1 /*
   2  * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #ifndef _WINDOWS
  27 #include "alloca.h"
  28 #endif
  29 #include "asm/macroAssembler.hpp"
  30 #include "asm/macroAssembler.inline.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/compiledICHolder.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/vframeArray.hpp"
  40 #include "vmreg_x86.inline.hpp"
  41 #ifdef COMPILER1
  42 #include "c1/c1_Runtime1.hpp"
  43 #endif
  44 #ifdef COMPILER2
  45 #include "opto/runtime.hpp"
  46 #endif
  47 #if INCLUDE_JVMCI
  48 #include "jvmci/jvmciJavaClasses.hpp"
  49 #endif
  50 #include "vm_version_x86.hpp"
  51 
  52 #define __ masm->
  53 
  54 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  55 
  56 class SimpleRuntimeFrame {
  57 
  58   public:
  59 
  60   // Most of the runtime stubs have this simple frame layout.
  61   // This class exists to make the layout shared in one place.
  62   // Offsets are for compiler stack slots, which are jints.
  63   enum layout {
  64     // The frame sender code expects that rbp will be in the "natural" place and
  65     // will override any oopMap setting for it. We must therefore force the layout
  66     // so that it agrees with the frame sender code.
  67     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  68     rbp_off2,
  69     return_off, return_off2,
  70     framesize
  71   };
  72 };
  73 
  74 class RegisterSaver {
  75   // Capture info about frame layout.  Layout offsets are in jint
  76   // units because compiler frame slots are jints.
  77 #define XSAVE_AREA_BEGIN 160
  78 #define XSAVE_AREA_YMM_BEGIN 576
  79 #define XSAVE_AREA_ZMM_BEGIN 1152
  80 #define XSAVE_AREA_UPPERBANK 1664
  81 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  82 #define DEF_YMM_OFFS(regnum) ymm ## regnum ## _off = ymm_off + (regnum)*16/BytesPerInt, ymm ## regnum ## H_off
  83 #define DEF_ZMM_OFFS(regnum) zmm ## regnum ## _off = zmm_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off
  84   enum layout {
  85     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  86     xmm_off       = fpu_state_off + XSAVE_AREA_BEGIN/BytesPerInt,            // offset in fxsave save area
  87     DEF_XMM_OFFS(0),
  88     DEF_XMM_OFFS(1),
  89     // 2..15 are implied in range usage
  90     ymm_off = xmm_off + (XSAVE_AREA_YMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
  91     DEF_YMM_OFFS(0),
  92     DEF_YMM_OFFS(1),
  93     // 2..15 are implied in range usage
  94     zmm_high = xmm_off + (XSAVE_AREA_ZMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
  95     zmm_off = xmm_off + (XSAVE_AREA_UPPERBANK - XSAVE_AREA_BEGIN)/BytesPerInt,
  96     DEF_ZMM_OFFS(16),
  97     DEF_ZMM_OFFS(17),
  98     // 18..31 are implied in range usage
  99     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
 100     fpu_stateH_end,
 101     r15_off, r15H_off,
 102     r14_off, r14H_off,
 103     r13_off, r13H_off,
 104     r12_off, r12H_off,
 105     r11_off, r11H_off,
 106     r10_off, r10H_off,
 107     r9_off,  r9H_off,
 108     r8_off,  r8H_off,
 109     rdi_off, rdiH_off,
 110     rsi_off, rsiH_off,
 111     ignore_off, ignoreH_off,  // extra copy of rbp
 112     rsp_off, rspH_off,
 113     rbx_off, rbxH_off,
 114     rdx_off, rdxH_off,
 115     rcx_off, rcxH_off,
 116     rax_off, raxH_off,
 117     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 118     align_off, alignH_off,
 119     flags_off, flagsH_off,
 120     // The frame sender code expects that rbp will be in the "natural" place and
 121     // will override any oopMap setting for it. We must therefore force the layout
 122     // so that it agrees with the frame sender code.
 123     rbp_off, rbpH_off,        // copy of rbp we will restore
 124     return_off, returnH_off,  // slot for return address
 125     reg_save_size             // size in compiler stack slots
 126   };
 127 
 128  public:
 129   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
 130   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 131 
 132   // Offsets into the register save area
 133   // Used by deoptimization when it is managing result register
 134   // values on its own
 135 
 136   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 137   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 138   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 139   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 140   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 141 
 142   // During deoptimization only the result registers need to be restored,
 143   // all the other values have already been extracted.
 144   static void restore_result_registers(MacroAssembler* masm);
 145 };
 146 
 147 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
 148   int off = 0;
 149   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 150   if (UseAVX < 3) {
 151     num_xmm_regs = num_xmm_regs/2;
 152   }
 153 #if defined(COMPILER2) || INCLUDE_JVMCI
 154   if (save_vectors) {
 155     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 156     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 157   }
 158 #else
 159   assert(!save_vectors, "vectors are generated only by C2 and JVMCI");
 160 #endif
 161 
 162   // Always make the frame size 16-byte aligned, both vector and non vector stacks are always allocated
 163   int frame_size_in_bytes = round_to(reg_save_size*BytesPerInt, num_xmm_regs);
 164   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 165   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 166   // CodeBlob frame size is in words.
 167   int frame_size_in_words = frame_size_in_bytes / wordSize;
 168   *total_frame_words = frame_size_in_words;
 169 
 170   // Save registers, fpu state, and flags.
 171   // We assume caller has already pushed the return address onto the
 172   // stack, so rsp is 8-byte aligned here.
 173   // We push rpb twice in this sequence because we want the real rbp
 174   // to be under the return like a normal enter.
 175 
 176   __ enter();          // rsp becomes 16-byte aligned here
 177   __ push_CPU_state(); // Push a multiple of 16 bytes
 178 
 179   // push cpu state handles this on EVEX enabled targets
 180   if (save_vectors) {
 181     // Save upper half of YMM registers(0..15)
 182     int base_addr = XSAVE_AREA_YMM_BEGIN;
 183     for (int n = 0; n < 16; n++) {
 184       __ vextractf128_high(Address(rsp, base_addr+n*16), as_XMMRegister(n));
 185     }
 186     if (VM_Version::supports_evex()) {
 187       // Save upper half of ZMM registers(0..15)
 188       base_addr = XSAVE_AREA_ZMM_BEGIN;
 189       for (int n = 0; n < 16; n++) {
 190         __ vextractf64x4_high(Address(rsp, base_addr+n*32), as_XMMRegister(n));
 191       }
 192       // Save full ZMM registers(16..num_xmm_regs)
 193       base_addr = XSAVE_AREA_UPPERBANK;
 194       off = 0;
 195       int vector_len = Assembler::AVX_512bit;
 196       for (int n = 16; n < num_xmm_regs; n++) {
 197         __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len);
 198       }
 199     }
 200   } else {
 201     if (VM_Version::supports_evex()) {
 202       // Save upper bank of ZMM registers(16..31) for double/float usage
 203       int base_addr = XSAVE_AREA_UPPERBANK;
 204       off = 0;
 205       for (int n = 16; n < num_xmm_regs; n++) {
 206         __ movsd(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n));
 207       }
 208     }
 209   }
 210   if (VM_Version::supports_avx()) {
 211     __ vzeroupper();
 212   }
 213   if (frame::arg_reg_save_area_bytes != 0) {
 214     // Allocate argument register save area
 215     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 216   }
 217 
 218   // Set an oopmap for the call site.  This oopmap will map all
 219   // oop-registers and debug-info registers as callee-saved.  This
 220   // will allow deoptimization at this safepoint to find all possible
 221   // debug-info recordings, as well as let GC find all oops.
 222 
 223   OopMapSet *oop_maps = new OopMapSet();
 224   OopMap* map = new OopMap(frame_size_in_slots, 0);
 225 
 226 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x))
 227 
 228   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
 229   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
 230   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
 231   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
 232   // rbp location is known implicitly by the frame sender code, needs no oopmap
 233   // and the location where rbp was saved by is ignored
 234   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
 235   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
 236   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
 237   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
 238   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
 239   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
 240   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
 241   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
 242   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
 243   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
 244   // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 245   // on EVEX enabled targets, we get it included in the xsave area
 246   off = xmm0_off;
 247   int delta = xmm1_off - off;
 248   for (int n = 0; n < 16; n++) {
 249     XMMRegister xmm_name = as_XMMRegister(n);
 250     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 251     off += delta;
 252   }
 253   if(UseAVX > 2) {
 254     // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 255     off = zmm16_off;
 256     delta = zmm17_off - off;
 257     for (int n = 16; n < num_xmm_regs; n++) {
 258       XMMRegister zmm_name = as_XMMRegister(n);
 259       map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg());
 260       off += delta;
 261     }
 262   }
 263 
 264 #if defined(COMPILER2) || INCLUDE_JVMCI
 265   if (save_vectors) {
 266     off = ymm0_off;
 267     int delta = ymm1_off - off;
 268     for (int n = 0; n < 16; n++) {
 269       XMMRegister ymm_name = as_XMMRegister(n);
 270       map->set_callee_saved(STACK_OFFSET(off), ymm_name->as_VMReg()->next(4));
 271       off += delta;
 272     }
 273   }
 274 #endif // COMPILER2 || INCLUDE_JVMCI
 275 
 276   // %%% These should all be a waste but we'll keep things as they were for now
 277   if (true) {
 278     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
 279     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
 280     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
 281     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
 282     // rbp location is known implicitly by the frame sender code, needs no oopmap
 283     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
 284     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
 285     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
 286     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
 287     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
 288     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
 289     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
 290     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
 291     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
 292     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
 293     // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 294     // on EVEX enabled targets, we get it included in the xsave area
 295     off = xmm0H_off;
 296     delta = xmm1H_off - off;
 297     for (int n = 0; n < 16; n++) {
 298       XMMRegister xmm_name = as_XMMRegister(n);
 299       map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
 300       off += delta;
 301     }
 302     if (UseAVX > 2) {
 303       // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 304       off = zmm16H_off;
 305       delta = zmm17H_off - off;
 306       for (int n = 16; n < num_xmm_regs; n++) {
 307         XMMRegister zmm_name = as_XMMRegister(n);
 308         map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next());
 309         off += delta;
 310       }
 311     }
 312   }
 313 
 314   return map;
 315 }
 316 
 317 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 318   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 319   if (UseAVX < 3) {
 320     num_xmm_regs = num_xmm_regs/2;
 321   }
 322   if (frame::arg_reg_save_area_bytes != 0) {
 323     // Pop arg register save area
 324     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 325   }
 326 
 327 #if defined(COMPILER2) || INCLUDE_JVMCI
 328   if (restore_vectors) {
 329     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 330     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 331   }
 332 #else
 333   assert(!restore_vectors, "vectors are generated only by C2");
 334 #endif
 335 
 336   if (VM_Version::supports_avx()) {
 337     __ vzeroupper();
 338   }
 339 
 340   // On EVEX enabled targets everything is handled in pop fpu state
 341   if (restore_vectors) {
 342     // Restore upper half of YMM registers (0..15)
 343     int base_addr = XSAVE_AREA_YMM_BEGIN;
 344     for (int n = 0; n < 16; n++) {
 345       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, base_addr+n*16));
 346     }
 347     if (VM_Version::supports_evex()) {
 348       // Restore upper half of ZMM registers (0..15)
 349       base_addr = XSAVE_AREA_ZMM_BEGIN;
 350       for (int n = 0; n < 16; n++) {
 351         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, base_addr+n*32));
 352       }
 353       // Restore full ZMM registers(16..num_xmm_regs)
 354       base_addr = XSAVE_AREA_UPPERBANK;
 355       int vector_len = Assembler::AVX_512bit;
 356       int off = 0;
 357       for (int n = 16; n < num_xmm_regs; n++) {
 358         __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len);
 359       }
 360     }
 361   } else {
 362     if (VM_Version::supports_evex()) {
 363       // Restore upper bank of ZMM registers(16..31) for double/float usage
 364       int base_addr = XSAVE_AREA_UPPERBANK;
 365       int off = 0;
 366       for (int n = 16; n < num_xmm_regs; n++) {
 367         __ movsd(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)));
 368       }
 369     }
 370   }
 371 
 372   // Recover CPU state
 373   __ pop_CPU_state();
 374   // Get the rbp described implicitly by the calling convention (no oopMap)
 375   __ pop(rbp);
 376 }
 377 
 378 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 379 
 380   // Just restore result register. Only used by deoptimization. By
 381   // now any callee save register that needs to be restored to a c2
 382   // caller of the deoptee has been extracted into the vframeArray
 383   // and will be stuffed into the c2i adapter we create for later
 384   // restoration so only result registers need to be restored here.
 385 
 386   // Restore fp result register
 387   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 388   // Restore integer result register
 389   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 390   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 391 
 392   // Pop all of the register save are off the stack except the return address
 393   __ addptr(rsp, return_offset_in_bytes());
 394 }
 395 
 396 // Is vector's size (in bytes) bigger than a size saved by default?
 397 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
 398 bool SharedRuntime::is_wide_vector(int size) {
 399   return size > 16;
 400 }
 401 
 402 size_t SharedRuntime::trampoline_size() {
 403   return 16;
 404 }
 405 
 406 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
 407   __ jump(RuntimeAddress(destination));
 408 }
 409 
 410 // The java_calling_convention describes stack locations as ideal slots on
 411 // a frame with no abi restrictions. Since we must observe abi restrictions
 412 // (like the placement of the register window) the slots must be biased by
 413 // the following value.
 414 static int reg2offset_in(VMReg r) {
 415   // Account for saved rbp and return address
 416   // This should really be in_preserve_stack_slots
 417   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 418 }
 419 
 420 static int reg2offset_out(VMReg r) {
 421   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 422 }
 423 
 424 // ---------------------------------------------------------------------------
 425 // Read the array of BasicTypes from a signature, and compute where the
 426 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 427 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 428 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 429 // as framesizes are fixed.
 430 // VMRegImpl::stack0 refers to the first slot 0(sp).
 431 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 432 // up to RegisterImpl::number_of_registers) are the 64-bit
 433 // integer registers.
 434 
 435 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 436 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 437 // units regardless of build. Of course for i486 there is no 64 bit build
 438 
 439 // The Java calling convention is a "shifted" version of the C ABI.
 440 // By skipping the first C ABI register we can call non-static jni methods
 441 // with small numbers of arguments without having to shuffle the arguments
 442 // at all. Since we control the java ABI we ought to at least get some
 443 // advantage out of it.
 444 
 445 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 446                                            VMRegPair *regs,
 447                                            int total_args_passed,
 448                                            int is_outgoing) {
 449 
 450   // Create the mapping between argument positions and
 451   // registers.
 452   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 453     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 454   };
 455   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 456     j_farg0, j_farg1, j_farg2, j_farg3,
 457     j_farg4, j_farg5, j_farg6, j_farg7
 458   };
 459 
 460 
 461   uint int_args = 0;
 462   uint fp_args = 0;
 463   uint stk_args = 0; // inc by 2 each time
 464 
 465   for (int i = 0; i < total_args_passed; i++) {
 466     switch (sig_bt[i]) {
 467     case T_BOOLEAN:
 468     case T_CHAR:
 469     case T_BYTE:
 470     case T_SHORT:
 471     case T_INT:
 472       if (int_args < Argument::n_int_register_parameters_j) {
 473         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 474       } else {
 475         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 476         stk_args += 2;
 477       }
 478       break;
 479     case T_VOID:
 480       // halves of T_LONG or T_DOUBLE
 481       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 482       regs[i].set_bad();
 483       break;
 484     case T_LONG:
 485       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 486       // fall through
 487     case T_OBJECT:
 488     case T_ARRAY:
 489     case T_ADDRESS:
 490       if (int_args < Argument::n_int_register_parameters_j) {
 491         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 492       } else {
 493         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 494         stk_args += 2;
 495       }
 496       break;
 497     case T_FLOAT:
 498       if (fp_args < Argument::n_float_register_parameters_j) {
 499         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 500       } else {
 501         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 502         stk_args += 2;
 503       }
 504       break;
 505     case T_DOUBLE:
 506       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 507       if (fp_args < Argument::n_float_register_parameters_j) {
 508         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 509       } else {
 510         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 511         stk_args += 2;
 512       }
 513       break;
 514     default:
 515       ShouldNotReachHere();
 516       break;
 517     }
 518   }
 519 
 520   return round_to(stk_args, 2);
 521 }
 522 
 523 // Patch the callers callsite with entry to compiled code if it exists.
 524 static void patch_callers_callsite(MacroAssembler *masm) {
 525   Label L;
 526   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 527   __ jcc(Assembler::equal, L);
 528 
 529   // Save the current stack pointer
 530   __ mov(r13, rsp);
 531   // Schedule the branch target address early.
 532   // Call into the VM to patch the caller, then jump to compiled callee
 533   // rax isn't live so capture return address while we easily can
 534   __ movptr(rax, Address(rsp, 0));
 535 
 536   // align stack so push_CPU_state doesn't fault
 537   __ andptr(rsp, -(StackAlignmentInBytes));
 538   __ push_CPU_state();
 539 
 540   if (VM_Version::supports_avx()) {
 541     __ vzeroupper();
 542   }
 543   // VM needs caller's callsite
 544   // VM needs target method
 545   // This needs to be a long call since we will relocate this adapter to
 546   // the codeBuffer and it may not reach
 547 
 548   // Allocate argument register save area
 549   if (frame::arg_reg_save_area_bytes != 0) {
 550     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 551   }
 552   __ mov(c_rarg0, rbx);
 553   __ mov(c_rarg1, rax);
 554   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 555 
 556   // De-allocate argument register save area
 557   if (frame::arg_reg_save_area_bytes != 0) {
 558     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 559   }
 560 
 561   if (VM_Version::supports_avx()) {
 562     __ vzeroupper();
 563   }
 564   __ pop_CPU_state();
 565   // restore sp
 566   __ mov(rsp, r13);
 567   __ bind(L);
 568 }
 569 
 570 
 571 static void gen_c2i_adapter(MacroAssembler *masm,
 572                             int total_args_passed,
 573                             int comp_args_on_stack,
 574                             const BasicType *sig_bt,
 575                             const VMRegPair *regs,
 576                             Label& skip_fixup) {
 577   // Before we get into the guts of the C2I adapter, see if we should be here
 578   // at all.  We've come from compiled code and are attempting to jump to the
 579   // interpreter, which means the caller made a static call to get here
 580   // (vcalls always get a compiled target if there is one).  Check for a
 581   // compiled target.  If there is one, we need to patch the caller's call.
 582   patch_callers_callsite(masm);
 583 
 584   __ bind(skip_fixup);
 585 
 586   // Since all args are passed on the stack, total_args_passed *
 587   // Interpreter::stackElementSize is the space we need. Plus 1 because
 588   // we also account for the return address location since
 589   // we store it first rather than hold it in rax across all the shuffling
 590 
 591   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 592 
 593   // stack is aligned, keep it that way
 594   extraspace = round_to(extraspace, 2*wordSize);
 595 
 596   // Get return address
 597   __ pop(rax);
 598 
 599   // set senderSP value
 600   __ mov(r13, rsp);
 601 
 602   __ subptr(rsp, extraspace);
 603 
 604   // Store the return address in the expected location
 605   __ movptr(Address(rsp, 0), rax);
 606 
 607   // Now write the args into the outgoing interpreter space
 608   for (int i = 0; i < total_args_passed; i++) {
 609     if (sig_bt[i] == T_VOID) {
 610       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 611       continue;
 612     }
 613 
 614     // offset to start parameters
 615     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 616     int next_off = st_off - Interpreter::stackElementSize;
 617 
 618     // Say 4 args:
 619     // i   st_off
 620     // 0   32 T_LONG
 621     // 1   24 T_VOID
 622     // 2   16 T_OBJECT
 623     // 3    8 T_BOOL
 624     // -    0 return address
 625     //
 626     // However to make thing extra confusing. Because we can fit a long/double in
 627     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 628     // leaves one slot empty and only stores to a single slot. In this case the
 629     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 630 
 631     VMReg r_1 = regs[i].first();
 632     VMReg r_2 = regs[i].second();
 633     if (!r_1->is_valid()) {
 634       assert(!r_2->is_valid(), "");
 635       continue;
 636     }
 637     if (r_1->is_stack()) {
 638       // memory to memory use rax
 639       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 640       if (!r_2->is_valid()) {
 641         // sign extend??
 642         __ movl(rax, Address(rsp, ld_off));
 643         __ movptr(Address(rsp, st_off), rax);
 644 
 645       } else {
 646 
 647         __ movq(rax, Address(rsp, ld_off));
 648 
 649         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 650         // T_DOUBLE and T_LONG use two slots in the interpreter
 651         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 652           // ld_off == LSW, ld_off+wordSize == MSW
 653           // st_off == MSW, next_off == LSW
 654           __ movq(Address(rsp, next_off), rax);
 655 #ifdef ASSERT
 656           // Overwrite the unused slot with known junk
 657           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 658           __ movptr(Address(rsp, st_off), rax);
 659 #endif /* ASSERT */
 660         } else {
 661           __ movq(Address(rsp, st_off), rax);
 662         }
 663       }
 664     } else if (r_1->is_Register()) {
 665       Register r = r_1->as_Register();
 666       if (!r_2->is_valid()) {
 667         // must be only an int (or less ) so move only 32bits to slot
 668         // why not sign extend??
 669         __ movl(Address(rsp, st_off), r);
 670       } else {
 671         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 672         // T_DOUBLE and T_LONG use two slots in the interpreter
 673         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 674           // long/double in gpr
 675 #ifdef ASSERT
 676           // Overwrite the unused slot with known junk
 677           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 678           __ movptr(Address(rsp, st_off), rax);
 679 #endif /* ASSERT */
 680           __ movq(Address(rsp, next_off), r);
 681         } else {
 682           __ movptr(Address(rsp, st_off), r);
 683         }
 684       }
 685     } else {
 686       assert(r_1->is_XMMRegister(), "");
 687       if (!r_2->is_valid()) {
 688         // only a float use just part of the slot
 689         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 690       } else {
 691 #ifdef ASSERT
 692         // Overwrite the unused slot with known junk
 693         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 694         __ movptr(Address(rsp, st_off), rax);
 695 #endif /* ASSERT */
 696         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 697       }
 698     }
 699   }
 700 
 701   // Schedule the branch target address early.
 702   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 703   __ jmp(rcx);
 704 }
 705 
 706 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 707                         address code_start, address code_end,
 708                         Label& L_ok) {
 709   Label L_fail;
 710   __ lea(temp_reg, ExternalAddress(code_start));
 711   __ cmpptr(pc_reg, temp_reg);
 712   __ jcc(Assembler::belowEqual, L_fail);
 713   __ lea(temp_reg, ExternalAddress(code_end));
 714   __ cmpptr(pc_reg, temp_reg);
 715   __ jcc(Assembler::below, L_ok);
 716   __ bind(L_fail);
 717 }
 718 
 719 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 720                                     int total_args_passed,
 721                                     int comp_args_on_stack,
 722                                     const BasicType *sig_bt,
 723                                     const VMRegPair *regs) {
 724 
 725   // Note: r13 contains the senderSP on entry. We must preserve it since
 726   // we may do a i2c -> c2i transition if we lose a race where compiled
 727   // code goes non-entrant while we get args ready.
 728   // In addition we use r13 to locate all the interpreter args as
 729   // we must align the stack to 16 bytes on an i2c entry else we
 730   // lose alignment we expect in all compiled code and register
 731   // save code can segv when fxsave instructions find improperly
 732   // aligned stack pointer.
 733 
 734   // Adapters can be frameless because they do not require the caller
 735   // to perform additional cleanup work, such as correcting the stack pointer.
 736   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 737   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 738   // even if a callee has modified the stack pointer.
 739   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 740   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 741   // up via the senderSP register).
 742   // In other words, if *either* the caller or callee is interpreted, we can
 743   // get the stack pointer repaired after a call.
 744   // This is why c2i and i2c adapters cannot be indefinitely composed.
 745   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 746   // both caller and callee would be compiled methods, and neither would
 747   // clean up the stack pointer changes performed by the two adapters.
 748   // If this happens, control eventually transfers back to the compiled
 749   // caller, but with an uncorrected stack, causing delayed havoc.
 750 
 751   // Pick up the return address
 752   __ movptr(rax, Address(rsp, 0));
 753 
 754   if (VerifyAdapterCalls &&
 755       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 756     // So, let's test for cascading c2i/i2c adapters right now.
 757     //  assert(Interpreter::contains($return_addr) ||
 758     //         StubRoutines::contains($return_addr),
 759     //         "i2c adapter must return to an interpreter frame");
 760     __ block_comment("verify_i2c { ");
 761     Label L_ok;
 762     if (Interpreter::code() != NULL)
 763       range_check(masm, rax, r11,
 764                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 765                   L_ok);
 766     if (StubRoutines::code1() != NULL)
 767       range_check(masm, rax, r11,
 768                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 769                   L_ok);
 770     if (StubRoutines::code2() != NULL)
 771       range_check(masm, rax, r11,
 772                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 773                   L_ok);
 774     const char* msg = "i2c adapter must return to an interpreter frame";
 775     __ block_comment(msg);
 776     __ stop(msg);
 777     __ bind(L_ok);
 778     __ block_comment("} verify_i2ce ");
 779   }
 780 
 781   // Must preserve original SP for loading incoming arguments because
 782   // we need to align the outgoing SP for compiled code.
 783   __ movptr(r11, rsp);
 784 
 785   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 786   // in registers, we will occasionally have no stack args.
 787   int comp_words_on_stack = 0;
 788   if (comp_args_on_stack) {
 789     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 790     // registers are below.  By subtracting stack0, we either get a negative
 791     // number (all values in registers) or the maximum stack slot accessed.
 792 
 793     // Convert 4-byte c2 stack slots to words.
 794     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 795     // Round up to miminum stack alignment, in wordSize
 796     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 797     __ subptr(rsp, comp_words_on_stack * wordSize);
 798   }
 799 
 800 
 801   // Ensure compiled code always sees stack at proper alignment
 802   __ andptr(rsp, -16);
 803 
 804   // push the return address and misalign the stack that youngest frame always sees
 805   // as far as the placement of the call instruction
 806   __ push(rax);
 807 
 808   // Put saved SP in another register
 809   const Register saved_sp = rax;
 810   __ movptr(saved_sp, r11);
 811 
 812   // Will jump to the compiled code just as if compiled code was doing it.
 813   // Pre-load the register-jump target early, to schedule it better.
 814   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
 815 
 816 #if INCLUDE_JVMCI
 817   if (EnableJVMCI || UseAOT) {
 818     // check if this call should be routed towards a specific entry point
 819     __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 820     Label no_alternative_target;
 821     __ jcc(Assembler::equal, no_alternative_target);
 822     __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 823     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 824     __ bind(no_alternative_target);
 825   }
 826 #endif // INCLUDE_JVMCI
 827 
 828   // Now generate the shuffle code.  Pick up all register args and move the
 829   // rest through the floating point stack top.
 830   for (int i = 0; i < total_args_passed; i++) {
 831     if (sig_bt[i] == T_VOID) {
 832       // Longs and doubles are passed in native word order, but misaligned
 833       // in the 32-bit build.
 834       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 835       continue;
 836     }
 837 
 838     // Pick up 0, 1 or 2 words from SP+offset.
 839 
 840     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 841             "scrambled load targets?");
 842     // Load in argument order going down.
 843     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 844     // Point to interpreter value (vs. tag)
 845     int next_off = ld_off - Interpreter::stackElementSize;
 846     //
 847     //
 848     //
 849     VMReg r_1 = regs[i].first();
 850     VMReg r_2 = regs[i].second();
 851     if (!r_1->is_valid()) {
 852       assert(!r_2->is_valid(), "");
 853       continue;
 854     }
 855     if (r_1->is_stack()) {
 856       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 857       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 858 
 859       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 860       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 861       // will be generated.
 862       if (!r_2->is_valid()) {
 863         // sign extend???
 864         __ movl(r13, Address(saved_sp, ld_off));
 865         __ movptr(Address(rsp, st_off), r13);
 866       } else {
 867         //
 868         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 869         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 870         // So we must adjust where to pick up the data to match the interpreter.
 871         //
 872         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 873         // are accessed as negative so LSW is at LOW address
 874 
 875         // ld_off is MSW so get LSW
 876         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 877                            next_off : ld_off;
 878         __ movq(r13, Address(saved_sp, offset));
 879         // st_off is LSW (i.e. reg.first())
 880         __ movq(Address(rsp, st_off), r13);
 881       }
 882     } else if (r_1->is_Register()) {  // Register argument
 883       Register r = r_1->as_Register();
 884       assert(r != rax, "must be different");
 885       if (r_2->is_valid()) {
 886         //
 887         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 888         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 889         // So we must adjust where to pick up the data to match the interpreter.
 890 
 891         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 892                            next_off : ld_off;
 893 
 894         // this can be a misaligned move
 895         __ movq(r, Address(saved_sp, offset));
 896       } else {
 897         // sign extend and use a full word?
 898         __ movl(r, Address(saved_sp, ld_off));
 899       }
 900     } else {
 901       if (!r_2->is_valid()) {
 902         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 903       } else {
 904         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 905       }
 906     }
 907   }
 908 
 909   // 6243940 We might end up in handle_wrong_method if
 910   // the callee is deoptimized as we race thru here. If that
 911   // happens we don't want to take a safepoint because the
 912   // caller frame will look interpreted and arguments are now
 913   // "compiled" so it is much better to make this transition
 914   // invisible to the stack walking code. Unfortunately if
 915   // we try and find the callee by normal means a safepoint
 916   // is possible. So we stash the desired callee in the thread
 917   // and the vm will find there should this case occur.
 918 
 919   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 920 
 921   // put Method* where a c2i would expect should we end up there
 922   // only needed becaus eof c2 resolve stubs return Method* as a result in
 923   // rax
 924   __ mov(rax, rbx);
 925   __ jmp(r11);
 926 }
 927 
 928 // ---------------------------------------------------------------
 929 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 930                                                             int total_args_passed,
 931                                                             int comp_args_on_stack,
 932                                                             const BasicType *sig_bt,
 933                                                             const VMRegPair *regs,
 934                                                             AdapterFingerPrint* fingerprint) {
 935   address i2c_entry = __ pc();
 936 
 937   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 938 
 939   // -------------------------------------------------------------------------
 940   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
 941   // to the interpreter.  The args start out packed in the compiled layout.  They
 942   // need to be unpacked into the interpreter layout.  This will almost always
 943   // require some stack space.  We grow the current (compiled) stack, then repack
 944   // the args.  We  finally end in a jump to the generic interpreter entry point.
 945   // On exit from the interpreter, the interpreter will restore our SP (lest the
 946   // compiled code, which relys solely on SP and not RBP, get sick).
 947 
 948   address c2i_unverified_entry = __ pc();
 949   Label skip_fixup;
 950   Label ok;
 951 
 952   Register holder = rax;
 953   Register receiver = j_rarg0;
 954   Register temp = rbx;
 955 
 956   {
 957     __ load_klass(temp, receiver);
 958     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 959     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
 960     __ jcc(Assembler::equal, ok);
 961     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 962 
 963     __ bind(ok);
 964     // Method might have been compiled since the call site was patched to
 965     // interpreted if that is the case treat it as a miss so we can get
 966     // the call site corrected.
 967     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 968     __ jcc(Assembler::equal, skip_fixup);
 969     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 970   }
 971 
 972   address c2i_entry = __ pc();
 973 
 974   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 975 
 976   __ flush();
 977   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 978 }
 979 
 980 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 981                                          VMRegPair *regs,
 982                                          VMRegPair *regs2,
 983                                          int total_args_passed) {
 984   assert(regs2 == NULL, "not needed on x86");
 985 // We return the amount of VMRegImpl stack slots we need to reserve for all
 986 // the arguments NOT counting out_preserve_stack_slots.
 987 
 988 // NOTE: These arrays will have to change when c1 is ported
 989 #ifdef _WIN64
 990     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 991       c_rarg0, c_rarg1, c_rarg2, c_rarg3
 992     };
 993     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 994       c_farg0, c_farg1, c_farg2, c_farg3
 995     };
 996 #else
 997     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 998       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
 999     };
1000     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1001       c_farg0, c_farg1, c_farg2, c_farg3,
1002       c_farg4, c_farg5, c_farg6, c_farg7
1003     };
1004 #endif // _WIN64
1005 
1006 
1007     uint int_args = 0;
1008     uint fp_args = 0;
1009     uint stk_args = 0; // inc by 2 each time
1010 
1011     for (int i = 0; i < total_args_passed; i++) {
1012       switch (sig_bt[i]) {
1013       case T_BOOLEAN:
1014       case T_CHAR:
1015       case T_BYTE:
1016       case T_SHORT:
1017       case T_INT:
1018         if (int_args < Argument::n_int_register_parameters_c) {
1019           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
1020 #ifdef _WIN64
1021           fp_args++;
1022           // Allocate slots for callee to stuff register args the stack.
1023           stk_args += 2;
1024 #endif
1025         } else {
1026           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1027           stk_args += 2;
1028         }
1029         break;
1030       case T_LONG:
1031         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1032         // fall through
1033       case T_OBJECT:
1034       case T_ARRAY:
1035       case T_ADDRESS:
1036       case T_METADATA:
1037         if (int_args < Argument::n_int_register_parameters_c) {
1038           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
1039 #ifdef _WIN64
1040           fp_args++;
1041           stk_args += 2;
1042 #endif
1043         } else {
1044           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1045           stk_args += 2;
1046         }
1047         break;
1048       case T_FLOAT:
1049         if (fp_args < Argument::n_float_register_parameters_c) {
1050           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
1051 #ifdef _WIN64
1052           int_args++;
1053           // Allocate slots for callee to stuff register args the stack.
1054           stk_args += 2;
1055 #endif
1056         } else {
1057           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1058           stk_args += 2;
1059         }
1060         break;
1061       case T_DOUBLE:
1062         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1063         if (fp_args < Argument::n_float_register_parameters_c) {
1064           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
1065 #ifdef _WIN64
1066           int_args++;
1067           // Allocate slots for callee to stuff register args the stack.
1068           stk_args += 2;
1069 #endif
1070         } else {
1071           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1072           stk_args += 2;
1073         }
1074         break;
1075       case T_VOID: // Halves of longs and doubles
1076         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
1077         regs[i].set_bad();
1078         break;
1079       default:
1080         ShouldNotReachHere();
1081         break;
1082       }
1083     }
1084 #ifdef _WIN64
1085   // windows abi requires that we always allocate enough stack space
1086   // for 4 64bit registers to be stored down.
1087   if (stk_args < 8) {
1088     stk_args = 8;
1089   }
1090 #endif // _WIN64
1091 
1092   return stk_args;
1093 }
1094 
1095 // On 64 bit we will store integer like items to the stack as
1096 // 64 bits items (sparc abi) even though java would only store
1097 // 32bits for a parameter. On 32bit it will simply be 32 bits
1098 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1099 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1100   if (src.first()->is_stack()) {
1101     if (dst.first()->is_stack()) {
1102       // stack to stack
1103       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
1104       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1105     } else {
1106       // stack to reg
1107       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1108     }
1109   } else if (dst.first()->is_stack()) {
1110     // reg to stack
1111     // Do we really have to sign extend???
1112     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1113     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1114   } else {
1115     // Do we really have to sign extend???
1116     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
1117     if (dst.first() != src.first()) {
1118       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1119     }
1120   }
1121 }
1122 
1123 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1124   if (src.first()->is_stack()) {
1125     if (dst.first()->is_stack()) {
1126       // stack to stack
1127       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1128       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1129     } else {
1130       // stack to reg
1131       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1132     }
1133   } else if (dst.first()->is_stack()) {
1134     // reg to stack
1135     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1136   } else {
1137     if (dst.first() != src.first()) {
1138       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1139     }
1140   }
1141 }
1142 
1143 // An oop arg. Must pass a handle not the oop itself
1144 static void object_move(MacroAssembler* masm,
1145                         OopMap* map,
1146                         int oop_handle_offset,
1147                         int framesize_in_slots,
1148                         VMRegPair src,
1149                         VMRegPair dst,
1150                         bool is_receiver,
1151                         int* receiver_offset) {
1152 
1153   // must pass a handle. First figure out the location we use as a handle
1154 
1155   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
1156 
1157   // See if oop is NULL if it is we need no handle
1158 
1159   if (src.first()->is_stack()) {
1160 
1161     // Oop is already on the stack as an argument
1162     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1163     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1164     if (is_receiver) {
1165       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1166     }
1167 
1168     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1169     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1170     // conditionally move a NULL
1171     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1172   } else {
1173 
1174     // Oop is in an a register we must store it to the space we reserve
1175     // on the stack for oop_handles and pass a handle if oop is non-NULL
1176 
1177     const Register rOop = src.first()->as_Register();
1178     int oop_slot;
1179     if (rOop == j_rarg0)
1180       oop_slot = 0;
1181     else if (rOop == j_rarg1)
1182       oop_slot = 1;
1183     else if (rOop == j_rarg2)
1184       oop_slot = 2;
1185     else if (rOop == j_rarg3)
1186       oop_slot = 3;
1187     else if (rOop == j_rarg4)
1188       oop_slot = 4;
1189     else {
1190       assert(rOop == j_rarg5, "wrong register");
1191       oop_slot = 5;
1192     }
1193 
1194     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1195     int offset = oop_slot*VMRegImpl::stack_slot_size;
1196 
1197     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1198     // Store oop in handle area, may be NULL
1199     __ movptr(Address(rsp, offset), rOop);
1200     if (is_receiver) {
1201       *receiver_offset = offset;
1202     }
1203 
1204     __ cmpptr(rOop, (int32_t)NULL_WORD);
1205     __ lea(rHandle, Address(rsp, offset));
1206     // conditionally move a NULL from the handle area where it was just stored
1207     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1208   }
1209 
1210   // If arg is on the stack then place it otherwise it is already in correct reg.
1211   if (dst.first()->is_stack()) {
1212     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1213   }
1214 }
1215 
1216 // A float arg may have to do float reg int reg conversion
1217 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1218   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1219 
1220   // The calling conventions assures us that each VMregpair is either
1221   // all really one physical register or adjacent stack slots.
1222   // This greatly simplifies the cases here compared to sparc.
1223 
1224   if (src.first()->is_stack()) {
1225     if (dst.first()->is_stack()) {
1226       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1227       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1228     } else {
1229       // stack to reg
1230       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1231       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1232     }
1233   } else if (dst.first()->is_stack()) {
1234     // reg to stack
1235     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1236     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1237   } else {
1238     // reg to reg
1239     // In theory these overlap but the ordering is such that this is likely a nop
1240     if ( src.first() != dst.first()) {
1241       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1242     }
1243   }
1244 }
1245 
1246 // A long move
1247 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1248 
1249   // The calling conventions assures us that each VMregpair is either
1250   // all really one physical register or adjacent stack slots.
1251   // This greatly simplifies the cases here compared to sparc.
1252 
1253   if (src.is_single_phys_reg() ) {
1254     if (dst.is_single_phys_reg()) {
1255       if (dst.first() != src.first()) {
1256         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1257       }
1258     } else {
1259       assert(dst.is_single_reg(), "not a stack pair");
1260       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1261     }
1262   } else if (dst.is_single_phys_reg()) {
1263     assert(src.is_single_reg(),  "not a stack pair");
1264     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1265   } else {
1266     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1267     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1268     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1269   }
1270 }
1271 
1272 // A double move
1273 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1274 
1275   // The calling conventions assures us that each VMregpair is either
1276   // all really one physical register or adjacent stack slots.
1277   // This greatly simplifies the cases here compared to sparc.
1278 
1279   if (src.is_single_phys_reg() ) {
1280     if (dst.is_single_phys_reg()) {
1281       // In theory these overlap but the ordering is such that this is likely a nop
1282       if ( src.first() != dst.first()) {
1283         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1284       }
1285     } else {
1286       assert(dst.is_single_reg(), "not a stack pair");
1287       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1288     }
1289   } else if (dst.is_single_phys_reg()) {
1290     assert(src.is_single_reg(),  "not a stack pair");
1291     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1292   } else {
1293     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1294     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1295     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1296   }
1297 }
1298 
1299 
1300 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1301   // We always ignore the frame_slots arg and just use the space just below frame pointer
1302   // which by this time is free to use
1303   switch (ret_type) {
1304   case T_FLOAT:
1305     __ movflt(Address(rbp, -wordSize), xmm0);
1306     break;
1307   case T_DOUBLE:
1308     __ movdbl(Address(rbp, -wordSize), xmm0);
1309     break;
1310   case T_VOID:  break;
1311   default: {
1312     __ movptr(Address(rbp, -wordSize), rax);
1313     }
1314   }
1315 }
1316 
1317 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1318   // We always ignore the frame_slots arg and just use the space just below frame pointer
1319   // which by this time is free to use
1320   switch (ret_type) {
1321   case T_FLOAT:
1322     __ movflt(xmm0, Address(rbp, -wordSize));
1323     break;
1324   case T_DOUBLE:
1325     __ movdbl(xmm0, Address(rbp, -wordSize));
1326     break;
1327   case T_VOID:  break;
1328   default: {
1329     __ movptr(rax, Address(rbp, -wordSize));
1330     }
1331   }
1332 }
1333 
1334 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1335     for ( int i = first_arg ; i < arg_count ; i++ ) {
1336       if (args[i].first()->is_Register()) {
1337         __ push(args[i].first()->as_Register());
1338       } else if (args[i].first()->is_XMMRegister()) {
1339         __ subptr(rsp, 2*wordSize);
1340         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1341       }
1342     }
1343 }
1344 
1345 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1346     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1347       if (args[i].first()->is_Register()) {
1348         __ pop(args[i].first()->as_Register());
1349       } else if (args[i].first()->is_XMMRegister()) {
1350         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1351         __ addptr(rsp, 2*wordSize);
1352       }
1353     }
1354 }
1355 
1356 
1357 static void save_or_restore_arguments(MacroAssembler* masm,
1358                                       const int stack_slots,
1359                                       const int total_in_args,
1360                                       const int arg_save_area,
1361                                       OopMap* map,
1362                                       VMRegPair* in_regs,
1363                                       BasicType* in_sig_bt) {
1364   // if map is non-NULL then the code should store the values,
1365   // otherwise it should load them.
1366   int slot = arg_save_area;
1367   // Save down double word first
1368   for ( int i = 0; i < total_in_args; i++) {
1369     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1370       int offset = slot * VMRegImpl::stack_slot_size;
1371       slot += VMRegImpl::slots_per_word;
1372       assert(slot <= stack_slots, "overflow");
1373       if (map != NULL) {
1374         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1375       } else {
1376         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1377       }
1378     }
1379     if (in_regs[i].first()->is_Register() &&
1380         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1381       int offset = slot * VMRegImpl::stack_slot_size;
1382       if (map != NULL) {
1383         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1384         if (in_sig_bt[i] == T_ARRAY) {
1385           map->set_oop(VMRegImpl::stack2reg(slot));;
1386         }
1387       } else {
1388         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1389       }
1390       slot += VMRegImpl::slots_per_word;
1391     }
1392   }
1393   // Save or restore single word registers
1394   for ( int i = 0; i < total_in_args; i++) {
1395     if (in_regs[i].first()->is_Register()) {
1396       int offset = slot * VMRegImpl::stack_slot_size;
1397       slot++;
1398       assert(slot <= stack_slots, "overflow");
1399 
1400       // Value is in an input register pass we must flush it to the stack
1401       const Register reg = in_regs[i].first()->as_Register();
1402       switch (in_sig_bt[i]) {
1403         case T_BOOLEAN:
1404         case T_CHAR:
1405         case T_BYTE:
1406         case T_SHORT:
1407         case T_INT:
1408           if (map != NULL) {
1409             __ movl(Address(rsp, offset), reg);
1410           } else {
1411             __ movl(reg, Address(rsp, offset));
1412           }
1413           break;
1414         case T_ARRAY:
1415         case T_LONG:
1416           // handled above
1417           break;
1418         case T_OBJECT:
1419         default: ShouldNotReachHere();
1420       }
1421     } else if (in_regs[i].first()->is_XMMRegister()) {
1422       if (in_sig_bt[i] == T_FLOAT) {
1423         int offset = slot * VMRegImpl::stack_slot_size;
1424         slot++;
1425         assert(slot <= stack_slots, "overflow");
1426         if (map != NULL) {
1427           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1428         } else {
1429           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1430         }
1431       }
1432     } else if (in_regs[i].first()->is_stack()) {
1433       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1434         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1435         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1436       }
1437     }
1438   }
1439 }
1440 
1441 
1442 // Check GCLocker::needs_gc and enter the runtime if it's true.  This
1443 // keeps a new JNI critical region from starting until a GC has been
1444 // forced.  Save down any oops in registers and describe them in an
1445 // OopMap.
1446 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1447                                                int stack_slots,
1448                                                int total_c_args,
1449                                                int total_in_args,
1450                                                int arg_save_area,
1451                                                OopMapSet* oop_maps,
1452                                                VMRegPair* in_regs,
1453                                                BasicType* in_sig_bt) {
1454   __ block_comment("check GCLocker::needs_gc");
1455   Label cont;
1456   __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
1457   __ jcc(Assembler::equal, cont);
1458 
1459   // Save down any incoming oops and call into the runtime to halt for a GC
1460 
1461   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1462   save_or_restore_arguments(masm, stack_slots, total_in_args,
1463                             arg_save_area, map, in_regs, in_sig_bt);
1464 
1465   address the_pc = __ pc();
1466   oop_maps->add_gc_map( __ offset(), map);
1467   __ set_last_Java_frame(rsp, noreg, the_pc);
1468 
1469   __ block_comment("block_for_jni_critical");
1470   __ movptr(c_rarg0, r15_thread);
1471   __ mov(r12, rsp); // remember sp
1472   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1473   __ andptr(rsp, -16); // align stack as required by ABI
1474   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1475   __ mov(rsp, r12); // restore sp
1476   __ reinit_heapbase();
1477 
1478   __ reset_last_Java_frame(false);
1479 
1480   save_or_restore_arguments(masm, stack_slots, total_in_args,
1481                             arg_save_area, NULL, in_regs, in_sig_bt);
1482   __ bind(cont);
1483 #ifdef ASSERT
1484   if (StressCriticalJNINatives) {
1485     // Stress register saving
1486     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1487     save_or_restore_arguments(masm, stack_slots, total_in_args,
1488                               arg_save_area, map, in_regs, in_sig_bt);
1489     // Destroy argument registers
1490     for (int i = 0; i < total_in_args - 1; i++) {
1491       if (in_regs[i].first()->is_Register()) {
1492         const Register reg = in_regs[i].first()->as_Register();
1493         __ xorptr(reg, reg);
1494       } else if (in_regs[i].first()->is_XMMRegister()) {
1495         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1496       } else if (in_regs[i].first()->is_FloatRegister()) {
1497         ShouldNotReachHere();
1498       } else if (in_regs[i].first()->is_stack()) {
1499         // Nothing to do
1500       } else {
1501         ShouldNotReachHere();
1502       }
1503       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1504         i++;
1505       }
1506     }
1507 
1508     save_or_restore_arguments(masm, stack_slots, total_in_args,
1509                               arg_save_area, NULL, in_regs, in_sig_bt);
1510   }
1511 #endif
1512 }
1513 
1514 // Unpack an array argument into a pointer to the body and the length
1515 // if the array is non-null, otherwise pass 0 for both.
1516 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1517   Register tmp_reg = rax;
1518   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1519          "possible collision");
1520   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1521          "possible collision");
1522 
1523   __ block_comment("unpack_array_argument {");
1524 
1525   // Pass the length, ptr pair
1526   Label is_null, done;
1527   VMRegPair tmp;
1528   tmp.set_ptr(tmp_reg->as_VMReg());
1529   if (reg.first()->is_stack()) {
1530     // Load the arg up from the stack
1531     move_ptr(masm, reg, tmp);
1532     reg = tmp;
1533   }
1534   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1535   __ jccb(Assembler::equal, is_null);
1536   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1537   move_ptr(masm, tmp, body_arg);
1538   // load the length relative to the body.
1539   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1540                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1541   move32_64(masm, tmp, length_arg);
1542   __ jmpb(done);
1543   __ bind(is_null);
1544   // Pass zeros
1545   __ xorptr(tmp_reg, tmp_reg);
1546   move_ptr(masm, tmp, body_arg);
1547   move32_64(masm, tmp, length_arg);
1548   __ bind(done);
1549 
1550   __ block_comment("} unpack_array_argument");
1551 }
1552 
1553 
1554 // Different signatures may require very different orders for the move
1555 // to avoid clobbering other arguments.  There's no simple way to
1556 // order them safely.  Compute a safe order for issuing stores and
1557 // break any cycles in those stores.  This code is fairly general but
1558 // it's not necessary on the other platforms so we keep it in the
1559 // platform dependent code instead of moving it into a shared file.
1560 // (See bugs 7013347 & 7145024.)
1561 // Note that this code is specific to LP64.
1562 class ComputeMoveOrder: public StackObj {
1563   class MoveOperation: public ResourceObj {
1564     friend class ComputeMoveOrder;
1565    private:
1566     VMRegPair        _src;
1567     VMRegPair        _dst;
1568     int              _src_index;
1569     int              _dst_index;
1570     bool             _processed;
1571     MoveOperation*  _next;
1572     MoveOperation*  _prev;
1573 
1574     static int get_id(VMRegPair r) {
1575       return r.first()->value();
1576     }
1577 
1578    public:
1579     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1580       _src(src)
1581     , _src_index(src_index)
1582     , _dst(dst)
1583     , _dst_index(dst_index)
1584     , _next(NULL)
1585     , _prev(NULL)
1586     , _processed(false) {
1587     }
1588 
1589     VMRegPair src() const              { return _src; }
1590     int src_id() const                 { return get_id(src()); }
1591     int src_index() const              { return _src_index; }
1592     VMRegPair dst() const              { return _dst; }
1593     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
1594     int dst_index() const              { return _dst_index; }
1595     int dst_id() const                 { return get_id(dst()); }
1596     MoveOperation* next() const       { return _next; }
1597     MoveOperation* prev() const       { return _prev; }
1598     void set_processed()               { _processed = true; }
1599     bool is_processed() const          { return _processed; }
1600 
1601     // insert
1602     void break_cycle(VMRegPair temp_register) {
1603       // create a new store following the last store
1604       // to move from the temp_register to the original
1605       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1606 
1607       // break the cycle of links and insert new_store at the end
1608       // break the reverse link.
1609       MoveOperation* p = prev();
1610       assert(p->next() == this, "must be");
1611       _prev = NULL;
1612       p->_next = new_store;
1613       new_store->_prev = p;
1614 
1615       // change the original store to save it's value in the temp.
1616       set_dst(-1, temp_register);
1617     }
1618 
1619     void link(GrowableArray<MoveOperation*>& killer) {
1620       // link this store in front the store that it depends on
1621       MoveOperation* n = killer.at_grow(src_id(), NULL);
1622       if (n != NULL) {
1623         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1624         _next = n;
1625         n->_prev = this;
1626       }
1627     }
1628   };
1629 
1630  private:
1631   GrowableArray<MoveOperation*> edges;
1632 
1633  public:
1634   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1635                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1636     // Move operations where the dest is the stack can all be
1637     // scheduled first since they can't interfere with the other moves.
1638     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1639       if (in_sig_bt[i] == T_ARRAY) {
1640         c_arg--;
1641         if (out_regs[c_arg].first()->is_stack() &&
1642             out_regs[c_arg + 1].first()->is_stack()) {
1643           arg_order.push(i);
1644           arg_order.push(c_arg);
1645         } else {
1646           if (out_regs[c_arg].first()->is_stack() ||
1647               in_regs[i].first() == out_regs[c_arg].first()) {
1648             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
1649           } else {
1650             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1651           }
1652         }
1653       } else if (in_sig_bt[i] == T_VOID) {
1654         arg_order.push(i);
1655         arg_order.push(c_arg);
1656       } else {
1657         if (out_regs[c_arg].first()->is_stack() ||
1658             in_regs[i].first() == out_regs[c_arg].first()) {
1659           arg_order.push(i);
1660           arg_order.push(c_arg);
1661         } else {
1662           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1663         }
1664       }
1665     }
1666     // Break any cycles in the register moves and emit the in the
1667     // proper order.
1668     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
1669     for (int i = 0; i < stores->length(); i++) {
1670       arg_order.push(stores->at(i)->src_index());
1671       arg_order.push(stores->at(i)->dst_index());
1672     }
1673  }
1674 
1675   // Collected all the move operations
1676   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
1677     if (src.first() == dst.first()) return;
1678     edges.append(new MoveOperation(src_index, src, dst_index, dst));
1679   }
1680 
1681   // Walk the edges breaking cycles between moves.  The result list
1682   // can be walked in order to produce the proper set of loads
1683   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
1684     // Record which moves kill which values
1685     GrowableArray<MoveOperation*> killer;
1686     for (int i = 0; i < edges.length(); i++) {
1687       MoveOperation* s = edges.at(i);
1688       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
1689       killer.at_put_grow(s->dst_id(), s, NULL);
1690     }
1691     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
1692            "make sure temp isn't in the registers that are killed");
1693 
1694     // create links between loads and stores
1695     for (int i = 0; i < edges.length(); i++) {
1696       edges.at(i)->link(killer);
1697     }
1698 
1699     // at this point, all the move operations are chained together
1700     // in a doubly linked list.  Processing it backwards finds
1701     // the beginning of the chain, forwards finds the end.  If there's
1702     // a cycle it can be broken at any point,  so pick an edge and walk
1703     // backward until the list ends or we end where we started.
1704     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
1705     for (int e = 0; e < edges.length(); e++) {
1706       MoveOperation* s = edges.at(e);
1707       if (!s->is_processed()) {
1708         MoveOperation* start = s;
1709         // search for the beginning of the chain or cycle
1710         while (start->prev() != NULL && start->prev() != s) {
1711           start = start->prev();
1712         }
1713         if (start->prev() == s) {
1714           start->break_cycle(temp_register);
1715         }
1716         // walk the chain forward inserting to store list
1717         while (start != NULL) {
1718           stores->append(start);
1719           start->set_processed();
1720           start = start->next();
1721         }
1722       }
1723     }
1724     return stores;
1725   }
1726 };
1727 
1728 static void verify_oop_args(MacroAssembler* masm,
1729                             const methodHandle& method,
1730                             const BasicType* sig_bt,
1731                             const VMRegPair* regs) {
1732   Register temp_reg = rbx;  // not part of any compiled calling seq
1733   if (VerifyOops) {
1734     for (int i = 0; i < method->size_of_parameters(); i++) {
1735       if (sig_bt[i] == T_OBJECT ||
1736           sig_bt[i] == T_ARRAY) {
1737         VMReg r = regs[i].first();
1738         assert(r->is_valid(), "bad oop arg");
1739         if (r->is_stack()) {
1740           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1741           __ verify_oop(temp_reg);
1742         } else {
1743           __ verify_oop(r->as_Register());
1744         }
1745       }
1746     }
1747   }
1748 }
1749 
1750 static void gen_special_dispatch(MacroAssembler* masm,
1751                                  methodHandle method,
1752                                  const BasicType* sig_bt,
1753                                  const VMRegPair* regs) {
1754   verify_oop_args(masm, method, sig_bt, regs);
1755   vmIntrinsics::ID iid = method->intrinsic_id();
1756 
1757   // Now write the args into the outgoing interpreter space
1758   bool     has_receiver   = false;
1759   Register receiver_reg   = noreg;
1760   int      member_arg_pos = -1;
1761   Register member_reg     = noreg;
1762   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1763   if (ref_kind != 0) {
1764     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1765     member_reg = rbx;  // known to be free at this point
1766     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1767   } else if (iid == vmIntrinsics::_invokeBasic) {
1768     has_receiver = true;
1769   } else {
1770     fatal("unexpected intrinsic id %d", iid);
1771   }
1772 
1773   if (member_reg != noreg) {
1774     // Load the member_arg into register, if necessary.
1775     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1776     VMReg r = regs[member_arg_pos].first();
1777     if (r->is_stack()) {
1778       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1779     } else {
1780       // no data motion is needed
1781       member_reg = r->as_Register();
1782     }
1783   }
1784 
1785   if (has_receiver) {
1786     // Make sure the receiver is loaded into a register.
1787     assert(method->size_of_parameters() > 0, "oob");
1788     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1789     VMReg r = regs[0].first();
1790     assert(r->is_valid(), "bad receiver arg");
1791     if (r->is_stack()) {
1792       // Porting note:  This assumes that compiled calling conventions always
1793       // pass the receiver oop in a register.  If this is not true on some
1794       // platform, pick a temp and load the receiver from stack.
1795       fatal("receiver always in a register");
1796       receiver_reg = j_rarg0;  // known to be free at this point
1797       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1798     } else {
1799       // no data motion is needed
1800       receiver_reg = r->as_Register();
1801     }
1802   }
1803 
1804   // Figure out which address we are really jumping to:
1805   MethodHandles::generate_method_handle_dispatch(masm, iid,
1806                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1807 }
1808 
1809 // ---------------------------------------------------------------------------
1810 // Generate a native wrapper for a given method.  The method takes arguments
1811 // in the Java compiled code convention, marshals them to the native
1812 // convention (handlizes oops, etc), transitions to native, makes the call,
1813 // returns to java state (possibly blocking), unhandlizes any result and
1814 // returns.
1815 //
1816 // Critical native functions are a shorthand for the use of
1817 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1818 // functions.  The wrapper is expected to unpack the arguments before
1819 // passing them to the callee and perform checks before and after the
1820 // native call to ensure that they GCLocker
1821 // lock_critical/unlock_critical semantics are followed.  Some other
1822 // parts of JNI setup are skipped like the tear down of the JNI handle
1823 // block and the check for pending exceptions it's impossible for them
1824 // to be thrown.
1825 //
1826 // They are roughly structured like this:
1827 //    if (GCLocker::needs_gc())
1828 //      SharedRuntime::block_for_jni_critical();
1829 //    tranistion to thread_in_native
1830 //    unpack arrray arguments and call native entry point
1831 //    check for safepoint in progress
1832 //    check if any thread suspend flags are set
1833 //      call into JVM and possible unlock the JNI critical
1834 //      if a GC was suppressed while in the critical native.
1835 //    transition back to thread_in_Java
1836 //    return to caller
1837 //
1838 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1839                                                 const methodHandle& method,
1840                                                 int compile_id,
1841                                                 BasicType* in_sig_bt,
1842                                                 VMRegPair* in_regs,
1843                                                 BasicType ret_type) {
1844   if (method->is_method_handle_intrinsic()) {
1845     vmIntrinsics::ID iid = method->intrinsic_id();
1846     intptr_t start = (intptr_t)__ pc();
1847     int vep_offset = ((intptr_t)__ pc()) - start;
1848     gen_special_dispatch(masm,
1849                          method,
1850                          in_sig_bt,
1851                          in_regs);
1852     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1853     __ flush();
1854     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1855     return nmethod::new_native_nmethod(method,
1856                                        compile_id,
1857                                        masm->code(),
1858                                        vep_offset,
1859                                        frame_complete,
1860                                        stack_slots / VMRegImpl::slots_per_word,
1861                                        in_ByteSize(-1),
1862                                        in_ByteSize(-1),
1863                                        (OopMapSet*)NULL);
1864   }
1865   bool is_critical_native = true;
1866   address native_func = method->critical_native_function();
1867   if (native_func == NULL) {
1868     native_func = method->native_function();
1869     is_critical_native = false;
1870   }
1871   assert(native_func != NULL, "must have function");
1872 
1873   // An OopMap for lock (and class if static)
1874   OopMapSet *oop_maps = new OopMapSet();
1875   intptr_t start = (intptr_t)__ pc();
1876 
1877   // We have received a description of where all the java arg are located
1878   // on entry to the wrapper. We need to convert these args to where
1879   // the jni function will expect them. To figure out where they go
1880   // we convert the java signature to a C signature by inserting
1881   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1882 
1883   const int total_in_args = method->size_of_parameters();
1884   int total_c_args = total_in_args;
1885   if (!is_critical_native) {
1886     total_c_args += 1;
1887     if (method->is_static()) {
1888       total_c_args++;
1889     }
1890   } else {
1891     for (int i = 0; i < total_in_args; i++) {
1892       if (in_sig_bt[i] == T_ARRAY) {
1893         total_c_args++;
1894       }
1895     }
1896   }
1897 
1898   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1899   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1900   BasicType* in_elem_bt = NULL;
1901 
1902   int argc = 0;
1903   if (!is_critical_native) {
1904     out_sig_bt[argc++] = T_ADDRESS;
1905     if (method->is_static()) {
1906       out_sig_bt[argc++] = T_OBJECT;
1907     }
1908 
1909     for (int i = 0; i < total_in_args ; i++ ) {
1910       out_sig_bt[argc++] = in_sig_bt[i];
1911     }
1912   } else {
1913     Thread* THREAD = Thread::current();
1914     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1915     SignatureStream ss(method->signature());
1916     for (int i = 0; i < total_in_args ; i++ ) {
1917       if (in_sig_bt[i] == T_ARRAY) {
1918         // Arrays are passed as int, elem* pair
1919         out_sig_bt[argc++] = T_INT;
1920         out_sig_bt[argc++] = T_ADDRESS;
1921         Symbol* atype = ss.as_symbol(CHECK_NULL);
1922         const char* at = atype->as_C_string();
1923         if (strlen(at) == 2) {
1924           assert(at[0] == '[', "must be");
1925           switch (at[1]) {
1926             case 'B': in_elem_bt[i]  = T_BYTE; break;
1927             case 'C': in_elem_bt[i]  = T_CHAR; break;
1928             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1929             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1930             case 'I': in_elem_bt[i]  = T_INT; break;
1931             case 'J': in_elem_bt[i]  = T_LONG; break;
1932             case 'S': in_elem_bt[i]  = T_SHORT; break;
1933             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1934             default: ShouldNotReachHere();
1935           }
1936         }
1937       } else {
1938         out_sig_bt[argc++] = in_sig_bt[i];
1939         in_elem_bt[i] = T_VOID;
1940       }
1941       if (in_sig_bt[i] != T_VOID) {
1942         assert(in_sig_bt[i] == ss.type(), "must match");
1943         ss.next();
1944       }
1945     }
1946   }
1947 
1948   // Now figure out where the args must be stored and how much stack space
1949   // they require.
1950   int out_arg_slots;
1951   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1952 
1953   // Compute framesize for the wrapper.  We need to handlize all oops in
1954   // incoming registers
1955 
1956   // Calculate the total number of stack slots we will need.
1957 
1958   // First count the abi requirement plus all of the outgoing args
1959   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1960 
1961   // Now the space for the inbound oop handle area
1962   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
1963   if (is_critical_native) {
1964     // Critical natives may have to call out so they need a save area
1965     // for register arguments.
1966     int double_slots = 0;
1967     int single_slots = 0;
1968     for ( int i = 0; i < total_in_args; i++) {
1969       if (in_regs[i].first()->is_Register()) {
1970         const Register reg = in_regs[i].first()->as_Register();
1971         switch (in_sig_bt[i]) {
1972           case T_BOOLEAN:
1973           case T_BYTE:
1974           case T_SHORT:
1975           case T_CHAR:
1976           case T_INT:  single_slots++; break;
1977           case T_ARRAY:  // specific to LP64 (7145024)
1978           case T_LONG: double_slots++; break;
1979           default:  ShouldNotReachHere();
1980         }
1981       } else if (in_regs[i].first()->is_XMMRegister()) {
1982         switch (in_sig_bt[i]) {
1983           case T_FLOAT:  single_slots++; break;
1984           case T_DOUBLE: double_slots++; break;
1985           default:  ShouldNotReachHere();
1986         }
1987       } else if (in_regs[i].first()->is_FloatRegister()) {
1988         ShouldNotReachHere();
1989       }
1990     }
1991     total_save_slots = double_slots * 2 + single_slots;
1992     // align the save area
1993     if (double_slots != 0) {
1994       stack_slots = round_to(stack_slots, 2);
1995     }
1996   }
1997 
1998   int oop_handle_offset = stack_slots;
1999   stack_slots += total_save_slots;
2000 
2001   // Now any space we need for handlizing a klass if static method
2002 
2003   int klass_slot_offset = 0;
2004   int klass_offset = -1;
2005   int lock_slot_offset = 0;
2006   bool is_static = false;
2007 
2008   if (method->is_static()) {
2009     klass_slot_offset = stack_slots;
2010     stack_slots += VMRegImpl::slots_per_word;
2011     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
2012     is_static = true;
2013   }
2014 
2015   // Plus a lock if needed
2016 
2017   if (method->is_synchronized()) {
2018     lock_slot_offset = stack_slots;
2019     stack_slots += VMRegImpl::slots_per_word;
2020   }
2021 
2022   // Now a place (+2) to save return values or temp during shuffling
2023   // + 4 for return address (which we own) and saved rbp
2024   stack_slots += 6;
2025 
2026   // Ok The space we have allocated will look like:
2027   //
2028   //
2029   // FP-> |                     |
2030   //      |---------------------|
2031   //      | 2 slots for moves   |
2032   //      |---------------------|
2033   //      | lock box (if sync)  |
2034   //      |---------------------| <- lock_slot_offset
2035   //      | klass (if static)   |
2036   //      |---------------------| <- klass_slot_offset
2037   //      | oopHandle area      |
2038   //      |---------------------| <- oop_handle_offset (6 java arg registers)
2039   //      | outbound memory     |
2040   //      | based arguments     |
2041   //      |                     |
2042   //      |---------------------|
2043   //      |                     |
2044   // SP-> | out_preserved_slots |
2045   //
2046   //
2047 
2048 
2049   // Now compute actual number of stack words we need rounding to make
2050   // stack properly aligned.
2051   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
2052 
2053   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2054 
2055   // First thing make an ic check to see if we should even be here
2056 
2057   // We are free to use all registers as temps without saving them and
2058   // restoring them except rbp. rbp is the only callee save register
2059   // as far as the interpreter and the compiler(s) are concerned.
2060 
2061 
2062   const Register ic_reg = rax;
2063   const Register receiver = j_rarg0;
2064 
2065   Label hit;
2066   Label exception_pending;
2067 
2068   assert_different_registers(ic_reg, receiver, rscratch1);
2069   __ verify_oop(receiver);
2070   __ load_klass(rscratch1, receiver);
2071   __ cmpq(ic_reg, rscratch1);
2072   __ jcc(Assembler::equal, hit);
2073 
2074   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2075 
2076   // Verified entry point must be aligned
2077   __ align(8);
2078 
2079   __ bind(hit);
2080 
2081   int vep_offset = ((intptr_t)__ pc()) - start;
2082 
2083 #ifdef COMPILER1
2084   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
2085   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
2086     inline_check_hashcode_from_object_header(masm, method, j_rarg0 /*obj_reg*/, rax /*result*/);
2087   }
2088 #endif // COMPILER1
2089 
2090   // The instruction at the verified entry point must be 5 bytes or longer
2091   // because it can be patched on the fly by make_non_entrant. The stack bang
2092   // instruction fits that requirement.
2093 
2094   // Generate stack overflow check
2095 
2096   if (UseStackBanging) {
2097     __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
2098   } else {
2099     // need a 5 byte instruction to allow MT safe patching to non-entrant
2100     __ fat_nop();
2101   }
2102 
2103   // Generate a new frame for the wrapper.
2104   __ enter();
2105   // -2 because return address is already present and so is saved rbp
2106   __ subptr(rsp, stack_size - 2*wordSize);
2107 
2108   // Frame is now completed as far as size and linkage.
2109   int frame_complete = ((intptr_t)__ pc()) - start;
2110 
2111     if (UseRTMLocking) {
2112       // Abort RTM transaction before calling JNI
2113       // because critical section will be large and will be
2114       // aborted anyway. Also nmethod could be deoptimized.
2115       __ xabort(0);
2116     }
2117 
2118 #ifdef ASSERT
2119     {
2120       Label L;
2121       __ mov(rax, rsp);
2122       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
2123       __ cmpptr(rax, rsp);
2124       __ jcc(Assembler::equal, L);
2125       __ stop("improperly aligned stack");
2126       __ bind(L);
2127     }
2128 #endif /* ASSERT */
2129 
2130 
2131   // We use r14 as the oop handle for the receiver/klass
2132   // It is callee save so it survives the call to native
2133 
2134   const Register oop_handle_reg = r14;
2135 
2136   if (is_critical_native) {
2137     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
2138                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2139   }
2140 
2141   //
2142   // We immediately shuffle the arguments so that any vm call we have to
2143   // make from here on out (sync slow path, jvmti, etc.) we will have
2144   // captured the oops from our caller and have a valid oopMap for
2145   // them.
2146 
2147   // -----------------
2148   // The Grand Shuffle
2149 
2150   // The Java calling convention is either equal (linux) or denser (win64) than the
2151   // c calling convention. However the because of the jni_env argument the c calling
2152   // convention always has at least one more (and two for static) arguments than Java.
2153   // Therefore if we move the args from java -> c backwards then we will never have
2154   // a register->register conflict and we don't have to build a dependency graph
2155   // and figure out how to break any cycles.
2156   //
2157 
2158   // Record esp-based slot for receiver on stack for non-static methods
2159   int receiver_offset = -1;
2160 
2161   // This is a trick. We double the stack slots so we can claim
2162   // the oops in the caller's frame. Since we are sure to have
2163   // more args than the caller doubling is enough to make
2164   // sure we can capture all the incoming oop args from the
2165   // caller.
2166   //
2167   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2168 
2169   // Mark location of rbp (someday)
2170   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2171 
2172   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2173   // All inbound args are referenced based on rbp and all outbound args via rsp.
2174 
2175 
2176 #ifdef ASSERT
2177   bool reg_destroyed[RegisterImpl::number_of_registers];
2178   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
2179   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2180     reg_destroyed[r] = false;
2181   }
2182   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
2183     freg_destroyed[f] = false;
2184   }
2185 
2186 #endif /* ASSERT */
2187 
2188   // This may iterate in two different directions depending on the
2189   // kind of native it is.  The reason is that for regular JNI natives
2190   // the incoming and outgoing registers are offset upwards and for
2191   // critical natives they are offset down.
2192   GrowableArray<int> arg_order(2 * total_in_args);
2193   VMRegPair tmp_vmreg;
2194   tmp_vmreg.set1(rbx->as_VMReg());
2195 
2196   if (!is_critical_native) {
2197     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2198       arg_order.push(i);
2199       arg_order.push(c_arg);
2200     }
2201   } else {
2202     // Compute a valid move order, using tmp_vmreg to break any cycles
2203     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
2204   }
2205 
2206   int temploc = -1;
2207   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2208     int i = arg_order.at(ai);
2209     int c_arg = arg_order.at(ai + 1);
2210     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2211     if (c_arg == -1) {
2212       assert(is_critical_native, "should only be required for critical natives");
2213       // This arg needs to be moved to a temporary
2214       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
2215       in_regs[i] = tmp_vmreg;
2216       temploc = i;
2217       continue;
2218     } else if (i == -1) {
2219       assert(is_critical_native, "should only be required for critical natives");
2220       // Read from the temporary location
2221       assert(temploc != -1, "must be valid");
2222       i = temploc;
2223       temploc = -1;
2224     }
2225 #ifdef ASSERT
2226     if (in_regs[i].first()->is_Register()) {
2227       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2228     } else if (in_regs[i].first()->is_XMMRegister()) {
2229       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2230     }
2231     if (out_regs[c_arg].first()->is_Register()) {
2232       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2233     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2234       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2235     }
2236 #endif /* ASSERT */
2237     switch (in_sig_bt[i]) {
2238       case T_ARRAY:
2239         if (is_critical_native) {
2240           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2241           c_arg++;
2242 #ifdef ASSERT
2243           if (out_regs[c_arg].first()->is_Register()) {
2244             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2245           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2246             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2247           }
2248 #endif
2249           break;
2250         }
2251       case T_OBJECT:
2252         assert(!is_critical_native, "no oop arguments");
2253         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2254                     ((i == 0) && (!is_static)),
2255                     &receiver_offset);
2256         break;
2257       case T_VOID:
2258         break;
2259 
2260       case T_FLOAT:
2261         float_move(masm, in_regs[i], out_regs[c_arg]);
2262           break;
2263 
2264       case T_DOUBLE:
2265         assert( i + 1 < total_in_args &&
2266                 in_sig_bt[i + 1] == T_VOID &&
2267                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2268         double_move(masm, in_regs[i], out_regs[c_arg]);
2269         break;
2270 
2271       case T_LONG :
2272         long_move(masm, in_regs[i], out_regs[c_arg]);
2273         break;
2274 
2275       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2276 
2277       default:
2278         move32_64(masm, in_regs[i], out_regs[c_arg]);
2279     }
2280   }
2281 
2282   int c_arg;
2283 
2284   // Pre-load a static method's oop into r14.  Used both by locking code and
2285   // the normal JNI call code.
2286   if (!is_critical_native) {
2287     // point c_arg at the first arg that is already loaded in case we
2288     // need to spill before we call out
2289     c_arg = total_c_args - total_in_args;
2290 
2291     if (method->is_static()) {
2292 
2293       //  load oop into a register
2294       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2295 
2296       // Now handlize the static class mirror it's known not-null.
2297       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2298       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2299 
2300       // Now get the handle
2301       __ lea(oop_handle_reg, Address(rsp, klass_offset));
2302       // store the klass handle as second argument
2303       __ movptr(c_rarg1, oop_handle_reg);
2304       // and protect the arg if we must spill
2305       c_arg--;
2306     }
2307   } else {
2308     // For JNI critical methods we need to save all registers in save_args.
2309     c_arg = 0;
2310   }
2311 
2312   // Change state to native (we save the return address in the thread, since it might not
2313   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2314   // points into the right code segment. It does not have to be the correct return pc.
2315   // We use the same pc/oopMap repeatedly when we call out
2316 
2317   intptr_t the_pc = (intptr_t) __ pc();
2318   oop_maps->add_gc_map(the_pc - start, map);
2319 
2320   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
2321 
2322 
2323   // We have all of the arguments setup at this point. We must not touch any register
2324   // argument registers at this point (what if we save/restore them there are no oop?
2325 
2326   {
2327     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2328     // protect the args we've loaded
2329     save_args(masm, total_c_args, c_arg, out_regs);
2330     __ mov_metadata(c_rarg1, method());
2331     __ call_VM_leaf(
2332       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2333       r15_thread, c_rarg1);
2334     restore_args(masm, total_c_args, c_arg, out_regs);
2335   }
2336 
2337   // RedefineClasses() tracing support for obsolete method entry
2338   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2339     // protect the args we've loaded
2340     save_args(masm, total_c_args, c_arg, out_regs);
2341     __ mov_metadata(c_rarg1, method());
2342     __ call_VM_leaf(
2343       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2344       r15_thread, c_rarg1);
2345     restore_args(masm, total_c_args, c_arg, out_regs);
2346   }
2347 
2348   // Lock a synchronized method
2349 
2350   // Register definitions used by locking and unlocking
2351 
2352   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2353   const Register obj_reg  = rbx;  // Will contain the oop
2354   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2355   const Register old_hdr  = r13;  // value of old header at unlock time
2356 
2357   Label slow_path_lock;
2358   Label lock_done;
2359 
2360   if (method->is_synchronized()) {
2361     assert(!is_critical_native, "unhandled");
2362 
2363 
2364     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2365 
2366     // Get the handle (the 2nd argument)
2367     __ mov(oop_handle_reg, c_rarg1);
2368 
2369     // Get address of the box
2370 
2371     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2372 
2373     // Load the oop from the handle
2374     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2375 
2376     if (UseBiasedLocking) {
2377       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
2378     }
2379 
2380     // Load immediate 1 into swap_reg %rax
2381     __ movl(swap_reg, 1);
2382 
2383     // Load (object->mark() | 1) into swap_reg %rax
2384     __ orptr(swap_reg, Address(obj_reg, 0));
2385 
2386     // Save (object->mark() | 1) into BasicLock's displaced header
2387     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2388 
2389     if (os::is_MP()) {
2390       __ lock();
2391     }
2392 
2393     // src -> dest iff dest == rax else rax <- dest
2394     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
2395     __ jcc(Assembler::equal, lock_done);
2396 
2397     // Hmm should this move to the slow path code area???
2398 
2399     // Test if the oopMark is an obvious stack pointer, i.e.,
2400     //  1) (mark & 3) == 0, and
2401     //  2) rsp <= mark < mark + os::pagesize()
2402     // These 3 tests can be done by evaluating the following
2403     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2404     // assuming both stack pointer and pagesize have their
2405     // least significant 2 bits clear.
2406     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2407 
2408     __ subptr(swap_reg, rsp);
2409     __ andptr(swap_reg, 3 - os::vm_page_size());
2410 
2411     // Save the test result, for recursive case, the result is zero
2412     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2413     __ jcc(Assembler::notEqual, slow_path_lock);
2414 
2415     // Slow path will re-enter here
2416 
2417     __ bind(lock_done);
2418   }
2419 
2420 
2421   // Finally just about ready to make the JNI call
2422 
2423 
2424   // get JNIEnv* which is first argument to native
2425   if (!is_critical_native) {
2426     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2427   }
2428 
2429   // Now set thread in native
2430   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2431 
2432   __ call(RuntimeAddress(native_func));
2433 
2434   // Verify or restore cpu control state after JNI call
2435   __ restore_cpu_control_state_after_jni();
2436 
2437   // Unpack native results.
2438   switch (ret_type) {
2439   case T_BOOLEAN: __ c2bool(rax);            break;
2440   case T_CHAR   : __ movzwl(rax, rax);      break;
2441   case T_BYTE   : __ sign_extend_byte (rax); break;
2442   case T_SHORT  : __ sign_extend_short(rax); break;
2443   case T_INT    : /* nothing to do */        break;
2444   case T_DOUBLE :
2445   case T_FLOAT  :
2446     // Result is in xmm0 we'll save as needed
2447     break;
2448   case T_ARRAY:                 // Really a handle
2449   case T_OBJECT:                // Really a handle
2450       break; // can't de-handlize until after safepoint check
2451   case T_VOID: break;
2452   case T_LONG: break;
2453   default       : ShouldNotReachHere();
2454   }
2455 
2456   // Switch thread to "native transition" state before reading the synchronization state.
2457   // This additional state is necessary because reading and testing the synchronization
2458   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2459   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2460   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2461   //     Thread A is resumed to finish this native method, but doesn't block here since it
2462   //     didn't see any synchronization is progress, and escapes.
2463   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2464 
2465   if(os::is_MP()) {
2466     if (UseMembar) {
2467       // Force this write out before the read below
2468       __ membar(Assembler::Membar_mask_bits(
2469            Assembler::LoadLoad | Assembler::LoadStore |
2470            Assembler::StoreLoad | Assembler::StoreStore));
2471     } else {
2472       // Write serialization page so VM thread can do a pseudo remote membar.
2473       // We use the current thread pointer to calculate a thread specific
2474       // offset to write to within the page. This minimizes bus traffic
2475       // due to cache line collision.
2476       __ serialize_memory(r15_thread, rcx);
2477     }
2478   }
2479 
2480   Label after_transition;
2481 
2482   // check for safepoint operation in progress and/or pending suspend requests
2483   {
2484     Label Continue;
2485 
2486     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2487              SafepointSynchronize::_not_synchronized);
2488 
2489     Label L;
2490     __ jcc(Assembler::notEqual, L);
2491     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2492     __ jcc(Assembler::equal, Continue);
2493     __ bind(L);
2494 
2495     // Don't use call_VM as it will see a possible pending exception and forward it
2496     // and never return here preventing us from clearing _last_native_pc down below.
2497     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2498     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2499     // by hand.
2500     //
2501     if (VM_Version::supports_avx()) {
2502       __ vzeroupper();
2503     }
2504     save_native_result(masm, ret_type, stack_slots);
2505     __ mov(c_rarg0, r15_thread);
2506     __ mov(r12, rsp); // remember sp
2507     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2508     __ andptr(rsp, -16); // align stack as required by ABI
2509     if (!is_critical_native) {
2510       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2511     } else {
2512       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2513     }
2514     __ mov(rsp, r12); // restore sp
2515     __ reinit_heapbase();
2516     // Restore any method result value
2517     restore_native_result(masm, ret_type, stack_slots);
2518 
2519     if (is_critical_native) {
2520       // The call above performed the transition to thread_in_Java so
2521       // skip the transition logic below.
2522       __ jmpb(after_transition);
2523     }
2524 
2525     __ bind(Continue);
2526   }
2527 
2528   // change thread state
2529   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2530   __ bind(after_transition);
2531 
2532   Label reguard;
2533   Label reguard_done;
2534   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
2535   __ jcc(Assembler::equal, reguard);
2536   __ bind(reguard_done);
2537 
2538   // native result if any is live
2539 
2540   // Unlock
2541   Label unlock_done;
2542   Label slow_path_unlock;
2543   if (method->is_synchronized()) {
2544 
2545     // Get locked oop from the handle we passed to jni
2546     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2547 
2548     Label done;
2549 
2550     if (UseBiasedLocking) {
2551       __ biased_locking_exit(obj_reg, old_hdr, done);
2552     }
2553 
2554     // Simple recursive lock?
2555 
2556     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2557     __ jcc(Assembler::equal, done);
2558 
2559     // Must save rax if if it is live now because cmpxchg must use it
2560     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2561       save_native_result(masm, ret_type, stack_slots);
2562     }
2563 
2564 
2565     // get address of the stack lock
2566     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2567     //  get old displaced header
2568     __ movptr(old_hdr, Address(rax, 0));
2569 
2570     // Atomic swap old header if oop still contains the stack lock
2571     if (os::is_MP()) {
2572       __ lock();
2573     }
2574     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
2575     __ jcc(Assembler::notEqual, slow_path_unlock);
2576 
2577     // slow path re-enters here
2578     __ bind(unlock_done);
2579     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2580       restore_native_result(masm, ret_type, stack_slots);
2581     }
2582 
2583     __ bind(done);
2584 
2585   }
2586   {
2587     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2588     save_native_result(masm, ret_type, stack_slots);
2589     __ mov_metadata(c_rarg1, method());
2590     __ call_VM_leaf(
2591          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2592          r15_thread, c_rarg1);
2593     restore_native_result(masm, ret_type, stack_slots);
2594   }
2595 
2596   __ reset_last_Java_frame(false);
2597 
2598   // Unpack oop result
2599   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2600       Label L;
2601       __ testptr(rax, rax);
2602       __ jcc(Assembler::zero, L);
2603       __ movptr(rax, Address(rax, 0));
2604       __ bind(L);
2605       __ verify_oop(rax);
2606   }
2607 
2608   if (CheckJNICalls) {
2609     // clear_pending_jni_exception_check
2610     __ movptr(Address(r15_thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
2611   }
2612 
2613   if (!is_critical_native) {
2614     // reset handle block
2615     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2616     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2617   }
2618 
2619   // pop our frame
2620 
2621   __ leave();
2622 
2623   if (!is_critical_native) {
2624     // Any exception pending?
2625     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2626     __ jcc(Assembler::notEqual, exception_pending);
2627   }
2628 
2629   // Return
2630 
2631   __ ret(0);
2632 
2633   // Unexpected paths are out of line and go here
2634 
2635   if (!is_critical_native) {
2636     // forward the exception
2637     __ bind(exception_pending);
2638 
2639     // and forward the exception
2640     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2641   }
2642 
2643   // Slow path locking & unlocking
2644   if (method->is_synchronized()) {
2645 
2646     // BEGIN Slow path lock
2647     __ bind(slow_path_lock);
2648 
2649     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2650     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2651 
2652     // protect the args we've loaded
2653     save_args(masm, total_c_args, c_arg, out_regs);
2654 
2655     __ mov(c_rarg0, obj_reg);
2656     __ mov(c_rarg1, lock_reg);
2657     __ mov(c_rarg2, r15_thread);
2658 
2659     // Not a leaf but we have last_Java_frame setup as we want
2660     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2661     restore_args(masm, total_c_args, c_arg, out_regs);
2662 
2663 #ifdef ASSERT
2664     { Label L;
2665     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2666     __ jcc(Assembler::equal, L);
2667     __ stop("no pending exception allowed on exit from monitorenter");
2668     __ bind(L);
2669     }
2670 #endif
2671     __ jmp(lock_done);
2672 
2673     // END Slow path lock
2674 
2675     // BEGIN Slow path unlock
2676     __ bind(slow_path_unlock);
2677 
2678     // If we haven't already saved the native result we must save it now as xmm registers
2679     // are still exposed.
2680     if (VM_Version::supports_avx()) {
2681       __ vzeroupper();
2682     }
2683 
2684     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2685       save_native_result(masm, ret_type, stack_slots);
2686     }
2687 
2688     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2689 
2690     __ mov(c_rarg0, obj_reg);
2691     __ mov(c_rarg2, r15_thread);
2692     __ mov(r12, rsp); // remember sp
2693     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2694     __ andptr(rsp, -16); // align stack as required by ABI
2695 
2696     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2697     // NOTE that obj_reg == rbx currently
2698     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2699     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2700 
2701     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2702     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2703     __ mov(rsp, r12); // restore sp
2704     __ reinit_heapbase();
2705 #ifdef ASSERT
2706     {
2707       Label L;
2708       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2709       __ jcc(Assembler::equal, L);
2710       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2711       __ bind(L);
2712     }
2713 #endif /* ASSERT */
2714 
2715     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2716 
2717     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2718       restore_native_result(masm, ret_type, stack_slots);
2719     }
2720     __ jmp(unlock_done);
2721 
2722     // END Slow path unlock
2723 
2724   } // synchronized
2725 
2726   // SLOW PATH Reguard the stack if needed
2727 
2728   __ bind(reguard);
2729   if (VM_Version::supports_avx()) {
2730     __ vzeroupper();
2731   }
2732   save_native_result(masm, ret_type, stack_slots);
2733   __ mov(r12, rsp); // remember sp
2734   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2735   __ andptr(rsp, -16); // align stack as required by ABI
2736   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2737   __ mov(rsp, r12); // restore sp
2738   __ reinit_heapbase();
2739   restore_native_result(masm, ret_type, stack_slots);
2740   // and continue
2741   __ jmp(reguard_done);
2742 
2743 
2744 
2745   __ flush();
2746 
2747   nmethod *nm = nmethod::new_native_nmethod(method,
2748                                             compile_id,
2749                                             masm->code(),
2750                                             vep_offset,
2751                                             frame_complete,
2752                                             stack_slots / VMRegImpl::slots_per_word,
2753                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2754                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2755                                             oop_maps);
2756 
2757   if (is_critical_native) {
2758     nm->set_lazy_critical_native(true);
2759   }
2760 
2761   return nm;
2762 
2763 }
2764 
2765 // this function returns the adjust size (in number of words) to a c2i adapter
2766 // activation for use during deoptimization
2767 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2768   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2769 }
2770 
2771 
2772 uint SharedRuntime::out_preserve_stack_slots() {
2773   return 0;
2774 }
2775 
2776 //------------------------------generate_deopt_blob----------------------------
2777 void SharedRuntime::generate_deopt_blob() {
2778   // Allocate space for the code
2779   ResourceMark rm;
2780   // Setup code generation tools
2781   int pad = 0;
2782 #if INCLUDE_JVMCI
2783   if (EnableJVMCI || UseAOT) {
2784     pad += 512; // Increase the buffer size when compiling for JVMCI
2785   }
2786 #endif
2787   CodeBuffer buffer("deopt_blob", 2048+pad, 1024);
2788   MacroAssembler* masm = new MacroAssembler(&buffer);
2789   int frame_size_in_words;
2790   OopMap* map = NULL;
2791   OopMapSet *oop_maps = new OopMapSet();
2792 
2793   // -------------
2794   // This code enters when returning to a de-optimized nmethod.  A return
2795   // address has been pushed on the the stack, and return values are in
2796   // registers.
2797   // If we are doing a normal deopt then we were called from the patched
2798   // nmethod from the point we returned to the nmethod. So the return
2799   // address on the stack is wrong by NativeCall::instruction_size
2800   // We will adjust the value so it looks like we have the original return
2801   // address on the stack (like when we eagerly deoptimized).
2802   // In the case of an exception pending when deoptimizing, we enter
2803   // with a return address on the stack that points after the call we patched
2804   // into the exception handler. We have the following register state from,
2805   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2806   //    rax: exception oop
2807   //    rbx: exception handler
2808   //    rdx: throwing pc
2809   // So in this case we simply jam rdx into the useless return address and
2810   // the stack looks just like we want.
2811   //
2812   // At this point we need to de-opt.  We save the argument return
2813   // registers.  We call the first C routine, fetch_unroll_info().  This
2814   // routine captures the return values and returns a structure which
2815   // describes the current frame size and the sizes of all replacement frames.
2816   // The current frame is compiled code and may contain many inlined
2817   // functions, each with their own JVM state.  We pop the current frame, then
2818   // push all the new frames.  Then we call the C routine unpack_frames() to
2819   // populate these frames.  Finally unpack_frames() returns us the new target
2820   // address.  Notice that callee-save registers are BLOWN here; they have
2821   // already been captured in the vframeArray at the time the return PC was
2822   // patched.
2823   address start = __ pc();
2824   Label cont;
2825 
2826   // Prolog for non exception case!
2827 
2828   // Save everything in sight.
2829   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2830 
2831   // Normal deoptimization.  Save exec mode for unpack_frames.
2832   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
2833   __ jmp(cont);
2834 
2835   int reexecute_offset = __ pc() - start;
2836 #if INCLUDE_JVMCI && !defined(COMPILER1)
2837   if (EnableJVMCI && UseJVMCICompiler) {
2838     // JVMCI does not use this kind of deoptimization
2839     __ should_not_reach_here();
2840   }
2841 #endif
2842 
2843   // Reexecute case
2844   // return address is the pc describes what bci to do re-execute at
2845 
2846   // No need to update map as each call to save_live_registers will produce identical oopmap
2847   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2848 
2849   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
2850   __ jmp(cont);
2851 
2852 #if INCLUDE_JVMCI
2853   Label after_fetch_unroll_info_call;
2854   int implicit_exception_uncommon_trap_offset = 0;
2855   int uncommon_trap_offset = 0;
2856 
2857   if (EnableJVMCI || UseAOT) {
2858     implicit_exception_uncommon_trap_offset = __ pc() - start;
2859 
2860     __ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2861     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), (int32_t)NULL_WORD);
2862 
2863     uncommon_trap_offset = __ pc() - start;
2864 
2865     // Save everything in sight.
2866     RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2867     // fetch_unroll_info needs to call last_java_frame()
2868     __ set_last_Java_frame(noreg, noreg, NULL);
2869 
2870     __ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())));
2871     __ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1);
2872 
2873     __ movl(r14, (int32_t)Deoptimization::Unpack_reexecute);
2874     __ mov(c_rarg0, r15_thread);
2875     __ movl(c_rarg2, r14); // exec mode
2876     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2877     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2878 
2879     __ reset_last_Java_frame(false);
2880 
2881     __ jmp(after_fetch_unroll_info_call);
2882   } // EnableJVMCI
2883 #endif // INCLUDE_JVMCI
2884 
2885   int exception_offset = __ pc() - start;
2886 
2887   // Prolog for exception case
2888 
2889   // all registers are dead at this entry point, except for rax, and
2890   // rdx which contain the exception oop and exception pc
2891   // respectively.  Set them in TLS and fall thru to the
2892   // unpack_with_exception_in_tls entry point.
2893 
2894   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
2895   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
2896 
2897   int exception_in_tls_offset = __ pc() - start;
2898 
2899   // new implementation because exception oop is now passed in JavaThread
2900 
2901   // Prolog for exception case
2902   // All registers must be preserved because they might be used by LinearScan
2903   // Exceptiop oop and throwing PC are passed in JavaThread
2904   // tos: stack at point of call to method that threw the exception (i.e. only
2905   // args are on the stack, no return address)
2906 
2907   // make room on stack for the return address
2908   // It will be patched later with the throwing pc. The correct value is not
2909   // available now because loading it from memory would destroy registers.
2910   __ push(0);
2911 
2912   // Save everything in sight.
2913   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2914 
2915   // Now it is safe to overwrite any register
2916 
2917   // Deopt during an exception.  Save exec mode for unpack_frames.
2918   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
2919 
2920   // load throwing pc from JavaThread and patch it as the return address
2921   // of the current frame. Then clear the field in JavaThread
2922 
2923   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2924   __ movptr(Address(rbp, wordSize), rdx);
2925   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2926 
2927 #ifdef ASSERT
2928   // verify that there is really an exception oop in JavaThread
2929   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2930   __ verify_oop(rax);
2931 
2932   // verify that there is no pending exception
2933   Label no_pending_exception;
2934   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
2935   __ testptr(rax, rax);
2936   __ jcc(Assembler::zero, no_pending_exception);
2937   __ stop("must not have pending exception here");
2938   __ bind(no_pending_exception);
2939 #endif
2940 
2941   __ bind(cont);
2942 
2943   // Call C code.  Need thread and this frame, but NOT official VM entry
2944   // crud.  We cannot block on this call, no GC can happen.
2945   //
2946   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2947 
2948   // fetch_unroll_info needs to call last_java_frame().
2949 
2950   __ set_last_Java_frame(noreg, noreg, NULL);
2951 #ifdef ASSERT
2952   { Label L;
2953     __ cmpptr(Address(r15_thread,
2954                     JavaThread::last_Java_fp_offset()),
2955             (int32_t)0);
2956     __ jcc(Assembler::equal, L);
2957     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2958     __ bind(L);
2959   }
2960 #endif // ASSERT
2961   __ mov(c_rarg0, r15_thread);
2962   __ movl(c_rarg1, r14); // exec_mode
2963   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2964 
2965   // Need to have an oopmap that tells fetch_unroll_info where to
2966   // find any register it might need.
2967   oop_maps->add_gc_map(__ pc() - start, map);
2968 
2969   __ reset_last_Java_frame(false);
2970 
2971 #if INCLUDE_JVMCI
2972   if (EnableJVMCI || UseAOT) {
2973     __ bind(after_fetch_unroll_info_call);
2974   }
2975 #endif
2976 
2977   // Load UnrollBlock* into rdi
2978   __ mov(rdi, rax);
2979 
2980   __ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
2981    Label noException;
2982   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
2983   __ jcc(Assembler::notEqual, noException);
2984   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2985   // QQQ this is useless it was NULL above
2986   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2987   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
2988   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2989 
2990   __ verify_oop(rax);
2991 
2992   // Overwrite the result registers with the exception results.
2993   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2994   // I think this is useless
2995   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
2996 
2997   __ bind(noException);
2998 
2999   // Only register save data is on the stack.
3000   // Now restore the result registers.  Everything else is either dead
3001   // or captured in the vframeArray.
3002   RegisterSaver::restore_result_registers(masm);
3003 
3004   // All of the register save area has been popped of the stack. Only the
3005   // return address remains.
3006 
3007   // Pop all the frames we must move/replace.
3008   //
3009   // Frame picture (youngest to oldest)
3010   // 1: self-frame (no frame link)
3011   // 2: deopting frame  (no frame link)
3012   // 3: caller of deopting frame (could be compiled/interpreted).
3013   //
3014   // Note: by leaving the return address of self-frame on the stack
3015   // and using the size of frame 2 to adjust the stack
3016   // when we are done the return to frame 3 will still be on the stack.
3017 
3018   // Pop deoptimized frame
3019   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3020   __ addptr(rsp, rcx);
3021 
3022   // rsp should be pointing at the return address to the caller (3)
3023 
3024   // Pick up the initial fp we should save
3025   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3026   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3027 
3028 #ifdef ASSERT
3029   // Compilers generate code that bang the stack by as much as the
3030   // interpreter would need. So this stack banging should never
3031   // trigger a fault. Verify that it does not on non product builds.
3032   if (UseStackBanging) {
3033     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3034     __ bang_stack_size(rbx, rcx);
3035   }
3036 #endif
3037 
3038   // Load address of array of frame pcs into rcx
3039   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3040 
3041   // Trash the old pc
3042   __ addptr(rsp, wordSize);
3043 
3044   // Load address of array of frame sizes into rsi
3045   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3046 
3047   // Load counter into rdx
3048   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3049 
3050   // Now adjust the caller's stack to make up for the extra locals
3051   // but record the original sp so that we can save it in the skeletal interpreter
3052   // frame and the stack walking of interpreter_sender will get the unextended sp
3053   // value and not the "real" sp value.
3054 
3055   const Register sender_sp = r8;
3056 
3057   __ mov(sender_sp, rsp);
3058   __ movl(rbx, Address(rdi,
3059                        Deoptimization::UnrollBlock::
3060                        caller_adjustment_offset_in_bytes()));
3061   __ subptr(rsp, rbx);
3062 
3063   // Push interpreter frames in a loop
3064   Label loop;
3065   __ bind(loop);
3066   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3067   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
3068   __ pushptr(Address(rcx, 0));          // Save return address
3069   __ enter();                           // Save old & set new ebp
3070   __ subptr(rsp, rbx);                  // Prolog
3071   // This value is corrected by layout_activation_impl
3072   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3073   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
3074   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
3075   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3076   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3077   __ decrementl(rdx);                   // Decrement counter
3078   __ jcc(Assembler::notZero, loop);
3079   __ pushptr(Address(rcx, 0));          // Save final return address
3080 
3081   // Re-push self-frame
3082   __ enter();                           // Save old & set new ebp
3083 
3084   // Allocate a full sized register save area.
3085   // Return address and rbp are in place, so we allocate two less words.
3086   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
3087 
3088   // Restore frame locals after moving the frame
3089   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
3090   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3091 
3092   // Call C code.  Need thread but NOT official VM entry
3093   // crud.  We cannot block on this call, no GC can happen.  Call should
3094   // restore return values to their stack-slots with the new SP.
3095   //
3096   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
3097 
3098   // Use rbp because the frames look interpreted now
3099   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3100   // Don't need the precise return PC here, just precise enough to point into this code blob.
3101   address the_pc = __ pc();
3102   __ set_last_Java_frame(noreg, rbp, the_pc);
3103 
3104   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
3105   __ mov(c_rarg0, r15_thread);
3106   __ movl(c_rarg1, r14); // second arg: exec_mode
3107   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3108   // Revert SP alignment after call since we're going to do some SP relative addressing below
3109   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
3110 
3111   // Set an oopmap for the call site
3112   // Use the same PC we used for the last java frame
3113   oop_maps->add_gc_map(the_pc - start,
3114                        new OopMap( frame_size_in_words, 0 ));
3115 
3116   // Clear fp AND pc
3117   __ reset_last_Java_frame(true);
3118 
3119   // Collect return values
3120   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
3121   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
3122   // I think this is useless (throwing pc?)
3123   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
3124 
3125   // Pop self-frame.
3126   __ leave();                           // Epilog
3127 
3128   // Jump to interpreter
3129   __ ret(0);
3130 
3131   // Make sure all code is generated
3132   masm->flush();
3133 
3134   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3135   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3136 #if INCLUDE_JVMCI
3137   if (EnableJVMCI || UseAOT) {
3138     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
3139     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
3140   }
3141 #endif
3142 }
3143 
3144 #ifdef COMPILER2
3145 //------------------------------generate_uncommon_trap_blob--------------------
3146 void SharedRuntime::generate_uncommon_trap_blob() {
3147   // Allocate space for the code
3148   ResourceMark rm;
3149   // Setup code generation tools
3150   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3151   MacroAssembler* masm = new MacroAssembler(&buffer);
3152 
3153   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3154 
3155   address start = __ pc();
3156 
3157   if (UseRTMLocking) {
3158     // Abort RTM transaction before possible nmethod deoptimization.
3159     __ xabort(0);
3160   }
3161 
3162   // Push self-frame.  We get here with a return address on the
3163   // stack, so rsp is 8-byte aligned until we allocate our frame.
3164   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3165 
3166   // No callee saved registers. rbp is assumed implicitly saved
3167   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3168 
3169   // compiler left unloaded_class_index in j_rarg0 move to where the
3170   // runtime expects it.
3171   __ movl(c_rarg1, j_rarg0);
3172 
3173   __ set_last_Java_frame(noreg, noreg, NULL);
3174 
3175   // Call C code.  Need thread but NOT official VM entry
3176   // crud.  We cannot block on this call, no GC can happen.  Call should
3177   // capture callee-saved registers as well as return values.
3178   // Thread is in rdi already.
3179   //
3180   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3181 
3182   __ mov(c_rarg0, r15_thread);
3183   __ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap);
3184   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3185 
3186   // Set an oopmap for the call site
3187   OopMapSet* oop_maps = new OopMapSet();
3188   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3189 
3190   // location of rbp is known implicitly by the frame sender code
3191 
3192   oop_maps->add_gc_map(__ pc() - start, map);
3193 
3194   __ reset_last_Java_frame(false);
3195 
3196   // Load UnrollBlock* into rdi
3197   __ mov(rdi, rax);
3198 
3199 #ifdef ASSERT
3200   { Label L;
3201     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
3202             (int32_t)Deoptimization::Unpack_uncommon_trap);
3203     __ jcc(Assembler::equal, L);
3204     __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
3205     __ bind(L);
3206   }
3207 #endif
3208 
3209   // Pop all the frames we must move/replace.
3210   //
3211   // Frame picture (youngest to oldest)
3212   // 1: self-frame (no frame link)
3213   // 2: deopting frame  (no frame link)
3214   // 3: caller of deopting frame (could be compiled/interpreted).
3215 
3216   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3217   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3218 
3219   // Pop deoptimized frame (int)
3220   __ movl(rcx, Address(rdi,
3221                        Deoptimization::UnrollBlock::
3222                        size_of_deoptimized_frame_offset_in_bytes()));
3223   __ addptr(rsp, rcx);
3224 
3225   // rsp should be pointing at the return address to the caller (3)
3226 
3227   // Pick up the initial fp we should save
3228   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3229   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3230 
3231 #ifdef ASSERT
3232   // Compilers generate code that bang the stack by as much as the
3233   // interpreter would need. So this stack banging should never
3234   // trigger a fault. Verify that it does not on non product builds.
3235   if (UseStackBanging) {
3236     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3237     __ bang_stack_size(rbx, rcx);
3238   }
3239 #endif
3240 
3241   // Load address of array of frame pcs into rcx (address*)
3242   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3243 
3244   // Trash the return pc
3245   __ addptr(rsp, wordSize);
3246 
3247   // Load address of array of frame sizes into rsi (intptr_t*)
3248   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
3249 
3250   // Counter
3251   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
3252 
3253   // Now adjust the caller's stack to make up for the extra locals but
3254   // record the original sp so that we can save it in the skeletal
3255   // interpreter frame and the stack walking of interpreter_sender
3256   // will get the unextended sp value and not the "real" sp value.
3257 
3258   const Register sender_sp = r8;
3259 
3260   __ mov(sender_sp, rsp);
3261   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
3262   __ subptr(rsp, rbx);
3263 
3264   // Push interpreter frames in a loop
3265   Label loop;
3266   __ bind(loop);
3267   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3268   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3269   __ pushptr(Address(rcx, 0));     // Save return address
3270   __ enter();                      // Save old & set new rbp
3271   __ subptr(rsp, rbx);             // Prolog
3272   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3273             sender_sp);            // Make it walkable
3274   // This value is corrected by layout_activation_impl
3275   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3276   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3277   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3278   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3279   __ decrementl(rdx);              // Decrement counter
3280   __ jcc(Assembler::notZero, loop);
3281   __ pushptr(Address(rcx, 0));     // Save final return address
3282 
3283   // Re-push self-frame
3284   __ enter();                 // Save old & set new rbp
3285   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3286                               // Prolog
3287 
3288   // Use rbp because the frames look interpreted now
3289   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3290   // Don't need the precise return PC here, just precise enough to point into this code blob.
3291   address the_pc = __ pc();
3292   __ set_last_Java_frame(noreg, rbp, the_pc);
3293 
3294   // Call C code.  Need thread but NOT official VM entry
3295   // crud.  We cannot block on this call, no GC can happen.  Call should
3296   // restore return values to their stack-slots with the new SP.
3297   // Thread is in rdi already.
3298   //
3299   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3300 
3301   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3302   __ mov(c_rarg0, r15_thread);
3303   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3304   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3305 
3306   // Set an oopmap for the call site
3307   // Use the same PC we used for the last java frame
3308   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3309 
3310   // Clear fp AND pc
3311   __ reset_last_Java_frame(true);
3312 
3313   // Pop self-frame.
3314   __ leave();                 // Epilog
3315 
3316   // Jump to interpreter
3317   __ ret(0);
3318 
3319   // Make sure all code is generated
3320   masm->flush();
3321 
3322   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3323                                                  SimpleRuntimeFrame::framesize >> 1);
3324 }
3325 #endif // COMPILER2
3326 
3327 
3328 //------------------------------generate_handler_blob------
3329 //
3330 // Generate a special Compile2Runtime blob that saves all registers,
3331 // and setup oopmap.
3332 //
3333 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3334   assert(StubRoutines::forward_exception_entry() != NULL,
3335          "must be generated before");
3336 
3337   ResourceMark rm;
3338   OopMapSet *oop_maps = new OopMapSet();
3339   OopMap* map;
3340 
3341   // Allocate space for the code.  Setup code generation tools.
3342   CodeBuffer buffer("handler_blob", 2048, 1024);
3343   MacroAssembler* masm = new MacroAssembler(&buffer);
3344 
3345   address start   = __ pc();
3346   address call_pc = NULL;
3347   int frame_size_in_words;
3348   bool cause_return = (poll_type == POLL_AT_RETURN);
3349   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3350 
3351   if (UseRTMLocking) {
3352     // Abort RTM transaction before calling runtime
3353     // because critical section will be large and will be
3354     // aborted anyway. Also nmethod could be deoptimized.
3355     __ xabort(0);
3356   }
3357 
3358   // Make room for return address (or push it again)
3359   if (!cause_return) {
3360     __ push(rbx);
3361   }
3362 
3363   // Save registers, fpu state, and flags
3364   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
3365 
3366   // The following is basically a call_VM.  However, we need the precise
3367   // address of the call in order to generate an oopmap. Hence, we do all the
3368   // work outselves.
3369 
3370   __ set_last_Java_frame(noreg, noreg, NULL);
3371 
3372   // The return address must always be correct so that frame constructor never
3373   // sees an invalid pc.
3374 
3375   if (!cause_return) {
3376     // overwrite the dummy value we pushed on entry
3377     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3378     __ movptr(Address(rbp, wordSize), c_rarg0);
3379   }
3380 
3381   // Do the call
3382   __ mov(c_rarg0, r15_thread);
3383   __ call(RuntimeAddress(call_ptr));
3384 
3385   // Set an oopmap for the call site.  This oopmap will map all
3386   // oop-registers and debug-info registers as callee-saved.  This
3387   // will allow deoptimization at this safepoint to find all possible
3388   // debug-info recordings, as well as let GC find all oops.
3389 
3390   oop_maps->add_gc_map( __ pc() - start, map);
3391 
3392   Label noException;
3393 
3394   __ reset_last_Java_frame(false);
3395 
3396   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3397   __ jcc(Assembler::equal, noException);
3398 
3399   // Exception pending
3400 
3401   RegisterSaver::restore_live_registers(masm, save_vectors);
3402 
3403   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3404 
3405   // No exception case
3406   __ bind(noException);
3407 
3408   // Normal exit, restore registers and exit.
3409   RegisterSaver::restore_live_registers(masm, save_vectors);
3410 
3411   __ ret(0);
3412 
3413   // Make sure all code is generated
3414   masm->flush();
3415 
3416   // Fill-out other meta info
3417   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3418 }
3419 
3420 //
3421 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3422 //
3423 // Generate a stub that calls into vm to find out the proper destination
3424 // of a java call. All the argument registers are live at this point
3425 // but since this is generic code we don't know what they are and the caller
3426 // must do any gc of the args.
3427 //
3428 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3429   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3430 
3431   // allocate space for the code
3432   ResourceMark rm;
3433 
3434   CodeBuffer buffer(name, 1000, 512);
3435   MacroAssembler* masm                = new MacroAssembler(&buffer);
3436 
3437   int frame_size_in_words;
3438 
3439   OopMapSet *oop_maps = new OopMapSet();
3440   OopMap* map = NULL;
3441 
3442   int start = __ offset();
3443 
3444   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3445 
3446   int frame_complete = __ offset();
3447 
3448   __ set_last_Java_frame(noreg, noreg, NULL);
3449 
3450   __ mov(c_rarg0, r15_thread);
3451 
3452   __ call(RuntimeAddress(destination));
3453 
3454 
3455   // Set an oopmap for the call site.
3456   // We need this not only for callee-saved registers, but also for volatile
3457   // registers that the compiler might be keeping live across a safepoint.
3458 
3459   oop_maps->add_gc_map( __ offset() - start, map);
3460 
3461   // rax contains the address we are going to jump to assuming no exception got installed
3462 
3463   // clear last_Java_sp
3464   __ reset_last_Java_frame(false);
3465   // check for pending exceptions
3466   Label pending;
3467   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3468   __ jcc(Assembler::notEqual, pending);
3469 
3470   // get the returned Method*
3471   __ get_vm_result_2(rbx, r15_thread);
3472   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3473 
3474   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3475 
3476   RegisterSaver::restore_live_registers(masm);
3477 
3478   // We are back the the original state on entry and ready to go.
3479 
3480   __ jmp(rax);
3481 
3482   // Pending exception after the safepoint
3483 
3484   __ bind(pending);
3485 
3486   RegisterSaver::restore_live_registers(masm);
3487 
3488   // exception pending => remove activation and forward to exception handler
3489 
3490   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3491 
3492   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3493   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3494 
3495   // -------------
3496   // make sure all code is generated
3497   masm->flush();
3498 
3499   // return the  blob
3500   // frame_size_words or bytes??
3501   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3502 }
3503 
3504 
3505 //------------------------------Montgomery multiplication------------------------
3506 //
3507 
3508 #ifndef _WINDOWS
3509 
3510 #define ASM_SUBTRACT
3511 
3512 #ifdef ASM_SUBTRACT
3513 // Subtract 0:b from carry:a.  Return carry.
3514 static unsigned long
3515 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
3516   long i = 0, cnt = len;
3517   unsigned long tmp;
3518   asm volatile("clc; "
3519                "0: ; "
3520                "mov (%[b], %[i], 8), %[tmp]; "
3521                "sbb %[tmp], (%[a], %[i], 8); "
3522                "inc %[i]; dec %[cnt]; "
3523                "jne 0b; "
3524                "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
3525                : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
3526                : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
3527                : "memory");
3528   return tmp;
3529 }
3530 #else // ASM_SUBTRACT
3531 typedef int __attribute__((mode(TI))) int128;
3532 
3533 // Subtract 0:b from carry:a.  Return carry.
3534 static unsigned long
3535 sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) {
3536   int128 tmp = 0;
3537   int i;
3538   for (i = 0; i < len; i++) {
3539     tmp += a[i];
3540     tmp -= b[i];
3541     a[i] = tmp;
3542     tmp >>= 64;
3543     assert(-1 <= tmp && tmp <= 0, "invariant");
3544   }
3545   return tmp + carry;
3546 }
3547 #endif // ! ASM_SUBTRACT
3548 
3549 // Multiply (unsigned) Long A by Long B, accumulating the double-
3550 // length result into the accumulator formed of T0, T1, and T2.
3551 #define MACC(A, B, T0, T1, T2)                                  \
3552 do {                                                            \
3553   unsigned long hi, lo;                                         \
3554   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4"   \
3555            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3556            : "r"(A), "a"(B) : "cc");                            \
3557  } while(0)
3558 
3559 // As above, but add twice the double-length result into the
3560 // accumulator.
3561 #define MACC2(A, B, T0, T1, T2)                                 \
3562 do {                                                            \
3563   unsigned long hi, lo;                                         \
3564   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \
3565            "add %%rax, %2; adc %%rdx, %3; adc $0, %4"           \
3566            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3567            : "r"(A), "a"(B) : "cc");                            \
3568  } while(0)
3569 
3570 // Fast Montgomery multiplication.  The derivation of the algorithm is
3571 // in  A Cryptographic Library for the Motorola DSP56000,
3572 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
3573 
3574 static void __attribute__((noinline))
3575 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
3576                     unsigned long m[], unsigned long inv, int len) {
3577   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3578   int i;
3579 
3580   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3581 
3582   for (i = 0; i < len; i++) {
3583     int j;
3584     for (j = 0; j < i; j++) {
3585       MACC(a[j], b[i-j], t0, t1, t2);
3586       MACC(m[j], n[i-j], t0, t1, t2);
3587     }
3588     MACC(a[i], b[0], t0, t1, t2);
3589     m[i] = t0 * inv;
3590     MACC(m[i], n[0], t0, t1, t2);
3591 
3592     assert(t0 == 0, "broken Montgomery multiply");
3593 
3594     t0 = t1; t1 = t2; t2 = 0;
3595   }
3596 
3597   for (i = len; i < 2*len; i++) {
3598     int j;
3599     for (j = i-len+1; j < len; j++) {
3600       MACC(a[j], b[i-j], t0, t1, t2);
3601       MACC(m[j], n[i-j], t0, t1, t2);
3602     }
3603     m[i-len] = t0;
3604     t0 = t1; t1 = t2; t2 = 0;
3605   }
3606 
3607   while (t0)
3608     t0 = sub(m, n, t0, len);
3609 }
3610 
3611 // Fast Montgomery squaring.  This uses asymptotically 25% fewer
3612 // multiplies so it should be up to 25% faster than Montgomery
3613 // multiplication.  However, its loop control is more complex and it
3614 // may actually run slower on some machines.
3615 
3616 static void __attribute__((noinline))
3617 montgomery_square(unsigned long a[], unsigned long n[],
3618                   unsigned long m[], unsigned long inv, int len) {
3619   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3620   int i;
3621 
3622   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3623 
3624   for (i = 0; i < len; i++) {
3625     int j;
3626     int end = (i+1)/2;
3627     for (j = 0; j < end; j++) {
3628       MACC2(a[j], a[i-j], t0, t1, t2);
3629       MACC(m[j], n[i-j], t0, t1, t2);
3630     }
3631     if ((i & 1) == 0) {
3632       MACC(a[j], a[j], t0, t1, t2);
3633     }
3634     for (; j < i; j++) {
3635       MACC(m[j], n[i-j], t0, t1, t2);
3636     }
3637     m[i] = t0 * inv;
3638     MACC(m[i], n[0], t0, t1, t2);
3639 
3640     assert(t0 == 0, "broken Montgomery square");
3641 
3642     t0 = t1; t1 = t2; t2 = 0;
3643   }
3644 
3645   for (i = len; i < 2*len; i++) {
3646     int start = i-len+1;
3647     int end = start + (len - start)/2;
3648     int j;
3649     for (j = start; j < end; j++) {
3650       MACC2(a[j], a[i-j], t0, t1, t2);
3651       MACC(m[j], n[i-j], t0, t1, t2);
3652     }
3653     if ((i & 1) == 0) {
3654       MACC(a[j], a[j], t0, t1, t2);
3655     }
3656     for (; j < len; j++) {
3657       MACC(m[j], n[i-j], t0, t1, t2);
3658     }
3659     m[i-len] = t0;
3660     t0 = t1; t1 = t2; t2 = 0;
3661   }
3662 
3663   while (t0)
3664     t0 = sub(m, n, t0, len);
3665 }
3666 
3667 // Swap words in a longword.
3668 static unsigned long swap(unsigned long x) {
3669   return (x << 32) | (x >> 32);
3670 }
3671 
3672 // Copy len longwords from s to d, word-swapping as we go.  The
3673 // destination array is reversed.
3674 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
3675   d += len;
3676   while(len-- > 0) {
3677     d--;
3678     *d = swap(*s);
3679     s++;
3680   }
3681 }
3682 
3683 // The threshold at which squaring is advantageous was determined
3684 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
3685 #define MONTGOMERY_SQUARING_THRESHOLD 64
3686 
3687 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
3688                                         jint len, jlong inv,
3689                                         jint *m_ints) {
3690   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
3691   int longwords = len/2;
3692 
3693   // Make very sure we don't use so much space that the stack might
3694   // overflow.  512 jints corresponds to an 16384-bit integer and
3695   // will use here a total of 8k bytes of stack space.
3696   int total_allocation = longwords * sizeof (unsigned long) * 4;
3697   guarantee(total_allocation <= 8192, "must be");
3698   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3699 
3700   // Local scratch arrays
3701   unsigned long
3702     *a = scratch + 0 * longwords,
3703     *b = scratch + 1 * longwords,
3704     *n = scratch + 2 * longwords,
3705     *m = scratch + 3 * longwords;
3706 
3707   reverse_words((unsigned long *)a_ints, a, longwords);
3708   reverse_words((unsigned long *)b_ints, b, longwords);
3709   reverse_words((unsigned long *)n_ints, n, longwords);
3710 
3711   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
3712 
3713   reverse_words(m, (unsigned long *)m_ints, longwords);
3714 }
3715 
3716 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
3717                                       jint len, jlong inv,
3718                                       jint *m_ints) {
3719   assert(len % 2 == 0, "array length in montgomery_square must be even");
3720   int longwords = len/2;
3721 
3722   // Make very sure we don't use so much space that the stack might
3723   // overflow.  512 jints corresponds to an 16384-bit integer and
3724   // will use here a total of 6k bytes of stack space.
3725   int total_allocation = longwords * sizeof (unsigned long) * 3;
3726   guarantee(total_allocation <= 8192, "must be");
3727   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3728 
3729   // Local scratch arrays
3730   unsigned long
3731     *a = scratch + 0 * longwords,
3732     *n = scratch + 1 * longwords,
3733     *m = scratch + 2 * longwords;
3734 
3735   reverse_words((unsigned long *)a_ints, a, longwords);
3736   reverse_words((unsigned long *)n_ints, n, longwords);
3737 
3738   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
3739     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
3740   } else {
3741     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
3742   }
3743 
3744   reverse_words(m, (unsigned long *)m_ints, longwords);
3745 }
3746 
3747 #endif // WINDOWS
3748 
3749 #ifdef COMPILER2
3750 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3751 //
3752 //------------------------------generate_exception_blob---------------------------
3753 // creates exception blob at the end
3754 // Using exception blob, this code is jumped from a compiled method.
3755 // (see emit_exception_handler in x86_64.ad file)
3756 //
3757 // Given an exception pc at a call we call into the runtime for the
3758 // handler in this method. This handler might merely restore state
3759 // (i.e. callee save registers) unwind the frame and jump to the
3760 // exception handler for the nmethod if there is no Java level handler
3761 // for the nmethod.
3762 //
3763 // This code is entered with a jmp.
3764 //
3765 // Arguments:
3766 //   rax: exception oop
3767 //   rdx: exception pc
3768 //
3769 // Results:
3770 //   rax: exception oop
3771 //   rdx: exception pc in caller or ???
3772 //   destination: exception handler of caller
3773 //
3774 // Note: the exception pc MUST be at a call (precise debug information)
3775 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3776 //
3777 
3778 void OptoRuntime::generate_exception_blob() {
3779   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3780   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3781   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3782 
3783   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3784 
3785   // Allocate space for the code
3786   ResourceMark rm;
3787   // Setup code generation tools
3788   CodeBuffer buffer("exception_blob", 2048, 1024);
3789   MacroAssembler* masm = new MacroAssembler(&buffer);
3790 
3791 
3792   address start = __ pc();
3793 
3794   // Exception pc is 'return address' for stack walker
3795   __ push(rdx);
3796   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3797 
3798   // Save callee-saved registers.  See x86_64.ad.
3799 
3800   // rbp is an implicitly saved callee saved register (i.e., the calling
3801   // convention will save/restore it in the prolog/epilog). Other than that
3802   // there are no callee save registers now that adapter frames are gone.
3803 
3804   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3805 
3806   // Store exception in Thread object. We cannot pass any arguments to the
3807   // handle_exception call, since we do not want to make any assumption
3808   // about the size of the frame where the exception happened in.
3809   // c_rarg0 is either rdi (Linux) or rcx (Windows).
3810   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
3811   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3812 
3813   // This call does all the hard work.  It checks if an exception handler
3814   // exists in the method.
3815   // If so, it returns the handler address.
3816   // If not, it prepares for stack-unwinding, restoring the callee-save
3817   // registers of the frame being removed.
3818   //
3819   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3820 
3821   // At a method handle call, the stack may not be properly aligned
3822   // when returning with an exception.
3823   address the_pc = __ pc();
3824   __ set_last_Java_frame(noreg, noreg, the_pc);
3825   __ mov(c_rarg0, r15_thread);
3826   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
3827   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3828 
3829   // Set an oopmap for the call site.  This oopmap will only be used if we
3830   // are unwinding the stack.  Hence, all locations will be dead.
3831   // Callee-saved registers will be the same as the frame above (i.e.,
3832   // handle_exception_stub), since they were restored when we got the
3833   // exception.
3834 
3835   OopMapSet* oop_maps = new OopMapSet();
3836 
3837   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3838 
3839   __ reset_last_Java_frame(false);
3840 
3841   // Restore callee-saved registers
3842 
3843   // rbp is an implicitly saved callee-saved register (i.e., the calling
3844   // convention will save restore it in prolog/epilog) Other than that
3845   // there are no callee save registers now that adapter frames are gone.
3846 
3847   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
3848 
3849   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
3850   __ pop(rdx);                  // No need for exception pc anymore
3851 
3852   // rax: exception handler
3853 
3854   // We have a handler in rax (could be deopt blob).
3855   __ mov(r8, rax);
3856 
3857   // Get the exception oop
3858   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3859   // Get the exception pc in case we are deoptimized
3860   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3861 #ifdef ASSERT
3862   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
3863   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
3864 #endif
3865   // Clear the exception oop so GC no longer processes it as a root.
3866   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
3867 
3868   // rax: exception oop
3869   // r8:  exception handler
3870   // rdx: exception pc
3871   // Jump to handler
3872 
3873   __ jmp(r8);
3874 
3875   // Make sure all code is generated
3876   masm->flush();
3877 
3878   // Set exception blob
3879   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3880 }
3881 #endif // COMPILER2