1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 398     int evex_encoding = _attributes->get_evex_encoding();
 399     int tuple_type = _attributes->get_tuple_type();
 400     switch (tuple_type) {
 401     case EVEX_FV:
 402       if ((evex_encoding & VEX_W) == VEX_W) {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 404       } else {
 405         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 406       }
 407       break;
 408 
 409     case EVEX_HV:
 410       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 411       break;
 412 
 413     case EVEX_FVM:
 414       break;
 415 
 416     case EVEX_T1S:
 417       switch (_attributes->get_input_size()) {
 418       case EVEX_8bit:
 419         break;
 420 
 421       case EVEX_16bit:
 422         mod_idx = 1;
 423         break;
 424 
 425       case EVEX_32bit:
 426         mod_idx = 2;
 427         break;
 428 
 429       case EVEX_64bit:
 430         mod_idx = 3;
 431         break;
 432       }
 433       break;
 434 
 435     case EVEX_T1F:
 436     case EVEX_T2:
 437     case EVEX_T4:
 438       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 439       break;
 440 
 441     case EVEX_T8:
 442       break;
 443 
 444     case EVEX_HVM:
 445       break;
 446 
 447     case EVEX_QVM:
 448       break;
 449 
 450     case EVEX_OVM:
 451       break;
 452 
 453     case EVEX_M128:
 454       break;
 455 
 456     case EVEX_DUP:
 457       break;
 458 
 459     default:
 460       assert(0, "no valid evex tuple_table entry");
 461       break;
 462     }
 463 
 464     int vector_len = _attributes->get_vector_len();
 465     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 466       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 467       if ((disp % disp_factor) == 0) {
 468         int new_disp = disp / disp_factor;
 469         if (is8bit(new_disp)) {
 470           disp = new_disp;
 471         }
 472       } else {
 473         return false;
 474       }
 475     }
 476   }
 477   return is8bit(disp);
 478 }
 479 
 480 
 481 void Assembler::emit_operand(Register reg, Register base, Register index,
 482                              Address::ScaleFactor scale, int disp,
 483                              RelocationHolder const& rspec,
 484                              int rip_relative_correction) {
 485   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 486 
 487   // Encode the registers as needed in the fields they are used in
 488 
 489   int regenc = encode(reg) << 3;
 490   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 491   int baseenc = base->is_valid() ? encode(base) : 0;
 492 
 493   if (base->is_valid()) {
 494     if (index->is_valid()) {
 495       assert(scale != Address::no_scale, "inconsistent address");
 496       // [base + index*scale + disp]
 497       if (disp == 0 && rtype == relocInfo::none  &&
 498           base != rbp LP64_ONLY(&& base != r13)) {
 499         // [base + index*scale]
 500         // [00 reg 100][ss index base]
 501         assert(index != rsp, "illegal addressing mode");
 502         emit_int8(0x04 | regenc);
 503         emit_int8(scale << 6 | indexenc | baseenc);
 504       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 505         // [base + index*scale + imm8]
 506         // [01 reg 100][ss index base] imm8
 507         assert(index != rsp, "illegal addressing mode");
 508         emit_int8(0x44 | regenc);
 509         emit_int8(scale << 6 | indexenc | baseenc);
 510         emit_int8(disp & 0xFF);
 511       } else {
 512         // [base + index*scale + disp32]
 513         // [10 reg 100][ss index base] disp32
 514         assert(index != rsp, "illegal addressing mode");
 515         emit_int8(0x84 | regenc);
 516         emit_int8(scale << 6 | indexenc | baseenc);
 517         emit_data(disp, rspec, disp32_operand);
 518       }
 519     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 520       // [rsp + disp]
 521       if (disp == 0 && rtype == relocInfo::none) {
 522         // [rsp]
 523         // [00 reg 100][00 100 100]
 524         emit_int8(0x04 | regenc);
 525         emit_int8(0x24);
 526       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 527         // [rsp + imm8]
 528         // [01 reg 100][00 100 100] disp8
 529         emit_int8(0x44 | regenc);
 530         emit_int8(0x24);
 531         emit_int8(disp & 0xFF);
 532       } else {
 533         // [rsp + imm32]
 534         // [10 reg 100][00 100 100] disp32
 535         emit_int8(0x84 | regenc);
 536         emit_int8(0x24);
 537         emit_data(disp, rspec, disp32_operand);
 538       }
 539     } else {
 540       // [base + disp]
 541       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 542       if (disp == 0 && rtype == relocInfo::none &&
 543           base != rbp LP64_ONLY(&& base != r13)) {
 544         // [base]
 545         // [00 reg base]
 546         emit_int8(0x00 | regenc | baseenc);
 547       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 548         // [base + disp8]
 549         // [01 reg base] disp8
 550         emit_int8(0x40 | regenc | baseenc);
 551         emit_int8(disp & 0xFF);
 552       } else {
 553         // [base + disp32]
 554         // [10 reg base] disp32
 555         emit_int8(0x80 | regenc | baseenc);
 556         emit_data(disp, rspec, disp32_operand);
 557       }
 558     }
 559   } else {
 560     if (index->is_valid()) {
 561       assert(scale != Address::no_scale, "inconsistent address");
 562       // [index*scale + disp]
 563       // [00 reg 100][ss index 101] disp32
 564       assert(index != rsp, "illegal addressing mode");
 565       emit_int8(0x04 | regenc);
 566       emit_int8(scale << 6 | indexenc | 0x05);
 567       emit_data(disp, rspec, disp32_operand);
 568     } else if (rtype != relocInfo::none ) {
 569       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 570       // [00 000 101] disp32
 571 
 572       emit_int8(0x05 | regenc);
 573       // Note that the RIP-rel. correction applies to the generated
 574       // disp field, but _not_ to the target address in the rspec.
 575 
 576       // disp was created by converting the target address minus the pc
 577       // at the start of the instruction. That needs more correction here.
 578       // intptr_t disp = target - next_ip;
 579       assert(inst_mark() != NULL, "must be inside InstructionMark");
 580       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 581       int64_t adjusted = disp;
 582       // Do rip-rel adjustment for 64bit
 583       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 584       assert(is_simm32(adjusted),
 585              "must be 32bit offset (RIP relative address)");
 586       emit_data((int32_t) adjusted, rspec, disp32_operand);
 587 
 588     } else {
 589       // 32bit never did this, did everything as the rip-rel/disp code above
 590       // [disp] ABSOLUTE
 591       // [00 reg 100][00 100 101] disp32
 592       emit_int8(0x04 | regenc);
 593       emit_int8(0x25);
 594       emit_data(disp, rspec, disp32_operand);
 595     }
 596   }
 597 }
 598 
 599 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 600                              Address::ScaleFactor scale, int disp,
 601                              RelocationHolder const& rspec) {
 602   if (UseAVX > 2) {
 603     int xreg_enc = reg->encoding();
 604     if (xreg_enc > 15) {
 605       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 606       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 607       return;
 608     }
 609   }
 610   emit_operand((Register)reg, base, index, scale, disp, rspec);
 611 }
 612 
 613 // Secret local extension to Assembler::WhichOperand:
 614 #define end_pc_operand (_WhichOperand_limit)
 615 
 616 address Assembler::locate_operand(address inst, WhichOperand which) {
 617   // Decode the given instruction, and return the address of
 618   // an embedded 32-bit operand word.
 619 
 620   // If "which" is disp32_operand, selects the displacement portion
 621   // of an effective address specifier.
 622   // If "which" is imm64_operand, selects the trailing immediate constant.
 623   // If "which" is call32_operand, selects the displacement of a call or jump.
 624   // Caller is responsible for ensuring that there is such an operand,
 625   // and that it is 32/64 bits wide.
 626 
 627   // If "which" is end_pc_operand, find the end of the instruction.
 628 
 629   address ip = inst;
 630   bool is_64bit = false;
 631 
 632   debug_only(bool has_disp32 = false);
 633   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 634 
 635   again_after_prefix:
 636   switch (0xFF & *ip++) {
 637 
 638   // These convenience macros generate groups of "case" labels for the switch.
 639 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 640 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 641              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 642 #define REP16(x) REP8((x)+0): \
 643               case REP8((x)+8)
 644 
 645   case CS_segment:
 646   case SS_segment:
 647   case DS_segment:
 648   case ES_segment:
 649   case FS_segment:
 650   case GS_segment:
 651     // Seems dubious
 652     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 653     assert(ip == inst+1, "only one prefix allowed");
 654     goto again_after_prefix;
 655 
 656   case 0x67:
 657   case REX:
 658   case REX_B:
 659   case REX_X:
 660   case REX_XB:
 661   case REX_R:
 662   case REX_RB:
 663   case REX_RX:
 664   case REX_RXB:
 665     NOT_LP64(assert(false, "64bit prefixes"));
 666     goto again_after_prefix;
 667 
 668   case REX_W:
 669   case REX_WB:
 670   case REX_WX:
 671   case REX_WXB:
 672   case REX_WR:
 673   case REX_WRB:
 674   case REX_WRX:
 675   case REX_WRXB:
 676     NOT_LP64(assert(false, "64bit prefixes"));
 677     is_64bit = true;
 678     goto again_after_prefix;
 679 
 680   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 681   case 0x88: // movb a, r
 682   case 0x89: // movl a, r
 683   case 0x8A: // movb r, a
 684   case 0x8B: // movl r, a
 685   case 0x8F: // popl a
 686     debug_only(has_disp32 = true);
 687     break;
 688 
 689   case 0x68: // pushq #32
 690     if (which == end_pc_operand) {
 691       return ip + 4;
 692     }
 693     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 694     return ip;                  // not produced by emit_operand
 695 
 696   case 0x66: // movw ... (size prefix)
 697     again_after_size_prefix2:
 698     switch (0xFF & *ip++) {
 699     case REX:
 700     case REX_B:
 701     case REX_X:
 702     case REX_XB:
 703     case REX_R:
 704     case REX_RB:
 705     case REX_RX:
 706     case REX_RXB:
 707     case REX_W:
 708     case REX_WB:
 709     case REX_WX:
 710     case REX_WXB:
 711     case REX_WR:
 712     case REX_WRB:
 713     case REX_WRX:
 714     case REX_WRXB:
 715       NOT_LP64(assert(false, "64bit prefix found"));
 716       goto again_after_size_prefix2;
 717     case 0x8B: // movw r, a
 718     case 0x89: // movw a, r
 719       debug_only(has_disp32 = true);
 720       break;
 721     case 0xC7: // movw a, #16
 722       debug_only(has_disp32 = true);
 723       tail_size = 2;  // the imm16
 724       break;
 725     case 0x0F: // several SSE/SSE2 variants
 726       ip--;    // reparse the 0x0F
 727       goto again_after_prefix;
 728     default:
 729       ShouldNotReachHere();
 730     }
 731     break;
 732 
 733   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 734     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 735     // these asserts are somewhat nonsensical
 736 #ifndef _LP64
 737     assert(which == imm_operand || which == disp32_operand,
 738            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 739 #else
 740     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 741            which == narrow_oop_operand && !is_64bit,
 742            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 743 #endif // _LP64
 744     return ip;
 745 
 746   case 0x69: // imul r, a, #32
 747   case 0xC7: // movl a, #32(oop?)
 748     tail_size = 4;
 749     debug_only(has_disp32 = true); // has both kinds of operands!
 750     break;
 751 
 752   case 0x0F: // movx..., etc.
 753     switch (0xFF & *ip++) {
 754     case 0x3A: // pcmpestri
 755       tail_size = 1;
 756     case 0x38: // ptest, pmovzxbw
 757       ip++; // skip opcode
 758       debug_only(has_disp32 = true); // has both kinds of operands!
 759       break;
 760 
 761     case 0x70: // pshufd r, r/a, #8
 762       debug_only(has_disp32 = true); // has both kinds of operands!
 763     case 0x73: // psrldq r, #8
 764       tail_size = 1;
 765       break;
 766 
 767     case 0x12: // movlps
 768     case 0x28: // movaps
 769     case 0x2E: // ucomiss
 770     case 0x2F: // comiss
 771     case 0x54: // andps
 772     case 0x55: // andnps
 773     case 0x56: // orps
 774     case 0x57: // xorps
 775     case 0x58: // addpd
 776     case 0x59: // mulpd
 777     case 0x6E: // movd
 778     case 0x7E: // movd
 779     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 780     case 0xFE: // paddd
 781       debug_only(has_disp32 = true);
 782       break;
 783 
 784     case 0xAD: // shrd r, a, %cl
 785     case 0xAF: // imul r, a
 786     case 0xBE: // movsbl r, a (movsxb)
 787     case 0xBF: // movswl r, a (movsxw)
 788     case 0xB6: // movzbl r, a (movzxb)
 789     case 0xB7: // movzwl r, a (movzxw)
 790     case REP16(0x40): // cmovl cc, r, a
 791     case 0xB0: // cmpxchgb
 792     case 0xB1: // cmpxchg
 793     case 0xC1: // xaddl
 794     case 0xC7: // cmpxchg8
 795     case REP16(0x90): // setcc a
 796       debug_only(has_disp32 = true);
 797       // fall out of the switch to decode the address
 798       break;
 799 
 800     case 0xC4: // pinsrw r, a, #8
 801       debug_only(has_disp32 = true);
 802     case 0xC5: // pextrw r, r, #8
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case 0xAC: // shrd r, a, #8
 807       debug_only(has_disp32 = true);
 808       tail_size = 1;  // the imm8
 809       break;
 810 
 811     case REP16(0x80): // jcc rdisp32
 812       if (which == end_pc_operand)  return ip + 4;
 813       assert(which == call32_operand, "jcc has no disp32 or imm");
 814       return ip;
 815     default:
 816       ShouldNotReachHere();
 817     }
 818     break;
 819 
 820   case 0x81: // addl a, #32; addl r, #32
 821     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 822     // on 32bit in the case of cmpl, the imm might be an oop
 823     tail_size = 4;
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     break;
 826 
 827   case 0x83: // addl a, #8; addl r, #8
 828     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 829     debug_only(has_disp32 = true); // has both kinds of operands!
 830     tail_size = 1;
 831     break;
 832 
 833   case 0x9B:
 834     switch (0xFF & *ip++) {
 835     case 0xD9: // fnstcw a
 836       debug_only(has_disp32 = true);
 837       break;
 838     default:
 839       ShouldNotReachHere();
 840     }
 841     break;
 842 
 843   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 844   case REP4(0x10): // adc...
 845   case REP4(0x20): // and...
 846   case REP4(0x30): // xor...
 847   case REP4(0x08): // or...
 848   case REP4(0x18): // sbb...
 849   case REP4(0x28): // sub...
 850   case 0xF7: // mull a
 851   case 0x8D: // lea r, a
 852   case 0x87: // xchg r, a
 853   case REP4(0x38): // cmp...
 854   case 0x85: // test r, a
 855     debug_only(has_disp32 = true); // has both kinds of operands!
 856     break;
 857 
 858   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 859   case 0xC6: // movb a, #8
 860   case 0x80: // cmpb a, #8
 861   case 0x6B: // imul r, a, #8
 862     debug_only(has_disp32 = true); // has both kinds of operands!
 863     tail_size = 1; // the imm8
 864     break;
 865 
 866   case 0xC4: // VEX_3bytes
 867   case 0xC5: // VEX_2bytes
 868     assert((UseAVX > 0), "shouldn't have VEX prefix");
 869     assert(ip == inst+1, "no prefixes allowed");
 870     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 871     // but they have prefix 0x0F and processed when 0x0F processed above.
 872     //
 873     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 874     // instructions (these instructions are not supported in 64-bit mode).
 875     // To distinguish them bits [7:6] are set in the VEX second byte since
 876     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 877     // those VEX bits REX and vvvv bits are inverted.
 878     //
 879     // Fortunately C2 doesn't generate these instructions so we don't need
 880     // to check for them in product version.
 881 
 882     // Check second byte
 883     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 884 
 885     int vex_opcode;
 886     // First byte
 887     if ((0xFF & *inst) == VEX_3bytes) {
 888       vex_opcode = VEX_OPCODE_MASK & *ip;
 889       ip++; // third byte
 890       is_64bit = ((VEX_W & *ip) == VEX_W);
 891     } else {
 892       vex_opcode = VEX_OPCODE_0F;
 893     }
 894     ip++; // opcode
 895     // To find the end of instruction (which == end_pc_operand).
 896     switch (vex_opcode) {
 897       case VEX_OPCODE_0F:
 898         switch (0xFF & *ip) {
 899         case 0x70: // pshufd r, r/a, #8
 900         case 0x71: // ps[rl|ra|ll]w r, #8
 901         case 0x72: // ps[rl|ra|ll]d r, #8
 902         case 0x73: // ps[rl|ra|ll]q r, #8
 903         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 904         case 0xC4: // pinsrw r, r, r/a, #8
 905         case 0xC5: // pextrw r/a, r, #8
 906         case 0xC6: // shufp[s|d] r, r, r/a, #8
 907           tail_size = 1;  // the imm8
 908           break;
 909         }
 910         break;
 911       case VEX_OPCODE_0F_3A:
 912         tail_size = 1;
 913         break;
 914     }
 915     ip++; // skip opcode
 916     debug_only(has_disp32 = true); // has both kinds of operands!
 917     break;
 918 
 919   case 0x62: // EVEX_4bytes
 920     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 921     assert(ip == inst+1, "no prefixes allowed");
 922     // no EVEX collisions, all instructions that have 0x62 opcodes
 923     // have EVEX versions and are subopcodes of 0x66
 924     ip++; // skip P0 and exmaine W in P1
 925     is_64bit = ((VEX_W & *ip) == VEX_W);
 926     ip++; // move to P2
 927     ip++; // skip P2, move to opcode
 928     // To find the end of instruction (which == end_pc_operand).
 929     switch (0xFF & *ip) {
 930     case 0x22: // pinsrd r, r/a, #8
 931     case 0x61: // pcmpestri r, r/a, #8
 932     case 0x70: // pshufd r, r/a, #8
 933     case 0x73: // psrldq r, #8
 934       tail_size = 1;  // the imm8
 935       break;
 936     default:
 937       break;
 938     }
 939     ip++; // skip opcode
 940     debug_only(has_disp32 = true); // has both kinds of operands!
 941     break;
 942 
 943   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 944   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 945   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 946   case 0xDD: // fld_d a; fst_d a; fstp_d a
 947   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 948   case 0xDF: // fild_d a; fistp_d a
 949   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 950   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 951   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 952     debug_only(has_disp32 = true);
 953     break;
 954 
 955   case 0xE8: // call rdisp32
 956   case 0xE9: // jmp  rdisp32
 957     if (which == end_pc_operand)  return ip + 4;
 958     assert(which == call32_operand, "call has no disp32 or imm");
 959     return ip;
 960 
 961   case 0xF0:                    // Lock
 962     assert(os::is_MP(), "only on MP");
 963     goto again_after_prefix;
 964 
 965   case 0xF3:                    // For SSE
 966   case 0xF2:                    // For SSE2
 967     switch (0xFF & *ip++) {
 968     case REX:
 969     case REX_B:
 970     case REX_X:
 971     case REX_XB:
 972     case REX_R:
 973     case REX_RB:
 974     case REX_RX:
 975     case REX_RXB:
 976     case REX_W:
 977     case REX_WB:
 978     case REX_WX:
 979     case REX_WXB:
 980     case REX_WR:
 981     case REX_WRB:
 982     case REX_WRX:
 983     case REX_WRXB:
 984       NOT_LP64(assert(false, "found 64bit prefix"));
 985       ip++;
 986     default:
 987       ip++;
 988     }
 989     debug_only(has_disp32 = true); // has both kinds of operands!
 990     break;
 991 
 992   default:
 993     ShouldNotReachHere();
 994 
 995 #undef REP8
 996 #undef REP16
 997   }
 998 
 999   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
1000 #ifdef _LP64
1001   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1002 #else
1003   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1004   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1005 #endif // LP64
1006   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1007 
1008   // parse the output of emit_operand
1009   int op2 = 0xFF & *ip++;
1010   int base = op2 & 0x07;
1011   int op3 = -1;
1012   const int b100 = 4;
1013   const int b101 = 5;
1014   if (base == b100 && (op2 >> 6) != 3) {
1015     op3 = 0xFF & *ip++;
1016     base = op3 & 0x07;   // refetch the base
1017   }
1018   // now ip points at the disp (if any)
1019 
1020   switch (op2 >> 6) {
1021   case 0:
1022     // [00 reg  100][ss index base]
1023     // [00 reg  100][00   100  esp]
1024     // [00 reg base]
1025     // [00 reg  100][ss index  101][disp32]
1026     // [00 reg  101]               [disp32]
1027 
1028     if (base == b101) {
1029       if (which == disp32_operand)
1030         return ip;              // caller wants the disp32
1031       ip += 4;                  // skip the disp32
1032     }
1033     break;
1034 
1035   case 1:
1036     // [01 reg  100][ss index base][disp8]
1037     // [01 reg  100][00   100  esp][disp8]
1038     // [01 reg base]               [disp8]
1039     ip += 1;                    // skip the disp8
1040     break;
1041 
1042   case 2:
1043     // [10 reg  100][ss index base][disp32]
1044     // [10 reg  100][00   100  esp][disp32]
1045     // [10 reg base]               [disp32]
1046     if (which == disp32_operand)
1047       return ip;                // caller wants the disp32
1048     ip += 4;                    // skip the disp32
1049     break;
1050 
1051   case 3:
1052     // [11 reg base]  (not a memory addressing mode)
1053     break;
1054   }
1055 
1056   if (which == end_pc_operand) {
1057     return ip + tail_size;
1058   }
1059 
1060 #ifdef _LP64
1061   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1062 #else
1063   assert(which == imm_operand, "instruction has only an imm field");
1064 #endif // LP64
1065   return ip;
1066 }
1067 
1068 address Assembler::locate_next_instruction(address inst) {
1069   // Secretly share code with locate_operand:
1070   return locate_operand(inst, end_pc_operand);
1071 }
1072 
1073 
1074 #ifdef ASSERT
1075 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1076   address inst = inst_mark();
1077   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1078   address opnd;
1079 
1080   Relocation* r = rspec.reloc();
1081   if (r->type() == relocInfo::none) {
1082     return;
1083   } else if (r->is_call() || format == call32_operand) {
1084     // assert(format == imm32_operand, "cannot specify a nonzero format");
1085     opnd = locate_operand(inst, call32_operand);
1086   } else if (r->is_data()) {
1087     assert(format == imm_operand || format == disp32_operand
1088            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1089     opnd = locate_operand(inst, (WhichOperand)format);
1090   } else {
1091     assert(format == imm_operand, "cannot specify a format");
1092     return;
1093   }
1094   assert(opnd == pc(), "must put operand where relocs can find it");
1095 }
1096 #endif // ASSERT
1097 
1098 void Assembler::emit_operand32(Register reg, Address adr) {
1099   assert(reg->encoding() < 8, "no extended registers");
1100   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1101   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1102                adr._rspec);
1103 }
1104 
1105 void Assembler::emit_operand(Register reg, Address adr,
1106                              int rip_relative_correction) {
1107   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1108                adr._rspec,
1109                rip_relative_correction);
1110 }
1111 
1112 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1113   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1114                adr._rspec);
1115 }
1116 
1117 // MMX operations
1118 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1119   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1120   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1121 }
1122 
1123 // work around gcc (3.2.1-7a) bug
1124 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1125   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1126   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1127 }
1128 
1129 
1130 void Assembler::emit_farith(int b1, int b2, int i) {
1131   assert(isByte(b1) && isByte(b2), "wrong opcode");
1132   assert(0 <= i &&  i < 8, "illegal stack offset");
1133   emit_int8(b1);
1134   emit_int8(b2 + i);
1135 }
1136 
1137 
1138 // Now the Assembler instructions (identical for 32/64 bits)
1139 
1140 void Assembler::adcl(Address dst, int32_t imm32) {
1141   InstructionMark im(this);
1142   prefix(dst);
1143   emit_arith_operand(0x81, rdx, dst, imm32);
1144 }
1145 
1146 void Assembler::adcl(Address dst, Register src) {
1147   InstructionMark im(this);
1148   prefix(dst, src);
1149   emit_int8(0x11);
1150   emit_operand(src, dst);
1151 }
1152 
1153 void Assembler::adcl(Register dst, int32_t imm32) {
1154   prefix(dst);
1155   emit_arith(0x81, 0xD0, dst, imm32);
1156 }
1157 
1158 void Assembler::adcl(Register dst, Address src) {
1159   InstructionMark im(this);
1160   prefix(src, dst);
1161   emit_int8(0x13);
1162   emit_operand(dst, src);
1163 }
1164 
1165 void Assembler::adcl(Register dst, Register src) {
1166   (void) prefix_and_encode(dst->encoding(), src->encoding());
1167   emit_arith(0x13, 0xC0, dst, src);
1168 }
1169 
1170 void Assembler::addl(Address dst, int32_t imm32) {
1171   InstructionMark im(this);
1172   prefix(dst);
1173   emit_arith_operand(0x81, rax, dst, imm32);
1174 }
1175 
1176 void Assembler::addl(Address dst, Register src) {
1177   InstructionMark im(this);
1178   prefix(dst, src);
1179   emit_int8(0x01);
1180   emit_operand(src, dst);
1181 }
1182 
1183 void Assembler::addl(Register dst, int32_t imm32) {
1184   prefix(dst);
1185   emit_arith(0x81, 0xC0, dst, imm32);
1186 }
1187 
1188 void Assembler::addl(Register dst, Address src) {
1189   InstructionMark im(this);
1190   prefix(src, dst);
1191   emit_int8(0x03);
1192   emit_operand(dst, src);
1193 }
1194 
1195 void Assembler::addl(Register dst, Register src) {
1196   (void) prefix_and_encode(dst->encoding(), src->encoding());
1197   emit_arith(0x03, 0xC0, dst, src);
1198 }
1199 
1200 void Assembler::addr_nop_4() {
1201   assert(UseAddressNop, "no CPU support");
1202   // 4 bytes: NOP DWORD PTR [EAX+0]
1203   emit_int8(0x0F);
1204   emit_int8(0x1F);
1205   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1206   emit_int8(0);    // 8-bits offset (1 byte)
1207 }
1208 
1209 void Assembler::addr_nop_5() {
1210   assert(UseAddressNop, "no CPU support");
1211   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1212   emit_int8(0x0F);
1213   emit_int8(0x1F);
1214   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1215   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1216   emit_int8(0);    // 8-bits offset (1 byte)
1217 }
1218 
1219 void Assembler::addr_nop_7() {
1220   assert(UseAddressNop, "no CPU support");
1221   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1222   emit_int8(0x0F);
1223   emit_int8(0x1F);
1224   emit_int8((unsigned char)0x80);
1225                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1226   emit_int32(0);   // 32-bits offset (4 bytes)
1227 }
1228 
1229 void Assembler::addr_nop_8() {
1230   assert(UseAddressNop, "no CPU support");
1231   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1232   emit_int8(0x0F);
1233   emit_int8(0x1F);
1234   emit_int8((unsigned char)0x84);
1235                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1236   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1237   emit_int32(0);   // 32-bits offset (4 bytes)
1238 }
1239 
1240 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1241   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1242   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1243   attributes.set_rex_vex_w_reverted();
1244   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1245   emit_int8(0x58);
1246   emit_int8((unsigned char)(0xC0 | encode));
1247 }
1248 
1249 void Assembler::addsd(XMMRegister dst, Address src) {
1250   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1251   InstructionMark im(this);
1252   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1253   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1254   attributes.set_rex_vex_w_reverted();
1255   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1256   emit_int8(0x58);
1257   emit_operand(dst, src);
1258 }
1259 
1260 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1261   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1262   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1263   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1264   emit_int8(0x58);
1265   emit_int8((unsigned char)(0xC0 | encode));
1266 }
1267 
1268 void Assembler::addss(XMMRegister dst, Address src) {
1269   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1270   InstructionMark im(this);
1271   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1272   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1273   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1274   emit_int8(0x58);
1275   emit_operand(dst, src);
1276 }
1277 
1278 void Assembler::aesdec(XMMRegister dst, Address src) {
1279   assert(VM_Version::supports_aes(), "");
1280   InstructionMark im(this);
1281   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1282   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1283   emit_int8((unsigned char)0xDE);
1284   emit_operand(dst, src);
1285 }
1286 
1287 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1288   assert(VM_Version::supports_aes(), "");
1289   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1290   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1291   emit_int8((unsigned char)0xDE);
1292   emit_int8(0xC0 | encode);
1293 }
1294 
1295 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1296   assert(VM_Version::supports_aes(), "");
1297   InstructionMark im(this);
1298   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1299   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1300   emit_int8((unsigned char)0xDF);
1301   emit_operand(dst, src);
1302 }
1303 
1304 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1305   assert(VM_Version::supports_aes(), "");
1306   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1307   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1308   emit_int8((unsigned char)0xDF);
1309   emit_int8((unsigned char)(0xC0 | encode));
1310 }
1311 
1312 void Assembler::aesenc(XMMRegister dst, Address src) {
1313   assert(VM_Version::supports_aes(), "");
1314   InstructionMark im(this);
1315   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1316   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1317   emit_int8((unsigned char)0xDC);
1318   emit_operand(dst, src);
1319 }
1320 
1321 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1322   assert(VM_Version::supports_aes(), "");
1323   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1324   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1325   emit_int8((unsigned char)0xDC);
1326   emit_int8(0xC0 | encode);
1327 }
1328 
1329 void Assembler::aesenclast(XMMRegister dst, Address src) {
1330   assert(VM_Version::supports_aes(), "");
1331   InstructionMark im(this);
1332   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1333   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1334   emit_int8((unsigned char)0xDD);
1335   emit_operand(dst, src);
1336 }
1337 
1338 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1339   assert(VM_Version::supports_aes(), "");
1340   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1341   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1342   emit_int8((unsigned char)0xDD);
1343   emit_int8((unsigned char)(0xC0 | encode));
1344 }
1345 
1346 void Assembler::andl(Address dst, int32_t imm32) {
1347   InstructionMark im(this);
1348   prefix(dst);
1349   emit_int8((unsigned char)0x81);
1350   emit_operand(rsp, dst, 4);
1351   emit_int32(imm32);
1352 }
1353 
1354 void Assembler::andl(Register dst, int32_t imm32) {
1355   prefix(dst);
1356   emit_arith(0x81, 0xE0, dst, imm32);
1357 }
1358 
1359 void Assembler::andl(Register dst, Address src) {
1360   InstructionMark im(this);
1361   prefix(src, dst);
1362   emit_int8(0x23);
1363   emit_operand(dst, src);
1364 }
1365 
1366 void Assembler::andl(Register dst, Register src) {
1367   (void) prefix_and_encode(dst->encoding(), src->encoding());
1368   emit_arith(0x23, 0xC0, dst, src);
1369 }
1370 
1371 void Assembler::andnl(Register dst, Register src1, Register src2) {
1372   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1373   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1374   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1375   emit_int8((unsigned char)0xF2);
1376   emit_int8((unsigned char)(0xC0 | encode));
1377 }
1378 
1379 void Assembler::andnl(Register dst, Register src1, Address src2) {
1380   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1381   InstructionMark im(this);
1382   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1383   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1384   emit_int8((unsigned char)0xF2);
1385   emit_operand(dst, src2);
1386 }
1387 
1388 void Assembler::bsfl(Register dst, Register src) {
1389   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1390   emit_int8(0x0F);
1391   emit_int8((unsigned char)0xBC);
1392   emit_int8((unsigned char)(0xC0 | encode));
1393 }
1394 
1395 void Assembler::bsrl(Register dst, Register src) {
1396   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1397   emit_int8(0x0F);
1398   emit_int8((unsigned char)0xBD);
1399   emit_int8((unsigned char)(0xC0 | encode));
1400 }
1401 
1402 void Assembler::bswapl(Register reg) { // bswap
1403   int encode = prefix_and_encode(reg->encoding());
1404   emit_int8(0x0F);
1405   emit_int8((unsigned char)(0xC8 | encode));
1406 }
1407 
1408 void Assembler::blsil(Register dst, Register src) {
1409   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1410   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1411   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1412   emit_int8((unsigned char)0xF3);
1413   emit_int8((unsigned char)(0xC0 | encode));
1414 }
1415 
1416 void Assembler::blsil(Register dst, Address src) {
1417   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1418   InstructionMark im(this);
1419   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1420   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1421   emit_int8((unsigned char)0xF3);
1422   emit_operand(rbx, src);
1423 }
1424 
1425 void Assembler::blsmskl(Register dst, Register src) {
1426   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1427   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1428   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1429   emit_int8((unsigned char)0xF3);
1430   emit_int8((unsigned char)(0xC0 | encode));
1431 }
1432 
1433 void Assembler::blsmskl(Register dst, Address src) {
1434   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1435   InstructionMark im(this);
1436   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1437   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1438   emit_int8((unsigned char)0xF3);
1439   emit_operand(rdx, src);
1440 }
1441 
1442 void Assembler::blsrl(Register dst, Register src) {
1443   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1444   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1445   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1446   emit_int8((unsigned char)0xF3);
1447   emit_int8((unsigned char)(0xC0 | encode));
1448 }
1449 
1450 void Assembler::blsrl(Register dst, Address src) {
1451   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1452   InstructionMark im(this);
1453   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1454   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1455   emit_int8((unsigned char)0xF3);
1456   emit_operand(rcx, src);
1457 }
1458 
1459 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1460   // suspect disp32 is always good
1461   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1462 
1463   if (L.is_bound()) {
1464     const int long_size = 5;
1465     int offs = (int)( target(L) - pc() );
1466     assert(offs <= 0, "assembler error");
1467     InstructionMark im(this);
1468     // 1110 1000 #32-bit disp
1469     emit_int8((unsigned char)0xE8);
1470     emit_data(offs - long_size, rtype, operand);
1471   } else {
1472     InstructionMark im(this);
1473     // 1110 1000 #32-bit disp
1474     L.add_patch_at(code(), locator());
1475 
1476     emit_int8((unsigned char)0xE8);
1477     emit_data(int(0), rtype, operand);
1478   }
1479 }
1480 
1481 void Assembler::call(Register dst) {
1482   int encode = prefix_and_encode(dst->encoding());
1483   emit_int8((unsigned char)0xFF);
1484   emit_int8((unsigned char)(0xD0 | encode));
1485 }
1486 
1487 
1488 void Assembler::call(Address adr) {
1489   InstructionMark im(this);
1490   prefix(adr);
1491   emit_int8((unsigned char)0xFF);
1492   emit_operand(rdx, adr);
1493 }
1494 
1495 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1496   assert(entry != NULL, "call most probably wrong");
1497   InstructionMark im(this);
1498   emit_int8((unsigned char)0xE8);
1499   intptr_t disp = entry - (pc() + sizeof(int32_t));
1500   assert(is_simm32(disp), "must be 32bit offset (call2)");
1501   // Technically, should use call32_operand, but this format is
1502   // implied by the fact that we're emitting a call instruction.
1503 
1504   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1505   emit_data((int) disp, rspec, operand);
1506 }
1507 
1508 void Assembler::cdql() {
1509   emit_int8((unsigned char)0x99);
1510 }
1511 
1512 void Assembler::cld() {
1513   emit_int8((unsigned char)0xFC);
1514 }
1515 
1516 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1517   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1518   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1519   emit_int8(0x0F);
1520   emit_int8(0x40 | cc);
1521   emit_int8((unsigned char)(0xC0 | encode));
1522 }
1523 
1524 
1525 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1526   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1527   prefix(src, dst);
1528   emit_int8(0x0F);
1529   emit_int8(0x40 | cc);
1530   emit_operand(dst, src);
1531 }
1532 
1533 void Assembler::cmpb(Address dst, int imm8) {
1534   InstructionMark im(this);
1535   prefix(dst);
1536   emit_int8((unsigned char)0x80);
1537   emit_operand(rdi, dst, 1);
1538   emit_int8(imm8);
1539 }
1540 
1541 void Assembler::cmpl(Address dst, int32_t imm32) {
1542   InstructionMark im(this);
1543   prefix(dst);
1544   emit_int8((unsigned char)0x81);
1545   emit_operand(rdi, dst, 4);
1546   emit_int32(imm32);
1547 }
1548 
1549 void Assembler::cmpl(Register dst, int32_t imm32) {
1550   prefix(dst);
1551   emit_arith(0x81, 0xF8, dst, imm32);
1552 }
1553 
1554 void Assembler::cmpl(Register dst, Register src) {
1555   (void) prefix_and_encode(dst->encoding(), src->encoding());
1556   emit_arith(0x3B, 0xC0, dst, src);
1557 }
1558 
1559 void Assembler::cmpl(Register dst, Address  src) {
1560   InstructionMark im(this);
1561   prefix(src, dst);
1562   emit_int8((unsigned char)0x3B);
1563   emit_operand(dst, src);
1564 }
1565 
1566 void Assembler::cmpw(Address dst, int imm16) {
1567   InstructionMark im(this);
1568   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1569   emit_int8(0x66);
1570   emit_int8((unsigned char)0x81);
1571   emit_operand(rdi, dst, 2);
1572   emit_int16(imm16);
1573 }
1574 
1575 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1576 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1577 // The ZF is set if the compared values were equal, and cleared otherwise.
1578 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1579   InstructionMark im(this);
1580   prefix(adr, reg);
1581   emit_int8(0x0F);
1582   emit_int8((unsigned char)0xB1);
1583   emit_operand(reg, adr);
1584 }
1585 
1586 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1587 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1588 // The ZF is set if the compared values were equal, and cleared otherwise.
1589 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1590   InstructionMark im(this);
1591   prefix(adr, reg, true);
1592   emit_int8(0x0F);
1593   emit_int8((unsigned char)0xB0);
1594   emit_operand(reg, adr);
1595 }
1596 
1597 void Assembler::comisd(XMMRegister dst, Address src) {
1598   // NOTE: dbx seems to decode this as comiss even though the
1599   // 0x66 is there. Strangly ucomisd comes out correct
1600   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1601   InstructionMark im(this);
1602   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1603   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1604   attributes.set_rex_vex_w_reverted();
1605   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1606   emit_int8(0x2F);
1607   emit_operand(dst, src);
1608 }
1609 
1610 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1611   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1612   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1613   attributes.set_rex_vex_w_reverted();
1614   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1615   emit_int8(0x2F);
1616   emit_int8((unsigned char)(0xC0 | encode));
1617 }
1618 
1619 void Assembler::comiss(XMMRegister dst, Address src) {
1620   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1621   InstructionMark im(this);
1622   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1623   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1624   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1625   emit_int8(0x2F);
1626   emit_operand(dst, src);
1627 }
1628 
1629 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1630   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1631   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1632   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1633   emit_int8(0x2F);
1634   emit_int8((unsigned char)(0xC0 | encode));
1635 }
1636 
1637 void Assembler::cpuid() {
1638   emit_int8(0x0F);
1639   emit_int8((unsigned char)0xA2);
1640 }
1641 
1642 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1643 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1644 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1645 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1646 //
1647 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1648 //
1649 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1650 //
1651 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1652 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1653   assert(VM_Version::supports_sse4_2(), "");
1654   int8_t w = 0x01;
1655   Prefix p = Prefix_EMPTY;
1656 
1657   emit_int8((int8_t)0xF2);
1658   switch (sizeInBytes) {
1659   case 1:
1660     w = 0;
1661     break;
1662   case 2:
1663   case 4:
1664     break;
1665   LP64_ONLY(case 8:)
1666     // This instruction is not valid in 32 bits
1667     // Note:
1668     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1669     //
1670     // Page B - 72   Vol. 2C says
1671     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1672     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1673     //                                                                            F0!!!
1674     // while 3 - 208 Vol. 2A
1675     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1676     //
1677     // the 0 on a last bit is reserved for a different flavor of this instruction :
1678     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1679     p = REX_W;
1680     break;
1681   default:
1682     assert(0, "Unsupported value for a sizeInBytes argument");
1683     break;
1684   }
1685   LP64_ONLY(prefix(crc, v, p);)
1686   emit_int8((int8_t)0x0F);
1687   emit_int8(0x38);
1688   emit_int8((int8_t)(0xF0 | w));
1689   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1690 }
1691 
1692 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1693   assert(VM_Version::supports_sse4_2(), "");
1694   InstructionMark im(this);
1695   int8_t w = 0x01;
1696   Prefix p = Prefix_EMPTY;
1697 
1698   emit_int8((int8_t)0xF2);
1699   switch (sizeInBytes) {
1700   case 1:
1701     w = 0;
1702     break;
1703   case 2:
1704   case 4:
1705     break;
1706   LP64_ONLY(case 8:)
1707     // This instruction is not valid in 32 bits
1708     p = REX_W;
1709     break;
1710   default:
1711     assert(0, "Unsupported value for a sizeInBytes argument");
1712     break;
1713   }
1714   LP64_ONLY(prefix(crc, adr, p);)
1715   emit_int8((int8_t)0x0F);
1716   emit_int8(0x38);
1717   emit_int8((int8_t)(0xF0 | w));
1718   emit_operand(crc, adr);
1719 }
1720 
1721 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1722   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1723   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1724   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1725   emit_int8((unsigned char)0xE6);
1726   emit_int8((unsigned char)(0xC0 | encode));
1727 }
1728 
1729 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1730   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1731   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1732   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1733   emit_int8(0x5B);
1734   emit_int8((unsigned char)(0xC0 | encode));
1735 }
1736 
1737 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1738   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1739   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1740   attributes.set_rex_vex_w_reverted();
1741   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1742   emit_int8(0x5A);
1743   emit_int8((unsigned char)(0xC0 | encode));
1744 }
1745 
1746 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1747   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1748   InstructionMark im(this);
1749   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1750   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1751   attributes.set_rex_vex_w_reverted();
1752   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1753   emit_int8(0x5A);
1754   emit_operand(dst, src);
1755 }
1756 
1757 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1758   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1759   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1760   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1761   emit_int8(0x2A);
1762   emit_int8((unsigned char)(0xC0 | encode));
1763 }
1764 
1765 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1766   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1767   InstructionMark im(this);
1768   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1769   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1770   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1771   emit_int8(0x2A);
1772   emit_operand(dst, src);
1773 }
1774 
1775 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1776   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1777   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1778   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1779   emit_int8(0x2A);
1780   emit_int8((unsigned char)(0xC0 | encode));
1781 }
1782 
1783 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1784   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1785   InstructionMark im(this);
1786   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1787   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1788   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1789   emit_int8(0x2A);
1790   emit_operand(dst, src);
1791 }
1792 
1793 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1794   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1795   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1796   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1797   emit_int8(0x2A);
1798   emit_int8((unsigned char)(0xC0 | encode));
1799 }
1800 
1801 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1802   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1803   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1804   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1805   emit_int8(0x5A);
1806   emit_int8((unsigned char)(0xC0 | encode));
1807 }
1808 
1809 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1810   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1811   InstructionMark im(this);
1812   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1813   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1814   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1815   emit_int8(0x5A);
1816   emit_operand(dst, src);
1817 }
1818 
1819 
1820 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1821   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1822   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1823   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1824   emit_int8(0x2C);
1825   emit_int8((unsigned char)(0xC0 | encode));
1826 }
1827 
1828 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1829   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1830   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1831   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1832   emit_int8(0x2C);
1833   emit_int8((unsigned char)(0xC0 | encode));
1834 }
1835 
1836 void Assembler::cvttpd2dq(XMMRegister dst, XMMRegister src) {
1837   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1838   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
1839   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1840   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1841   emit_int8((unsigned char)0xE6);
1842   emit_int8((unsigned char)(0xC0 | encode));
1843 }
1844 
1845 void Assembler::decl(Address dst) {
1846   // Don't use it directly. Use MacroAssembler::decrement() instead.
1847   InstructionMark im(this);
1848   prefix(dst);
1849   emit_int8((unsigned char)0xFF);
1850   emit_operand(rcx, dst);
1851 }
1852 
1853 void Assembler::divsd(XMMRegister dst, Address src) {
1854   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1855   InstructionMark im(this);
1856   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1857   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1858   attributes.set_rex_vex_w_reverted();
1859   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1860   emit_int8(0x5E);
1861   emit_operand(dst, src);
1862 }
1863 
1864 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1865   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1866   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1867   attributes.set_rex_vex_w_reverted();
1868   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1869   emit_int8(0x5E);
1870   emit_int8((unsigned char)(0xC0 | encode));
1871 }
1872 
1873 void Assembler::divss(XMMRegister dst, Address src) {
1874   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1875   InstructionMark im(this);
1876   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1877   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1878   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1879   emit_int8(0x5E);
1880   emit_operand(dst, src);
1881 }
1882 
1883 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1884   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1885   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1886   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1887   emit_int8(0x5E);
1888   emit_int8((unsigned char)(0xC0 | encode));
1889 }
1890 
1891 void Assembler::emms() {
1892   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1893   emit_int8(0x0F);
1894   emit_int8(0x77);
1895 }
1896 
1897 void Assembler::hlt() {
1898   emit_int8((unsigned char)0xF4);
1899 }
1900 
1901 void Assembler::idivl(Register src) {
1902   int encode = prefix_and_encode(src->encoding());
1903   emit_int8((unsigned char)0xF7);
1904   emit_int8((unsigned char)(0xF8 | encode));
1905 }
1906 
1907 void Assembler::divl(Register src) { // Unsigned
1908   int encode = prefix_and_encode(src->encoding());
1909   emit_int8((unsigned char)0xF7);
1910   emit_int8((unsigned char)(0xF0 | encode));
1911 }
1912 
1913 void Assembler::imull(Register src) {
1914   int encode = prefix_and_encode(src->encoding());
1915   emit_int8((unsigned char)0xF7);
1916   emit_int8((unsigned char)(0xE8 | encode));
1917 }
1918 
1919 void Assembler::imull(Register dst, Register src) {
1920   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1921   emit_int8(0x0F);
1922   emit_int8((unsigned char)0xAF);
1923   emit_int8((unsigned char)(0xC0 | encode));
1924 }
1925 
1926 
1927 void Assembler::imull(Register dst, Register src, int value) {
1928   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1929   if (is8bit(value)) {
1930     emit_int8(0x6B);
1931     emit_int8((unsigned char)(0xC0 | encode));
1932     emit_int8(value & 0xFF);
1933   } else {
1934     emit_int8(0x69);
1935     emit_int8((unsigned char)(0xC0 | encode));
1936     emit_int32(value);
1937   }
1938 }
1939 
1940 void Assembler::imull(Register dst, Address src) {
1941   InstructionMark im(this);
1942   prefix(src, dst);
1943   emit_int8(0x0F);
1944   emit_int8((unsigned char) 0xAF);
1945   emit_operand(dst, src);
1946 }
1947 
1948 
1949 void Assembler::incl(Address dst) {
1950   // Don't use it directly. Use MacroAssembler::increment() instead.
1951   InstructionMark im(this);
1952   prefix(dst);
1953   emit_int8((unsigned char)0xFF);
1954   emit_operand(rax, dst);
1955 }
1956 
1957 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1958   InstructionMark im(this);
1959   assert((0 <= cc) && (cc < 16), "illegal cc");
1960   if (L.is_bound()) {
1961     address dst = target(L);
1962     assert(dst != NULL, "jcc most probably wrong");
1963 
1964     const int short_size = 2;
1965     const int long_size = 6;
1966     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1967     if (maybe_short && is8bit(offs - short_size)) {
1968       // 0111 tttn #8-bit disp
1969       emit_int8(0x70 | cc);
1970       emit_int8((offs - short_size) & 0xFF);
1971     } else {
1972       // 0000 1111 1000 tttn #32-bit disp
1973       assert(is_simm32(offs - long_size),
1974              "must be 32bit offset (call4)");
1975       emit_int8(0x0F);
1976       emit_int8((unsigned char)(0x80 | cc));
1977       emit_int32(offs - long_size);
1978     }
1979   } else {
1980     // Note: could eliminate cond. jumps to this jump if condition
1981     //       is the same however, seems to be rather unlikely case.
1982     // Note: use jccb() if label to be bound is very close to get
1983     //       an 8-bit displacement
1984     L.add_patch_at(code(), locator());
1985     emit_int8(0x0F);
1986     emit_int8((unsigned char)(0x80 | cc));
1987     emit_int32(0);
1988   }
1989 }
1990 
1991 void Assembler::jccb(Condition cc, Label& L) {
1992   if (L.is_bound()) {
1993     const int short_size = 2;
1994     address entry = target(L);
1995 #ifdef ASSERT
1996     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1997     intptr_t delta = short_branch_delta();
1998     if (delta != 0) {
1999       dist += (dist < 0 ? (-delta) :delta);
2000     }
2001     assert(is8bit(dist), "Dispacement too large for a short jmp");
2002 #endif
2003     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
2004     // 0111 tttn #8-bit disp
2005     emit_int8(0x70 | cc);
2006     emit_int8((offs - short_size) & 0xFF);
2007   } else {
2008     InstructionMark im(this);
2009     L.add_patch_at(code(), locator());
2010     emit_int8(0x70 | cc);
2011     emit_int8(0);
2012   }
2013 }
2014 
2015 void Assembler::jmp(Address adr) {
2016   InstructionMark im(this);
2017   prefix(adr);
2018   emit_int8((unsigned char)0xFF);
2019   emit_operand(rsp, adr);
2020 }
2021 
2022 void Assembler::jmp(Label& L, bool maybe_short) {
2023   if (L.is_bound()) {
2024     address entry = target(L);
2025     assert(entry != NULL, "jmp most probably wrong");
2026     InstructionMark im(this);
2027     const int short_size = 2;
2028     const int long_size = 5;
2029     intptr_t offs = entry - pc();
2030     if (maybe_short && is8bit(offs - short_size)) {
2031       emit_int8((unsigned char)0xEB);
2032       emit_int8((offs - short_size) & 0xFF);
2033     } else {
2034       emit_int8((unsigned char)0xE9);
2035       emit_int32(offs - long_size);
2036     }
2037   } else {
2038     // By default, forward jumps are always 32-bit displacements, since
2039     // we can't yet know where the label will be bound.  If you're sure that
2040     // the forward jump will not run beyond 256 bytes, use jmpb to
2041     // force an 8-bit displacement.
2042     InstructionMark im(this);
2043     L.add_patch_at(code(), locator());
2044     emit_int8((unsigned char)0xE9);
2045     emit_int32(0);
2046   }
2047 }
2048 
2049 void Assembler::jmp(Register entry) {
2050   int encode = prefix_and_encode(entry->encoding());
2051   emit_int8((unsigned char)0xFF);
2052   emit_int8((unsigned char)(0xE0 | encode));
2053 }
2054 
2055 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2056   InstructionMark im(this);
2057   emit_int8((unsigned char)0xE9);
2058   assert(dest != NULL, "must have a target");
2059   intptr_t disp = dest - (pc() + sizeof(int32_t));
2060   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2061   emit_data(disp, rspec.reloc(), call32_operand);
2062 }
2063 
2064 void Assembler::jmpb(Label& L) {
2065   if (L.is_bound()) {
2066     const int short_size = 2;
2067     address entry = target(L);
2068     assert(entry != NULL, "jmp most probably wrong");
2069 #ifdef ASSERT
2070     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2071     intptr_t delta = short_branch_delta();
2072     if (delta != 0) {
2073       dist += (dist < 0 ? (-delta) :delta);
2074     }
2075     assert(is8bit(dist), "Dispacement too large for a short jmp");
2076 #endif
2077     intptr_t offs = entry - pc();
2078     emit_int8((unsigned char)0xEB);
2079     emit_int8((offs - short_size) & 0xFF);
2080   } else {
2081     InstructionMark im(this);
2082     L.add_patch_at(code(), locator());
2083     emit_int8((unsigned char)0xEB);
2084     emit_int8(0);
2085   }
2086 }
2087 
2088 void Assembler::ldmxcsr( Address src) {
2089   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2090   InstructionMark im(this);
2091   prefix(src);
2092   emit_int8(0x0F);
2093   emit_int8((unsigned char)0xAE);
2094   emit_operand(as_Register(2), src);
2095 }
2096 
2097 void Assembler::leal(Register dst, Address src) {
2098   InstructionMark im(this);
2099 #ifdef _LP64
2100   emit_int8(0x67); // addr32
2101   prefix(src, dst);
2102 #endif // LP64
2103   emit_int8((unsigned char)0x8D);
2104   emit_operand(dst, src);
2105 }
2106 
2107 void Assembler::lfence() {
2108   emit_int8(0x0F);
2109   emit_int8((unsigned char)0xAE);
2110   emit_int8((unsigned char)0xE8);
2111 }
2112 
2113 void Assembler::lock() {
2114   emit_int8((unsigned char)0xF0);
2115 }
2116 
2117 void Assembler::lzcntl(Register dst, Register src) {
2118   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2119   emit_int8((unsigned char)0xF3);
2120   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2121   emit_int8(0x0F);
2122   emit_int8((unsigned char)0xBD);
2123   emit_int8((unsigned char)(0xC0 | encode));
2124 }
2125 
2126 // Emit mfence instruction
2127 void Assembler::mfence() {
2128   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2129   emit_int8(0x0F);
2130   emit_int8((unsigned char)0xAE);
2131   emit_int8((unsigned char)0xF0);
2132 }
2133 
2134 void Assembler::mov(Register dst, Register src) {
2135   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2136 }
2137 
2138 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2139   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2140   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2141   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2142   attributes.set_rex_vex_w_reverted();
2143   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2144   emit_int8(0x28);
2145   emit_int8((unsigned char)(0xC0 | encode));
2146 }
2147 
2148 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2149   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2150   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2151   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2152   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2153   emit_int8(0x28);
2154   emit_int8((unsigned char)(0xC0 | encode));
2155 }
2156 
2157 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2158   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2159   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2160   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2161   emit_int8(0x16);
2162   emit_int8((unsigned char)(0xC0 | encode));
2163 }
2164 
2165 void Assembler::movb(Register dst, Address src) {
2166   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2167   InstructionMark im(this);
2168   prefix(src, dst, true);
2169   emit_int8((unsigned char)0x8A);
2170   emit_operand(dst, src);
2171 }
2172 
2173 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2174   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2175   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2176   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2177   attributes.set_rex_vex_w_reverted();
2178   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2179   emit_int8(0x12);
2180   emit_int8(0xC0 | encode);
2181 }
2182 
2183 void Assembler::kmovbl(KRegister dst, Register src) {
2184   assert(VM_Version::supports_avx512dq(), "");
2185   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2186   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2187   emit_int8((unsigned char)0x92);
2188   emit_int8((unsigned char)(0xC0 | encode));
2189 }
2190 
2191 void Assembler::kmovbl(Register dst, KRegister src) {
2192   assert(VM_Version::supports_avx512dq(), "");
2193   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2194   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2195   emit_int8((unsigned char)0x93);
2196   emit_int8((unsigned char)(0xC0 | encode));
2197 }
2198 
2199 void Assembler::kmovwl(KRegister dst, Register src) {
2200   assert(VM_Version::supports_evex(), "");
2201   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2202   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2203   emit_int8((unsigned char)0x92);
2204   emit_int8((unsigned char)(0xC0 | encode));
2205 }
2206 
2207 void Assembler::kmovwl(Register dst, KRegister src) {
2208   assert(VM_Version::supports_evex(), "");
2209   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2210   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2211   emit_int8((unsigned char)0x93);
2212   emit_int8((unsigned char)(0xC0 | encode));
2213 }
2214 
2215 void Assembler::kmovwl(KRegister dst, Address src) {
2216   assert(VM_Version::supports_evex(), "");
2217   InstructionMark im(this);
2218   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2219   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2220   emit_int8((unsigned char)0x90);
2221   emit_operand((Register)dst, src);
2222 }
2223 
2224 void Assembler::kmovdl(KRegister dst, Register src) {
2225   assert(VM_Version::supports_avx512bw(), "");
2226   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2227   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2228   emit_int8((unsigned char)0x92);
2229   emit_int8((unsigned char)(0xC0 | encode));
2230 }
2231 
2232 void Assembler::kmovdl(Register dst, KRegister src) {
2233   assert(VM_Version::supports_avx512bw(), "");
2234   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2235   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2236   emit_int8((unsigned char)0x93);
2237   emit_int8((unsigned char)(0xC0 | encode));
2238 }
2239 
2240 void Assembler::kmovql(KRegister dst, KRegister src) {
2241   assert(VM_Version::supports_avx512bw(), "");
2242   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2243   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2244   emit_int8((unsigned char)0x90);
2245   emit_int8((unsigned char)(0xC0 | encode));
2246 }
2247 
2248 void Assembler::kmovql(KRegister dst, Address src) {
2249   assert(VM_Version::supports_avx512bw(), "");
2250   InstructionMark im(this);
2251   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2252   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2253   emit_int8((unsigned char)0x90);
2254   emit_operand((Register)dst, src);
2255 }
2256 
2257 void Assembler::kmovql(Address dst, KRegister src) {
2258   assert(VM_Version::supports_avx512bw(), "");
2259   InstructionMark im(this);
2260   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2261   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2262   emit_int8((unsigned char)0x90);
2263   emit_operand((Register)src, dst);
2264 }
2265 
2266 void Assembler::kmovql(KRegister dst, Register src) {
2267   assert(VM_Version::supports_avx512bw(), "");
2268   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2269   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2270   emit_int8((unsigned char)0x92);
2271   emit_int8((unsigned char)(0xC0 | encode));
2272 }
2273 
2274 void Assembler::kmovql(Register dst, KRegister src) {
2275   assert(VM_Version::supports_avx512bw(), "");
2276   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2277   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2278   emit_int8((unsigned char)0x93);
2279   emit_int8((unsigned char)(0xC0 | encode));
2280 }
2281 
2282 void Assembler::knotwl(KRegister dst, KRegister src) {
2283   assert(VM_Version::supports_evex(), "");
2284   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2285   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2286   emit_int8((unsigned char)0x44);
2287   emit_int8((unsigned char)(0xC0 | encode));
2288 }
2289 
2290 // This instruction produces ZF or CF flags
2291 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2292   assert(VM_Version::supports_avx512dq(), "");
2293   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2294   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2295   emit_int8((unsigned char)0x98);
2296   emit_int8((unsigned char)(0xC0 | encode));
2297 }
2298 
2299 // This instruction produces ZF or CF flags
2300 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2301   assert(VM_Version::supports_evex(), "");
2302   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2303   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2304   emit_int8((unsigned char)0x98);
2305   emit_int8((unsigned char)(0xC0 | encode));
2306 }
2307 
2308 // This instruction produces ZF or CF flags
2309 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2310   assert(VM_Version::supports_avx512bw(), "");
2311   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2312   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2313   emit_int8((unsigned char)0x98);
2314   emit_int8((unsigned char)(0xC0 | encode));
2315 }
2316 
2317 // This instruction produces ZF or CF flags
2318 void Assembler::kortestql(KRegister src1, KRegister src2) {
2319   assert(VM_Version::supports_avx512bw(), "");
2320   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2321   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2322   emit_int8((unsigned char)0x98);
2323   emit_int8((unsigned char)(0xC0 | encode));
2324 }
2325 
2326 // This instruction produces ZF or CF flags
2327 void Assembler::ktestql(KRegister src1, KRegister src2) {
2328   assert(VM_Version::supports_avx512bw(), "");
2329   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2330   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2331   emit_int8((unsigned char)0x99);
2332   emit_int8((unsigned char)(0xC0 | encode));
2333 }
2334 
2335 void Assembler::movb(Address dst, int imm8) {
2336   InstructionMark im(this);
2337    prefix(dst);
2338   emit_int8((unsigned char)0xC6);
2339   emit_operand(rax, dst, 1);
2340   emit_int8(imm8);
2341 }
2342 
2343 
2344 void Assembler::movb(Address dst, Register src) {
2345   assert(src->has_byte_register(), "must have byte register");
2346   InstructionMark im(this);
2347   prefix(dst, src, true);
2348   emit_int8((unsigned char)0x88);
2349   emit_operand(src, dst);
2350 }
2351 
2352 void Assembler::movdl(XMMRegister dst, Register src) {
2353   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2354   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2355   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2356   emit_int8(0x6E);
2357   emit_int8((unsigned char)(0xC0 | encode));
2358 }
2359 
2360 void Assembler::movdl(Register dst, XMMRegister src) {
2361   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2362   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2363   // swap src/dst to get correct prefix
2364   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2365   emit_int8(0x7E);
2366   emit_int8((unsigned char)(0xC0 | encode));
2367 }
2368 
2369 void Assembler::movdl(XMMRegister dst, Address src) {
2370   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2371   InstructionMark im(this);
2372   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2373   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2374   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2375   emit_int8(0x6E);
2376   emit_operand(dst, src);
2377 }
2378 
2379 void Assembler::movdl(Address dst, XMMRegister src) {
2380   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2381   InstructionMark im(this);
2382   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2383   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2384   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2385   emit_int8(0x7E);
2386   emit_operand(src, dst);
2387 }
2388 
2389 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2390   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2391   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2392   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2393   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2394   emit_int8(0x6F);
2395   emit_int8((unsigned char)(0xC0 | encode));
2396 }
2397 
2398 void Assembler::movdqa(XMMRegister dst, Address src) {
2399   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2400   InstructionMark im(this);
2401   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2402   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2403   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2404   emit_int8(0x6F);
2405   emit_operand(dst, src);
2406 }
2407 
2408 void Assembler::movdqu(XMMRegister dst, Address src) {
2409   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2410   InstructionMark im(this);
2411   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2412   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2413   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2414   emit_int8(0x6F);
2415   emit_operand(dst, src);
2416 }
2417 
2418 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2419   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2420   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2421   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2422   emit_int8(0x6F);
2423   emit_int8((unsigned char)(0xC0 | encode));
2424 }
2425 
2426 void Assembler::movdqu(Address dst, XMMRegister src) {
2427   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2428   InstructionMark im(this);
2429   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2430   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2431   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2432   emit_int8(0x7F);
2433   emit_operand(src, dst);
2434 }
2435 
2436 // Move Unaligned 256bit Vector
2437 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2438   assert(UseAVX > 0, "");
2439   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2440   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2441   emit_int8(0x6F);
2442   emit_int8((unsigned char)(0xC0 | encode));
2443 }
2444 
2445 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2446   assert(UseAVX > 0, "");
2447   InstructionMark im(this);
2448   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2449   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2450   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2451   emit_int8(0x6F);
2452   emit_operand(dst, src);
2453 }
2454 
2455 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2456   assert(UseAVX > 0, "");
2457   InstructionMark im(this);
2458   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2459   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2460   // swap src<->dst for encoding
2461   assert(src != xnoreg, "sanity");
2462   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2463   emit_int8(0x7F);
2464   emit_operand(src, dst);
2465 }
2466 
2467 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2468 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2469   assert(VM_Version::supports_evex(), "");
2470   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2471   attributes.set_is_evex_instruction();
2472   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2473   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2474   emit_int8(0x6F);
2475   emit_int8((unsigned char)(0xC0 | encode));
2476 }
2477 
2478 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2479   assert(VM_Version::supports_evex(), "");
2480   InstructionMark im(this);
2481   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2482   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2483   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2484   attributes.set_is_evex_instruction();
2485   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2486   emit_int8(0x6F);
2487   emit_operand(dst, src);
2488 }
2489 
2490 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2491   assert(VM_Version::supports_evex(), "");
2492   assert(src != xnoreg, "sanity");
2493   InstructionMark im(this);
2494   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2495   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2496   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2497   attributes.set_is_evex_instruction();
2498   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2499   emit_int8(0x7F);
2500   emit_operand(src, dst);
2501 }
2502 
2503 void Assembler::evmovdqub(KRegister mask, bool zeroing, XMMRegister dst, Address src, int vector_len) {
2504   assert(VM_Version::supports_avx512vlbw(), "");
2505   assert(is_programmed_mask_reg(), "");
2506   InstructionMark im(this);
2507   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2508   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2509   attributes.set_embedded_opmask_register_specifier(mask);
2510   if (zeroing) attributes.set_is_clear_context();
2511   attributes.set_is_evex_instruction();
2512   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2513   emit_int8(0x6F);
2514   emit_operand(dst, src);
2515 }
2516 
2517 void Assembler::evmovdquw(XMMRegister dst, XMMRegister src, int vector_len) {
2518   assert(VM_Version::supports_evex(), "");
2519   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2520   attributes.set_is_evex_instruction();
2521   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2522   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2523   emit_int8(0x6F);
2524   emit_int8((unsigned char)(0xC0 | encode));
2525 }
2526 
2527 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2528   assert(VM_Version::supports_evex(), "");
2529   InstructionMark im(this);
2530   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2531   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2532   attributes.set_is_evex_instruction();
2533   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2534   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2535   emit_int8(0x6F);
2536   emit_operand(dst, src);
2537 }
2538 
2539 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2540   assert(VM_Version::supports_evex(), "");
2541   assert(src != xnoreg, "sanity");
2542   InstructionMark im(this);
2543   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2544   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2545   attributes.set_is_evex_instruction();
2546   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2547   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2548   emit_int8(0x7F);
2549   emit_operand(src, dst);
2550 }
2551 
2552 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2553   assert(VM_Version::supports_evex(), "");
2554   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2555   attributes.set_is_evex_instruction();
2556   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2557   emit_int8(0x6F);
2558   emit_int8((unsigned char)(0xC0 | encode));
2559 }
2560 
2561 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2562   assert(VM_Version::supports_evex(), "");
2563   InstructionMark im(this);
2564   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ true);
2565   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2566   attributes.set_is_evex_instruction();
2567   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2568   emit_int8(0x6F);
2569   emit_operand(dst, src);
2570 }
2571 
2572 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2573   assert(VM_Version::supports_evex(), "");
2574   assert(src != xnoreg, "sanity");
2575   InstructionMark im(this);
2576   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2577   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2578   attributes.set_is_evex_instruction();
2579   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2580   emit_int8(0x7F);
2581   emit_operand(src, dst);
2582 }
2583 
2584 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2585   assert(VM_Version::supports_evex(), "");
2586   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2587   attributes.set_is_evex_instruction();
2588   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2589   emit_int8(0x6F);
2590   emit_int8((unsigned char)(0xC0 | encode));
2591 }
2592 
2593 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2594   assert(VM_Version::supports_evex(), "");
2595   InstructionMark im(this);
2596   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2597   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2598   attributes.set_is_evex_instruction();
2599   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2600   emit_int8(0x6F);
2601   emit_operand(dst, src);
2602 }
2603 
2604 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2605   assert(VM_Version::supports_evex(), "");
2606   assert(src != xnoreg, "sanity");
2607   InstructionMark im(this);
2608   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2609   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2610   attributes.set_is_evex_instruction();
2611   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2612   emit_int8(0x7F);
2613   emit_operand(src, dst);
2614 }
2615 
2616 // Uses zero extension on 64bit
2617 
2618 void Assembler::movl(Register dst, int32_t imm32) {
2619   int encode = prefix_and_encode(dst->encoding());
2620   emit_int8((unsigned char)(0xB8 | encode));
2621   emit_int32(imm32);
2622 }
2623 
2624 void Assembler::movl(Register dst, Register src) {
2625   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2626   emit_int8((unsigned char)0x8B);
2627   emit_int8((unsigned char)(0xC0 | encode));
2628 }
2629 
2630 void Assembler::movl(Register dst, Address src) {
2631   InstructionMark im(this);
2632   prefix(src, dst);
2633   emit_int8((unsigned char)0x8B);
2634   emit_operand(dst, src);
2635 }
2636 
2637 void Assembler::movl(Address dst, int32_t imm32) {
2638   InstructionMark im(this);
2639   prefix(dst);
2640   emit_int8((unsigned char)0xC7);
2641   emit_operand(rax, dst, 4);
2642   emit_int32(imm32);
2643 }
2644 
2645 void Assembler::movl(Address dst, Register src) {
2646   InstructionMark im(this);
2647   prefix(dst, src);
2648   emit_int8((unsigned char)0x89);
2649   emit_operand(src, dst);
2650 }
2651 
2652 // New cpus require to use movsd and movss to avoid partial register stall
2653 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2654 // The selection is done in MacroAssembler::movdbl() and movflt().
2655 void Assembler::movlpd(XMMRegister dst, Address src) {
2656   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2657   InstructionMark im(this);
2658   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2659   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2660   attributes.set_rex_vex_w_reverted();
2661   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2662   emit_int8(0x12);
2663   emit_operand(dst, src);
2664 }
2665 
2666 void Assembler::movq( MMXRegister dst, Address src ) {
2667   assert( VM_Version::supports_mmx(), "" );
2668   emit_int8(0x0F);
2669   emit_int8(0x6F);
2670   emit_operand(dst, src);
2671 }
2672 
2673 void Assembler::movq( Address dst, MMXRegister src ) {
2674   assert( VM_Version::supports_mmx(), "" );
2675   emit_int8(0x0F);
2676   emit_int8(0x7F);
2677   // workaround gcc (3.2.1-7a) bug
2678   // In that version of gcc with only an emit_operand(MMX, Address)
2679   // gcc will tail jump and try and reverse the parameters completely
2680   // obliterating dst in the process. By having a version available
2681   // that doesn't need to swap the args at the tail jump the bug is
2682   // avoided.
2683   emit_operand(dst, src);
2684 }
2685 
2686 void Assembler::movq(XMMRegister dst, Address src) {
2687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2688   InstructionMark im(this);
2689   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2690   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2691   attributes.set_rex_vex_w_reverted();
2692   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2693   emit_int8(0x7E);
2694   emit_operand(dst, src);
2695 }
2696 
2697 void Assembler::movq(Address dst, XMMRegister src) {
2698   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2699   InstructionMark im(this);
2700   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2701   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2702   attributes.set_rex_vex_w_reverted();
2703   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2704   emit_int8((unsigned char)0xD6);
2705   emit_operand(src, dst);
2706 }
2707 
2708 void Assembler::movsbl(Register dst, Address src) { // movsxb
2709   InstructionMark im(this);
2710   prefix(src, dst);
2711   emit_int8(0x0F);
2712   emit_int8((unsigned char)0xBE);
2713   emit_operand(dst, src);
2714 }
2715 
2716 void Assembler::movsbl(Register dst, Register src) { // movsxb
2717   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2718   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2719   emit_int8(0x0F);
2720   emit_int8((unsigned char)0xBE);
2721   emit_int8((unsigned char)(0xC0 | encode));
2722 }
2723 
2724 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2725   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2726   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2727   attributes.set_rex_vex_w_reverted();
2728   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2729   emit_int8(0x10);
2730   emit_int8((unsigned char)(0xC0 | encode));
2731 }
2732 
2733 void Assembler::movsd(XMMRegister dst, Address src) {
2734   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2735   InstructionMark im(this);
2736   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2737   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2738   attributes.set_rex_vex_w_reverted();
2739   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2740   emit_int8(0x10);
2741   emit_operand(dst, src);
2742 }
2743 
2744 void Assembler::movsd(Address dst, XMMRegister src) {
2745   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2746   InstructionMark im(this);
2747   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2748   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2749   attributes.set_rex_vex_w_reverted();
2750   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2751   emit_int8(0x11);
2752   emit_operand(src, dst);
2753 }
2754 
2755 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2756   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2757   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2758   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2759   emit_int8(0x10);
2760   emit_int8((unsigned char)(0xC0 | encode));
2761 }
2762 
2763 void Assembler::movss(XMMRegister dst, Address src) {
2764   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2765   InstructionMark im(this);
2766   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2767   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2768   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2769   emit_int8(0x10);
2770   emit_operand(dst, src);
2771 }
2772 
2773 void Assembler::movss(Address dst, XMMRegister src) {
2774   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2775   InstructionMark im(this);
2776   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2777   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2778   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2779   emit_int8(0x11);
2780   emit_operand(src, dst);
2781 }
2782 
2783 void Assembler::movswl(Register dst, Address src) { // movsxw
2784   InstructionMark im(this);
2785   prefix(src, dst);
2786   emit_int8(0x0F);
2787   emit_int8((unsigned char)0xBF);
2788   emit_operand(dst, src);
2789 }
2790 
2791 void Assembler::movswl(Register dst, Register src) { // movsxw
2792   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2793   emit_int8(0x0F);
2794   emit_int8((unsigned char)0xBF);
2795   emit_int8((unsigned char)(0xC0 | encode));
2796 }
2797 
2798 void Assembler::movw(Address dst, int imm16) {
2799   InstructionMark im(this);
2800 
2801   emit_int8(0x66); // switch to 16-bit mode
2802   prefix(dst);
2803   emit_int8((unsigned char)0xC7);
2804   emit_operand(rax, dst, 2);
2805   emit_int16(imm16);
2806 }
2807 
2808 void Assembler::movw(Register dst, Address src) {
2809   InstructionMark im(this);
2810   emit_int8(0x66);
2811   prefix(src, dst);
2812   emit_int8((unsigned char)0x8B);
2813   emit_operand(dst, src);
2814 }
2815 
2816 void Assembler::movw(Address dst, Register src) {
2817   InstructionMark im(this);
2818   emit_int8(0x66);
2819   prefix(dst, src);
2820   emit_int8((unsigned char)0x89);
2821   emit_operand(src, dst);
2822 }
2823 
2824 void Assembler::movzbl(Register dst, Address src) { // movzxb
2825   InstructionMark im(this);
2826   prefix(src, dst);
2827   emit_int8(0x0F);
2828   emit_int8((unsigned char)0xB6);
2829   emit_operand(dst, src);
2830 }
2831 
2832 void Assembler::movzbl(Register dst, Register src) { // movzxb
2833   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2834   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2835   emit_int8(0x0F);
2836   emit_int8((unsigned char)0xB6);
2837   emit_int8(0xC0 | encode);
2838 }
2839 
2840 void Assembler::movzwl(Register dst, Address src) { // movzxw
2841   InstructionMark im(this);
2842   prefix(src, dst);
2843   emit_int8(0x0F);
2844   emit_int8((unsigned char)0xB7);
2845   emit_operand(dst, src);
2846 }
2847 
2848 void Assembler::movzwl(Register dst, Register src) { // movzxw
2849   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2850   emit_int8(0x0F);
2851   emit_int8((unsigned char)0xB7);
2852   emit_int8(0xC0 | encode);
2853 }
2854 
2855 void Assembler::mull(Address src) {
2856   InstructionMark im(this);
2857   prefix(src);
2858   emit_int8((unsigned char)0xF7);
2859   emit_operand(rsp, src);
2860 }
2861 
2862 void Assembler::mull(Register src) {
2863   int encode = prefix_and_encode(src->encoding());
2864   emit_int8((unsigned char)0xF7);
2865   emit_int8((unsigned char)(0xE0 | encode));
2866 }
2867 
2868 void Assembler::mulsd(XMMRegister dst, Address src) {
2869   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2870   InstructionMark im(this);
2871   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2872   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2873   attributes.set_rex_vex_w_reverted();
2874   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2875   emit_int8(0x59);
2876   emit_operand(dst, src);
2877 }
2878 
2879 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2880   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2881   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2882   attributes.set_rex_vex_w_reverted();
2883   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2884   emit_int8(0x59);
2885   emit_int8((unsigned char)(0xC0 | encode));
2886 }
2887 
2888 void Assembler::mulss(XMMRegister dst, Address src) {
2889   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2890   InstructionMark im(this);
2891   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2892   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2893   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2894   emit_int8(0x59);
2895   emit_operand(dst, src);
2896 }
2897 
2898 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2899   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2900   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2901   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2902   emit_int8(0x59);
2903   emit_int8((unsigned char)(0xC0 | encode));
2904 }
2905 
2906 void Assembler::negl(Register dst) {
2907   int encode = prefix_and_encode(dst->encoding());
2908   emit_int8((unsigned char)0xF7);
2909   emit_int8((unsigned char)(0xD8 | encode));
2910 }
2911 
2912 void Assembler::nop(int i) {
2913 #ifdef ASSERT
2914   assert(i > 0, " ");
2915   // The fancy nops aren't currently recognized by debuggers making it a
2916   // pain to disassemble code while debugging. If asserts are on clearly
2917   // speed is not an issue so simply use the single byte traditional nop
2918   // to do alignment.
2919 
2920   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2921   return;
2922 
2923 #endif // ASSERT
2924 
2925   if (UseAddressNop && VM_Version::is_intel()) {
2926     //
2927     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2928     //  1: 0x90
2929     //  2: 0x66 0x90
2930     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2931     //  4: 0x0F 0x1F 0x40 0x00
2932     //  5: 0x0F 0x1F 0x44 0x00 0x00
2933     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2934     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2935     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2936     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2937     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2938     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2939 
2940     // The rest coding is Intel specific - don't use consecutive address nops
2941 
2942     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2943     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2944     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2945     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2946 
2947     while(i >= 15) {
2948       // For Intel don't generate consecutive addess nops (mix with regular nops)
2949       i -= 15;
2950       emit_int8(0x66);   // size prefix
2951       emit_int8(0x66);   // size prefix
2952       emit_int8(0x66);   // size prefix
2953       addr_nop_8();
2954       emit_int8(0x66);   // size prefix
2955       emit_int8(0x66);   // size prefix
2956       emit_int8(0x66);   // size prefix
2957       emit_int8((unsigned char)0x90);
2958                          // nop
2959     }
2960     switch (i) {
2961       case 14:
2962         emit_int8(0x66); // size prefix
2963       case 13:
2964         emit_int8(0x66); // size prefix
2965       case 12:
2966         addr_nop_8();
2967         emit_int8(0x66); // size prefix
2968         emit_int8(0x66); // size prefix
2969         emit_int8(0x66); // size prefix
2970         emit_int8((unsigned char)0x90);
2971                          // nop
2972         break;
2973       case 11:
2974         emit_int8(0x66); // size prefix
2975       case 10:
2976         emit_int8(0x66); // size prefix
2977       case 9:
2978         emit_int8(0x66); // size prefix
2979       case 8:
2980         addr_nop_8();
2981         break;
2982       case 7:
2983         addr_nop_7();
2984         break;
2985       case 6:
2986         emit_int8(0x66); // size prefix
2987       case 5:
2988         addr_nop_5();
2989         break;
2990       case 4:
2991         addr_nop_4();
2992         break;
2993       case 3:
2994         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2995         emit_int8(0x66); // size prefix
2996       case 2:
2997         emit_int8(0x66); // size prefix
2998       case 1:
2999         emit_int8((unsigned char)0x90);
3000                          // nop
3001         break;
3002       default:
3003         assert(i == 0, " ");
3004     }
3005     return;
3006   }
3007   if (UseAddressNop && VM_Version::is_amd()) {
3008     //
3009     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
3010     //  1: 0x90
3011     //  2: 0x66 0x90
3012     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3013     //  4: 0x0F 0x1F 0x40 0x00
3014     //  5: 0x0F 0x1F 0x44 0x00 0x00
3015     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3016     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3017     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3018     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3019     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3020     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3021 
3022     // The rest coding is AMD specific - use consecutive address nops
3023 
3024     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3025     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3026     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3027     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3028     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3029     //     Size prefixes (0x66) are added for larger sizes
3030 
3031     while(i >= 22) {
3032       i -= 11;
3033       emit_int8(0x66); // size prefix
3034       emit_int8(0x66); // size prefix
3035       emit_int8(0x66); // size prefix
3036       addr_nop_8();
3037     }
3038     // Generate first nop for size between 21-12
3039     switch (i) {
3040       case 21:
3041         i -= 1;
3042         emit_int8(0x66); // size prefix
3043       case 20:
3044       case 19:
3045         i -= 1;
3046         emit_int8(0x66); // size prefix
3047       case 18:
3048       case 17:
3049         i -= 1;
3050         emit_int8(0x66); // size prefix
3051       case 16:
3052       case 15:
3053         i -= 8;
3054         addr_nop_8();
3055         break;
3056       case 14:
3057       case 13:
3058         i -= 7;
3059         addr_nop_7();
3060         break;
3061       case 12:
3062         i -= 6;
3063         emit_int8(0x66); // size prefix
3064         addr_nop_5();
3065         break;
3066       default:
3067         assert(i < 12, " ");
3068     }
3069 
3070     // Generate second nop for size between 11-1
3071     switch (i) {
3072       case 11:
3073         emit_int8(0x66); // size prefix
3074       case 10:
3075         emit_int8(0x66); // size prefix
3076       case 9:
3077         emit_int8(0x66); // size prefix
3078       case 8:
3079         addr_nop_8();
3080         break;
3081       case 7:
3082         addr_nop_7();
3083         break;
3084       case 6:
3085         emit_int8(0x66); // size prefix
3086       case 5:
3087         addr_nop_5();
3088         break;
3089       case 4:
3090         addr_nop_4();
3091         break;
3092       case 3:
3093         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3094         emit_int8(0x66); // size prefix
3095       case 2:
3096         emit_int8(0x66); // size prefix
3097       case 1:
3098         emit_int8((unsigned char)0x90);
3099                          // nop
3100         break;
3101       default:
3102         assert(i == 0, " ");
3103     }
3104     return;
3105   }
3106 
3107   // Using nops with size prefixes "0x66 0x90".
3108   // From AMD Optimization Guide:
3109   //  1: 0x90
3110   //  2: 0x66 0x90
3111   //  3: 0x66 0x66 0x90
3112   //  4: 0x66 0x66 0x66 0x90
3113   //  5: 0x66 0x66 0x90 0x66 0x90
3114   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3115   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3116   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3117   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3118   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3119   //
3120   while(i > 12) {
3121     i -= 4;
3122     emit_int8(0x66); // size prefix
3123     emit_int8(0x66);
3124     emit_int8(0x66);
3125     emit_int8((unsigned char)0x90);
3126                      // nop
3127   }
3128   // 1 - 12 nops
3129   if(i > 8) {
3130     if(i > 9) {
3131       i -= 1;
3132       emit_int8(0x66);
3133     }
3134     i -= 3;
3135     emit_int8(0x66);
3136     emit_int8(0x66);
3137     emit_int8((unsigned char)0x90);
3138   }
3139   // 1 - 8 nops
3140   if(i > 4) {
3141     if(i > 6) {
3142       i -= 1;
3143       emit_int8(0x66);
3144     }
3145     i -= 3;
3146     emit_int8(0x66);
3147     emit_int8(0x66);
3148     emit_int8((unsigned char)0x90);
3149   }
3150   switch (i) {
3151     case 4:
3152       emit_int8(0x66);
3153     case 3:
3154       emit_int8(0x66);
3155     case 2:
3156       emit_int8(0x66);
3157     case 1:
3158       emit_int8((unsigned char)0x90);
3159       break;
3160     default:
3161       assert(i == 0, " ");
3162   }
3163 }
3164 
3165 void Assembler::notl(Register dst) {
3166   int encode = prefix_and_encode(dst->encoding());
3167   emit_int8((unsigned char)0xF7);
3168   emit_int8((unsigned char)(0xD0 | encode));
3169 }
3170 
3171 void Assembler::orl(Address dst, int32_t imm32) {
3172   InstructionMark im(this);
3173   prefix(dst);
3174   emit_arith_operand(0x81, rcx, dst, imm32);
3175 }
3176 
3177 void Assembler::orl(Register dst, int32_t imm32) {
3178   prefix(dst);
3179   emit_arith(0x81, 0xC8, dst, imm32);
3180 }
3181 
3182 void Assembler::orl(Register dst, Address src) {
3183   InstructionMark im(this);
3184   prefix(src, dst);
3185   emit_int8(0x0B);
3186   emit_operand(dst, src);
3187 }
3188 
3189 void Assembler::orl(Register dst, Register src) {
3190   (void) prefix_and_encode(dst->encoding(), src->encoding());
3191   emit_arith(0x0B, 0xC0, dst, src);
3192 }
3193 
3194 void Assembler::orl(Address dst, Register src) {
3195   InstructionMark im(this);
3196   prefix(dst, src);
3197   emit_int8(0x09);
3198   emit_operand(src, dst);
3199 }
3200 
3201 void Assembler::packuswb(XMMRegister dst, Address src) {
3202   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3203   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3204   InstructionMark im(this);
3205   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3206   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3207   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3208   emit_int8(0x67);
3209   emit_operand(dst, src);
3210 }
3211 
3212 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3213   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3214   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3215   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3216   emit_int8(0x67);
3217   emit_int8((unsigned char)(0xC0 | encode));
3218 }
3219 
3220 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3221   assert(UseAVX > 0, "some form of AVX must be enabled");
3222   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3223   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3224   emit_int8(0x67);
3225   emit_int8((unsigned char)(0xC0 | encode));
3226 }
3227 
3228 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3229   assert(VM_Version::supports_avx2(), "");
3230   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3231   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3232   emit_int8(0x00);
3233   emit_int8(0xC0 | encode);
3234   emit_int8(imm8);
3235 }
3236 
3237 void Assembler::pause() {
3238   emit_int8((unsigned char)0xF3);
3239   emit_int8((unsigned char)0x90);
3240 }
3241 
3242 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3243   assert(VM_Version::supports_sse4_2(), "");
3244   InstructionMark im(this);
3245   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3246   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3247   emit_int8(0x61);
3248   emit_operand(dst, src);
3249   emit_int8(imm8);
3250 }
3251 
3252 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3253   assert(VM_Version::supports_sse4_2(), "");
3254   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3255   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3256   emit_int8(0x61);
3257   emit_int8((unsigned char)(0xC0 | encode));
3258   emit_int8(imm8);
3259 }
3260 
3261 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3262 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3263   assert(VM_Version::supports_sse2(), "");
3264   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3265   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3266   emit_int8(0x74);
3267   emit_int8((unsigned char)(0xC0 | encode));
3268 }
3269 
3270 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3271 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3272   assert(VM_Version::supports_avx(), "");
3273   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3274   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3275   emit_int8(0x74);
3276   emit_int8((unsigned char)(0xC0 | encode));
3277 }
3278 
3279 // In this context, kdst is written the mask used to process the equal components
3280 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3281   assert(VM_Version::supports_avx512bw(), "");
3282   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3283   attributes.set_is_evex_instruction();
3284   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3285   emit_int8(0x74);
3286   emit_int8((unsigned char)(0xC0 | encode));
3287 }
3288 
3289 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3290   assert(VM_Version::supports_avx512bw(), "");
3291   InstructionMark im(this);
3292   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3293   attributes.set_is_evex_instruction();
3294   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3295   int dst_enc = kdst->encoding();
3296   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3297   emit_int8(0x74);
3298   emit_operand(as_Register(dst_enc), src);
3299 }
3300 
3301 void Assembler::evpcmpeqb(KRegister mask, bool zeroing, KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3302   bool no_reg_mask = (mask == NULL  && zeroing == false) ? true : false;
3303   assert(VM_Version::supports_avx512vlbw(), "");
3304   assert(is_programmed_mask_reg(), "");
3305   InstructionMark im(this);
3306   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, no_reg_mask, /* uses_vl */ false);
3307   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3308   if (!no_reg_mask) {
3309     attributes.set_embedded_opmask_register_specifier(mask);
3310     if (zeroing) attributes.set_is_clear_context();
3311   }
3312   attributes.set_is_evex_instruction();
3313   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3314   emit_int8(0x74);
3315   emit_operand(as_Register(kdst->encoding()), src);
3316 }
3317 
3318 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3319 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3320   assert(VM_Version::supports_sse2(), "");
3321   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3322   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3323   emit_int8(0x75);
3324   emit_int8((unsigned char)(0xC0 | encode));
3325 }
3326 
3327 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3328 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3329   assert(VM_Version::supports_avx(), "");
3330   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3331   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3332   emit_int8(0x75);
3333   emit_int8((unsigned char)(0xC0 | encode));
3334 }
3335 
3336 // In this context, kdst is written the mask used to process the equal components
3337 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3338   assert(VM_Version::supports_avx512bw(), "");
3339   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3340   attributes.set_is_evex_instruction();
3341   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3342   emit_int8(0x75);
3343   emit_int8((unsigned char)(0xC0 | encode));
3344 }
3345 
3346 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3347   assert(VM_Version::supports_avx512bw(), "");
3348   InstructionMark im(this);
3349   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3350   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3351   attributes.set_is_evex_instruction();
3352   int dst_enc = kdst->encoding();
3353   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3354   emit_int8(0x75);
3355   emit_operand(as_Register(dst_enc), src);
3356 }
3357 
3358 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3359 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3360   assert(VM_Version::supports_sse2(), "");
3361   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3362   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3363   emit_int8(0x76);
3364   emit_int8((unsigned char)(0xC0 | encode));
3365 }
3366 
3367 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3368 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3369   assert(VM_Version::supports_avx(), "");
3370   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3371   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3372   emit_int8(0x76);
3373   emit_int8((unsigned char)(0xC0 | encode));
3374 }
3375 
3376 // In this context, kdst is written the mask used to process the equal components
3377 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3378   assert(VM_Version::supports_evex(), "");
3379   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3380   attributes.set_is_evex_instruction();
3381   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3382   emit_int8(0x76);
3383   emit_int8((unsigned char)(0xC0 | encode));
3384 }
3385 
3386 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3387   assert(VM_Version::supports_evex(), "");
3388   InstructionMark im(this);
3389   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3390   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3391   attributes.set_is_evex_instruction();
3392   int dst_enc = kdst->encoding();
3393   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3394   emit_int8(0x76);
3395   emit_operand(as_Register(dst_enc), src);
3396 }
3397 
3398 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3399 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3400   assert(VM_Version::supports_sse4_1(), "");
3401   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3402   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3403   emit_int8(0x29);
3404   emit_int8((unsigned char)(0xC0 | encode));
3405 }
3406 
3407 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3408 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3409   assert(VM_Version::supports_avx(), "");
3410   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3411   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3412   emit_int8(0x29);
3413   emit_int8((unsigned char)(0xC0 | encode));
3414 }
3415 
3416 // In this context, kdst is written the mask used to process the equal components
3417 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3418   assert(VM_Version::supports_evex(), "");
3419   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3420   attributes.set_is_evex_instruction();
3421   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3422   emit_int8(0x29);
3423   emit_int8((unsigned char)(0xC0 | encode));
3424 }
3425 
3426 // In this context, kdst is written the mask used to process the equal components
3427 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3428   assert(VM_Version::supports_evex(), "");
3429   InstructionMark im(this);
3430   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3431   attributes.set_is_evex_instruction();
3432   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3433   int dst_enc = kdst->encoding();
3434   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3435   emit_int8(0x29);
3436   emit_operand(as_Register(dst_enc), src);
3437 }
3438 
3439 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3440   assert(VM_Version::supports_sse2(), "");
3441   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3442   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3443   emit_int8((unsigned char)0xD7);
3444   emit_int8((unsigned char)(0xC0 | encode));
3445 }
3446 
3447 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3448   assert(VM_Version::supports_avx2(), "");
3449   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3450   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3451   emit_int8((unsigned char)0xD7);
3452   emit_int8((unsigned char)(0xC0 | encode));
3453 }
3454 
3455 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3456   assert(VM_Version::supports_sse4_1(), "");
3457   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3458   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3459   emit_int8(0x16);
3460   emit_int8((unsigned char)(0xC0 | encode));
3461   emit_int8(imm8);
3462 }
3463 
3464 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3465   assert(VM_Version::supports_sse4_1(), "");
3466   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3467   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3468   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3469   emit_int8(0x16);
3470   emit_operand(src, dst);
3471   emit_int8(imm8);
3472 }
3473 
3474 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3475   assert(VM_Version::supports_sse4_1(), "");
3476   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3477   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3478   emit_int8(0x16);
3479   emit_int8((unsigned char)(0xC0 | encode));
3480   emit_int8(imm8);
3481 }
3482 
3483 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3484   assert(VM_Version::supports_sse4_1(), "");
3485   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3486   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3487   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3488   emit_int8(0x16);
3489   emit_operand(src, dst);
3490   emit_int8(imm8);
3491 }
3492 
3493 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3494   assert(VM_Version::supports_sse2(), "");
3495   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3496   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3497   emit_int8((unsigned char)0xC5);
3498   emit_int8((unsigned char)(0xC0 | encode));
3499   emit_int8(imm8);
3500 }
3501 
3502 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3503   assert(VM_Version::supports_sse4_1(), "");
3504   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3505   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3506   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3507   emit_int8((unsigned char)0x15);
3508   emit_operand(src, dst);
3509   emit_int8(imm8);
3510 }
3511 
3512 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3513   assert(VM_Version::supports_sse4_1(), "");
3514   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3515   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3516   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3517   emit_int8(0x14);
3518   emit_operand(src, dst);
3519   emit_int8(imm8);
3520 }
3521 
3522 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3523   assert(VM_Version::supports_sse4_1(), "");
3524   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3525   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3526   emit_int8(0x22);
3527   emit_int8((unsigned char)(0xC0 | encode));
3528   emit_int8(imm8);
3529 }
3530 
3531 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3532   assert(VM_Version::supports_sse4_1(), "");
3533   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3534   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3535   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3536   emit_int8(0x22);
3537   emit_operand(dst,src);
3538   emit_int8(imm8);
3539 }
3540 
3541 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3542   assert(VM_Version::supports_sse4_1(), "");
3543   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3544   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3545   emit_int8(0x22);
3546   emit_int8((unsigned char)(0xC0 | encode));
3547   emit_int8(imm8);
3548 }
3549 
3550 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3551   assert(VM_Version::supports_sse4_1(), "");
3552   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3553   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3554   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3555   emit_int8(0x22);
3556   emit_operand(dst, src);
3557   emit_int8(imm8);
3558 }
3559 
3560 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3561   assert(VM_Version::supports_sse2(), "");
3562   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3563   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3564   emit_int8((unsigned char)0xC4);
3565   emit_int8((unsigned char)(0xC0 | encode));
3566   emit_int8(imm8);
3567 }
3568 
3569 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3570   assert(VM_Version::supports_sse2(), "");
3571   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3572   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3573   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3574   emit_int8((unsigned char)0xC4);
3575   emit_operand(dst, src);
3576   emit_int8(imm8);
3577 }
3578 
3579 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3580   assert(VM_Version::supports_sse4_1(), "");
3581   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3582   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3583   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3584   emit_int8(0x20);
3585   emit_operand(dst, src);
3586   emit_int8(imm8);
3587 }
3588 
3589 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3590   assert(VM_Version::supports_sse4_1(), "");
3591   InstructionMark im(this);
3592   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3593   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3594   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3595   emit_int8(0x30);
3596   emit_operand(dst, src);
3597 }
3598 
3599 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3600   assert(VM_Version::supports_sse4_1(), "");
3601   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3602   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3603   emit_int8(0x30);
3604   emit_int8((unsigned char)(0xC0 | encode));
3605 }
3606 
3607 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3608   assert(VM_Version::supports_avx(), "");
3609   InstructionMark im(this);
3610   assert(dst != xnoreg, "sanity");
3611   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3612   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3613   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3614   emit_int8(0x30);
3615   emit_operand(dst, src);
3616 }
3617 
3618 // generic
3619 void Assembler::pop(Register dst) {
3620   int encode = prefix_and_encode(dst->encoding());
3621   emit_int8(0x58 | encode);
3622 }
3623 
3624 void Assembler::popcntl(Register dst, Address src) {
3625   assert(VM_Version::supports_popcnt(), "must support");
3626   InstructionMark im(this);
3627   emit_int8((unsigned char)0xF3);
3628   prefix(src, dst);
3629   emit_int8(0x0F);
3630   emit_int8((unsigned char)0xB8);
3631   emit_operand(dst, src);
3632 }
3633 
3634 void Assembler::popcntl(Register dst, Register src) {
3635   assert(VM_Version::supports_popcnt(), "must support");
3636   emit_int8((unsigned char)0xF3);
3637   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3638   emit_int8(0x0F);
3639   emit_int8((unsigned char)0xB8);
3640   emit_int8((unsigned char)(0xC0 | encode));
3641 }
3642 
3643 void Assembler::popf() {
3644   emit_int8((unsigned char)0x9D);
3645 }
3646 
3647 #ifndef _LP64 // no 32bit push/pop on amd64
3648 void Assembler::popl(Address dst) {
3649   // NOTE: this will adjust stack by 8byte on 64bits
3650   InstructionMark im(this);
3651   prefix(dst);
3652   emit_int8((unsigned char)0x8F);
3653   emit_operand(rax, dst);
3654 }
3655 #endif
3656 
3657 void Assembler::prefetch_prefix(Address src) {
3658   prefix(src);
3659   emit_int8(0x0F);
3660 }
3661 
3662 void Assembler::prefetchnta(Address src) {
3663   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3664   InstructionMark im(this);
3665   prefetch_prefix(src);
3666   emit_int8(0x18);
3667   emit_operand(rax, src); // 0, src
3668 }
3669 
3670 void Assembler::prefetchr(Address src) {
3671   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3672   InstructionMark im(this);
3673   prefetch_prefix(src);
3674   emit_int8(0x0D);
3675   emit_operand(rax, src); // 0, src
3676 }
3677 
3678 void Assembler::prefetcht0(Address src) {
3679   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3680   InstructionMark im(this);
3681   prefetch_prefix(src);
3682   emit_int8(0x18);
3683   emit_operand(rcx, src); // 1, src
3684 }
3685 
3686 void Assembler::prefetcht1(Address src) {
3687   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3688   InstructionMark im(this);
3689   prefetch_prefix(src);
3690   emit_int8(0x18);
3691   emit_operand(rdx, src); // 2, src
3692 }
3693 
3694 void Assembler::prefetcht2(Address src) {
3695   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3696   InstructionMark im(this);
3697   prefetch_prefix(src);
3698   emit_int8(0x18);
3699   emit_operand(rbx, src); // 3, src
3700 }
3701 
3702 void Assembler::prefetchw(Address src) {
3703   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3704   InstructionMark im(this);
3705   prefetch_prefix(src);
3706   emit_int8(0x0D);
3707   emit_operand(rcx, src); // 1, src
3708 }
3709 
3710 void Assembler::prefix(Prefix p) {
3711   emit_int8(p);
3712 }
3713 
3714 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3715   assert(VM_Version::supports_ssse3(), "");
3716   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3717   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3718   emit_int8(0x00);
3719   emit_int8((unsigned char)(0xC0 | encode));
3720 }
3721 
3722 void Assembler::pshufb(XMMRegister dst, Address src) {
3723   assert(VM_Version::supports_ssse3(), "");
3724   InstructionMark im(this);
3725   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3726   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3727   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3728   emit_int8(0x00);
3729   emit_operand(dst, src);
3730 }
3731 
3732 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3733   assert(isByte(mode), "invalid value");
3734   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3735   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
3736   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3737   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3738   emit_int8(0x70);
3739   emit_int8((unsigned char)(0xC0 | encode));
3740   emit_int8(mode & 0xFF);
3741 }
3742 
3743 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3744   assert(isByte(mode), "invalid value");
3745   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3746   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3747   InstructionMark im(this);
3748   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3749   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3750   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3751   emit_int8(0x70);
3752   emit_operand(dst, src);
3753   emit_int8(mode & 0xFF);
3754 }
3755 
3756 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3757   assert(isByte(mode), "invalid value");
3758   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3759   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3760   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3761   emit_int8(0x70);
3762   emit_int8((unsigned char)(0xC0 | encode));
3763   emit_int8(mode & 0xFF);
3764 }
3765 
3766 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3767   assert(isByte(mode), "invalid value");
3768   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3769   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3770   InstructionMark im(this);
3771   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3772   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3773   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3774   emit_int8(0x70);
3775   emit_operand(dst, src);
3776   emit_int8(mode & 0xFF);
3777 }
3778 
3779 void Assembler::psrldq(XMMRegister dst, int shift) {
3780   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3781   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3782   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3783   // XMM3 is for /3 encoding: 66 0F 73 /3 ib
3784   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3785   emit_int8(0x73);
3786   emit_int8((unsigned char)(0xC0 | encode));
3787   emit_int8(shift);
3788 }
3789 
3790 void Assembler::pslldq(XMMRegister dst, int shift) {
3791   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3792   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3793   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3794   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
3795   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3796   emit_int8(0x73);
3797   emit_int8((unsigned char)(0xC0 | encode));
3798   emit_int8(shift);
3799 }
3800 
3801 void Assembler::ptest(XMMRegister dst, Address src) {
3802   assert(VM_Version::supports_sse4_1(), "");
3803   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3804   InstructionMark im(this);
3805   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3806   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3807   emit_int8(0x17);
3808   emit_operand(dst, src);
3809 }
3810 
3811 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3812   assert(VM_Version::supports_sse4_1(), "");
3813   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3814   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3815   emit_int8(0x17);
3816   emit_int8((unsigned char)(0xC0 | encode));
3817 }
3818 
3819 void Assembler::vptest(XMMRegister dst, Address src) {
3820   assert(VM_Version::supports_avx(), "");
3821   InstructionMark im(this);
3822   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3823   assert(dst != xnoreg, "sanity");
3824   // swap src<->dst for encoding
3825   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3826   emit_int8(0x17);
3827   emit_operand(dst, src);
3828 }
3829 
3830 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3831   assert(VM_Version::supports_avx(), "");
3832   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3833   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3834   emit_int8(0x17);
3835   emit_int8((unsigned char)(0xC0 | encode));
3836 }
3837 
3838 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3839   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3840   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3841   InstructionMark im(this);
3842   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3843   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3844   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3845   emit_int8(0x60);
3846   emit_operand(dst, src);
3847 }
3848 
3849 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3850   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3851   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3852   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3853   emit_int8(0x60);
3854   emit_int8((unsigned char)(0xC0 | encode));
3855 }
3856 
3857 void Assembler::punpckldq(XMMRegister dst, Address src) {
3858   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3859   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3860   InstructionMark im(this);
3861   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3862   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3863   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3864   emit_int8(0x62);
3865   emit_operand(dst, src);
3866 }
3867 
3868 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3869   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3870   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3871   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3872   emit_int8(0x62);
3873   emit_int8((unsigned char)(0xC0 | encode));
3874 }
3875 
3876 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3877   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3878   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3879   attributes.set_rex_vex_w_reverted();
3880   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3881   emit_int8(0x6C);
3882   emit_int8((unsigned char)(0xC0 | encode));
3883 }
3884 
3885 void Assembler::push(int32_t imm32) {
3886   // in 64bits we push 64bits onto the stack but only
3887   // take a 32bit immediate
3888   emit_int8(0x68);
3889   emit_int32(imm32);
3890 }
3891 
3892 void Assembler::push(Register src) {
3893   int encode = prefix_and_encode(src->encoding());
3894 
3895   emit_int8(0x50 | encode);
3896 }
3897 
3898 void Assembler::pushf() {
3899   emit_int8((unsigned char)0x9C);
3900 }
3901 
3902 #ifndef _LP64 // no 32bit push/pop on amd64
3903 void Assembler::pushl(Address src) {
3904   // Note this will push 64bit on 64bit
3905   InstructionMark im(this);
3906   prefix(src);
3907   emit_int8((unsigned char)0xFF);
3908   emit_operand(rsi, src);
3909 }
3910 #endif
3911 
3912 void Assembler::rcll(Register dst, int imm8) {
3913   assert(isShiftCount(imm8), "illegal shift count");
3914   int encode = prefix_and_encode(dst->encoding());
3915   if (imm8 == 1) {
3916     emit_int8((unsigned char)0xD1);
3917     emit_int8((unsigned char)(0xD0 | encode));
3918   } else {
3919     emit_int8((unsigned char)0xC1);
3920     emit_int8((unsigned char)0xD0 | encode);
3921     emit_int8(imm8);
3922   }
3923 }
3924 
3925 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
3926   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3927   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3928   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
3929   emit_int8(0x53);
3930   emit_int8((unsigned char)(0xC0 | encode));
3931 }
3932 
3933 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
3934   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3935   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3936   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3937   emit_int8(0x53);
3938   emit_int8((unsigned char)(0xC0 | encode));
3939 }
3940 
3941 void Assembler::rdtsc() {
3942   emit_int8((unsigned char)0x0F);
3943   emit_int8((unsigned char)0x31);
3944 }
3945 
3946 // copies data from [esi] to [edi] using rcx pointer sized words
3947 // generic
3948 void Assembler::rep_mov() {
3949   emit_int8((unsigned char)0xF3);
3950   // MOVSQ
3951   LP64_ONLY(prefix(REX_W));
3952   emit_int8((unsigned char)0xA5);
3953 }
3954 
3955 // sets rcx bytes with rax, value at [edi]
3956 void Assembler::rep_stosb() {
3957   emit_int8((unsigned char)0xF3); // REP
3958   LP64_ONLY(prefix(REX_W));
3959   emit_int8((unsigned char)0xAA); // STOSB
3960 }
3961 
3962 // sets rcx pointer sized words with rax, value at [edi]
3963 // generic
3964 void Assembler::rep_stos() {
3965   emit_int8((unsigned char)0xF3); // REP
3966   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3967   emit_int8((unsigned char)0xAB);
3968 }
3969 
3970 // scans rcx pointer sized words at [edi] for occurance of rax,
3971 // generic
3972 void Assembler::repne_scan() { // repne_scan
3973   emit_int8((unsigned char)0xF2);
3974   // SCASQ
3975   LP64_ONLY(prefix(REX_W));
3976   emit_int8((unsigned char)0xAF);
3977 }
3978 
3979 #ifdef _LP64
3980 // scans rcx 4 byte words at [edi] for occurance of rax,
3981 // generic
3982 void Assembler::repne_scanl() { // repne_scan
3983   emit_int8((unsigned char)0xF2);
3984   // SCASL
3985   emit_int8((unsigned char)0xAF);
3986 }
3987 #endif
3988 
3989 void Assembler::ret(int imm16) {
3990   if (imm16 == 0) {
3991     emit_int8((unsigned char)0xC3);
3992   } else {
3993     emit_int8((unsigned char)0xC2);
3994     emit_int16(imm16);
3995   }
3996 }
3997 
3998 void Assembler::sahf() {
3999 #ifdef _LP64
4000   // Not supported in 64bit mode
4001   ShouldNotReachHere();
4002 #endif
4003   emit_int8((unsigned char)0x9E);
4004 }
4005 
4006 void Assembler::sarl(Register dst, int imm8) {
4007   int encode = prefix_and_encode(dst->encoding());
4008   assert(isShiftCount(imm8), "illegal shift count");
4009   if (imm8 == 1) {
4010     emit_int8((unsigned char)0xD1);
4011     emit_int8((unsigned char)(0xF8 | encode));
4012   } else {
4013     emit_int8((unsigned char)0xC1);
4014     emit_int8((unsigned char)(0xF8 | encode));
4015     emit_int8(imm8);
4016   }
4017 }
4018 
4019 void Assembler::sarl(Register dst) {
4020   int encode = prefix_and_encode(dst->encoding());
4021   emit_int8((unsigned char)0xD3);
4022   emit_int8((unsigned char)(0xF8 | encode));
4023 }
4024 
4025 void Assembler::sbbl(Address dst, int32_t imm32) {
4026   InstructionMark im(this);
4027   prefix(dst);
4028   emit_arith_operand(0x81, rbx, dst, imm32);
4029 }
4030 
4031 void Assembler::sbbl(Register dst, int32_t imm32) {
4032   prefix(dst);
4033   emit_arith(0x81, 0xD8, dst, imm32);
4034 }
4035 
4036 
4037 void Assembler::sbbl(Register dst, Address src) {
4038   InstructionMark im(this);
4039   prefix(src, dst);
4040   emit_int8(0x1B);
4041   emit_operand(dst, src);
4042 }
4043 
4044 void Assembler::sbbl(Register dst, Register src) {
4045   (void) prefix_and_encode(dst->encoding(), src->encoding());
4046   emit_arith(0x1B, 0xC0, dst, src);
4047 }
4048 
4049 void Assembler::setb(Condition cc, Register dst) {
4050   assert(0 <= cc && cc < 16, "illegal cc");
4051   int encode = prefix_and_encode(dst->encoding(), true);
4052   emit_int8(0x0F);
4053   emit_int8((unsigned char)0x90 | cc);
4054   emit_int8((unsigned char)(0xC0 | encode));
4055 }
4056 
4057 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
4058   assert(VM_Version::supports_ssse3(), "");
4059   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
4060   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4061   emit_int8((unsigned char)0x0F);
4062   emit_int8((unsigned char)(0xC0 | encode));
4063   emit_int8(imm8);
4064 }
4065 
4066 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
4067   assert(VM_Version::supports_sse4_1(), "");
4068   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4069   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4070   emit_int8((unsigned char)0x0E);
4071   emit_int8((unsigned char)(0xC0 | encode));
4072   emit_int8(imm8);
4073 }
4074 
4075 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
4076   assert(VM_Version::supports_sha(), "");
4077   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4078   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_3A, &attributes);
4079   emit_int8((unsigned char)0xCC);
4080   emit_int8((unsigned char)(0xC0 | encode));
4081   emit_int8((unsigned char)imm8);
4082 }
4083 
4084 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
4085   assert(VM_Version::supports_sha(), "");
4086   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4087   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4088   emit_int8((unsigned char)0xC8);
4089   emit_int8((unsigned char)(0xC0 | encode));
4090 }
4091 
4092 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
4093   assert(VM_Version::supports_sha(), "");
4094   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4095   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4096   emit_int8((unsigned char)0xC9);
4097   emit_int8((unsigned char)(0xC0 | encode));
4098 }
4099 
4100 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4101   assert(VM_Version::supports_sha(), "");
4102   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4103   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4104   emit_int8((unsigned char)0xCA);
4105   emit_int8((unsigned char)(0xC0 | encode));
4106 }
4107 
4108 // xmm0 is implicit additional source to this instruction.
4109 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4110   assert(VM_Version::supports_sha(), "");
4111   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4112   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4113   emit_int8((unsigned char)0xCB);
4114   emit_int8((unsigned char)(0xC0 | encode));
4115 }
4116 
4117 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4118   assert(VM_Version::supports_sha(), "");
4119   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4120   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4121   emit_int8((unsigned char)0xCC);
4122   emit_int8((unsigned char)(0xC0 | encode));
4123 }
4124 
4125 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4126   assert(VM_Version::supports_sha(), "");
4127   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4128   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4129   emit_int8((unsigned char)0xCD);
4130   emit_int8((unsigned char)(0xC0 | encode));
4131 }
4132 
4133 
4134 void Assembler::shll(Register dst, int imm8) {
4135   assert(isShiftCount(imm8), "illegal shift count");
4136   int encode = prefix_and_encode(dst->encoding());
4137   if (imm8 == 1 ) {
4138     emit_int8((unsigned char)0xD1);
4139     emit_int8((unsigned char)(0xE0 | encode));
4140   } else {
4141     emit_int8((unsigned char)0xC1);
4142     emit_int8((unsigned char)(0xE0 | encode));
4143     emit_int8(imm8);
4144   }
4145 }
4146 
4147 void Assembler::shll(Register dst) {
4148   int encode = prefix_and_encode(dst->encoding());
4149   emit_int8((unsigned char)0xD3);
4150   emit_int8((unsigned char)(0xE0 | encode));
4151 }
4152 
4153 void Assembler::shrl(Register dst, int imm8) {
4154   assert(isShiftCount(imm8), "illegal shift count");
4155   int encode = prefix_and_encode(dst->encoding());
4156   emit_int8((unsigned char)0xC1);
4157   emit_int8((unsigned char)(0xE8 | encode));
4158   emit_int8(imm8);
4159 }
4160 
4161 void Assembler::shrl(Register dst) {
4162   int encode = prefix_and_encode(dst->encoding());
4163   emit_int8((unsigned char)0xD3);
4164   emit_int8((unsigned char)(0xE8 | encode));
4165 }
4166 
4167 // copies a single word from [esi] to [edi]
4168 void Assembler::smovl() {
4169   emit_int8((unsigned char)0xA5);
4170 }
4171 
4172 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4173   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4174   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4175   attributes.set_rex_vex_w_reverted();
4176   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4177   emit_int8(0x51);
4178   emit_int8((unsigned char)(0xC0 | encode));
4179 }
4180 
4181 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4182   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4183   InstructionMark im(this);
4184   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4185   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4186   attributes.set_rex_vex_w_reverted();
4187   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4188   emit_int8(0x51);
4189   emit_operand(dst, src);
4190 }
4191 
4192 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4193   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4194   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4195   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4196   emit_int8(0x51);
4197   emit_int8((unsigned char)(0xC0 | encode));
4198 }
4199 
4200 void Assembler::std() {
4201   emit_int8((unsigned char)0xFD);
4202 }
4203 
4204 void Assembler::sqrtss(XMMRegister dst, Address src) {
4205   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4206   InstructionMark im(this);
4207   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4208   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4209   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4210   emit_int8(0x51);
4211   emit_operand(dst, src);
4212 }
4213 
4214 void Assembler::stmxcsr( Address dst) {
4215   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4216   InstructionMark im(this);
4217   prefix(dst);
4218   emit_int8(0x0F);
4219   emit_int8((unsigned char)0xAE);
4220   emit_operand(as_Register(3), dst);
4221 }
4222 
4223 void Assembler::subl(Address dst, int32_t imm32) {
4224   InstructionMark im(this);
4225   prefix(dst);
4226   emit_arith_operand(0x81, rbp, dst, imm32);
4227 }
4228 
4229 void Assembler::subl(Address dst, Register src) {
4230   InstructionMark im(this);
4231   prefix(dst, src);
4232   emit_int8(0x29);
4233   emit_operand(src, dst);
4234 }
4235 
4236 void Assembler::subl(Register dst, int32_t imm32) {
4237   prefix(dst);
4238   emit_arith(0x81, 0xE8, dst, imm32);
4239 }
4240 
4241 // Force generation of a 4 byte immediate value even if it fits into 8bit
4242 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4243   prefix(dst);
4244   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4245 }
4246 
4247 void Assembler::subl(Register dst, Address src) {
4248   InstructionMark im(this);
4249   prefix(src, dst);
4250   emit_int8(0x2B);
4251   emit_operand(dst, src);
4252 }
4253 
4254 void Assembler::subl(Register dst, Register src) {
4255   (void) prefix_and_encode(dst->encoding(), src->encoding());
4256   emit_arith(0x2B, 0xC0, dst, src);
4257 }
4258 
4259 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4260   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4261   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4262   attributes.set_rex_vex_w_reverted();
4263   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4264   emit_int8(0x5C);
4265   emit_int8((unsigned char)(0xC0 | encode));
4266 }
4267 
4268 void Assembler::subsd(XMMRegister dst, Address src) {
4269   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4270   InstructionMark im(this);
4271   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4272   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4273   attributes.set_rex_vex_w_reverted();
4274   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4275   emit_int8(0x5C);
4276   emit_operand(dst, src);
4277 }
4278 
4279 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4280   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4281   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ false);
4282   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4283   emit_int8(0x5C);
4284   emit_int8((unsigned char)(0xC0 | encode));
4285 }
4286 
4287 void Assembler::subss(XMMRegister dst, Address src) {
4288   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4289   InstructionMark im(this);
4290   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4291   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4292   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4293   emit_int8(0x5C);
4294   emit_operand(dst, src);
4295 }
4296 
4297 void Assembler::testb(Register dst, int imm8) {
4298   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4299   (void) prefix_and_encode(dst->encoding(), true);
4300   emit_arith_b(0xF6, 0xC0, dst, imm8);
4301 }
4302 
4303 void Assembler::testb(Address dst, int imm8) {
4304   InstructionMark im(this);
4305   prefix(dst);
4306   emit_int8((unsigned char)0xF6);
4307   emit_operand(rax, dst, 1);
4308   emit_int8(imm8);
4309 }
4310 
4311 void Assembler::testl(Register dst, int32_t imm32) {
4312   // not using emit_arith because test
4313   // doesn't support sign-extension of
4314   // 8bit operands
4315   int encode = dst->encoding();
4316   if (encode == 0) {
4317     emit_int8((unsigned char)0xA9);
4318   } else {
4319     encode = prefix_and_encode(encode);
4320     emit_int8((unsigned char)0xF7);
4321     emit_int8((unsigned char)(0xC0 | encode));
4322   }
4323   emit_int32(imm32);
4324 }
4325 
4326 void Assembler::testl(Register dst, Register src) {
4327   (void) prefix_and_encode(dst->encoding(), src->encoding());
4328   emit_arith(0x85, 0xC0, dst, src);
4329 }
4330 
4331 void Assembler::testl(Register dst, Address src) {
4332   InstructionMark im(this);
4333   prefix(src, dst);
4334   emit_int8((unsigned char)0x85);
4335   emit_operand(dst, src);
4336 }
4337 
4338 void Assembler::tzcntl(Register dst, Register src) {
4339   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4340   emit_int8((unsigned char)0xF3);
4341   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4342   emit_int8(0x0F);
4343   emit_int8((unsigned char)0xBC);
4344   emit_int8((unsigned char)0xC0 | encode);
4345 }
4346 
4347 void Assembler::tzcntq(Register dst, Register src) {
4348   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4349   emit_int8((unsigned char)0xF3);
4350   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4351   emit_int8(0x0F);
4352   emit_int8((unsigned char)0xBC);
4353   emit_int8((unsigned char)(0xC0 | encode));
4354 }
4355 
4356 void Assembler::ucomisd(XMMRegister dst, Address src) {
4357   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4358   InstructionMark im(this);
4359   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4360   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4361   attributes.set_rex_vex_w_reverted();
4362   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4363   emit_int8(0x2E);
4364   emit_operand(dst, src);
4365 }
4366 
4367 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4368   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4369   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4370   attributes.set_rex_vex_w_reverted();
4371   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4372   emit_int8(0x2E);
4373   emit_int8((unsigned char)(0xC0 | encode));
4374 }
4375 
4376 void Assembler::ucomiss(XMMRegister dst, Address src) {
4377   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4378   InstructionMark im(this);
4379   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4380   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4381   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4382   emit_int8(0x2E);
4383   emit_operand(dst, src);
4384 }
4385 
4386 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4387   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4388   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4389   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4390   emit_int8(0x2E);
4391   emit_int8((unsigned char)(0xC0 | encode));
4392 }
4393 
4394 void Assembler::xabort(int8_t imm8) {
4395   emit_int8((unsigned char)0xC6);
4396   emit_int8((unsigned char)0xF8);
4397   emit_int8((unsigned char)(imm8 & 0xFF));
4398 }
4399 
4400 void Assembler::xaddl(Address dst, Register src) {
4401   InstructionMark im(this);
4402   prefix(dst, src);
4403   emit_int8(0x0F);
4404   emit_int8((unsigned char)0xC1);
4405   emit_operand(src, dst);
4406 }
4407 
4408 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4409   InstructionMark im(this);
4410   relocate(rtype);
4411   if (abort.is_bound()) {
4412     address entry = target(abort);
4413     assert(entry != NULL, "abort entry NULL");
4414     intptr_t offset = entry - pc();
4415     emit_int8((unsigned char)0xC7);
4416     emit_int8((unsigned char)0xF8);
4417     emit_int32(offset - 6); // 2 opcode + 4 address
4418   } else {
4419     abort.add_patch_at(code(), locator());
4420     emit_int8((unsigned char)0xC7);
4421     emit_int8((unsigned char)0xF8);
4422     emit_int32(0);
4423   }
4424 }
4425 
4426 void Assembler::xchgl(Register dst, Address src) { // xchg
4427   InstructionMark im(this);
4428   prefix(src, dst);
4429   emit_int8((unsigned char)0x87);
4430   emit_operand(dst, src);
4431 }
4432 
4433 void Assembler::xchgl(Register dst, Register src) {
4434   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4435   emit_int8((unsigned char)0x87);
4436   emit_int8((unsigned char)(0xC0 | encode));
4437 }
4438 
4439 void Assembler::xend() {
4440   emit_int8((unsigned char)0x0F);
4441   emit_int8((unsigned char)0x01);
4442   emit_int8((unsigned char)0xD5);
4443 }
4444 
4445 void Assembler::xgetbv() {
4446   emit_int8(0x0F);
4447   emit_int8(0x01);
4448   emit_int8((unsigned char)0xD0);
4449 }
4450 
4451 void Assembler::xorl(Register dst, int32_t imm32) {
4452   prefix(dst);
4453   emit_arith(0x81, 0xF0, dst, imm32);
4454 }
4455 
4456 void Assembler::xorl(Register dst, Address src) {
4457   InstructionMark im(this);
4458   prefix(src, dst);
4459   emit_int8(0x33);
4460   emit_operand(dst, src);
4461 }
4462 
4463 void Assembler::xorl(Register dst, Register src) {
4464   (void) prefix_and_encode(dst->encoding(), src->encoding());
4465   emit_arith(0x33, 0xC0, dst, src);
4466 }
4467 
4468 void Assembler::xorb(Register dst, Address src) {
4469   InstructionMark im(this);
4470   prefix(src, dst);
4471   emit_int8(0x32);
4472   emit_operand(dst, src);
4473 }
4474 
4475 // AVX 3-operands scalar float-point arithmetic instructions
4476 
4477 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4478   assert(VM_Version::supports_avx(), "");
4479   InstructionMark im(this);
4480   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4481   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4482   attributes.set_rex_vex_w_reverted();
4483   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4484   emit_int8(0x58);
4485   emit_operand(dst, src);
4486 }
4487 
4488 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4489   assert(VM_Version::supports_avx(), "");
4490   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4491   attributes.set_rex_vex_w_reverted();
4492   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4493   emit_int8(0x58);
4494   emit_int8((unsigned char)(0xC0 | encode));
4495 }
4496 
4497 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4498   assert(VM_Version::supports_avx(), "");
4499   InstructionMark im(this);
4500   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4501   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4502   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4503   emit_int8(0x58);
4504   emit_operand(dst, src);
4505 }
4506 
4507 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4508   assert(VM_Version::supports_avx(), "");
4509   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4510   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4511   emit_int8(0x58);
4512   emit_int8((unsigned char)(0xC0 | encode));
4513 }
4514 
4515 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4516   assert(VM_Version::supports_avx(), "");
4517   InstructionMark im(this);
4518   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4519   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4520   attributes.set_rex_vex_w_reverted();
4521   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4522   emit_int8(0x5E);
4523   emit_operand(dst, src);
4524 }
4525 
4526 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4527   assert(VM_Version::supports_avx(), "");
4528   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4529   attributes.set_rex_vex_w_reverted();
4530   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4531   emit_int8(0x5E);
4532   emit_int8((unsigned char)(0xC0 | encode));
4533 }
4534 
4535 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
4536   assert(VM_Version::supports_avx(), "");
4537   InstructionMark im(this);
4538   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4539   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4540   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4541   emit_int8(0x5E);
4542   emit_operand(dst, src);
4543 }
4544 
4545 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4546   assert(VM_Version::supports_avx(), "");
4547   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4548   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4549   emit_int8(0x5E);
4550   emit_int8((unsigned char)(0xC0 | encode));
4551 }
4552 
4553 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
4554   assert(VM_Version::supports_avx(), "");
4555   InstructionMark im(this);
4556   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4557   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4558   attributes.set_rex_vex_w_reverted();
4559   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4560   emit_int8(0x59);
4561   emit_operand(dst, src);
4562 }
4563 
4564 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4565   assert(VM_Version::supports_avx(), "");
4566   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4567   attributes.set_rex_vex_w_reverted();
4568   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4569   emit_int8(0x59);
4570   emit_int8((unsigned char)(0xC0 | encode));
4571 }
4572 
4573 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4574   assert(VM_Version::supports_avx(), "");
4575   InstructionMark im(this);
4576   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4577   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4578   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4579   emit_int8(0x59);
4580   emit_operand(dst, src);
4581 }
4582 
4583 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4584   assert(VM_Version::supports_avx(), "");
4585   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4586   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4587   emit_int8(0x59);
4588   emit_int8((unsigned char)(0xC0 | encode));
4589 }
4590 
4591 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4592   assert(VM_Version::supports_avx(), "");
4593   InstructionMark im(this);
4594   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4595   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4596   attributes.set_rex_vex_w_reverted();
4597   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4598   emit_int8(0x5C);
4599   emit_operand(dst, src);
4600 }
4601 
4602 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4603   assert(VM_Version::supports_avx(), "");
4604   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4605   attributes.set_rex_vex_w_reverted();
4606   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4607   emit_int8(0x5C);
4608   emit_int8((unsigned char)(0xC0 | encode));
4609 }
4610 
4611 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
4612   assert(VM_Version::supports_avx(), "");
4613   InstructionMark im(this);
4614   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4615   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4616   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4617   emit_int8(0x5C);
4618   emit_operand(dst, src);
4619 }
4620 
4621 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4622   assert(VM_Version::supports_avx(), "");
4623   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4624   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4625   emit_int8(0x5C);
4626   emit_int8((unsigned char)(0xC0 | encode));
4627 }
4628 
4629 //====================VECTOR ARITHMETIC=====================================
4630 
4631 // Float-point vector arithmetic
4632 
4633 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4634   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4635   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4636   attributes.set_rex_vex_w_reverted();
4637   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4638   emit_int8(0x58);
4639   emit_int8((unsigned char)(0xC0 | encode));
4640 }
4641 
4642 void Assembler::addpd(XMMRegister dst, Address src) {
4643   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4644   InstructionMark im(this);
4645   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4646   attributes.set_rex_vex_w_reverted();
4647   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4648   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4649   emit_int8(0x58);
4650   emit_operand(dst, src);
4651 }
4652 
4653 
4654 void Assembler::addps(XMMRegister dst, XMMRegister src) {
4655   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4656   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4657   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4658   emit_int8(0x58);
4659   emit_int8((unsigned char)(0xC0 | encode));
4660 }
4661 
4662 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4663   assert(VM_Version::supports_avx(), "");
4664   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4665   attributes.set_rex_vex_w_reverted();
4666   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4667   emit_int8(0x58);
4668   emit_int8((unsigned char)(0xC0 | encode));
4669 }
4670 
4671 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4672   assert(VM_Version::supports_avx(), "");
4673   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4674   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4675   emit_int8(0x58);
4676   emit_int8((unsigned char)(0xC0 | encode));
4677 }
4678 
4679 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4680   assert(VM_Version::supports_avx(), "");
4681   InstructionMark im(this);
4682   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4683   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4684   attributes.set_rex_vex_w_reverted();
4685   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4686   emit_int8(0x58);
4687   emit_operand(dst, src);
4688 }
4689 
4690 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4691   assert(VM_Version::supports_avx(), "");
4692   InstructionMark im(this);
4693   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4694   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4695   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4696   emit_int8(0x58);
4697   emit_operand(dst, src);
4698 }
4699 
4700 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
4701   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4702   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4703   attributes.set_rex_vex_w_reverted();
4704   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4705   emit_int8(0x5C);
4706   emit_int8((unsigned char)(0xC0 | encode));
4707 }
4708 
4709 void Assembler::subps(XMMRegister dst, XMMRegister src) {
4710   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4711   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4712   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4713   emit_int8(0x5C);
4714   emit_int8((unsigned char)(0xC0 | encode));
4715 }
4716 
4717 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4718   assert(VM_Version::supports_avx(), "");
4719   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4720   attributes.set_rex_vex_w_reverted();
4721   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4722   emit_int8(0x5C);
4723   emit_int8((unsigned char)(0xC0 | encode));
4724 }
4725 
4726 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4727   assert(VM_Version::supports_avx(), "");
4728   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4729   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4730   emit_int8(0x5C);
4731   emit_int8((unsigned char)(0xC0 | encode));
4732 }
4733 
4734 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4735   assert(VM_Version::supports_avx(), "");
4736   InstructionMark im(this);
4737   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4738   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4739   attributes.set_rex_vex_w_reverted();
4740   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4741   emit_int8(0x5C);
4742   emit_operand(dst, src);
4743 }
4744 
4745 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4746   assert(VM_Version::supports_avx(), "");
4747   InstructionMark im(this);
4748   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4749   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4750   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4751   emit_int8(0x5C);
4752   emit_operand(dst, src);
4753 }
4754 
4755 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
4756   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4757   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4758   attributes.set_rex_vex_w_reverted();
4759   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4760   emit_int8(0x59);
4761   emit_int8((unsigned char)(0xC0 | encode));
4762 }
4763 
4764 void Assembler::mulpd(XMMRegister dst, Address src) {
4765   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4766   InstructionMark im(this);
4767   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4768   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4769   attributes.set_rex_vex_w_reverted();
4770   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4771   emit_int8(0x59);
4772   emit_operand(dst, src);
4773 }
4774 
4775 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
4776   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4777   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4778   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4779   emit_int8(0x59);
4780   emit_int8((unsigned char)(0xC0 | encode));
4781 }
4782 
4783 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4784   assert(VM_Version::supports_avx(), "");
4785   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4786   attributes.set_rex_vex_w_reverted();
4787   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4788   emit_int8(0x59);
4789   emit_int8((unsigned char)(0xC0 | encode));
4790 }
4791 
4792 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4793   assert(VM_Version::supports_avx(), "");
4794   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4795   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4796   emit_int8(0x59);
4797   emit_int8((unsigned char)(0xC0 | encode));
4798 }
4799 
4800 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4801   assert(VM_Version::supports_avx(), "");
4802   InstructionMark im(this);
4803   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4804   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4805   attributes.set_rex_vex_w_reverted();
4806   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4807   emit_int8(0x59);
4808   emit_operand(dst, src);
4809 }
4810 
4811 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4812   assert(VM_Version::supports_avx(), "");
4813   InstructionMark im(this);
4814   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4815   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4816   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4817   emit_int8(0x59);
4818   emit_operand(dst, src);
4819 }
4820 
4821 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
4822   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4823   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4824   attributes.set_rex_vex_w_reverted();
4825   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4826   emit_int8(0x5E);
4827   emit_int8((unsigned char)(0xC0 | encode));
4828 }
4829 
4830 void Assembler::divps(XMMRegister dst, XMMRegister src) {
4831   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4832   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4833   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4834   emit_int8(0x5E);
4835   emit_int8((unsigned char)(0xC0 | encode));
4836 }
4837 
4838 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4839   assert(VM_Version::supports_avx(), "");
4840   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4841   attributes.set_rex_vex_w_reverted();
4842   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4843   emit_int8(0x5E);
4844   emit_int8((unsigned char)(0xC0 | encode));
4845 }
4846 
4847 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4848   assert(VM_Version::supports_avx(), "");
4849   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4850   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4851   emit_int8(0x5E);
4852   emit_int8((unsigned char)(0xC0 | encode));
4853 }
4854 
4855 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4856   assert(VM_Version::supports_avx(), "");
4857   InstructionMark im(this);
4858   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4859   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4860   attributes.set_rex_vex_w_reverted();
4861   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4862   emit_int8(0x5E);
4863   emit_operand(dst, src);
4864 }
4865 
4866 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4867   assert(VM_Version::supports_avx(), "");
4868   InstructionMark im(this);
4869   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4870   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4871   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4872   emit_int8(0x5E);
4873   emit_operand(dst, src);
4874 }
4875 
4876 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
4877   assert(VM_Version::supports_avx(), "");
4878   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4879   attributes.set_rex_vex_w_reverted();
4880   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4881   emit_int8(0x51);
4882   emit_int8((unsigned char)(0xC0 | encode));
4883 }
4884 
4885 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
4886   assert(VM_Version::supports_avx(), "");
4887   InstructionMark im(this);
4888   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4889   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4890   attributes.set_rex_vex_w_reverted();
4891   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4892   emit_int8(0x51);
4893   emit_operand(dst, src);
4894 }
4895 
4896 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
4897   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4898   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4899   attributes.set_rex_vex_w_reverted();
4900   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4901   emit_int8(0x54);
4902   emit_int8((unsigned char)(0xC0 | encode));
4903 }
4904 
4905 void Assembler::andps(XMMRegister dst, XMMRegister src) {
4906   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4907   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4908   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4909   emit_int8(0x54);
4910   emit_int8((unsigned char)(0xC0 | encode));
4911 }
4912 
4913 void Assembler::andps(XMMRegister dst, Address src) {
4914   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4915   InstructionMark im(this);
4916   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4917   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4918   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4919   emit_int8(0x54);
4920   emit_operand(dst, src);
4921 }
4922 
4923 void Assembler::andpd(XMMRegister dst, Address src) {
4924   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4925   InstructionMark im(this);
4926   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4927   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4928   attributes.set_rex_vex_w_reverted();
4929   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4930   emit_int8(0x54);
4931   emit_operand(dst, src);
4932 }
4933 
4934 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4935   assert(VM_Version::supports_avx(), "");
4936   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4937   attributes.set_rex_vex_w_reverted();
4938   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4939   emit_int8(0x54);
4940   emit_int8((unsigned char)(0xC0 | encode));
4941 }
4942 
4943 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4944   assert(VM_Version::supports_avx(), "");
4945   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4946   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4947   emit_int8(0x54);
4948   emit_int8((unsigned char)(0xC0 | encode));
4949 }
4950 
4951 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4952   assert(VM_Version::supports_avx(), "");
4953   InstructionMark im(this);
4954   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4955   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4956   attributes.set_rex_vex_w_reverted();
4957   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4958   emit_int8(0x54);
4959   emit_operand(dst, src);
4960 }
4961 
4962 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4963   assert(VM_Version::supports_avx(), "");
4964   InstructionMark im(this);
4965   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4966   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4967   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4968   emit_int8(0x54);
4969   emit_operand(dst, src);
4970 }
4971 
4972 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
4973   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4974   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4975   attributes.set_rex_vex_w_reverted();
4976   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4977   emit_int8(0x15);
4978   emit_int8((unsigned char)(0xC0 | encode));
4979 }
4980 
4981 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
4982   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4983   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4984   attributes.set_rex_vex_w_reverted();
4985   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4986   emit_int8(0x14);
4987   emit_int8((unsigned char)(0xC0 | encode));
4988 }
4989 
4990 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4991   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4992   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4993   attributes.set_rex_vex_w_reverted();
4994   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4995   emit_int8(0x57);
4996   emit_int8((unsigned char)(0xC0 | encode));
4997 }
4998 
4999 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
5000   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5001   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5002   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5003   emit_int8(0x57);
5004   emit_int8((unsigned char)(0xC0 | encode));
5005 }
5006 
5007 void Assembler::xorpd(XMMRegister dst, Address src) {
5008   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5009   InstructionMark im(this);
5010   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5011   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5012   attributes.set_rex_vex_w_reverted();
5013   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5014   emit_int8(0x57);
5015   emit_operand(dst, src);
5016 }
5017 
5018 void Assembler::xorps(XMMRegister dst, Address src) {
5019   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5020   InstructionMark im(this);
5021   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5022   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5023   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5024   emit_int8(0x57);
5025   emit_operand(dst, src);
5026 }
5027 
5028 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5029   assert(VM_Version::supports_avx(), "");
5030   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5031   attributes.set_rex_vex_w_reverted();
5032   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5033   emit_int8(0x57);
5034   emit_int8((unsigned char)(0xC0 | encode));
5035 }
5036 
5037 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5038   assert(VM_Version::supports_avx(), "");
5039   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5040   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5041   emit_int8(0x57);
5042   emit_int8((unsigned char)(0xC0 | encode));
5043 }
5044 
5045 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5046   assert(VM_Version::supports_avx(), "");
5047   InstructionMark im(this);
5048   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5049   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5050   attributes.set_rex_vex_w_reverted();
5051   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5052   emit_int8(0x57);
5053   emit_operand(dst, src);
5054 }
5055 
5056 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5057   assert(VM_Version::supports_avx(), "");
5058   InstructionMark im(this);
5059   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5060   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5061   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5062   emit_int8(0x57);
5063   emit_operand(dst, src);
5064 }
5065 
5066 // Integer vector arithmetic
5067 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5068   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5069          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5070   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5071   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5072   emit_int8(0x01);
5073   emit_int8((unsigned char)(0xC0 | encode));
5074 }
5075 
5076 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5077   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5078          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5079   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5080   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5081   emit_int8(0x02);
5082   emit_int8((unsigned char)(0xC0 | encode));
5083 }
5084 
5085 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
5086   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5087   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5088   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5089   emit_int8((unsigned char)0xFC);
5090   emit_int8((unsigned char)(0xC0 | encode));
5091 }
5092 
5093 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
5094   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5095   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5096   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5097   emit_int8((unsigned char)0xFD);
5098   emit_int8((unsigned char)(0xC0 | encode));
5099 }
5100 
5101 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
5102   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5103   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5104   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5105   emit_int8((unsigned char)0xFE);
5106   emit_int8((unsigned char)(0xC0 | encode));
5107 }
5108 
5109 void Assembler::paddd(XMMRegister dst, Address src) {
5110   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5111   InstructionMark im(this);
5112   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5113   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5114   emit_int8((unsigned char)0xFE);
5115   emit_operand(dst, src);
5116 }
5117 
5118 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
5119   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5120   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5121   attributes.set_rex_vex_w_reverted();
5122   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5123   emit_int8((unsigned char)0xD4);
5124   emit_int8((unsigned char)(0xC0 | encode));
5125 }
5126 
5127 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
5128   assert(VM_Version::supports_sse3(), "");
5129   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5130   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5131   emit_int8(0x01);
5132   emit_int8((unsigned char)(0xC0 | encode));
5133 }
5134 
5135 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5136   assert(VM_Version::supports_sse3(), "");
5137   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5138   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5139   emit_int8(0x02);
5140   emit_int8((unsigned char)(0xC0 | encode));
5141 }
5142 
5143 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5144   assert(UseAVX > 0, "requires some form of AVX");
5145   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5146   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5147   emit_int8((unsigned char)0xFC);
5148   emit_int8((unsigned char)(0xC0 | encode));
5149 }
5150 
5151 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5152   assert(UseAVX > 0, "requires some form of AVX");
5153   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5154   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5155   emit_int8((unsigned char)0xFD);
5156   emit_int8((unsigned char)(0xC0 | encode));
5157 }
5158 
5159 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5160   assert(UseAVX > 0, "requires some form of AVX");
5161   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5162   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5163   emit_int8((unsigned char)0xFE);
5164   emit_int8((unsigned char)(0xC0 | encode));
5165 }
5166 
5167 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5168   assert(UseAVX > 0, "requires some form of AVX");
5169   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5170   attributes.set_rex_vex_w_reverted();
5171   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5172   emit_int8((unsigned char)0xD4);
5173   emit_int8((unsigned char)(0xC0 | encode));
5174 }
5175 
5176 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5177   assert(UseAVX > 0, "requires some form of AVX");
5178   InstructionMark im(this);
5179   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5180   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5181   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5182   emit_int8((unsigned char)0xFC);
5183   emit_operand(dst, src);
5184 }
5185 
5186 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5187   assert(UseAVX > 0, "requires some form of AVX");
5188   InstructionMark im(this);
5189   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5190   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5191   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5192   emit_int8((unsigned char)0xFD);
5193   emit_operand(dst, src);
5194 }
5195 
5196 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5197   assert(UseAVX > 0, "requires some form of AVX");
5198   InstructionMark im(this);
5199   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5200   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5201   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5202   emit_int8((unsigned char)0xFE);
5203   emit_operand(dst, src);
5204 }
5205 
5206 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5207   assert(UseAVX > 0, "requires some form of AVX");
5208   InstructionMark im(this);
5209   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5210   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5211   attributes.set_rex_vex_w_reverted();
5212   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5213   emit_int8((unsigned char)0xD4);
5214   emit_operand(dst, src);
5215 }
5216 
5217 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5218   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5219   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5220   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5221   emit_int8((unsigned char)0xF8);
5222   emit_int8((unsigned char)(0xC0 | encode));
5223 }
5224 
5225 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5226   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5227   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5228   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5229   emit_int8((unsigned char)0xF9);
5230   emit_int8((unsigned char)(0xC0 | encode));
5231 }
5232 
5233 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5234   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5235   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5236   emit_int8((unsigned char)0xFA);
5237   emit_int8((unsigned char)(0xC0 | encode));
5238 }
5239 
5240 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5241   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5242   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5243   attributes.set_rex_vex_w_reverted();
5244   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5245   emit_int8((unsigned char)0xFB);
5246   emit_int8((unsigned char)(0xC0 | encode));
5247 }
5248 
5249 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5250   assert(UseAVX > 0, "requires some form of AVX");
5251   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5252   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5253   emit_int8((unsigned char)0xF8);
5254   emit_int8((unsigned char)(0xC0 | encode));
5255 }
5256 
5257 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5258   assert(UseAVX > 0, "requires some form of AVX");
5259   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5260   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5261   emit_int8((unsigned char)0xF9);
5262   emit_int8((unsigned char)(0xC0 | encode));
5263 }
5264 
5265 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5266   assert(UseAVX > 0, "requires some form of AVX");
5267   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5268   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5269   emit_int8((unsigned char)0xFA);
5270   emit_int8((unsigned char)(0xC0 | encode));
5271 }
5272 
5273 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5274   assert(UseAVX > 0, "requires some form of AVX");
5275   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5276   attributes.set_rex_vex_w_reverted();
5277   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5278   emit_int8((unsigned char)0xFB);
5279   emit_int8((unsigned char)(0xC0 | encode));
5280 }
5281 
5282 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5283   assert(UseAVX > 0, "requires some form of AVX");
5284   InstructionMark im(this);
5285   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5286   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5287   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5288   emit_int8((unsigned char)0xF8);
5289   emit_operand(dst, src);
5290 }
5291 
5292 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5293   assert(UseAVX > 0, "requires some form of AVX");
5294   InstructionMark im(this);
5295   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5296   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5297   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5298   emit_int8((unsigned char)0xF9);
5299   emit_operand(dst, src);
5300 }
5301 
5302 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5303   assert(UseAVX > 0, "requires some form of AVX");
5304   InstructionMark im(this);
5305   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5306   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5307   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5308   emit_int8((unsigned char)0xFA);
5309   emit_operand(dst, src);
5310 }
5311 
5312 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5313   assert(UseAVX > 0, "requires some form of AVX");
5314   InstructionMark im(this);
5315   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5316   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5317   attributes.set_rex_vex_w_reverted();
5318   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5319   emit_int8((unsigned char)0xFB);
5320   emit_operand(dst, src);
5321 }
5322 
5323 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5324   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5325   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5326   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5327   emit_int8((unsigned char)0xD5);
5328   emit_int8((unsigned char)(0xC0 | encode));
5329 }
5330 
5331 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5332   assert(VM_Version::supports_sse4_1(), "");
5333   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5334   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5335   emit_int8(0x40);
5336   emit_int8((unsigned char)(0xC0 | encode));
5337 }
5338 
5339 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5340   assert(UseAVX > 0, "requires some form of AVX");
5341   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5342   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5343   emit_int8((unsigned char)0xD5);
5344   emit_int8((unsigned char)(0xC0 | encode));
5345 }
5346 
5347 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5348   assert(UseAVX > 0, "requires some form of AVX");
5349   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5350   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5351   emit_int8(0x40);
5352   emit_int8((unsigned char)(0xC0 | encode));
5353 }
5354 
5355 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5356   assert(UseAVX > 2, "requires some form of EVEX");
5357   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5358   attributes.set_is_evex_instruction();
5359   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5360   emit_int8(0x40);
5361   emit_int8((unsigned char)(0xC0 | encode));
5362 }
5363 
5364 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5365   assert(UseAVX > 0, "requires some form of AVX");
5366   InstructionMark im(this);
5367   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5368   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5369   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5370   emit_int8((unsigned char)0xD5);
5371   emit_operand(dst, src);
5372 }
5373 
5374 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5375   assert(UseAVX > 0, "requires some form of AVX");
5376   InstructionMark im(this);
5377   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5378   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5379   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5380   emit_int8(0x40);
5381   emit_operand(dst, src);
5382 }
5383 
5384 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5385   assert(UseAVX > 2, "requires some form of EVEX");
5386   InstructionMark im(this);
5387   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5388   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5389   attributes.set_is_evex_instruction();
5390   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5391   emit_int8(0x40);
5392   emit_operand(dst, src);
5393 }
5394 
5395 // Shift packed integers left by specified number of bits.
5396 void Assembler::psllw(XMMRegister dst, int shift) {
5397   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5398   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5399   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5400   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5401   emit_int8(0x71);
5402   emit_int8((unsigned char)(0xC0 | encode));
5403   emit_int8(shift & 0xFF);
5404 }
5405 
5406 void Assembler::pslld(XMMRegister dst, int shift) {
5407   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5408   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5409   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5410   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5411   emit_int8(0x72);
5412   emit_int8((unsigned char)(0xC0 | encode));
5413   emit_int8(shift & 0xFF);
5414 }
5415 
5416 void Assembler::psllq(XMMRegister dst, int shift) {
5417   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5418   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5419   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5420   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5421   emit_int8(0x73);
5422   emit_int8((unsigned char)(0xC0 | encode));
5423   emit_int8(shift & 0xFF);
5424 }
5425 
5426 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5427   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5428   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5429   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5430   emit_int8((unsigned char)0xF1);
5431   emit_int8((unsigned char)(0xC0 | encode));
5432 }
5433 
5434 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5435   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5436   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5437   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5438   emit_int8((unsigned char)0xF2);
5439   emit_int8((unsigned char)(0xC0 | encode));
5440 }
5441 
5442 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5443   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5444   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5445   attributes.set_rex_vex_w_reverted();
5446   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5447   emit_int8((unsigned char)0xF3);
5448   emit_int8((unsigned char)(0xC0 | encode));
5449 }
5450 
5451 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5452   assert(UseAVX > 0, "requires some form of AVX");
5453   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5454   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5455   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5456   emit_int8(0x71);
5457   emit_int8((unsigned char)(0xC0 | encode));
5458   emit_int8(shift & 0xFF);
5459 }
5460 
5461 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5462   assert(UseAVX > 0, "requires some form of AVX");
5463   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5464   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5465   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5466   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5467   emit_int8(0x72);
5468   emit_int8((unsigned char)(0xC0 | encode));
5469   emit_int8(shift & 0xFF);
5470 }
5471 
5472 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5473   assert(UseAVX > 0, "requires some form of AVX");
5474   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5475   attributes.set_rex_vex_w_reverted();
5476   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5477   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5478   emit_int8(0x73);
5479   emit_int8((unsigned char)(0xC0 | encode));
5480   emit_int8(shift & 0xFF);
5481 }
5482 
5483 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5484   assert(UseAVX > 0, "requires some form of AVX");
5485   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5486   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5487   emit_int8((unsigned char)0xF1);
5488   emit_int8((unsigned char)(0xC0 | encode));
5489 }
5490 
5491 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5492   assert(UseAVX > 0, "requires some form of AVX");
5493   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5494   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5495   emit_int8((unsigned char)0xF2);
5496   emit_int8((unsigned char)(0xC0 | encode));
5497 }
5498 
5499 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5500   assert(UseAVX > 0, "requires some form of AVX");
5501   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5502   attributes.set_rex_vex_w_reverted();
5503   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5504   emit_int8((unsigned char)0xF3);
5505   emit_int8((unsigned char)(0xC0 | encode));
5506 }
5507 
5508 // Shift packed integers logically right by specified number of bits.
5509 void Assembler::psrlw(XMMRegister dst, int shift) {
5510   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5511   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5512   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5513   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5514   emit_int8(0x71);
5515   emit_int8((unsigned char)(0xC0 | encode));
5516   emit_int8(shift & 0xFF);
5517 }
5518 
5519 void Assembler::psrld(XMMRegister dst, int shift) {
5520   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5521   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5522   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5523   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5524   emit_int8(0x72);
5525   emit_int8((unsigned char)(0xC0 | encode));
5526   emit_int8(shift & 0xFF);
5527 }
5528 
5529 void Assembler::psrlq(XMMRegister dst, int shift) {
5530   // Do not confuse it with psrldq SSE2 instruction which
5531   // shifts 128 bit value in xmm register by number of bytes.
5532   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5533   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5534   attributes.set_rex_vex_w_reverted();
5535   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5536   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5537   emit_int8(0x73);
5538   emit_int8((unsigned char)(0xC0 | encode));
5539   emit_int8(shift & 0xFF);
5540 }
5541 
5542 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
5543   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5544   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5545   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5546   emit_int8((unsigned char)0xD1);
5547   emit_int8((unsigned char)(0xC0 | encode));
5548 }
5549 
5550 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
5551   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5552   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5553   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5554   emit_int8((unsigned char)0xD2);
5555   emit_int8((unsigned char)(0xC0 | encode));
5556 }
5557 
5558 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
5559   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5560   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5561   attributes.set_rex_vex_w_reverted();
5562   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5563   emit_int8((unsigned char)0xD3);
5564   emit_int8((unsigned char)(0xC0 | encode));
5565 }
5566 
5567 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5568   assert(UseAVX > 0, "requires some form of AVX");
5569   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5570   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5571   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5572   emit_int8(0x71);
5573   emit_int8((unsigned char)(0xC0 | encode));
5574   emit_int8(shift & 0xFF);
5575 }
5576 
5577 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5578   assert(UseAVX > 0, "requires some form of AVX");
5579   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5580   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5581   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5582   emit_int8(0x72);
5583   emit_int8((unsigned char)(0xC0 | encode));
5584   emit_int8(shift & 0xFF);
5585 }
5586 
5587 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5588   assert(UseAVX > 0, "requires some form of AVX");
5589   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5590   attributes.set_rex_vex_w_reverted();
5591   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5592   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5593   emit_int8(0x73);
5594   emit_int8((unsigned char)(0xC0 | encode));
5595   emit_int8(shift & 0xFF);
5596 }
5597 
5598 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5599   assert(UseAVX > 0, "requires some form of AVX");
5600   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5601   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5602   emit_int8((unsigned char)0xD1);
5603   emit_int8((unsigned char)(0xC0 | encode));
5604 }
5605 
5606 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5607   assert(UseAVX > 0, "requires some form of AVX");
5608   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5609   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5610   emit_int8((unsigned char)0xD2);
5611   emit_int8((unsigned char)(0xC0 | encode));
5612 }
5613 
5614 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5615   assert(UseAVX > 0, "requires some form of AVX");
5616   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5617   attributes.set_rex_vex_w_reverted();
5618   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5619   emit_int8((unsigned char)0xD3);
5620   emit_int8((unsigned char)(0xC0 | encode));
5621 }
5622 
5623 // Shift packed integers arithmetically right by specified number of bits.
5624 void Assembler::psraw(XMMRegister dst, int shift) {
5625   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5626   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5627   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5628   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5629   emit_int8(0x71);
5630   emit_int8((unsigned char)(0xC0 | encode));
5631   emit_int8(shift & 0xFF);
5632 }
5633 
5634 void Assembler::psrad(XMMRegister dst, int shift) {
5635   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5636   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5637   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
5638   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5639   emit_int8(0x72);
5640   emit_int8((unsigned char)(0xC0 | encode));
5641   emit_int8(shift & 0xFF);
5642 }
5643 
5644 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
5645   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5646   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5647   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5648   emit_int8((unsigned char)0xE1);
5649   emit_int8((unsigned char)(0xC0 | encode));
5650 }
5651 
5652 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
5653   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5654   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5655   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5656   emit_int8((unsigned char)0xE2);
5657   emit_int8((unsigned char)(0xC0 | encode));
5658 }
5659 
5660 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5661   assert(UseAVX > 0, "requires some form of AVX");
5662   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5663   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5664   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5665   emit_int8(0x71);
5666   emit_int8((unsigned char)(0xC0 | encode));
5667   emit_int8(shift & 0xFF);
5668 }
5669 
5670 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5671   assert(UseAVX > 0, "requires some form of AVX");
5672   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5673   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5674   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5675   emit_int8(0x72);
5676   emit_int8((unsigned char)(0xC0 | encode));
5677   emit_int8(shift & 0xFF);
5678 }
5679 
5680 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5681   assert(UseAVX > 0, "requires some form of AVX");
5682   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5683   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5684   emit_int8((unsigned char)0xE1);
5685   emit_int8((unsigned char)(0xC0 | encode));
5686 }
5687 
5688 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5689   assert(UseAVX > 0, "requires some form of AVX");
5690   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5691   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5692   emit_int8((unsigned char)0xE2);
5693   emit_int8((unsigned char)(0xC0 | encode));
5694 }
5695 
5696 
5697 // logical operations packed integers
5698 void Assembler::pand(XMMRegister dst, XMMRegister src) {
5699   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5700   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5701   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5702   emit_int8((unsigned char)0xDB);
5703   emit_int8((unsigned char)(0xC0 | encode));
5704 }
5705 
5706 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5707   assert(UseAVX > 0, "requires some form of AVX");
5708   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5709   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5710   emit_int8((unsigned char)0xDB);
5711   emit_int8((unsigned char)(0xC0 | encode));
5712 }
5713 
5714 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5715   assert(UseAVX > 0, "requires some form of AVX");
5716   InstructionMark im(this);
5717   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5718   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5719   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5720   emit_int8((unsigned char)0xDB);
5721   emit_operand(dst, src);
5722 }
5723 
5724 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
5725   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5726   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5727   attributes.set_rex_vex_w_reverted();
5728   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5729   emit_int8((unsigned char)0xDF);
5730   emit_int8((unsigned char)(0xC0 | encode));
5731 }
5732 
5733 void Assembler::por(XMMRegister dst, XMMRegister src) {
5734   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5735   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5736   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5737   emit_int8((unsigned char)0xEB);
5738   emit_int8((unsigned char)(0xC0 | encode));
5739 }
5740 
5741 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5742   assert(UseAVX > 0, "requires some form of AVX");
5743   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5744   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5745   emit_int8((unsigned char)0xEB);
5746   emit_int8((unsigned char)(0xC0 | encode));
5747 }
5748 
5749 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5750   assert(UseAVX > 0, "requires some form of AVX");
5751   InstructionMark im(this);
5752   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5753   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5754   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5755   emit_int8((unsigned char)0xEB);
5756   emit_operand(dst, src);
5757 }
5758 
5759 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
5760   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5761   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5762   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5763   emit_int8((unsigned char)0xEF);
5764   emit_int8((unsigned char)(0xC0 | encode));
5765 }
5766 
5767 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5768   assert(UseAVX > 0, "requires some form of AVX");
5769   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5770   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5771   emit_int8((unsigned char)0xEF);
5772   emit_int8((unsigned char)(0xC0 | encode));
5773 }
5774 
5775 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5776   assert(UseAVX > 0, "requires some form of AVX");
5777   InstructionMark im(this);
5778   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5779   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5780   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5781   emit_int8((unsigned char)0xEF);
5782   emit_operand(dst, src);
5783 }
5784 
5785 
5786 // vinserti forms
5787 
5788 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5789   assert(VM_Version::supports_avx2(), "");
5790   assert(imm8 <= 0x01, "imm8: %u", imm8);
5791   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5792   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5793   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5794   emit_int8(0x38);
5795   emit_int8((unsigned char)(0xC0 | encode));
5796   // 0x00 - insert into lower 128 bits
5797   // 0x01 - insert into upper 128 bits
5798   emit_int8(imm8 & 0x01);
5799 }
5800 
5801 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5802   assert(VM_Version::supports_avx2(), "");
5803   assert(dst != xnoreg, "sanity");
5804   assert(imm8 <= 0x01, "imm8: %u", imm8);
5805   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5806   InstructionMark im(this);
5807   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5808   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5809   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5810   emit_int8(0x38);
5811   emit_operand(dst, src);
5812   // 0x00 - insert into lower 128 bits
5813   // 0x01 - insert into upper 128 bits
5814   emit_int8(imm8 & 0x01);
5815 }
5816 
5817 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5818   assert(VM_Version::supports_evex(), "");
5819   assert(imm8 <= 0x03, "imm8: %u", imm8);
5820   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5821   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5822   emit_int8(0x38);
5823   emit_int8((unsigned char)(0xC0 | encode));
5824   // 0x00 - insert into q0 128 bits (0..127)
5825   // 0x01 - insert into q1 128 bits (128..255)
5826   // 0x02 - insert into q2 128 bits (256..383)
5827   // 0x03 - insert into q3 128 bits (384..511)
5828   emit_int8(imm8 & 0x03);
5829 }
5830 
5831 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5832   assert(VM_Version::supports_avx(), "");
5833   assert(dst != xnoreg, "sanity");
5834   assert(imm8 <= 0x03, "imm8: %u", imm8);
5835   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5836   InstructionMark im(this);
5837   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5838   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5839   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5840   emit_int8(0x18);
5841   emit_operand(dst, src);
5842   // 0x00 - insert into q0 128 bits (0..127)
5843   // 0x01 - insert into q1 128 bits (128..255)
5844   // 0x02 - insert into q2 128 bits (256..383)
5845   // 0x03 - insert into q3 128 bits (384..511)
5846   emit_int8(imm8 & 0x03);
5847 }
5848 
5849 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5850   assert(VM_Version::supports_evex(), "");
5851   assert(imm8 <= 0x01, "imm8: %u", imm8);
5852   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5853   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5854   emit_int8(0x38);
5855   emit_int8((unsigned char)(0xC0 | encode));
5856   // 0x00 - insert into lower 256 bits
5857   // 0x01 - insert into upper 256 bits
5858   emit_int8(imm8 & 0x01);
5859 }
5860 
5861 
5862 // vinsertf forms
5863 
5864 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5865   assert(VM_Version::supports_avx(), "");
5866   assert(imm8 <= 0x01, "imm8: %u", imm8);
5867   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5868   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5869   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5870   emit_int8(0x18);
5871   emit_int8((unsigned char)(0xC0 | encode));
5872   // 0x00 - insert into lower 128 bits
5873   // 0x01 - insert into upper 128 bits
5874   emit_int8(imm8 & 0x01);
5875 }
5876 
5877 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5878   assert(VM_Version::supports_avx(), "");
5879   assert(dst != xnoreg, "sanity");
5880   assert(imm8 <= 0x01, "imm8: %u", imm8);
5881   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5882   InstructionMark im(this);
5883   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5884   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5885   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5886   emit_int8(0x18);
5887   emit_operand(dst, src);
5888   // 0x00 - insert into lower 128 bits
5889   // 0x01 - insert into upper 128 bits
5890   emit_int8(imm8 & 0x01);
5891 }
5892 
5893 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5894   assert(VM_Version::supports_evex(), "");
5895   assert(imm8 <= 0x03, "imm8: %u", imm8);
5896   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5897   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5898   emit_int8(0x18);
5899   emit_int8((unsigned char)(0xC0 | encode));
5900   // 0x00 - insert into q0 128 bits (0..127)
5901   // 0x01 - insert into q1 128 bits (128..255)
5902   // 0x02 - insert into q2 128 bits (256..383)
5903   // 0x03 - insert into q3 128 bits (384..511)
5904   emit_int8(imm8 & 0x03);
5905 }
5906 
5907 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5908   assert(VM_Version::supports_avx(), "");
5909   assert(dst != xnoreg, "sanity");
5910   assert(imm8 <= 0x03, "imm8: %u", imm8);
5911   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5912   InstructionMark im(this);
5913   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5914   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5915   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5916   emit_int8(0x18);
5917   emit_operand(dst, src);
5918   // 0x00 - insert into q0 128 bits (0..127)
5919   // 0x01 - insert into q1 128 bits (128..255)
5920   // 0x02 - insert into q2 128 bits (256..383)
5921   // 0x03 - insert into q3 128 bits (384..511)
5922   emit_int8(imm8 & 0x03);
5923 }
5924 
5925 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5926   assert(VM_Version::supports_evex(), "");
5927   assert(imm8 <= 0x01, "imm8: %u", imm8);
5928   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5929   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5930   emit_int8(0x1A);
5931   emit_int8((unsigned char)(0xC0 | encode));
5932   // 0x00 - insert into lower 256 bits
5933   // 0x01 - insert into upper 256 bits
5934   emit_int8(imm8 & 0x01);
5935 }
5936 
5937 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5938   assert(VM_Version::supports_evex(), "");
5939   assert(dst != xnoreg, "sanity");
5940   assert(imm8 <= 0x01, "imm8: %u", imm8);
5941   InstructionMark im(this);
5942   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5943   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
5944   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5945   emit_int8(0x1A);
5946   emit_operand(dst, src);
5947   // 0x00 - insert into lower 256 bits
5948   // 0x01 - insert into upper 256 bits
5949   emit_int8(imm8 & 0x01);
5950 }
5951 
5952 
5953 // vextracti forms
5954 
5955 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5956   assert(VM_Version::supports_avx(), "");
5957   assert(imm8 <= 0x01, "imm8: %u", imm8);
5958   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5959   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5960   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5961   emit_int8(0x39);
5962   emit_int8((unsigned char)(0xC0 | encode));
5963   // 0x00 - extract from lower 128 bits
5964   // 0x01 - extract from upper 128 bits
5965   emit_int8(imm8 & 0x01);
5966 }
5967 
5968 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
5969   assert(VM_Version::supports_avx2(), "");
5970   assert(src != xnoreg, "sanity");
5971   assert(imm8 <= 0x01, "imm8: %u", imm8);
5972   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5973   InstructionMark im(this);
5974   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5975   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5976   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5977   emit_int8(0x39);
5978   emit_operand(src, dst);
5979   // 0x00 - extract from lower 128 bits
5980   // 0x01 - extract from upper 128 bits
5981   emit_int8(imm8 & 0x01);
5982 }
5983 
5984 void Assembler::vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5985   assert(VM_Version::supports_avx(), "");
5986   assert(imm8 <= 0x03, "imm8: %u", imm8);
5987   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5988   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5989   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5990   emit_int8(0x39);
5991   emit_int8((unsigned char)(0xC0 | encode));
5992   // 0x00 - extract from bits 127:0
5993   // 0x01 - extract from bits 255:128
5994   // 0x02 - extract from bits 383:256
5995   // 0x03 - extract from bits 511:384
5996   emit_int8(imm8 & 0x03);
5997 }
5998 
5999 void Assembler::vextracti32x4(Address dst, XMMRegister src, uint8_t imm8) {
6000   assert(VM_Version::supports_evex(), "");
6001   assert(src != xnoreg, "sanity");
6002   assert(imm8 <= 0x03, "imm8: %u", imm8);
6003   InstructionMark im(this);
6004   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6005   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6006   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6007   emit_int8(0x39);
6008   emit_operand(src, dst);
6009   // 0x00 - extract from bits 127:0
6010   // 0x01 - extract from bits 255:128
6011   // 0x02 - extract from bits 383:256
6012   // 0x03 - extract from bits 511:384
6013   emit_int8(imm8 & 0x03);
6014 }
6015 
6016 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6017   assert(VM_Version::supports_avx512dq(), "");
6018   assert(imm8 <= 0x03, "imm8: %u", imm8);
6019   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6020   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6021   emit_int8(0x39);
6022   emit_int8((unsigned char)(0xC0 | encode));
6023   // 0x00 - extract from bits 127:0
6024   // 0x01 - extract from bits 255:128
6025   // 0x02 - extract from bits 383:256
6026   // 0x03 - extract from bits 511:384
6027   emit_int8(imm8 & 0x03);
6028 }
6029 
6030 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6031   assert(VM_Version::supports_evex(), "");
6032   assert(imm8 <= 0x01, "imm8: %u", imm8);
6033   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6034   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6035   emit_int8(0x3B);
6036   emit_int8((unsigned char)(0xC0 | encode));
6037   // 0x00 - extract from lower 256 bits
6038   // 0x01 - extract from upper 256 bits
6039   emit_int8(imm8 & 0x01);
6040 }
6041 
6042 
6043 // vextractf forms
6044 
6045 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6046   assert(VM_Version::supports_avx(), "");
6047   assert(imm8 <= 0x01, "imm8: %u", imm8);
6048   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6049   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6050   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6051   emit_int8(0x19);
6052   emit_int8((unsigned char)(0xC0 | encode));
6053   // 0x00 - extract from lower 128 bits
6054   // 0x01 - extract from upper 128 bits
6055   emit_int8(imm8 & 0x01);
6056 }
6057 
6058 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
6059   assert(VM_Version::supports_avx(), "");
6060   assert(src != xnoreg, "sanity");
6061   assert(imm8 <= 0x01, "imm8: %u", imm8);
6062   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6063   InstructionMark im(this);
6064   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6065   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6066   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6067   emit_int8(0x19);
6068   emit_operand(src, dst);
6069   // 0x00 - extract from lower 128 bits
6070   // 0x01 - extract from upper 128 bits
6071   emit_int8(imm8 & 0x01);
6072 }
6073 
6074 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6075   assert(VM_Version::supports_avx(), "");
6076   assert(imm8 <= 0x03, "imm8: %u", imm8);
6077   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6078   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6079   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6080   emit_int8(0x19);
6081   emit_int8((unsigned char)(0xC0 | encode));
6082   // 0x00 - extract from bits 127:0
6083   // 0x01 - extract from bits 255:128
6084   // 0x02 - extract from bits 383:256
6085   // 0x03 - extract from bits 511:384
6086   emit_int8(imm8 & 0x03);
6087 }
6088 
6089 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
6090   assert(VM_Version::supports_evex(), "");
6091   assert(src != xnoreg, "sanity");
6092   assert(imm8 <= 0x03, "imm8: %u", imm8);
6093   InstructionMark im(this);
6094   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6095   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6096   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6097   emit_int8(0x19);
6098   emit_operand(src, dst);
6099   // 0x00 - extract from bits 127:0
6100   // 0x01 - extract from bits 255:128
6101   // 0x02 - extract from bits 383:256
6102   // 0x03 - extract from bits 511:384
6103   emit_int8(imm8 & 0x03);
6104 }
6105 
6106 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6107   assert(VM_Version::supports_avx512dq(), "");
6108   assert(imm8 <= 0x03, "imm8: %u", imm8);
6109   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6110   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6111   emit_int8(0x19);
6112   emit_int8((unsigned char)(0xC0 | encode));
6113   // 0x00 - extract from bits 127:0
6114   // 0x01 - extract from bits 255:128
6115   // 0x02 - extract from bits 383:256
6116   // 0x03 - extract from bits 511:384
6117   emit_int8(imm8 & 0x03);
6118 }
6119 
6120 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6121   assert(VM_Version::supports_evex(), "");
6122   assert(imm8 <= 0x01, "imm8: %u", imm8);
6123   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6124   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6125   emit_int8(0x1B);
6126   emit_int8((unsigned char)(0xC0 | encode));
6127   // 0x00 - extract from lower 256 bits
6128   // 0x01 - extract from upper 256 bits
6129   emit_int8(imm8 & 0x01);
6130 }
6131 
6132 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
6133   assert(VM_Version::supports_evex(), "");
6134   assert(src != xnoreg, "sanity");
6135   assert(imm8 <= 0x01, "imm8: %u", imm8);
6136   InstructionMark im(this);
6137   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6138   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
6139   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6140   emit_int8(0x1B);
6141   emit_operand(src, dst);
6142   // 0x00 - extract from lower 256 bits
6143   // 0x01 - extract from upper 256 bits
6144   emit_int8(imm8 & 0x01);
6145 }
6146 
6147 
6148 // legacy word/dword replicate
6149 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
6150   assert(VM_Version::supports_avx2(), "");
6151   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6152   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6153   emit_int8(0x79);
6154   emit_int8((unsigned char)(0xC0 | encode));
6155 }
6156 
6157 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
6158   assert(VM_Version::supports_avx2(), "");
6159   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6160   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6161   emit_int8(0x58);
6162   emit_int8((unsigned char)(0xC0 | encode));
6163 }
6164 
6165 
6166 // xmm/mem sourced byte/word/dword/qword replicate
6167 
6168 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6169 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6170   assert(VM_Version::supports_evex(), "");
6171   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6172   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6173   emit_int8(0x78);
6174   emit_int8((unsigned char)(0xC0 | encode));
6175 }
6176 
6177 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6178   assert(VM_Version::supports_evex(), "");
6179   assert(dst != xnoreg, "sanity");
6180   InstructionMark im(this);
6181   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6182   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6183   // swap src<->dst for encoding
6184   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6185   emit_int8(0x78);
6186   emit_operand(dst, src);
6187 }
6188 
6189 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6190 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6191   assert(VM_Version::supports_evex(), "");
6192   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6193   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6194   emit_int8(0x79);
6195   emit_int8((unsigned char)(0xC0 | encode));
6196 }
6197 
6198 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6199   assert(VM_Version::supports_evex(), "");
6200   assert(dst != xnoreg, "sanity");
6201   InstructionMark im(this);
6202   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6203   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6204   // swap src<->dst for encoding
6205   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6206   emit_int8(0x79);
6207   emit_operand(dst, src);
6208 }
6209 
6210 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6211 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6212   assert(VM_Version::supports_evex(), "");
6213   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6214   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6215   emit_int8(0x58);
6216   emit_int8((unsigned char)(0xC0 | encode));
6217 }
6218 
6219 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6220   assert(VM_Version::supports_evex(), "");
6221   assert(dst != xnoreg, "sanity");
6222   InstructionMark im(this);
6223   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6224   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6225   // swap src<->dst for encoding
6226   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6227   emit_int8(0x58);
6228   emit_operand(dst, src);
6229 }
6230 
6231 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6232 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6233   assert(VM_Version::supports_evex(), "");
6234   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6235   attributes.set_rex_vex_w_reverted();
6236   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6237   emit_int8(0x59);
6238   emit_int8((unsigned char)(0xC0 | encode));
6239 }
6240 
6241 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6242   assert(VM_Version::supports_evex(), "");
6243   assert(dst != xnoreg, "sanity");
6244   InstructionMark im(this);
6245   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6246   attributes.set_rex_vex_w_reverted();
6247   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6248   // swap src<->dst for encoding
6249   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6250   emit_int8(0x59);
6251   emit_operand(dst, src);
6252 }
6253 
6254 
6255 // scalar single/double precision replicate
6256 
6257 // duplicate single precision data from src into programmed locations in dest : requires AVX512VL
6258 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6259   assert(VM_Version::supports_evex(), "");
6260   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6261   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6262   emit_int8(0x18);
6263   emit_int8((unsigned char)(0xC0 | encode));
6264 }
6265 
6266 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
6267   assert(VM_Version::supports_evex(), "");
6268   assert(dst != xnoreg, "sanity");
6269   InstructionMark im(this);
6270   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6271   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6272   // swap src<->dst for encoding
6273   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6274   emit_int8(0x18);
6275   emit_operand(dst, src);
6276 }
6277 
6278 // duplicate double precision data from src into programmed locations in dest : requires AVX512VL
6279 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6280   assert(VM_Version::supports_evex(), "");
6281   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6282   attributes.set_rex_vex_w_reverted();
6283   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6284   emit_int8(0x19);
6285   emit_int8((unsigned char)(0xC0 | encode));
6286 }
6287 
6288 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6289   assert(VM_Version::supports_evex(), "");
6290   assert(dst != xnoreg, "sanity");
6291   InstructionMark im(this);
6292   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6293   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6294   attributes.set_rex_vex_w_reverted();
6295   // swap src<->dst for encoding
6296   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6297   emit_int8(0x19);
6298   emit_operand(dst, src);
6299 }
6300 
6301 
6302 // gpr source broadcast forms
6303 
6304 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6305 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6306   assert(VM_Version::supports_evex(), "");
6307   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6308   attributes.set_is_evex_instruction();
6309   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6310   emit_int8(0x7A);
6311   emit_int8((unsigned char)(0xC0 | encode));
6312 }
6313 
6314 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6315 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6316   assert(VM_Version::supports_evex(), "");
6317   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6318   attributes.set_is_evex_instruction();
6319   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6320   emit_int8(0x7B);
6321   emit_int8((unsigned char)(0xC0 | encode));
6322 }
6323 
6324 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6325 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6326   assert(VM_Version::supports_evex(), "");
6327   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6328   attributes.set_is_evex_instruction();
6329   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6330   emit_int8(0x7C);
6331   emit_int8((unsigned char)(0xC0 | encode));
6332 }
6333 
6334 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6335 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6336   assert(VM_Version::supports_evex(), "");
6337   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6338   attributes.set_is_evex_instruction();
6339   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6340   emit_int8(0x7C);
6341   emit_int8((unsigned char)(0xC0 | encode));
6342 }
6343 
6344 
6345 // Carry-Less Multiplication Quadword
6346 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
6347   assert(VM_Version::supports_clmul(), "");
6348   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6349   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6350   emit_int8(0x44);
6351   emit_int8((unsigned char)(0xC0 | encode));
6352   emit_int8((unsigned char)mask);
6353 }
6354 
6355 // Carry-Less Multiplication Quadword
6356 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
6357   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
6358   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6359   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6360   emit_int8(0x44);
6361   emit_int8((unsigned char)(0xC0 | encode));
6362   emit_int8((unsigned char)mask);
6363 }
6364 
6365 void Assembler::vzeroupper() {
6366   assert(VM_Version::supports_avx(), "");
6367   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6368   (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6369   emit_int8(0x77);
6370 }
6371 
6372 
6373 #ifndef _LP64
6374 // 32bit only pieces of the assembler
6375 
6376 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6377   // NO PREFIX AS NEVER 64BIT
6378   InstructionMark im(this);
6379   emit_int8((unsigned char)0x81);
6380   emit_int8((unsigned char)(0xF8 | src1->encoding()));
6381   emit_data(imm32, rspec, 0);
6382 }
6383 
6384 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6385   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
6386   InstructionMark im(this);
6387   emit_int8((unsigned char)0x81);
6388   emit_operand(rdi, src1);
6389   emit_data(imm32, rspec, 0);
6390 }
6391 
6392 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
6393 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
6394 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
6395 void Assembler::cmpxchg8(Address adr) {
6396   InstructionMark im(this);
6397   emit_int8(0x0F);
6398   emit_int8((unsigned char)0xC7);
6399   emit_operand(rcx, adr);
6400 }
6401 
6402 void Assembler::decl(Register dst) {
6403   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6404  emit_int8(0x48 | dst->encoding());
6405 }
6406 
6407 #endif // _LP64
6408 
6409 // 64bit typically doesn't use the x87 but needs to for the trig funcs
6410 
6411 void Assembler::fabs() {
6412   emit_int8((unsigned char)0xD9);
6413   emit_int8((unsigned char)0xE1);
6414 }
6415 
6416 void Assembler::fadd(int i) {
6417   emit_farith(0xD8, 0xC0, i);
6418 }
6419 
6420 void Assembler::fadd_d(Address src) {
6421   InstructionMark im(this);
6422   emit_int8((unsigned char)0xDC);
6423   emit_operand32(rax, src);
6424 }
6425 
6426 void Assembler::fadd_s(Address src) {
6427   InstructionMark im(this);
6428   emit_int8((unsigned char)0xD8);
6429   emit_operand32(rax, src);
6430 }
6431 
6432 void Assembler::fadda(int i) {
6433   emit_farith(0xDC, 0xC0, i);
6434 }
6435 
6436 void Assembler::faddp(int i) {
6437   emit_farith(0xDE, 0xC0, i);
6438 }
6439 
6440 void Assembler::fchs() {
6441   emit_int8((unsigned char)0xD9);
6442   emit_int8((unsigned char)0xE0);
6443 }
6444 
6445 void Assembler::fcom(int i) {
6446   emit_farith(0xD8, 0xD0, i);
6447 }
6448 
6449 void Assembler::fcomp(int i) {
6450   emit_farith(0xD8, 0xD8, i);
6451 }
6452 
6453 void Assembler::fcomp_d(Address src) {
6454   InstructionMark im(this);
6455   emit_int8((unsigned char)0xDC);
6456   emit_operand32(rbx, src);
6457 }
6458 
6459 void Assembler::fcomp_s(Address src) {
6460   InstructionMark im(this);
6461   emit_int8((unsigned char)0xD8);
6462   emit_operand32(rbx, src);
6463 }
6464 
6465 void Assembler::fcompp() {
6466   emit_int8((unsigned char)0xDE);
6467   emit_int8((unsigned char)0xD9);
6468 }
6469 
6470 void Assembler::fcos() {
6471   emit_int8((unsigned char)0xD9);
6472   emit_int8((unsigned char)0xFF);
6473 }
6474 
6475 void Assembler::fdecstp() {
6476   emit_int8((unsigned char)0xD9);
6477   emit_int8((unsigned char)0xF6);
6478 }
6479 
6480 void Assembler::fdiv(int i) {
6481   emit_farith(0xD8, 0xF0, i);
6482 }
6483 
6484 void Assembler::fdiv_d(Address src) {
6485   InstructionMark im(this);
6486   emit_int8((unsigned char)0xDC);
6487   emit_operand32(rsi, src);
6488 }
6489 
6490 void Assembler::fdiv_s(Address src) {
6491   InstructionMark im(this);
6492   emit_int8((unsigned char)0xD8);
6493   emit_operand32(rsi, src);
6494 }
6495 
6496 void Assembler::fdiva(int i) {
6497   emit_farith(0xDC, 0xF8, i);
6498 }
6499 
6500 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
6501 //       is erroneous for some of the floating-point instructions below.
6502 
6503 void Assembler::fdivp(int i) {
6504   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
6505 }
6506 
6507 void Assembler::fdivr(int i) {
6508   emit_farith(0xD8, 0xF8, i);
6509 }
6510 
6511 void Assembler::fdivr_d(Address src) {
6512   InstructionMark im(this);
6513   emit_int8((unsigned char)0xDC);
6514   emit_operand32(rdi, src);
6515 }
6516 
6517 void Assembler::fdivr_s(Address src) {
6518   InstructionMark im(this);
6519   emit_int8((unsigned char)0xD8);
6520   emit_operand32(rdi, src);
6521 }
6522 
6523 void Assembler::fdivra(int i) {
6524   emit_farith(0xDC, 0xF0, i);
6525 }
6526 
6527 void Assembler::fdivrp(int i) {
6528   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
6529 }
6530 
6531 void Assembler::ffree(int i) {
6532   emit_farith(0xDD, 0xC0, i);
6533 }
6534 
6535 void Assembler::fild_d(Address adr) {
6536   InstructionMark im(this);
6537   emit_int8((unsigned char)0xDF);
6538   emit_operand32(rbp, adr);
6539 }
6540 
6541 void Assembler::fild_s(Address adr) {
6542   InstructionMark im(this);
6543   emit_int8((unsigned char)0xDB);
6544   emit_operand32(rax, adr);
6545 }
6546 
6547 void Assembler::fincstp() {
6548   emit_int8((unsigned char)0xD9);
6549   emit_int8((unsigned char)0xF7);
6550 }
6551 
6552 void Assembler::finit() {
6553   emit_int8((unsigned char)0x9B);
6554   emit_int8((unsigned char)0xDB);
6555   emit_int8((unsigned char)0xE3);
6556 }
6557 
6558 void Assembler::fist_s(Address adr) {
6559   InstructionMark im(this);
6560   emit_int8((unsigned char)0xDB);
6561   emit_operand32(rdx, adr);
6562 }
6563 
6564 void Assembler::fistp_d(Address adr) {
6565   InstructionMark im(this);
6566   emit_int8((unsigned char)0xDF);
6567   emit_operand32(rdi, adr);
6568 }
6569 
6570 void Assembler::fistp_s(Address adr) {
6571   InstructionMark im(this);
6572   emit_int8((unsigned char)0xDB);
6573   emit_operand32(rbx, adr);
6574 }
6575 
6576 void Assembler::fld1() {
6577   emit_int8((unsigned char)0xD9);
6578   emit_int8((unsigned char)0xE8);
6579 }
6580 
6581 void Assembler::fld_d(Address adr) {
6582   InstructionMark im(this);
6583   emit_int8((unsigned char)0xDD);
6584   emit_operand32(rax, adr);
6585 }
6586 
6587 void Assembler::fld_s(Address adr) {
6588   InstructionMark im(this);
6589   emit_int8((unsigned char)0xD9);
6590   emit_operand32(rax, adr);
6591 }
6592 
6593 
6594 void Assembler::fld_s(int index) {
6595   emit_farith(0xD9, 0xC0, index);
6596 }
6597 
6598 void Assembler::fld_x(Address adr) {
6599   InstructionMark im(this);
6600   emit_int8((unsigned char)0xDB);
6601   emit_operand32(rbp, adr);
6602 }
6603 
6604 void Assembler::fldcw(Address src) {
6605   InstructionMark im(this);
6606   emit_int8((unsigned char)0xD9);
6607   emit_operand32(rbp, src);
6608 }
6609 
6610 void Assembler::fldenv(Address src) {
6611   InstructionMark im(this);
6612   emit_int8((unsigned char)0xD9);
6613   emit_operand32(rsp, src);
6614 }
6615 
6616 void Assembler::fldlg2() {
6617   emit_int8((unsigned char)0xD9);
6618   emit_int8((unsigned char)0xEC);
6619 }
6620 
6621 void Assembler::fldln2() {
6622   emit_int8((unsigned char)0xD9);
6623   emit_int8((unsigned char)0xED);
6624 }
6625 
6626 void Assembler::fldz() {
6627   emit_int8((unsigned char)0xD9);
6628   emit_int8((unsigned char)0xEE);
6629 }
6630 
6631 void Assembler::flog() {
6632   fldln2();
6633   fxch();
6634   fyl2x();
6635 }
6636 
6637 void Assembler::flog10() {
6638   fldlg2();
6639   fxch();
6640   fyl2x();
6641 }
6642 
6643 void Assembler::fmul(int i) {
6644   emit_farith(0xD8, 0xC8, i);
6645 }
6646 
6647 void Assembler::fmul_d(Address src) {
6648   InstructionMark im(this);
6649   emit_int8((unsigned char)0xDC);
6650   emit_operand32(rcx, src);
6651 }
6652 
6653 void Assembler::fmul_s(Address src) {
6654   InstructionMark im(this);
6655   emit_int8((unsigned char)0xD8);
6656   emit_operand32(rcx, src);
6657 }
6658 
6659 void Assembler::fmula(int i) {
6660   emit_farith(0xDC, 0xC8, i);
6661 }
6662 
6663 void Assembler::fmulp(int i) {
6664   emit_farith(0xDE, 0xC8, i);
6665 }
6666 
6667 void Assembler::fnsave(Address dst) {
6668   InstructionMark im(this);
6669   emit_int8((unsigned char)0xDD);
6670   emit_operand32(rsi, dst);
6671 }
6672 
6673 void Assembler::fnstcw(Address src) {
6674   InstructionMark im(this);
6675   emit_int8((unsigned char)0x9B);
6676   emit_int8((unsigned char)0xD9);
6677   emit_operand32(rdi, src);
6678 }
6679 
6680 void Assembler::fnstsw_ax() {
6681   emit_int8((unsigned char)0xDF);
6682   emit_int8((unsigned char)0xE0);
6683 }
6684 
6685 void Assembler::fprem() {
6686   emit_int8((unsigned char)0xD9);
6687   emit_int8((unsigned char)0xF8);
6688 }
6689 
6690 void Assembler::fprem1() {
6691   emit_int8((unsigned char)0xD9);
6692   emit_int8((unsigned char)0xF5);
6693 }
6694 
6695 void Assembler::frstor(Address src) {
6696   InstructionMark im(this);
6697   emit_int8((unsigned char)0xDD);
6698   emit_operand32(rsp, src);
6699 }
6700 
6701 void Assembler::fsin() {
6702   emit_int8((unsigned char)0xD9);
6703   emit_int8((unsigned char)0xFE);
6704 }
6705 
6706 void Assembler::fsqrt() {
6707   emit_int8((unsigned char)0xD9);
6708   emit_int8((unsigned char)0xFA);
6709 }
6710 
6711 void Assembler::fst_d(Address adr) {
6712   InstructionMark im(this);
6713   emit_int8((unsigned char)0xDD);
6714   emit_operand32(rdx, adr);
6715 }
6716 
6717 void Assembler::fst_s(Address adr) {
6718   InstructionMark im(this);
6719   emit_int8((unsigned char)0xD9);
6720   emit_operand32(rdx, adr);
6721 }
6722 
6723 void Assembler::fstp_d(Address adr) {
6724   InstructionMark im(this);
6725   emit_int8((unsigned char)0xDD);
6726   emit_operand32(rbx, adr);
6727 }
6728 
6729 void Assembler::fstp_d(int index) {
6730   emit_farith(0xDD, 0xD8, index);
6731 }
6732 
6733 void Assembler::fstp_s(Address adr) {
6734   InstructionMark im(this);
6735   emit_int8((unsigned char)0xD9);
6736   emit_operand32(rbx, adr);
6737 }
6738 
6739 void Assembler::fstp_x(Address adr) {
6740   InstructionMark im(this);
6741   emit_int8((unsigned char)0xDB);
6742   emit_operand32(rdi, adr);
6743 }
6744 
6745 void Assembler::fsub(int i) {
6746   emit_farith(0xD8, 0xE0, i);
6747 }
6748 
6749 void Assembler::fsub_d(Address src) {
6750   InstructionMark im(this);
6751   emit_int8((unsigned char)0xDC);
6752   emit_operand32(rsp, src);
6753 }
6754 
6755 void Assembler::fsub_s(Address src) {
6756   InstructionMark im(this);
6757   emit_int8((unsigned char)0xD8);
6758   emit_operand32(rsp, src);
6759 }
6760 
6761 void Assembler::fsuba(int i) {
6762   emit_farith(0xDC, 0xE8, i);
6763 }
6764 
6765 void Assembler::fsubp(int i) {
6766   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
6767 }
6768 
6769 void Assembler::fsubr(int i) {
6770   emit_farith(0xD8, 0xE8, i);
6771 }
6772 
6773 void Assembler::fsubr_d(Address src) {
6774   InstructionMark im(this);
6775   emit_int8((unsigned char)0xDC);
6776   emit_operand32(rbp, src);
6777 }
6778 
6779 void Assembler::fsubr_s(Address src) {
6780   InstructionMark im(this);
6781   emit_int8((unsigned char)0xD8);
6782   emit_operand32(rbp, src);
6783 }
6784 
6785 void Assembler::fsubra(int i) {
6786   emit_farith(0xDC, 0xE0, i);
6787 }
6788 
6789 void Assembler::fsubrp(int i) {
6790   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
6791 }
6792 
6793 void Assembler::ftan() {
6794   emit_int8((unsigned char)0xD9);
6795   emit_int8((unsigned char)0xF2);
6796   emit_int8((unsigned char)0xDD);
6797   emit_int8((unsigned char)0xD8);
6798 }
6799 
6800 void Assembler::ftst() {
6801   emit_int8((unsigned char)0xD9);
6802   emit_int8((unsigned char)0xE4);
6803 }
6804 
6805 void Assembler::fucomi(int i) {
6806   // make sure the instruction is supported (introduced for P6, together with cmov)
6807   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6808   emit_farith(0xDB, 0xE8, i);
6809 }
6810 
6811 void Assembler::fucomip(int i) {
6812   // make sure the instruction is supported (introduced for P6, together with cmov)
6813   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6814   emit_farith(0xDF, 0xE8, i);
6815 }
6816 
6817 void Assembler::fwait() {
6818   emit_int8((unsigned char)0x9B);
6819 }
6820 
6821 void Assembler::fxch(int i) {
6822   emit_farith(0xD9, 0xC8, i);
6823 }
6824 
6825 void Assembler::fyl2x() {
6826   emit_int8((unsigned char)0xD9);
6827   emit_int8((unsigned char)0xF1);
6828 }
6829 
6830 void Assembler::frndint() {
6831   emit_int8((unsigned char)0xD9);
6832   emit_int8((unsigned char)0xFC);
6833 }
6834 
6835 void Assembler::f2xm1() {
6836   emit_int8((unsigned char)0xD9);
6837   emit_int8((unsigned char)0xF0);
6838 }
6839 
6840 void Assembler::fldl2e() {
6841   emit_int8((unsigned char)0xD9);
6842   emit_int8((unsigned char)0xEA);
6843 }
6844 
6845 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
6846 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
6847 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
6848 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
6849 
6850 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
6851 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6852   if (pre > 0) {
6853     emit_int8(simd_pre[pre]);
6854   }
6855   if (rex_w) {
6856     prefixq(adr, xreg);
6857   } else {
6858     prefix(adr, xreg);
6859   }
6860   if (opc > 0) {
6861     emit_int8(0x0F);
6862     int opc2 = simd_opc[opc];
6863     if (opc2 > 0) {
6864       emit_int8(opc2);
6865     }
6866   }
6867 }
6868 
6869 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6870   if (pre > 0) {
6871     emit_int8(simd_pre[pre]);
6872   }
6873   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
6874   if (opc > 0) {
6875     emit_int8(0x0F);
6876     int opc2 = simd_opc[opc];
6877     if (opc2 > 0) {
6878       emit_int8(opc2);
6879     }
6880   }
6881   return encode;
6882 }
6883 
6884 
6885 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
6886   int vector_len = _attributes->get_vector_len();
6887   bool vex_w = _attributes->is_rex_vex_w();
6888   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
6889     prefix(VEX_3bytes);
6890 
6891     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
6892     byte1 = (~byte1) & 0xE0;
6893     byte1 |= opc;
6894     emit_int8(byte1);
6895 
6896     int byte2 = ((~nds_enc) & 0xf) << 3;
6897     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
6898     emit_int8(byte2);
6899   } else {
6900     prefix(VEX_2bytes);
6901 
6902     int byte1 = vex_r ? VEX_R : 0;
6903     byte1 = (~byte1) & 0x80;
6904     byte1 |= ((~nds_enc) & 0xf) << 3;
6905     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
6906     emit_int8(byte1);
6907   }
6908 }
6909 
6910 // This is a 4 byte encoding
6911 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
6912   // EVEX 0x62 prefix
6913   prefix(EVEX_4bytes);
6914   bool vex_w = _attributes->is_rex_vex_w();
6915   int evex_encoding = (vex_w ? VEX_W : 0);
6916   // EVEX.b is not currently used for broadcast of single element or data rounding modes
6917   _attributes->set_evex_encoding(evex_encoding);
6918 
6919   // P0: byte 2, initialized to RXBR`00mm
6920   // instead of not'd
6921   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
6922   byte2 = (~byte2) & 0xF0;
6923   // confine opc opcode extensions in mm bits to lower two bits
6924   // of form {0F, 0F_38, 0F_3A}
6925   byte2 |= opc;
6926   emit_int8(byte2);
6927 
6928   // P1: byte 3 as Wvvvv1pp
6929   int byte3 = ((~nds_enc) & 0xf) << 3;
6930   // p[10] is always 1
6931   byte3 |= EVEX_F;
6932   byte3 |= (vex_w & 1) << 7;
6933   // confine pre opcode extensions in pp bits to lower two bits
6934   // of form {66, F3, F2}
6935   byte3 |= pre;
6936   emit_int8(byte3);
6937 
6938   // P2: byte 4 as zL'Lbv'aaa
6939   int byte4 = (_attributes->is_no_reg_mask()) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
6940   // EVEX.v` for extending EVEX.vvvv or VIDX
6941   byte4 |= (evex_v ? 0: EVEX_V);
6942   // third EXEC.b for broadcast actions
6943   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
6944   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
6945   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
6946   // last is EVEX.z for zero/merge actions
6947   byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
6948   emit_int8(byte4);
6949 }
6950 
6951 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
6952   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
6953   bool vex_b = adr.base_needs_rex();
6954   bool vex_x = adr.index_needs_rex();
6955   set_attributes(attributes);
6956   attributes->set_current_assembler(this);
6957 
6958   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6959   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
6960     switch (attributes->get_vector_len()) {
6961     case AVX_128bit:
6962     case AVX_256bit:
6963       attributes->set_is_legacy_mode();
6964       break;
6965     }
6966   }
6967 
6968   // For pure EVEX check and see if this instruction
6969   // is allowed in legacy mode and has resources which will
6970   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
6971   // else that field is set when we encode to EVEX
6972   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
6973       !_is_managed && !attributes->is_evex_instruction()) {
6974     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
6975       bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
6976       if (check_register_bank) {
6977         // check nds_enc and xreg_enc for upper bank usage
6978         if (nds_enc < 16 && xreg_enc < 16) {
6979           attributes->set_is_legacy_mode();
6980         }
6981       } else {
6982         attributes->set_is_legacy_mode();
6983       }
6984     }
6985   }
6986 
6987   _is_managed = false;
6988   if (UseAVX > 2 && !attributes->is_legacy_mode())
6989   {
6990     bool evex_r = (xreg_enc >= 16);
6991     bool evex_v = (nds_enc >= 16);
6992     attributes->set_is_evex_instruction();
6993     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
6994   } else {
6995     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
6996       attributes->set_rex_vex_w(false);
6997     }
6998     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
6999   }
7000 }
7001 
7002 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7003   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
7004   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
7005   bool vex_x = false;
7006   set_attributes(attributes);
7007   attributes->set_current_assembler(this);
7008   bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
7009 
7010   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
7011   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
7012     switch (attributes->get_vector_len()) {
7013     case AVX_128bit:
7014     case AVX_256bit:
7015       if (check_register_bank) {
7016         if (dst_enc >= 16 || nds_enc >= 16 || src_enc >= 16) {
7017           // up propagate arithmetic instructions to meet RA requirements
7018           attributes->set_vector_len(AVX_512bit);
7019         } else {
7020           attributes->set_is_legacy_mode();
7021         }
7022       } else {
7023         attributes->set_is_legacy_mode();
7024       }
7025       break;
7026     }
7027   }
7028 
7029   // For pure EVEX check and see if this instruction
7030   // is allowed in legacy mode and has resources which will
7031   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
7032   // else that field is set when we encode to EVEX
7033   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
7034       !_is_managed && !attributes->is_evex_instruction()) {
7035     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
7036       if (check_register_bank) {
7037         // check dst_enc, nds_enc and src_enc for upper bank usage
7038         if (dst_enc < 16 && nds_enc < 16 && src_enc < 16) {
7039           attributes->set_is_legacy_mode();
7040         }
7041       } else {
7042         attributes->set_is_legacy_mode();
7043       }
7044     }
7045   }
7046 
7047   _is_managed = false;
7048   if (UseAVX > 2 && !attributes->is_legacy_mode())
7049   {
7050     bool evex_r = (dst_enc >= 16);
7051     bool evex_v = (nds_enc >= 16);
7052     // can use vex_x as bank extender on rm encoding
7053     vex_x = (src_enc >= 16);
7054     attributes->set_is_evex_instruction();
7055     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7056   } else {
7057     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7058       attributes->set_rex_vex_w(false);
7059     }
7060     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7061   }
7062 
7063   // return modrm byte components for operands
7064   return (((dst_enc & 7) << 3) | (src_enc & 7));
7065 }
7066 
7067 
7068 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
7069                             VexOpcode opc, InstructionAttr *attributes) {
7070   if (UseAVX > 0) {
7071     int xreg_enc = xreg->encoding();
7072     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7073     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
7074   } else {
7075     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
7076     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
7077   }
7078 }
7079 
7080 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
7081                                       VexOpcode opc, InstructionAttr *attributes) {
7082   int dst_enc = dst->encoding();
7083   int src_enc = src->encoding();
7084   if (UseAVX > 0) {
7085     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7086     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
7087   } else {
7088     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
7089     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
7090   }
7091 }
7092 
7093 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7094   assert(VM_Version::supports_avx(), "");
7095   assert(!VM_Version::supports_evex(), "");
7096   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7097   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7098   emit_int8((unsigned char)0xC2);
7099   emit_int8((unsigned char)(0xC0 | encode));
7100   emit_int8((unsigned char)(0xF & cop));
7101 }
7102 
7103 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7104   assert(VM_Version::supports_avx(), "");
7105   assert(!VM_Version::supports_evex(), "");
7106   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7107   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7108   emit_int8((unsigned char)0x4B);
7109   emit_int8((unsigned char)(0xC0 | encode));
7110   int src2_enc = src2->encoding();
7111   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
7112 }
7113 
7114 void Assembler::shlxl(Register dst, Register src1, Register src2) {
7115   assert(VM_Version::supports_bmi2(), "");
7116   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7117   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7118   emit_int8((unsigned char)0xF7);
7119   emit_int8((unsigned char)(0xC0 | encode));
7120 }
7121 
7122 void Assembler::shlxq(Register dst, Register src1, Register src2) {
7123   assert(VM_Version::supports_bmi2(), "");
7124   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7125   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7126   emit_int8((unsigned char)0xF7);
7127   emit_int8((unsigned char)(0xC0 | encode));
7128 }
7129 
7130 #ifndef _LP64
7131 
7132 void Assembler::incl(Register dst) {
7133   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7134   emit_int8(0x40 | dst->encoding());
7135 }
7136 
7137 void Assembler::lea(Register dst, Address src) {
7138   leal(dst, src);
7139 }
7140 
7141 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
7142   InstructionMark im(this);
7143   emit_int8((unsigned char)0xC7);
7144   emit_operand(rax, dst);
7145   emit_data((int)imm32, rspec, 0);
7146 }
7147 
7148 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7149   InstructionMark im(this);
7150   int encode = prefix_and_encode(dst->encoding());
7151   emit_int8((unsigned char)(0xB8 | encode));
7152   emit_data((int)imm32, rspec, 0);
7153 }
7154 
7155 void Assembler::popa() { // 32bit
7156   emit_int8(0x61);
7157 }
7158 
7159 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
7160   InstructionMark im(this);
7161   emit_int8(0x68);
7162   emit_data(imm32, rspec, 0);
7163 }
7164 
7165 void Assembler::pusha() { // 32bit
7166   emit_int8(0x60);
7167 }
7168 
7169 void Assembler::set_byte_if_not_zero(Register dst) {
7170   emit_int8(0x0F);
7171   emit_int8((unsigned char)0x95);
7172   emit_int8((unsigned char)(0xE0 | dst->encoding()));
7173 }
7174 
7175 void Assembler::shldl(Register dst, Register src) {
7176   emit_int8(0x0F);
7177   emit_int8((unsigned char)0xA5);
7178   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7179 }
7180 
7181 // 0F A4 / r ib
7182 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
7183   emit_int8(0x0F);
7184   emit_int8((unsigned char)0xA4);
7185   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7186   emit_int8(imm8);
7187 }
7188 
7189 void Assembler::shrdl(Register dst, Register src) {
7190   emit_int8(0x0F);
7191   emit_int8((unsigned char)0xAD);
7192   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7193 }
7194 
7195 #else // LP64
7196 
7197 void Assembler::set_byte_if_not_zero(Register dst) {
7198   int enc = prefix_and_encode(dst->encoding(), true);
7199   emit_int8(0x0F);
7200   emit_int8((unsigned char)0x95);
7201   emit_int8((unsigned char)(0xE0 | enc));
7202 }
7203 
7204 // 64bit only pieces of the assembler
7205 // This should only be used by 64bit instructions that can use rip-relative
7206 // it cannot be used by instructions that want an immediate value.
7207 
7208 bool Assembler::reachable(AddressLiteral adr) {
7209   int64_t disp;
7210   // None will force a 64bit literal to the code stream. Likely a placeholder
7211   // for something that will be patched later and we need to certain it will
7212   // always be reachable.
7213   if (adr.reloc() == relocInfo::none) {
7214     return false;
7215   }
7216   if (adr.reloc() == relocInfo::internal_word_type) {
7217     // This should be rip relative and easily reachable.
7218     return true;
7219   }
7220   if (adr.reloc() == relocInfo::virtual_call_type ||
7221       adr.reloc() == relocInfo::opt_virtual_call_type ||
7222       adr.reloc() == relocInfo::static_call_type ||
7223       adr.reloc() == relocInfo::static_stub_type ) {
7224     // This should be rip relative within the code cache and easily
7225     // reachable until we get huge code caches. (At which point
7226     // ic code is going to have issues).
7227     return true;
7228   }
7229   if (adr.reloc() != relocInfo::external_word_type &&
7230       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
7231       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
7232       adr.reloc() != relocInfo::runtime_call_type ) {
7233     return false;
7234   }
7235 
7236   // Stress the correction code
7237   if (ForceUnreachable) {
7238     // Must be runtimecall reloc, see if it is in the codecache
7239     // Flipping stuff in the codecache to be unreachable causes issues
7240     // with things like inline caches where the additional instructions
7241     // are not handled.
7242     if (CodeCache::find_blob(adr._target) == NULL) {
7243       return false;
7244     }
7245   }
7246   // For external_word_type/runtime_call_type if it is reachable from where we
7247   // are now (possibly a temp buffer) and where we might end up
7248   // anywhere in the codeCache then we are always reachable.
7249   // This would have to change if we ever save/restore shared code
7250   // to be more pessimistic.
7251   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7252   if (!is_simm32(disp)) return false;
7253   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7254   if (!is_simm32(disp)) return false;
7255 
7256   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7257 
7258   // Because rip relative is a disp + address_of_next_instruction and we
7259   // don't know the value of address_of_next_instruction we apply a fudge factor
7260   // to make sure we will be ok no matter the size of the instruction we get placed into.
7261   // We don't have to fudge the checks above here because they are already worst case.
7262 
7263   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
7264   // + 4 because better safe than sorry.
7265   const int fudge = 12 + 4;
7266   if (disp < 0) {
7267     disp -= fudge;
7268   } else {
7269     disp += fudge;
7270   }
7271   return is_simm32(disp);
7272 }
7273 
7274 // Check if the polling page is not reachable from the code cache using rip-relative
7275 // addressing.
7276 bool Assembler::is_polling_page_far() {
7277   intptr_t addr = (intptr_t)os::get_polling_page();
7278   return ForceUnreachable ||
7279          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
7280          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
7281 }
7282 
7283 void Assembler::emit_data64(jlong data,
7284                             relocInfo::relocType rtype,
7285                             int format) {
7286   if (rtype == relocInfo::none) {
7287     emit_int64(data);
7288   } else {
7289     emit_data64(data, Relocation::spec_simple(rtype), format);
7290   }
7291 }
7292 
7293 void Assembler::emit_data64(jlong data,
7294                             RelocationHolder const& rspec,
7295                             int format) {
7296   assert(imm_operand == 0, "default format must be immediate in this file");
7297   assert(imm_operand == format, "must be immediate");
7298   assert(inst_mark() != NULL, "must be inside InstructionMark");
7299   // Do not use AbstractAssembler::relocate, which is not intended for
7300   // embedded words.  Instead, relocate to the enclosing instruction.
7301   code_section()->relocate(inst_mark(), rspec, format);
7302 #ifdef ASSERT
7303   check_relocation(rspec, format);
7304 #endif
7305   emit_int64(data);
7306 }
7307 
7308 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
7309   if (reg_enc >= 8) {
7310     prefix(REX_B);
7311     reg_enc -= 8;
7312   } else if (byteinst && reg_enc >= 4) {
7313     prefix(REX);
7314   }
7315   return reg_enc;
7316 }
7317 
7318 int Assembler::prefixq_and_encode(int reg_enc) {
7319   if (reg_enc < 8) {
7320     prefix(REX_W);
7321   } else {
7322     prefix(REX_WB);
7323     reg_enc -= 8;
7324   }
7325   return reg_enc;
7326 }
7327 
7328 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
7329   if (dst_enc < 8) {
7330     if (src_enc >= 8) {
7331       prefix(REX_B);
7332       src_enc -= 8;
7333     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
7334       prefix(REX);
7335     }
7336   } else {
7337     if (src_enc < 8) {
7338       prefix(REX_R);
7339     } else {
7340       prefix(REX_RB);
7341       src_enc -= 8;
7342     }
7343     dst_enc -= 8;
7344   }
7345   return dst_enc << 3 | src_enc;
7346 }
7347 
7348 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
7349   if (dst_enc < 8) {
7350     if (src_enc < 8) {
7351       prefix(REX_W);
7352     } else {
7353       prefix(REX_WB);
7354       src_enc -= 8;
7355     }
7356   } else {
7357     if (src_enc < 8) {
7358       prefix(REX_WR);
7359     } else {
7360       prefix(REX_WRB);
7361       src_enc -= 8;
7362     }
7363     dst_enc -= 8;
7364   }
7365   return dst_enc << 3 | src_enc;
7366 }
7367 
7368 void Assembler::prefix(Register reg) {
7369   if (reg->encoding() >= 8) {
7370     prefix(REX_B);
7371   }
7372 }
7373 
7374 void Assembler::prefix(Register dst, Register src, Prefix p) {
7375   if (src->encoding() >= 8) {
7376     p = (Prefix)(p | REX_B);
7377   }
7378   if (dst->encoding() >= 8) {
7379     p = (Prefix)( p | REX_R);
7380   }
7381   if (p != Prefix_EMPTY) {
7382     // do not generate an empty prefix
7383     prefix(p);
7384   }
7385 }
7386 
7387 void Assembler::prefix(Register dst, Address adr, Prefix p) {
7388   if (adr.base_needs_rex()) {
7389     if (adr.index_needs_rex()) {
7390       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7391     } else {
7392       prefix(REX_B);
7393     }
7394   } else {
7395     if (adr.index_needs_rex()) {
7396       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7397     }
7398   }
7399   if (dst->encoding() >= 8) {
7400     p = (Prefix)(p | REX_R);
7401   }
7402   if (p != Prefix_EMPTY) {
7403     // do not generate an empty prefix
7404     prefix(p);
7405   }
7406 }
7407 
7408 void Assembler::prefix(Address adr) {
7409   if (adr.base_needs_rex()) {
7410     if (adr.index_needs_rex()) {
7411       prefix(REX_XB);
7412     } else {
7413       prefix(REX_B);
7414     }
7415   } else {
7416     if (adr.index_needs_rex()) {
7417       prefix(REX_X);
7418     }
7419   }
7420 }
7421 
7422 void Assembler::prefixq(Address adr) {
7423   if (adr.base_needs_rex()) {
7424     if (adr.index_needs_rex()) {
7425       prefix(REX_WXB);
7426     } else {
7427       prefix(REX_WB);
7428     }
7429   } else {
7430     if (adr.index_needs_rex()) {
7431       prefix(REX_WX);
7432     } else {
7433       prefix(REX_W);
7434     }
7435   }
7436 }
7437 
7438 
7439 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
7440   if (reg->encoding() < 8) {
7441     if (adr.base_needs_rex()) {
7442       if (adr.index_needs_rex()) {
7443         prefix(REX_XB);
7444       } else {
7445         prefix(REX_B);
7446       }
7447     } else {
7448       if (adr.index_needs_rex()) {
7449         prefix(REX_X);
7450       } else if (byteinst && reg->encoding() >= 4 ) {
7451         prefix(REX);
7452       }
7453     }
7454   } else {
7455     if (adr.base_needs_rex()) {
7456       if (adr.index_needs_rex()) {
7457         prefix(REX_RXB);
7458       } else {
7459         prefix(REX_RB);
7460       }
7461     } else {
7462       if (adr.index_needs_rex()) {
7463         prefix(REX_RX);
7464       } else {
7465         prefix(REX_R);
7466       }
7467     }
7468   }
7469 }
7470 
7471 void Assembler::prefixq(Address adr, Register src) {
7472   if (src->encoding() < 8) {
7473     if (adr.base_needs_rex()) {
7474       if (adr.index_needs_rex()) {
7475         prefix(REX_WXB);
7476       } else {
7477         prefix(REX_WB);
7478       }
7479     } else {
7480       if (adr.index_needs_rex()) {
7481         prefix(REX_WX);
7482       } else {
7483         prefix(REX_W);
7484       }
7485     }
7486   } else {
7487     if (adr.base_needs_rex()) {
7488       if (adr.index_needs_rex()) {
7489         prefix(REX_WRXB);
7490       } else {
7491         prefix(REX_WRB);
7492       }
7493     } else {
7494       if (adr.index_needs_rex()) {
7495         prefix(REX_WRX);
7496       } else {
7497         prefix(REX_WR);
7498       }
7499     }
7500   }
7501 }
7502 
7503 void Assembler::prefix(Address adr, XMMRegister reg) {
7504   if (reg->encoding() < 8) {
7505     if (adr.base_needs_rex()) {
7506       if (adr.index_needs_rex()) {
7507         prefix(REX_XB);
7508       } else {
7509         prefix(REX_B);
7510       }
7511     } else {
7512       if (adr.index_needs_rex()) {
7513         prefix(REX_X);
7514       }
7515     }
7516   } else {
7517     if (adr.base_needs_rex()) {
7518       if (adr.index_needs_rex()) {
7519         prefix(REX_RXB);
7520       } else {
7521         prefix(REX_RB);
7522       }
7523     } else {
7524       if (adr.index_needs_rex()) {
7525         prefix(REX_RX);
7526       } else {
7527         prefix(REX_R);
7528       }
7529     }
7530   }
7531 }
7532 
7533 void Assembler::prefixq(Address adr, XMMRegister src) {
7534   if (src->encoding() < 8) {
7535     if (adr.base_needs_rex()) {
7536       if (adr.index_needs_rex()) {
7537         prefix(REX_WXB);
7538       } else {
7539         prefix(REX_WB);
7540       }
7541     } else {
7542       if (adr.index_needs_rex()) {
7543         prefix(REX_WX);
7544       } else {
7545         prefix(REX_W);
7546       }
7547     }
7548   } else {
7549     if (adr.base_needs_rex()) {
7550       if (adr.index_needs_rex()) {
7551         prefix(REX_WRXB);
7552       } else {
7553         prefix(REX_WRB);
7554       }
7555     } else {
7556       if (adr.index_needs_rex()) {
7557         prefix(REX_WRX);
7558       } else {
7559         prefix(REX_WR);
7560       }
7561     }
7562   }
7563 }
7564 
7565 void Assembler::adcq(Register dst, int32_t imm32) {
7566   (void) prefixq_and_encode(dst->encoding());
7567   emit_arith(0x81, 0xD0, dst, imm32);
7568 }
7569 
7570 void Assembler::adcq(Register dst, Address src) {
7571   InstructionMark im(this);
7572   prefixq(src, dst);
7573   emit_int8(0x13);
7574   emit_operand(dst, src);
7575 }
7576 
7577 void Assembler::adcq(Register dst, Register src) {
7578   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7579   emit_arith(0x13, 0xC0, dst, src);
7580 }
7581 
7582 void Assembler::addq(Address dst, int32_t imm32) {
7583   InstructionMark im(this);
7584   prefixq(dst);
7585   emit_arith_operand(0x81, rax, dst,imm32);
7586 }
7587 
7588 void Assembler::addq(Address dst, Register src) {
7589   InstructionMark im(this);
7590   prefixq(dst, src);
7591   emit_int8(0x01);
7592   emit_operand(src, dst);
7593 }
7594 
7595 void Assembler::addq(Register dst, int32_t imm32) {
7596   (void) prefixq_and_encode(dst->encoding());
7597   emit_arith(0x81, 0xC0, dst, imm32);
7598 }
7599 
7600 void Assembler::addq(Register dst, Address src) {
7601   InstructionMark im(this);
7602   prefixq(src, dst);
7603   emit_int8(0x03);
7604   emit_operand(dst, src);
7605 }
7606 
7607 void Assembler::addq(Register dst, Register src) {
7608   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7609   emit_arith(0x03, 0xC0, dst, src);
7610 }
7611 
7612 void Assembler::adcxq(Register dst, Register src) {
7613   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7614   emit_int8((unsigned char)0x66);
7615   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7616   emit_int8(0x0F);
7617   emit_int8(0x38);
7618   emit_int8((unsigned char)0xF6);
7619   emit_int8((unsigned char)(0xC0 | encode));
7620 }
7621 
7622 void Assembler::adoxq(Register dst, Register src) {
7623   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7624   emit_int8((unsigned char)0xF3);
7625   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7626   emit_int8(0x0F);
7627   emit_int8(0x38);
7628   emit_int8((unsigned char)0xF6);
7629   emit_int8((unsigned char)(0xC0 | encode));
7630 }
7631 
7632 void Assembler::andq(Address dst, int32_t imm32) {
7633   InstructionMark im(this);
7634   prefixq(dst);
7635   emit_int8((unsigned char)0x81);
7636   emit_operand(rsp, dst, 4);
7637   emit_int32(imm32);
7638 }
7639 
7640 void Assembler::andq(Register dst, int32_t imm32) {
7641   (void) prefixq_and_encode(dst->encoding());
7642   emit_arith(0x81, 0xE0, dst, imm32);
7643 }
7644 
7645 void Assembler::andq(Register dst, Address src) {
7646   InstructionMark im(this);
7647   prefixq(src, dst);
7648   emit_int8(0x23);
7649   emit_operand(dst, src);
7650 }
7651 
7652 void Assembler::andq(Register dst, Register src) {
7653   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7654   emit_arith(0x23, 0xC0, dst, src);
7655 }
7656 
7657 void Assembler::andnq(Register dst, Register src1, Register src2) {
7658   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7659   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7660   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7661   emit_int8((unsigned char)0xF2);
7662   emit_int8((unsigned char)(0xC0 | encode));
7663 }
7664 
7665 void Assembler::andnq(Register dst, Register src1, Address src2) {
7666   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7667   InstructionMark im(this);
7668   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7669   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7670   emit_int8((unsigned char)0xF2);
7671   emit_operand(dst, src2);
7672 }
7673 
7674 void Assembler::bsfq(Register dst, Register src) {
7675   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7676   emit_int8(0x0F);
7677   emit_int8((unsigned char)0xBC);
7678   emit_int8((unsigned char)(0xC0 | encode));
7679 }
7680 
7681 void Assembler::bsrq(Register dst, Register src) {
7682   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7683   emit_int8(0x0F);
7684   emit_int8((unsigned char)0xBD);
7685   emit_int8((unsigned char)(0xC0 | encode));
7686 }
7687 
7688 void Assembler::bswapq(Register reg) {
7689   int encode = prefixq_and_encode(reg->encoding());
7690   emit_int8(0x0F);
7691   emit_int8((unsigned char)(0xC8 | encode));
7692 }
7693 
7694 void Assembler::blsiq(Register dst, Register src) {
7695   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7696   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7697   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7698   emit_int8((unsigned char)0xF3);
7699   emit_int8((unsigned char)(0xC0 | encode));
7700 }
7701 
7702 void Assembler::blsiq(Register dst, Address src) {
7703   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7704   InstructionMark im(this);
7705   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7706   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7707   emit_int8((unsigned char)0xF3);
7708   emit_operand(rbx, src);
7709 }
7710 
7711 void Assembler::blsmskq(Register dst, Register src) {
7712   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7713   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7714   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7715   emit_int8((unsigned char)0xF3);
7716   emit_int8((unsigned char)(0xC0 | encode));
7717 }
7718 
7719 void Assembler::blsmskq(Register dst, Address src) {
7720   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7721   InstructionMark im(this);
7722   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7723   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7724   emit_int8((unsigned char)0xF3);
7725   emit_operand(rdx, src);
7726 }
7727 
7728 void Assembler::blsrq(Register dst, Register src) {
7729   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7730   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7731   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7732   emit_int8((unsigned char)0xF3);
7733   emit_int8((unsigned char)(0xC0 | encode));
7734 }
7735 
7736 void Assembler::blsrq(Register dst, Address src) {
7737   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7738   InstructionMark im(this);
7739   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7740   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7741   emit_int8((unsigned char)0xF3);
7742   emit_operand(rcx, src);
7743 }
7744 
7745 void Assembler::cdqq() {
7746   prefix(REX_W);
7747   emit_int8((unsigned char)0x99);
7748 }
7749 
7750 void Assembler::clflush(Address adr) {
7751   prefix(adr);
7752   emit_int8(0x0F);
7753   emit_int8((unsigned char)0xAE);
7754   emit_operand(rdi, adr);
7755 }
7756 
7757 void Assembler::cmovq(Condition cc, Register dst, Register src) {
7758   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7759   emit_int8(0x0F);
7760   emit_int8(0x40 | cc);
7761   emit_int8((unsigned char)(0xC0 | encode));
7762 }
7763 
7764 void Assembler::cmovq(Condition cc, Register dst, Address src) {
7765   InstructionMark im(this);
7766   prefixq(src, dst);
7767   emit_int8(0x0F);
7768   emit_int8(0x40 | cc);
7769   emit_operand(dst, src);
7770 }
7771 
7772 void Assembler::cmpq(Address dst, int32_t imm32) {
7773   InstructionMark im(this);
7774   prefixq(dst);
7775   emit_int8((unsigned char)0x81);
7776   emit_operand(rdi, dst, 4);
7777   emit_int32(imm32);
7778 }
7779 
7780 void Assembler::cmpq(Register dst, int32_t imm32) {
7781   (void) prefixq_and_encode(dst->encoding());
7782   emit_arith(0x81, 0xF8, dst, imm32);
7783 }
7784 
7785 void Assembler::cmpq(Address dst, Register src) {
7786   InstructionMark im(this);
7787   prefixq(dst, src);
7788   emit_int8(0x3B);
7789   emit_operand(src, dst);
7790 }
7791 
7792 void Assembler::cmpq(Register dst, Register src) {
7793   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7794   emit_arith(0x3B, 0xC0, dst, src);
7795 }
7796 
7797 void Assembler::cmpq(Register dst, Address  src) {
7798   InstructionMark im(this);
7799   prefixq(src, dst);
7800   emit_int8(0x3B);
7801   emit_operand(dst, src);
7802 }
7803 
7804 void Assembler::cmpxchgq(Register reg, Address adr) {
7805   InstructionMark im(this);
7806   prefixq(adr, reg);
7807   emit_int8(0x0F);
7808   emit_int8((unsigned char)0xB1);
7809   emit_operand(reg, adr);
7810 }
7811 
7812 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
7813   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7814   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7815   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7816   emit_int8(0x2A);
7817   emit_int8((unsigned char)(0xC0 | encode));
7818 }
7819 
7820 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
7821   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7822   InstructionMark im(this);
7823   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7824   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7825   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7826   emit_int8(0x2A);
7827   emit_operand(dst, src);
7828 }
7829 
7830 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
7831   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7832   InstructionMark im(this);
7833   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7834   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7835   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7836   emit_int8(0x2A);
7837   emit_operand(dst, src);
7838 }
7839 
7840 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
7841   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7842   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7843   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7844   emit_int8(0x2C);
7845   emit_int8((unsigned char)(0xC0 | encode));
7846 }
7847 
7848 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
7849   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7850   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7851   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7852   emit_int8(0x2C);
7853   emit_int8((unsigned char)(0xC0 | encode));
7854 }
7855 
7856 void Assembler::decl(Register dst) {
7857   // Don't use it directly. Use MacroAssembler::decrementl() instead.
7858   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
7859   int encode = prefix_and_encode(dst->encoding());
7860   emit_int8((unsigned char)0xFF);
7861   emit_int8((unsigned char)(0xC8 | encode));
7862 }
7863 
7864 void Assembler::decq(Register dst) {
7865   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7866   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7867   int encode = prefixq_and_encode(dst->encoding());
7868   emit_int8((unsigned char)0xFF);
7869   emit_int8(0xC8 | encode);
7870 }
7871 
7872 void Assembler::decq(Address dst) {
7873   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7874   InstructionMark im(this);
7875   prefixq(dst);
7876   emit_int8((unsigned char)0xFF);
7877   emit_operand(rcx, dst);
7878 }
7879 
7880 void Assembler::fxrstor(Address src) {
7881   prefixq(src);
7882   emit_int8(0x0F);
7883   emit_int8((unsigned char)0xAE);
7884   emit_operand(as_Register(1), src);
7885 }
7886 
7887 void Assembler::xrstor(Address src) {
7888   prefixq(src);
7889   emit_int8(0x0F);
7890   emit_int8((unsigned char)0xAE);
7891   emit_operand(as_Register(5), src);
7892 }
7893 
7894 void Assembler::fxsave(Address dst) {
7895   prefixq(dst);
7896   emit_int8(0x0F);
7897   emit_int8((unsigned char)0xAE);
7898   emit_operand(as_Register(0), dst);
7899 }
7900 
7901 void Assembler::xsave(Address dst) {
7902   prefixq(dst);
7903   emit_int8(0x0F);
7904   emit_int8((unsigned char)0xAE);
7905   emit_operand(as_Register(4), dst);
7906 }
7907 
7908 void Assembler::idivq(Register src) {
7909   int encode = prefixq_and_encode(src->encoding());
7910   emit_int8((unsigned char)0xF7);
7911   emit_int8((unsigned char)(0xF8 | encode));
7912 }
7913 
7914 void Assembler::imulq(Register dst, Register src) {
7915   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7916   emit_int8(0x0F);
7917   emit_int8((unsigned char)0xAF);
7918   emit_int8((unsigned char)(0xC0 | encode));
7919 }
7920 
7921 void Assembler::imulq(Register dst, Register src, int value) {
7922   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7923   if (is8bit(value)) {
7924     emit_int8(0x6B);
7925     emit_int8((unsigned char)(0xC0 | encode));
7926     emit_int8(value & 0xFF);
7927   } else {
7928     emit_int8(0x69);
7929     emit_int8((unsigned char)(0xC0 | encode));
7930     emit_int32(value);
7931   }
7932 }
7933 
7934 void Assembler::imulq(Register dst, Address src) {
7935   InstructionMark im(this);
7936   prefixq(src, dst);
7937   emit_int8(0x0F);
7938   emit_int8((unsigned char) 0xAF);
7939   emit_operand(dst, src);
7940 }
7941 
7942 void Assembler::incl(Register dst) {
7943   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7944   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7945   int encode = prefix_and_encode(dst->encoding());
7946   emit_int8((unsigned char)0xFF);
7947   emit_int8((unsigned char)(0xC0 | encode));
7948 }
7949 
7950 void Assembler::incq(Register dst) {
7951   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7952   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7953   int encode = prefixq_and_encode(dst->encoding());
7954   emit_int8((unsigned char)0xFF);
7955   emit_int8((unsigned char)(0xC0 | encode));
7956 }
7957 
7958 void Assembler::incq(Address dst) {
7959   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7960   InstructionMark im(this);
7961   prefixq(dst);
7962   emit_int8((unsigned char)0xFF);
7963   emit_operand(rax, dst);
7964 }
7965 
7966 void Assembler::lea(Register dst, Address src) {
7967   leaq(dst, src);
7968 }
7969 
7970 void Assembler::leaq(Register dst, Address src) {
7971   InstructionMark im(this);
7972   prefixq(src, dst);
7973   emit_int8((unsigned char)0x8D);
7974   emit_operand(dst, src);
7975 }
7976 
7977 void Assembler::mov64(Register dst, int64_t imm64) {
7978   InstructionMark im(this);
7979   int encode = prefixq_and_encode(dst->encoding());
7980   emit_int8((unsigned char)(0xB8 | encode));
7981   emit_int64(imm64);
7982 }
7983 
7984 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
7985   InstructionMark im(this);
7986   int encode = prefixq_and_encode(dst->encoding());
7987   emit_int8(0xB8 | encode);
7988   emit_data64(imm64, rspec);
7989 }
7990 
7991 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7992   InstructionMark im(this);
7993   int encode = prefix_and_encode(dst->encoding());
7994   emit_int8((unsigned char)(0xB8 | encode));
7995   emit_data((int)imm32, rspec, narrow_oop_operand);
7996 }
7997 
7998 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
7999   InstructionMark im(this);
8000   prefix(dst);
8001   emit_int8((unsigned char)0xC7);
8002   emit_operand(rax, dst, 4);
8003   emit_data((int)imm32, rspec, narrow_oop_operand);
8004 }
8005 
8006 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
8007   InstructionMark im(this);
8008   int encode = prefix_and_encode(src1->encoding());
8009   emit_int8((unsigned char)0x81);
8010   emit_int8((unsigned char)(0xF8 | encode));
8011   emit_data((int)imm32, rspec, narrow_oop_operand);
8012 }
8013 
8014 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
8015   InstructionMark im(this);
8016   prefix(src1);
8017   emit_int8((unsigned char)0x81);
8018   emit_operand(rax, src1, 4);
8019   emit_data((int)imm32, rspec, narrow_oop_operand);
8020 }
8021 
8022 void Assembler::lzcntq(Register dst, Register src) {
8023   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
8024   emit_int8((unsigned char)0xF3);
8025   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8026   emit_int8(0x0F);
8027   emit_int8((unsigned char)0xBD);
8028   emit_int8((unsigned char)(0xC0 | encode));
8029 }
8030 
8031 void Assembler::movdq(XMMRegister dst, Register src) {
8032   // table D-1 says MMX/SSE2
8033   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8034   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8035   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8036   emit_int8(0x6E);
8037   emit_int8((unsigned char)(0xC0 | encode));
8038 }
8039 
8040 void Assembler::movdq(Register dst, XMMRegister src) {
8041   // table D-1 says MMX/SSE2
8042   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8043   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8044   // swap src/dst to get correct prefix
8045   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8046   emit_int8(0x7E);
8047   emit_int8((unsigned char)(0xC0 | encode));
8048 }
8049 
8050 void Assembler::movq(Register dst, Register src) {
8051   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8052   emit_int8((unsigned char)0x8B);
8053   emit_int8((unsigned char)(0xC0 | encode));
8054 }
8055 
8056 void Assembler::movq(Register dst, Address src) {
8057   InstructionMark im(this);
8058   prefixq(src, dst);
8059   emit_int8((unsigned char)0x8B);
8060   emit_operand(dst, src);
8061 }
8062 
8063 void Assembler::movq(Address dst, Register src) {
8064   InstructionMark im(this);
8065   prefixq(dst, src);
8066   emit_int8((unsigned char)0x89);
8067   emit_operand(src, dst);
8068 }
8069 
8070 void Assembler::movsbq(Register dst, Address src) {
8071   InstructionMark im(this);
8072   prefixq(src, dst);
8073   emit_int8(0x0F);
8074   emit_int8((unsigned char)0xBE);
8075   emit_operand(dst, src);
8076 }
8077 
8078 void Assembler::movsbq(Register dst, Register src) {
8079   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8080   emit_int8(0x0F);
8081   emit_int8((unsigned char)0xBE);
8082   emit_int8((unsigned char)(0xC0 | encode));
8083 }
8084 
8085 void Assembler::movslq(Register dst, int32_t imm32) {
8086   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
8087   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
8088   // as a result we shouldn't use until tested at runtime...
8089   ShouldNotReachHere();
8090   InstructionMark im(this);
8091   int encode = prefixq_and_encode(dst->encoding());
8092   emit_int8((unsigned char)(0xC7 | encode));
8093   emit_int32(imm32);
8094 }
8095 
8096 void Assembler::movslq(Address dst, int32_t imm32) {
8097   assert(is_simm32(imm32), "lost bits");
8098   InstructionMark im(this);
8099   prefixq(dst);
8100   emit_int8((unsigned char)0xC7);
8101   emit_operand(rax, dst, 4);
8102   emit_int32(imm32);
8103 }
8104 
8105 void Assembler::movslq(Register dst, Address src) {
8106   InstructionMark im(this);
8107   prefixq(src, dst);
8108   emit_int8(0x63);
8109   emit_operand(dst, src);
8110 }
8111 
8112 void Assembler::movslq(Register dst, Register src) {
8113   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8114   emit_int8(0x63);
8115   emit_int8((unsigned char)(0xC0 | encode));
8116 }
8117 
8118 void Assembler::movswq(Register dst, Address src) {
8119   InstructionMark im(this);
8120   prefixq(src, dst);
8121   emit_int8(0x0F);
8122   emit_int8((unsigned char)0xBF);
8123   emit_operand(dst, src);
8124 }
8125 
8126 void Assembler::movswq(Register dst, Register src) {
8127   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8128   emit_int8((unsigned char)0x0F);
8129   emit_int8((unsigned char)0xBF);
8130   emit_int8((unsigned char)(0xC0 | encode));
8131 }
8132 
8133 void Assembler::movzbq(Register dst, Address src) {
8134   InstructionMark im(this);
8135   prefixq(src, dst);
8136   emit_int8((unsigned char)0x0F);
8137   emit_int8((unsigned char)0xB6);
8138   emit_operand(dst, src);
8139 }
8140 
8141 void Assembler::movzbq(Register dst, Register src) {
8142   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8143   emit_int8(0x0F);
8144   emit_int8((unsigned char)0xB6);
8145   emit_int8(0xC0 | encode);
8146 }
8147 
8148 void Assembler::movzwq(Register dst, Address src) {
8149   InstructionMark im(this);
8150   prefixq(src, dst);
8151   emit_int8((unsigned char)0x0F);
8152   emit_int8((unsigned char)0xB7);
8153   emit_operand(dst, src);
8154 }
8155 
8156 void Assembler::movzwq(Register dst, Register src) {
8157   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8158   emit_int8((unsigned char)0x0F);
8159   emit_int8((unsigned char)0xB7);
8160   emit_int8((unsigned char)(0xC0 | encode));
8161 }
8162 
8163 void Assembler::mulq(Address src) {
8164   InstructionMark im(this);
8165   prefixq(src);
8166   emit_int8((unsigned char)0xF7);
8167   emit_operand(rsp, src);
8168 }
8169 
8170 void Assembler::mulq(Register src) {
8171   int encode = prefixq_and_encode(src->encoding());
8172   emit_int8((unsigned char)0xF7);
8173   emit_int8((unsigned char)(0xE0 | encode));
8174 }
8175 
8176 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
8177   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8178   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8179   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
8180   emit_int8((unsigned char)0xF6);
8181   emit_int8((unsigned char)(0xC0 | encode));
8182 }
8183 
8184 void Assembler::negq(Register dst) {
8185   int encode = prefixq_and_encode(dst->encoding());
8186   emit_int8((unsigned char)0xF7);
8187   emit_int8((unsigned char)(0xD8 | encode));
8188 }
8189 
8190 void Assembler::notq(Register dst) {
8191   int encode = prefixq_and_encode(dst->encoding());
8192   emit_int8((unsigned char)0xF7);
8193   emit_int8((unsigned char)(0xD0 | encode));
8194 }
8195 
8196 void Assembler::orq(Address dst, int32_t imm32) {
8197   InstructionMark im(this);
8198   prefixq(dst);
8199   emit_int8((unsigned char)0x81);
8200   emit_operand(rcx, dst, 4);
8201   emit_int32(imm32);
8202 }
8203 
8204 void Assembler::orq(Register dst, int32_t imm32) {
8205   (void) prefixq_and_encode(dst->encoding());
8206   emit_arith(0x81, 0xC8, dst, imm32);
8207 }
8208 
8209 void Assembler::orq(Register dst, Address src) {
8210   InstructionMark im(this);
8211   prefixq(src, dst);
8212   emit_int8(0x0B);
8213   emit_operand(dst, src);
8214 }
8215 
8216 void Assembler::orq(Register dst, Register src) {
8217   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8218   emit_arith(0x0B, 0xC0, dst, src);
8219 }
8220 
8221 void Assembler::popa() { // 64bit
8222   movq(r15, Address(rsp, 0));
8223   movq(r14, Address(rsp, wordSize));
8224   movq(r13, Address(rsp, 2 * wordSize));
8225   movq(r12, Address(rsp, 3 * wordSize));
8226   movq(r11, Address(rsp, 4 * wordSize));
8227   movq(r10, Address(rsp, 5 * wordSize));
8228   movq(r9,  Address(rsp, 6 * wordSize));
8229   movq(r8,  Address(rsp, 7 * wordSize));
8230   movq(rdi, Address(rsp, 8 * wordSize));
8231   movq(rsi, Address(rsp, 9 * wordSize));
8232   movq(rbp, Address(rsp, 10 * wordSize));
8233   // skip rsp
8234   movq(rbx, Address(rsp, 12 * wordSize));
8235   movq(rdx, Address(rsp, 13 * wordSize));
8236   movq(rcx, Address(rsp, 14 * wordSize));
8237   movq(rax, Address(rsp, 15 * wordSize));
8238 
8239   addq(rsp, 16 * wordSize);
8240 }
8241 
8242 void Assembler::popcntq(Register dst, Address src) {
8243   assert(VM_Version::supports_popcnt(), "must support");
8244   InstructionMark im(this);
8245   emit_int8((unsigned char)0xF3);
8246   prefixq(src, dst);
8247   emit_int8((unsigned char)0x0F);
8248   emit_int8((unsigned char)0xB8);
8249   emit_operand(dst, src);
8250 }
8251 
8252 void Assembler::popcntq(Register dst, Register src) {
8253   assert(VM_Version::supports_popcnt(), "must support");
8254   emit_int8((unsigned char)0xF3);
8255   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8256   emit_int8((unsigned char)0x0F);
8257   emit_int8((unsigned char)0xB8);
8258   emit_int8((unsigned char)(0xC0 | encode));
8259 }
8260 
8261 void Assembler::popq(Address dst) {
8262   InstructionMark im(this);
8263   prefixq(dst);
8264   emit_int8((unsigned char)0x8F);
8265   emit_operand(rax, dst);
8266 }
8267 
8268 void Assembler::pusha() { // 64bit
8269   // we have to store original rsp.  ABI says that 128 bytes
8270   // below rsp are local scratch.
8271   movq(Address(rsp, -5 * wordSize), rsp);
8272 
8273   subq(rsp, 16 * wordSize);
8274 
8275   movq(Address(rsp, 15 * wordSize), rax);
8276   movq(Address(rsp, 14 * wordSize), rcx);
8277   movq(Address(rsp, 13 * wordSize), rdx);
8278   movq(Address(rsp, 12 * wordSize), rbx);
8279   // skip rsp
8280   movq(Address(rsp, 10 * wordSize), rbp);
8281   movq(Address(rsp, 9 * wordSize), rsi);
8282   movq(Address(rsp, 8 * wordSize), rdi);
8283   movq(Address(rsp, 7 * wordSize), r8);
8284   movq(Address(rsp, 6 * wordSize), r9);
8285   movq(Address(rsp, 5 * wordSize), r10);
8286   movq(Address(rsp, 4 * wordSize), r11);
8287   movq(Address(rsp, 3 * wordSize), r12);
8288   movq(Address(rsp, 2 * wordSize), r13);
8289   movq(Address(rsp, wordSize), r14);
8290   movq(Address(rsp, 0), r15);
8291 }
8292 
8293 void Assembler::pushq(Address src) {
8294   InstructionMark im(this);
8295   prefixq(src);
8296   emit_int8((unsigned char)0xFF);
8297   emit_operand(rsi, src);
8298 }
8299 
8300 void Assembler::rclq(Register dst, int imm8) {
8301   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8302   int encode = prefixq_and_encode(dst->encoding());
8303   if (imm8 == 1) {
8304     emit_int8((unsigned char)0xD1);
8305     emit_int8((unsigned char)(0xD0 | encode));
8306   } else {
8307     emit_int8((unsigned char)0xC1);
8308     emit_int8((unsigned char)(0xD0 | encode));
8309     emit_int8(imm8);
8310   }
8311 }
8312 
8313 void Assembler::rcrq(Register dst, int imm8) {
8314   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8315   int encode = prefixq_and_encode(dst->encoding());
8316   if (imm8 == 1) {
8317     emit_int8((unsigned char)0xD1);
8318     emit_int8((unsigned char)(0xD8 | encode));
8319   } else {
8320     emit_int8((unsigned char)0xC1);
8321     emit_int8((unsigned char)(0xD8 | encode));
8322     emit_int8(imm8);
8323   }
8324 }
8325 
8326 void Assembler::rorq(Register dst, int imm8) {
8327   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8328   int encode = prefixq_and_encode(dst->encoding());
8329   if (imm8 == 1) {
8330     emit_int8((unsigned char)0xD1);
8331     emit_int8((unsigned char)(0xC8 | encode));
8332   } else {
8333     emit_int8((unsigned char)0xC1);
8334     emit_int8((unsigned char)(0xc8 | encode));
8335     emit_int8(imm8);
8336   }
8337 }
8338 
8339 void Assembler::rorxq(Register dst, Register src, int imm8) {
8340   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8341   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8342   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8343   emit_int8((unsigned char)0xF0);
8344   emit_int8((unsigned char)(0xC0 | encode));
8345   emit_int8(imm8);
8346 }
8347 
8348 void Assembler::sarq(Register dst, int imm8) {
8349   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8350   int encode = prefixq_and_encode(dst->encoding());
8351   if (imm8 == 1) {
8352     emit_int8((unsigned char)0xD1);
8353     emit_int8((unsigned char)(0xF8 | encode));
8354   } else {
8355     emit_int8((unsigned char)0xC1);
8356     emit_int8((unsigned char)(0xF8 | encode));
8357     emit_int8(imm8);
8358   }
8359 }
8360 
8361 void Assembler::sarq(Register dst) {
8362   int encode = prefixq_and_encode(dst->encoding());
8363   emit_int8((unsigned char)0xD3);
8364   emit_int8((unsigned char)(0xF8 | encode));
8365 }
8366 
8367 void Assembler::sbbq(Address dst, int32_t imm32) {
8368   InstructionMark im(this);
8369   prefixq(dst);
8370   emit_arith_operand(0x81, rbx, dst, imm32);
8371 }
8372 
8373 void Assembler::sbbq(Register dst, int32_t imm32) {
8374   (void) prefixq_and_encode(dst->encoding());
8375   emit_arith(0x81, 0xD8, dst, imm32);
8376 }
8377 
8378 void Assembler::sbbq(Register dst, Address src) {
8379   InstructionMark im(this);
8380   prefixq(src, dst);
8381   emit_int8(0x1B);
8382   emit_operand(dst, src);
8383 }
8384 
8385 void Assembler::sbbq(Register dst, Register src) {
8386   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8387   emit_arith(0x1B, 0xC0, dst, src);
8388 }
8389 
8390 void Assembler::shlq(Register dst, int imm8) {
8391   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8392   int encode = prefixq_and_encode(dst->encoding());
8393   if (imm8 == 1) {
8394     emit_int8((unsigned char)0xD1);
8395     emit_int8((unsigned char)(0xE0 | encode));
8396   } else {
8397     emit_int8((unsigned char)0xC1);
8398     emit_int8((unsigned char)(0xE0 | encode));
8399     emit_int8(imm8);
8400   }
8401 }
8402 
8403 void Assembler::shlq(Register dst) {
8404   int encode = prefixq_and_encode(dst->encoding());
8405   emit_int8((unsigned char)0xD3);
8406   emit_int8((unsigned char)(0xE0 | encode));
8407 }
8408 
8409 void Assembler::shrq(Register dst, int imm8) {
8410   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8411   int encode = prefixq_and_encode(dst->encoding());
8412   emit_int8((unsigned char)0xC1);
8413   emit_int8((unsigned char)(0xE8 | encode));
8414   emit_int8(imm8);
8415 }
8416 
8417 void Assembler::shrq(Register dst) {
8418   int encode = prefixq_and_encode(dst->encoding());
8419   emit_int8((unsigned char)0xD3);
8420   emit_int8(0xE8 | encode);
8421 }
8422 
8423 void Assembler::subq(Address dst, int32_t imm32) {
8424   InstructionMark im(this);
8425   prefixq(dst);
8426   emit_arith_operand(0x81, rbp, dst, imm32);
8427 }
8428 
8429 void Assembler::subq(Address dst, Register src) {
8430   InstructionMark im(this);
8431   prefixq(dst, src);
8432   emit_int8(0x29);
8433   emit_operand(src, dst);
8434 }
8435 
8436 void Assembler::subq(Register dst, int32_t imm32) {
8437   (void) prefixq_and_encode(dst->encoding());
8438   emit_arith(0x81, 0xE8, dst, imm32);
8439 }
8440 
8441 // Force generation of a 4 byte immediate value even if it fits into 8bit
8442 void Assembler::subq_imm32(Register dst, int32_t imm32) {
8443   (void) prefixq_and_encode(dst->encoding());
8444   emit_arith_imm32(0x81, 0xE8, dst, imm32);
8445 }
8446 
8447 void Assembler::subq(Register dst, Address src) {
8448   InstructionMark im(this);
8449   prefixq(src, dst);
8450   emit_int8(0x2B);
8451   emit_operand(dst, src);
8452 }
8453 
8454 void Assembler::subq(Register dst, Register src) {
8455   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8456   emit_arith(0x2B, 0xC0, dst, src);
8457 }
8458 
8459 void Assembler::testq(Register dst, int32_t imm32) {
8460   // not using emit_arith because test
8461   // doesn't support sign-extension of
8462   // 8bit operands
8463   int encode = dst->encoding();
8464   if (encode == 0) {
8465     prefix(REX_W);
8466     emit_int8((unsigned char)0xA9);
8467   } else {
8468     encode = prefixq_and_encode(encode);
8469     emit_int8((unsigned char)0xF7);
8470     emit_int8((unsigned char)(0xC0 | encode));
8471   }
8472   emit_int32(imm32);
8473 }
8474 
8475 void Assembler::testq(Register dst, Register src) {
8476   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8477   emit_arith(0x85, 0xC0, dst, src);
8478 }
8479 
8480 void Assembler::xaddq(Address dst, Register src) {
8481   InstructionMark im(this);
8482   prefixq(dst, src);
8483   emit_int8(0x0F);
8484   emit_int8((unsigned char)0xC1);
8485   emit_operand(src, dst);
8486 }
8487 
8488 void Assembler::xchgq(Register dst, Address src) {
8489   InstructionMark im(this);
8490   prefixq(src, dst);
8491   emit_int8((unsigned char)0x87);
8492   emit_operand(dst, src);
8493 }
8494 
8495 void Assembler::xchgq(Register dst, Register src) {
8496   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8497   emit_int8((unsigned char)0x87);
8498   emit_int8((unsigned char)(0xc0 | encode));
8499 }
8500 
8501 void Assembler::xorq(Register dst, Register src) {
8502   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8503   emit_arith(0x33, 0xC0, dst, src);
8504 }
8505 
8506 void Assembler::xorq(Register dst, Address src) {
8507   InstructionMark im(this);
8508   prefixq(src, dst);
8509   emit_int8(0x33);
8510   emit_operand(dst, src);
8511 }
8512 
8513 #endif // !LP64