1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 398     int evex_encoding = _attributes->get_evex_encoding();
 399     int tuple_type = _attributes->get_tuple_type();
 400     switch (tuple_type) {
 401     case EVEX_FV:
 402       if ((evex_encoding & VEX_W) == VEX_W) {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 404       } else {
 405         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 406       }
 407       break;
 408 
 409     case EVEX_HV:
 410       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 411       break;
 412 
 413     case EVEX_FVM:
 414       break;
 415 
 416     case EVEX_T1S:
 417       switch (_attributes->get_input_size()) {
 418       case EVEX_8bit:
 419         break;
 420 
 421       case EVEX_16bit:
 422         mod_idx = 1;
 423         break;
 424 
 425       case EVEX_32bit:
 426         mod_idx = 2;
 427         break;
 428 
 429       case EVEX_64bit:
 430         mod_idx = 3;
 431         break;
 432       }
 433       break;
 434 
 435     case EVEX_T1F:
 436     case EVEX_T2:
 437     case EVEX_T4:
 438       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 439       break;
 440 
 441     case EVEX_T8:
 442       break;
 443 
 444     case EVEX_HVM:
 445       break;
 446 
 447     case EVEX_QVM:
 448       break;
 449 
 450     case EVEX_OVM:
 451       break;
 452 
 453     case EVEX_M128:
 454       break;
 455 
 456     case EVEX_DUP:
 457       break;
 458 
 459     default:
 460       assert(0, "no valid evex tuple_table entry");
 461       break;
 462     }
 463 
 464     int vector_len = _attributes->get_vector_len();
 465     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 466       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 467       if ((disp % disp_factor) == 0) {
 468         int new_disp = disp / disp_factor;
 469         if (is8bit(new_disp)) {
 470           disp = new_disp;
 471         }
 472       } else {
 473         return false;
 474       }
 475     }
 476   }
 477   return is8bit(disp);
 478 }
 479 
 480 
 481 void Assembler::emit_operand(Register reg, Register base, Register index,
 482                              Address::ScaleFactor scale, int disp,
 483                              RelocationHolder const& rspec,
 484                              int rip_relative_correction) {
 485   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 486 
 487   // Encode the registers as needed in the fields they are used in
 488 
 489   int regenc = encode(reg) << 3;
 490   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 491   int baseenc = base->is_valid() ? encode(base) : 0;
 492 
 493   if (base->is_valid()) {
 494     if (index->is_valid()) {
 495       assert(scale != Address::no_scale, "inconsistent address");
 496       // [base + index*scale + disp]
 497       if (disp == 0 && rtype == relocInfo::none  &&
 498           base != rbp LP64_ONLY(&& base != r13)) {
 499         // [base + index*scale]
 500         // [00 reg 100][ss index base]
 501         assert(index != rsp, "illegal addressing mode");
 502         emit_int8(0x04 | regenc);
 503         emit_int8(scale << 6 | indexenc | baseenc);
 504       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 505         // [base + index*scale + imm8]
 506         // [01 reg 100][ss index base] imm8
 507         assert(index != rsp, "illegal addressing mode");
 508         emit_int8(0x44 | regenc);
 509         emit_int8(scale << 6 | indexenc | baseenc);
 510         emit_int8(disp & 0xFF);
 511       } else {
 512         // [base + index*scale + disp32]
 513         // [10 reg 100][ss index base] disp32
 514         assert(index != rsp, "illegal addressing mode");
 515         emit_int8(0x84 | regenc);
 516         emit_int8(scale << 6 | indexenc | baseenc);
 517         emit_data(disp, rspec, disp32_operand);
 518       }
 519     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 520       // [rsp + disp]
 521       if (disp == 0 && rtype == relocInfo::none) {
 522         // [rsp]
 523         // [00 reg 100][00 100 100]
 524         emit_int8(0x04 | regenc);
 525         emit_int8(0x24);
 526       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 527         // [rsp + imm8]
 528         // [01 reg 100][00 100 100] disp8
 529         emit_int8(0x44 | regenc);
 530         emit_int8(0x24);
 531         emit_int8(disp & 0xFF);
 532       } else {
 533         // [rsp + imm32]
 534         // [10 reg 100][00 100 100] disp32
 535         emit_int8(0x84 | regenc);
 536         emit_int8(0x24);
 537         emit_data(disp, rspec, disp32_operand);
 538       }
 539     } else {
 540       // [base + disp]
 541       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 542       if (disp == 0 && rtype == relocInfo::none &&
 543           base != rbp LP64_ONLY(&& base != r13)) {
 544         // [base]
 545         // [00 reg base]
 546         emit_int8(0x00 | regenc | baseenc);
 547       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 548         // [base + disp8]
 549         // [01 reg base] disp8
 550         emit_int8(0x40 | regenc | baseenc);
 551         emit_int8(disp & 0xFF);
 552       } else {
 553         // [base + disp32]
 554         // [10 reg base] disp32
 555         emit_int8(0x80 | regenc | baseenc);
 556         emit_data(disp, rspec, disp32_operand);
 557       }
 558     }
 559   } else {
 560     if (index->is_valid()) {
 561       assert(scale != Address::no_scale, "inconsistent address");
 562       // [index*scale + disp]
 563       // [00 reg 100][ss index 101] disp32
 564       assert(index != rsp, "illegal addressing mode");
 565       emit_int8(0x04 | regenc);
 566       emit_int8(scale << 6 | indexenc | 0x05);
 567       emit_data(disp, rspec, disp32_operand);
 568     } else if (rtype != relocInfo::none ) {
 569       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 570       // [00 000 101] disp32
 571 
 572       emit_int8(0x05 | regenc);
 573       // Note that the RIP-rel. correction applies to the generated
 574       // disp field, but _not_ to the target address in the rspec.
 575 
 576       // disp was created by converting the target address minus the pc
 577       // at the start of the instruction. That needs more correction here.
 578       // intptr_t disp = target - next_ip;
 579       assert(inst_mark() != NULL, "must be inside InstructionMark");
 580       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 581       int64_t adjusted = disp;
 582       // Do rip-rel adjustment for 64bit
 583       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 584       assert(is_simm32(adjusted),
 585              "must be 32bit offset (RIP relative address)");
 586       emit_data((int32_t) adjusted, rspec, disp32_operand);
 587 
 588     } else {
 589       // 32bit never did this, did everything as the rip-rel/disp code above
 590       // [disp] ABSOLUTE
 591       // [00 reg 100][00 100 101] disp32
 592       emit_int8(0x04 | regenc);
 593       emit_int8(0x25);
 594       emit_data(disp, rspec, disp32_operand);
 595     }
 596   }
 597 }
 598 
 599 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 600                              Address::ScaleFactor scale, int disp,
 601                              RelocationHolder const& rspec) {
 602   if (UseAVX > 2) {
 603     int xreg_enc = reg->encoding();
 604     if (xreg_enc > 15) {
 605       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 606       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 607       return;
 608     }
 609   }
 610   emit_operand((Register)reg, base, index, scale, disp, rspec);
 611 }
 612 
 613 // Secret local extension to Assembler::WhichOperand:
 614 #define end_pc_operand (_WhichOperand_limit)
 615 
 616 address Assembler::locate_operand(address inst, WhichOperand which) {
 617   // Decode the given instruction, and return the address of
 618   // an embedded 32-bit operand word.
 619 
 620   // If "which" is disp32_operand, selects the displacement portion
 621   // of an effective address specifier.
 622   // If "which" is imm64_operand, selects the trailing immediate constant.
 623   // If "which" is call32_operand, selects the displacement of a call or jump.
 624   // Caller is responsible for ensuring that there is such an operand,
 625   // and that it is 32/64 bits wide.
 626 
 627   // If "which" is end_pc_operand, find the end of the instruction.
 628 
 629   address ip = inst;
 630   bool is_64bit = false;
 631 
 632   debug_only(bool has_disp32 = false);
 633   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 634 
 635   again_after_prefix:
 636   switch (0xFF & *ip++) {
 637 
 638   // These convenience macros generate groups of "case" labels for the switch.
 639 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 640 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 641              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 642 #define REP16(x) REP8((x)+0): \
 643               case REP8((x)+8)
 644 
 645   case CS_segment:
 646   case SS_segment:
 647   case DS_segment:
 648   case ES_segment:
 649   case FS_segment:
 650   case GS_segment:
 651     // Seems dubious
 652     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 653     assert(ip == inst+1, "only one prefix allowed");
 654     goto again_after_prefix;
 655 
 656   case 0x67:
 657   case REX:
 658   case REX_B:
 659   case REX_X:
 660   case REX_XB:
 661   case REX_R:
 662   case REX_RB:
 663   case REX_RX:
 664   case REX_RXB:
 665     NOT_LP64(assert(false, "64bit prefixes"));
 666     goto again_after_prefix;
 667 
 668   case REX_W:
 669   case REX_WB:
 670   case REX_WX:
 671   case REX_WXB:
 672   case REX_WR:
 673   case REX_WRB:
 674   case REX_WRX:
 675   case REX_WRXB:
 676     NOT_LP64(assert(false, "64bit prefixes"));
 677     is_64bit = true;
 678     goto again_after_prefix;
 679 
 680   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 681   case 0x88: // movb a, r
 682   case 0x89: // movl a, r
 683   case 0x8A: // movb r, a
 684   case 0x8B: // movl r, a
 685   case 0x8F: // popl a
 686     debug_only(has_disp32 = true);
 687     break;
 688 
 689   case 0x68: // pushq #32
 690     if (which == end_pc_operand) {
 691       return ip + 4;
 692     }
 693     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 694     return ip;                  // not produced by emit_operand
 695 
 696   case 0x66: // movw ... (size prefix)
 697     again_after_size_prefix2:
 698     switch (0xFF & *ip++) {
 699     case REX:
 700     case REX_B:
 701     case REX_X:
 702     case REX_XB:
 703     case REX_R:
 704     case REX_RB:
 705     case REX_RX:
 706     case REX_RXB:
 707     case REX_W:
 708     case REX_WB:
 709     case REX_WX:
 710     case REX_WXB:
 711     case REX_WR:
 712     case REX_WRB:
 713     case REX_WRX:
 714     case REX_WRXB:
 715       NOT_LP64(assert(false, "64bit prefix found"));
 716       goto again_after_size_prefix2;
 717     case 0x8B: // movw r, a
 718     case 0x89: // movw a, r
 719       debug_only(has_disp32 = true);
 720       break;
 721     case 0xC7: // movw a, #16
 722       debug_only(has_disp32 = true);
 723       tail_size = 2;  // the imm16
 724       break;
 725     case 0x0F: // several SSE/SSE2 variants
 726       ip--;    // reparse the 0x0F
 727       goto again_after_prefix;
 728     default:
 729       ShouldNotReachHere();
 730     }
 731     break;
 732 
 733   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 734     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 735     // these asserts are somewhat nonsensical
 736 #ifndef _LP64
 737     assert(which == imm_operand || which == disp32_operand,
 738            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 739 #else
 740     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 741            which == narrow_oop_operand && !is_64bit,
 742            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 743 #endif // _LP64
 744     return ip;
 745 
 746   case 0x69: // imul r, a, #32
 747   case 0xC7: // movl a, #32(oop?)
 748     tail_size = 4;
 749     debug_only(has_disp32 = true); // has both kinds of operands!
 750     break;
 751 
 752   case 0x0F: // movx..., etc.
 753     switch (0xFF & *ip++) {
 754     case 0x3A: // pcmpestri
 755       tail_size = 1;
 756     case 0x38: // ptest, pmovzxbw
 757       ip++; // skip opcode
 758       debug_only(has_disp32 = true); // has both kinds of operands!
 759       break;
 760 
 761     case 0x70: // pshufd r, r/a, #8
 762       debug_only(has_disp32 = true); // has both kinds of operands!
 763     case 0x73: // psrldq r, #8
 764       tail_size = 1;
 765       break;
 766 
 767     case 0x12: // movlps
 768     case 0x28: // movaps
 769     case 0x2E: // ucomiss
 770     case 0x2F: // comiss
 771     case 0x54: // andps
 772     case 0x55: // andnps
 773     case 0x56: // orps
 774     case 0x57: // xorps
 775     case 0x58: // addpd
 776     case 0x59: // mulpd
 777     case 0x6E: // movd
 778     case 0x7E: // movd
 779     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 780     case 0xFE: // paddd
 781       debug_only(has_disp32 = true);
 782       break;
 783 
 784     case 0xAD: // shrd r, a, %cl
 785     case 0xAF: // imul r, a
 786     case 0xBE: // movsbl r, a (movsxb)
 787     case 0xBF: // movswl r, a (movsxw)
 788     case 0xB6: // movzbl r, a (movzxb)
 789     case 0xB7: // movzwl r, a (movzxw)
 790     case REP16(0x40): // cmovl cc, r, a
 791     case 0xB0: // cmpxchgb
 792     case 0xB1: // cmpxchg
 793     case 0xC1: // xaddl
 794     case 0xC7: // cmpxchg8
 795     case REP16(0x90): // setcc a
 796       debug_only(has_disp32 = true);
 797       // fall out of the switch to decode the address
 798       break;
 799 
 800     case 0xC4: // pinsrw r, a, #8
 801       debug_only(has_disp32 = true);
 802     case 0xC5: // pextrw r, r, #8
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case 0xAC: // shrd r, a, #8
 807       debug_only(has_disp32 = true);
 808       tail_size = 1;  // the imm8
 809       break;
 810 
 811     case REP16(0x80): // jcc rdisp32
 812       if (which == end_pc_operand)  return ip + 4;
 813       assert(which == call32_operand, "jcc has no disp32 or imm");
 814       return ip;
 815     default:
 816       ShouldNotReachHere();
 817     }
 818     break;
 819 
 820   case 0x81: // addl a, #32; addl r, #32
 821     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 822     // on 32bit in the case of cmpl, the imm might be an oop
 823     tail_size = 4;
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     break;
 826 
 827   case 0x83: // addl a, #8; addl r, #8
 828     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 829     debug_only(has_disp32 = true); // has both kinds of operands!
 830     tail_size = 1;
 831     break;
 832 
 833   case 0x9B:
 834     switch (0xFF & *ip++) {
 835     case 0xD9: // fnstcw a
 836       debug_only(has_disp32 = true);
 837       break;
 838     default:
 839       ShouldNotReachHere();
 840     }
 841     break;
 842 
 843   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 844   case REP4(0x10): // adc...
 845   case REP4(0x20): // and...
 846   case REP4(0x30): // xor...
 847   case REP4(0x08): // or...
 848   case REP4(0x18): // sbb...
 849   case REP4(0x28): // sub...
 850   case 0xF7: // mull a
 851   case 0x8D: // lea r, a
 852   case 0x87: // xchg r, a
 853   case REP4(0x38): // cmp...
 854   case 0x85: // test r, a
 855     debug_only(has_disp32 = true); // has both kinds of operands!
 856     break;
 857 
 858   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 859   case 0xC6: // movb a, #8
 860   case 0x80: // cmpb a, #8
 861   case 0x6B: // imul r, a, #8
 862     debug_only(has_disp32 = true); // has both kinds of operands!
 863     tail_size = 1; // the imm8
 864     break;
 865 
 866   case 0xC4: // VEX_3bytes
 867   case 0xC5: // VEX_2bytes
 868     assert((UseAVX > 0), "shouldn't have VEX prefix");
 869     assert(ip == inst+1, "no prefixes allowed");
 870     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 871     // but they have prefix 0x0F and processed when 0x0F processed above.
 872     //
 873     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 874     // instructions (these instructions are not supported in 64-bit mode).
 875     // To distinguish them bits [7:6] are set in the VEX second byte since
 876     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 877     // those VEX bits REX and vvvv bits are inverted.
 878     //
 879     // Fortunately C2 doesn't generate these instructions so we don't need
 880     // to check for them in product version.
 881 
 882     // Check second byte
 883     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 884 
 885     int vex_opcode;
 886     // First byte
 887     if ((0xFF & *inst) == VEX_3bytes) {
 888       vex_opcode = VEX_OPCODE_MASK & *ip;
 889       ip++; // third byte
 890       is_64bit = ((VEX_W & *ip) == VEX_W);
 891     } else {
 892       vex_opcode = VEX_OPCODE_0F;
 893     }
 894     ip++; // opcode
 895     // To find the end of instruction (which == end_pc_operand).
 896     switch (vex_opcode) {
 897       case VEX_OPCODE_0F:
 898         switch (0xFF & *ip) {
 899         case 0x70: // pshufd r, r/a, #8
 900         case 0x71: // ps[rl|ra|ll]w r, #8
 901         case 0x72: // ps[rl|ra|ll]d r, #8
 902         case 0x73: // ps[rl|ra|ll]q r, #8
 903         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 904         case 0xC4: // pinsrw r, r, r/a, #8
 905         case 0xC5: // pextrw r/a, r, #8
 906         case 0xC6: // shufp[s|d] r, r, r/a, #8
 907           tail_size = 1;  // the imm8
 908           break;
 909         }
 910         break;
 911       case VEX_OPCODE_0F_3A:
 912         tail_size = 1;
 913         break;
 914     }
 915     ip++; // skip opcode
 916     debug_only(has_disp32 = true); // has both kinds of operands!
 917     break;
 918 
 919   case 0x62: // EVEX_4bytes
 920     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 921     assert(ip == inst+1, "no prefixes allowed");
 922     // no EVEX collisions, all instructions that have 0x62 opcodes
 923     // have EVEX versions and are subopcodes of 0x66
 924     ip++; // skip P0 and exmaine W in P1
 925     is_64bit = ((VEX_W & *ip) == VEX_W);
 926     ip++; // move to P2
 927     ip++; // skip P2, move to opcode
 928     // To find the end of instruction (which == end_pc_operand).
 929     switch (0xFF & *ip) {
 930     case 0x22: // pinsrd r, r/a, #8
 931     case 0x61: // pcmpestri r, r/a, #8
 932     case 0x70: // pshufd r, r/a, #8
 933     case 0x73: // psrldq r, #8
 934       tail_size = 1;  // the imm8
 935       break;
 936     default:
 937       break;
 938     }
 939     ip++; // skip opcode
 940     debug_only(has_disp32 = true); // has both kinds of operands!
 941     break;
 942 
 943   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 944   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 945   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 946   case 0xDD: // fld_d a; fst_d a; fstp_d a
 947   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 948   case 0xDF: // fild_d a; fistp_d a
 949   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 950   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 951   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 952     debug_only(has_disp32 = true);
 953     break;
 954 
 955   case 0xE8: // call rdisp32
 956   case 0xE9: // jmp  rdisp32
 957     if (which == end_pc_operand)  return ip + 4;
 958     assert(which == call32_operand, "call has no disp32 or imm");
 959     return ip;
 960 
 961   case 0xF0:                    // Lock
 962     assert(os::is_MP(), "only on MP");
 963     goto again_after_prefix;
 964 
 965   case 0xF3:                    // For SSE
 966   case 0xF2:                    // For SSE2
 967     switch (0xFF & *ip++) {
 968     case REX:
 969     case REX_B:
 970     case REX_X:
 971     case REX_XB:
 972     case REX_R:
 973     case REX_RB:
 974     case REX_RX:
 975     case REX_RXB:
 976     case REX_W:
 977     case REX_WB:
 978     case REX_WX:
 979     case REX_WXB:
 980     case REX_WR:
 981     case REX_WRB:
 982     case REX_WRX:
 983     case REX_WRXB:
 984       NOT_LP64(assert(false, "found 64bit prefix"));
 985       ip++;
 986     default:
 987       ip++;
 988     }
 989     debug_only(has_disp32 = true); // has both kinds of operands!
 990     break;
 991 
 992   default:
 993     ShouldNotReachHere();
 994 
 995 #undef REP8
 996 #undef REP16
 997   }
 998 
 999   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
1000 #ifdef _LP64
1001   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1002 #else
1003   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1004   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1005 #endif // LP64
1006   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1007 
1008   // parse the output of emit_operand
1009   int op2 = 0xFF & *ip++;
1010   int base = op2 & 0x07;
1011   int op3 = -1;
1012   const int b100 = 4;
1013   const int b101 = 5;
1014   if (base == b100 && (op2 >> 6) != 3) {
1015     op3 = 0xFF & *ip++;
1016     base = op3 & 0x07;   // refetch the base
1017   }
1018   // now ip points at the disp (if any)
1019 
1020   switch (op2 >> 6) {
1021   case 0:
1022     // [00 reg  100][ss index base]
1023     // [00 reg  100][00   100  esp]
1024     // [00 reg base]
1025     // [00 reg  100][ss index  101][disp32]
1026     // [00 reg  101]               [disp32]
1027 
1028     if (base == b101) {
1029       if (which == disp32_operand)
1030         return ip;              // caller wants the disp32
1031       ip += 4;                  // skip the disp32
1032     }
1033     break;
1034 
1035   case 1:
1036     // [01 reg  100][ss index base][disp8]
1037     // [01 reg  100][00   100  esp][disp8]
1038     // [01 reg base]               [disp8]
1039     ip += 1;                    // skip the disp8
1040     break;
1041 
1042   case 2:
1043     // [10 reg  100][ss index base][disp32]
1044     // [10 reg  100][00   100  esp][disp32]
1045     // [10 reg base]               [disp32]
1046     if (which == disp32_operand)
1047       return ip;                // caller wants the disp32
1048     ip += 4;                    // skip the disp32
1049     break;
1050 
1051   case 3:
1052     // [11 reg base]  (not a memory addressing mode)
1053     break;
1054   }
1055 
1056   if (which == end_pc_operand) {
1057     return ip + tail_size;
1058   }
1059 
1060 #ifdef _LP64
1061   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1062 #else
1063   assert(which == imm_operand, "instruction has only an imm field");
1064 #endif // LP64
1065   return ip;
1066 }
1067 
1068 address Assembler::locate_next_instruction(address inst) {
1069   // Secretly share code with locate_operand:
1070   return locate_operand(inst, end_pc_operand);
1071 }
1072 
1073 
1074 #ifdef ASSERT
1075 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1076   address inst = inst_mark();
1077   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1078   address opnd;
1079 
1080   Relocation* r = rspec.reloc();
1081   if (r->type() == relocInfo::none) {
1082     return;
1083   } else if (r->is_call() || format == call32_operand) {
1084     // assert(format == imm32_operand, "cannot specify a nonzero format");
1085     opnd = locate_operand(inst, call32_operand);
1086   } else if (r->is_data()) {
1087     assert(format == imm_operand || format == disp32_operand
1088            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1089     opnd = locate_operand(inst, (WhichOperand)format);
1090   } else {
1091     assert(format == imm_operand, "cannot specify a format");
1092     return;
1093   }
1094   assert(opnd == pc(), "must put operand where relocs can find it");
1095 }
1096 #endif // ASSERT
1097 
1098 void Assembler::emit_operand32(Register reg, Address adr) {
1099   assert(reg->encoding() < 8, "no extended registers");
1100   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1101   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1102                adr._rspec);
1103 }
1104 
1105 void Assembler::emit_operand(Register reg, Address adr,
1106                              int rip_relative_correction) {
1107   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1108                adr._rspec,
1109                rip_relative_correction);
1110 }
1111 
1112 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1113   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1114                adr._rspec);
1115 }
1116 
1117 // MMX operations
1118 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1119   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1120   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1121 }
1122 
1123 // work around gcc (3.2.1-7a) bug
1124 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1125   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1126   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1127 }
1128 
1129 
1130 void Assembler::emit_farith(int b1, int b2, int i) {
1131   assert(isByte(b1) && isByte(b2), "wrong opcode");
1132   assert(0 <= i &&  i < 8, "illegal stack offset");
1133   emit_int8(b1);
1134   emit_int8(b2 + i);
1135 }
1136 
1137 
1138 // Now the Assembler instructions (identical for 32/64 bits)
1139 
1140 void Assembler::adcl(Address dst, int32_t imm32) {
1141   InstructionMark im(this);
1142   prefix(dst);
1143   emit_arith_operand(0x81, rdx, dst, imm32);
1144 }
1145 
1146 void Assembler::adcl(Address dst, Register src) {
1147   InstructionMark im(this);
1148   prefix(dst, src);
1149   emit_int8(0x11);
1150   emit_operand(src, dst);
1151 }
1152 
1153 void Assembler::adcl(Register dst, int32_t imm32) {
1154   prefix(dst);
1155   emit_arith(0x81, 0xD0, dst, imm32);
1156 }
1157 
1158 void Assembler::adcl(Register dst, Address src) {
1159   InstructionMark im(this);
1160   prefix(src, dst);
1161   emit_int8(0x13);
1162   emit_operand(dst, src);
1163 }
1164 
1165 void Assembler::adcl(Register dst, Register src) {
1166   (void) prefix_and_encode(dst->encoding(), src->encoding());
1167   emit_arith(0x13, 0xC0, dst, src);
1168 }
1169 
1170 void Assembler::addl(Address dst, int32_t imm32) {
1171   InstructionMark im(this);
1172   prefix(dst);
1173   emit_arith_operand(0x81, rax, dst, imm32);
1174 }
1175 
1176 void Assembler::addl(Address dst, Register src) {
1177   InstructionMark im(this);
1178   prefix(dst, src);
1179   emit_int8(0x01);
1180   emit_operand(src, dst);
1181 }
1182 
1183 void Assembler::addl(Register dst, int32_t imm32) {
1184   prefix(dst);
1185   emit_arith(0x81, 0xC0, dst, imm32);
1186 }
1187 
1188 void Assembler::addl(Register dst, Address src) {
1189   InstructionMark im(this);
1190   prefix(src, dst);
1191   emit_int8(0x03);
1192   emit_operand(dst, src);
1193 }
1194 
1195 void Assembler::addl(Register dst, Register src) {
1196   (void) prefix_and_encode(dst->encoding(), src->encoding());
1197   emit_arith(0x03, 0xC0, dst, src);
1198 }
1199 
1200 void Assembler::addr_nop_4() {
1201   assert(UseAddressNop, "no CPU support");
1202   // 4 bytes: NOP DWORD PTR [EAX+0]
1203   emit_int8(0x0F);
1204   emit_int8(0x1F);
1205   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1206   emit_int8(0);    // 8-bits offset (1 byte)
1207 }
1208 
1209 void Assembler::addr_nop_5() {
1210   assert(UseAddressNop, "no CPU support");
1211   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1212   emit_int8(0x0F);
1213   emit_int8(0x1F);
1214   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1215   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1216   emit_int8(0);    // 8-bits offset (1 byte)
1217 }
1218 
1219 void Assembler::addr_nop_7() {
1220   assert(UseAddressNop, "no CPU support");
1221   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1222   emit_int8(0x0F);
1223   emit_int8(0x1F);
1224   emit_int8((unsigned char)0x80);
1225                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1226   emit_int32(0);   // 32-bits offset (4 bytes)
1227 }
1228 
1229 void Assembler::addr_nop_8() {
1230   assert(UseAddressNop, "no CPU support");
1231   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1232   emit_int8(0x0F);
1233   emit_int8(0x1F);
1234   emit_int8((unsigned char)0x84);
1235                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1236   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1237   emit_int32(0);   // 32-bits offset (4 bytes)
1238 }
1239 
1240 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1241   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1242   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1243   attributes.set_rex_vex_w_reverted();
1244   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1245   emit_int8(0x58);
1246   emit_int8((unsigned char)(0xC0 | encode));
1247 }
1248 
1249 void Assembler::addsd(XMMRegister dst, Address src) {
1250   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1251   InstructionMark im(this);
1252   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1253   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1254   attributes.set_rex_vex_w_reverted();
1255   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1256   emit_int8(0x58);
1257   emit_operand(dst, src);
1258 }
1259 
1260 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1261   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1262   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1263   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1264   emit_int8(0x58);
1265   emit_int8((unsigned char)(0xC0 | encode));
1266 }
1267 
1268 void Assembler::addss(XMMRegister dst, Address src) {
1269   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1270   InstructionMark im(this);
1271   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1272   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1273   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1274   emit_int8(0x58);
1275   emit_operand(dst, src);
1276 }
1277 
1278 void Assembler::aesdec(XMMRegister dst, Address src) {
1279   assert(VM_Version::supports_aes(), "");
1280   InstructionMark im(this);
1281   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1282   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1283   emit_int8((unsigned char)0xDE);
1284   emit_operand(dst, src);
1285 }
1286 
1287 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1288   assert(VM_Version::supports_aes(), "");
1289   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1290   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1291   emit_int8((unsigned char)0xDE);
1292   emit_int8(0xC0 | encode);
1293 }
1294 
1295 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1296   assert(VM_Version::supports_aes(), "");
1297   InstructionMark im(this);
1298   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1299   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1300   emit_int8((unsigned char)0xDF);
1301   emit_operand(dst, src);
1302 }
1303 
1304 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1305   assert(VM_Version::supports_aes(), "");
1306   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1307   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1308   emit_int8((unsigned char)0xDF);
1309   emit_int8((unsigned char)(0xC0 | encode));
1310 }
1311 
1312 void Assembler::aesenc(XMMRegister dst, Address src) {
1313   assert(VM_Version::supports_aes(), "");
1314   InstructionMark im(this);
1315   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1316   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1317   emit_int8((unsigned char)0xDC);
1318   emit_operand(dst, src);
1319 }
1320 
1321 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1322   assert(VM_Version::supports_aes(), "");
1323   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1324   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1325   emit_int8((unsigned char)0xDC);
1326   emit_int8(0xC0 | encode);
1327 }
1328 
1329 void Assembler::aesenclast(XMMRegister dst, Address src) {
1330   assert(VM_Version::supports_aes(), "");
1331   InstructionMark im(this);
1332   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1333   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1334   emit_int8((unsigned char)0xDD);
1335   emit_operand(dst, src);
1336 }
1337 
1338 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1339   assert(VM_Version::supports_aes(), "");
1340   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1341   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1342   emit_int8((unsigned char)0xDD);
1343   emit_int8((unsigned char)(0xC0 | encode));
1344 }
1345 
1346 void Assembler::andl(Address dst, int32_t imm32) {
1347   InstructionMark im(this);
1348   prefix(dst);
1349   emit_int8((unsigned char)0x81);
1350   emit_operand(rsp, dst, 4);
1351   emit_int32(imm32);
1352 }
1353 
1354 void Assembler::andl(Register dst, int32_t imm32) {
1355   prefix(dst);
1356   emit_arith(0x81, 0xE0, dst, imm32);
1357 }
1358 
1359 void Assembler::andl(Register dst, Address src) {
1360   InstructionMark im(this);
1361   prefix(src, dst);
1362   emit_int8(0x23);
1363   emit_operand(dst, src);
1364 }
1365 
1366 void Assembler::andl(Register dst, Register src) {
1367   (void) prefix_and_encode(dst->encoding(), src->encoding());
1368   emit_arith(0x23, 0xC0, dst, src);
1369 }
1370 
1371 void Assembler::andnl(Register dst, Register src1, Register src2) {
1372   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1373   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1374   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1375   emit_int8((unsigned char)0xF2);
1376   emit_int8((unsigned char)(0xC0 | encode));
1377 }
1378 
1379 void Assembler::andnl(Register dst, Register src1, Address src2) {
1380   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1381   InstructionMark im(this);
1382   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1383   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1384   emit_int8((unsigned char)0xF2);
1385   emit_operand(dst, src2);
1386 }
1387 
1388 void Assembler::bsfl(Register dst, Register src) {
1389   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1390   emit_int8(0x0F);
1391   emit_int8((unsigned char)0xBC);
1392   emit_int8((unsigned char)(0xC0 | encode));
1393 }
1394 
1395 void Assembler::bsrl(Register dst, Register src) {
1396   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1397   emit_int8(0x0F);
1398   emit_int8((unsigned char)0xBD);
1399   emit_int8((unsigned char)(0xC0 | encode));
1400 }
1401 
1402 void Assembler::bswapl(Register reg) { // bswap
1403   int encode = prefix_and_encode(reg->encoding());
1404   emit_int8(0x0F);
1405   emit_int8((unsigned char)(0xC8 | encode));
1406 }
1407 
1408 void Assembler::blsil(Register dst, Register src) {
1409   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1410   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1411   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1412   emit_int8((unsigned char)0xF3);
1413   emit_int8((unsigned char)(0xC0 | encode));
1414 }
1415 
1416 void Assembler::blsil(Register dst, Address src) {
1417   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1418   InstructionMark im(this);
1419   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1420   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1421   emit_int8((unsigned char)0xF3);
1422   emit_operand(rbx, src);
1423 }
1424 
1425 void Assembler::blsmskl(Register dst, Register src) {
1426   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1427   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1428   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1429   emit_int8((unsigned char)0xF3);
1430   emit_int8((unsigned char)(0xC0 | encode));
1431 }
1432 
1433 void Assembler::blsmskl(Register dst, Address src) {
1434   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1435   InstructionMark im(this);
1436   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1437   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1438   emit_int8((unsigned char)0xF3);
1439   emit_operand(rdx, src);
1440 }
1441 
1442 void Assembler::blsrl(Register dst, Register src) {
1443   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1444   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1445   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1446   emit_int8((unsigned char)0xF3);
1447   emit_int8((unsigned char)(0xC0 | encode));
1448 }
1449 
1450 void Assembler::blsrl(Register dst, Address src) {
1451   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1452   InstructionMark im(this);
1453   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1454   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1455   emit_int8((unsigned char)0xF3);
1456   emit_operand(rcx, src);
1457 }
1458 
1459 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1460   // suspect disp32 is always good
1461   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1462 
1463   if (L.is_bound()) {
1464     const int long_size = 5;
1465     int offs = (int)( target(L) - pc() );
1466     assert(offs <= 0, "assembler error");
1467     InstructionMark im(this);
1468     // 1110 1000 #32-bit disp
1469     emit_int8((unsigned char)0xE8);
1470     emit_data(offs - long_size, rtype, operand);
1471   } else {
1472     InstructionMark im(this);
1473     // 1110 1000 #32-bit disp
1474     L.add_patch_at(code(), locator());
1475 
1476     emit_int8((unsigned char)0xE8);
1477     emit_data(int(0), rtype, operand);
1478   }
1479 }
1480 
1481 void Assembler::call(Register dst) {
1482   int encode = prefix_and_encode(dst->encoding());
1483   emit_int8((unsigned char)0xFF);
1484   emit_int8((unsigned char)(0xD0 | encode));
1485 }
1486 
1487 
1488 void Assembler::call(Address adr) {
1489   InstructionMark im(this);
1490   prefix(adr);
1491   emit_int8((unsigned char)0xFF);
1492   emit_operand(rdx, adr);
1493 }
1494 
1495 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1496   assert(entry != NULL, "call most probably wrong");
1497   InstructionMark im(this);
1498   emit_int8((unsigned char)0xE8);
1499   intptr_t disp = entry - (pc() + sizeof(int32_t));
1500   assert(is_simm32(disp), "must be 32bit offset (call2)");
1501   // Technically, should use call32_operand, but this format is
1502   // implied by the fact that we're emitting a call instruction.
1503 
1504   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1505   emit_data((int) disp, rspec, operand);
1506 }
1507 
1508 void Assembler::cdql() {
1509   emit_int8((unsigned char)0x99);
1510 }
1511 
1512 void Assembler::cld() {
1513   emit_int8((unsigned char)0xFC);
1514 }
1515 
1516 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1517   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1518   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1519   emit_int8(0x0F);
1520   emit_int8(0x40 | cc);
1521   emit_int8((unsigned char)(0xC0 | encode));
1522 }
1523 
1524 
1525 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1526   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1527   prefix(src, dst);
1528   emit_int8(0x0F);
1529   emit_int8(0x40 | cc);
1530   emit_operand(dst, src);
1531 }
1532 
1533 void Assembler::cmpb(Address dst, int imm8) {
1534   InstructionMark im(this);
1535   prefix(dst);
1536   emit_int8((unsigned char)0x80);
1537   emit_operand(rdi, dst, 1);
1538   emit_int8(imm8);
1539 }
1540 
1541 void Assembler::cmpl(Address dst, int32_t imm32) {
1542   InstructionMark im(this);
1543   prefix(dst);
1544   emit_int8((unsigned char)0x81);
1545   emit_operand(rdi, dst, 4);
1546   emit_int32(imm32);
1547 }
1548 
1549 void Assembler::cmpl(Register dst, int32_t imm32) {
1550   prefix(dst);
1551   emit_arith(0x81, 0xF8, dst, imm32);
1552 }
1553 
1554 void Assembler::cmpl(Register dst, Register src) {
1555   (void) prefix_and_encode(dst->encoding(), src->encoding());
1556   emit_arith(0x3B, 0xC0, dst, src);
1557 }
1558 
1559 void Assembler::cmpl(Register dst, Address  src) {
1560   InstructionMark im(this);
1561   prefix(src, dst);
1562   emit_int8((unsigned char)0x3B);
1563   emit_operand(dst, src);
1564 }
1565 
1566 void Assembler::cmpw(Address dst, int imm16) {
1567   InstructionMark im(this);
1568   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1569   emit_int8(0x66);
1570   emit_int8((unsigned char)0x81);
1571   emit_operand(rdi, dst, 2);
1572   emit_int16(imm16);
1573 }
1574 
1575 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1576 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1577 // The ZF is set if the compared values were equal, and cleared otherwise.
1578 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1579   InstructionMark im(this);
1580   prefix(adr, reg);
1581   emit_int8(0x0F);
1582   emit_int8((unsigned char)0xB1);
1583   emit_operand(reg, adr);
1584 }
1585 
1586 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1587 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1588 // The ZF is set if the compared values were equal, and cleared otherwise.
1589 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1590   InstructionMark im(this);
1591   prefix(adr, reg, true);
1592   emit_int8(0x0F);
1593   emit_int8((unsigned char)0xB0);
1594   emit_operand(reg, adr);
1595 }
1596 
1597 void Assembler::comisd(XMMRegister dst, Address src) {
1598   // NOTE: dbx seems to decode this as comiss even though the
1599   // 0x66 is there. Strangly ucomisd comes out correct
1600   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1601   InstructionMark im(this);
1602   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1603   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1604   attributes.set_rex_vex_w_reverted();
1605   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1606   emit_int8(0x2F);
1607   emit_operand(dst, src);
1608 }
1609 
1610 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1611   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1612   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1613   attributes.set_rex_vex_w_reverted();
1614   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1615   emit_int8(0x2F);
1616   emit_int8((unsigned char)(0xC0 | encode));
1617 }
1618 
1619 void Assembler::comiss(XMMRegister dst, Address src) {
1620   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1621   InstructionMark im(this);
1622   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1623   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1624   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1625   emit_int8(0x2F);
1626   emit_operand(dst, src);
1627 }
1628 
1629 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1630   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1631   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1632   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1633   emit_int8(0x2F);
1634   emit_int8((unsigned char)(0xC0 | encode));
1635 }
1636 
1637 void Assembler::cpuid() {
1638   emit_int8(0x0F);
1639   emit_int8((unsigned char)0xA2);
1640 }
1641 
1642 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1643 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1644 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1645 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1646 //
1647 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1648 //
1649 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1650 //
1651 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1652 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1653   assert(VM_Version::supports_sse4_2(), "");
1654   int8_t w = 0x01;
1655   Prefix p = Prefix_EMPTY;
1656 
1657   emit_int8((int8_t)0xF2);
1658   switch (sizeInBytes) {
1659   case 1:
1660     w = 0;
1661     break;
1662   case 2:
1663   case 4:
1664     break;
1665   LP64_ONLY(case 8:)
1666     // This instruction is not valid in 32 bits
1667     // Note:
1668     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1669     //
1670     // Page B - 72   Vol. 2C says
1671     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1672     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1673     //                                                                            F0!!!
1674     // while 3 - 208 Vol. 2A
1675     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1676     //
1677     // the 0 on a last bit is reserved for a different flavor of this instruction :
1678     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1679     p = REX_W;
1680     break;
1681   default:
1682     assert(0, "Unsupported value for a sizeInBytes argument");
1683     break;
1684   }
1685   LP64_ONLY(prefix(crc, v, p);)
1686   emit_int8((int8_t)0x0F);
1687   emit_int8(0x38);
1688   emit_int8((int8_t)(0xF0 | w));
1689   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1690 }
1691 
1692 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1693   assert(VM_Version::supports_sse4_2(), "");
1694   InstructionMark im(this);
1695   int8_t w = 0x01;
1696   Prefix p = Prefix_EMPTY;
1697 
1698   emit_int8((int8_t)0xF2);
1699   switch (sizeInBytes) {
1700   case 1:
1701     w = 0;
1702     break;
1703   case 2:
1704   case 4:
1705     break;
1706   LP64_ONLY(case 8:)
1707     // This instruction is not valid in 32 bits
1708     p = REX_W;
1709     break;
1710   default:
1711     assert(0, "Unsupported value for a sizeInBytes argument");
1712     break;
1713   }
1714   LP64_ONLY(prefix(crc, adr, p);)
1715   emit_int8((int8_t)0x0F);
1716   emit_int8(0x38);
1717   emit_int8((int8_t)(0xF0 | w));
1718   emit_operand(crc, adr);
1719 }
1720 
1721 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1722   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1723   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1724   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1725   emit_int8((unsigned char)0xE6);
1726   emit_int8((unsigned char)(0xC0 | encode));
1727 }
1728 
1729 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1730   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1731   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1732   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1733   emit_int8(0x5B);
1734   emit_int8((unsigned char)(0xC0 | encode));
1735 }
1736 
1737 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1738   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1739   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1740   attributes.set_rex_vex_w_reverted();
1741   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1742   emit_int8(0x5A);
1743   emit_int8((unsigned char)(0xC0 | encode));
1744 }
1745 
1746 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1747   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1748   InstructionMark im(this);
1749   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1750   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1751   attributes.set_rex_vex_w_reverted();
1752   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1753   emit_int8(0x5A);
1754   emit_operand(dst, src);
1755 }
1756 
1757 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1758   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1759   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1760   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1761   emit_int8(0x2A);
1762   emit_int8((unsigned char)(0xC0 | encode));
1763 }
1764 
1765 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1766   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1767   InstructionMark im(this);
1768   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1769   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1770   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1771   emit_int8(0x2A);
1772   emit_operand(dst, src);
1773 }
1774 
1775 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1776   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1777   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1778   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1779   emit_int8(0x2A);
1780   emit_int8((unsigned char)(0xC0 | encode));
1781 }
1782 
1783 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1784   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1785   InstructionMark im(this);
1786   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1787   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1788   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1789   emit_int8(0x2A);
1790   emit_operand(dst, src);
1791 }
1792 
1793 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1794   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1795   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1796   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1797   emit_int8(0x2A);
1798   emit_int8((unsigned char)(0xC0 | encode));
1799 }
1800 
1801 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1802   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1803   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1804   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1805   emit_int8(0x5A);
1806   emit_int8((unsigned char)(0xC0 | encode));
1807 }
1808 
1809 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1810   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1811   InstructionMark im(this);
1812   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1813   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1814   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1815   emit_int8(0x5A);
1816   emit_operand(dst, src);
1817 }
1818 
1819 
1820 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1821   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1822   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1823   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1824   emit_int8(0x2C);
1825   emit_int8((unsigned char)(0xC0 | encode));
1826 }
1827 
1828 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1829   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1830   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1831   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1832   emit_int8(0x2C);
1833   emit_int8((unsigned char)(0xC0 | encode));
1834 }
1835 
1836 void Assembler::cvttpd2dq(XMMRegister dst, XMMRegister src) {
1837   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1838   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
1839   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1840   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1841   emit_int8((unsigned char)0xE6);
1842   emit_int8((unsigned char)(0xC0 | encode));
1843 }
1844 
1845 void Assembler::decl(Address dst) {
1846   // Don't use it directly. Use MacroAssembler::decrement() instead.
1847   InstructionMark im(this);
1848   prefix(dst);
1849   emit_int8((unsigned char)0xFF);
1850   emit_operand(rcx, dst);
1851 }
1852 
1853 void Assembler::divsd(XMMRegister dst, Address src) {
1854   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1855   InstructionMark im(this);
1856   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1857   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1858   attributes.set_rex_vex_w_reverted();
1859   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1860   emit_int8(0x5E);
1861   emit_operand(dst, src);
1862 }
1863 
1864 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1865   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1866   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1867   attributes.set_rex_vex_w_reverted();
1868   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1869   emit_int8(0x5E);
1870   emit_int8((unsigned char)(0xC0 | encode));
1871 }
1872 
1873 void Assembler::divss(XMMRegister dst, Address src) {
1874   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1875   InstructionMark im(this);
1876   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1877   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1878   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1879   emit_int8(0x5E);
1880   emit_operand(dst, src);
1881 }
1882 
1883 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1884   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1885   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1886   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1887   emit_int8(0x5E);
1888   emit_int8((unsigned char)(0xC0 | encode));
1889 }
1890 
1891 void Assembler::emms() {
1892   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1893   emit_int8(0x0F);
1894   emit_int8(0x77);
1895 }
1896 
1897 void Assembler::hlt() {
1898   emit_int8((unsigned char)0xF4);
1899 }
1900 
1901 void Assembler::idivl(Register src) {
1902   int encode = prefix_and_encode(src->encoding());
1903   emit_int8((unsigned char)0xF7);
1904   emit_int8((unsigned char)(0xF8 | encode));
1905 }
1906 
1907 void Assembler::divl(Register src) { // Unsigned
1908   int encode = prefix_and_encode(src->encoding());
1909   emit_int8((unsigned char)0xF7);
1910   emit_int8((unsigned char)(0xF0 | encode));
1911 }
1912 
1913 void Assembler::imull(Register src) {
1914   int encode = prefix_and_encode(src->encoding());
1915   emit_int8((unsigned char)0xF7);
1916   emit_int8((unsigned char)(0xE8 | encode));
1917 }
1918 
1919 void Assembler::imull(Register dst, Register src) {
1920   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1921   emit_int8(0x0F);
1922   emit_int8((unsigned char)0xAF);
1923   emit_int8((unsigned char)(0xC0 | encode));
1924 }
1925 
1926 
1927 void Assembler::imull(Register dst, Register src, int value) {
1928   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1929   if (is8bit(value)) {
1930     emit_int8(0x6B);
1931     emit_int8((unsigned char)(0xC0 | encode));
1932     emit_int8(value & 0xFF);
1933   } else {
1934     emit_int8(0x69);
1935     emit_int8((unsigned char)(0xC0 | encode));
1936     emit_int32(value);
1937   }
1938 }
1939 
1940 void Assembler::imull(Register dst, Address src) {
1941   InstructionMark im(this);
1942   prefix(src, dst);
1943   emit_int8(0x0F);
1944   emit_int8((unsigned char) 0xAF);
1945   emit_operand(dst, src);
1946 }
1947 
1948 
1949 void Assembler::incl(Address dst) {
1950   // Don't use it directly. Use MacroAssembler::increment() instead.
1951   InstructionMark im(this);
1952   prefix(dst);
1953   emit_int8((unsigned char)0xFF);
1954   emit_operand(rax, dst);
1955 }
1956 
1957 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1958   InstructionMark im(this);
1959   assert((0 <= cc) && (cc < 16), "illegal cc");
1960   if (L.is_bound()) {
1961     address dst = target(L);
1962     assert(dst != NULL, "jcc most probably wrong");
1963 
1964     const int short_size = 2;
1965     const int long_size = 6;
1966     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1967     if (maybe_short && is8bit(offs - short_size)) {
1968       // 0111 tttn #8-bit disp
1969       emit_int8(0x70 | cc);
1970       emit_int8((offs - short_size) & 0xFF);
1971     } else {
1972       // 0000 1111 1000 tttn #32-bit disp
1973       assert(is_simm32(offs - long_size),
1974              "must be 32bit offset (call4)");
1975       emit_int8(0x0F);
1976       emit_int8((unsigned char)(0x80 | cc));
1977       emit_int32(offs - long_size);
1978     }
1979   } else {
1980     // Note: could eliminate cond. jumps to this jump if condition
1981     //       is the same however, seems to be rather unlikely case.
1982     // Note: use jccb() if label to be bound is very close to get
1983     //       an 8-bit displacement
1984     L.add_patch_at(code(), locator());
1985     emit_int8(0x0F);
1986     emit_int8((unsigned char)(0x80 | cc));
1987     emit_int32(0);
1988   }
1989 }
1990 
1991 void Assembler::jccb(Condition cc, Label& L) {
1992   if (L.is_bound()) {
1993     const int short_size = 2;
1994     address entry = target(L);
1995 #ifdef ASSERT
1996     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1997     intptr_t delta = short_branch_delta();
1998     if (delta != 0) {
1999       dist += (dist < 0 ? (-delta) :delta);
2000     }
2001     assert(is8bit(dist), "Dispacement too large for a short jmp");
2002 #endif
2003     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
2004     // 0111 tttn #8-bit disp
2005     emit_int8(0x70 | cc);
2006     emit_int8((offs - short_size) & 0xFF);
2007   } else {
2008     InstructionMark im(this);
2009     L.add_patch_at(code(), locator());
2010     emit_int8(0x70 | cc);
2011     emit_int8(0);
2012   }
2013 }
2014 
2015 void Assembler::jmp(Address adr) {
2016   InstructionMark im(this);
2017   prefix(adr);
2018   emit_int8((unsigned char)0xFF);
2019   emit_operand(rsp, adr);
2020 }
2021 
2022 void Assembler::jmp(Label& L, bool maybe_short) {
2023   if (L.is_bound()) {
2024     address entry = target(L);
2025     assert(entry != NULL, "jmp most probably wrong");
2026     InstructionMark im(this);
2027     const int short_size = 2;
2028     const int long_size = 5;
2029     intptr_t offs = entry - pc();
2030     if (maybe_short && is8bit(offs - short_size)) {
2031       emit_int8((unsigned char)0xEB);
2032       emit_int8((offs - short_size) & 0xFF);
2033     } else {
2034       emit_int8((unsigned char)0xE9);
2035       emit_int32(offs - long_size);
2036     }
2037   } else {
2038     // By default, forward jumps are always 32-bit displacements, since
2039     // we can't yet know where the label will be bound.  If you're sure that
2040     // the forward jump will not run beyond 256 bytes, use jmpb to
2041     // force an 8-bit displacement.
2042     InstructionMark im(this);
2043     L.add_patch_at(code(), locator());
2044     emit_int8((unsigned char)0xE9);
2045     emit_int32(0);
2046   }
2047 }
2048 
2049 void Assembler::jmp(Register entry) {
2050   int encode = prefix_and_encode(entry->encoding());
2051   emit_int8((unsigned char)0xFF);
2052   emit_int8((unsigned char)(0xE0 | encode));
2053 }
2054 
2055 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2056   InstructionMark im(this);
2057   emit_int8((unsigned char)0xE9);
2058   assert(dest != NULL, "must have a target");
2059   intptr_t disp = dest - (pc() + sizeof(int32_t));
2060   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2061   emit_data(disp, rspec.reloc(), call32_operand);
2062 }
2063 
2064 void Assembler::jmpb(Label& L) {
2065   if (L.is_bound()) {
2066     const int short_size = 2;
2067     address entry = target(L);
2068     assert(entry != NULL, "jmp most probably wrong");
2069 #ifdef ASSERT
2070     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2071     intptr_t delta = short_branch_delta();
2072     if (delta != 0) {
2073       dist += (dist < 0 ? (-delta) :delta);
2074     }
2075     assert(is8bit(dist), "Dispacement too large for a short jmp");
2076 #endif
2077     intptr_t offs = entry - pc();
2078     emit_int8((unsigned char)0xEB);
2079     emit_int8((offs - short_size) & 0xFF);
2080   } else {
2081     InstructionMark im(this);
2082     L.add_patch_at(code(), locator());
2083     emit_int8((unsigned char)0xEB);
2084     emit_int8(0);
2085   }
2086 }
2087 
2088 void Assembler::ldmxcsr( Address src) {
2089   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2090   InstructionMark im(this);
2091   prefix(src);
2092   emit_int8(0x0F);
2093   emit_int8((unsigned char)0xAE);
2094   emit_operand(as_Register(2), src);
2095 }
2096 
2097 void Assembler::leal(Register dst, Address src) {
2098   InstructionMark im(this);
2099 #ifdef _LP64
2100   emit_int8(0x67); // addr32
2101   prefix(src, dst);
2102 #endif // LP64
2103   emit_int8((unsigned char)0x8D);
2104   emit_operand(dst, src);
2105 }
2106 
2107 void Assembler::lfence() {
2108   emit_int8(0x0F);
2109   emit_int8((unsigned char)0xAE);
2110   emit_int8((unsigned char)0xE8);
2111 }
2112 
2113 void Assembler::lock() {
2114   emit_int8((unsigned char)0xF0);
2115 }
2116 
2117 void Assembler::lzcntl(Register dst, Register src) {
2118   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2119   emit_int8((unsigned char)0xF3);
2120   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2121   emit_int8(0x0F);
2122   emit_int8((unsigned char)0xBD);
2123   emit_int8((unsigned char)(0xC0 | encode));
2124 }
2125 
2126 // Emit mfence instruction
2127 void Assembler::mfence() {
2128   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2129   emit_int8(0x0F);
2130   emit_int8((unsigned char)0xAE);
2131   emit_int8((unsigned char)0xF0);
2132 }
2133 
2134 void Assembler::mov(Register dst, Register src) {
2135   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2136 }
2137 
2138 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2139   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2140   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2141   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2142   attributes.set_rex_vex_w_reverted();
2143   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2144   emit_int8(0x28);
2145   emit_int8((unsigned char)(0xC0 | encode));
2146 }
2147 
2148 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2149   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2150   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2151   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2152   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2153   emit_int8(0x28);
2154   emit_int8((unsigned char)(0xC0 | encode));
2155 }
2156 
2157 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2158   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2159   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2160   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2161   emit_int8(0x16);
2162   emit_int8((unsigned char)(0xC0 | encode));
2163 }
2164 
2165 void Assembler::movb(Register dst, Address src) {
2166   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2167   InstructionMark im(this);
2168   prefix(src, dst, true);
2169   emit_int8((unsigned char)0x8A);
2170   emit_operand(dst, src);
2171 }
2172 
2173 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2174   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2175   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2176   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2177   attributes.set_rex_vex_w_reverted();
2178   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2179   emit_int8(0x12);
2180   emit_int8(0xC0 | encode);
2181 }
2182 
2183 void Assembler::kmovbl(KRegister dst, Register src) {
2184   assert(VM_Version::supports_avx512dq(), "");
2185   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2186   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2187   emit_int8((unsigned char)0x92);
2188   emit_int8((unsigned char)(0xC0 | encode));
2189 }
2190 
2191 void Assembler::kmovbl(Register dst, KRegister src) {
2192   assert(VM_Version::supports_avx512dq(), "");
2193   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2194   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2195   emit_int8((unsigned char)0x93);
2196   emit_int8((unsigned char)(0xC0 | encode));
2197 }
2198 
2199 void Assembler::kmovwl(KRegister dst, Register src) {
2200   assert(VM_Version::supports_evex(), "");
2201   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2202   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2203   emit_int8((unsigned char)0x92);
2204   emit_int8((unsigned char)(0xC0 | encode));
2205 }
2206 
2207 void Assembler::kmovwl(Register dst, KRegister src) {
2208   assert(VM_Version::supports_evex(), "");
2209   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2210   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2211   emit_int8((unsigned char)0x93);
2212   emit_int8((unsigned char)(0xC0 | encode));
2213 }
2214 
2215 void Assembler::kmovwl(KRegister dst, Address src) {
2216   assert(VM_Version::supports_evex(), "");
2217   InstructionMark im(this);
2218   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2219   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2220   emit_int8((unsigned char)0x90);
2221   emit_operand((Register)dst, src);
2222 }
2223 
2224 void Assembler::kmovdl(KRegister dst, Register src) {
2225   assert(VM_Version::supports_avx512bw(), "");
2226   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2227   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2228   emit_int8((unsigned char)0x92);
2229   emit_int8((unsigned char)(0xC0 | encode));
2230 }
2231 
2232 void Assembler::kmovdl(Register dst, KRegister src) {
2233   assert(VM_Version::supports_avx512bw(), "");
2234   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2235   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2236   emit_int8((unsigned char)0x93);
2237   emit_int8((unsigned char)(0xC0 | encode));
2238 }
2239 
2240 void Assembler::kmovql(KRegister dst, KRegister src) {
2241   assert(VM_Version::supports_avx512bw(), "");
2242   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2243   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2244   emit_int8((unsigned char)0x90);
2245   emit_int8((unsigned char)(0xC0 | encode));
2246 }
2247 
2248 void Assembler::kmovql(KRegister dst, Address src) {
2249   assert(VM_Version::supports_avx512bw(), "");
2250   InstructionMark im(this);
2251   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2252   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2253   emit_int8((unsigned char)0x90);
2254   emit_operand((Register)dst, src);
2255 }
2256 
2257 void Assembler::kmovql(Address dst, KRegister src) {
2258   assert(VM_Version::supports_avx512bw(), "");
2259   InstructionMark im(this);
2260   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2261   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2262   emit_int8((unsigned char)0x90);
2263   emit_operand((Register)src, dst);
2264 }
2265 
2266 void Assembler::kmovql(KRegister dst, Register src) {
2267   assert(VM_Version::supports_avx512bw(), "");
2268   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2269   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2270   emit_int8((unsigned char)0x92);
2271   emit_int8((unsigned char)(0xC0 | encode));
2272 }
2273 
2274 void Assembler::kmovql(Register dst, KRegister src) {
2275   assert(VM_Version::supports_avx512bw(), "");
2276   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2277   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2278   emit_int8((unsigned char)0x93);
2279   emit_int8((unsigned char)(0xC0 | encode));
2280 }
2281 
2282 void Assembler::knotwl(KRegister dst, KRegister src) {
2283   assert(VM_Version::supports_evex(), "");
2284   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2285   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2286   emit_int8((unsigned char)0x44);
2287   emit_int8((unsigned char)(0xC0 | encode));
2288 }
2289 
2290 // This instruction produces ZF or CF flags
2291 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2292   assert(VM_Version::supports_avx512dq(), "");
2293   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2294   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2295   emit_int8((unsigned char)0x98);
2296   emit_int8((unsigned char)(0xC0 | encode));
2297 }
2298 
2299 // This instruction produces ZF or CF flags
2300 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2301   assert(VM_Version::supports_evex(), "");
2302   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2303   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2304   emit_int8((unsigned char)0x98);
2305   emit_int8((unsigned char)(0xC0 | encode));
2306 }
2307 
2308 // This instruction produces ZF or CF flags
2309 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2310   assert(VM_Version::supports_avx512bw(), "");
2311   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2312   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2313   emit_int8((unsigned char)0x98);
2314   emit_int8((unsigned char)(0xC0 | encode));
2315 }
2316 
2317 // This instruction produces ZF or CF flags
2318 void Assembler::kortestql(KRegister src1, KRegister src2) {
2319   assert(VM_Version::supports_avx512bw(), "");
2320   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2321   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2322   emit_int8((unsigned char)0x98);
2323   emit_int8((unsigned char)(0xC0 | encode));
2324 }
2325 
2326 // This instruction produces ZF or CF flags
2327 void Assembler::ktestql(KRegister src1, KRegister src2) {
2328   assert(VM_Version::supports_avx512bw(), "");
2329   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2330   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2331   emit_int8((unsigned char)0x99);
2332   emit_int8((unsigned char)(0xC0 | encode));
2333 }
2334 
2335 void Assembler::ktestq(KRegister src1, KRegister src2) {
2336   assert(VM_Version::supports_avx512bw(), "");
2337   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2338   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2339   emit_int8((unsigned char)0x99);
2340   emit_int8((unsigned char)(0xC0 | encode));
2341 }
2342 
2343 void Assembler::ktestd(KRegister src1, KRegister src2) {
2344   assert(VM_Version::supports_avx512bw(), "");
2345   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2346   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2347   emit_int8((unsigned char)0x99);
2348   emit_int8((unsigned char)(0xC0 | encode));
2349 }
2350 
2351 void Assembler::movb(Address dst, int imm8) {
2352   InstructionMark im(this);
2353    prefix(dst);
2354   emit_int8((unsigned char)0xC6);
2355   emit_operand(rax, dst, 1);
2356   emit_int8(imm8);
2357 }
2358 
2359 
2360 void Assembler::movb(Address dst, Register src) {
2361   assert(src->has_byte_register(), "must have byte register");
2362   InstructionMark im(this);
2363   prefix(dst, src, true);
2364   emit_int8((unsigned char)0x88);
2365   emit_operand(src, dst);
2366 }
2367 
2368 void Assembler::movdl(XMMRegister dst, Register src) {
2369   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2370   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2371   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2372   emit_int8(0x6E);
2373   emit_int8((unsigned char)(0xC0 | encode));
2374 }
2375 
2376 void Assembler::movdl(Register dst, XMMRegister src) {
2377   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2378   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2379   // swap src/dst to get correct prefix
2380   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2381   emit_int8(0x7E);
2382   emit_int8((unsigned char)(0xC0 | encode));
2383 }
2384 
2385 void Assembler::movdl(XMMRegister dst, Address src) {
2386   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2387   InstructionMark im(this);
2388   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2389   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2390   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2391   emit_int8(0x6E);
2392   emit_operand(dst, src);
2393 }
2394 
2395 void Assembler::movdl(Address dst, XMMRegister src) {
2396   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2397   InstructionMark im(this);
2398   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2399   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2400   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2401   emit_int8(0x7E);
2402   emit_operand(src, dst);
2403 }
2404 
2405 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2406   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2407   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2408   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2409   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2410   emit_int8(0x6F);
2411   emit_int8((unsigned char)(0xC0 | encode));
2412 }
2413 
2414 void Assembler::movdqa(XMMRegister dst, Address src) {
2415   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2416   InstructionMark im(this);
2417   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2418   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2419   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2420   emit_int8(0x6F);
2421   emit_operand(dst, src);
2422 }
2423 
2424 void Assembler::movdqu(XMMRegister dst, Address src) {
2425   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2426   InstructionMark im(this);
2427   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2428   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2429   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2430   emit_int8(0x6F);
2431   emit_operand(dst, src);
2432 }
2433 
2434 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2435   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2436   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2437   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2438   emit_int8(0x6F);
2439   emit_int8((unsigned char)(0xC0 | encode));
2440 }
2441 
2442 void Assembler::movdqu(Address dst, XMMRegister src) {
2443   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2444   InstructionMark im(this);
2445   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2446   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2447   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2448   emit_int8(0x7F);
2449   emit_operand(src, dst);
2450 }
2451 
2452 // Move Unaligned 256bit Vector
2453 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2454   assert(UseAVX > 0, "");
2455   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2456   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2457   emit_int8(0x6F);
2458   emit_int8((unsigned char)(0xC0 | encode));
2459 }
2460 
2461 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2462   assert(UseAVX > 0, "");
2463   InstructionMark im(this);
2464   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2465   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2466   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2467   emit_int8(0x6F);
2468   emit_operand(dst, src);
2469 }
2470 
2471 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2472   assert(UseAVX > 0, "");
2473   InstructionMark im(this);
2474   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2475   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2476   // swap src<->dst for encoding
2477   assert(src != xnoreg, "sanity");
2478   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2479   emit_int8(0x7F);
2480   emit_operand(src, dst);
2481 }
2482 
2483 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2484 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2485   assert(VM_Version::supports_evex(), "");
2486   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2487   attributes.set_is_evex_instruction();
2488   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2489   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2490   emit_int8(0x6F);
2491   emit_int8((unsigned char)(0xC0 | encode));
2492 }
2493 
2494 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2495   assert(VM_Version::supports_evex(), "");
2496   InstructionMark im(this);
2497   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2498   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2499   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2500   attributes.set_is_evex_instruction();
2501   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2502   emit_int8(0x6F);
2503   emit_operand(dst, src);
2504 }
2505 
2506 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2507   assert(VM_Version::supports_evex(), "");
2508   assert(src != xnoreg, "sanity");
2509   InstructionMark im(this);
2510   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2511   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2512   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2513   attributes.set_is_evex_instruction();
2514   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2515   emit_int8(0x7F);
2516   emit_operand(src, dst);
2517 }
2518 
2519 void Assembler::evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2520   assert(VM_Version::supports_avx512vlbw(), "");
2521   assert(is_vector_masking(), "");    // For stub code use only
2522   InstructionMark im(this);
2523   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2524   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2525   attributes.set_embedded_opmask_register_specifier(mask);
2526   attributes.set_is_evex_instruction();
2527   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2528   emit_int8(0x6F);
2529   emit_operand(dst, src);
2530 }
2531 
2532 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2533   assert(VM_Version::supports_evex(), "");
2534   InstructionMark im(this);
2535   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2536   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2537   attributes.set_is_evex_instruction();
2538   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2539   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2540   emit_int8(0x6F);
2541   emit_operand(dst, src);
2542 }
2543 
2544 void Assembler::evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2545   assert(is_vector_masking(), "");
2546   assert(VM_Version::supports_avx512vlbw(), "");
2547   InstructionMark im(this);
2548   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2549   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2550   attributes.set_embedded_opmask_register_specifier(mask);
2551   attributes.set_is_evex_instruction();
2552   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2553   emit_int8(0x6F);
2554   emit_operand(dst, src);
2555 }
2556 
2557 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2558   assert(VM_Version::supports_evex(), "");
2559   assert(src != xnoreg, "sanity");
2560   InstructionMark im(this);
2561   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2562   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2563   attributes.set_is_evex_instruction();
2564   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2565   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2566   emit_int8(0x7F);
2567   emit_operand(src, dst);
2568 }
2569 
2570 void Assembler::evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len) {
2571   assert(VM_Version::supports_avx512vlbw(), "");
2572   assert(src != xnoreg, "sanity");
2573   InstructionMark im(this);
2574   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2575   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2576   attributes.set_embedded_opmask_register_specifier(mask);
2577   attributes.set_is_evex_instruction();
2578   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2579   emit_int8(0x7F);
2580   emit_operand(src, dst);
2581 }
2582 
2583 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2584   assert(VM_Version::supports_evex(), "");
2585   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2586   attributes.set_is_evex_instruction();
2587   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2588   emit_int8(0x6F);
2589   emit_int8((unsigned char)(0xC0 | encode));
2590 }
2591 
2592 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2593   assert(VM_Version::supports_evex(), "");
2594   InstructionMark im(this);
2595   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ true);
2596   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2597   attributes.set_is_evex_instruction();
2598   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2599   emit_int8(0x6F);
2600   emit_operand(dst, src);
2601 }
2602 
2603 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2604   assert(VM_Version::supports_evex(), "");
2605   assert(src != xnoreg, "sanity");
2606   InstructionMark im(this);
2607   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2608   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2609   attributes.set_is_evex_instruction();
2610   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2611   emit_int8(0x7F);
2612   emit_operand(src, dst);
2613 }
2614 
2615 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2616   assert(VM_Version::supports_evex(), "");
2617   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2618   attributes.set_is_evex_instruction();
2619   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2620   emit_int8(0x6F);
2621   emit_int8((unsigned char)(0xC0 | encode));
2622 }
2623 
2624 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2625   assert(VM_Version::supports_evex(), "");
2626   InstructionMark im(this);
2627   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2628   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2629   attributes.set_is_evex_instruction();
2630   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2631   emit_int8(0x6F);
2632   emit_operand(dst, src);
2633 }
2634 
2635 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2636   assert(VM_Version::supports_evex(), "");
2637   assert(src != xnoreg, "sanity");
2638   InstructionMark im(this);
2639   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2640   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2641   attributes.set_is_evex_instruction();
2642   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2643   emit_int8(0x7F);
2644   emit_operand(src, dst);
2645 }
2646 
2647 // Uses zero extension on 64bit
2648 
2649 void Assembler::movl(Register dst, int32_t imm32) {
2650   int encode = prefix_and_encode(dst->encoding());
2651   emit_int8((unsigned char)(0xB8 | encode));
2652   emit_int32(imm32);
2653 }
2654 
2655 void Assembler::movl(Register dst, Register src) {
2656   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2657   emit_int8((unsigned char)0x8B);
2658   emit_int8((unsigned char)(0xC0 | encode));
2659 }
2660 
2661 void Assembler::movl(Register dst, Address src) {
2662   InstructionMark im(this);
2663   prefix(src, dst);
2664   emit_int8((unsigned char)0x8B);
2665   emit_operand(dst, src);
2666 }
2667 
2668 void Assembler::movl(Address dst, int32_t imm32) {
2669   InstructionMark im(this);
2670   prefix(dst);
2671   emit_int8((unsigned char)0xC7);
2672   emit_operand(rax, dst, 4);
2673   emit_int32(imm32);
2674 }
2675 
2676 void Assembler::movl(Address dst, Register src) {
2677   InstructionMark im(this);
2678   prefix(dst, src);
2679   emit_int8((unsigned char)0x89);
2680   emit_operand(src, dst);
2681 }
2682 
2683 // New cpus require to use movsd and movss to avoid partial register stall
2684 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2685 // The selection is done in MacroAssembler::movdbl() and movflt().
2686 void Assembler::movlpd(XMMRegister dst, Address src) {
2687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2688   InstructionMark im(this);
2689   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2690   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2691   attributes.set_rex_vex_w_reverted();
2692   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2693   emit_int8(0x12);
2694   emit_operand(dst, src);
2695 }
2696 
2697 void Assembler::movq( MMXRegister dst, Address src ) {
2698   assert( VM_Version::supports_mmx(), "" );
2699   emit_int8(0x0F);
2700   emit_int8(0x6F);
2701   emit_operand(dst, src);
2702 }
2703 
2704 void Assembler::movq( Address dst, MMXRegister src ) {
2705   assert( VM_Version::supports_mmx(), "" );
2706   emit_int8(0x0F);
2707   emit_int8(0x7F);
2708   // workaround gcc (3.2.1-7a) bug
2709   // In that version of gcc with only an emit_operand(MMX, Address)
2710   // gcc will tail jump and try and reverse the parameters completely
2711   // obliterating dst in the process. By having a version available
2712   // that doesn't need to swap the args at the tail jump the bug is
2713   // avoided.
2714   emit_operand(dst, src);
2715 }
2716 
2717 void Assembler::movq(XMMRegister dst, Address src) {
2718   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2719   InstructionMark im(this);
2720   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2721   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2722   attributes.set_rex_vex_w_reverted();
2723   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2724   emit_int8(0x7E);
2725   emit_operand(dst, src);
2726 }
2727 
2728 void Assembler::movq(Address dst, XMMRegister src) {
2729   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2730   InstructionMark im(this);
2731   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2732   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2733   attributes.set_rex_vex_w_reverted();
2734   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2735   emit_int8((unsigned char)0xD6);
2736   emit_operand(src, dst);
2737 }
2738 
2739 void Assembler::movsbl(Register dst, Address src) { // movsxb
2740   InstructionMark im(this);
2741   prefix(src, dst);
2742   emit_int8(0x0F);
2743   emit_int8((unsigned char)0xBE);
2744   emit_operand(dst, src);
2745 }
2746 
2747 void Assembler::movsbl(Register dst, Register src) { // movsxb
2748   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2749   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2750   emit_int8(0x0F);
2751   emit_int8((unsigned char)0xBE);
2752   emit_int8((unsigned char)(0xC0 | encode));
2753 }
2754 
2755 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2756   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2757   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2758   attributes.set_rex_vex_w_reverted();
2759   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2760   emit_int8(0x10);
2761   emit_int8((unsigned char)(0xC0 | encode));
2762 }
2763 
2764 void Assembler::movsd(XMMRegister dst, Address src) {
2765   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2766   InstructionMark im(this);
2767   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2768   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2769   attributes.set_rex_vex_w_reverted();
2770   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2771   emit_int8(0x10);
2772   emit_operand(dst, src);
2773 }
2774 
2775 void Assembler::movsd(Address dst, XMMRegister src) {
2776   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2777   InstructionMark im(this);
2778   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2779   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2780   attributes.set_rex_vex_w_reverted();
2781   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2782   emit_int8(0x11);
2783   emit_operand(src, dst);
2784 }
2785 
2786 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2787   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2788   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2789   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2790   emit_int8(0x10);
2791   emit_int8((unsigned char)(0xC0 | encode));
2792 }
2793 
2794 void Assembler::movss(XMMRegister dst, Address src) {
2795   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2796   InstructionMark im(this);
2797   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2798   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2799   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2800   emit_int8(0x10);
2801   emit_operand(dst, src);
2802 }
2803 
2804 void Assembler::movss(Address dst, XMMRegister src) {
2805   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2806   InstructionMark im(this);
2807   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2808   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2809   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2810   emit_int8(0x11);
2811   emit_operand(src, dst);
2812 }
2813 
2814 void Assembler::movswl(Register dst, Address src) { // movsxw
2815   InstructionMark im(this);
2816   prefix(src, dst);
2817   emit_int8(0x0F);
2818   emit_int8((unsigned char)0xBF);
2819   emit_operand(dst, src);
2820 }
2821 
2822 void Assembler::movswl(Register dst, Register src) { // movsxw
2823   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2824   emit_int8(0x0F);
2825   emit_int8((unsigned char)0xBF);
2826   emit_int8((unsigned char)(0xC0 | encode));
2827 }
2828 
2829 void Assembler::movw(Address dst, int imm16) {
2830   InstructionMark im(this);
2831 
2832   emit_int8(0x66); // switch to 16-bit mode
2833   prefix(dst);
2834   emit_int8((unsigned char)0xC7);
2835   emit_operand(rax, dst, 2);
2836   emit_int16(imm16);
2837 }
2838 
2839 void Assembler::movw(Register dst, Address src) {
2840   InstructionMark im(this);
2841   emit_int8(0x66);
2842   prefix(src, dst);
2843   emit_int8((unsigned char)0x8B);
2844   emit_operand(dst, src);
2845 }
2846 
2847 void Assembler::movw(Address dst, Register src) {
2848   InstructionMark im(this);
2849   emit_int8(0x66);
2850   prefix(dst, src);
2851   emit_int8((unsigned char)0x89);
2852   emit_operand(src, dst);
2853 }
2854 
2855 void Assembler::movzbl(Register dst, Address src) { // movzxb
2856   InstructionMark im(this);
2857   prefix(src, dst);
2858   emit_int8(0x0F);
2859   emit_int8((unsigned char)0xB6);
2860   emit_operand(dst, src);
2861 }
2862 
2863 void Assembler::movzbl(Register dst, Register src) { // movzxb
2864   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2865   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2866   emit_int8(0x0F);
2867   emit_int8((unsigned char)0xB6);
2868   emit_int8(0xC0 | encode);
2869 }
2870 
2871 void Assembler::movzwl(Register dst, Address src) { // movzxw
2872   InstructionMark im(this);
2873   prefix(src, dst);
2874   emit_int8(0x0F);
2875   emit_int8((unsigned char)0xB7);
2876   emit_operand(dst, src);
2877 }
2878 
2879 void Assembler::movzwl(Register dst, Register src) { // movzxw
2880   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2881   emit_int8(0x0F);
2882   emit_int8((unsigned char)0xB7);
2883   emit_int8(0xC0 | encode);
2884 }
2885 
2886 void Assembler::mull(Address src) {
2887   InstructionMark im(this);
2888   prefix(src);
2889   emit_int8((unsigned char)0xF7);
2890   emit_operand(rsp, src);
2891 }
2892 
2893 void Assembler::mull(Register src) {
2894   int encode = prefix_and_encode(src->encoding());
2895   emit_int8((unsigned char)0xF7);
2896   emit_int8((unsigned char)(0xE0 | encode));
2897 }
2898 
2899 void Assembler::mulsd(XMMRegister dst, Address src) {
2900   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2901   InstructionMark im(this);
2902   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2903   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2904   attributes.set_rex_vex_w_reverted();
2905   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2906   emit_int8(0x59);
2907   emit_operand(dst, src);
2908 }
2909 
2910 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2911   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2912   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2913   attributes.set_rex_vex_w_reverted();
2914   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2915   emit_int8(0x59);
2916   emit_int8((unsigned char)(0xC0 | encode));
2917 }
2918 
2919 void Assembler::mulss(XMMRegister dst, Address src) {
2920   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2921   InstructionMark im(this);
2922   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2923   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2924   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2925   emit_int8(0x59);
2926   emit_operand(dst, src);
2927 }
2928 
2929 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2930   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2931   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2932   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2933   emit_int8(0x59);
2934   emit_int8((unsigned char)(0xC0 | encode));
2935 }
2936 
2937 void Assembler::negl(Register dst) {
2938   int encode = prefix_and_encode(dst->encoding());
2939   emit_int8((unsigned char)0xF7);
2940   emit_int8((unsigned char)(0xD8 | encode));
2941 }
2942 
2943 void Assembler::nop(int i) {
2944 #ifdef ASSERT
2945   assert(i > 0, " ");
2946   // The fancy nops aren't currently recognized by debuggers making it a
2947   // pain to disassemble code while debugging. If asserts are on clearly
2948   // speed is not an issue so simply use the single byte traditional nop
2949   // to do alignment.
2950 
2951   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2952   return;
2953 
2954 #endif // ASSERT
2955 
2956   if (UseAddressNop && VM_Version::is_intel()) {
2957     //
2958     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2959     //  1: 0x90
2960     //  2: 0x66 0x90
2961     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2962     //  4: 0x0F 0x1F 0x40 0x00
2963     //  5: 0x0F 0x1F 0x44 0x00 0x00
2964     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2965     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2966     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2967     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2968     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2969     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2970 
2971     // The rest coding is Intel specific - don't use consecutive address nops
2972 
2973     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2974     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2975     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2976     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2977 
2978     while(i >= 15) {
2979       // For Intel don't generate consecutive addess nops (mix with regular nops)
2980       i -= 15;
2981       emit_int8(0x66);   // size prefix
2982       emit_int8(0x66);   // size prefix
2983       emit_int8(0x66);   // size prefix
2984       addr_nop_8();
2985       emit_int8(0x66);   // size prefix
2986       emit_int8(0x66);   // size prefix
2987       emit_int8(0x66);   // size prefix
2988       emit_int8((unsigned char)0x90);
2989                          // nop
2990     }
2991     switch (i) {
2992       case 14:
2993         emit_int8(0x66); // size prefix
2994       case 13:
2995         emit_int8(0x66); // size prefix
2996       case 12:
2997         addr_nop_8();
2998         emit_int8(0x66); // size prefix
2999         emit_int8(0x66); // size prefix
3000         emit_int8(0x66); // size prefix
3001         emit_int8((unsigned char)0x90);
3002                          // nop
3003         break;
3004       case 11:
3005         emit_int8(0x66); // size prefix
3006       case 10:
3007         emit_int8(0x66); // size prefix
3008       case 9:
3009         emit_int8(0x66); // size prefix
3010       case 8:
3011         addr_nop_8();
3012         break;
3013       case 7:
3014         addr_nop_7();
3015         break;
3016       case 6:
3017         emit_int8(0x66); // size prefix
3018       case 5:
3019         addr_nop_5();
3020         break;
3021       case 4:
3022         addr_nop_4();
3023         break;
3024       case 3:
3025         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3026         emit_int8(0x66); // size prefix
3027       case 2:
3028         emit_int8(0x66); // size prefix
3029       case 1:
3030         emit_int8((unsigned char)0x90);
3031                          // nop
3032         break;
3033       default:
3034         assert(i == 0, " ");
3035     }
3036     return;
3037   }
3038   if (UseAddressNop && VM_Version::is_amd()) {
3039     //
3040     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
3041     //  1: 0x90
3042     //  2: 0x66 0x90
3043     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3044     //  4: 0x0F 0x1F 0x40 0x00
3045     //  5: 0x0F 0x1F 0x44 0x00 0x00
3046     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3047     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3048     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3049     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3050     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3051     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3052 
3053     // The rest coding is AMD specific - use consecutive address nops
3054 
3055     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3056     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3057     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3058     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3059     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3060     //     Size prefixes (0x66) are added for larger sizes
3061 
3062     while(i >= 22) {
3063       i -= 11;
3064       emit_int8(0x66); // size prefix
3065       emit_int8(0x66); // size prefix
3066       emit_int8(0x66); // size prefix
3067       addr_nop_8();
3068     }
3069     // Generate first nop for size between 21-12
3070     switch (i) {
3071       case 21:
3072         i -= 1;
3073         emit_int8(0x66); // size prefix
3074       case 20:
3075       case 19:
3076         i -= 1;
3077         emit_int8(0x66); // size prefix
3078       case 18:
3079       case 17:
3080         i -= 1;
3081         emit_int8(0x66); // size prefix
3082       case 16:
3083       case 15:
3084         i -= 8;
3085         addr_nop_8();
3086         break;
3087       case 14:
3088       case 13:
3089         i -= 7;
3090         addr_nop_7();
3091         break;
3092       case 12:
3093         i -= 6;
3094         emit_int8(0x66); // size prefix
3095         addr_nop_5();
3096         break;
3097       default:
3098         assert(i < 12, " ");
3099     }
3100 
3101     // Generate second nop for size between 11-1
3102     switch (i) {
3103       case 11:
3104         emit_int8(0x66); // size prefix
3105       case 10:
3106         emit_int8(0x66); // size prefix
3107       case 9:
3108         emit_int8(0x66); // size prefix
3109       case 8:
3110         addr_nop_8();
3111         break;
3112       case 7:
3113         addr_nop_7();
3114         break;
3115       case 6:
3116         emit_int8(0x66); // size prefix
3117       case 5:
3118         addr_nop_5();
3119         break;
3120       case 4:
3121         addr_nop_4();
3122         break;
3123       case 3:
3124         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3125         emit_int8(0x66); // size prefix
3126       case 2:
3127         emit_int8(0x66); // size prefix
3128       case 1:
3129         emit_int8((unsigned char)0x90);
3130                          // nop
3131         break;
3132       default:
3133         assert(i == 0, " ");
3134     }
3135     return;
3136   }
3137 
3138   // Using nops with size prefixes "0x66 0x90".
3139   // From AMD Optimization Guide:
3140   //  1: 0x90
3141   //  2: 0x66 0x90
3142   //  3: 0x66 0x66 0x90
3143   //  4: 0x66 0x66 0x66 0x90
3144   //  5: 0x66 0x66 0x90 0x66 0x90
3145   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3146   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3147   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3148   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3149   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3150   //
3151   while(i > 12) {
3152     i -= 4;
3153     emit_int8(0x66); // size prefix
3154     emit_int8(0x66);
3155     emit_int8(0x66);
3156     emit_int8((unsigned char)0x90);
3157                      // nop
3158   }
3159   // 1 - 12 nops
3160   if(i > 8) {
3161     if(i > 9) {
3162       i -= 1;
3163       emit_int8(0x66);
3164     }
3165     i -= 3;
3166     emit_int8(0x66);
3167     emit_int8(0x66);
3168     emit_int8((unsigned char)0x90);
3169   }
3170   // 1 - 8 nops
3171   if(i > 4) {
3172     if(i > 6) {
3173       i -= 1;
3174       emit_int8(0x66);
3175     }
3176     i -= 3;
3177     emit_int8(0x66);
3178     emit_int8(0x66);
3179     emit_int8((unsigned char)0x90);
3180   }
3181   switch (i) {
3182     case 4:
3183       emit_int8(0x66);
3184     case 3:
3185       emit_int8(0x66);
3186     case 2:
3187       emit_int8(0x66);
3188     case 1:
3189       emit_int8((unsigned char)0x90);
3190       break;
3191     default:
3192       assert(i == 0, " ");
3193   }
3194 }
3195 
3196 void Assembler::notl(Register dst) {
3197   int encode = prefix_and_encode(dst->encoding());
3198   emit_int8((unsigned char)0xF7);
3199   emit_int8((unsigned char)(0xD0 | encode));
3200 }
3201 
3202 void Assembler::orl(Address dst, int32_t imm32) {
3203   InstructionMark im(this);
3204   prefix(dst);
3205   emit_arith_operand(0x81, rcx, dst, imm32);
3206 }
3207 
3208 void Assembler::orl(Register dst, int32_t imm32) {
3209   prefix(dst);
3210   emit_arith(0x81, 0xC8, dst, imm32);
3211 }
3212 
3213 void Assembler::orl(Register dst, Address src) {
3214   InstructionMark im(this);
3215   prefix(src, dst);
3216   emit_int8(0x0B);
3217   emit_operand(dst, src);
3218 }
3219 
3220 void Assembler::orl(Register dst, Register src) {
3221   (void) prefix_and_encode(dst->encoding(), src->encoding());
3222   emit_arith(0x0B, 0xC0, dst, src);
3223 }
3224 
3225 void Assembler::orl(Address dst, Register src) {
3226   InstructionMark im(this);
3227   prefix(dst, src);
3228   emit_int8(0x09);
3229   emit_operand(src, dst);
3230 }
3231 
3232 void Assembler::packuswb(XMMRegister dst, Address src) {
3233   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3234   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3235   InstructionMark im(this);
3236   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3237   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3238   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3239   emit_int8(0x67);
3240   emit_operand(dst, src);
3241 }
3242 
3243 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3244   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3245   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3246   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3247   emit_int8(0x67);
3248   emit_int8((unsigned char)(0xC0 | encode));
3249 }
3250 
3251 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3252   assert(UseAVX > 0, "some form of AVX must be enabled");
3253   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3254   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3255   emit_int8(0x67);
3256   emit_int8((unsigned char)(0xC0 | encode));
3257 }
3258 
3259 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3260   assert(VM_Version::supports_avx2(), "");
3261   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3262   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3263   emit_int8(0x00);
3264   emit_int8(0xC0 | encode);
3265   emit_int8(imm8);
3266 }
3267 
3268 void Assembler::vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8) {
3269   assert(VM_Version::supports_avx2(), "");
3270   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3271   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3272   emit_int8(0x46);
3273   emit_int8(0xC0 | encode);
3274   emit_int8(imm8);
3275 }
3276 
3277 
3278 void Assembler::pause() {
3279   emit_int8((unsigned char)0xF3);
3280   emit_int8((unsigned char)0x90);
3281 }
3282 
3283 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3284   assert(VM_Version::supports_sse4_2(), "");
3285   InstructionMark im(this);
3286   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3287   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3288   emit_int8(0x61);
3289   emit_operand(dst, src);
3290   emit_int8(imm8);
3291 }
3292 
3293 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3294   assert(VM_Version::supports_sse4_2(), "");
3295   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3296   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3297   emit_int8(0x61);
3298   emit_int8((unsigned char)(0xC0 | encode));
3299   emit_int8(imm8);
3300 }
3301 
3302 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3303 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3304   assert(VM_Version::supports_sse2(), "");
3305   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3306   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3307   emit_int8(0x74);
3308   emit_int8((unsigned char)(0xC0 | encode));
3309 }
3310 
3311 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3312 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3313   assert(VM_Version::supports_avx(), "");
3314   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3315   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3316   emit_int8(0x74);
3317   emit_int8((unsigned char)(0xC0 | encode));
3318 }
3319 
3320 // In this context, kdst is written the mask used to process the equal components
3321 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3322   assert(VM_Version::supports_avx512bw(), "");
3323   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3324   attributes.set_is_evex_instruction();
3325   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3326   emit_int8(0x74);
3327   emit_int8((unsigned char)(0xC0 | encode));
3328 }
3329 
3330 void Assembler::evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3331   assert(VM_Version::supports_avx512vlbw(), "");
3332   InstructionMark im(this);
3333   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3334   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3335   attributes.set_is_evex_instruction();
3336   int dst_enc = kdst->encoding();
3337   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3338   emit_int8(0x64);
3339   emit_operand(as_Register(dst_enc), src);
3340 }
3341 
3342 void Assembler::evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3343   assert(is_vector_masking(), "");
3344   assert(VM_Version::supports_avx512vlbw(), "");
3345   InstructionMark im(this);
3346   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3347   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3348   attributes.set_embedded_opmask_register_specifier(mask);
3349   attributes.set_is_evex_instruction();
3350   int dst_enc = kdst->encoding();
3351   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3352   emit_int8(0x64);
3353   emit_operand(as_Register(dst_enc), src);
3354 }
3355 
3356 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3357   assert(VM_Version::supports_avx512vlbw(), "");
3358   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3359   attributes.set_is_evex_instruction();
3360   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3361   emit_int8(0x3E);
3362   emit_int8((unsigned char)(0xC0 | encode));
3363   emit_int8(vcc);
3364 }
3365 
3366 void Assembler::evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3367   assert(is_vector_masking(), "");
3368   assert(VM_Version::supports_avx512vlbw(), "");
3369   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3370   attributes.set_embedded_opmask_register_specifier(mask);
3371   attributes.set_is_evex_instruction();
3372   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3373   emit_int8(0x3E);
3374   emit_int8((unsigned char)(0xC0 | encode));
3375   emit_int8(vcc);
3376 }
3377 
3378 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len) {
3379   assert(VM_Version::supports_avx512vlbw(), "");
3380   InstructionMark im(this);
3381   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3382   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3383   attributes.set_is_evex_instruction();
3384   int dst_enc = kdst->encoding();
3385   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3386   emit_int8(0x3E);
3387   emit_operand(as_Register(dst_enc), src);
3388   emit_int8(vcc);
3389 }
3390 
3391 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3392   assert(VM_Version::supports_avx512bw(), "");
3393   InstructionMark im(this);
3394   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3395   attributes.set_is_evex_instruction();
3396   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3397   int dst_enc = kdst->encoding();
3398   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3399   emit_int8(0x74);
3400   emit_operand(as_Register(dst_enc), src);
3401 }
3402 
3403 void Assembler::evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3404   assert(VM_Version::supports_avx512vlbw(), "");
3405   assert(is_vector_masking(), "");    // For stub code use only
3406   InstructionMark im(this);
3407   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_reg_mask */ false, /* uses_vl */ false);
3408   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3409   attributes.set_embedded_opmask_register_specifier(mask);
3410   attributes.set_is_evex_instruction();
3411   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3412   emit_int8(0x74);
3413   emit_operand(as_Register(kdst->encoding()), src);
3414 }
3415 
3416 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3417 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3418   assert(VM_Version::supports_sse2(), "");
3419   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3420   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3421   emit_int8(0x75);
3422   emit_int8((unsigned char)(0xC0 | encode));
3423 }
3424 
3425 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3426 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3427   assert(VM_Version::supports_avx(), "");
3428   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3429   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3430   emit_int8(0x75);
3431   emit_int8((unsigned char)(0xC0 | encode));
3432 }
3433 
3434 // In this context, kdst is written the mask used to process the equal components
3435 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3436   assert(VM_Version::supports_avx512bw(), "");
3437   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3438   attributes.set_is_evex_instruction();
3439   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3440   emit_int8(0x75);
3441   emit_int8((unsigned char)(0xC0 | encode));
3442 }
3443 
3444 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3445   assert(VM_Version::supports_avx512bw(), "");
3446   InstructionMark im(this);
3447   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3448   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3449   attributes.set_is_evex_instruction();
3450   int dst_enc = kdst->encoding();
3451   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3452   emit_int8(0x75);
3453   emit_operand(as_Register(dst_enc), src);
3454 }
3455 
3456 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3457 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3458   assert(VM_Version::supports_sse2(), "");
3459   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3460   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3461   emit_int8(0x76);
3462   emit_int8((unsigned char)(0xC0 | encode));
3463 }
3464 
3465 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3466 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3467   assert(VM_Version::supports_avx(), "");
3468   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3469   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3470   emit_int8(0x76);
3471   emit_int8((unsigned char)(0xC0 | encode));
3472 }
3473 
3474 // In this context, kdst is written the mask used to process the equal components
3475 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3476   assert(VM_Version::supports_evex(), "");
3477   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3478   attributes.set_is_evex_instruction();
3479   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3480   emit_int8(0x76);
3481   emit_int8((unsigned char)(0xC0 | encode));
3482 }
3483 
3484 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3485   assert(VM_Version::supports_evex(), "");
3486   InstructionMark im(this);
3487   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3488   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3489   attributes.set_is_evex_instruction();
3490   int dst_enc = kdst->encoding();
3491   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3492   emit_int8(0x76);
3493   emit_operand(as_Register(dst_enc), src);
3494 }
3495 
3496 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3497 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3498   assert(VM_Version::supports_sse4_1(), "");
3499   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3500   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3501   emit_int8(0x29);
3502   emit_int8((unsigned char)(0xC0 | encode));
3503 }
3504 
3505 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3506 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3507   assert(VM_Version::supports_avx(), "");
3508   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3509   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3510   emit_int8(0x29);
3511   emit_int8((unsigned char)(0xC0 | encode));
3512 }
3513 
3514 // In this context, kdst is written the mask used to process the equal components
3515 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3516   assert(VM_Version::supports_evex(), "");
3517   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3518   attributes.set_is_evex_instruction();
3519   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3520   emit_int8(0x29);
3521   emit_int8((unsigned char)(0xC0 | encode));
3522 }
3523 
3524 // In this context, kdst is written the mask used to process the equal components
3525 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3526   assert(VM_Version::supports_evex(), "");
3527   InstructionMark im(this);
3528   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3529   attributes.set_is_evex_instruction();
3530   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3531   int dst_enc = kdst->encoding();
3532   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3533   emit_int8(0x29);
3534   emit_operand(as_Register(dst_enc), src);
3535 }
3536 
3537 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3538   assert(VM_Version::supports_sse2(), "");
3539   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3540   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3541   emit_int8((unsigned char)0xD7);
3542   emit_int8((unsigned char)(0xC0 | encode));
3543 }
3544 
3545 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3546   assert(VM_Version::supports_avx2(), "");
3547   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3548   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3549   emit_int8((unsigned char)0xD7);
3550   emit_int8((unsigned char)(0xC0 | encode));
3551 }
3552 
3553 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3554   assert(VM_Version::supports_sse4_1(), "");
3555   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3556   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3557   emit_int8(0x16);
3558   emit_int8((unsigned char)(0xC0 | encode));
3559   emit_int8(imm8);
3560 }
3561 
3562 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3563   assert(VM_Version::supports_sse4_1(), "");
3564   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3565   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3566   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3567   emit_int8(0x16);
3568   emit_operand(src, dst);
3569   emit_int8(imm8);
3570 }
3571 
3572 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3573   assert(VM_Version::supports_sse4_1(), "");
3574   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3575   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3576   emit_int8(0x16);
3577   emit_int8((unsigned char)(0xC0 | encode));
3578   emit_int8(imm8);
3579 }
3580 
3581 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3582   assert(VM_Version::supports_sse4_1(), "");
3583   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3584   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3585   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3586   emit_int8(0x16);
3587   emit_operand(src, dst);
3588   emit_int8(imm8);
3589 }
3590 
3591 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3592   assert(VM_Version::supports_sse2(), "");
3593   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3594   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3595   emit_int8((unsigned char)0xC5);
3596   emit_int8((unsigned char)(0xC0 | encode));
3597   emit_int8(imm8);
3598 }
3599 
3600 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3601   assert(VM_Version::supports_sse4_1(), "");
3602   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3603   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3604   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3605   emit_int8((unsigned char)0x15);
3606   emit_operand(src, dst);
3607   emit_int8(imm8);
3608 }
3609 
3610 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3611   assert(VM_Version::supports_sse4_1(), "");
3612   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3613   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3614   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3615   emit_int8(0x14);
3616   emit_operand(src, dst);
3617   emit_int8(imm8);
3618 }
3619 
3620 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3621   assert(VM_Version::supports_sse4_1(), "");
3622   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3623   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3624   emit_int8(0x22);
3625   emit_int8((unsigned char)(0xC0 | encode));
3626   emit_int8(imm8);
3627 }
3628 
3629 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3630   assert(VM_Version::supports_sse4_1(), "");
3631   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3632   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3633   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3634   emit_int8(0x22);
3635   emit_operand(dst,src);
3636   emit_int8(imm8);
3637 }
3638 
3639 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3640   assert(VM_Version::supports_sse4_1(), "");
3641   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3642   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3643   emit_int8(0x22);
3644   emit_int8((unsigned char)(0xC0 | encode));
3645   emit_int8(imm8);
3646 }
3647 
3648 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3649   assert(VM_Version::supports_sse4_1(), "");
3650   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3651   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3652   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3653   emit_int8(0x22);
3654   emit_operand(dst, src);
3655   emit_int8(imm8);
3656 }
3657 
3658 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3659   assert(VM_Version::supports_sse2(), "");
3660   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3661   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3662   emit_int8((unsigned char)0xC4);
3663   emit_int8((unsigned char)(0xC0 | encode));
3664   emit_int8(imm8);
3665 }
3666 
3667 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3668   assert(VM_Version::supports_sse2(), "");
3669   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3670   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3671   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3672   emit_int8((unsigned char)0xC4);
3673   emit_operand(dst, src);
3674   emit_int8(imm8);
3675 }
3676 
3677 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3678   assert(VM_Version::supports_sse4_1(), "");
3679   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3680   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3681   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3682   emit_int8(0x20);
3683   emit_operand(dst, src);
3684   emit_int8(imm8);
3685 }
3686 
3687 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3688   assert(VM_Version::supports_sse4_1(), "");
3689   InstructionMark im(this);
3690   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3691   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3692   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3693   emit_int8(0x30);
3694   emit_operand(dst, src);
3695 }
3696 
3697 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3698   assert(VM_Version::supports_sse4_1(), "");
3699   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3700   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3701   emit_int8(0x30);
3702   emit_int8((unsigned char)(0xC0 | encode));
3703 }
3704 
3705 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3706   assert(VM_Version::supports_avx(), "");
3707   InstructionMark im(this);
3708   assert(dst != xnoreg, "sanity");
3709   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3710   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3711   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3712   emit_int8(0x30);
3713   emit_operand(dst, src);
3714 }
3715 
3716 void Assembler::evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
3717   assert(is_vector_masking(), "");
3718   assert(VM_Version::supports_avx512vlbw(), "");
3719   assert(dst != xnoreg, "sanity");
3720   InstructionMark im(this);
3721   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3722   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3723   attributes.set_embedded_opmask_register_specifier(mask);
3724   attributes.set_is_evex_instruction();
3725   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3726   emit_int8(0x30);
3727   emit_operand(dst, src);
3728 }
3729 
3730 void Assembler::evpmovwb(Address dst, XMMRegister src, int vector_len) {
3731   assert(VM_Version::supports_avx512vlbw(), "");
3732   assert(src != xnoreg, "sanity");
3733   InstructionMark im(this);
3734   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3735   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3736   attributes.set_is_evex_instruction();
3737   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3738   emit_int8(0x30);
3739   emit_operand(src, dst);
3740 }
3741 
3742 void Assembler::evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len) {
3743   assert(is_vector_masking(), "");
3744   assert(VM_Version::supports_avx512vlbw(), "");
3745   assert(src != xnoreg, "sanity");
3746   InstructionMark im(this);
3747   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3748   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3749   attributes.set_embedded_opmask_register_specifier(mask);
3750   attributes.set_is_evex_instruction();
3751   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3752   emit_int8(0x30);
3753   emit_operand(src, dst);
3754 }
3755 
3756 // generic
3757 void Assembler::pop(Register dst) {
3758   int encode = prefix_and_encode(dst->encoding());
3759   emit_int8(0x58 | encode);
3760 }
3761 
3762 void Assembler::popcntl(Register dst, Address src) {
3763   assert(VM_Version::supports_popcnt(), "must support");
3764   InstructionMark im(this);
3765   emit_int8((unsigned char)0xF3);
3766   prefix(src, dst);
3767   emit_int8(0x0F);
3768   emit_int8((unsigned char)0xB8);
3769   emit_operand(dst, src);
3770 }
3771 
3772 void Assembler::popcntl(Register dst, Register src) {
3773   assert(VM_Version::supports_popcnt(), "must support");
3774   emit_int8((unsigned char)0xF3);
3775   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3776   emit_int8(0x0F);
3777   emit_int8((unsigned char)0xB8);
3778   emit_int8((unsigned char)(0xC0 | encode));
3779 }
3780 
3781 void Assembler::popf() {
3782   emit_int8((unsigned char)0x9D);
3783 }
3784 
3785 #ifndef _LP64 // no 32bit push/pop on amd64
3786 void Assembler::popl(Address dst) {
3787   // NOTE: this will adjust stack by 8byte on 64bits
3788   InstructionMark im(this);
3789   prefix(dst);
3790   emit_int8((unsigned char)0x8F);
3791   emit_operand(rax, dst);
3792 }
3793 #endif
3794 
3795 void Assembler::prefetch_prefix(Address src) {
3796   prefix(src);
3797   emit_int8(0x0F);
3798 }
3799 
3800 void Assembler::prefetchnta(Address src) {
3801   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3802   InstructionMark im(this);
3803   prefetch_prefix(src);
3804   emit_int8(0x18);
3805   emit_operand(rax, src); // 0, src
3806 }
3807 
3808 void Assembler::prefetchr(Address src) {
3809   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3810   InstructionMark im(this);
3811   prefetch_prefix(src);
3812   emit_int8(0x0D);
3813   emit_operand(rax, src); // 0, src
3814 }
3815 
3816 void Assembler::prefetcht0(Address src) {
3817   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3818   InstructionMark im(this);
3819   prefetch_prefix(src);
3820   emit_int8(0x18);
3821   emit_operand(rcx, src); // 1, src
3822 }
3823 
3824 void Assembler::prefetcht1(Address src) {
3825   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3826   InstructionMark im(this);
3827   prefetch_prefix(src);
3828   emit_int8(0x18);
3829   emit_operand(rdx, src); // 2, src
3830 }
3831 
3832 void Assembler::prefetcht2(Address src) {
3833   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3834   InstructionMark im(this);
3835   prefetch_prefix(src);
3836   emit_int8(0x18);
3837   emit_operand(rbx, src); // 3, src
3838 }
3839 
3840 void Assembler::prefetchw(Address src) {
3841   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3842   InstructionMark im(this);
3843   prefetch_prefix(src);
3844   emit_int8(0x0D);
3845   emit_operand(rcx, src); // 1, src
3846 }
3847 
3848 void Assembler::prefix(Prefix p) {
3849   emit_int8(p);
3850 }
3851 
3852 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3853   assert(VM_Version::supports_ssse3(), "");
3854   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3855   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3856   emit_int8(0x00);
3857   emit_int8((unsigned char)(0xC0 | encode));
3858 }
3859 
3860 void Assembler::vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3861   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3862          vector_len == AVX_256bit? VM_Version::supports_avx2() :
3863          0, "");
3864   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3865   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3866   emit_int8(0x00);
3867   emit_int8((unsigned char)(0xC0 | encode));
3868 }
3869 
3870 void Assembler::pshufb(XMMRegister dst, Address src) {
3871   assert(VM_Version::supports_ssse3(), "");
3872   InstructionMark im(this);
3873   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3874   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3875   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3876   emit_int8(0x00);
3877   emit_operand(dst, src);
3878 }
3879 
3880 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3881   assert(isByte(mode), "invalid value");
3882   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3883   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
3884   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3885   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3886   emit_int8(0x70);
3887   emit_int8((unsigned char)(0xC0 | encode));
3888   emit_int8(mode & 0xFF);
3889 }
3890 
3891 void Assembler::vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len) {
3892   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3893          vector_len == AVX_256bit? VM_Version::supports_avx2() :
3894          0, "");
3895   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3896   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3897   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3898   emit_int8(0x70);
3899   emit_int8((unsigned char)(0xC0 | encode));
3900   emit_int8(mode & 0xFF);
3901 }
3902 
3903 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3904   assert(isByte(mode), "invalid value");
3905   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3906   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3907   InstructionMark im(this);
3908   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3909   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3910   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3911   emit_int8(0x70);
3912   emit_operand(dst, src);
3913   emit_int8(mode & 0xFF);
3914 }
3915 
3916 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3917   assert(isByte(mode), "invalid value");
3918   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3919   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3920   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3921   emit_int8(0x70);
3922   emit_int8((unsigned char)(0xC0 | encode));
3923   emit_int8(mode & 0xFF);
3924 }
3925 
3926 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3927   assert(isByte(mode), "invalid value");
3928   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3929   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3930   InstructionMark im(this);
3931   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3932   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3933   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3934   emit_int8(0x70);
3935   emit_operand(dst, src);
3936   emit_int8(mode & 0xFF);
3937 }
3938 
3939 void Assembler::psrldq(XMMRegister dst, int shift) {
3940   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3941   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3942   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3943   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3944   emit_int8(0x73);
3945   emit_int8((unsigned char)(0xC0 | encode));
3946   emit_int8(shift);
3947 }
3948 
3949 void Assembler::pslldq(XMMRegister dst, int shift) {
3950   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3951   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3952   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3953   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
3954   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3955   emit_int8(0x73);
3956   emit_int8((unsigned char)(0xC0 | encode));
3957   emit_int8(shift);
3958 }
3959 
3960 void Assembler::ptest(XMMRegister dst, Address src) {
3961   assert(VM_Version::supports_sse4_1(), "");
3962   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3963   InstructionMark im(this);
3964   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3965   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3966   emit_int8(0x17);
3967   emit_operand(dst, src);
3968 }
3969 
3970 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3971   assert(VM_Version::supports_sse4_1(), "");
3972   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3973   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3974   emit_int8(0x17);
3975   emit_int8((unsigned char)(0xC0 | encode));
3976 }
3977 
3978 void Assembler::vptest(XMMRegister dst, Address src) {
3979   assert(VM_Version::supports_avx(), "");
3980   InstructionMark im(this);
3981   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3982   assert(dst != xnoreg, "sanity");
3983   // swap src<->dst for encoding
3984   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3985   emit_int8(0x17);
3986   emit_operand(dst, src);
3987 }
3988 
3989 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3990   assert(VM_Version::supports_avx(), "");
3991   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3992   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3993   emit_int8(0x17);
3994   emit_int8((unsigned char)(0xC0 | encode));
3995 }
3996 
3997 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3998   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3999   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4000   InstructionMark im(this);
4001   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
4002   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4003   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4004   emit_int8(0x60);
4005   emit_operand(dst, src);
4006 }
4007 
4008 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4009   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4010   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
4011   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4012   emit_int8(0x60);
4013   emit_int8((unsigned char)(0xC0 | encode));
4014 }
4015 
4016 void Assembler::punpckldq(XMMRegister dst, Address src) {
4017   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4018   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4019   InstructionMark im(this);
4020   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4021   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4022   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4023   emit_int8(0x62);
4024   emit_operand(dst, src);
4025 }
4026 
4027 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
4028   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4029   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4030   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4031   emit_int8(0x62);
4032   emit_int8((unsigned char)(0xC0 | encode));
4033 }
4034 
4035 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
4036   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4037   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4038   attributes.set_rex_vex_w_reverted();
4039   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4040   emit_int8(0x6C);
4041   emit_int8((unsigned char)(0xC0 | encode));
4042 }
4043 
4044 void Assembler::push(int32_t imm32) {
4045   // in 64bits we push 64bits onto the stack but only
4046   // take a 32bit immediate
4047   emit_int8(0x68);
4048   emit_int32(imm32);
4049 }
4050 
4051 void Assembler::push(Register src) {
4052   int encode = prefix_and_encode(src->encoding());
4053 
4054   emit_int8(0x50 | encode);
4055 }
4056 
4057 void Assembler::pushf() {
4058   emit_int8((unsigned char)0x9C);
4059 }
4060 
4061 #ifndef _LP64 // no 32bit push/pop on amd64
4062 void Assembler::pushl(Address src) {
4063   // Note this will push 64bit on 64bit
4064   InstructionMark im(this);
4065   prefix(src);
4066   emit_int8((unsigned char)0xFF);
4067   emit_operand(rsi, src);
4068 }
4069 #endif
4070 
4071 void Assembler::rcll(Register dst, int imm8) {
4072   assert(isShiftCount(imm8), "illegal shift count");
4073   int encode = prefix_and_encode(dst->encoding());
4074   if (imm8 == 1) {
4075     emit_int8((unsigned char)0xD1);
4076     emit_int8((unsigned char)(0xD0 | encode));
4077   } else {
4078     emit_int8((unsigned char)0xC1);
4079     emit_int8((unsigned char)0xD0 | encode);
4080     emit_int8(imm8);
4081   }
4082 }
4083 
4084 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
4085   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4086   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4087   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4088   emit_int8(0x53);
4089   emit_int8((unsigned char)(0xC0 | encode));
4090 }
4091 
4092 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
4093   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4094   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4095   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4096   emit_int8(0x53);
4097   emit_int8((unsigned char)(0xC0 | encode));
4098 }
4099 
4100 void Assembler::rdtsc() {
4101   emit_int8((unsigned char)0x0F);
4102   emit_int8((unsigned char)0x31);
4103 }
4104 
4105 // copies data from [esi] to [edi] using rcx pointer sized words
4106 // generic
4107 void Assembler::rep_mov() {
4108   emit_int8((unsigned char)0xF3);
4109   // MOVSQ
4110   LP64_ONLY(prefix(REX_W));
4111   emit_int8((unsigned char)0xA5);
4112 }
4113 
4114 // sets rcx bytes with rax, value at [edi]
4115 void Assembler::rep_stosb() {
4116   emit_int8((unsigned char)0xF3); // REP
4117   LP64_ONLY(prefix(REX_W));
4118   emit_int8((unsigned char)0xAA); // STOSB
4119 }
4120 
4121 // sets rcx pointer sized words with rax, value at [edi]
4122 // generic
4123 void Assembler::rep_stos() {
4124   emit_int8((unsigned char)0xF3); // REP
4125   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
4126   emit_int8((unsigned char)0xAB);
4127 }
4128 
4129 // scans rcx pointer sized words at [edi] for occurance of rax,
4130 // generic
4131 void Assembler::repne_scan() { // repne_scan
4132   emit_int8((unsigned char)0xF2);
4133   // SCASQ
4134   LP64_ONLY(prefix(REX_W));
4135   emit_int8((unsigned char)0xAF);
4136 }
4137 
4138 #ifdef _LP64
4139 // scans rcx 4 byte words at [edi] for occurance of rax,
4140 // generic
4141 void Assembler::repne_scanl() { // repne_scan
4142   emit_int8((unsigned char)0xF2);
4143   // SCASL
4144   emit_int8((unsigned char)0xAF);
4145 }
4146 #endif
4147 
4148 void Assembler::ret(int imm16) {
4149   if (imm16 == 0) {
4150     emit_int8((unsigned char)0xC3);
4151   } else {
4152     emit_int8((unsigned char)0xC2);
4153     emit_int16(imm16);
4154   }
4155 }
4156 
4157 void Assembler::sahf() {
4158 #ifdef _LP64
4159   // Not supported in 64bit mode
4160   ShouldNotReachHere();
4161 #endif
4162   emit_int8((unsigned char)0x9E);
4163 }
4164 
4165 void Assembler::sarl(Register dst, int imm8) {
4166   int encode = prefix_and_encode(dst->encoding());
4167   assert(isShiftCount(imm8), "illegal shift count");
4168   if (imm8 == 1) {
4169     emit_int8((unsigned char)0xD1);
4170     emit_int8((unsigned char)(0xF8 | encode));
4171   } else {
4172     emit_int8((unsigned char)0xC1);
4173     emit_int8((unsigned char)(0xF8 | encode));
4174     emit_int8(imm8);
4175   }
4176 }
4177 
4178 void Assembler::sarl(Register dst) {
4179   int encode = prefix_and_encode(dst->encoding());
4180   emit_int8((unsigned char)0xD3);
4181   emit_int8((unsigned char)(0xF8 | encode));
4182 }
4183 
4184 void Assembler::sbbl(Address dst, int32_t imm32) {
4185   InstructionMark im(this);
4186   prefix(dst);
4187   emit_arith_operand(0x81, rbx, dst, imm32);
4188 }
4189 
4190 void Assembler::sbbl(Register dst, int32_t imm32) {
4191   prefix(dst);
4192   emit_arith(0x81, 0xD8, dst, imm32);
4193 }
4194 
4195 
4196 void Assembler::sbbl(Register dst, Address src) {
4197   InstructionMark im(this);
4198   prefix(src, dst);
4199   emit_int8(0x1B);
4200   emit_operand(dst, src);
4201 }
4202 
4203 void Assembler::sbbl(Register dst, Register src) {
4204   (void) prefix_and_encode(dst->encoding(), src->encoding());
4205   emit_arith(0x1B, 0xC0, dst, src);
4206 }
4207 
4208 void Assembler::setb(Condition cc, Register dst) {
4209   assert(0 <= cc && cc < 16, "illegal cc");
4210   int encode = prefix_and_encode(dst->encoding(), true);
4211   emit_int8(0x0F);
4212   emit_int8((unsigned char)0x90 | cc);
4213   emit_int8((unsigned char)(0xC0 | encode));
4214 }
4215 
4216 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
4217   assert(VM_Version::supports_ssse3(), "");
4218   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
4219   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4220   emit_int8((unsigned char)0x0F);
4221   emit_int8((unsigned char)(0xC0 | encode));
4222   emit_int8(imm8);
4223 }
4224 
4225 void Assembler::vpalignr(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4226   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4227          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4228          0, "");
4229   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4230   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4231   emit_int8((unsigned char)0x0F);
4232   emit_int8((unsigned char)(0xC0 | encode));
4233   emit_int8(imm8);
4234 }
4235 
4236 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
4237   assert(VM_Version::supports_sse4_1(), "");
4238   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4239   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4240   emit_int8((unsigned char)0x0E);
4241   emit_int8((unsigned char)(0xC0 | encode));
4242   emit_int8(imm8);
4243 }
4244 
4245 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
4246   assert(VM_Version::supports_sha(), "");
4247   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4248   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_3A, &attributes);
4249   emit_int8((unsigned char)0xCC);
4250   emit_int8((unsigned char)(0xC0 | encode));
4251   emit_int8((unsigned char)imm8);
4252 }
4253 
4254 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
4255   assert(VM_Version::supports_sha(), "");
4256   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4257   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4258   emit_int8((unsigned char)0xC8);
4259   emit_int8((unsigned char)(0xC0 | encode));
4260 }
4261 
4262 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
4263   assert(VM_Version::supports_sha(), "");
4264   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4265   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4266   emit_int8((unsigned char)0xC9);
4267   emit_int8((unsigned char)(0xC0 | encode));
4268 }
4269 
4270 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4271   assert(VM_Version::supports_sha(), "");
4272   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4273   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4274   emit_int8((unsigned char)0xCA);
4275   emit_int8((unsigned char)(0xC0 | encode));
4276 }
4277 
4278 // xmm0 is implicit additional source to this instruction.
4279 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4280   assert(VM_Version::supports_sha(), "");
4281   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4282   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4283   emit_int8((unsigned char)0xCB);
4284   emit_int8((unsigned char)(0xC0 | encode));
4285 }
4286 
4287 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4288   assert(VM_Version::supports_sha(), "");
4289   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4290   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4291   emit_int8((unsigned char)0xCC);
4292   emit_int8((unsigned char)(0xC0 | encode));
4293 }
4294 
4295 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4296   assert(VM_Version::supports_sha(), "");
4297   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4298   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4299   emit_int8((unsigned char)0xCD);
4300   emit_int8((unsigned char)(0xC0 | encode));
4301 }
4302 
4303 
4304 void Assembler::shll(Register dst, int imm8) {
4305   assert(isShiftCount(imm8), "illegal shift count");
4306   int encode = prefix_and_encode(dst->encoding());
4307   if (imm8 == 1 ) {
4308     emit_int8((unsigned char)0xD1);
4309     emit_int8((unsigned char)(0xE0 | encode));
4310   } else {
4311     emit_int8((unsigned char)0xC1);
4312     emit_int8((unsigned char)(0xE0 | encode));
4313     emit_int8(imm8);
4314   }
4315 }
4316 
4317 void Assembler::shll(Register dst) {
4318   int encode = prefix_and_encode(dst->encoding());
4319   emit_int8((unsigned char)0xD3);
4320   emit_int8((unsigned char)(0xE0 | encode));
4321 }
4322 
4323 void Assembler::shrl(Register dst, int imm8) {
4324   assert(isShiftCount(imm8), "illegal shift count");
4325   int encode = prefix_and_encode(dst->encoding());
4326   emit_int8((unsigned char)0xC1);
4327   emit_int8((unsigned char)(0xE8 | encode));
4328   emit_int8(imm8);
4329 }
4330 
4331 void Assembler::shrl(Register dst) {
4332   int encode = prefix_and_encode(dst->encoding());
4333   emit_int8((unsigned char)0xD3);
4334   emit_int8((unsigned char)(0xE8 | encode));
4335 }
4336 
4337 // copies a single word from [esi] to [edi]
4338 void Assembler::smovl() {
4339   emit_int8((unsigned char)0xA5);
4340 }
4341 
4342 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4343   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4344   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4345   attributes.set_rex_vex_w_reverted();
4346   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4347   emit_int8(0x51);
4348   emit_int8((unsigned char)(0xC0 | encode));
4349 }
4350 
4351 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4352   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4353   InstructionMark im(this);
4354   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4355   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4356   attributes.set_rex_vex_w_reverted();
4357   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4358   emit_int8(0x51);
4359   emit_operand(dst, src);
4360 }
4361 
4362 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4363   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4364   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4365   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4366   emit_int8(0x51);
4367   emit_int8((unsigned char)(0xC0 | encode));
4368 }
4369 
4370 void Assembler::std() {
4371   emit_int8((unsigned char)0xFD);
4372 }
4373 
4374 void Assembler::sqrtss(XMMRegister dst, Address src) {
4375   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4376   InstructionMark im(this);
4377   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4378   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4379   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4380   emit_int8(0x51);
4381   emit_operand(dst, src);
4382 }
4383 
4384 void Assembler::stmxcsr( Address dst) {
4385   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4386   InstructionMark im(this);
4387   prefix(dst);
4388   emit_int8(0x0F);
4389   emit_int8((unsigned char)0xAE);
4390   emit_operand(as_Register(3), dst);
4391 }
4392 
4393 void Assembler::subl(Address dst, int32_t imm32) {
4394   InstructionMark im(this);
4395   prefix(dst);
4396   emit_arith_operand(0x81, rbp, dst, imm32);
4397 }
4398 
4399 void Assembler::subl(Address dst, Register src) {
4400   InstructionMark im(this);
4401   prefix(dst, src);
4402   emit_int8(0x29);
4403   emit_operand(src, dst);
4404 }
4405 
4406 void Assembler::subl(Register dst, int32_t imm32) {
4407   prefix(dst);
4408   emit_arith(0x81, 0xE8, dst, imm32);
4409 }
4410 
4411 // Force generation of a 4 byte immediate value even if it fits into 8bit
4412 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4413   prefix(dst);
4414   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4415 }
4416 
4417 void Assembler::subl(Register dst, Address src) {
4418   InstructionMark im(this);
4419   prefix(src, dst);
4420   emit_int8(0x2B);
4421   emit_operand(dst, src);
4422 }
4423 
4424 void Assembler::subl(Register dst, Register src) {
4425   (void) prefix_and_encode(dst->encoding(), src->encoding());
4426   emit_arith(0x2B, 0xC0, dst, src);
4427 }
4428 
4429 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4430   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4431   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4432   attributes.set_rex_vex_w_reverted();
4433   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4434   emit_int8(0x5C);
4435   emit_int8((unsigned char)(0xC0 | encode));
4436 }
4437 
4438 void Assembler::subsd(XMMRegister dst, Address src) {
4439   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4440   InstructionMark im(this);
4441   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4442   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4443   attributes.set_rex_vex_w_reverted();
4444   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4445   emit_int8(0x5C);
4446   emit_operand(dst, src);
4447 }
4448 
4449 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4450   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4451   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ false);
4452   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4453   emit_int8(0x5C);
4454   emit_int8((unsigned char)(0xC0 | encode));
4455 }
4456 
4457 void Assembler::subss(XMMRegister dst, Address src) {
4458   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4459   InstructionMark im(this);
4460   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4461   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4462   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4463   emit_int8(0x5C);
4464   emit_operand(dst, src);
4465 }
4466 
4467 void Assembler::testb(Register dst, int imm8) {
4468   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4469   (void) prefix_and_encode(dst->encoding(), true);
4470   emit_arith_b(0xF6, 0xC0, dst, imm8);
4471 }
4472 
4473 void Assembler::testb(Address dst, int imm8) {
4474   InstructionMark im(this);
4475   prefix(dst);
4476   emit_int8((unsigned char)0xF6);
4477   emit_operand(rax, dst, 1);
4478   emit_int8(imm8);
4479 }
4480 
4481 void Assembler::testl(Register dst, int32_t imm32) {
4482   // not using emit_arith because test
4483   // doesn't support sign-extension of
4484   // 8bit operands
4485   int encode = dst->encoding();
4486   if (encode == 0) {
4487     emit_int8((unsigned char)0xA9);
4488   } else {
4489     encode = prefix_and_encode(encode);
4490     emit_int8((unsigned char)0xF7);
4491     emit_int8((unsigned char)(0xC0 | encode));
4492   }
4493   emit_int32(imm32);
4494 }
4495 
4496 void Assembler::testl(Register dst, Register src) {
4497   (void) prefix_and_encode(dst->encoding(), src->encoding());
4498   emit_arith(0x85, 0xC0, dst, src);
4499 }
4500 
4501 void Assembler::testl(Register dst, Address src) {
4502   InstructionMark im(this);
4503   prefix(src, dst);
4504   emit_int8((unsigned char)0x85);
4505   emit_operand(dst, src);
4506 }
4507 
4508 void Assembler::tzcntl(Register dst, Register src) {
4509   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4510   emit_int8((unsigned char)0xF3);
4511   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4512   emit_int8(0x0F);
4513   emit_int8((unsigned char)0xBC);
4514   emit_int8((unsigned char)0xC0 | encode);
4515 }
4516 
4517 void Assembler::tzcntq(Register dst, Register src) {
4518   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4519   emit_int8((unsigned char)0xF3);
4520   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4521   emit_int8(0x0F);
4522   emit_int8((unsigned char)0xBC);
4523   emit_int8((unsigned char)(0xC0 | encode));
4524 }
4525 
4526 void Assembler::ucomisd(XMMRegister dst, Address src) {
4527   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4528   InstructionMark im(this);
4529   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4530   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4531   attributes.set_rex_vex_w_reverted();
4532   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4533   emit_int8(0x2E);
4534   emit_operand(dst, src);
4535 }
4536 
4537 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4538   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4539   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4540   attributes.set_rex_vex_w_reverted();
4541   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4542   emit_int8(0x2E);
4543   emit_int8((unsigned char)(0xC0 | encode));
4544 }
4545 
4546 void Assembler::ucomiss(XMMRegister dst, Address src) {
4547   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4548   InstructionMark im(this);
4549   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4550   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4551   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4552   emit_int8(0x2E);
4553   emit_operand(dst, src);
4554 }
4555 
4556 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4557   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4558   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4559   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4560   emit_int8(0x2E);
4561   emit_int8((unsigned char)(0xC0 | encode));
4562 }
4563 
4564 void Assembler::xabort(int8_t imm8) {
4565   emit_int8((unsigned char)0xC6);
4566   emit_int8((unsigned char)0xF8);
4567   emit_int8((unsigned char)(imm8 & 0xFF));
4568 }
4569 
4570 void Assembler::xaddl(Address dst, Register src) {
4571   InstructionMark im(this);
4572   prefix(dst, src);
4573   emit_int8(0x0F);
4574   emit_int8((unsigned char)0xC1);
4575   emit_operand(src, dst);
4576 }
4577 
4578 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4579   InstructionMark im(this);
4580   relocate(rtype);
4581   if (abort.is_bound()) {
4582     address entry = target(abort);
4583     assert(entry != NULL, "abort entry NULL");
4584     intptr_t offset = entry - pc();
4585     emit_int8((unsigned char)0xC7);
4586     emit_int8((unsigned char)0xF8);
4587     emit_int32(offset - 6); // 2 opcode + 4 address
4588   } else {
4589     abort.add_patch_at(code(), locator());
4590     emit_int8((unsigned char)0xC7);
4591     emit_int8((unsigned char)0xF8);
4592     emit_int32(0);
4593   }
4594 }
4595 
4596 void Assembler::xchgl(Register dst, Address src) { // xchg
4597   InstructionMark im(this);
4598   prefix(src, dst);
4599   emit_int8((unsigned char)0x87);
4600   emit_operand(dst, src);
4601 }
4602 
4603 void Assembler::xchgl(Register dst, Register src) {
4604   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4605   emit_int8((unsigned char)0x87);
4606   emit_int8((unsigned char)(0xC0 | encode));
4607 }
4608 
4609 void Assembler::xend() {
4610   emit_int8((unsigned char)0x0F);
4611   emit_int8((unsigned char)0x01);
4612   emit_int8((unsigned char)0xD5);
4613 }
4614 
4615 void Assembler::xgetbv() {
4616   emit_int8(0x0F);
4617   emit_int8(0x01);
4618   emit_int8((unsigned char)0xD0);
4619 }
4620 
4621 void Assembler::xorl(Register dst, int32_t imm32) {
4622   prefix(dst);
4623   emit_arith(0x81, 0xF0, dst, imm32);
4624 }
4625 
4626 void Assembler::xorl(Register dst, Address src) {
4627   InstructionMark im(this);
4628   prefix(src, dst);
4629   emit_int8(0x33);
4630   emit_operand(dst, src);
4631 }
4632 
4633 void Assembler::xorl(Register dst, Register src) {
4634   (void) prefix_and_encode(dst->encoding(), src->encoding());
4635   emit_arith(0x33, 0xC0, dst, src);
4636 }
4637 
4638 void Assembler::xorb(Register dst, Address src) {
4639   InstructionMark im(this);
4640   prefix(src, dst);
4641   emit_int8(0x32);
4642   emit_operand(dst, src);
4643 }
4644 
4645 // AVX 3-operands scalar float-point arithmetic instructions
4646 
4647 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4648   assert(VM_Version::supports_avx(), "");
4649   InstructionMark im(this);
4650   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4651   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4652   attributes.set_rex_vex_w_reverted();
4653   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4654   emit_int8(0x58);
4655   emit_operand(dst, src);
4656 }
4657 
4658 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4659   assert(VM_Version::supports_avx(), "");
4660   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4661   attributes.set_rex_vex_w_reverted();
4662   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4663   emit_int8(0x58);
4664   emit_int8((unsigned char)(0xC0 | encode));
4665 }
4666 
4667 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4668   assert(VM_Version::supports_avx(), "");
4669   InstructionMark im(this);
4670   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4671   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4672   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4673   emit_int8(0x58);
4674   emit_operand(dst, src);
4675 }
4676 
4677 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4678   assert(VM_Version::supports_avx(), "");
4679   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4680   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4681   emit_int8(0x58);
4682   emit_int8((unsigned char)(0xC0 | encode));
4683 }
4684 
4685 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4686   assert(VM_Version::supports_avx(), "");
4687   InstructionMark im(this);
4688   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4689   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4690   attributes.set_rex_vex_w_reverted();
4691   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4692   emit_int8(0x5E);
4693   emit_operand(dst, src);
4694 }
4695 
4696 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4697   assert(VM_Version::supports_avx(), "");
4698   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4699   attributes.set_rex_vex_w_reverted();
4700   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4701   emit_int8(0x5E);
4702   emit_int8((unsigned char)(0xC0 | encode));
4703 }
4704 
4705 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
4706   assert(VM_Version::supports_avx(), "");
4707   InstructionMark im(this);
4708   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4709   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4710   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4711   emit_int8(0x5E);
4712   emit_operand(dst, src);
4713 }
4714 
4715 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4716   assert(VM_Version::supports_avx(), "");
4717   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4718   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4719   emit_int8(0x5E);
4720   emit_int8((unsigned char)(0xC0 | encode));
4721 }
4722 
4723 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
4724   assert(VM_Version::supports_avx(), "");
4725   InstructionMark im(this);
4726   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4727   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4728   attributes.set_rex_vex_w_reverted();
4729   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4730   emit_int8(0x59);
4731   emit_operand(dst, src);
4732 }
4733 
4734 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4735   assert(VM_Version::supports_avx(), "");
4736   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4737   attributes.set_rex_vex_w_reverted();
4738   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4739   emit_int8(0x59);
4740   emit_int8((unsigned char)(0xC0 | encode));
4741 }
4742 
4743 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4744   assert(VM_Version::supports_avx(), "");
4745   InstructionMark im(this);
4746   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4747   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4748   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4749   emit_int8(0x59);
4750   emit_operand(dst, src);
4751 }
4752 
4753 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4754   assert(VM_Version::supports_avx(), "");
4755   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4756   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4757   emit_int8(0x59);
4758   emit_int8((unsigned char)(0xC0 | encode));
4759 }
4760 
4761 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4762   assert(VM_Version::supports_avx(), "");
4763   InstructionMark im(this);
4764   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4765   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4766   attributes.set_rex_vex_w_reverted();
4767   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4768   emit_int8(0x5C);
4769   emit_operand(dst, src);
4770 }
4771 
4772 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4773   assert(VM_Version::supports_avx(), "");
4774   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4775   attributes.set_rex_vex_w_reverted();
4776   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4777   emit_int8(0x5C);
4778   emit_int8((unsigned char)(0xC0 | encode));
4779 }
4780 
4781 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
4782   assert(VM_Version::supports_avx(), "");
4783   InstructionMark im(this);
4784   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4785   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4786   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4787   emit_int8(0x5C);
4788   emit_operand(dst, src);
4789 }
4790 
4791 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4792   assert(VM_Version::supports_avx(), "");
4793   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4794   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4795   emit_int8(0x5C);
4796   emit_int8((unsigned char)(0xC0 | encode));
4797 }
4798 
4799 //====================VECTOR ARITHMETIC=====================================
4800 
4801 // Float-point vector arithmetic
4802 
4803 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4804   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4805   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4806   attributes.set_rex_vex_w_reverted();
4807   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4808   emit_int8(0x58);
4809   emit_int8((unsigned char)(0xC0 | encode));
4810 }
4811 
4812 void Assembler::addpd(XMMRegister dst, Address src) {
4813   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4814   InstructionMark im(this);
4815   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4816   attributes.set_rex_vex_w_reverted();
4817   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4818   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4819   emit_int8(0x58);
4820   emit_operand(dst, src);
4821 }
4822 
4823 
4824 void Assembler::addps(XMMRegister dst, XMMRegister src) {
4825   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4826   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4827   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4828   emit_int8(0x58);
4829   emit_int8((unsigned char)(0xC0 | encode));
4830 }
4831 
4832 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4833   assert(VM_Version::supports_avx(), "");
4834   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4835   attributes.set_rex_vex_w_reverted();
4836   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4837   emit_int8(0x58);
4838   emit_int8((unsigned char)(0xC0 | encode));
4839 }
4840 
4841 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4842   assert(VM_Version::supports_avx(), "");
4843   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4844   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4845   emit_int8(0x58);
4846   emit_int8((unsigned char)(0xC0 | encode));
4847 }
4848 
4849 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4850   assert(VM_Version::supports_avx(), "");
4851   InstructionMark im(this);
4852   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4853   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4854   attributes.set_rex_vex_w_reverted();
4855   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4856   emit_int8(0x58);
4857   emit_operand(dst, src);
4858 }
4859 
4860 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4861   assert(VM_Version::supports_avx(), "");
4862   InstructionMark im(this);
4863   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4864   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4865   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4866   emit_int8(0x58);
4867   emit_operand(dst, src);
4868 }
4869 
4870 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
4871   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4872   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4873   attributes.set_rex_vex_w_reverted();
4874   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4875   emit_int8(0x5C);
4876   emit_int8((unsigned char)(0xC0 | encode));
4877 }
4878 
4879 void Assembler::subps(XMMRegister dst, XMMRegister src) {
4880   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4881   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4882   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4883   emit_int8(0x5C);
4884   emit_int8((unsigned char)(0xC0 | encode));
4885 }
4886 
4887 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4888   assert(VM_Version::supports_avx(), "");
4889   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4890   attributes.set_rex_vex_w_reverted();
4891   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4892   emit_int8(0x5C);
4893   emit_int8((unsigned char)(0xC0 | encode));
4894 }
4895 
4896 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4897   assert(VM_Version::supports_avx(), "");
4898   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4899   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4900   emit_int8(0x5C);
4901   emit_int8((unsigned char)(0xC0 | encode));
4902 }
4903 
4904 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4905   assert(VM_Version::supports_avx(), "");
4906   InstructionMark im(this);
4907   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4908   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4909   attributes.set_rex_vex_w_reverted();
4910   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4911   emit_int8(0x5C);
4912   emit_operand(dst, src);
4913 }
4914 
4915 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4916   assert(VM_Version::supports_avx(), "");
4917   InstructionMark im(this);
4918   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4919   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4920   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4921   emit_int8(0x5C);
4922   emit_operand(dst, src);
4923 }
4924 
4925 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
4926   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4927   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4928   attributes.set_rex_vex_w_reverted();
4929   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4930   emit_int8(0x59);
4931   emit_int8((unsigned char)(0xC0 | encode));
4932 }
4933 
4934 void Assembler::mulpd(XMMRegister dst, Address src) {
4935   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4936   InstructionMark im(this);
4937   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4938   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4939   attributes.set_rex_vex_w_reverted();
4940   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4941   emit_int8(0x59);
4942   emit_operand(dst, src);
4943 }
4944 
4945 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
4946   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4947   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4948   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4949   emit_int8(0x59);
4950   emit_int8((unsigned char)(0xC0 | encode));
4951 }
4952 
4953 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4954   assert(VM_Version::supports_avx(), "");
4955   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4956   attributes.set_rex_vex_w_reverted();
4957   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4958   emit_int8(0x59);
4959   emit_int8((unsigned char)(0xC0 | encode));
4960 }
4961 
4962 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4963   assert(VM_Version::supports_avx(), "");
4964   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4965   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4966   emit_int8(0x59);
4967   emit_int8((unsigned char)(0xC0 | encode));
4968 }
4969 
4970 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4971   assert(VM_Version::supports_avx(), "");
4972   InstructionMark im(this);
4973   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4974   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4975   attributes.set_rex_vex_w_reverted();
4976   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4977   emit_int8(0x59);
4978   emit_operand(dst, src);
4979 }
4980 
4981 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4982   assert(VM_Version::supports_avx(), "");
4983   InstructionMark im(this);
4984   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4985   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4986   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4987   emit_int8(0x59);
4988   emit_operand(dst, src);
4989 }
4990 
4991 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
4992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4993   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4994   attributes.set_rex_vex_w_reverted();
4995   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4996   emit_int8(0x5E);
4997   emit_int8((unsigned char)(0xC0 | encode));
4998 }
4999 
5000 void Assembler::divps(XMMRegister dst, XMMRegister src) {
5001   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5002   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5003   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5004   emit_int8(0x5E);
5005   emit_int8((unsigned char)(0xC0 | encode));
5006 }
5007 
5008 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5009   assert(VM_Version::supports_avx(), "");
5010   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5011   attributes.set_rex_vex_w_reverted();
5012   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5013   emit_int8(0x5E);
5014   emit_int8((unsigned char)(0xC0 | encode));
5015 }
5016 
5017 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5018   assert(VM_Version::supports_avx(), "");
5019   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5020   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5021   emit_int8(0x5E);
5022   emit_int8((unsigned char)(0xC0 | encode));
5023 }
5024 
5025 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5026   assert(VM_Version::supports_avx(), "");
5027   InstructionMark im(this);
5028   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5029   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5030   attributes.set_rex_vex_w_reverted();
5031   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5032   emit_int8(0x5E);
5033   emit_operand(dst, src);
5034 }
5035 
5036 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5037   assert(VM_Version::supports_avx(), "");
5038   InstructionMark im(this);
5039   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5040   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5041   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5042   emit_int8(0x5E);
5043   emit_operand(dst, src);
5044 }
5045 
5046 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
5047   assert(VM_Version::supports_avx(), "");
5048   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5049   attributes.set_rex_vex_w_reverted();
5050   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5051   emit_int8(0x51);
5052   emit_int8((unsigned char)(0xC0 | encode));
5053 }
5054 
5055 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
5056   assert(VM_Version::supports_avx(), "");
5057   InstructionMark im(this);
5058   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5059   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5060   attributes.set_rex_vex_w_reverted();
5061   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5062   emit_int8(0x51);
5063   emit_operand(dst, src);
5064 }
5065 
5066 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
5067   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5068   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5069   attributes.set_rex_vex_w_reverted();
5070   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5071   emit_int8(0x54);
5072   emit_int8((unsigned char)(0xC0 | encode));
5073 }
5074 
5075 void Assembler::andps(XMMRegister dst, XMMRegister src) {
5076   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5077   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5078   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5079   emit_int8(0x54);
5080   emit_int8((unsigned char)(0xC0 | encode));
5081 }
5082 
5083 void Assembler::andps(XMMRegister dst, Address src) {
5084   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5085   InstructionMark im(this);
5086   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5087   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5088   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5089   emit_int8(0x54);
5090   emit_operand(dst, src);
5091 }
5092 
5093 void Assembler::andpd(XMMRegister dst, Address src) {
5094   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5095   InstructionMark im(this);
5096   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5097   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5098   attributes.set_rex_vex_w_reverted();
5099   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5100   emit_int8(0x54);
5101   emit_operand(dst, src);
5102 }
5103 
5104 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5105   assert(VM_Version::supports_avx(), "");
5106   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5107   attributes.set_rex_vex_w_reverted();
5108   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5109   emit_int8(0x54);
5110   emit_int8((unsigned char)(0xC0 | encode));
5111 }
5112 
5113 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5114   assert(VM_Version::supports_avx(), "");
5115   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5116   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5117   emit_int8(0x54);
5118   emit_int8((unsigned char)(0xC0 | encode));
5119 }
5120 
5121 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5122   assert(VM_Version::supports_avx(), "");
5123   InstructionMark im(this);
5124   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5125   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5126   attributes.set_rex_vex_w_reverted();
5127   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5128   emit_int8(0x54);
5129   emit_operand(dst, src);
5130 }
5131 
5132 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5133   assert(VM_Version::supports_avx(), "");
5134   InstructionMark im(this);
5135   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5136   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5137   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5138   emit_int8(0x54);
5139   emit_operand(dst, src);
5140 }
5141 
5142 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
5143   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5144   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5145   attributes.set_rex_vex_w_reverted();
5146   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5147   emit_int8(0x15);
5148   emit_int8((unsigned char)(0xC0 | encode));
5149 }
5150 
5151 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
5152   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5153   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5154   attributes.set_rex_vex_w_reverted();
5155   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5156   emit_int8(0x14);
5157   emit_int8((unsigned char)(0xC0 | encode));
5158 }
5159 
5160 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
5161   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5162   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5163   attributes.set_rex_vex_w_reverted();
5164   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5165   emit_int8(0x57);
5166   emit_int8((unsigned char)(0xC0 | encode));
5167 }
5168 
5169 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
5170   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5171   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5172   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5173   emit_int8(0x57);
5174   emit_int8((unsigned char)(0xC0 | encode));
5175 }
5176 
5177 void Assembler::xorpd(XMMRegister dst, Address src) {
5178   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5179   InstructionMark im(this);
5180   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5181   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5182   attributes.set_rex_vex_w_reverted();
5183   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5184   emit_int8(0x57);
5185   emit_operand(dst, src);
5186 }
5187 
5188 void Assembler::xorps(XMMRegister dst, Address src) {
5189   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5190   InstructionMark im(this);
5191   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5192   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5193   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5194   emit_int8(0x57);
5195   emit_operand(dst, src);
5196 }
5197 
5198 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5199   assert(VM_Version::supports_avx(), "");
5200   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5201   attributes.set_rex_vex_w_reverted();
5202   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5203   emit_int8(0x57);
5204   emit_int8((unsigned char)(0xC0 | encode));
5205 }
5206 
5207 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5208   assert(VM_Version::supports_avx(), "");
5209   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5210   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5211   emit_int8(0x57);
5212   emit_int8((unsigned char)(0xC0 | encode));
5213 }
5214 
5215 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5216   assert(VM_Version::supports_avx(), "");
5217   InstructionMark im(this);
5218   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5219   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5220   attributes.set_rex_vex_w_reverted();
5221   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5222   emit_int8(0x57);
5223   emit_operand(dst, src);
5224 }
5225 
5226 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5227   assert(VM_Version::supports_avx(), "");
5228   InstructionMark im(this);
5229   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5230   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5231   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5232   emit_int8(0x57);
5233   emit_operand(dst, src);
5234 }
5235 
5236 // Integer vector arithmetic
5237 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5238   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5239          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5240   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5241   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5242   emit_int8(0x01);
5243   emit_int8((unsigned char)(0xC0 | encode));
5244 }
5245 
5246 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5247   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5248          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5249   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5250   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5251   emit_int8(0x02);
5252   emit_int8((unsigned char)(0xC0 | encode));
5253 }
5254 
5255 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
5256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5257   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5258   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5259   emit_int8((unsigned char)0xFC);
5260   emit_int8((unsigned char)(0xC0 | encode));
5261 }
5262 
5263 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
5264   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5265   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5266   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5267   emit_int8((unsigned char)0xFD);
5268   emit_int8((unsigned char)(0xC0 | encode));
5269 }
5270 
5271 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
5272   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5273   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5274   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5275   emit_int8((unsigned char)0xFE);
5276   emit_int8((unsigned char)(0xC0 | encode));
5277 }
5278 
5279 void Assembler::paddd(XMMRegister dst, Address src) {
5280   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5281   InstructionMark im(this);
5282   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5283   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5284   emit_int8((unsigned char)0xFE);
5285   emit_operand(dst, src);
5286 }
5287 
5288 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
5289   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5290   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5291   attributes.set_rex_vex_w_reverted();
5292   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5293   emit_int8((unsigned char)0xD4);
5294   emit_int8((unsigned char)(0xC0 | encode));
5295 }
5296 
5297 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
5298   assert(VM_Version::supports_sse3(), "");
5299   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5300   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5301   emit_int8(0x01);
5302   emit_int8((unsigned char)(0xC0 | encode));
5303 }
5304 
5305 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5306   assert(VM_Version::supports_sse3(), "");
5307   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5308   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5309   emit_int8(0x02);
5310   emit_int8((unsigned char)(0xC0 | encode));
5311 }
5312 
5313 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5314   assert(UseAVX > 0, "requires some form of AVX");
5315   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5316   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5317   emit_int8((unsigned char)0xFC);
5318   emit_int8((unsigned char)(0xC0 | encode));
5319 }
5320 
5321 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5322   assert(UseAVX > 0, "requires some form of AVX");
5323   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5324   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5325   emit_int8((unsigned char)0xFD);
5326   emit_int8((unsigned char)(0xC0 | encode));
5327 }
5328 
5329 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5330   assert(UseAVX > 0, "requires some form of AVX");
5331   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5332   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5333   emit_int8((unsigned char)0xFE);
5334   emit_int8((unsigned char)(0xC0 | encode));
5335 }
5336 
5337 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5338   assert(UseAVX > 0, "requires some form of AVX");
5339   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5340   attributes.set_rex_vex_w_reverted();
5341   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5342   emit_int8((unsigned char)0xD4);
5343   emit_int8((unsigned char)(0xC0 | encode));
5344 }
5345 
5346 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5347   assert(UseAVX > 0, "requires some form of AVX");
5348   InstructionMark im(this);
5349   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5350   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5351   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5352   emit_int8((unsigned char)0xFC);
5353   emit_operand(dst, src);
5354 }
5355 
5356 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5357   assert(UseAVX > 0, "requires some form of AVX");
5358   InstructionMark im(this);
5359   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5360   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5361   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5362   emit_int8((unsigned char)0xFD);
5363   emit_operand(dst, src);
5364 }
5365 
5366 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5367   assert(UseAVX > 0, "requires some form of AVX");
5368   InstructionMark im(this);
5369   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5370   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5371   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5372   emit_int8((unsigned char)0xFE);
5373   emit_operand(dst, src);
5374 }
5375 
5376 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5377   assert(UseAVX > 0, "requires some form of AVX");
5378   InstructionMark im(this);
5379   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5380   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5381   attributes.set_rex_vex_w_reverted();
5382   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5383   emit_int8((unsigned char)0xD4);
5384   emit_operand(dst, src);
5385 }
5386 
5387 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5388   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5389   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5390   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5391   emit_int8((unsigned char)0xF8);
5392   emit_int8((unsigned char)(0xC0 | encode));
5393 }
5394 
5395 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5396   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5397   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5398   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5399   emit_int8((unsigned char)0xF9);
5400   emit_int8((unsigned char)(0xC0 | encode));
5401 }
5402 
5403 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5404   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5405   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5406   emit_int8((unsigned char)0xFA);
5407   emit_int8((unsigned char)(0xC0 | encode));
5408 }
5409 
5410 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5411   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5412   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5413   attributes.set_rex_vex_w_reverted();
5414   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5415   emit_int8((unsigned char)0xFB);
5416   emit_int8((unsigned char)(0xC0 | encode));
5417 }
5418 
5419 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5420   assert(UseAVX > 0, "requires some form of AVX");
5421   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5422   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5423   emit_int8((unsigned char)0xF8);
5424   emit_int8((unsigned char)(0xC0 | encode));
5425 }
5426 
5427 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5428   assert(UseAVX > 0, "requires some form of AVX");
5429   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5430   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5431   emit_int8((unsigned char)0xF9);
5432   emit_int8((unsigned char)(0xC0 | encode));
5433 }
5434 
5435 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5436   assert(UseAVX > 0, "requires some form of AVX");
5437   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5438   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5439   emit_int8((unsigned char)0xFA);
5440   emit_int8((unsigned char)(0xC0 | encode));
5441 }
5442 
5443 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5444   assert(UseAVX > 0, "requires some form of AVX");
5445   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5446   attributes.set_rex_vex_w_reverted();
5447   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5448   emit_int8((unsigned char)0xFB);
5449   emit_int8((unsigned char)(0xC0 | encode));
5450 }
5451 
5452 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5453   assert(UseAVX > 0, "requires some form of AVX");
5454   InstructionMark im(this);
5455   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5456   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5457   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5458   emit_int8((unsigned char)0xF8);
5459   emit_operand(dst, src);
5460 }
5461 
5462 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5463   assert(UseAVX > 0, "requires some form of AVX");
5464   InstructionMark im(this);
5465   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5466   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5467   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5468   emit_int8((unsigned char)0xF9);
5469   emit_operand(dst, src);
5470 }
5471 
5472 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5473   assert(UseAVX > 0, "requires some form of AVX");
5474   InstructionMark im(this);
5475   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5476   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5477   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5478   emit_int8((unsigned char)0xFA);
5479   emit_operand(dst, src);
5480 }
5481 
5482 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5483   assert(UseAVX > 0, "requires some form of AVX");
5484   InstructionMark im(this);
5485   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5486   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5487   attributes.set_rex_vex_w_reverted();
5488   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5489   emit_int8((unsigned char)0xFB);
5490   emit_operand(dst, src);
5491 }
5492 
5493 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5494   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5495   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5496   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5497   emit_int8((unsigned char)0xD5);
5498   emit_int8((unsigned char)(0xC0 | encode));
5499 }
5500 
5501 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5502   assert(VM_Version::supports_sse4_1(), "");
5503   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5504   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5505   emit_int8(0x40);
5506   emit_int8((unsigned char)(0xC0 | encode));
5507 }
5508 
5509 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5510   assert(UseAVX > 0, "requires some form of AVX");
5511   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5512   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5513   emit_int8((unsigned char)0xD5);
5514   emit_int8((unsigned char)(0xC0 | encode));
5515 }
5516 
5517 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5518   assert(UseAVX > 0, "requires some form of AVX");
5519   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5520   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5521   emit_int8(0x40);
5522   emit_int8((unsigned char)(0xC0 | encode));
5523 }
5524 
5525 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5526   assert(UseAVX > 2, "requires some form of EVEX");
5527   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5528   attributes.set_is_evex_instruction();
5529   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5530   emit_int8(0x40);
5531   emit_int8((unsigned char)(0xC0 | encode));
5532 }
5533 
5534 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5535   assert(UseAVX > 0, "requires some form of AVX");
5536   InstructionMark im(this);
5537   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5538   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5539   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5540   emit_int8((unsigned char)0xD5);
5541   emit_operand(dst, src);
5542 }
5543 
5544 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5545   assert(UseAVX > 0, "requires some form of AVX");
5546   InstructionMark im(this);
5547   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5548   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5549   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5550   emit_int8(0x40);
5551   emit_operand(dst, src);
5552 }
5553 
5554 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5555   assert(UseAVX > 2, "requires some form of EVEX");
5556   InstructionMark im(this);
5557   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5558   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5559   attributes.set_is_evex_instruction();
5560   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5561   emit_int8(0x40);
5562   emit_operand(dst, src);
5563 }
5564 
5565 // Shift packed integers left by specified number of bits.
5566 void Assembler::psllw(XMMRegister dst, int shift) {
5567   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5568   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5569   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5570   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5571   emit_int8(0x71);
5572   emit_int8((unsigned char)(0xC0 | encode));
5573   emit_int8(shift & 0xFF);
5574 }
5575 
5576 void Assembler::pslld(XMMRegister dst, int shift) {
5577   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5578   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5579   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5580   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5581   emit_int8(0x72);
5582   emit_int8((unsigned char)(0xC0 | encode));
5583   emit_int8(shift & 0xFF);
5584 }
5585 
5586 void Assembler::psllq(XMMRegister dst, int shift) {
5587   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5588   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5589   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5590   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5591   emit_int8(0x73);
5592   emit_int8((unsigned char)(0xC0 | encode));
5593   emit_int8(shift & 0xFF);
5594 }
5595 
5596 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5597   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5598   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5599   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5600   emit_int8((unsigned char)0xF1);
5601   emit_int8((unsigned char)(0xC0 | encode));
5602 }
5603 
5604 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5605   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5606   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5607   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5608   emit_int8((unsigned char)0xF2);
5609   emit_int8((unsigned char)(0xC0 | encode));
5610 }
5611 
5612 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5613   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5614   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5615   attributes.set_rex_vex_w_reverted();
5616   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5617   emit_int8((unsigned char)0xF3);
5618   emit_int8((unsigned char)(0xC0 | encode));
5619 }
5620 
5621 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5622   assert(UseAVX > 0, "requires some form of AVX");
5623   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5624   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5625   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5626   emit_int8(0x71);
5627   emit_int8((unsigned char)(0xC0 | encode));
5628   emit_int8(shift & 0xFF);
5629 }
5630 
5631 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5632   assert(UseAVX > 0, "requires some form of AVX");
5633   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5634   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5635   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5636   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5637   emit_int8(0x72);
5638   emit_int8((unsigned char)(0xC0 | encode));
5639   emit_int8(shift & 0xFF);
5640 }
5641 
5642 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5643   assert(UseAVX > 0, "requires some form of AVX");
5644   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5645   attributes.set_rex_vex_w_reverted();
5646   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5647   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5648   emit_int8(0x73);
5649   emit_int8((unsigned char)(0xC0 | encode));
5650   emit_int8(shift & 0xFF);
5651 }
5652 
5653 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5654   assert(UseAVX > 0, "requires some form of AVX");
5655   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5656   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5657   emit_int8((unsigned char)0xF1);
5658   emit_int8((unsigned char)(0xC0 | encode));
5659 }
5660 
5661 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5662   assert(UseAVX > 0, "requires some form of AVX");
5663   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5664   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5665   emit_int8((unsigned char)0xF2);
5666   emit_int8((unsigned char)(0xC0 | encode));
5667 }
5668 
5669 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5670   assert(UseAVX > 0, "requires some form of AVX");
5671   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5672   attributes.set_rex_vex_w_reverted();
5673   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5674   emit_int8((unsigned char)0xF3);
5675   emit_int8((unsigned char)(0xC0 | encode));
5676 }
5677 
5678 // Shift packed integers logically right by specified number of bits.
5679 void Assembler::psrlw(XMMRegister dst, int shift) {
5680   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5681   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5682   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5683   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5684   emit_int8(0x71);
5685   emit_int8((unsigned char)(0xC0 | encode));
5686   emit_int8(shift & 0xFF);
5687 }
5688 
5689 void Assembler::psrld(XMMRegister dst, int shift) {
5690   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5691   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5692   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5693   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5694   emit_int8(0x72);
5695   emit_int8((unsigned char)(0xC0 | encode));
5696   emit_int8(shift & 0xFF);
5697 }
5698 
5699 void Assembler::psrlq(XMMRegister dst, int shift) {
5700   // Do not confuse it with psrldq SSE2 instruction which
5701   // shifts 128 bit value in xmm register by number of bytes.
5702   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5703   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5704   attributes.set_rex_vex_w_reverted();
5705   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5706   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5707   emit_int8(0x73);
5708   emit_int8((unsigned char)(0xC0 | encode));
5709   emit_int8(shift & 0xFF);
5710 }
5711 
5712 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
5713   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5714   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5715   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5716   emit_int8((unsigned char)0xD1);
5717   emit_int8((unsigned char)(0xC0 | encode));
5718 }
5719 
5720 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
5721   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5722   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5723   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5724   emit_int8((unsigned char)0xD2);
5725   emit_int8((unsigned char)(0xC0 | encode));
5726 }
5727 
5728 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
5729   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5730   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5731   attributes.set_rex_vex_w_reverted();
5732   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5733   emit_int8((unsigned char)0xD3);
5734   emit_int8((unsigned char)(0xC0 | encode));
5735 }
5736 
5737 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5738   assert(UseAVX > 0, "requires some form of AVX");
5739   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5740   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5741   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5742   emit_int8(0x71);
5743   emit_int8((unsigned char)(0xC0 | encode));
5744   emit_int8(shift & 0xFF);
5745 }
5746 
5747 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5748   assert(UseAVX > 0, "requires some form of AVX");
5749   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5750   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5751   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5752   emit_int8(0x72);
5753   emit_int8((unsigned char)(0xC0 | encode));
5754   emit_int8(shift & 0xFF);
5755 }
5756 
5757 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5758   assert(UseAVX > 0, "requires some form of AVX");
5759   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5760   attributes.set_rex_vex_w_reverted();
5761   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5762   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5763   emit_int8(0x73);
5764   emit_int8((unsigned char)(0xC0 | encode));
5765   emit_int8(shift & 0xFF);
5766 }
5767 
5768 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5769   assert(UseAVX > 0, "requires some form of AVX");
5770   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5771   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5772   emit_int8((unsigned char)0xD1);
5773   emit_int8((unsigned char)(0xC0 | encode));
5774 }
5775 
5776 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5777   assert(UseAVX > 0, "requires some form of AVX");
5778   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5779   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5780   emit_int8((unsigned char)0xD2);
5781   emit_int8((unsigned char)(0xC0 | encode));
5782 }
5783 
5784 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5785   assert(UseAVX > 0, "requires some form of AVX");
5786   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5787   attributes.set_rex_vex_w_reverted();
5788   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5789   emit_int8((unsigned char)0xD3);
5790   emit_int8((unsigned char)(0xC0 | encode));
5791 }
5792 
5793 // Shift packed integers arithmetically right by specified number of bits.
5794 void Assembler::psraw(XMMRegister dst, int shift) {
5795   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5796   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5797   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5798   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5799   emit_int8(0x71);
5800   emit_int8((unsigned char)(0xC0 | encode));
5801   emit_int8(shift & 0xFF);
5802 }
5803 
5804 void Assembler::psrad(XMMRegister dst, int shift) {
5805   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5806   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5807   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
5808   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5809   emit_int8(0x72);
5810   emit_int8((unsigned char)(0xC0 | encode));
5811   emit_int8(shift & 0xFF);
5812 }
5813 
5814 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
5815   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5816   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5817   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5818   emit_int8((unsigned char)0xE1);
5819   emit_int8((unsigned char)(0xC0 | encode));
5820 }
5821 
5822 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
5823   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5824   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5825   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5826   emit_int8((unsigned char)0xE2);
5827   emit_int8((unsigned char)(0xC0 | encode));
5828 }
5829 
5830 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5831   assert(UseAVX > 0, "requires some form of AVX");
5832   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5833   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5834   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5835   emit_int8(0x71);
5836   emit_int8((unsigned char)(0xC0 | encode));
5837   emit_int8(shift & 0xFF);
5838 }
5839 
5840 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5841   assert(UseAVX > 0, "requires some form of AVX");
5842   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5843   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5844   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5845   emit_int8(0x72);
5846   emit_int8((unsigned char)(0xC0 | encode));
5847   emit_int8(shift & 0xFF);
5848 }
5849 
5850 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5851   assert(UseAVX > 0, "requires some form of AVX");
5852   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5853   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5854   emit_int8((unsigned char)0xE1);
5855   emit_int8((unsigned char)(0xC0 | encode));
5856 }
5857 
5858 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5859   assert(UseAVX > 0, "requires some form of AVX");
5860   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5861   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5862   emit_int8((unsigned char)0xE2);
5863   emit_int8((unsigned char)(0xC0 | encode));
5864 }
5865 
5866 
5867 // logical operations packed integers
5868 void Assembler::pand(XMMRegister dst, XMMRegister src) {
5869   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5870   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5871   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5872   emit_int8((unsigned char)0xDB);
5873   emit_int8((unsigned char)(0xC0 | encode));
5874 }
5875 
5876 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5877   assert(UseAVX > 0, "requires some form of AVX");
5878   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5879   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5880   emit_int8((unsigned char)0xDB);
5881   emit_int8((unsigned char)(0xC0 | encode));
5882 }
5883 
5884 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5885   assert(UseAVX > 0, "requires some form of AVX");
5886   InstructionMark im(this);
5887   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5888   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5889   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5890   emit_int8((unsigned char)0xDB);
5891   emit_operand(dst, src);
5892 }
5893 
5894 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
5895   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5896   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5897   attributes.set_rex_vex_w_reverted();
5898   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5899   emit_int8((unsigned char)0xDF);
5900   emit_int8((unsigned char)(0xC0 | encode));
5901 }
5902 
5903 void Assembler::por(XMMRegister dst, XMMRegister src) {
5904   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5905   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5906   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5907   emit_int8((unsigned char)0xEB);
5908   emit_int8((unsigned char)(0xC0 | encode));
5909 }
5910 
5911 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5912   assert(UseAVX > 0, "requires some form of AVX");
5913   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5914   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5915   emit_int8((unsigned char)0xEB);
5916   emit_int8((unsigned char)(0xC0 | encode));
5917 }
5918 
5919 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5920   assert(UseAVX > 0, "requires some form of AVX");
5921   InstructionMark im(this);
5922   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5923   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5924   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5925   emit_int8((unsigned char)0xEB);
5926   emit_operand(dst, src);
5927 }
5928 
5929 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
5930   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5931   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5932   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5933   emit_int8((unsigned char)0xEF);
5934   emit_int8((unsigned char)(0xC0 | encode));
5935 }
5936 
5937 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5938   assert(UseAVX > 0, "requires some form of AVX");
5939   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5940   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5941   emit_int8((unsigned char)0xEF);
5942   emit_int8((unsigned char)(0xC0 | encode));
5943 }
5944 
5945 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5946   assert(UseAVX > 0, "requires some form of AVX");
5947   InstructionMark im(this);
5948   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5949   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5950   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5951   emit_int8((unsigned char)0xEF);
5952   emit_operand(dst, src);
5953 }
5954 
5955 
5956 // vinserti forms
5957 
5958 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5959   assert(VM_Version::supports_avx2(), "");
5960   assert(imm8 <= 0x01, "imm8: %u", imm8);
5961   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5962   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5963   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5964   emit_int8(0x38);
5965   emit_int8((unsigned char)(0xC0 | encode));
5966   // 0x00 - insert into lower 128 bits
5967   // 0x01 - insert into upper 128 bits
5968   emit_int8(imm8 & 0x01);
5969 }
5970 
5971 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5972   assert(VM_Version::supports_avx2(), "");
5973   assert(dst != xnoreg, "sanity");
5974   assert(imm8 <= 0x01, "imm8: %u", imm8);
5975   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5976   InstructionMark im(this);
5977   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5978   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5979   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5980   emit_int8(0x38);
5981   emit_operand(dst, src);
5982   // 0x00 - insert into lower 128 bits
5983   // 0x01 - insert into upper 128 bits
5984   emit_int8(imm8 & 0x01);
5985 }
5986 
5987 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5988   assert(VM_Version::supports_evex(), "");
5989   assert(imm8 <= 0x03, "imm8: %u", imm8);
5990   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5991   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5992   emit_int8(0x38);
5993   emit_int8((unsigned char)(0xC0 | encode));
5994   // 0x00 - insert into q0 128 bits (0..127)
5995   // 0x01 - insert into q1 128 bits (128..255)
5996   // 0x02 - insert into q2 128 bits (256..383)
5997   // 0x03 - insert into q3 128 bits (384..511)
5998   emit_int8(imm8 & 0x03);
5999 }
6000 
6001 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6002   assert(VM_Version::supports_avx(), "");
6003   assert(dst != xnoreg, "sanity");
6004   assert(imm8 <= 0x03, "imm8: %u", imm8);
6005   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6006   InstructionMark im(this);
6007   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6008   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6009   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6010   emit_int8(0x18);
6011   emit_operand(dst, src);
6012   // 0x00 - insert into q0 128 bits (0..127)
6013   // 0x01 - insert into q1 128 bits (128..255)
6014   // 0x02 - insert into q2 128 bits (256..383)
6015   // 0x03 - insert into q3 128 bits (384..511)
6016   emit_int8(imm8 & 0x03);
6017 }
6018 
6019 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6020   assert(VM_Version::supports_evex(), "");
6021   assert(imm8 <= 0x01, "imm8: %u", imm8);
6022   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6023   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6024   emit_int8(0x38);
6025   emit_int8((unsigned char)(0xC0 | encode));
6026   // 0x00 - insert into lower 256 bits
6027   // 0x01 - insert into upper 256 bits
6028   emit_int8(imm8 & 0x01);
6029 }
6030 
6031 
6032 // vinsertf forms
6033 
6034 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6035   assert(VM_Version::supports_avx(), "");
6036   assert(imm8 <= 0x01, "imm8: %u", imm8);
6037   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6038   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6039   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6040   emit_int8(0x18);
6041   emit_int8((unsigned char)(0xC0 | encode));
6042   // 0x00 - insert into lower 128 bits
6043   // 0x01 - insert into upper 128 bits
6044   emit_int8(imm8 & 0x01);
6045 }
6046 
6047 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6048   assert(VM_Version::supports_avx(), "");
6049   assert(dst != xnoreg, "sanity");
6050   assert(imm8 <= 0x01, "imm8: %u", imm8);
6051   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6052   InstructionMark im(this);
6053   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6054   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6055   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6056   emit_int8(0x18);
6057   emit_operand(dst, src);
6058   // 0x00 - insert into lower 128 bits
6059   // 0x01 - insert into upper 128 bits
6060   emit_int8(imm8 & 0x01);
6061 }
6062 
6063 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6064   assert(VM_Version::supports_evex(), "");
6065   assert(imm8 <= 0x03, "imm8: %u", imm8);
6066   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6067   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6068   emit_int8(0x18);
6069   emit_int8((unsigned char)(0xC0 | encode));
6070   // 0x00 - insert into q0 128 bits (0..127)
6071   // 0x01 - insert into q1 128 bits (128..255)
6072   // 0x02 - insert into q2 128 bits (256..383)
6073   // 0x03 - insert into q3 128 bits (384..511)
6074   emit_int8(imm8 & 0x03);
6075 }
6076 
6077 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6078   assert(VM_Version::supports_avx(), "");
6079   assert(dst != xnoreg, "sanity");
6080   assert(imm8 <= 0x03, "imm8: %u", imm8);
6081   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6082   InstructionMark im(this);
6083   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6084   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6085   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6086   emit_int8(0x18);
6087   emit_operand(dst, src);
6088   // 0x00 - insert into q0 128 bits (0..127)
6089   // 0x01 - insert into q1 128 bits (128..255)
6090   // 0x02 - insert into q2 128 bits (256..383)
6091   // 0x03 - insert into q3 128 bits (384..511)
6092   emit_int8(imm8 & 0x03);
6093 }
6094 
6095 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6096   assert(VM_Version::supports_evex(), "");
6097   assert(imm8 <= 0x01, "imm8: %u", imm8);
6098   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6099   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6100   emit_int8(0x1A);
6101   emit_int8((unsigned char)(0xC0 | encode));
6102   // 0x00 - insert into lower 256 bits
6103   // 0x01 - insert into upper 256 bits
6104   emit_int8(imm8 & 0x01);
6105 }
6106 
6107 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6108   assert(VM_Version::supports_evex(), "");
6109   assert(dst != xnoreg, "sanity");
6110   assert(imm8 <= 0x01, "imm8: %u", imm8);
6111   InstructionMark im(this);
6112   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6113   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6114   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6115   emit_int8(0x1A);
6116   emit_operand(dst, src);
6117   // 0x00 - insert into lower 256 bits
6118   // 0x01 - insert into upper 256 bits
6119   emit_int8(imm8 & 0x01);
6120 }
6121 
6122 
6123 // vextracti forms
6124 
6125 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6126   assert(VM_Version::supports_avx(), "");
6127   assert(imm8 <= 0x01, "imm8: %u", imm8);
6128   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6129   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6130   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6131   emit_int8(0x39);
6132   emit_int8((unsigned char)(0xC0 | encode));
6133   // 0x00 - extract from lower 128 bits
6134   // 0x01 - extract from upper 128 bits
6135   emit_int8(imm8 & 0x01);
6136 }
6137 
6138 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
6139   assert(VM_Version::supports_avx2(), "");
6140   assert(src != xnoreg, "sanity");
6141   assert(imm8 <= 0x01, "imm8: %u", imm8);
6142   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6143   InstructionMark im(this);
6144   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6145   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6146   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6147   emit_int8(0x39);
6148   emit_operand(src, dst);
6149   // 0x00 - extract from lower 128 bits
6150   // 0x01 - extract from upper 128 bits
6151   emit_int8(imm8 & 0x01);
6152 }
6153 
6154 void Assembler::vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6155   assert(VM_Version::supports_avx(), "");
6156   assert(imm8 <= 0x03, "imm8: %u", imm8);
6157   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6158   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6159   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6160   emit_int8(0x39);
6161   emit_int8((unsigned char)(0xC0 | encode));
6162   // 0x00 - extract from bits 127:0
6163   // 0x01 - extract from bits 255:128
6164   // 0x02 - extract from bits 383:256
6165   // 0x03 - extract from bits 511:384
6166   emit_int8(imm8 & 0x03);
6167 }
6168 
6169 void Assembler::vextracti32x4(Address dst, XMMRegister src, uint8_t imm8) {
6170   assert(VM_Version::supports_evex(), "");
6171   assert(src != xnoreg, "sanity");
6172   assert(imm8 <= 0x03, "imm8: %u", imm8);
6173   InstructionMark im(this);
6174   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6175   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6176   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6177   emit_int8(0x39);
6178   emit_operand(src, dst);
6179   // 0x00 - extract from bits 127:0
6180   // 0x01 - extract from bits 255:128
6181   // 0x02 - extract from bits 383:256
6182   // 0x03 - extract from bits 511:384
6183   emit_int8(imm8 & 0x03);
6184 }
6185 
6186 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6187   assert(VM_Version::supports_avx512dq(), "");
6188   assert(imm8 <= 0x03, "imm8: %u", imm8);
6189   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6190   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6191   emit_int8(0x39);
6192   emit_int8((unsigned char)(0xC0 | encode));
6193   // 0x00 - extract from bits 127:0
6194   // 0x01 - extract from bits 255:128
6195   // 0x02 - extract from bits 383:256
6196   // 0x03 - extract from bits 511:384
6197   emit_int8(imm8 & 0x03);
6198 }
6199 
6200 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6201   assert(VM_Version::supports_evex(), "");
6202   assert(imm8 <= 0x01, "imm8: %u", imm8);
6203   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6204   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6205   emit_int8(0x3B);
6206   emit_int8((unsigned char)(0xC0 | encode));
6207   // 0x00 - extract from lower 256 bits
6208   // 0x01 - extract from upper 256 bits
6209   emit_int8(imm8 & 0x01);
6210 }
6211 
6212 
6213 // vextractf forms
6214 
6215 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6216   assert(VM_Version::supports_avx(), "");
6217   assert(imm8 <= 0x01, "imm8: %u", imm8);
6218   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6219   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6220   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6221   emit_int8(0x19);
6222   emit_int8((unsigned char)(0xC0 | encode));
6223   // 0x00 - extract from lower 128 bits
6224   // 0x01 - extract from upper 128 bits
6225   emit_int8(imm8 & 0x01);
6226 }
6227 
6228 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
6229   assert(VM_Version::supports_avx(), "");
6230   assert(src != xnoreg, "sanity");
6231   assert(imm8 <= 0x01, "imm8: %u", imm8);
6232   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6233   InstructionMark im(this);
6234   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6235   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6236   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6237   emit_int8(0x19);
6238   emit_operand(src, dst);
6239   // 0x00 - extract from lower 128 bits
6240   // 0x01 - extract from upper 128 bits
6241   emit_int8(imm8 & 0x01);
6242 }
6243 
6244 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6245   assert(VM_Version::supports_avx(), "");
6246   assert(imm8 <= 0x03, "imm8: %u", imm8);
6247   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6248   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6249   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6250   emit_int8(0x19);
6251   emit_int8((unsigned char)(0xC0 | encode));
6252   // 0x00 - extract from bits 127:0
6253   // 0x01 - extract from bits 255:128
6254   // 0x02 - extract from bits 383:256
6255   // 0x03 - extract from bits 511:384
6256   emit_int8(imm8 & 0x03);
6257 }
6258 
6259 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
6260   assert(VM_Version::supports_evex(), "");
6261   assert(src != xnoreg, "sanity");
6262   assert(imm8 <= 0x03, "imm8: %u", imm8);
6263   InstructionMark im(this);
6264   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6265   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6266   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6267   emit_int8(0x19);
6268   emit_operand(src, dst);
6269   // 0x00 - extract from bits 127:0
6270   // 0x01 - extract from bits 255:128
6271   // 0x02 - extract from bits 383:256
6272   // 0x03 - extract from bits 511:384
6273   emit_int8(imm8 & 0x03);
6274 }
6275 
6276 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6277   assert(VM_Version::supports_avx512dq(), "");
6278   assert(imm8 <= 0x03, "imm8: %u", imm8);
6279   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6280   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6281   emit_int8(0x19);
6282   emit_int8((unsigned char)(0xC0 | encode));
6283   // 0x00 - extract from bits 127:0
6284   // 0x01 - extract from bits 255:128
6285   // 0x02 - extract from bits 383:256
6286   // 0x03 - extract from bits 511:384
6287   emit_int8(imm8 & 0x03);
6288 }
6289 
6290 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6291   assert(VM_Version::supports_evex(), "");
6292   assert(imm8 <= 0x01, "imm8: %u", imm8);
6293   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6294   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6295   emit_int8(0x1B);
6296   emit_int8((unsigned char)(0xC0 | encode));
6297   // 0x00 - extract from lower 256 bits
6298   // 0x01 - extract from upper 256 bits
6299   emit_int8(imm8 & 0x01);
6300 }
6301 
6302 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
6303   assert(VM_Version::supports_evex(), "");
6304   assert(src != xnoreg, "sanity");
6305   assert(imm8 <= 0x01, "imm8: %u", imm8);
6306   InstructionMark im(this);
6307   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6308   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
6309   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6310   emit_int8(0x1B);
6311   emit_operand(src, dst);
6312   // 0x00 - extract from lower 256 bits
6313   // 0x01 - extract from upper 256 bits
6314   emit_int8(imm8 & 0x01);
6315 }
6316 
6317 
6318 // legacy word/dword replicate
6319 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
6320   assert(VM_Version::supports_avx2(), "");
6321   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6322   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6323   emit_int8(0x79);
6324   emit_int8((unsigned char)(0xC0 | encode));
6325 }
6326 
6327 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
6328   assert(VM_Version::supports_avx2(), "");
6329   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6330   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6331   emit_int8(0x58);
6332   emit_int8((unsigned char)(0xC0 | encode));
6333 }
6334 
6335 
6336 // xmm/mem sourced byte/word/dword/qword replicate
6337 
6338 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6339 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6340   assert(VM_Version::supports_evex(), "");
6341   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6342   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6343   emit_int8(0x78);
6344   emit_int8((unsigned char)(0xC0 | encode));
6345 }
6346 
6347 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6348   assert(VM_Version::supports_evex(), "");
6349   assert(dst != xnoreg, "sanity");
6350   InstructionMark im(this);
6351   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6352   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6353   // swap src<->dst for encoding
6354   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6355   emit_int8(0x78);
6356   emit_operand(dst, src);
6357 }
6358 
6359 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6360 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6361   assert(VM_Version::supports_evex(), "");
6362   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6363   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6364   emit_int8(0x79);
6365   emit_int8((unsigned char)(0xC0 | encode));
6366 }
6367 
6368 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6369   assert(VM_Version::supports_evex(), "");
6370   assert(dst != xnoreg, "sanity");
6371   InstructionMark im(this);
6372   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6373   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6374   // swap src<->dst for encoding
6375   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6376   emit_int8(0x79);
6377   emit_operand(dst, src);
6378 }
6379 
6380 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6381 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6382   assert(VM_Version::supports_evex(), "");
6383   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6384   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6385   emit_int8(0x58);
6386   emit_int8((unsigned char)(0xC0 | encode));
6387 }
6388 
6389 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6390   assert(VM_Version::supports_evex(), "");
6391   assert(dst != xnoreg, "sanity");
6392   InstructionMark im(this);
6393   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6394   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6395   // swap src<->dst for encoding
6396   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6397   emit_int8(0x58);
6398   emit_operand(dst, src);
6399 }
6400 
6401 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6402 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6403   assert(VM_Version::supports_evex(), "");
6404   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6405   attributes.set_rex_vex_w_reverted();
6406   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6407   emit_int8(0x59);
6408   emit_int8((unsigned char)(0xC0 | encode));
6409 }
6410 
6411 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6412   assert(VM_Version::supports_evex(), "");
6413   assert(dst != xnoreg, "sanity");
6414   InstructionMark im(this);
6415   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6416   attributes.set_rex_vex_w_reverted();
6417   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6418   // swap src<->dst for encoding
6419   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6420   emit_int8(0x59);
6421   emit_operand(dst, src);
6422 }
6423 
6424 
6425 // scalar single/double precision replicate
6426 
6427 // duplicate single precision data from src into programmed locations in dest : requires AVX512VL
6428 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6429   assert(VM_Version::supports_evex(), "");
6430   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6431   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6432   emit_int8(0x18);
6433   emit_int8((unsigned char)(0xC0 | encode));
6434 }
6435 
6436 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
6437   assert(VM_Version::supports_evex(), "");
6438   assert(dst != xnoreg, "sanity");
6439   InstructionMark im(this);
6440   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6441   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6442   // swap src<->dst for encoding
6443   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6444   emit_int8(0x18);
6445   emit_operand(dst, src);
6446 }
6447 
6448 // duplicate double precision data from src into programmed locations in dest : requires AVX512VL
6449 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6450   assert(VM_Version::supports_evex(), "");
6451   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6452   attributes.set_rex_vex_w_reverted();
6453   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6454   emit_int8(0x19);
6455   emit_int8((unsigned char)(0xC0 | encode));
6456 }
6457 
6458 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6459   assert(VM_Version::supports_evex(), "");
6460   assert(dst != xnoreg, "sanity");
6461   InstructionMark im(this);
6462   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6463   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6464   attributes.set_rex_vex_w_reverted();
6465   // swap src<->dst for encoding
6466   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6467   emit_int8(0x19);
6468   emit_operand(dst, src);
6469 }
6470 
6471 
6472 // gpr source broadcast forms
6473 
6474 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6475 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6476   assert(VM_Version::supports_evex(), "");
6477   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6478   attributes.set_is_evex_instruction();
6479   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6480   emit_int8(0x7A);
6481   emit_int8((unsigned char)(0xC0 | encode));
6482 }
6483 
6484 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6485 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6486   assert(VM_Version::supports_evex(), "");
6487   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6488   attributes.set_is_evex_instruction();
6489   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6490   emit_int8(0x7B);
6491   emit_int8((unsigned char)(0xC0 | encode));
6492 }
6493 
6494 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6495 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6496   assert(VM_Version::supports_evex(), "");
6497   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6498   attributes.set_is_evex_instruction();
6499   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6500   emit_int8(0x7C);
6501   emit_int8((unsigned char)(0xC0 | encode));
6502 }
6503 
6504 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6505 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6506   assert(VM_Version::supports_evex(), "");
6507   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6508   attributes.set_is_evex_instruction();
6509   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6510   emit_int8(0x7C);
6511   emit_int8((unsigned char)(0xC0 | encode));
6512 }
6513 
6514 
6515 // Carry-Less Multiplication Quadword
6516 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
6517   assert(VM_Version::supports_clmul(), "");
6518   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6519   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6520   emit_int8(0x44);
6521   emit_int8((unsigned char)(0xC0 | encode));
6522   emit_int8((unsigned char)mask);
6523 }
6524 
6525 // Carry-Less Multiplication Quadword
6526 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
6527   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
6528   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6529   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6530   emit_int8(0x44);
6531   emit_int8((unsigned char)(0xC0 | encode));
6532   emit_int8((unsigned char)mask);
6533 }
6534 
6535 void Assembler::vzeroupper() {
6536   assert(VM_Version::supports_avx(), "");
6537   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6538   (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6539   emit_int8(0x77);
6540 }
6541 
6542 #ifndef _LP64
6543 // 32bit only pieces of the assembler
6544 
6545 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6546   // NO PREFIX AS NEVER 64BIT
6547   InstructionMark im(this);
6548   emit_int8((unsigned char)0x81);
6549   emit_int8((unsigned char)(0xF8 | src1->encoding()));
6550   emit_data(imm32, rspec, 0);
6551 }
6552 
6553 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6554   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
6555   InstructionMark im(this);
6556   emit_int8((unsigned char)0x81);
6557   emit_operand(rdi, src1);
6558   emit_data(imm32, rspec, 0);
6559 }
6560 
6561 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
6562 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
6563 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
6564 void Assembler::cmpxchg8(Address adr) {
6565   InstructionMark im(this);
6566   emit_int8(0x0F);
6567   emit_int8((unsigned char)0xC7);
6568   emit_operand(rcx, adr);
6569 }
6570 
6571 void Assembler::decl(Register dst) {
6572   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6573  emit_int8(0x48 | dst->encoding());
6574 }
6575 
6576 #endif // _LP64
6577 
6578 // 64bit typically doesn't use the x87 but needs to for the trig funcs
6579 
6580 void Assembler::fabs() {
6581   emit_int8((unsigned char)0xD9);
6582   emit_int8((unsigned char)0xE1);
6583 }
6584 
6585 void Assembler::fadd(int i) {
6586   emit_farith(0xD8, 0xC0, i);
6587 }
6588 
6589 void Assembler::fadd_d(Address src) {
6590   InstructionMark im(this);
6591   emit_int8((unsigned char)0xDC);
6592   emit_operand32(rax, src);
6593 }
6594 
6595 void Assembler::fadd_s(Address src) {
6596   InstructionMark im(this);
6597   emit_int8((unsigned char)0xD8);
6598   emit_operand32(rax, src);
6599 }
6600 
6601 void Assembler::fadda(int i) {
6602   emit_farith(0xDC, 0xC0, i);
6603 }
6604 
6605 void Assembler::faddp(int i) {
6606   emit_farith(0xDE, 0xC0, i);
6607 }
6608 
6609 void Assembler::fchs() {
6610   emit_int8((unsigned char)0xD9);
6611   emit_int8((unsigned char)0xE0);
6612 }
6613 
6614 void Assembler::fcom(int i) {
6615   emit_farith(0xD8, 0xD0, i);
6616 }
6617 
6618 void Assembler::fcomp(int i) {
6619   emit_farith(0xD8, 0xD8, i);
6620 }
6621 
6622 void Assembler::fcomp_d(Address src) {
6623   InstructionMark im(this);
6624   emit_int8((unsigned char)0xDC);
6625   emit_operand32(rbx, src);
6626 }
6627 
6628 void Assembler::fcomp_s(Address src) {
6629   InstructionMark im(this);
6630   emit_int8((unsigned char)0xD8);
6631   emit_operand32(rbx, src);
6632 }
6633 
6634 void Assembler::fcompp() {
6635   emit_int8((unsigned char)0xDE);
6636   emit_int8((unsigned char)0xD9);
6637 }
6638 
6639 void Assembler::fcos() {
6640   emit_int8((unsigned char)0xD9);
6641   emit_int8((unsigned char)0xFF);
6642 }
6643 
6644 void Assembler::fdecstp() {
6645   emit_int8((unsigned char)0xD9);
6646   emit_int8((unsigned char)0xF6);
6647 }
6648 
6649 void Assembler::fdiv(int i) {
6650   emit_farith(0xD8, 0xF0, i);
6651 }
6652 
6653 void Assembler::fdiv_d(Address src) {
6654   InstructionMark im(this);
6655   emit_int8((unsigned char)0xDC);
6656   emit_operand32(rsi, src);
6657 }
6658 
6659 void Assembler::fdiv_s(Address src) {
6660   InstructionMark im(this);
6661   emit_int8((unsigned char)0xD8);
6662   emit_operand32(rsi, src);
6663 }
6664 
6665 void Assembler::fdiva(int i) {
6666   emit_farith(0xDC, 0xF8, i);
6667 }
6668 
6669 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
6670 //       is erroneous for some of the floating-point instructions below.
6671 
6672 void Assembler::fdivp(int i) {
6673   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
6674 }
6675 
6676 void Assembler::fdivr(int i) {
6677   emit_farith(0xD8, 0xF8, i);
6678 }
6679 
6680 void Assembler::fdivr_d(Address src) {
6681   InstructionMark im(this);
6682   emit_int8((unsigned char)0xDC);
6683   emit_operand32(rdi, src);
6684 }
6685 
6686 void Assembler::fdivr_s(Address src) {
6687   InstructionMark im(this);
6688   emit_int8((unsigned char)0xD8);
6689   emit_operand32(rdi, src);
6690 }
6691 
6692 void Assembler::fdivra(int i) {
6693   emit_farith(0xDC, 0xF0, i);
6694 }
6695 
6696 void Assembler::fdivrp(int i) {
6697   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
6698 }
6699 
6700 void Assembler::ffree(int i) {
6701   emit_farith(0xDD, 0xC0, i);
6702 }
6703 
6704 void Assembler::fild_d(Address adr) {
6705   InstructionMark im(this);
6706   emit_int8((unsigned char)0xDF);
6707   emit_operand32(rbp, adr);
6708 }
6709 
6710 void Assembler::fild_s(Address adr) {
6711   InstructionMark im(this);
6712   emit_int8((unsigned char)0xDB);
6713   emit_operand32(rax, adr);
6714 }
6715 
6716 void Assembler::fincstp() {
6717   emit_int8((unsigned char)0xD9);
6718   emit_int8((unsigned char)0xF7);
6719 }
6720 
6721 void Assembler::finit() {
6722   emit_int8((unsigned char)0x9B);
6723   emit_int8((unsigned char)0xDB);
6724   emit_int8((unsigned char)0xE3);
6725 }
6726 
6727 void Assembler::fist_s(Address adr) {
6728   InstructionMark im(this);
6729   emit_int8((unsigned char)0xDB);
6730   emit_operand32(rdx, adr);
6731 }
6732 
6733 void Assembler::fistp_d(Address adr) {
6734   InstructionMark im(this);
6735   emit_int8((unsigned char)0xDF);
6736   emit_operand32(rdi, adr);
6737 }
6738 
6739 void Assembler::fistp_s(Address adr) {
6740   InstructionMark im(this);
6741   emit_int8((unsigned char)0xDB);
6742   emit_operand32(rbx, adr);
6743 }
6744 
6745 void Assembler::fld1() {
6746   emit_int8((unsigned char)0xD9);
6747   emit_int8((unsigned char)0xE8);
6748 }
6749 
6750 void Assembler::fld_d(Address adr) {
6751   InstructionMark im(this);
6752   emit_int8((unsigned char)0xDD);
6753   emit_operand32(rax, adr);
6754 }
6755 
6756 void Assembler::fld_s(Address adr) {
6757   InstructionMark im(this);
6758   emit_int8((unsigned char)0xD9);
6759   emit_operand32(rax, adr);
6760 }
6761 
6762 
6763 void Assembler::fld_s(int index) {
6764   emit_farith(0xD9, 0xC0, index);
6765 }
6766 
6767 void Assembler::fld_x(Address adr) {
6768   InstructionMark im(this);
6769   emit_int8((unsigned char)0xDB);
6770   emit_operand32(rbp, adr);
6771 }
6772 
6773 void Assembler::fldcw(Address src) {
6774   InstructionMark im(this);
6775   emit_int8((unsigned char)0xD9);
6776   emit_operand32(rbp, src);
6777 }
6778 
6779 void Assembler::fldenv(Address src) {
6780   InstructionMark im(this);
6781   emit_int8((unsigned char)0xD9);
6782   emit_operand32(rsp, src);
6783 }
6784 
6785 void Assembler::fldlg2() {
6786   emit_int8((unsigned char)0xD9);
6787   emit_int8((unsigned char)0xEC);
6788 }
6789 
6790 void Assembler::fldln2() {
6791   emit_int8((unsigned char)0xD9);
6792   emit_int8((unsigned char)0xED);
6793 }
6794 
6795 void Assembler::fldz() {
6796   emit_int8((unsigned char)0xD9);
6797   emit_int8((unsigned char)0xEE);
6798 }
6799 
6800 void Assembler::flog() {
6801   fldln2();
6802   fxch();
6803   fyl2x();
6804 }
6805 
6806 void Assembler::flog10() {
6807   fldlg2();
6808   fxch();
6809   fyl2x();
6810 }
6811 
6812 void Assembler::fmul(int i) {
6813   emit_farith(0xD8, 0xC8, i);
6814 }
6815 
6816 void Assembler::fmul_d(Address src) {
6817   InstructionMark im(this);
6818   emit_int8((unsigned char)0xDC);
6819   emit_operand32(rcx, src);
6820 }
6821 
6822 void Assembler::fmul_s(Address src) {
6823   InstructionMark im(this);
6824   emit_int8((unsigned char)0xD8);
6825   emit_operand32(rcx, src);
6826 }
6827 
6828 void Assembler::fmula(int i) {
6829   emit_farith(0xDC, 0xC8, i);
6830 }
6831 
6832 void Assembler::fmulp(int i) {
6833   emit_farith(0xDE, 0xC8, i);
6834 }
6835 
6836 void Assembler::fnsave(Address dst) {
6837   InstructionMark im(this);
6838   emit_int8((unsigned char)0xDD);
6839   emit_operand32(rsi, dst);
6840 }
6841 
6842 void Assembler::fnstcw(Address src) {
6843   InstructionMark im(this);
6844   emit_int8((unsigned char)0x9B);
6845   emit_int8((unsigned char)0xD9);
6846   emit_operand32(rdi, src);
6847 }
6848 
6849 void Assembler::fnstsw_ax() {
6850   emit_int8((unsigned char)0xDF);
6851   emit_int8((unsigned char)0xE0);
6852 }
6853 
6854 void Assembler::fprem() {
6855   emit_int8((unsigned char)0xD9);
6856   emit_int8((unsigned char)0xF8);
6857 }
6858 
6859 void Assembler::fprem1() {
6860   emit_int8((unsigned char)0xD9);
6861   emit_int8((unsigned char)0xF5);
6862 }
6863 
6864 void Assembler::frstor(Address src) {
6865   InstructionMark im(this);
6866   emit_int8((unsigned char)0xDD);
6867   emit_operand32(rsp, src);
6868 }
6869 
6870 void Assembler::fsin() {
6871   emit_int8((unsigned char)0xD9);
6872   emit_int8((unsigned char)0xFE);
6873 }
6874 
6875 void Assembler::fsqrt() {
6876   emit_int8((unsigned char)0xD9);
6877   emit_int8((unsigned char)0xFA);
6878 }
6879 
6880 void Assembler::fst_d(Address adr) {
6881   InstructionMark im(this);
6882   emit_int8((unsigned char)0xDD);
6883   emit_operand32(rdx, adr);
6884 }
6885 
6886 void Assembler::fst_s(Address adr) {
6887   InstructionMark im(this);
6888   emit_int8((unsigned char)0xD9);
6889   emit_operand32(rdx, adr);
6890 }
6891 
6892 void Assembler::fstp_d(Address adr) {
6893   InstructionMark im(this);
6894   emit_int8((unsigned char)0xDD);
6895   emit_operand32(rbx, adr);
6896 }
6897 
6898 void Assembler::fstp_d(int index) {
6899   emit_farith(0xDD, 0xD8, index);
6900 }
6901 
6902 void Assembler::fstp_s(Address adr) {
6903   InstructionMark im(this);
6904   emit_int8((unsigned char)0xD9);
6905   emit_operand32(rbx, adr);
6906 }
6907 
6908 void Assembler::fstp_x(Address adr) {
6909   InstructionMark im(this);
6910   emit_int8((unsigned char)0xDB);
6911   emit_operand32(rdi, adr);
6912 }
6913 
6914 void Assembler::fsub(int i) {
6915   emit_farith(0xD8, 0xE0, i);
6916 }
6917 
6918 void Assembler::fsub_d(Address src) {
6919   InstructionMark im(this);
6920   emit_int8((unsigned char)0xDC);
6921   emit_operand32(rsp, src);
6922 }
6923 
6924 void Assembler::fsub_s(Address src) {
6925   InstructionMark im(this);
6926   emit_int8((unsigned char)0xD8);
6927   emit_operand32(rsp, src);
6928 }
6929 
6930 void Assembler::fsuba(int i) {
6931   emit_farith(0xDC, 0xE8, i);
6932 }
6933 
6934 void Assembler::fsubp(int i) {
6935   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
6936 }
6937 
6938 void Assembler::fsubr(int i) {
6939   emit_farith(0xD8, 0xE8, i);
6940 }
6941 
6942 void Assembler::fsubr_d(Address src) {
6943   InstructionMark im(this);
6944   emit_int8((unsigned char)0xDC);
6945   emit_operand32(rbp, src);
6946 }
6947 
6948 void Assembler::fsubr_s(Address src) {
6949   InstructionMark im(this);
6950   emit_int8((unsigned char)0xD8);
6951   emit_operand32(rbp, src);
6952 }
6953 
6954 void Assembler::fsubra(int i) {
6955   emit_farith(0xDC, 0xE0, i);
6956 }
6957 
6958 void Assembler::fsubrp(int i) {
6959   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
6960 }
6961 
6962 void Assembler::ftan() {
6963   emit_int8((unsigned char)0xD9);
6964   emit_int8((unsigned char)0xF2);
6965   emit_int8((unsigned char)0xDD);
6966   emit_int8((unsigned char)0xD8);
6967 }
6968 
6969 void Assembler::ftst() {
6970   emit_int8((unsigned char)0xD9);
6971   emit_int8((unsigned char)0xE4);
6972 }
6973 
6974 void Assembler::fucomi(int i) {
6975   // make sure the instruction is supported (introduced for P6, together with cmov)
6976   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6977   emit_farith(0xDB, 0xE8, i);
6978 }
6979 
6980 void Assembler::fucomip(int i) {
6981   // make sure the instruction is supported (introduced for P6, together with cmov)
6982   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6983   emit_farith(0xDF, 0xE8, i);
6984 }
6985 
6986 void Assembler::fwait() {
6987   emit_int8((unsigned char)0x9B);
6988 }
6989 
6990 void Assembler::fxch(int i) {
6991   emit_farith(0xD9, 0xC8, i);
6992 }
6993 
6994 void Assembler::fyl2x() {
6995   emit_int8((unsigned char)0xD9);
6996   emit_int8((unsigned char)0xF1);
6997 }
6998 
6999 void Assembler::frndint() {
7000   emit_int8((unsigned char)0xD9);
7001   emit_int8((unsigned char)0xFC);
7002 }
7003 
7004 void Assembler::f2xm1() {
7005   emit_int8((unsigned char)0xD9);
7006   emit_int8((unsigned char)0xF0);
7007 }
7008 
7009 void Assembler::fldl2e() {
7010   emit_int8((unsigned char)0xD9);
7011   emit_int8((unsigned char)0xEA);
7012 }
7013 
7014 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
7015 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
7016 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
7017 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
7018 
7019 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
7020 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7021   if (pre > 0) {
7022     emit_int8(simd_pre[pre]);
7023   }
7024   if (rex_w) {
7025     prefixq(adr, xreg);
7026   } else {
7027     prefix(adr, xreg);
7028   }
7029   if (opc > 0) {
7030     emit_int8(0x0F);
7031     int opc2 = simd_opc[opc];
7032     if (opc2 > 0) {
7033       emit_int8(opc2);
7034     }
7035   }
7036 }
7037 
7038 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7039   if (pre > 0) {
7040     emit_int8(simd_pre[pre]);
7041   }
7042   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
7043   if (opc > 0) {
7044     emit_int8(0x0F);
7045     int opc2 = simd_opc[opc];
7046     if (opc2 > 0) {
7047       emit_int8(opc2);
7048     }
7049   }
7050   return encode;
7051 }
7052 
7053 
7054 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
7055   int vector_len = _attributes->get_vector_len();
7056   bool vex_w = _attributes->is_rex_vex_w();
7057   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
7058     prefix(VEX_3bytes);
7059 
7060     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
7061     byte1 = (~byte1) & 0xE0;
7062     byte1 |= opc;
7063     emit_int8(byte1);
7064 
7065     int byte2 = ((~nds_enc) & 0xf) << 3;
7066     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
7067     emit_int8(byte2);
7068   } else {
7069     prefix(VEX_2bytes);
7070 
7071     int byte1 = vex_r ? VEX_R : 0;
7072     byte1 = (~byte1) & 0x80;
7073     byte1 |= ((~nds_enc) & 0xf) << 3;
7074     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
7075     emit_int8(byte1);
7076   }
7077 }
7078 
7079 // This is a 4 byte encoding
7080 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
7081   // EVEX 0x62 prefix
7082   prefix(EVEX_4bytes);
7083   bool vex_w = _attributes->is_rex_vex_w();
7084   int evex_encoding = (vex_w ? VEX_W : 0);
7085   // EVEX.b is not currently used for broadcast of single element or data rounding modes
7086   _attributes->set_evex_encoding(evex_encoding);
7087 
7088   // P0: byte 2, initialized to RXBR`00mm
7089   // instead of not'd
7090   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
7091   byte2 = (~byte2) & 0xF0;
7092   // confine opc opcode extensions in mm bits to lower two bits
7093   // of form {0F, 0F_38, 0F_3A}
7094   byte2 |= opc;
7095   emit_int8(byte2);
7096 
7097   // P1: byte 3 as Wvvvv1pp
7098   int byte3 = ((~nds_enc) & 0xf) << 3;
7099   // p[10] is always 1
7100   byte3 |= EVEX_F;
7101   byte3 |= (vex_w & 1) << 7;
7102   // confine pre opcode extensions in pp bits to lower two bits
7103   // of form {66, F3, F2}
7104   byte3 |= pre;
7105   emit_int8(byte3);
7106 
7107   // P2: byte 4 as zL'Lbv'aaa
7108   // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
7109   int byte4 = (_attributes->is_no_reg_mask()) ?
7110               0 :
7111               _attributes->get_embedded_opmask_register_specifier();
7112   // EVEX.v` for extending EVEX.vvvv or VIDX
7113   byte4 |= (evex_v ? 0: EVEX_V);
7114   // third EXEC.b for broadcast actions
7115   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
7116   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
7117   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
7118   // last is EVEX.z for zero/merge actions
7119   byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
7120   emit_int8(byte4);
7121 }
7122 
7123 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7124   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
7125   bool vex_b = adr.base_needs_rex();
7126   bool vex_x = adr.index_needs_rex();
7127   set_attributes(attributes);
7128   attributes->set_current_assembler(this);
7129 
7130   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
7131   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
7132     switch (attributes->get_vector_len()) {
7133     case AVX_128bit:
7134     case AVX_256bit:
7135       attributes->set_is_legacy_mode();
7136       break;
7137     }
7138   }
7139 
7140   // For pure EVEX check and see if this instruction
7141   // is allowed in legacy mode and has resources which will
7142   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
7143   // else that field is set when we encode to EVEX
7144   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
7145       !_is_managed && !attributes->is_evex_instruction()) {
7146     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
7147       bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
7148       if (check_register_bank) {
7149         // check nds_enc and xreg_enc for upper bank usage
7150         if (nds_enc < 16 && xreg_enc < 16) {
7151           attributes->set_is_legacy_mode();
7152         }
7153       } else {
7154         attributes->set_is_legacy_mode();
7155       }
7156     }
7157   }
7158 
7159   _is_managed = false;
7160   if (UseAVX > 2 && !attributes->is_legacy_mode())
7161   {
7162     bool evex_r = (xreg_enc >= 16);
7163     bool evex_v = (nds_enc >= 16);
7164     attributes->set_is_evex_instruction();
7165     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7166   } else {
7167     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7168       attributes->set_rex_vex_w(false);
7169     }
7170     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7171   }
7172 }
7173 
7174 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7175   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
7176   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
7177   bool vex_x = false;
7178   set_attributes(attributes);
7179   attributes->set_current_assembler(this);
7180   bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
7181 
7182   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
7183   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
7184     switch (attributes->get_vector_len()) {
7185     case AVX_128bit:
7186     case AVX_256bit:
7187       if (check_register_bank) {
7188         if (dst_enc >= 16 || nds_enc >= 16 || src_enc >= 16) {
7189           // up propagate arithmetic instructions to meet RA requirements
7190           attributes->set_vector_len(AVX_512bit);
7191         } else {
7192           attributes->set_is_legacy_mode();
7193         }
7194       } else {
7195         attributes->set_is_legacy_mode();
7196       }
7197       break;
7198     }
7199   }
7200 
7201   // For pure EVEX check and see if this instruction
7202   // is allowed in legacy mode and has resources which will
7203   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
7204   // else that field is set when we encode to EVEX
7205   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
7206       !_is_managed && !attributes->is_evex_instruction()) {
7207     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
7208       if (check_register_bank) {
7209         // check dst_enc, nds_enc and src_enc for upper bank usage
7210         if (dst_enc < 16 && nds_enc < 16 && src_enc < 16) {
7211           attributes->set_is_legacy_mode();
7212         }
7213       } else {
7214         attributes->set_is_legacy_mode();
7215       }
7216     }
7217   }
7218 
7219   _is_managed = false;
7220   if (UseAVX > 2 && !attributes->is_legacy_mode())
7221   {
7222     bool evex_r = (dst_enc >= 16);
7223     bool evex_v = (nds_enc >= 16);
7224     // can use vex_x as bank extender on rm encoding
7225     vex_x = (src_enc >= 16);
7226     attributes->set_is_evex_instruction();
7227     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7228   } else {
7229     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7230       attributes->set_rex_vex_w(false);
7231     }
7232     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7233   }
7234 
7235   // return modrm byte components for operands
7236   return (((dst_enc & 7) << 3) | (src_enc & 7));
7237 }
7238 
7239 
7240 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
7241                             VexOpcode opc, InstructionAttr *attributes) {
7242   if (UseAVX > 0) {
7243     int xreg_enc = xreg->encoding();
7244     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7245     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
7246   } else {
7247     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
7248     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
7249   }
7250 }
7251 
7252 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
7253                                       VexOpcode opc, InstructionAttr *attributes) {
7254   int dst_enc = dst->encoding();
7255   int src_enc = src->encoding();
7256   if (UseAVX > 0) {
7257     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7258     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
7259   } else {
7260     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
7261     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
7262   }
7263 }
7264 
7265 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7266   assert(VM_Version::supports_avx(), "");
7267   assert(!VM_Version::supports_evex(), "");
7268   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7269   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7270   emit_int8((unsigned char)0xC2);
7271   emit_int8((unsigned char)(0xC0 | encode));
7272   emit_int8((unsigned char)(0xF & cop));
7273 }
7274 
7275 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7276   assert(VM_Version::supports_avx(), "");
7277   assert(!VM_Version::supports_evex(), "");
7278   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7279   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7280   emit_int8((unsigned char)0x4B);
7281   emit_int8((unsigned char)(0xC0 | encode));
7282   int src2_enc = src2->encoding();
7283   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
7284 }
7285 
7286 void Assembler::shlxl(Register dst, Register src1, Register src2) {
7287   assert(VM_Version::supports_bmi2(), "");
7288   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7289   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7290   emit_int8((unsigned char)0xF7);
7291   emit_int8((unsigned char)(0xC0 | encode));
7292 }
7293 
7294 void Assembler::shlxq(Register dst, Register src1, Register src2) {
7295   assert(VM_Version::supports_bmi2(), "");
7296   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7297   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7298   emit_int8((unsigned char)0xF7);
7299   emit_int8((unsigned char)(0xC0 | encode));
7300 }
7301 
7302 #ifndef _LP64
7303 
7304 void Assembler::incl(Register dst) {
7305   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7306   emit_int8(0x40 | dst->encoding());
7307 }
7308 
7309 void Assembler::lea(Register dst, Address src) {
7310   leal(dst, src);
7311 }
7312 
7313 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
7314   InstructionMark im(this);
7315   emit_int8((unsigned char)0xC7);
7316   emit_operand(rax, dst);
7317   emit_data((int)imm32, rspec, 0);
7318 }
7319 
7320 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7321   InstructionMark im(this);
7322   int encode = prefix_and_encode(dst->encoding());
7323   emit_int8((unsigned char)(0xB8 | encode));
7324   emit_data((int)imm32, rspec, 0);
7325 }
7326 
7327 void Assembler::popa() { // 32bit
7328   emit_int8(0x61);
7329 }
7330 
7331 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
7332   InstructionMark im(this);
7333   emit_int8(0x68);
7334   emit_data(imm32, rspec, 0);
7335 }
7336 
7337 void Assembler::pusha() { // 32bit
7338   emit_int8(0x60);
7339 }
7340 
7341 void Assembler::set_byte_if_not_zero(Register dst) {
7342   emit_int8(0x0F);
7343   emit_int8((unsigned char)0x95);
7344   emit_int8((unsigned char)(0xE0 | dst->encoding()));
7345 }
7346 
7347 void Assembler::shldl(Register dst, Register src) {
7348   emit_int8(0x0F);
7349   emit_int8((unsigned char)0xA5);
7350   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7351 }
7352 
7353 // 0F A4 / r ib
7354 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
7355   emit_int8(0x0F);
7356   emit_int8((unsigned char)0xA4);
7357   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7358   emit_int8(imm8);
7359 }
7360 
7361 void Assembler::shrdl(Register dst, Register src) {
7362   emit_int8(0x0F);
7363   emit_int8((unsigned char)0xAD);
7364   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7365 }
7366 
7367 #else // LP64
7368 
7369 void Assembler::set_byte_if_not_zero(Register dst) {
7370   int enc = prefix_and_encode(dst->encoding(), true);
7371   emit_int8(0x0F);
7372   emit_int8((unsigned char)0x95);
7373   emit_int8((unsigned char)(0xE0 | enc));
7374 }
7375 
7376 // 64bit only pieces of the assembler
7377 // This should only be used by 64bit instructions that can use rip-relative
7378 // it cannot be used by instructions that want an immediate value.
7379 
7380 bool Assembler::reachable(AddressLiteral adr) {
7381   int64_t disp;
7382   // None will force a 64bit literal to the code stream. Likely a placeholder
7383   // for something that will be patched later and we need to certain it will
7384   // always be reachable.
7385   if (adr.reloc() == relocInfo::none) {
7386     return false;
7387   }
7388   if (adr.reloc() == relocInfo::internal_word_type) {
7389     // This should be rip relative and easily reachable.
7390     return true;
7391   }
7392   if (adr.reloc() == relocInfo::virtual_call_type ||
7393       adr.reloc() == relocInfo::opt_virtual_call_type ||
7394       adr.reloc() == relocInfo::static_call_type ||
7395       adr.reloc() == relocInfo::static_stub_type ) {
7396     // This should be rip relative within the code cache and easily
7397     // reachable until we get huge code caches. (At which point
7398     // ic code is going to have issues).
7399     return true;
7400   }
7401   if (adr.reloc() != relocInfo::external_word_type &&
7402       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
7403       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
7404       adr.reloc() != relocInfo::runtime_call_type ) {
7405     return false;
7406   }
7407 
7408   // Stress the correction code
7409   if (ForceUnreachable) {
7410     // Must be runtimecall reloc, see if it is in the codecache
7411     // Flipping stuff in the codecache to be unreachable causes issues
7412     // with things like inline caches where the additional instructions
7413     // are not handled.
7414     if (CodeCache::find_blob(adr._target) == NULL) {
7415       return false;
7416     }
7417   }
7418   // For external_word_type/runtime_call_type if it is reachable from where we
7419   // are now (possibly a temp buffer) and where we might end up
7420   // anywhere in the codeCache then we are always reachable.
7421   // This would have to change if we ever save/restore shared code
7422   // to be more pessimistic.
7423   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7424   if (!is_simm32(disp)) return false;
7425   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7426   if (!is_simm32(disp)) return false;
7427 
7428   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7429 
7430   // Because rip relative is a disp + address_of_next_instruction and we
7431   // don't know the value of address_of_next_instruction we apply a fudge factor
7432   // to make sure we will be ok no matter the size of the instruction we get placed into.
7433   // We don't have to fudge the checks above here because they are already worst case.
7434 
7435   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
7436   // + 4 because better safe than sorry.
7437   const int fudge = 12 + 4;
7438   if (disp < 0) {
7439     disp -= fudge;
7440   } else {
7441     disp += fudge;
7442   }
7443   return is_simm32(disp);
7444 }
7445 
7446 // Check if the polling page is not reachable from the code cache using rip-relative
7447 // addressing.
7448 bool Assembler::is_polling_page_far() {
7449   intptr_t addr = (intptr_t)os::get_polling_page();
7450   return ForceUnreachable ||
7451          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
7452          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
7453 }
7454 
7455 void Assembler::emit_data64(jlong data,
7456                             relocInfo::relocType rtype,
7457                             int format) {
7458   if (rtype == relocInfo::none) {
7459     emit_int64(data);
7460   } else {
7461     emit_data64(data, Relocation::spec_simple(rtype), format);
7462   }
7463 }
7464 
7465 void Assembler::emit_data64(jlong data,
7466                             RelocationHolder const& rspec,
7467                             int format) {
7468   assert(imm_operand == 0, "default format must be immediate in this file");
7469   assert(imm_operand == format, "must be immediate");
7470   assert(inst_mark() != NULL, "must be inside InstructionMark");
7471   // Do not use AbstractAssembler::relocate, which is not intended for
7472   // embedded words.  Instead, relocate to the enclosing instruction.
7473   code_section()->relocate(inst_mark(), rspec, format);
7474 #ifdef ASSERT
7475   check_relocation(rspec, format);
7476 #endif
7477   emit_int64(data);
7478 }
7479 
7480 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
7481   if (reg_enc >= 8) {
7482     prefix(REX_B);
7483     reg_enc -= 8;
7484   } else if (byteinst && reg_enc >= 4) {
7485     prefix(REX);
7486   }
7487   return reg_enc;
7488 }
7489 
7490 int Assembler::prefixq_and_encode(int reg_enc) {
7491   if (reg_enc < 8) {
7492     prefix(REX_W);
7493   } else {
7494     prefix(REX_WB);
7495     reg_enc -= 8;
7496   }
7497   return reg_enc;
7498 }
7499 
7500 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
7501   if (dst_enc < 8) {
7502     if (src_enc >= 8) {
7503       prefix(REX_B);
7504       src_enc -= 8;
7505     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
7506       prefix(REX);
7507     }
7508   } else {
7509     if (src_enc < 8) {
7510       prefix(REX_R);
7511     } else {
7512       prefix(REX_RB);
7513       src_enc -= 8;
7514     }
7515     dst_enc -= 8;
7516   }
7517   return dst_enc << 3 | src_enc;
7518 }
7519 
7520 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
7521   if (dst_enc < 8) {
7522     if (src_enc < 8) {
7523       prefix(REX_W);
7524     } else {
7525       prefix(REX_WB);
7526       src_enc -= 8;
7527     }
7528   } else {
7529     if (src_enc < 8) {
7530       prefix(REX_WR);
7531     } else {
7532       prefix(REX_WRB);
7533       src_enc -= 8;
7534     }
7535     dst_enc -= 8;
7536   }
7537   return dst_enc << 3 | src_enc;
7538 }
7539 
7540 void Assembler::prefix(Register reg) {
7541   if (reg->encoding() >= 8) {
7542     prefix(REX_B);
7543   }
7544 }
7545 
7546 void Assembler::prefix(Register dst, Register src, Prefix p) {
7547   if (src->encoding() >= 8) {
7548     p = (Prefix)(p | REX_B);
7549   }
7550   if (dst->encoding() >= 8) {
7551     p = (Prefix)( p | REX_R);
7552   }
7553   if (p != Prefix_EMPTY) {
7554     // do not generate an empty prefix
7555     prefix(p);
7556   }
7557 }
7558 
7559 void Assembler::prefix(Register dst, Address adr, Prefix p) {
7560   if (adr.base_needs_rex()) {
7561     if (adr.index_needs_rex()) {
7562       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7563     } else {
7564       prefix(REX_B);
7565     }
7566   } else {
7567     if (adr.index_needs_rex()) {
7568       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7569     }
7570   }
7571   if (dst->encoding() >= 8) {
7572     p = (Prefix)(p | REX_R);
7573   }
7574   if (p != Prefix_EMPTY) {
7575     // do not generate an empty prefix
7576     prefix(p);
7577   }
7578 }
7579 
7580 void Assembler::prefix(Address adr) {
7581   if (adr.base_needs_rex()) {
7582     if (adr.index_needs_rex()) {
7583       prefix(REX_XB);
7584     } else {
7585       prefix(REX_B);
7586     }
7587   } else {
7588     if (adr.index_needs_rex()) {
7589       prefix(REX_X);
7590     }
7591   }
7592 }
7593 
7594 void Assembler::prefixq(Address adr) {
7595   if (adr.base_needs_rex()) {
7596     if (adr.index_needs_rex()) {
7597       prefix(REX_WXB);
7598     } else {
7599       prefix(REX_WB);
7600     }
7601   } else {
7602     if (adr.index_needs_rex()) {
7603       prefix(REX_WX);
7604     } else {
7605       prefix(REX_W);
7606     }
7607   }
7608 }
7609 
7610 
7611 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
7612   if (reg->encoding() < 8) {
7613     if (adr.base_needs_rex()) {
7614       if (adr.index_needs_rex()) {
7615         prefix(REX_XB);
7616       } else {
7617         prefix(REX_B);
7618       }
7619     } else {
7620       if (adr.index_needs_rex()) {
7621         prefix(REX_X);
7622       } else if (byteinst && reg->encoding() >= 4 ) {
7623         prefix(REX);
7624       }
7625     }
7626   } else {
7627     if (adr.base_needs_rex()) {
7628       if (adr.index_needs_rex()) {
7629         prefix(REX_RXB);
7630       } else {
7631         prefix(REX_RB);
7632       }
7633     } else {
7634       if (adr.index_needs_rex()) {
7635         prefix(REX_RX);
7636       } else {
7637         prefix(REX_R);
7638       }
7639     }
7640   }
7641 }
7642 
7643 void Assembler::prefixq(Address adr, Register src) {
7644   if (src->encoding() < 8) {
7645     if (adr.base_needs_rex()) {
7646       if (adr.index_needs_rex()) {
7647         prefix(REX_WXB);
7648       } else {
7649         prefix(REX_WB);
7650       }
7651     } else {
7652       if (adr.index_needs_rex()) {
7653         prefix(REX_WX);
7654       } else {
7655         prefix(REX_W);
7656       }
7657     }
7658   } else {
7659     if (adr.base_needs_rex()) {
7660       if (adr.index_needs_rex()) {
7661         prefix(REX_WRXB);
7662       } else {
7663         prefix(REX_WRB);
7664       }
7665     } else {
7666       if (adr.index_needs_rex()) {
7667         prefix(REX_WRX);
7668       } else {
7669         prefix(REX_WR);
7670       }
7671     }
7672   }
7673 }
7674 
7675 void Assembler::prefix(Address adr, XMMRegister reg) {
7676   if (reg->encoding() < 8) {
7677     if (adr.base_needs_rex()) {
7678       if (adr.index_needs_rex()) {
7679         prefix(REX_XB);
7680       } else {
7681         prefix(REX_B);
7682       }
7683     } else {
7684       if (adr.index_needs_rex()) {
7685         prefix(REX_X);
7686       }
7687     }
7688   } else {
7689     if (adr.base_needs_rex()) {
7690       if (adr.index_needs_rex()) {
7691         prefix(REX_RXB);
7692       } else {
7693         prefix(REX_RB);
7694       }
7695     } else {
7696       if (adr.index_needs_rex()) {
7697         prefix(REX_RX);
7698       } else {
7699         prefix(REX_R);
7700       }
7701     }
7702   }
7703 }
7704 
7705 void Assembler::prefixq(Address adr, XMMRegister src) {
7706   if (src->encoding() < 8) {
7707     if (adr.base_needs_rex()) {
7708       if (adr.index_needs_rex()) {
7709         prefix(REX_WXB);
7710       } else {
7711         prefix(REX_WB);
7712       }
7713     } else {
7714       if (adr.index_needs_rex()) {
7715         prefix(REX_WX);
7716       } else {
7717         prefix(REX_W);
7718       }
7719     }
7720   } else {
7721     if (adr.base_needs_rex()) {
7722       if (adr.index_needs_rex()) {
7723         prefix(REX_WRXB);
7724       } else {
7725         prefix(REX_WRB);
7726       }
7727     } else {
7728       if (adr.index_needs_rex()) {
7729         prefix(REX_WRX);
7730       } else {
7731         prefix(REX_WR);
7732       }
7733     }
7734   }
7735 }
7736 
7737 void Assembler::adcq(Register dst, int32_t imm32) {
7738   (void) prefixq_and_encode(dst->encoding());
7739   emit_arith(0x81, 0xD0, dst, imm32);
7740 }
7741 
7742 void Assembler::adcq(Register dst, Address src) {
7743   InstructionMark im(this);
7744   prefixq(src, dst);
7745   emit_int8(0x13);
7746   emit_operand(dst, src);
7747 }
7748 
7749 void Assembler::adcq(Register dst, Register src) {
7750   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7751   emit_arith(0x13, 0xC0, dst, src);
7752 }
7753 
7754 void Assembler::addq(Address dst, int32_t imm32) {
7755   InstructionMark im(this);
7756   prefixq(dst);
7757   emit_arith_operand(0x81, rax, dst,imm32);
7758 }
7759 
7760 void Assembler::addq(Address dst, Register src) {
7761   InstructionMark im(this);
7762   prefixq(dst, src);
7763   emit_int8(0x01);
7764   emit_operand(src, dst);
7765 }
7766 
7767 void Assembler::addq(Register dst, int32_t imm32) {
7768   (void) prefixq_and_encode(dst->encoding());
7769   emit_arith(0x81, 0xC0, dst, imm32);
7770 }
7771 
7772 void Assembler::addq(Register dst, Address src) {
7773   InstructionMark im(this);
7774   prefixq(src, dst);
7775   emit_int8(0x03);
7776   emit_operand(dst, src);
7777 }
7778 
7779 void Assembler::addq(Register dst, Register src) {
7780   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7781   emit_arith(0x03, 0xC0, dst, src);
7782 }
7783 
7784 void Assembler::adcxq(Register dst, Register src) {
7785   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7786   emit_int8((unsigned char)0x66);
7787   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7788   emit_int8(0x0F);
7789   emit_int8(0x38);
7790   emit_int8((unsigned char)0xF6);
7791   emit_int8((unsigned char)(0xC0 | encode));
7792 }
7793 
7794 void Assembler::adoxq(Register dst, Register src) {
7795   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7796   emit_int8((unsigned char)0xF3);
7797   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7798   emit_int8(0x0F);
7799   emit_int8(0x38);
7800   emit_int8((unsigned char)0xF6);
7801   emit_int8((unsigned char)(0xC0 | encode));
7802 }
7803 
7804 void Assembler::andq(Address dst, int32_t imm32) {
7805   InstructionMark im(this);
7806   prefixq(dst);
7807   emit_int8((unsigned char)0x81);
7808   emit_operand(rsp, dst, 4);
7809   emit_int32(imm32);
7810 }
7811 
7812 void Assembler::andq(Register dst, int32_t imm32) {
7813   (void) prefixq_and_encode(dst->encoding());
7814   emit_arith(0x81, 0xE0, dst, imm32);
7815 }
7816 
7817 void Assembler::andq(Register dst, Address src) {
7818   InstructionMark im(this);
7819   prefixq(src, dst);
7820   emit_int8(0x23);
7821   emit_operand(dst, src);
7822 }
7823 
7824 void Assembler::andq(Register dst, Register src) {
7825   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7826   emit_arith(0x23, 0xC0, dst, src);
7827 }
7828 
7829 void Assembler::andnq(Register dst, Register src1, Register src2) {
7830   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7831   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7832   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7833   emit_int8((unsigned char)0xF2);
7834   emit_int8((unsigned char)(0xC0 | encode));
7835 }
7836 
7837 void Assembler::andnq(Register dst, Register src1, Address src2) {
7838   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7839   InstructionMark im(this);
7840   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7841   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7842   emit_int8((unsigned char)0xF2);
7843   emit_operand(dst, src2);
7844 }
7845 
7846 void Assembler::bsfq(Register dst, Register src) {
7847   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7848   emit_int8(0x0F);
7849   emit_int8((unsigned char)0xBC);
7850   emit_int8((unsigned char)(0xC0 | encode));
7851 }
7852 
7853 void Assembler::bsrq(Register dst, Register src) {
7854   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7855   emit_int8(0x0F);
7856   emit_int8((unsigned char)0xBD);
7857   emit_int8((unsigned char)(0xC0 | encode));
7858 }
7859 
7860 void Assembler::bswapq(Register reg) {
7861   int encode = prefixq_and_encode(reg->encoding());
7862   emit_int8(0x0F);
7863   emit_int8((unsigned char)(0xC8 | encode));
7864 }
7865 
7866 void Assembler::blsiq(Register dst, Register src) {
7867   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7868   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7869   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7870   emit_int8((unsigned char)0xF3);
7871   emit_int8((unsigned char)(0xC0 | encode));
7872 }
7873 
7874 void Assembler::blsiq(Register dst, Address src) {
7875   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7876   InstructionMark im(this);
7877   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7878   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7879   emit_int8((unsigned char)0xF3);
7880   emit_operand(rbx, src);
7881 }
7882 
7883 void Assembler::blsmskq(Register dst, Register src) {
7884   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7885   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7886   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7887   emit_int8((unsigned char)0xF3);
7888   emit_int8((unsigned char)(0xC0 | encode));
7889 }
7890 
7891 void Assembler::blsmskq(Register dst, Address src) {
7892   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7893   InstructionMark im(this);
7894   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7895   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7896   emit_int8((unsigned char)0xF3);
7897   emit_operand(rdx, src);
7898 }
7899 
7900 void Assembler::blsrq(Register dst, Register src) {
7901   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7902   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7903   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7904   emit_int8((unsigned char)0xF3);
7905   emit_int8((unsigned char)(0xC0 | encode));
7906 }
7907 
7908 void Assembler::blsrq(Register dst, Address src) {
7909   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7910   InstructionMark im(this);
7911   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7912   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7913   emit_int8((unsigned char)0xF3);
7914   emit_operand(rcx, src);
7915 }
7916 
7917 void Assembler::cdqq() {
7918   prefix(REX_W);
7919   emit_int8((unsigned char)0x99);
7920 }
7921 
7922 void Assembler::clflush(Address adr) {
7923   prefix(adr);
7924   emit_int8(0x0F);
7925   emit_int8((unsigned char)0xAE);
7926   emit_operand(rdi, adr);
7927 }
7928 
7929 void Assembler::cmovq(Condition cc, Register dst, Register src) {
7930   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7931   emit_int8(0x0F);
7932   emit_int8(0x40 | cc);
7933   emit_int8((unsigned char)(0xC0 | encode));
7934 }
7935 
7936 void Assembler::cmovq(Condition cc, Register dst, Address src) {
7937   InstructionMark im(this);
7938   prefixq(src, dst);
7939   emit_int8(0x0F);
7940   emit_int8(0x40 | cc);
7941   emit_operand(dst, src);
7942 }
7943 
7944 void Assembler::cmpq(Address dst, int32_t imm32) {
7945   InstructionMark im(this);
7946   prefixq(dst);
7947   emit_int8((unsigned char)0x81);
7948   emit_operand(rdi, dst, 4);
7949   emit_int32(imm32);
7950 }
7951 
7952 void Assembler::cmpq(Register dst, int32_t imm32) {
7953   (void) prefixq_and_encode(dst->encoding());
7954   emit_arith(0x81, 0xF8, dst, imm32);
7955 }
7956 
7957 void Assembler::cmpq(Address dst, Register src) {
7958   InstructionMark im(this);
7959   prefixq(dst, src);
7960   emit_int8(0x3B);
7961   emit_operand(src, dst);
7962 }
7963 
7964 void Assembler::cmpq(Register dst, Register src) {
7965   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7966   emit_arith(0x3B, 0xC0, dst, src);
7967 }
7968 
7969 void Assembler::cmpq(Register dst, Address  src) {
7970   InstructionMark im(this);
7971   prefixq(src, dst);
7972   emit_int8(0x3B);
7973   emit_operand(dst, src);
7974 }
7975 
7976 void Assembler::cmpxchgq(Register reg, Address adr) {
7977   InstructionMark im(this);
7978   prefixq(adr, reg);
7979   emit_int8(0x0F);
7980   emit_int8((unsigned char)0xB1);
7981   emit_operand(reg, adr);
7982 }
7983 
7984 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
7985   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7986   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7987   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7988   emit_int8(0x2A);
7989   emit_int8((unsigned char)(0xC0 | encode));
7990 }
7991 
7992 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
7993   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7994   InstructionMark im(this);
7995   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7996   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7997   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7998   emit_int8(0x2A);
7999   emit_operand(dst, src);
8000 }
8001 
8002 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
8003   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8004   InstructionMark im(this);
8005   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8006   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8007   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8008   emit_int8(0x2A);
8009   emit_operand(dst, src);
8010 }
8011 
8012 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
8013   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8014   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8015   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8016   emit_int8(0x2C);
8017   emit_int8((unsigned char)(0xC0 | encode));
8018 }
8019 
8020 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
8021   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8022   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8023   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8024   emit_int8(0x2C);
8025   emit_int8((unsigned char)(0xC0 | encode));
8026 }
8027 
8028 void Assembler::decl(Register dst) {
8029   // Don't use it directly. Use MacroAssembler::decrementl() instead.
8030   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
8031   int encode = prefix_and_encode(dst->encoding());
8032   emit_int8((unsigned char)0xFF);
8033   emit_int8((unsigned char)(0xC8 | encode));
8034 }
8035 
8036 void Assembler::decq(Register dst) {
8037   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8038   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8039   int encode = prefixq_and_encode(dst->encoding());
8040   emit_int8((unsigned char)0xFF);
8041   emit_int8(0xC8 | encode);
8042 }
8043 
8044 void Assembler::decq(Address dst) {
8045   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8046   InstructionMark im(this);
8047   prefixq(dst);
8048   emit_int8((unsigned char)0xFF);
8049   emit_operand(rcx, dst);
8050 }
8051 
8052 void Assembler::fxrstor(Address src) {
8053   prefixq(src);
8054   emit_int8(0x0F);
8055   emit_int8((unsigned char)0xAE);
8056   emit_operand(as_Register(1), src);
8057 }
8058 
8059 void Assembler::xrstor(Address src) {
8060   prefixq(src);
8061   emit_int8(0x0F);
8062   emit_int8((unsigned char)0xAE);
8063   emit_operand(as_Register(5), src);
8064 }
8065 
8066 void Assembler::fxsave(Address dst) {
8067   prefixq(dst);
8068   emit_int8(0x0F);
8069   emit_int8((unsigned char)0xAE);
8070   emit_operand(as_Register(0), dst);
8071 }
8072 
8073 void Assembler::xsave(Address dst) {
8074   prefixq(dst);
8075   emit_int8(0x0F);
8076   emit_int8((unsigned char)0xAE);
8077   emit_operand(as_Register(4), dst);
8078 }
8079 
8080 void Assembler::idivq(Register src) {
8081   int encode = prefixq_and_encode(src->encoding());
8082   emit_int8((unsigned char)0xF7);
8083   emit_int8((unsigned char)(0xF8 | encode));
8084 }
8085 
8086 void Assembler::imulq(Register dst, Register src) {
8087   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8088   emit_int8(0x0F);
8089   emit_int8((unsigned char)0xAF);
8090   emit_int8((unsigned char)(0xC0 | encode));
8091 }
8092 
8093 void Assembler::imulq(Register dst, Register src, int value) {
8094   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8095   if (is8bit(value)) {
8096     emit_int8(0x6B);
8097     emit_int8((unsigned char)(0xC0 | encode));
8098     emit_int8(value & 0xFF);
8099   } else {
8100     emit_int8(0x69);
8101     emit_int8((unsigned char)(0xC0 | encode));
8102     emit_int32(value);
8103   }
8104 }
8105 
8106 void Assembler::imulq(Register dst, Address src) {
8107   InstructionMark im(this);
8108   prefixq(src, dst);
8109   emit_int8(0x0F);
8110   emit_int8((unsigned char) 0xAF);
8111   emit_operand(dst, src);
8112 }
8113 
8114 void Assembler::incl(Register dst) {
8115   // Don't use it directly. Use MacroAssembler::incrementl() instead.
8116   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8117   int encode = prefix_and_encode(dst->encoding());
8118   emit_int8((unsigned char)0xFF);
8119   emit_int8((unsigned char)(0xC0 | encode));
8120 }
8121 
8122 void Assembler::incq(Register dst) {
8123   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8124   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8125   int encode = prefixq_and_encode(dst->encoding());
8126   emit_int8((unsigned char)0xFF);
8127   emit_int8((unsigned char)(0xC0 | encode));
8128 }
8129 
8130 void Assembler::incq(Address dst) {
8131   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8132   InstructionMark im(this);
8133   prefixq(dst);
8134   emit_int8((unsigned char)0xFF);
8135   emit_operand(rax, dst);
8136 }
8137 
8138 void Assembler::lea(Register dst, Address src) {
8139   leaq(dst, src);
8140 }
8141 
8142 void Assembler::leaq(Register dst, Address src) {
8143   InstructionMark im(this);
8144   prefixq(src, dst);
8145   emit_int8((unsigned char)0x8D);
8146   emit_operand(dst, src);
8147 }
8148 
8149 void Assembler::mov64(Register dst, int64_t imm64) {
8150   InstructionMark im(this);
8151   int encode = prefixq_and_encode(dst->encoding());
8152   emit_int8((unsigned char)(0xB8 | encode));
8153   emit_int64(imm64);
8154 }
8155 
8156 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
8157   InstructionMark im(this);
8158   int encode = prefixq_and_encode(dst->encoding());
8159   emit_int8(0xB8 | encode);
8160   emit_data64(imm64, rspec);
8161 }
8162 
8163 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
8164   InstructionMark im(this);
8165   int encode = prefix_and_encode(dst->encoding());
8166   emit_int8((unsigned char)(0xB8 | encode));
8167   emit_data((int)imm32, rspec, narrow_oop_operand);
8168 }
8169 
8170 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
8171   InstructionMark im(this);
8172   prefix(dst);
8173   emit_int8((unsigned char)0xC7);
8174   emit_operand(rax, dst, 4);
8175   emit_data((int)imm32, rspec, narrow_oop_operand);
8176 }
8177 
8178 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
8179   InstructionMark im(this);
8180   int encode = prefix_and_encode(src1->encoding());
8181   emit_int8((unsigned char)0x81);
8182   emit_int8((unsigned char)(0xF8 | encode));
8183   emit_data((int)imm32, rspec, narrow_oop_operand);
8184 }
8185 
8186 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
8187   InstructionMark im(this);
8188   prefix(src1);
8189   emit_int8((unsigned char)0x81);
8190   emit_operand(rax, src1, 4);
8191   emit_data((int)imm32, rspec, narrow_oop_operand);
8192 }
8193 
8194 void Assembler::lzcntq(Register dst, Register src) {
8195   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
8196   emit_int8((unsigned char)0xF3);
8197   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8198   emit_int8(0x0F);
8199   emit_int8((unsigned char)0xBD);
8200   emit_int8((unsigned char)(0xC0 | encode));
8201 }
8202 
8203 void Assembler::movdq(XMMRegister dst, Register src) {
8204   // table D-1 says MMX/SSE2
8205   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8206   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8207   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8208   emit_int8(0x6E);
8209   emit_int8((unsigned char)(0xC0 | encode));
8210 }
8211 
8212 void Assembler::movdq(Register dst, XMMRegister src) {
8213   // table D-1 says MMX/SSE2
8214   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8215   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8216   // swap src/dst to get correct prefix
8217   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8218   emit_int8(0x7E);
8219   emit_int8((unsigned char)(0xC0 | encode));
8220 }
8221 
8222 void Assembler::movq(Register dst, Register src) {
8223   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8224   emit_int8((unsigned char)0x8B);
8225   emit_int8((unsigned char)(0xC0 | encode));
8226 }
8227 
8228 void Assembler::movq(Register dst, Address src) {
8229   InstructionMark im(this);
8230   prefixq(src, dst);
8231   emit_int8((unsigned char)0x8B);
8232   emit_operand(dst, src);
8233 }
8234 
8235 void Assembler::movq(Address dst, Register src) {
8236   InstructionMark im(this);
8237   prefixq(dst, src);
8238   emit_int8((unsigned char)0x89);
8239   emit_operand(src, dst);
8240 }
8241 
8242 void Assembler::movsbq(Register dst, Address src) {
8243   InstructionMark im(this);
8244   prefixq(src, dst);
8245   emit_int8(0x0F);
8246   emit_int8((unsigned char)0xBE);
8247   emit_operand(dst, src);
8248 }
8249 
8250 void Assembler::movsbq(Register dst, Register src) {
8251   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8252   emit_int8(0x0F);
8253   emit_int8((unsigned char)0xBE);
8254   emit_int8((unsigned char)(0xC0 | encode));
8255 }
8256 
8257 void Assembler::movslq(Register dst, int32_t imm32) {
8258   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
8259   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
8260   // as a result we shouldn't use until tested at runtime...
8261   ShouldNotReachHere();
8262   InstructionMark im(this);
8263   int encode = prefixq_and_encode(dst->encoding());
8264   emit_int8((unsigned char)(0xC7 | encode));
8265   emit_int32(imm32);
8266 }
8267 
8268 void Assembler::movslq(Address dst, int32_t imm32) {
8269   assert(is_simm32(imm32), "lost bits");
8270   InstructionMark im(this);
8271   prefixq(dst);
8272   emit_int8((unsigned char)0xC7);
8273   emit_operand(rax, dst, 4);
8274   emit_int32(imm32);
8275 }
8276 
8277 void Assembler::movslq(Register dst, Address src) {
8278   InstructionMark im(this);
8279   prefixq(src, dst);
8280   emit_int8(0x63);
8281   emit_operand(dst, src);
8282 }
8283 
8284 void Assembler::movslq(Register dst, Register src) {
8285   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8286   emit_int8(0x63);
8287   emit_int8((unsigned char)(0xC0 | encode));
8288 }
8289 
8290 void Assembler::movswq(Register dst, Address src) {
8291   InstructionMark im(this);
8292   prefixq(src, dst);
8293   emit_int8(0x0F);
8294   emit_int8((unsigned char)0xBF);
8295   emit_operand(dst, src);
8296 }
8297 
8298 void Assembler::movswq(Register dst, Register src) {
8299   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8300   emit_int8((unsigned char)0x0F);
8301   emit_int8((unsigned char)0xBF);
8302   emit_int8((unsigned char)(0xC0 | encode));
8303 }
8304 
8305 void Assembler::movzbq(Register dst, Address src) {
8306   InstructionMark im(this);
8307   prefixq(src, dst);
8308   emit_int8((unsigned char)0x0F);
8309   emit_int8((unsigned char)0xB6);
8310   emit_operand(dst, src);
8311 }
8312 
8313 void Assembler::movzbq(Register dst, Register src) {
8314   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8315   emit_int8(0x0F);
8316   emit_int8((unsigned char)0xB6);
8317   emit_int8(0xC0 | encode);
8318 }
8319 
8320 void Assembler::movzwq(Register dst, Address src) {
8321   InstructionMark im(this);
8322   prefixq(src, dst);
8323   emit_int8((unsigned char)0x0F);
8324   emit_int8((unsigned char)0xB7);
8325   emit_operand(dst, src);
8326 }
8327 
8328 void Assembler::movzwq(Register dst, Register src) {
8329   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8330   emit_int8((unsigned char)0x0F);
8331   emit_int8((unsigned char)0xB7);
8332   emit_int8((unsigned char)(0xC0 | encode));
8333 }
8334 
8335 void Assembler::mulq(Address src) {
8336   InstructionMark im(this);
8337   prefixq(src);
8338   emit_int8((unsigned char)0xF7);
8339   emit_operand(rsp, src);
8340 }
8341 
8342 void Assembler::mulq(Register src) {
8343   int encode = prefixq_and_encode(src->encoding());
8344   emit_int8((unsigned char)0xF7);
8345   emit_int8((unsigned char)(0xE0 | encode));
8346 }
8347 
8348 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
8349   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8350   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8351   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
8352   emit_int8((unsigned char)0xF6);
8353   emit_int8((unsigned char)(0xC0 | encode));
8354 }
8355 
8356 void Assembler::negq(Register dst) {
8357   int encode = prefixq_and_encode(dst->encoding());
8358   emit_int8((unsigned char)0xF7);
8359   emit_int8((unsigned char)(0xD8 | encode));
8360 }
8361 
8362 void Assembler::notq(Register dst) {
8363   int encode = prefixq_and_encode(dst->encoding());
8364   emit_int8((unsigned char)0xF7);
8365   emit_int8((unsigned char)(0xD0 | encode));
8366 }
8367 
8368 void Assembler::orq(Address dst, int32_t imm32) {
8369   InstructionMark im(this);
8370   prefixq(dst);
8371   emit_int8((unsigned char)0x81);
8372   emit_operand(rcx, dst, 4);
8373   emit_int32(imm32);
8374 }
8375 
8376 void Assembler::orq(Register dst, int32_t imm32) {
8377   (void) prefixq_and_encode(dst->encoding());
8378   emit_arith(0x81, 0xC8, dst, imm32);
8379 }
8380 
8381 void Assembler::orq(Register dst, Address src) {
8382   InstructionMark im(this);
8383   prefixq(src, dst);
8384   emit_int8(0x0B);
8385   emit_operand(dst, src);
8386 }
8387 
8388 void Assembler::orq(Register dst, Register src) {
8389   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8390   emit_arith(0x0B, 0xC0, dst, src);
8391 }
8392 
8393 void Assembler::popa() { // 64bit
8394   movq(r15, Address(rsp, 0));
8395   movq(r14, Address(rsp, wordSize));
8396   movq(r13, Address(rsp, 2 * wordSize));
8397   movq(r12, Address(rsp, 3 * wordSize));
8398   movq(r11, Address(rsp, 4 * wordSize));
8399   movq(r10, Address(rsp, 5 * wordSize));
8400   movq(r9,  Address(rsp, 6 * wordSize));
8401   movq(r8,  Address(rsp, 7 * wordSize));
8402   movq(rdi, Address(rsp, 8 * wordSize));
8403   movq(rsi, Address(rsp, 9 * wordSize));
8404   movq(rbp, Address(rsp, 10 * wordSize));
8405   // skip rsp
8406   movq(rbx, Address(rsp, 12 * wordSize));
8407   movq(rdx, Address(rsp, 13 * wordSize));
8408   movq(rcx, Address(rsp, 14 * wordSize));
8409   movq(rax, Address(rsp, 15 * wordSize));
8410 
8411   addq(rsp, 16 * wordSize);
8412 }
8413 
8414 void Assembler::popcntq(Register dst, Address src) {
8415   assert(VM_Version::supports_popcnt(), "must support");
8416   InstructionMark im(this);
8417   emit_int8((unsigned char)0xF3);
8418   prefixq(src, dst);
8419   emit_int8((unsigned char)0x0F);
8420   emit_int8((unsigned char)0xB8);
8421   emit_operand(dst, src);
8422 }
8423 
8424 void Assembler::popcntq(Register dst, Register src) {
8425   assert(VM_Version::supports_popcnt(), "must support");
8426   emit_int8((unsigned char)0xF3);
8427   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8428   emit_int8((unsigned char)0x0F);
8429   emit_int8((unsigned char)0xB8);
8430   emit_int8((unsigned char)(0xC0 | encode));
8431 }
8432 
8433 void Assembler::popq(Address dst) {
8434   InstructionMark im(this);
8435   prefixq(dst);
8436   emit_int8((unsigned char)0x8F);
8437   emit_operand(rax, dst);
8438 }
8439 
8440 void Assembler::pusha() { // 64bit
8441   // we have to store original rsp.  ABI says that 128 bytes
8442   // below rsp are local scratch.
8443   movq(Address(rsp, -5 * wordSize), rsp);
8444 
8445   subq(rsp, 16 * wordSize);
8446 
8447   movq(Address(rsp, 15 * wordSize), rax);
8448   movq(Address(rsp, 14 * wordSize), rcx);
8449   movq(Address(rsp, 13 * wordSize), rdx);
8450   movq(Address(rsp, 12 * wordSize), rbx);
8451   // skip rsp
8452   movq(Address(rsp, 10 * wordSize), rbp);
8453   movq(Address(rsp, 9 * wordSize), rsi);
8454   movq(Address(rsp, 8 * wordSize), rdi);
8455   movq(Address(rsp, 7 * wordSize), r8);
8456   movq(Address(rsp, 6 * wordSize), r9);
8457   movq(Address(rsp, 5 * wordSize), r10);
8458   movq(Address(rsp, 4 * wordSize), r11);
8459   movq(Address(rsp, 3 * wordSize), r12);
8460   movq(Address(rsp, 2 * wordSize), r13);
8461   movq(Address(rsp, wordSize), r14);
8462   movq(Address(rsp, 0), r15);
8463 }
8464 
8465 void Assembler::pushq(Address src) {
8466   InstructionMark im(this);
8467   prefixq(src);
8468   emit_int8((unsigned char)0xFF);
8469   emit_operand(rsi, src);
8470 }
8471 
8472 void Assembler::rclq(Register dst, int imm8) {
8473   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8474   int encode = prefixq_and_encode(dst->encoding());
8475   if (imm8 == 1) {
8476     emit_int8((unsigned char)0xD1);
8477     emit_int8((unsigned char)(0xD0 | encode));
8478   } else {
8479     emit_int8((unsigned char)0xC1);
8480     emit_int8((unsigned char)(0xD0 | encode));
8481     emit_int8(imm8);
8482   }
8483 }
8484 
8485 void Assembler::rcrq(Register dst, int imm8) {
8486   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8487   int encode = prefixq_and_encode(dst->encoding());
8488   if (imm8 == 1) {
8489     emit_int8((unsigned char)0xD1);
8490     emit_int8((unsigned char)(0xD8 | encode));
8491   } else {
8492     emit_int8((unsigned char)0xC1);
8493     emit_int8((unsigned char)(0xD8 | encode));
8494     emit_int8(imm8);
8495   }
8496 }
8497 
8498 void Assembler::rorq(Register dst, int imm8) {
8499   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8500   int encode = prefixq_and_encode(dst->encoding());
8501   if (imm8 == 1) {
8502     emit_int8((unsigned char)0xD1);
8503     emit_int8((unsigned char)(0xC8 | encode));
8504   } else {
8505     emit_int8((unsigned char)0xC1);
8506     emit_int8((unsigned char)(0xc8 | encode));
8507     emit_int8(imm8);
8508   }
8509 }
8510 
8511 void Assembler::rorxq(Register dst, Register src, int imm8) {
8512   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8513   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8514   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8515   emit_int8((unsigned char)0xF0);
8516   emit_int8((unsigned char)(0xC0 | encode));
8517   emit_int8(imm8);
8518 }
8519 
8520 void Assembler::rorxd(Register dst, Register src, int imm8) {
8521   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8522   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8523   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8524   emit_int8((unsigned char)0xF0);
8525   emit_int8((unsigned char)(0xC0 | encode));
8526   emit_int8(imm8);
8527 }
8528 
8529 void Assembler::sarq(Register dst, int imm8) {
8530   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8531   int encode = prefixq_and_encode(dst->encoding());
8532   if (imm8 == 1) {
8533     emit_int8((unsigned char)0xD1);
8534     emit_int8((unsigned char)(0xF8 | encode));
8535   } else {
8536     emit_int8((unsigned char)0xC1);
8537     emit_int8((unsigned char)(0xF8 | encode));
8538     emit_int8(imm8);
8539   }
8540 }
8541 
8542 void Assembler::sarq(Register dst) {
8543   int encode = prefixq_and_encode(dst->encoding());
8544   emit_int8((unsigned char)0xD3);
8545   emit_int8((unsigned char)(0xF8 | encode));
8546 }
8547 
8548 void Assembler::sbbq(Address dst, int32_t imm32) {
8549   InstructionMark im(this);
8550   prefixq(dst);
8551   emit_arith_operand(0x81, rbx, dst, imm32);
8552 }
8553 
8554 void Assembler::sbbq(Register dst, int32_t imm32) {
8555   (void) prefixq_and_encode(dst->encoding());
8556   emit_arith(0x81, 0xD8, dst, imm32);
8557 }
8558 
8559 void Assembler::sbbq(Register dst, Address src) {
8560   InstructionMark im(this);
8561   prefixq(src, dst);
8562   emit_int8(0x1B);
8563   emit_operand(dst, src);
8564 }
8565 
8566 void Assembler::sbbq(Register dst, Register src) {
8567   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8568   emit_arith(0x1B, 0xC0, dst, src);
8569 }
8570 
8571 void Assembler::shlq(Register dst, int imm8) {
8572   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8573   int encode = prefixq_and_encode(dst->encoding());
8574   if (imm8 == 1) {
8575     emit_int8((unsigned char)0xD1);
8576     emit_int8((unsigned char)(0xE0 | encode));
8577   } else {
8578     emit_int8((unsigned char)0xC1);
8579     emit_int8((unsigned char)(0xE0 | encode));
8580     emit_int8(imm8);
8581   }
8582 }
8583 
8584 void Assembler::shlq(Register dst) {
8585   int encode = prefixq_and_encode(dst->encoding());
8586   emit_int8((unsigned char)0xD3);
8587   emit_int8((unsigned char)(0xE0 | encode));
8588 }
8589 
8590 void Assembler::shrq(Register dst, int imm8) {
8591   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8592   int encode = prefixq_and_encode(dst->encoding());
8593   emit_int8((unsigned char)0xC1);
8594   emit_int8((unsigned char)(0xE8 | encode));
8595   emit_int8(imm8);
8596 }
8597 
8598 void Assembler::shrq(Register dst) {
8599   int encode = prefixq_and_encode(dst->encoding());
8600   emit_int8((unsigned char)0xD3);
8601   emit_int8(0xE8 | encode);
8602 }
8603 
8604 void Assembler::subq(Address dst, int32_t imm32) {
8605   InstructionMark im(this);
8606   prefixq(dst);
8607   emit_arith_operand(0x81, rbp, dst, imm32);
8608 }
8609 
8610 void Assembler::subq(Address dst, Register src) {
8611   InstructionMark im(this);
8612   prefixq(dst, src);
8613   emit_int8(0x29);
8614   emit_operand(src, dst);
8615 }
8616 
8617 void Assembler::subq(Register dst, int32_t imm32) {
8618   (void) prefixq_and_encode(dst->encoding());
8619   emit_arith(0x81, 0xE8, dst, imm32);
8620 }
8621 
8622 // Force generation of a 4 byte immediate value even if it fits into 8bit
8623 void Assembler::subq_imm32(Register dst, int32_t imm32) {
8624   (void) prefixq_and_encode(dst->encoding());
8625   emit_arith_imm32(0x81, 0xE8, dst, imm32);
8626 }
8627 
8628 void Assembler::subq(Register dst, Address src) {
8629   InstructionMark im(this);
8630   prefixq(src, dst);
8631   emit_int8(0x2B);
8632   emit_operand(dst, src);
8633 }
8634 
8635 void Assembler::subq(Register dst, Register src) {
8636   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8637   emit_arith(0x2B, 0xC0, dst, src);
8638 }
8639 
8640 void Assembler::testq(Register dst, int32_t imm32) {
8641   // not using emit_arith because test
8642   // doesn't support sign-extension of
8643   // 8bit operands
8644   int encode = dst->encoding();
8645   if (encode == 0) {
8646     prefix(REX_W);
8647     emit_int8((unsigned char)0xA9);
8648   } else {
8649     encode = prefixq_and_encode(encode);
8650     emit_int8((unsigned char)0xF7);
8651     emit_int8((unsigned char)(0xC0 | encode));
8652   }
8653   emit_int32(imm32);
8654 }
8655 
8656 void Assembler::testq(Register dst, Register src) {
8657   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8658   emit_arith(0x85, 0xC0, dst, src);
8659 }
8660 
8661 void Assembler::xaddq(Address dst, Register src) {
8662   InstructionMark im(this);
8663   prefixq(dst, src);
8664   emit_int8(0x0F);
8665   emit_int8((unsigned char)0xC1);
8666   emit_operand(src, dst);
8667 }
8668 
8669 void Assembler::xchgq(Register dst, Address src) {
8670   InstructionMark im(this);
8671   prefixq(src, dst);
8672   emit_int8((unsigned char)0x87);
8673   emit_operand(dst, src);
8674 }
8675 
8676 void Assembler::xchgq(Register dst, Register src) {
8677   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8678   emit_int8((unsigned char)0x87);
8679   emit_int8((unsigned char)(0xc0 | encode));
8680 }
8681 
8682 void Assembler::xorq(Register dst, Register src) {
8683   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8684   emit_arith(0x33, 0xC0, dst, src);
8685 }
8686 
8687 void Assembler::xorq(Register dst, Address src) {
8688   InstructionMark im(this);
8689   prefixq(src, dst);
8690   emit_int8(0x33);
8691   emit_operand(dst, src);
8692 }
8693 
8694 #endif // !LP64