl(Address(z, idx, Address::times_4,  8), tmp3);
9314 
9315   movl(Address(z, idx, Address::times_4,  4), tmp4);
9316   shrq(tmp4, 32);
9317   movl(Address(z, idx, Address::times_4,  0), tmp4);
9318 
9319   jmp(L_third_loop);
9320 
9321   bind (L_third_loop_exit);
9322 
9323   andl (idx, 0x3);
9324   jcc(Assembler::zero, L_post_third_loop_done);
9325 
9326   Label L_check_1;
9327   subl(idx, 2);
9328   jcc(Assembler::negative, L_check_1);
9329 
9330   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
9331   rorxq(yz_idx1, yz_idx1, 32);
9332   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
9333   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9334   rorxq(yz_idx2, yz_idx2, 32);
9335 
9336   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
9337 
9338   movl(Address(z, idx, Address::times_4,  4), tmp3);
9339   shrq(tmp3, 32);
9340   movl(Address(z, idx, Address::times_4,  0), tmp3);
9341   movq(carry, tmp4);
9342 
9343   bind (L_check_1);
9344   addl (idx, 0x2);
9345   andl (idx, 0x1);
9346   subl(idx, 1);
9347   jcc(Assembler::negative, L_post_third_loop_done);
9348   movl(tmp4, Address(y, idx, Address::times_4,  0));
9349   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
9350   movl(tmp4, Address(z, idx, Address::times_4,  0));
9351 
9352   add2_with_carry(carry2, tmp3, tmp4, carry);
9353 
9354   movl(Address(z, idx, Address::times_4,  0), tmp3);
9355   shrq(tmp3, 32);
9356 
9357   shlq(carry2, 32);
9358   orq(tmp3, carry2);
9359   movq(carry, tmp3);
9360 
9361   bind(L_post_third_loop_done);
9362 }
9363 
9364 /**
9365  * Code for BigInteger::multiplyToLen() instrinsic.
9366  *
9367  * rdi: x
9368  * rax: xlen
9369  * rsi: y
9370  * rcx: ylen
9371  * r8:  z
9372  * r11: zlen
9373  * r12: tmp1
9374  * r13: tmp2
9375  * r14: tmp3
9376  * r15: tmp4
9377  * rbx: tmp5
9378  *
9379  */
9380 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
9381                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
9382   ShortBranchVerifier sbv(this);
9383   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
9384 
9385   push(tmp1);
9386   push(tmp2);
9387   push(tmp3);
9388   push(tmp4);
9389   push(tmp5);
9390 
9391   push(xlen);
9392   push(zlen);
9393 
9394   const Register idx = tmp1;
9395   const Register kdx = tmp2;
9396   const Register xstart = tmp3;
9397 
9398   const Register y_idx = tmp4;
9399   const Register carry = tmp5;
9400   const Register product  = xlen;
9401   const Register x_xstart = zlen;  // reuse register
9402 
9403   // First Loop.
9404   //
9405   //  final static long LONG_MASK = 0xffffffffL;
9406   //  int xstart = xlen - 1;
9407   //  int ystart = ylen - 1;
9408   //  long carry = 0;
9409   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
9410   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
9411   //    z[kdx] = (int)product;
9412   //    carry = product >>> 32;
9413   //  }
9414   //  z[xstart] = (int)carry;
9415   //
9416 
9417   movl(idx, ylen);      // idx = ylen;
9418   movl(kdx, zlen);      // kdx = xlen+ylen;
9419   xorq(carry, carry);   // carry = 0;
9420 
9421   Label L_done;
9422 
9423   movl(xstart, xlen);
9424   decrementl(xstart);
9425   jcc(Assembler::negative, L_done);
9426 
9427   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
9428 
9429   Label L_second_loop;
9430   testl(kdx, kdx);
9431   jcc(Assembler::zero, L_second_loop);
9432 
9433   Label L_carry;
9434   subl(kdx, 1);
9435   jcc(Assembler::zero, L_carry);
9436 
9437   movl(Address(z, kdx, Address::times_4,  0), carry);
9438   shrq(carry, 32);
9439   subl(kdx, 1);
9440 
9441   bind(L_carry);
9442   movl(Address(z, kdx, Address::times_4,  0), carry);
9443 
9444   // Second and third (nested) loops.
9445   //
9446   // for (int i = xstart-1; i >= 0; i--) { // Second loop
9447   //   carry = 0;
9448   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
9449   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
9450   //                    (z[k] & LONG_MASK) + carry;
9451   //     z[k] = (int)product;
9452   //     carry = product >>> 32;
9453   //   }
9454   //   z[i] = (int)carry;
9455   // }
9456   //
9457   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
9458 
9459   const Register jdx = tmp1;
9460 
9461   bind(L_second_loop);
9462   xorl(carry, carry);    // carry = 0;
9463   movl(jdx, ylen);       // j = ystart+1
9464 
9465   subl(xstart, 1);       // i = xstart-1;
9466   jcc(Assembler::negative, L_done);
9467 
9468   push (z);
9469 
9470   Label L_last_x;
9471   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
9472   subl(xstart, 1);       // i = xstart-1;
9473   jcc(Assembler::negative, L_last_x);
9474 
9475   if (UseBMI2Instructions) {
9476     movq(rdx,  Address(x, xstart, Address::times_4,  0));
9477     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
9478   } else {
9479     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9480     rorq(x_xstart, 32);  // convert big-endian to little-endian
9481   }
9482 
9483   Label L_third_loop_prologue;
9484   bind(L_third_loop_prologue);
9485 
9486   push (x);
9487   push (xstart);
9488   push (ylen);
9489 
9490 
9491   if (UseBMI2Instructions) {
9492     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
9493   } else { // !UseBMI2Instructions
9494     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
9495   }
9496 
9497   pop(ylen);
9498   pop(xlen);
9499   pop(x);
9500   pop(z);
9501 
9502   movl(tmp3, xlen);
9503   addl(tmp3, 1);
9504   movl(Address(z, tmp3, Address::times_4,  0), carry);
9505   subl(tmp3, 1);
9506   jccb(Assembler::negative, L_done);
9507 
9508   shrq(carry, 32);
9509   movl(Address(z, tmp3, Address::times_4,  0), carry);
9510   jmp(L_second_loop);
9511 
9512   // Next infrequent code is moved outside loops.
9513   bind(L_last_x);
9514   if (UseBMI2Instructions) {
9515     movl(rdx, Address(x,  0));
9516   } else {
9517     movl(x_xstart, Address(x,  0));
9518   }
9519   jmp(L_third_loop_prologue);
9520 
9521   bind(L_done);
9522 
9523   pop(zlen);
9524   pop(xlen);
9525 
9526   pop(tmp5);
9527   pop(tmp4);
9528   pop(tmp3);
9529   pop(tmp2);
9530   pop(tmp1);
9531 }
9532 
9533 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
9534   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
9535   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
9536   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
9537   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
9538   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9539   Label SAME_TILL_END, DONE;
9540   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9541 
9542   //scale is in rcx in both Win64 and Unix
9543   ShortBranchVerifier sbv(this);
9544 
9545   shlq(length);
9546   xorq(result, result);
9547 
9548   cmpq(length, 8);
9549   jcc(Assembler::equal, VECTOR8_LOOP);
9550   jcc(Assembler::less, VECTOR4_TAIL);
9551 
9552   if (UseAVX >= 2){
9553 
9554     cmpq(length, 16);
9555     jcc(Assembler::equal, VECTOR16_LOOP);
9556     jcc(Assembler::less, VECTOR8_LOOP);
9557 
9558     cmpq(length, 32);
9559     jccb(Assembler::less, VECTOR16_TAIL);
9560 
9561     subq(length, 32);
9562     bind(VECTOR32_LOOP);
9563     vmovdqu(rymm0, Address(obja, result));
9564     vmovdqu(rymm1, Address(objb, result));
9565     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9566     vptest(rymm2, rymm2);
9567     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9568     addq(result, 32);
9569     subq(length, 32);
9570     jccb(Assembler::greaterEqual, VECTOR32_LOOP);
9571     addq(length, 32);
9572     jcc(Assembler::equal, SAME_TILL_END);
9573     //falling through if less than 32 bytes left //close the branch here.
9574 
9575     bind(VECTOR16_TAIL);
9576     cmpq(length, 16);
9577     jccb(Assembler::less, VECTOR8_TAIL);
9578     bind(VECTOR16_LOOP);
9579     movdqu(rymm0, Address(obja, result));
9580     movdqu(rymm1, Address(objb, result));
9581     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9582     ptest(rymm2, rymm2);
9583     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9584     addq(result, 16);
9585     subq(length, 16);
9586     jcc(Assembler::equal, SAME_TILL_END);
9587     //falling through if less than 16 bytes left
9588   } else {//regular intrinsics
9589 
9590     cmpq(length, 16);
9591     jccb(Assembler::less, VECTOR8_TAIL);
9592 
9593     subq(length, 16);
9594     bind(VECTOR16_LOOP);
9595     movdqu(rymm0, Address(obja, result));
9596     movdqu(rymm1, Address(objb, result));
9597     pxor(rymm0, rymm1);
9598     ptest(rymm0, rymm0);
9599     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9600     addq(result, 16);
9601     subq(length, 16);
9602     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9603     addq(length, 16);
9604     jcc(Assembler::equal, SAME_TILL_END);
9605     //falling through if less than 16 bytes left
9606   }
9607 
9608   bind(VECTOR8_TAIL);
9609   cmpq(length, 8);
9610   jccb(Assembler::less, VECTOR4_TAIL);
9611   bind(VECTOR8_LOOP);
9612   movq(tmp1, Address(obja, result));
9613   movq(tmp2, Address(objb, result));
9614   xorq(tmp1, tmp2);
9615   testq(tmp1, tmp1);
9616   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9617   addq(result, 8);
9618   subq(length, 8);
9619   jcc(Assembler::equal, SAME_TILL_END);
9620   //falling through if less than 8 bytes left
9621 
9622   bind(VECTOR4_TAIL);
9623   cmpq(length, 4);
9624   jccb(Assembler::less, BYTES_TAIL);
9625   bind(VECTOR4_LOOP);
9626   movl(tmp1, Address(obja, result));
9627   xorl(tmp1, Address(objb, result));
9628   testl(tmp1, tmp1);
9629   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9630   addq(result, 4);
9631   subq(length, 4);
9632   jcc(Assembler::equal, SAME_TILL_END);
9633   //falling through if less than 4 bytes left
9634 
9635   bind(BYTES_TAIL);
9636   bind(BYTES_LOOP);
9637   load_unsigned_byte(tmp1, Address(obja, result));
9638   load_unsigned_byte(tmp2, Address(objb, result));
9639   xorl(tmp1, tmp2);
9640   testl(tmp1, tmp1);
9641   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9642   decq(length);
9643   jccb(Assembler::zero, SAME_TILL_END);
9644   incq(result);
9645   load_unsigned_byte(tmp1, Address(obja, result));
9646   load_unsigned_byte(tmp2, Address(objb, result));
9647   xorl(tmp1, tmp2);
9648   testl(tmp1, tmp1);
9649   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9650   decq(length);
9651   jccb(Assembler::zero, SAME_TILL_END);
9652   incq(result);
9653   load_unsigned_byte(tmp1, Address(obja, result));
9654   load_unsigned_byte(tmp2, Address(objb, result));
9655   xorl(tmp1, tmp2);
9656   testl(tmp1, tmp1);
9657   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9658   jmpb(SAME_TILL_END);
9659 
9660   if (UseAVX >= 2){
9661     bind(VECTOR32_NOT_EQUAL);
9662     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9663     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9664     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9665     vpmovmskb(tmp1, rymm0);
9666     bsfq(tmp1, tmp1);
9667     addq(result, tmp1);
9668     shrq(result);
9669     jmpb(DONE);
9670   }
9671 
9672   bind(VECTOR16_NOT_EQUAL);
9673   if (UseAVX >= 2){
9674     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9675     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9676     pxor(rymm0, rymm2);
9677   } else {
9678     pcmpeqb(rymm2, rymm2);
9679     pxor(rymm0, rymm1);
9680     pcmpeqb(rymm0, rymm1);
9681     pxor(rymm0, rymm2);
9682   }
9683   pmovmskb(tmp1, rymm0);
9684   bsfq(tmp1, tmp1);
9685   addq(result, tmp1);
9686   shrq(result);
9687   jmpb(DONE);
9688 
9689   bind(VECTOR8_NOT_EQUAL);
9690   bind(VECTOR4_NOT_EQUAL);
9691   bsfq(tmp1, tmp1);
9692   shrq(tmp1, 3);
9693   addq(result, tmp1);
9694   bind(BYTES_NOT_EQUAL);
9695   shrq(result);
9696   jmpb(DONE);
9697 
9698   bind(SAME_TILL_END);
9699   mov64(result, -1);
9700 
9701   bind(DONE);
9702 }
9703 
9704 
9705 //Helper functions for square_to_len()
9706 
9707 /**
9708  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9709  * Preserves x and z and modifies rest of the registers.
9710  */
9711 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9712   // Perform square and right shift by 1
9713   // Handle odd xlen case first, then for even xlen do the following
9714   // jlong carry = 0;
9715   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9716   //     huge_128 product = x[j:j+1] * x[j:j+1];
9717   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9718   //     z[i+2:i+3] = (jlong)(product >>> 1);
9719   //     carry = (jlong)product;
9720   // }
9721 
9722   xorq(tmp5, tmp5);     // carry
9723   xorq(rdxReg, rdxReg);
9724   xorl(tmp1, tmp1);     // index for x
9725   xorl(tmp4, tmp4);     // index for z
9726 
9727   Label L_first_loop, L_first_loop_exit;
9728 
9729   testl(xlen, 1);
9730   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9731 
9732   // Square and right shift by 1 the odd element using 32 bit multiply
9733   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9734   imulq(raxReg, raxReg);
9735   shrq(raxReg, 1);
9736   adcq(tmp5, 0);
9737   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9738   incrementl(tmp1);
9739   addl(tmp4, 2);
9740 
9741   // Square and  right shift by 1 the rest using 64 bit multiply
9742   bind(L_first_loop);
9743   cmpptr(tmp1, xlen);
9744   jccb(Assembler::equal, L_first_loop_exit);
9745 
9746   // Square
9747   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9748   rorq(raxReg, 32);    // convert big-endian to little-endian
9749   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9750 
9751   // Right shift by 1 and save carry
9752   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9753   rcrq(rdxReg, 1);
9754   rcrq(raxReg, 1);
9755   adcq(tmp5, 0);
9756 
9757   // Store result in z
9758   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9759   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9760 
9761   // Update indices for x and z
9762   addl(tmp1, 2);
9763   addl(tmp4, 4);
9764   jmp(L_first_loop);
9765 
9766   bind(L_first_loop_exit);
9767 }
9768 
9769 
9770 /**
9771  * Perform the following multiply add operation using BMI2 instructions
9772  * carry:sum = sum + op1*op2 + carry
9773  * op2 should be in rdx
9774  * op2 is preserved, all other registers are modified
9775  */
9776 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9777   // assert op2 is rdx
9778   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9779   addq(sum, carry);
9780   adcq(tmp2, 0);
9781   addq(sum, op1);
9782   adcq(tmp2, 0);
9783   movq(carry, tmp2);
9784 }
9785 
9786 /**
9787  * Perform the following multiply add operation:
9788  * carry:sum = sum + op1*op2 + carry
9789  * Preserves op1, op2 and modifies rest of registers
9790  */
9791 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9792   // rdx:rax = op1 * op2
9793   movq(raxReg, op2);
9794   mulq(op1);
9795 
9796   //  rdx:rax = sum + carry + rdx:rax
9797   addq(sum, carry);
9798   adcq(rdxReg, 0);
9799   addq(sum, raxReg);
9800   adcq(rdxReg, 0);
9801 
9802   // carry:sum = rdx:sum
9803   movq(carry, rdxReg);
9804 }
9805 
9806 /**
9807  * Add 64 bit long carry into z[] with carry propogation.
9808  * Preserves z and carry register values and modifies rest of registers.
9809  *
9810  */
9811 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9812   Label L_fourth_loop, L_fourth_loop_exit;
9813 
9814   movl(tmp1, 1);
9815   subl(zlen, 2);
9816   addq(Address(z, zlen, Address::times_4, 0), carry);
9817 
9818   bind(L_fourth_loop);
9819   jccb(Assembler::carryClear, L_fourth_loop_exit);
9820   subl(zlen, 2);
9821   jccb(Assembler::negative, L_fourth_loop_exit);
9822   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9823   jmp(L_fourth_loop);
9824   bind(L_fourth_loop_exit);
9825 }
9826 
9827 /**
9828  * Shift z[] left by 1 bit.
9829  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9830  *
9831  */
9832 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9833 
9834   Label L_fifth_loop, L_fifth_loop_exit;
9835 
9836   // Fifth loop
9837   // Perform primitiveLeftShift(z, zlen, 1)
9838 
9839   const Register prev_carry = tmp1;
9840   const Register new_carry = tmp4;
9841   const Register value = tmp2;
9842   const Register zidx = tmp3;
9843 
9844   // int zidx, carry;
9845   // long value;
9846   // carry = 0;
9847   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9848   //    (carry:value)  = (z[i] << 1) | carry ;
9849   //    z[i] = value;
9850   // }
9851 
9852   movl(zidx, zlen);
9853   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9854 
9855   bind(L_fifth_loop);
9856   decl(zidx);  // Use decl to preserve carry flag
9857   decl(zidx);
9858   jccb(Assembler::negative, L_fifth_loop_exit);
9859 
9860   if (UseBMI2Instructions) {
9861      movq(value, Address(z, zidx, Address::times_4, 0));
9862      rclq(value, 1);
9863      rorxq(value, value, 32);
9864      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9865   }
9866   else {
9867     // clear new_carry
9868     xorl(new_carry, new_carry);
9869 
9870     // Shift z[i] by 1, or in previous carry and save new carry
9871     movq(value, Address(z, zidx, Address::times_4, 0));
9872     shlq(value, 1);
9873     adcl(new_carry, 0);
9874 
9875     orq(value, prev_carry);
9876     rorq(value, 0x20);
9877     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9878 
9879     // Set previous carry = new carry
9880     movl(prev_carry, new_carry);
9881   }
9882   jmp(L_fifth_loop);
9883 
9884   bind(L_fifth_loop_exit);
9885 }
9886 
9887 
9888 /**
9889  * Code for BigInteger::squareToLen() intrinsic
9890  *
9891  * rdi: x
9892  * rsi: len
9893  * r8:  z
9894  * rcx: zlen
9895  * r12: tmp1
9896  * r13: tmp2
9897  * r14: tmp3
9898  * r15: tmp4
9899  * rbx: tmp5
9900  *
9901  */
9902 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9903 
9904   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9905   push(tmp1);
9906   push(tmp2);
9907   push(tmp3);
9908   push(tmp4);
9909   push(tmp5);
9910 
9911   // First loop
9912   // Store the squares, right shifted one bit (i.e., divided by 2).
9913   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9914 
9915   // Add in off-diagonal sums.
9916   //
9917   // Second, third (nested) and fourth loops.
9918   // zlen +=2;
9919   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9920   //    carry = 0;
9921   //    long op2 = x[xidx:xidx+1];
9922   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9923   //       k -= 2;
9924   //       long op1 = x[j:j+1];
9925   //       long sum = z[k:k+1];
9926   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9927   //       z[k:k+1] = sum;
9928   //    }
9929   //    add_one_64(z, k, carry, tmp_regs);
9930   // }
9931 
9932   const Register carry = tmp5;
9933   const Register sum = tmp3;
9934   const Register op1 = tmp4;
9935   Register op2 = tmp2;
9936 
9937   push(zlen);
9938   push(len);
9939   addl(zlen,2);
9940   bind(L_second_loop);
9941   xorq(carry, carry);
9942   subl(zlen, 4);
9943   subl(len, 2);
9944   push(zlen);
9945   push(len);
9946   cmpl(len, 0);
9947   jccb(Assembler::lessEqual, L_second_loop_exit);
9948 
9949   // Multiply an array by one 64 bit long.
9950   if (UseBMI2Instructions) {
9951     op2 = rdxReg;
9952     movq(op2, Address(x, len, Address::times_4,  0));
9953     rorxq(op2, op2, 32);
9954   }
9955   else {
9956     movq(op2, Address(x, len, Address::times_4,  0));
9957     rorq(op2, 32);
9958   }
9959 
9960   bind(L_third_loop);
9961   decrementl(len);
9962   jccb(Assembler::negative, L_third_loop_exit);
9963   decrementl(len);
9964   jccb(Assembler::negative, L_last_x);
9965 
9966   movq(op1, Address(x, len, Address::times_4,  0));
9967   rorq(op1, 32);
9968 
9969   bind(L_multiply);
9970   subl(zlen, 2);
9971   movq(sum, Address(z, zlen, Address::times_4,  0));
9972 
9973   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9974   if (UseBMI2Instructions) {
9975     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9976   }
9977   else {
9978     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9979   }
9980 
9981   movq(Address(z, zlen, Address::times_4, 0), sum);
9982 
9983   jmp(L_third_loop);
9984   bind(L_third_loop_exit);
9985 
9986   // Fourth loop
9987   // Add 64 bit long carry into z with carry propogation.
9988   // Uses offsetted zlen.
9989   add_one_64(z, zlen, carry, tmp1);
9990 
9991   pop(len);
9992   pop(zlen);
9993   jmp(L_second_loop);
9994 
9995   // Next infrequent code is moved outside loops.
9996   bind(L_last_x);
9997   movl(op1, Address(x, 0));
9998   jmp(L_multiply);
9999 
10000   bind(L_second_loop_exit);
10001   pop(len);
10002   pop(zlen);
10003   pop(len);
10004   pop(zlen);
10005 
10006   // Fifth loop
10007   // Shift z left 1 bit.
10008   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
10009 
10010   // z[zlen-1] |= x[len-1] & 1;
10011   movl(tmp3, Address(x, len, Address::times_4, -4));
10012   andl(tmp3, 1);
10013   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
10014 
10015   pop(tmp5);
10016   pop(tmp4);
10017   pop(tmp3);
10018   pop(tmp2);
10019   pop(tmp1);
10020 }
10021 
10022 /**
10023  * Helper function for mul_add()
10024  * Multiply the in[] by int k and add to out[] starting at offset offs using
10025  * 128 bit by 32 bit multiply and return the carry in tmp5.
10026  * Only quad int aligned length of in[] is operated on in this function.
10027  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
10028  * This function preserves out, in and k registers.
10029  * len and offset point to the appropriate index in "in" & "out" correspondingly
10030  * tmp5 has the carry.
10031  * other registers are temporary and are modified.
10032  *
10033  */
10034 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
10035   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
10036   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
10037 
10038   Label L_first_loop, L_first_loop_exit;
10039 
10040   movl(tmp1, len);
10041   shrl(tmp1, 2);
10042 
10043   bind(L_first_loop);
10044   subl(tmp1, 1);
10045   jccb(Assembler::negative, L_first_loop_exit);
10046 
10047   subl(len, 4);
10048   subl(offset, 4);
10049 
10050   Register op2 = tmp2;
10051   const Register sum = tmp3;
10052   const Register op1 = tmp4;
10053   const Register carry = tmp5;
10054 
10055   if (UseBMI2Instructions) {
10056     op2 = rdxReg;
10057   }
10058 
10059   movq(op1, Address(in, len, Address::times_4,  8));
10060   rorq(op1, 32);
10061   movq(sum, Address(out, offset, Address::times_4,  8));
10062   rorq(sum, 32);
10063   if (UseBMI2Instructions) {
10064     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10065   }
10066   else {
10067     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10068   }
10069   // Store back in big endian from little endian
10070   rorq(sum, 0x20);
10071   movq(Address(out, offset, Address::times_4,  8), sum);
10072 
10073   movq(op1, Address(in, len, Address::times_4,  0));
10074   rorq(op1, 32);
10075   movq(sum, Address(out, offset, Address::times_4,  0));
10076   rorq(sum, 32);
10077   if (UseBMI2Instructions) {
10078     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10079   }
10080   else {
10081     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10082   }
10083   // Store back in big endian from little endian
10084   rorq(sum, 0x20);
10085   movq(Address(out, offset, Address::times_4,  0), sum);
10086 
10087   jmp(L_first_loop);
10088   bind(L_first_loop_exit);
10089 }
10090 
10091 /**
10092  * Code for BigInteger::mulAdd() intrinsic
10093  *
10094  * rdi: out
10095  * rsi: in
10096  * r11: offs (out.length - offset)
10097  * rcx: len
10098  * r8:  k
10099  * r12: tmp1
10100  * r13: tmp2
10101  * r14: tmp3
10102  * r15: tmp4
10103  * rbx: tmp5
10104  * Multiply the in[] by word k and add to out[], return the carry in rax
10105  */
10106 void MacroAssembler::mul_add(Register out, Register in, Register offs,
10107    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
10108    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
10109 
10110   Label L_carry, L_last_in, L_done;
10111 
10112 // carry = 0;
10113 // for (int j=len-1; j >= 0; j--) {
10114 //    long product = (in[j] & LONG_MASK) * kLong +
10115 //                   (out[offs] & LONG_MASK) + carry;
10116 //    out[offs--] = (int)product;
10117 //    carry = product >>> 32;
10118 // }
10119 //
10120   push(tmp1);
10121   push(tmp2);
10122   push(tmp3);
10123   push(tmp4);
10124   push(tmp5);
10125 
10126   Register op2 = tmp2;
10127   const Register sum = tmp3;
10128   const Register op1 = tmp4;
10129   const Register carry =  tmp5;
10130 
10131   if (UseBMI2Instructions) {
10132     op2 = rdxReg;
10133     movl(op2, k);
10134   }
10135   else {
10136     movl(op2, k);
10137   }
10138 
10139   xorq(carry, carry);
10140 
10141   //First loop
10142 
10143   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
10144   //The carry is in tmp5
10145   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
10146 
10147   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
10148   decrementl(len);
10149   jccb(Assembler::negative, L_carry);
10150   decrementl(len);
10151   jccb(Assembler::negative, L_last_in);
10152 
10153   movq(op1, Address(in, len, Address::times_4,  0));
10154   rorq(op1, 32);
10155 
10156   subl(offs, 2);
10157   movq(sum, Address(out, offs, Address::times_4,  0));
10158   rorq(sum, 32);
10159 
10160   if (UseBMI2Instructions) {
10161     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10162   }
10163   else {
10164     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10165   }
10166 
10167   // Store back in big endian from little endian
10168   rorq(sum, 0x20);
10169   movq(Address(out, offs, Address::times_4,  0), sum);
10170 
10171   testl(len, len);
10172   jccb(Assembler::zero, L_carry);
10173 
10174   //Multiply the last in[] entry, if any
10175   bind(L_last_in);
10176   movl(op1, Address(in, 0));
10177   movl(sum, Address(out, offs, Address::times_4,  -4));
10178 
10179   movl(raxReg, k);
10180   mull(op1); //tmp4 * eax -> edx:eax
10181   addl(sum, carry);
10182   adcl(rdxReg, 0);
10183   addl(sum, raxReg);
10184   adcl(rdxReg, 0);
10185   movl(carry, rdxReg);
10186 
10187   movl(Address(out, offs, Address::times_4,  -4), sum);
10188 
10189   bind(L_carry);
10190   //return tmp5/carry as carry in rax
10191   movl(rax, carry);
10192 
10193   bind(L_done);
10194   pop(tmp5);
10195   pop(tmp4);
10196   pop(tmp3);
10197   pop(tmp2);
10198   pop(tmp1);
10199 }
10200 #endif
10201 
10202 /**
10203  * Emits code to update CRC-32 with a byte value according to constants in table
10204  *
10205  * @param [in,out]crc   Register containing the crc.
10206  * @param [in]val       Register containing the byte to fold into the CRC.
10207  * @param [in]table     Register containing the table of crc constants.
10208  *
10209  * uint32_t crc;
10210  * val = crc_table[(val ^ crc) & 0xFF];
10211  * crc = val ^ (crc >> 8);
10212  *
10213  */
10214 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
10215   xorl(val, crc);
10216   andl(val, 0xFF);
10217   shrl(crc, 8); // unsigned shift
10218   xorl(crc, Address(table, val, Address::times_4, 0));
10219 }
10220 
10221 /**
10222  * Fold 128-bit data chunk
10223  */
10224 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
10225   if (UseAVX > 0) {
10226     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
10227     vpclmulldq(xcrc, xK, xcrc); // [63:0]
10228     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
10229     pxor(xcrc, xtmp);
10230   } else {
10231     movdqa(xtmp, xcrc);
10232     pclmulhdq(xtmp, xK);   // [123:64]
10233     pclmulldq(xcrc, xK);   // [63:0]
10234     pxor(xcrc, xtmp);
10235     movdqu(xtmp, Address(buf, offset));
10236     pxor(xcrc, xtmp);
10237   }
10238 }
10239 
10240 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
10241   if (UseAVX > 0) {
10242     vpclmulhdq(xtmp, xK, xcrc);
10243     vpclmulldq(xcrc, xK, xcrc);
10244     pxor(xcrc, xbuf);
10245     pxor(xcrc, xtmp);
10246   } else {
10247     movdqa(xtmp, xcrc);
10248     pclmulhdq(xtmp, xK);
10249     pclmulldq(xcrc, xK);
10250     pxor(xcrc, xbuf);
10251     pxor(xcrc, xtmp);
10252   }
10253 }
10254 
10255 /**
10256  * 8-bit folds to compute 32-bit CRC
10257  *
10258  * uint64_t xcrc;
10259  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
10260  */
10261 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
10262   movdl(tmp, xcrc);
10263   andl(tmp, 0xFF);
10264   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
10265   psrldq(xcrc, 1); // unsigned shift one byte
10266   pxor(xcrc, xtmp);
10267 }
10268 
10269 /**
10270  * uint32_t crc;
10271  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
10272  */
10273 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
10274   movl(tmp, crc);
10275   andl(tmp, 0xFF);
10276   shrl(crc, 8);
10277   xorl(crc, Address(table, tmp, Address::times_4, 0));
10278 }
10279 
10280 /**
10281  * @param crc   register containing existing CRC (32-bit)
10282  * @param buf   register pointing to input byte buffer (byte*)
10283  * @param len   register containing number of bytes
10284  * @param table register that will contain address of CRC table
10285  * @param tmp   scratch register
10286  */
10287 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
10288   assert_different_registers(crc, buf, len, table, tmp, rax);
10289 
10290   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
10291   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
10292 
10293   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
10294   // context for the registers used, where all instructions below are using 128-bit mode
10295   // On EVEX without VL and BW, these instructions will all be AVX.
10296   if (VM_Version::supports_avx512vlbw()) {
10297     movl(tmp, 0xffff);
10298     kmovwl(k1, tmp);
10299   }
10300 
10301   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
10302   notl(crc); // ~crc
10303   cmpl(len, 16);
10304   jcc(Assembler::less, L_tail);
10305 
10306   // Align buffer to 16 bytes
10307   movl(tmp, buf);
10308   andl(tmp, 0xF);
10309   jccb(Assembler::zero, L_aligned);
10310   subl(tmp,  16);
10311   addl(len, tmp);
10312 
10313   align(4);
10314   BIND(L_align_loop);
10315   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10316   update_byte_crc32(crc, rax, table);
10317   increment(buf);
10318   incrementl(tmp);
10319   jccb(Assembler::less, L_align_loop);
10320 
10321   BIND(L_aligned);
10322   movl(tmp, len); // save
10323   shrl(len, 4);
10324   jcc(Assembler::zero, L_tail_restore);
10325 
10326   // Fold crc into first bytes of vector
10327   movdqa(xmm1, Address(buf, 0));
10328   movdl(rax, xmm1);
10329   xorl(crc, rax);
10330   pinsrd(xmm1, crc, 0);
10331   addptr(buf, 16);
10332   subl(len, 4); // len > 0
10333   jcc(Assembler::less, L_fold_tail);
10334 
10335   movdqa(xmm2, Address(buf,  0));
10336   movdqa(xmm3, Address(buf, 16));
10337   movdqa(xmm4, Address(buf, 32));
10338   addptr(buf, 48);
10339   subl(len, 3);
10340   jcc(Assembler::lessEqual, L_fold_512b);
10341 
10342   // Fold total 512 bits of polynomial on each iteration,
10343   // 128 bits per each of 4 parallel streams.
10344   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
10345 
10346   align(32);
10347   BIND(L_fold_512b_loop);
10348   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10349   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
10350   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
10351   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
10352   addptr(buf, 64);
10353   subl(len, 4);
10354   jcc(Assembler::greater, L_fold_512b_loop);
10355 
10356   // Fold 512 bits to 128 bits.
10357   BIND(L_fold_512b);
10358   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10359   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
10360   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
10361   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
10362 
10363   // Fold the rest of 128 bits data chunks
10364   BIND(L_fold_tail);
10365   addl(len, 3);
10366   jccb(Assembler::lessEqual, L_fold_128b);
10367   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10368 
10369   BIND(L_fold_tail_loop);
10370   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10371   addptr(buf, 16);
10372   decrementl(len);
10373   jccb(Assembler::greater, L_fold_tail_loop);
10374 
10375   // Fold 128 bits in xmm1 down into 32 bits in crc register.
10376   BIND(L_fold_128b);
10377   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
10378   if (UseAVX > 0) {
10379     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
10380     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
10381     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
10382   } else {
10383     movdqa(xmm2, xmm0);
10384     pclmulqdq(xmm2, xmm1, 0x1);
10385     movdqa(xmm3, xmm0);
10386     pand(xmm3, xmm2);
10387     pclmulqdq(xmm0, xmm3, 0x1);
10388   }
10389   psrldq(xmm1, 8);
10390   psrldq(xmm2, 4);
10391   pxor(xmm0, xmm1);
10392   pxor(xmm0, xmm2);
10393 
10394   // 8 8-bit folds to compute 32-bit CRC.
10395   for (int j = 0; j < 4; j++) {
10396     fold_8bit_crc32(xmm0, table, xmm1, rax);
10397   }
10398   movdl(crc, xmm0); // mov 32 bits to general register
10399   for (int j = 0; j < 4; j++) {
10400     fold_8bit_crc32(crc, table, rax);
10401   }
10402 
10403   BIND(L_tail_restore);
10404   movl(len, tmp); // restore
10405   BIND(L_tail);
10406   andl(len, 0xf);
10407   jccb(Assembler::zero, L_exit);
10408 
10409   // Fold the rest of bytes
10410   align(4);
10411   BIND(L_tail_loop);
10412   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10413   update_byte_crc32(crc, rax, table);
10414   increment(buf);
10415   decrementl(len);
10416   jccb(Assembler::greater, L_tail_loop);
10417 
10418   BIND(L_exit);
10419   notl(crc); // ~c
10420 }
10421 
10422 #ifdef _LP64
10423 // S. Gueron / Information Processing Letters 112 (2012) 184
10424 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
10425 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
10426 // Output: the 64-bit carry-less product of B * CONST
10427 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
10428                                      Register tmp1, Register tmp2, Register tmp3) {
10429   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10430   if (n > 0) {
10431     addq(tmp3, n * 256 * 8);
10432   }
10433   //    Q1 = TABLEExt[n][B & 0xFF];
10434   movl(tmp1, in);
10435   andl(tmp1, 0x000000FF);
10436   shll(tmp1, 3);
10437   addq(tmp1, tmp3);
10438   movq(tmp1, Address(tmp1, 0));
10439 
10440   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10441   movl(tmp2, in);
10442   shrl(tmp2, 8);
10443   andl(tmp2, 0x000000FF);
10444   shll(tmp2, 3);
10445   addq(tmp2, tmp3);
10446   movq(tmp2, Address(tmp2, 0));
10447 
10448   shlq(tmp2, 8);
10449   xorq(tmp1, tmp2);
10450 
10451   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10452   movl(tmp2, in);
10453   shrl(tmp2, 16);
10454   andl(tmp2, 0x000000FF);
10455   shll(tmp2, 3);
10456   addq(tmp2, tmp3);
10457   movq(tmp2, Address(tmp2, 0));
10458 
10459   shlq(tmp2, 16);
10460   xorq(tmp1, tmp2);
10461 
10462   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10463   shrl(in, 24);
10464   andl(in, 0x000000FF);
10465   shll(in, 3);
10466   addq(in, tmp3);
10467   movq(in, Address(in, 0));
10468 
10469   shlq(in, 24);
10470   xorq(in, tmp1);
10471   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10472 }
10473 
10474 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10475                                       Register in_out,
10476                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10477                                       XMMRegister w_xtmp2,
10478                                       Register tmp1,
10479                                       Register n_tmp2, Register n_tmp3) {
10480   if (is_pclmulqdq_supported) {
10481     movdl(w_xtmp1, in_out); // modified blindly
10482 
10483     movl(tmp1, const_or_pre_comp_const_index);
10484     movdl(w_xtmp2, tmp1);
10485     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10486 
10487     movdq(in_out, w_xtmp1);
10488   } else {
10489     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10490   }
10491 }
10492 
10493 // Recombination Alternative 2: No bit-reflections
10494 // T1 = (CRC_A * U1) << 1
10495 // T2 = (CRC_B * U2) << 1
10496 // C1 = T1 >> 32
10497 // C2 = T2 >> 32
10498 // T1 = T1 & 0xFFFFFFFF
10499 // T2 = T2 & 0xFFFFFFFF
10500 // T1 = CRC32(0, T1)
10501 // T2 = CRC32(0, T2)
10502 // C1 = C1 ^ T1
10503 // C2 = C2 ^ T2
10504 // CRC = C1 ^ C2 ^ CRC_C
10505 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10506                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10507                                      Register tmp1, Register tmp2,
10508                                      Register n_tmp3) {
10509   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10510   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10511   shlq(in_out, 1);
10512   movl(tmp1, in_out);
10513   shrq(in_out, 32);
10514   xorl(tmp2, tmp2);
10515   crc32(tmp2, tmp1, 4);
10516   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10517   shlq(in1, 1);
10518   movl(tmp1, in1);
10519   shrq(in1, 32);
10520   xorl(tmp2, tmp2);
10521   crc32(tmp2, tmp1, 4);
10522   xorl(in1, tmp2);
10523   xorl(in_out, in1);
10524   xorl(in_out, in2);
10525 }
10526 
10527 // Set N to predefined value
10528 // Subtract from a lenght of a buffer
10529 // execute in a loop:
10530 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10531 // for i = 1 to N do
10532 //  CRC_A = CRC32(CRC_A, A[i])
10533 //  CRC_B = CRC32(CRC_B, B[i])
10534 //  CRC_C = CRC32(CRC_C, C[i])
10535 // end for
10536 // Recombine
10537 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10538                                        Register in_out1, Register in_out2, Register in_out3,
10539                                        Register tmp1, Register tmp2, Register tmp3,
10540                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10541                                        Register tmp4, Register tmp5,
10542                                        Register n_tmp6) {
10543   Label L_processPartitions;
10544   Label L_processPartition;
10545   Label L_exit;
10546 
10547   bind(L_processPartitions);
10548   cmpl(in_out1, 3 * size);
10549   jcc(Assembler::less, L_exit);
10550     xorl(tmp1, tmp1);
10551     xorl(tmp2, tmp2);
10552     movq(tmp3, in_out2);
10553     addq(tmp3, size);
10554 
10555     bind(L_processPartition);
10556       crc32(in_out3, Address(in_out2, 0), 8);
10557       crc32(tmp1, Address(in_out2, size), 8);
10558       crc32(tmp2, Address(in_out2, size * 2), 8);
10559       addq(in_out2, 8);
10560       cmpq(in_out2, tmp3);
10561       jcc(Assembler::less, L_processPartition);
10562     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10563             w_xtmp1, w_xtmp2, w_xtmp3,
10564             tmp4, tmp5,
10565             n_tmp6);
10566     addq(in_out2, 2 * size);
10567     subl(in_out1, 3 * size);
10568     jmp(L_processPartitions);
10569 
10570   bind(L_exit);
10571 }
10572 #else
10573 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10574                                      Register tmp1, Register tmp2, Register tmp3,
10575                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10576   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10577   if (n > 0) {
10578     addl(tmp3, n * 256 * 8);
10579   }
10580   //    Q1 = TABLEExt[n][B & 0xFF];
10581   movl(tmp1, in_out);
10582   andl(tmp1, 0x000000FF);
10583   shll(tmp1, 3);
10584   addl(tmp1, tmp3);
10585   movq(xtmp1, Address(tmp1, 0));
10586 
10587   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10588   movl(tmp2, in_out);
10589   shrl(tmp2, 8);
10590   andl(tmp2, 0x000000FF);
10591   shll(tmp2, 3);
10592   addl(tmp2, tmp3);
10593   movq(xtmp2, Address(tmp2, 0));
10594 
10595   psllq(xtmp2, 8);
10596   pxor(xtmp1, xtmp2);
10597 
10598   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10599   movl(tmp2, in_out);
10600   shrl(tmp2, 16);
10601   andl(tmp2, 0x000000FF);
10602   shll(tmp2, 3);
10603   addl(tmp2, tmp3);
10604   movq(xtmp2, Address(tmp2, 0));
10605 
10606   psllq(xtmp2, 16);
10607   pxor(xtmp1, xtmp2);
10608 
10609   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10610   shrl(in_out, 24);
10611   andl(in_out, 0x000000FF);
10612   shll(in_out, 3);
10613   addl(in_out, tmp3);
10614   movq(xtmp2, Address(in_out, 0));
10615 
10616   psllq(xtmp2, 24);
10617   pxor(xtmp1, xtmp2); // Result in CXMM
10618   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10619 }
10620 
10621 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10622                                       Register in_out,
10623                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10624                                       XMMRegister w_xtmp2,
10625                                       Register tmp1,
10626                                       Register n_tmp2, Register n_tmp3) {
10627   if (is_pclmulqdq_supported) {
10628     movdl(w_xtmp1, in_out);
10629 
10630     movl(tmp1, const_or_pre_comp_const_index);
10631     movdl(w_xtmp2, tmp1);
10632     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10633     // Keep result in XMM since GPR is 32 bit in length
10634   } else {
10635     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10636   }
10637 }
10638 
10639 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10640                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10641                                      Register tmp1, Register tmp2,
10642                                      Register n_tmp3) {
10643   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10644   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10645 
10646   psllq(w_xtmp1, 1);
10647   movdl(tmp1, w_xtmp1);
10648   psrlq(w_xtmp1, 32);
10649   movdl(in_out, w_xtmp1);
10650 
10651   xorl(tmp2, tmp2);
10652   crc32(tmp2, tmp1, 4);
10653   xorl(in_out, tmp2);
10654 
10655   psllq(w_xtmp2, 1);
10656   movdl(tmp1, w_xtmp2);
10657   psrlq(w_xtmp2, 32);
10658   movdl(in1, w_xtmp2);
10659 
10660   xorl(tmp2, tmp2);
10661   crc32(tmp2, tmp1, 4);
10662   xorl(in1, tmp2);
10663   xorl(in_out, in1);
10664   xorl(in_out, in2);
10665 }
10666 
10667 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10668                                        Register in_out1, Register in_out2, Register in_out3,
10669                                        Register tmp1, Register tmp2, Register tmp3,
10670                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10671                                        Register tmp4, Register tmp5,
10672                                        Register n_tmp6) {
10673   Label L_processPartitions;
10674   Label L_processPartition;
10675   Label L_exit;
10676 
10677   bind(L_processPartitions);
10678   cmpl(in_out1, 3 * size);
10679   jcc(Assembler::less, L_exit);
10680     xorl(tmp1, tmp1);
10681     xorl(tmp2, tmp2);
10682     movl(tmp3, in_out2);
10683     addl(tmp3, size);
10684 
10685     bind(L_processPartition);
10686       crc32(in_out3, Address(in_out2, 0), 4);
10687       crc32(tmp1, Address(in_out2, size), 4);
10688       crc32(tmp2, Address(in_out2, size*2), 4);
10689       crc32(in_out3, Address(in_out2, 0+4), 4);
10690       crc32(tmp1, Address(in_out2, size+4), 4);
10691       crc32(tmp2, Address(in_out2, size*2+4), 4);
10692       addl(in_out2, 8);
10693       cmpl(in_out2, tmp3);
10694       jcc(Assembler::less, L_processPartition);
10695 
10696         push(tmp3);
10697         push(in_out1);
10698         push(in_out2);
10699         tmp4 = tmp3;
10700         tmp5 = in_out1;
10701         n_tmp6 = in_out2;
10702 
10703       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10704             w_xtmp1, w_xtmp2, w_xtmp3,
10705             tmp4, tmp5,
10706             n_tmp6);
10707 
10708         pop(in_out2);
10709         pop(in_out1);
10710         pop(tmp3);
10711 
10712     addl(in_out2, 2 * size);
10713     subl(in_out1, 3 * size);
10714     jmp(L_processPartitions);
10715 
10716   bind(L_exit);
10717 }
10718 #endif //LP64
10719 
10720 #ifdef _LP64
10721 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10722 // Input: A buffer I of L bytes.
10723 // Output: the CRC32C value of the buffer.
10724 // Notations:
10725 // Write L = 24N + r, with N = floor (L/24).
10726 // r = L mod 24 (0 <= r < 24).
10727 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10728 // N quadwords, and R consists of r bytes.
10729 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10730 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10731 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10732 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10733 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10734                                           Register tmp1, Register tmp2, Register tmp3,
10735                                           Register tmp4, Register tmp5, Register tmp6,
10736                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10737                                           bool is_pclmulqdq_supported) {
10738   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10739   Label L_wordByWord;
10740   Label L_byteByByteProlog;
10741   Label L_byteByByte;
10742   Label L_exit;
10743 
10744   if (is_pclmulqdq_supported ) {
10745     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10746     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10747 
10748     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10749     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10750 
10751     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10752     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10753     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10754   } else {
10755     const_or_pre_comp_const_index[0] = 1;
10756     const_or_pre_comp_const_index[1] = 0;
10757 
10758     const_or_pre_comp_const_index[2] = 3;
10759     const_or_pre_comp_const_index[3] = 2;
10760 
10761     const_or_pre_comp_const_index[4] = 5;
10762     const_or_pre_comp_const_index[5] = 4;
10763    }
10764   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10765                     in2, in1, in_out,
10766                     tmp1, tmp2, tmp3,
10767                     w_xtmp1, w_xtmp2, w_xtmp3,
10768                     tmp4, tmp5,
10769                     tmp6);
10770   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10771                     in2, in1, in_out,
10772                     tmp1, tmp2, tmp3,
10773                     w_xtmp1, w_xtmp2, w_xtmp3,
10774                     tmp4, tmp5,
10775                     tmp6);
10776   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10777                     in2, in1, in_out,
10778                     tmp1, tmp2, tmp3,
10779                     w_xtmp1, w_xtmp2, w_xtmp3,
10780                     tmp4, tmp5,
10781                     tmp6);
10782   movl(tmp1, in2);
10783   andl(tmp1, 0x00000007);
10784   negl(tmp1);
10785   addl(tmp1, in2);
10786   addq(tmp1, in1);
10787 
10788   BIND(L_wordByWord);
10789   cmpq(in1, tmp1);
10790   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10791     crc32(in_out, Address(in1, 0), 4);
10792     addq(in1, 4);
10793     jmp(L_wordByWord);
10794 
10795   BIND(L_byteByByteProlog);
10796   andl(in2, 0x00000007);
10797   movl(tmp2, 1);
10798 
10799   BIND(L_byteByByte);
10800   cmpl(tmp2, in2);
10801   jccb(Assembler::greater, L_exit);
10802     crc32(in_out, Address(in1, 0), 1);
10803     incq(in1);
10804     incl(tmp2);
10805     jmp(L_byteByByte);
10806 
10807   BIND(L_exit);
10808 }
10809 #else
10810 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10811                                           Register tmp1, Register  tmp2, Register tmp3,
10812                                           Register tmp4, Register  tmp5, Register tmp6,
10813                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10814                                           bool is_pclmulqdq_supported) {
10815   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10816   Label L_wordByWord;
10817   Label L_byteByByteProlog;
10818   Label L_byteByByte;
10819   Label L_exit;
10820 
10821   if (is_pclmulqdq_supported) {
10822     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10823     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10824 
10825     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10826     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10827 
10828     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10829     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10830   } else {
10831     const_or_pre_comp_const_index[0] = 1;
10832     const_or_pre_comp_const_index[1] = 0;
10833 
10834     const_or_pre_comp_const_index[2] = 3;
10835     const_or_pre_comp_const_index[3] = 2;
10836 
10837     const_or_pre_comp_const_index[4] = 5;
10838     const_or_pre_comp_const_index[5] = 4;
10839   }
10840   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10841                     in2, in1, in_out,
10842                     tmp1, tmp2, tmp3,
10843                     w_xtmp1, w_xtmp2, w_xtmp3,
10844                     tmp4, tmp5,
10845                     tmp6);
10846   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10847                     in2, in1, in_out,
10848                     tmp1, tmp2, tmp3,
10849                     w_xtmp1, w_xtmp2, w_xtmp3,
10850                     tmp4, tmp5,
10851                     tmp6);
10852   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10853                     in2, in1, in_out,
10854                     tmp1, tmp2, tmp3,
10855                     w_xtmp1, w_xtmp2, w_xtmp3,
10856                     tmp4, tmp5,
10857                     tmp6);
10858   movl(tmp1, in2);
10859   andl(tmp1, 0x00000007);
10860   negl(tmp1);
10861   addl(tmp1, in2);
10862   addl(tmp1, in1);
10863 
10864   BIND(L_wordByWord);
10865   cmpl(in1, tmp1);
10866   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10867     crc32(in_out, Address(in1,0), 4);
10868     addl(in1, 4);
10869     jmp(L_wordByWord);
10870 
10871   BIND(L_byteByByteProlog);
10872   andl(in2, 0x00000007);
10873   movl(tmp2, 1);
10874 
10875   BIND(L_byteByByte);
10876   cmpl(tmp2, in2);
10877   jccb(Assembler::greater, L_exit);
10878     movb(tmp1, Address(in1, 0));
10879     crc32(in_out, tmp1, 1);
10880     incl(in1);
10881     incl(tmp2);
10882     jmp(L_byteByByte);
10883 
10884   BIND(L_exit);
10885 }
10886 #endif // LP64
10887 #undef BIND
10888 #undef BLOCK_COMMENT
10889 
10890 // Compress char[] array to byte[].
10891 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
10892 //   @HotSpotIntrinsicCandidate
10893 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
10894 //     for (int i = 0; i < len; i++) {
10895 //       int c = src[srcOff++];
10896 //       if (c >>> 8 != 0) {
10897 //         return 0;
10898 //       }
10899 //       dst[dstOff++] = (byte)c;
10900 //     }
10901 //     return len;
10902 //   }
10903 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10904   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10905   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10906   Register tmp5, Register result) {
10907   Label copy_chars_loop, return_length, return_zero, done, below_threshold;
10908 
10909   // rsi: src
10910   // rdi: dst
10911   // rdx: len
10912   // rcx: tmp5
10913   // rax: result
10914 
10915   // rsi holds start addr of source char[] to be compressed
10916   // rdi holds start addr of destination byte[]
10917   // rdx holds length
10918 
10919   assert(len != result, "");
10920 
10921   // save length for return
10922   push(len);
10923 
10924   if ((UseAVX > 2) && // AVX512
10925     VM_Version::supports_avx512vlbw() &&
10926     VM_Version::supports_bmi2()) {
10927 
10928     set_vector_masking();  // opening of the stub context for programming mask registers
10929 
10930     Label copy_32_loop, copy_loop_tail, copy_just_portion_of_candidates;
10931 
10932     // alignement
10933     Label post_alignement;
10934 
10935     // if length of the string is less than 16, handle it in an old fashioned
10936     // way
10937     testl(len, -32);
10938     jcc(Assembler::zero, below_threshold);
10939 
10940     // First check whether a character is compressable ( <= 0xFF).
10941     // Create mask to test for Unicode chars inside zmm vector
10942     movl(result, 0x00FF);
10943     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
10944 
10945     testl(len, -64);
10946     jcc(Assembler::zero, post_alignement);
10947 
10948     // Save k1
10949     kmovql(k3, k1);
10950 
10951     movl(tmp5, dst);
10952     andl(tmp5, (64 - 1));
10953     negl(tmp5);
10954     andl(tmp5, (64 - 1));
10955 
10956     // bail out when there is nothing to be done
10957     testl(tmp5, 0xFFFFFFFF);
10958     jcc(Assembler::zero, post_alignement);
10959 
10960     // ~(~0 << len), where len is the # of remaining elements to process
10961     movl(result, 0xFFFFFFFF);
10962     shlxl(result, result, tmp5);
10963     notl(result);
10964 
10965     kmovdl(k1, result);
10966 
10967     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10968     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, ComparisonPredicate::le, Assembler::AVX_512bit);
10969     ktestd(k2, k1);
10970     jcc(Assembler::carryClear, copy_just_portion_of_candidates);
10971 
10972     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10973 
10974     addptr(src, tmp5);
10975     addptr(src, tmp5);
10976     addptr(dst, tmp5);
10977     subl(len, tmp5);
10978 
10979     bind(post_alignement);
10980     // end of alignement
10981 
10982     movl(tmp5, len);
10983     andl(tmp5, (32 - 1));   // tail count (in chars)
10984     andl(len, ~(32 - 1));    // vector count (in chars)
10985     jcc(Assembler::zero, copy_loop_tail);
10986 
10987     lea(src, Address(src, len, Address::times_2));
10988     lea(dst, Address(dst, len, Address::times_1));
10989     negptr(len);
10990 
10991     bind(copy_32_loop);
10992     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
10993     evpcmpuw(k2, tmp1Reg, tmp2Reg, ComparisonPredicate::le, Assembler::AVX_512bit);
10994     kortestdl(k2, k2);
10995     jcc(Assembler::carryClear, copy_just_portion_of_candidates);
10996 
10997     // All elements in current processed chunk are valid candidates for
10998     // compression. Write a truncated byte elements to the memory.
10999     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
11000     addptr(len, 32);
11001     jcc(Assembler::notZero, copy_32_loop);
11002 
11003     bind(copy_loop_tail);
11004     // bail out when there is nothing to be done
11005     testl(tmp5, 0xFFFFFFFF);
11006     jcc(Assembler::zero, return_length);
11007 
11008     // Save k1
11009     kmovql(k3, k1);
11010 
11011     movl(len, tmp5);
11012 
11013     // ~(~0 << len), where len is the # of remaining elements to process
11014     movl(result, 0xFFFFFFFF);
11015     shlxl(result, result, len);
11016     notl(result);
11017 
11018     kmovdl(k1, result);
11019 
11020     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
11021     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, ComparisonPredicate::le, Assembler::AVX_512bit);
11022     ktestd(k2, k1);
11023     jcc(Assembler::carryClear, copy_just_portion_of_candidates);
11024 
11025     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
11026     // Restore k1
11027     kmovql(k1, k3);
11028 
11029     jmp(return_length);
11030 
11031     bind(copy_just_portion_of_candidates);
11032     kmovdl(tmp5, k2);
11033     tzcntl(tmp5, tmp5);
11034 
11035     // ~(~0 << tmp5), where tmp5 is a number of elements in an array from the
11036     // result to the first element larger than 0xFF
11037     movl(result, 0xFFFFFFFF);
11038     shlxl(result, result, tmp5);
11039     notl(result);
11040 
11041     kmovdl(k1, result);
11042 
11043     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
11044     // Restore k1
11045     kmovql(k1, k3);
11046 
11047     jmp(return_zero);
11048 
11049     clear_vector_masking();   // closing of the stub context for programming mask registers
11050   }
11051   if (UseSSE42Intrinsics) {
11052     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
11053     Label copy_32_loop, copy_16, copy_tail;
11054 
11055     bind(below_threshold);
11056 
11057     movl(result, len);
11058 
11059     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
11060 
11061     // vectored compression
11062     andl(len, 0xfffffff0);    // vector count (in chars)
11063     andl(result, 0x0000000f);    // tail count (in chars)
11064     testl(len, len);
11065     jccb(Assembler::zero, copy_16);
11066 
11067     // compress 16 chars per iter
11068     movdl(tmp1Reg, tmp5);
11069     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
11070     pxor(tmp4Reg, tmp4Reg);
11071 
11072     lea(src, Address(src, len, Address::times_2));
11073     lea(dst, Address(dst, len, Address::times_1));
11074     negptr(len);
11075 
11076     bind(copy_32_loop);
11077     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
11078     por(tmp4Reg, tmp2Reg);
11079     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
11080     por(tmp4Reg, tmp3Reg);
11081     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
11082     jcc(Assembler::notZero, return_zero);
11083     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
11084     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
11085     addptr(len, 16);
11086     jcc(Assembler::notZero, copy_32_loop);
11087 
11088     // compress next vector of 8 chars (if any)
11089     bind(copy_16);
11090     movl(len, result);
11091     andl(len, 0xfffffff8);    // vector count (in chars)
11092     andl(result, 0x00000007);    // tail count (in chars)
11093     testl(len, len);
11094     jccb(Assembler::zero, copy_tail);
11095 
11096     movdl(tmp1Reg, tmp5);
11097     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
11098     pxor(tmp3Reg, tmp3Reg);
11099 
11100     movdqu(tmp2Reg, Address(src, 0));
11101     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
11102     jccb(Assembler::notZero, return_zero);
11103     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
11104     movq(Address(dst, 0), tmp2Reg);
11105     addptr(src, 16);
11106     addptr(dst, 8);
11107 
11108     bind(copy_tail);
11109     movl(len, result);
11110   }
11111   // compress 1 char per iter
11112   testl(len, len);
11113   jccb(Assembler::zero, return_length);
11114   lea(src, Address(src, len, Address::times_2));
11115   lea(dst, Address(dst, len, Address::times_1));
11116   negptr(len);
11117 
11118   bind(copy_chars_loop);
11119   load_unsigned_short(result, Address(src, len, Address::times_2));
11120   testl(result, 0xff00);      // check if Unicode char
11121   jccb(Assembler::notZero, return_zero);
11122   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
11123   increment(len);
11124   jcc(Assembler::notZero, copy_chars_loop);
11125 
11126   // if compression succeeded, return length
11127   bind(return_length);
11128   pop(result);
11129   jmpb(done);
11130 
11131   // if compression failed, return 0
11132   bind(return_zero);
11133   xorl(result, result);
11134   addptr(rsp, wordSize);
11135 
11136   bind(done);
11137 }
11138 
11139 // Inflate byte[] array to char[].
11140 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
11141 //   @HotSpotIntrinsicCandidate
11142 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
11143 //     for (int i = 0; i < len; i++) {
11144 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
11145 //     }
11146 //   }
11147 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
11148   XMMRegister tmp1, Register tmp2) {
11149   Label copy_chars_loop, done, below_threshold;
11150   // rsi: src
11151   // rdi: dst
11152   // rdx: len
11153   // rcx: tmp2
11154 
11155   // rsi holds start addr of source byte[] to be inflated
11156   // rdi holds start addr of destination char[]
11157   // rdx holds length
11158   assert_different_registers(src, dst, len, tmp2);
11159 
11160   if ((UseAVX > 2) && // AVX512
11161     VM_Version::supports_avx512vlbw() &&
11162     VM_Version::supports_bmi2()) {
11163 
11164     set_vector_masking();  // opening of the stub context for programming mask registers
11165 
11166     Label copy_32_loop, copy_tail;
11167     Register tmp3_aliased = len;
11168 
11169     // if length of the string is less than 16, handle it in an old fashioned
11170     // way
11171     testl(len, -16);
11172     jcc(Assembler::zero, below_threshold);
11173 
11174     // In order to use only one arithmetic operation for the main loop we use
11175     // this pre-calculation
11176     movl(tmp2, len);
11177     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
11178     andl(len, -32);     // vector count
11179     jccb(Assembler::zero, copy_tail);
11180 
11181     lea(src, Address(src, len, Address::times_1));
11182     lea(dst, Address(dst, len, Address::times_2));
11183     negptr(len);
11184 
11185 
11186     // inflate 32 chars per iter
11187     bind(copy_32_loop);
11188     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
11189     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
11190     addptr(len, 32);
11191     jcc(Assembler::notZero, copy_32_loop);
11192 
11193     bind(copy_tail);
11194     // bail out when there is nothing to be done
11195     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
11196     jcc(Assembler::zero, done);
11197 
11198     // Save k1
11199     kmovql(k2, k1);
11200 
11201     // ~(~0 << length), where length is the # of remaining elements to process
11202     movl(tmp3_aliased, -1);
11203     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
11204     notl(tmp3_aliased);
11205     kmovdl(k1, tmp3_aliased);
11206     evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
11207     evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
11208 
11209     // Restore k1
11210     kmovql(k1, k2);
11211     jmp(done);
11212 
11213     clear_vector_masking();   // closing of the stub context for programming mask registers
11214   }
11215   if (UseSSE42Intrinsics) {
11216     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
11217     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
11218 
11219     movl(tmp2, len);
11220 
11221     if (UseAVX > 1) {
11222       andl(tmp2, (16 - 1));
11223       andl(len, -16);
11224       jccb(Assembler::zero, copy_new_tail);
11225     } else {
11226       andl(tmp2, 0x00000007);   // tail count (in chars)
11227       andl(len, 0xfffffff8);    // vector count (in chars)
11228       jccb(Assembler::zero, copy_tail);
11229     }
11230 
11231     // vectored inflation
11232     lea(src, Address(src, len, Address::times_1));
11233     lea(dst, Address(dst, len, Address::times_2));
11234     negptr(len);
11235 
11236     if (UseAVX > 1) {
11237       bind(copy_16_loop);
11238       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
11239       vmovdqu(Address(dst, len, Address::times_2), tmp1);
11240       addptr(len, 16);
11241       jcc(Assembler::notZero, copy_16_loop);
11242 
11243       bind(below_threshold);
11244       bind(copy_new_tail);
11245       if (UseAVX > 2) {
11246         movl(tmp2, len);
11247       }
11248       else {
11249         movl(len, tmp2);
11250       }
11251       andl(tmp2, 0x00000007);
11252       andl(len, 0xFFFFFFF8);
11253       jccb(Assembler::zero, copy_tail);
11254 
11255       pmovzxbw(tmp1, Address(src, 0));
11256       movdqu(Address(dst, 0), tmp1);
11257       addptr(src, 8);
11258       addptr(dst, 2 * 8);
11259 
11260       jmp(copy_tail, true);
11261     }
11262 
11263     // inflate 8 chars per iter
11264     bind(copy_8_loop);
11265     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
11266     movdqu(Address(dst, len, Address::times_2), tmp1);
11267     addptr(len, 8);
11268     jcc(Assembler::notZero, copy_8_loop);
11269 
11270     bind(copy_tail);
11271     movl(len, tmp2);
11272 
11273     cmpl(len, 4);
11274     jccb(Assembler::less, copy_bytes);
11275 
11276     movdl(tmp1, Address(src, 0));  // load 4 byte chars
11277     pmovzxbw(tmp1, tmp1);
11278     movq(Address(dst, 0), tmp1);
11279     subptr(len, 4);
11280     addptr(src, 4);
11281     addptr(dst, 8);
11282 
11283     bind(copy_bytes);
11284   }
11285   testl(len, len);
11286   jccb(Assembler::zero, done);
11287   lea(src, Address(src, len, Address::times_1));
11288   lea(dst, Address(dst, len, Address::times_2));
11289   negptr(len);
11290 
11291   // inflate 1 char per iter
11292   bind(copy_chars_loop);
11293   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
11294   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
11295   increment(len);
11296   jcc(Assembler::notZero, copy_chars_loop);
11297 
11298   bind(done);
11299 }
11300 
11301 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
11302   switch (cond) {
11303     // Note some conditions are synonyms for others
11304     case Assembler::zero:         return Assembler::notZero;
11305     case Assembler::notZero:      return Assembler::zero;
11306     case Assembler::less:         return Assembler::greaterEqual;
11307     case Assembler::lessEqual:    return Assembler::greater;
11308     case Assembler::greater:      return Assembler::lessEqual;
11309     case Assembler::greaterEqual: return Assembler::less;
11310     case Assembler::below:        return Assembler::aboveEqual;
11311     case Assembler::belowEqual:   return Assembler::above;
11312     case Assembler::above:        return Assembler::belowEqual;
11313     case Assembler::aboveEqual:   return Assembler::below;
11314     case Assembler::overflow:     return Assembler::noOverflow;
11315     case Assembler::noOverflow:   return Assembler::overflow;
11316     case Assembler::negative:     return Assembler::positive;
11317     case Assembler::positive:     return Assembler::negative;
11318     case Assembler::parity:       return Assembler::noParity;
11319     case Assembler::noParity:     return Assembler::parity;
11320   }
11321   ShouldNotReachHere(); return Assembler::overflow;
11322 }
11323 
11324 SkipIfEqual::SkipIfEqual(
11325     MacroAssembler* masm, const bool* flag_addr, bool value) {
11326   _masm = masm;
11327   _masm->cmp8(ExternalAddress((address)flag_addr), value);
11328   _masm->jcc(Assembler::equal, _label);
11329 }
11330 
11331 SkipIfEqual::~SkipIfEqual() {
11332   _masm->bind(_label);
11333 }
11334 
11335 // 32-bit Windows has its own fast-path implementation
11336 // of get_thread
11337 #if !defined(WIN32) || defined(_LP64)
11338 
11339 // This is simply a call to Thread::current()
11340 void MacroAssembler::get_thread(Register thread) {
11341   if (thread != rax) {
11342     push(rax);
11343   }
11344   LP64_ONLY(push(rdi);)
11345   LP64_ONLY(push(rsi);)
11346   push(rdx);
11347   push(rcx);
11348 #ifdef _LP64
11349   push(r8);
11350   push(r9);
11351   push(r10);
11352   push(r11);
11353 #endif
11354 
11355   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
11356 
11357 #ifdef _LP64
11358   pop(r11);
11359   pop(r10);
11360   pop(r9);
11361   pop(r8);
11362 #endif
11363   pop(rcx);
11364   pop(rdx);
11365   LP64_ONLY(pop(rsi);)
11366   LP64_ONLY(pop(rdi);)
11367   if (thread != rax) {
11368     mov(thread, rax);
11369     pop(rax);
11370   }
11371 }
11372 
11373 #endif