1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/thread.hpp"
  43 #include "utilities/macros.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/g1CollectedHeap.inline.hpp"
  46 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  47 #include "gc/g1/heapRegion.hpp"
  48 #endif // INCLUDE_ALL_GCS
  49 #include "crc32c.h"
  50 #ifdef COMPILER2
  51 #include "opto/intrinsicnode.hpp"
  52 #endif
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) /* nothing */
  56 #define STOP(error) stop(error)
  57 #else
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define STOP(error) block_comment(error); stop(error)
  60 #endif
  61 
  62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 #ifdef ASSERT
  65 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  66 #endif
  67 
  68 static Assembler::Condition reverse[] = {
  69     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  70     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  71     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  72     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  73     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  74     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  75     Assembler::above          /* belowEqual    = 0x6 */ ,
  76     Assembler::belowEqual     /* above         = 0x7 */ ,
  77     Assembler::positive       /* negative      = 0x8 */ ,
  78     Assembler::negative       /* positive      = 0x9 */ ,
  79     Assembler::noParity       /* parity        = 0xa */ ,
  80     Assembler::parity         /* noParity      = 0xb */ ,
  81     Assembler::greaterEqual   /* less          = 0xc */ ,
  82     Assembler::less           /* greaterEqual  = 0xd */ ,
  83     Assembler::greater        /* lessEqual     = 0xe */ ,
  84     Assembler::lessEqual      /* greater       = 0xf, */
  85 
  86 };
  87 
  88 
  89 // Implementation of MacroAssembler
  90 
  91 // First all the versions that have distinct versions depending on 32/64 bit
  92 // Unless the difference is trivial (1 line or so).
  93 
  94 #ifndef _LP64
  95 
  96 // 32bit versions
  97 
  98 Address MacroAssembler::as_Address(AddressLiteral adr) {
  99   return Address(adr.target(), adr.rspec());
 100 }
 101 
 102 Address MacroAssembler::as_Address(ArrayAddress adr) {
 103   return Address::make_array(adr);
 104 }
 105 
 106 void MacroAssembler::call_VM_leaf_base(address entry_point,
 107                                        int number_of_arguments) {
 108   call(RuntimeAddress(entry_point));
 109   increment(rsp, number_of_arguments * wordSize);
 110 }
 111 
 112 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 117   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 125   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 126 }
 127 
 128 void MacroAssembler::extend_sign(Register hi, Register lo) {
 129   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 130   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 131     cdql();
 132   } else {
 133     movl(hi, lo);
 134     sarl(hi, 31);
 135   }
 136 }
 137 
 138 void MacroAssembler::jC2(Register tmp, Label& L) {
 139   // set parity bit if FPU flag C2 is set (via rax)
 140   save_rax(tmp);
 141   fwait(); fnstsw_ax();
 142   sahf();
 143   restore_rax(tmp);
 144   // branch
 145   jcc(Assembler::parity, L);
 146 }
 147 
 148 void MacroAssembler::jnC2(Register tmp, Label& L) {
 149   // set parity bit if FPU flag C2 is set (via rax)
 150   save_rax(tmp);
 151   fwait(); fnstsw_ax();
 152   sahf();
 153   restore_rax(tmp);
 154   // branch
 155   jcc(Assembler::noParity, L);
 156 }
 157 
 158 // 32bit can do a case table jump in one instruction but we no longer allow the base
 159 // to be installed in the Address class
 160 void MacroAssembler::jump(ArrayAddress entry) {
 161   jmp(as_Address(entry));
 162 }
 163 
 164 // Note: y_lo will be destroyed
 165 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 166   // Long compare for Java (semantics as described in JVM spec.)
 167   Label high, low, done;
 168 
 169   cmpl(x_hi, y_hi);
 170   jcc(Assembler::less, low);
 171   jcc(Assembler::greater, high);
 172   // x_hi is the return register
 173   xorl(x_hi, x_hi);
 174   cmpl(x_lo, y_lo);
 175   jcc(Assembler::below, low);
 176   jcc(Assembler::equal, done);
 177 
 178   bind(high);
 179   xorl(x_hi, x_hi);
 180   increment(x_hi);
 181   jmp(done);
 182 
 183   bind(low);
 184   xorl(x_hi, x_hi);
 185   decrementl(x_hi);
 186 
 187   bind(done);
 188 }
 189 
 190 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 191     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 192 }
 193 
 194 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 195   // leal(dst, as_Address(adr));
 196   // see note in movl as to why we must use a move
 197   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 198 }
 199 
 200 void MacroAssembler::leave() {
 201   mov(rsp, rbp);
 202   pop(rbp);
 203 }
 204 
 205 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 206   // Multiplication of two Java long values stored on the stack
 207   // as illustrated below. Result is in rdx:rax.
 208   //
 209   // rsp ---> [  ??  ] \               \
 210   //            ....    | y_rsp_offset  |
 211   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 212   //          [ y_hi ]                  | (in bytes)
 213   //            ....                    |
 214   //          [ x_lo ]                 /
 215   //          [ x_hi ]
 216   //            ....
 217   //
 218   // Basic idea: lo(result) = lo(x_lo * y_lo)
 219   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 220   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 221   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 222   Label quick;
 223   // load x_hi, y_hi and check if quick
 224   // multiplication is possible
 225   movl(rbx, x_hi);
 226   movl(rcx, y_hi);
 227   movl(rax, rbx);
 228   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 229   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 230   // do full multiplication
 231   // 1st step
 232   mull(y_lo);                                    // x_hi * y_lo
 233   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 234   // 2nd step
 235   movl(rax, x_lo);
 236   mull(rcx);                                     // x_lo * y_hi
 237   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 238   // 3rd step
 239   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 240   movl(rax, x_lo);
 241   mull(y_lo);                                    // x_lo * y_lo
 242   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 243 }
 244 
 245 void MacroAssembler::lneg(Register hi, Register lo) {
 246   negl(lo);
 247   adcl(hi, 0);
 248   negl(hi);
 249 }
 250 
 251 void MacroAssembler::lshl(Register hi, Register lo) {
 252   // Java shift left long support (semantics as described in JVM spec., p.305)
 253   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 254   // shift value is in rcx !
 255   assert(hi != rcx, "must not use rcx");
 256   assert(lo != rcx, "must not use rcx");
 257   const Register s = rcx;                        // shift count
 258   const int      n = BitsPerWord;
 259   Label L;
 260   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 261   cmpl(s, n);                                    // if (s < n)
 262   jcc(Assembler::less, L);                       // else (s >= n)
 263   movl(hi, lo);                                  // x := x << n
 264   xorl(lo, lo);
 265   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 266   bind(L);                                       // s (mod n) < n
 267   shldl(hi, lo);                                 // x := x << s
 268   shll(lo);
 269 }
 270 
 271 
 272 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 273   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 274   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 275   assert(hi != rcx, "must not use rcx");
 276   assert(lo != rcx, "must not use rcx");
 277   const Register s = rcx;                        // shift count
 278   const int      n = BitsPerWord;
 279   Label L;
 280   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 281   cmpl(s, n);                                    // if (s < n)
 282   jcc(Assembler::less, L);                       // else (s >= n)
 283   movl(lo, hi);                                  // x := x >> n
 284   if (sign_extension) sarl(hi, 31);
 285   else                xorl(hi, hi);
 286   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 287   bind(L);                                       // s (mod n) < n
 288   shrdl(lo, hi);                                 // x := x >> s
 289   if (sign_extension) sarl(hi);
 290   else                shrl(hi);
 291 }
 292 
 293 void MacroAssembler::movoop(Register dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::movoop(Address dst, jobject obj) {
 298   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 306   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 310   // scratch register is not used,
 311   // it is defined to match parameters of 64-bit version of this method.
 312   if (src.is_lval()) {
 313     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 314   } else {
 315     movl(dst, as_Address(src));
 316   }
 317 }
 318 
 319 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 320   movl(as_Address(dst), src);
 321 }
 322 
 323 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 324   movl(dst, as_Address(src));
 325 }
 326 
 327 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 328 void MacroAssembler::movptr(Address dst, intptr_t src) {
 329   movl(dst, src);
 330 }
 331 
 332 
 333 void MacroAssembler::pop_callee_saved_registers() {
 334   pop(rcx);
 335   pop(rdx);
 336   pop(rdi);
 337   pop(rsi);
 338 }
 339 
 340 void MacroAssembler::pop_fTOS() {
 341   fld_d(Address(rsp, 0));
 342   addl(rsp, 2 * wordSize);
 343 }
 344 
 345 void MacroAssembler::push_callee_saved_registers() {
 346   push(rsi);
 347   push(rdi);
 348   push(rdx);
 349   push(rcx);
 350 }
 351 
 352 void MacroAssembler::push_fTOS() {
 353   subl(rsp, 2 * wordSize);
 354   fstp_d(Address(rsp, 0));
 355 }
 356 
 357 
 358 void MacroAssembler::pushoop(jobject obj) {
 359   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushklass(Metadata* obj) {
 363   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 364 }
 365 
 366 void MacroAssembler::pushptr(AddressLiteral src) {
 367   if (src.is_lval()) {
 368     push_literal32((int32_t)src.target(), src.rspec());
 369   } else {
 370     pushl(as_Address(src));
 371   }
 372 }
 373 
 374 void MacroAssembler::set_word_if_not_zero(Register dst) {
 375   xorl(dst, dst);
 376   set_byte_if_not_zero(dst);
 377 }
 378 
 379 static void pass_arg0(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg1(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg2(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 static void pass_arg3(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 #ifndef PRODUCT
 396 extern "C" void findpc(intptr_t x);
 397 #endif
 398 
 399 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 400   // In order to get locks to work, we need to fake a in_VM state
 401   JavaThread* thread = JavaThread::current();
 402   JavaThreadState saved_state = thread->thread_state();
 403   thread->set_thread_state(_thread_in_vm);
 404   if (ShowMessageBoxOnError) {
 405     JavaThread* thread = JavaThread::current();
 406     JavaThreadState saved_state = thread->thread_state();
 407     thread->set_thread_state(_thread_in_vm);
 408     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 409       ttyLocker ttyl;
 410       BytecodeCounter::print();
 411     }
 412     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 413     // This is the value of eip which points to where verify_oop will return.
 414     if (os::message_box(msg, "Execution stopped, print registers?")) {
 415       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 416       BREAKPOINT;
 417     }
 418   } else {
 419     ttyLocker ttyl;
 420     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 421   }
 422   // Don't assert holding the ttyLock
 423     assert(false, "DEBUG MESSAGE: %s", msg);
 424   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 425 }
 426 
 427 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 428   ttyLocker ttyl;
 429   FlagSetting fs(Debugging, true);
 430   tty->print_cr("eip = 0x%08x", eip);
 431 #ifndef PRODUCT
 432   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 433     tty->cr();
 434     findpc(eip);
 435     tty->cr();
 436   }
 437 #endif
 438 #define PRINT_REG(rax) \
 439   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 440   PRINT_REG(rax);
 441   PRINT_REG(rbx);
 442   PRINT_REG(rcx);
 443   PRINT_REG(rdx);
 444   PRINT_REG(rdi);
 445   PRINT_REG(rsi);
 446   PRINT_REG(rbp);
 447   PRINT_REG(rsp);
 448 #undef PRINT_REG
 449   // Print some words near top of staack.
 450   int* dump_sp = (int*) rsp;
 451   for (int col1 = 0; col1 < 8; col1++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     os::print_location(tty, *dump_sp++);
 454   }
 455   for (int row = 0; row < 16; row++) {
 456     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 457     for (int col = 0; col < 8; col++) {
 458       tty->print(" 0x%08x", *dump_sp++);
 459     }
 460     tty->cr();
 461   }
 462   // Print some instructions around pc:
 463   Disassembler::decode((address)eip-64, (address)eip);
 464   tty->print_cr("--------");
 465   Disassembler::decode((address)eip, (address)eip+32);
 466 }
 467 
 468 void MacroAssembler::stop(const char* msg) {
 469   ExternalAddress message((address)msg);
 470   // push address of message
 471   pushptr(message.addr());
 472   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 473   pusha();                                            // push registers
 474   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 475   hlt();
 476 }
 477 
 478 void MacroAssembler::warn(const char* msg) {
 479   push_CPU_state();
 480 
 481   ExternalAddress message((address) msg);
 482   // push address of message
 483   pushptr(message.addr());
 484 
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 486   addl(rsp, wordSize);       // discard argument
 487   pop_CPU_state();
 488 }
 489 
 490 void MacroAssembler::print_state() {
 491   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 492   pusha();                                            // push registers
 493 
 494   push_CPU_state();
 495   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 496   pop_CPU_state();
 497 
 498   popa();
 499   addl(rsp, wordSize);
 500 }
 501 
 502 #else // _LP64
 503 
 504 // 64 bit versions
 505 
 506 Address MacroAssembler::as_Address(AddressLiteral adr) {
 507   // amd64 always does this as a pc-rel
 508   // we can be absolute or disp based on the instruction type
 509   // jmp/call are displacements others are absolute
 510   assert(!adr.is_lval(), "must be rval");
 511   assert(reachable(adr), "must be");
 512   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 513 
 514 }
 515 
 516 Address MacroAssembler::as_Address(ArrayAddress adr) {
 517   AddressLiteral base = adr.base();
 518   lea(rscratch1, base);
 519   Address index = adr.index();
 520   assert(index._disp == 0, "must not have disp"); // maybe it can?
 521   Address array(rscratch1, index._index, index._scale, index._disp);
 522   return array;
 523 }
 524 
 525 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 526   Label L, E;
 527 
 528 #ifdef _WIN64
 529   // Windows always allocates space for it's register args
 530   assert(num_args <= 4, "only register arguments supported");
 531   subq(rsp,  frame::arg_reg_save_area_bytes);
 532 #endif
 533 
 534   // Align stack if necessary
 535   testl(rsp, 15);
 536   jcc(Assembler::zero, L);
 537 
 538   subq(rsp, 8);
 539   {
 540     call(RuntimeAddress(entry_point));
 541   }
 542   addq(rsp, 8);
 543   jmp(E);
 544 
 545   bind(L);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549 
 550   bind(E);
 551 
 552 #ifdef _WIN64
 553   // restore stack pointer
 554   addq(rsp, frame::arg_reg_save_area_bytes);
 555 #endif
 556 
 557 }
 558 
 559 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 560   assert(!src2.is_lval(), "should use cmpptr");
 561 
 562   if (reachable(src2)) {
 563     cmpq(src1, as_Address(src2));
 564   } else {
 565     lea(rscratch1, src2);
 566     Assembler::cmpq(src1, Address(rscratch1, 0));
 567   }
 568 }
 569 
 570 int MacroAssembler::corrected_idivq(Register reg) {
 571   // Full implementation of Java ldiv and lrem; checks for special
 572   // case as described in JVM spec., p.243 & p.271.  The function
 573   // returns the (pc) offset of the idivl instruction - may be needed
 574   // for implicit exceptions.
 575   //
 576   //         normal case                           special case
 577   //
 578   // input : rax: dividend                         min_long
 579   //         reg: divisor   (may not be eax/edx)   -1
 580   //
 581   // output: rax: quotient  (= rax idiv reg)       min_long
 582   //         rdx: remainder (= rax irem reg)       0
 583   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 584   static const int64_t min_long = 0x8000000000000000;
 585   Label normal_case, special_case;
 586 
 587   // check for special case
 588   cmp64(rax, ExternalAddress((address) &min_long));
 589   jcc(Assembler::notEqual, normal_case);
 590   xorl(rdx, rdx); // prepare rdx for possible special case (where
 591                   // remainder = 0)
 592   cmpq(reg, -1);
 593   jcc(Assembler::equal, special_case);
 594 
 595   // handle normal case
 596   bind(normal_case);
 597   cdqq();
 598   int idivq_offset = offset();
 599   idivq(reg);
 600 
 601   // normal and special case exit
 602   bind(special_case);
 603 
 604   return idivq_offset;
 605 }
 606 
 607 void MacroAssembler::decrementq(Register reg, int value) {
 608   if (value == min_jint) { subq(reg, value); return; }
 609   if (value <  0) { incrementq(reg, -value); return; }
 610   if (value == 0) {                        ; return; }
 611   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 612   /* else */      { subq(reg, value)       ; return; }
 613 }
 614 
 615 void MacroAssembler::decrementq(Address dst, int value) {
 616   if (value == min_jint) { subq(dst, value); return; }
 617   if (value <  0) { incrementq(dst, -value); return; }
 618   if (value == 0) {                        ; return; }
 619   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 620   /* else */      { subq(dst, value)       ; return; }
 621 }
 622 
 623 void MacroAssembler::incrementq(AddressLiteral dst) {
 624   if (reachable(dst)) {
 625     incrementq(as_Address(dst));
 626   } else {
 627     lea(rscratch1, dst);
 628     incrementq(Address(rscratch1, 0));
 629   }
 630 }
 631 
 632 void MacroAssembler::incrementq(Register reg, int value) {
 633   if (value == min_jint) { addq(reg, value); return; }
 634   if (value <  0) { decrementq(reg, -value); return; }
 635   if (value == 0) {                        ; return; }
 636   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 637   /* else */      { addq(reg, value)       ; return; }
 638 }
 639 
 640 void MacroAssembler::incrementq(Address dst, int value) {
 641   if (value == min_jint) { addq(dst, value); return; }
 642   if (value <  0) { decrementq(dst, -value); return; }
 643   if (value == 0) {                        ; return; }
 644   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 645   /* else */      { addq(dst, value)       ; return; }
 646 }
 647 
 648 // 32bit can do a case table jump in one instruction but we no longer allow the base
 649 // to be installed in the Address class
 650 void MacroAssembler::jump(ArrayAddress entry) {
 651   lea(rscratch1, entry.base());
 652   Address dispatch = entry.index();
 653   assert(dispatch._base == noreg, "must be");
 654   dispatch._base = rscratch1;
 655   jmp(dispatch);
 656 }
 657 
 658 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 659   ShouldNotReachHere(); // 64bit doesn't use two regs
 660   cmpq(x_lo, y_lo);
 661 }
 662 
 663 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 664     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 665 }
 666 
 667 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 668   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 669   movptr(dst, rscratch1);
 670 }
 671 
 672 void MacroAssembler::leave() {
 673   // %%% is this really better? Why not on 32bit too?
 674   emit_int8((unsigned char)0xC9); // LEAVE
 675 }
 676 
 677 void MacroAssembler::lneg(Register hi, Register lo) {
 678   ShouldNotReachHere(); // 64bit doesn't use two regs
 679   negq(lo);
 680 }
 681 
 682 void MacroAssembler::movoop(Register dst, jobject obj) {
 683   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684 }
 685 
 686 void MacroAssembler::movoop(Address dst, jobject obj) {
 687   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 688   movq(dst, rscratch1);
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 692   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693 }
 694 
 695 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 696   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 697   movq(dst, rscratch1);
 698 }
 699 
 700 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 701   if (src.is_lval()) {
 702     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 703   } else {
 704     if (reachable(src)) {
 705       movq(dst, as_Address(src));
 706     } else {
 707       lea(scratch, src);
 708       movq(dst, Address(scratch, 0));
 709     }
 710   }
 711 }
 712 
 713 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 714   movq(as_Address(dst), src);
 715 }
 716 
 717 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 718   movq(dst, as_Address(src));
 719 }
 720 
 721 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 722 void MacroAssembler::movptr(Address dst, intptr_t src) {
 723   mov64(rscratch1, src);
 724   movq(dst, rscratch1);
 725 }
 726 
 727 // These are mostly for initializing NULL
 728 void MacroAssembler::movptr(Address dst, int32_t src) {
 729   movslq(dst, src);
 730 }
 731 
 732 void MacroAssembler::movptr(Register dst, int32_t src) {
 733   mov64(dst, (intptr_t)src);
 734 }
 735 
 736 void MacroAssembler::pushoop(jobject obj) {
 737   movoop(rscratch1, obj);
 738   push(rscratch1);
 739 }
 740 
 741 void MacroAssembler::pushklass(Metadata* obj) {
 742   mov_metadata(rscratch1, obj);
 743   push(rscratch1);
 744 }
 745 
 746 void MacroAssembler::pushptr(AddressLiteral src) {
 747   lea(rscratch1, src);
 748   if (src.is_lval()) {
 749     push(rscratch1);
 750   } else {
 751     pushq(Address(rscratch1, 0));
 752   }
 753 }
 754 
 755 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 756   // we must set sp to zero to clear frame
 757   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 758   // must clear fp, so that compiled frames are not confused; it is
 759   // possible that we need it only for debugging
 760   if (clear_fp) {
 761     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 762   }
 763 
 764   // Always clear the pc because it could have been set by make_walkable()
 765   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 766   vzeroupper();
 767 }
 768 
 769 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 770                                          Register last_java_fp,
 771                                          address  last_java_pc) {
 772   vzeroupper();
 773   // determine last_java_sp register
 774   if (!last_java_sp->is_valid()) {
 775     last_java_sp = rsp;
 776   }
 777 
 778   // last_java_fp is optional
 779   if (last_java_fp->is_valid()) {
 780     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 781            last_java_fp);
 782   }
 783 
 784   // last_java_pc is optional
 785   if (last_java_pc != NULL) {
 786     Address java_pc(r15_thread,
 787                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 788     lea(rscratch1, InternalAddress(last_java_pc));
 789     movptr(java_pc, rscratch1);
 790   }
 791 
 792   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 793 }
 794 
 795 static void pass_arg0(MacroAssembler* masm, Register arg) {
 796   if (c_rarg0 != arg ) {
 797     masm->mov(c_rarg0, arg);
 798   }
 799 }
 800 
 801 static void pass_arg1(MacroAssembler* masm, Register arg) {
 802   if (c_rarg1 != arg ) {
 803     masm->mov(c_rarg1, arg);
 804   }
 805 }
 806 
 807 static void pass_arg2(MacroAssembler* masm, Register arg) {
 808   if (c_rarg2 != arg ) {
 809     masm->mov(c_rarg2, arg);
 810   }
 811 }
 812 
 813 static void pass_arg3(MacroAssembler* masm, Register arg) {
 814   if (c_rarg3 != arg ) {
 815     masm->mov(c_rarg3, arg);
 816   }
 817 }
 818 
 819 void MacroAssembler::stop(const char* msg) {
 820   address rip = pc();
 821   pusha(); // get regs on stack
 822   lea(c_rarg0, ExternalAddress((address) msg));
 823   lea(c_rarg1, InternalAddress(rip));
 824   movq(c_rarg2, rsp); // pass pointer to regs array
 825   andq(rsp, -16); // align stack as required by ABI
 826   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 827   hlt();
 828 }
 829 
 830 void MacroAssembler::warn(const char* msg) {
 831   push(rbp);
 832   movq(rbp, rsp);
 833   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 834   push_CPU_state();   // keeps alignment at 16 bytes
 835   lea(c_rarg0, ExternalAddress((address) msg));
 836   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 837   pop_CPU_state();
 838   mov(rsp, rbp);
 839   pop(rbp);
 840 }
 841 
 842 void MacroAssembler::print_state() {
 843   address rip = pc();
 844   pusha();            // get regs on stack
 845   push(rbp);
 846   movq(rbp, rsp);
 847   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 848   push_CPU_state();   // keeps alignment at 16 bytes
 849 
 850   lea(c_rarg0, InternalAddress(rip));
 851   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 852   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 853 
 854   pop_CPU_state();
 855   mov(rsp, rbp);
 856   pop(rbp);
 857   popa();
 858 }
 859 
 860 #ifndef PRODUCT
 861 extern "C" void findpc(intptr_t x);
 862 #endif
 863 
 864 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 865   // In order to get locks to work, we need to fake a in_VM state
 866   if (ShowMessageBoxOnError) {
 867     JavaThread* thread = JavaThread::current();
 868     JavaThreadState saved_state = thread->thread_state();
 869     thread->set_thread_state(_thread_in_vm);
 870 #ifndef PRODUCT
 871     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 872       ttyLocker ttyl;
 873       BytecodeCounter::print();
 874     }
 875 #endif
 876     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 877     // XXX correct this offset for amd64
 878     // This is the value of eip which points to where verify_oop will return.
 879     if (os::message_box(msg, "Execution stopped, print registers?")) {
 880       print_state64(pc, regs);
 881       BREAKPOINT;
 882       assert(false, "start up GDB");
 883     }
 884     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 885   } else {
 886     ttyLocker ttyl;
 887     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 888                     msg);
 889     assert(false, "DEBUG MESSAGE: %s", msg);
 890   }
 891 }
 892 
 893 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 894   ttyLocker ttyl;
 895   FlagSetting fs(Debugging, true);
 896   tty->print_cr("rip = 0x%016lx", pc);
 897 #ifndef PRODUCT
 898   tty->cr();
 899   findpc(pc);
 900   tty->cr();
 901 #endif
 902 #define PRINT_REG(rax, value) \
 903   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 904   PRINT_REG(rax, regs[15]);
 905   PRINT_REG(rbx, regs[12]);
 906   PRINT_REG(rcx, regs[14]);
 907   PRINT_REG(rdx, regs[13]);
 908   PRINT_REG(rdi, regs[8]);
 909   PRINT_REG(rsi, regs[9]);
 910   PRINT_REG(rbp, regs[10]);
 911   PRINT_REG(rsp, regs[11]);
 912   PRINT_REG(r8 , regs[7]);
 913   PRINT_REG(r9 , regs[6]);
 914   PRINT_REG(r10, regs[5]);
 915   PRINT_REG(r11, regs[4]);
 916   PRINT_REG(r12, regs[3]);
 917   PRINT_REG(r13, regs[2]);
 918   PRINT_REG(r14, regs[1]);
 919   PRINT_REG(r15, regs[0]);
 920 #undef PRINT_REG
 921   // Print some words near top of staack.
 922   int64_t* rsp = (int64_t*) regs[11];
 923   int64_t* dump_sp = rsp;
 924   for (int col1 = 0; col1 < 8; col1++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     os::print_location(tty, *dump_sp++);
 927   }
 928   for (int row = 0; row < 25; row++) {
 929     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 930     for (int col = 0; col < 4; col++) {
 931       tty->print(" 0x%016lx", *dump_sp++);
 932     }
 933     tty->cr();
 934   }
 935   // Print some instructions around pc:
 936   Disassembler::decode((address)pc-64, (address)pc);
 937   tty->print_cr("--------");
 938   Disassembler::decode((address)pc, (address)pc+32);
 939 }
 940 
 941 #endif // _LP64
 942 
 943 // Now versions that are common to 32/64 bit
 944 
 945 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 946   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 947 }
 948 
 949 void MacroAssembler::addptr(Register dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addptr(Address dst, Register src) {
 954   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 955 }
 956 
 957 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 958   if (reachable(src)) {
 959     Assembler::addsd(dst, as_Address(src));
 960   } else {
 961     lea(rscratch1, src);
 962     Assembler::addsd(dst, Address(rscratch1, 0));
 963   }
 964 }
 965 
 966 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 967   if (reachable(src)) {
 968     addss(dst, as_Address(src));
 969   } else {
 970     lea(rscratch1, src);
 971     addss(dst, Address(rscratch1, 0));
 972   }
 973 }
 974 
 975 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 976   if (reachable(src)) {
 977     Assembler::addpd(dst, as_Address(src));
 978   } else {
 979     lea(rscratch1, src);
 980     Assembler::addpd(dst, Address(rscratch1, 0));
 981   }
 982 }
 983 
 984 void MacroAssembler::align(int modulus) {
 985   align(modulus, offset());
 986 }
 987 
 988 void MacroAssembler::align(int modulus, int target) {
 989   if (target % modulus != 0) {
 990     nop(modulus - (target % modulus));
 991   }
 992 }
 993 
 994 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 995   // Used in sign-masking with aligned address.
 996   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 997   if (reachable(src)) {
 998     Assembler::andpd(dst, as_Address(src));
 999   } else {
1000     lea(rscratch1, src);
1001     Assembler::andpd(dst, Address(rscratch1, 0));
1002   }
1003 }
1004 
1005 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1006   // Used in sign-masking with aligned address.
1007   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1008   if (reachable(src)) {
1009     Assembler::andps(dst, as_Address(src));
1010   } else {
1011     lea(rscratch1, src);
1012     Assembler::andps(dst, Address(rscratch1, 0));
1013   }
1014 }
1015 
1016 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1017   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1018 }
1019 
1020 void MacroAssembler::atomic_incl(Address counter_addr) {
1021   if (os::is_MP())
1022     lock();
1023   incrementl(counter_addr);
1024 }
1025 
1026 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1027   if (reachable(counter_addr)) {
1028     atomic_incl(as_Address(counter_addr));
1029   } else {
1030     lea(scr, counter_addr);
1031     atomic_incl(Address(scr, 0));
1032   }
1033 }
1034 
1035 #ifdef _LP64
1036 void MacroAssembler::atomic_incq(Address counter_addr) {
1037   if (os::is_MP())
1038     lock();
1039   incrementq(counter_addr);
1040 }
1041 
1042 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1043   if (reachable(counter_addr)) {
1044     atomic_incq(as_Address(counter_addr));
1045   } else {
1046     lea(scr, counter_addr);
1047     atomic_incq(Address(scr, 0));
1048   }
1049 }
1050 #endif
1051 
1052 // Writes to stack successive pages until offset reached to check for
1053 // stack overflow + shadow pages.  This clobbers tmp.
1054 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1055   movptr(tmp, rsp);
1056   // Bang stack for total size given plus shadow page size.
1057   // Bang one page at a time because large size can bang beyond yellow and
1058   // red zones.
1059   Label loop;
1060   bind(loop);
1061   movl(Address(tmp, (-os::vm_page_size())), size );
1062   subptr(tmp, os::vm_page_size());
1063   subl(size, os::vm_page_size());
1064   jcc(Assembler::greater, loop);
1065 
1066   // Bang down shadow pages too.
1067   // At this point, (tmp-0) is the last address touched, so don't
1068   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1069   // was post-decremented.)  Skip this address by starting at i=1, and
1070   // touch a few more pages below.  N.B.  It is important to touch all
1071   // the way down including all pages in the shadow zone.
1072   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1073     // this could be any sized move but this is can be a debugging crumb
1074     // so the bigger the better.
1075     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1076   }
1077 }
1078 
1079 void MacroAssembler::reserved_stack_check() {
1080     // testing if reserved zone needs to be enabled
1081     Label no_reserved_zone_enabling;
1082     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1083     NOT_LP64(get_thread(rsi);)
1084 
1085     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1086     jcc(Assembler::below, no_reserved_zone_enabling);
1087 
1088     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1089     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1090     should_not_reach_here();
1091 
1092     bind(no_reserved_zone_enabling);
1093 }
1094 
1095 int MacroAssembler::biased_locking_enter(Register lock_reg,
1096                                          Register obj_reg,
1097                                          Register swap_reg,
1098                                          Register tmp_reg,
1099                                          bool swap_reg_contains_mark,
1100                                          Label& done,
1101                                          Label* slow_case,
1102                                          BiasedLockingCounters* counters) {
1103   assert(UseBiasedLocking, "why call this otherwise?");
1104   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1105   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1106   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1107   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1108   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1109   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1110 
1111   if (PrintBiasedLockingStatistics && counters == NULL) {
1112     counters = BiasedLocking::counters();
1113   }
1114   // Biased locking
1115   // See whether the lock is currently biased toward our thread and
1116   // whether the epoch is still valid
1117   // Note that the runtime guarantees sufficient alignment of JavaThread
1118   // pointers to allow age to be placed into low bits
1119   // First check to see whether biasing is even enabled for this object
1120   Label cas_label;
1121   int null_check_offset = -1;
1122   if (!swap_reg_contains_mark) {
1123     null_check_offset = offset();
1124     movptr(swap_reg, mark_addr);
1125   }
1126   movptr(tmp_reg, swap_reg);
1127   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1128   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1129   jcc(Assembler::notEqual, cas_label);
1130   // The bias pattern is present in the object's header. Need to check
1131   // whether the bias owner and the epoch are both still current.
1132 #ifndef _LP64
1133   // Note that because there is no current thread register on x86_32 we
1134   // need to store off the mark word we read out of the object to
1135   // avoid reloading it and needing to recheck invariants below. This
1136   // store is unfortunate but it makes the overall code shorter and
1137   // simpler.
1138   movptr(saved_mark_addr, swap_reg);
1139 #endif
1140   if (swap_reg_contains_mark) {
1141     null_check_offset = offset();
1142   }
1143   load_prototype_header(tmp_reg, obj_reg);
1144 #ifdef _LP64
1145   orptr(tmp_reg, r15_thread);
1146   xorptr(tmp_reg, swap_reg);
1147   Register header_reg = tmp_reg;
1148 #else
1149   xorptr(tmp_reg, swap_reg);
1150   get_thread(swap_reg);
1151   xorptr(swap_reg, tmp_reg);
1152   Register header_reg = swap_reg;
1153 #endif
1154   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1155   if (counters != NULL) {
1156     cond_inc32(Assembler::zero,
1157                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1158   }
1159   jcc(Assembler::equal, done);
1160 
1161   Label try_revoke_bias;
1162   Label try_rebias;
1163 
1164   // At this point we know that the header has the bias pattern and
1165   // that we are not the bias owner in the current epoch. We need to
1166   // figure out more details about the state of the header in order to
1167   // know what operations can be legally performed on the object's
1168   // header.
1169 
1170   // If the low three bits in the xor result aren't clear, that means
1171   // the prototype header is no longer biased and we have to revoke
1172   // the bias on this object.
1173   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1174   jccb(Assembler::notZero, try_revoke_bias);
1175 
1176   // Biasing is still enabled for this data type. See whether the
1177   // epoch of the current bias is still valid, meaning that the epoch
1178   // bits of the mark word are equal to the epoch bits of the
1179   // prototype header. (Note that the prototype header's epoch bits
1180   // only change at a safepoint.) If not, attempt to rebias the object
1181   // toward the current thread. Note that we must be absolutely sure
1182   // that the current epoch is invalid in order to do this because
1183   // otherwise the manipulations it performs on the mark word are
1184   // illegal.
1185   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1186   jccb(Assembler::notZero, try_rebias);
1187 
1188   // The epoch of the current bias is still valid but we know nothing
1189   // about the owner; it might be set or it might be clear. Try to
1190   // acquire the bias of the object using an atomic operation. If this
1191   // fails we will go in to the runtime to revoke the object's bias.
1192   // Note that we first construct the presumed unbiased header so we
1193   // don't accidentally blow away another thread's valid bias.
1194   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1195   andptr(swap_reg,
1196          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1197 #ifdef _LP64
1198   movptr(tmp_reg, swap_reg);
1199   orptr(tmp_reg, r15_thread);
1200 #else
1201   get_thread(tmp_reg);
1202   orptr(tmp_reg, swap_reg);
1203 #endif
1204   if (os::is_MP()) {
1205     lock();
1206   }
1207   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1208   // If the biasing toward our thread failed, this means that
1209   // another thread succeeded in biasing it toward itself and we
1210   // need to revoke that bias. The revocation will occur in the
1211   // interpreter runtime in the slow case.
1212   if (counters != NULL) {
1213     cond_inc32(Assembler::zero,
1214                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1215   }
1216   if (slow_case != NULL) {
1217     jcc(Assembler::notZero, *slow_case);
1218   }
1219   jmp(done);
1220 
1221   bind(try_rebias);
1222   // At this point we know the epoch has expired, meaning that the
1223   // current "bias owner", if any, is actually invalid. Under these
1224   // circumstances _only_, we are allowed to use the current header's
1225   // value as the comparison value when doing the cas to acquire the
1226   // bias in the current epoch. In other words, we allow transfer of
1227   // the bias from one thread to another directly in this situation.
1228   //
1229   // FIXME: due to a lack of registers we currently blow away the age
1230   // bits in this situation. Should attempt to preserve them.
1231   load_prototype_header(tmp_reg, obj_reg);
1232 #ifdef _LP64
1233   orptr(tmp_reg, r15_thread);
1234 #else
1235   get_thread(swap_reg);
1236   orptr(tmp_reg, swap_reg);
1237   movptr(swap_reg, saved_mark_addr);
1238 #endif
1239   if (os::is_MP()) {
1240     lock();
1241   }
1242   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1243   // If the biasing toward our thread failed, then another thread
1244   // succeeded in biasing it toward itself and we need to revoke that
1245   // bias. The revocation will occur in the runtime in the slow case.
1246   if (counters != NULL) {
1247     cond_inc32(Assembler::zero,
1248                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1249   }
1250   if (slow_case != NULL) {
1251     jcc(Assembler::notZero, *slow_case);
1252   }
1253   jmp(done);
1254 
1255   bind(try_revoke_bias);
1256   // The prototype mark in the klass doesn't have the bias bit set any
1257   // more, indicating that objects of this data type are not supposed
1258   // to be biased any more. We are going to try to reset the mark of
1259   // this object to the prototype value and fall through to the
1260   // CAS-based locking scheme. Note that if our CAS fails, it means
1261   // that another thread raced us for the privilege of revoking the
1262   // bias of this particular object, so it's okay to continue in the
1263   // normal locking code.
1264   //
1265   // FIXME: due to a lack of registers we currently blow away the age
1266   // bits in this situation. Should attempt to preserve them.
1267   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1268   load_prototype_header(tmp_reg, obj_reg);
1269   if (os::is_MP()) {
1270     lock();
1271   }
1272   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1273   // Fall through to the normal CAS-based lock, because no matter what
1274   // the result of the above CAS, some thread must have succeeded in
1275   // removing the bias bit from the object's header.
1276   if (counters != NULL) {
1277     cond_inc32(Assembler::zero,
1278                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1279   }
1280 
1281   bind(cas_label);
1282 
1283   return null_check_offset;
1284 }
1285 
1286 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1287   assert(UseBiasedLocking, "why call this otherwise?");
1288 
1289   // Check for biased locking unlock case, which is a no-op
1290   // Note: we do not have to check the thread ID for two reasons.
1291   // First, the interpreter checks for IllegalMonitorStateException at
1292   // a higher level. Second, if the bias was revoked while we held the
1293   // lock, the object could not be rebiased toward another thread, so
1294   // the bias bit would be clear.
1295   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1296   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1297   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1298   jcc(Assembler::equal, done);
1299 }
1300 
1301 #ifdef COMPILER2
1302 
1303 #if INCLUDE_RTM_OPT
1304 
1305 // Update rtm_counters based on abort status
1306 // input: abort_status
1307 //        rtm_counters (RTMLockingCounters*)
1308 // flags are killed
1309 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1310 
1311   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1312   if (PrintPreciseRTMLockingStatistics) {
1313     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1314       Label check_abort;
1315       testl(abort_status, (1<<i));
1316       jccb(Assembler::equal, check_abort);
1317       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1318       bind(check_abort);
1319     }
1320   }
1321 }
1322 
1323 // Branch if (random & (count-1) != 0), count is 2^n
1324 // tmp, scr and flags are killed
1325 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1326   assert(tmp == rax, "");
1327   assert(scr == rdx, "");
1328   rdtsc(); // modifies EDX:EAX
1329   andptr(tmp, count-1);
1330   jccb(Assembler::notZero, brLabel);
1331 }
1332 
1333 // Perform abort ratio calculation, set no_rtm bit if high ratio
1334 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1335 // tmpReg, rtm_counters_Reg and flags are killed
1336 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1337                                                  Register rtm_counters_Reg,
1338                                                  RTMLockingCounters* rtm_counters,
1339                                                  Metadata* method_data) {
1340   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1341 
1342   if (RTMLockingCalculationDelay > 0) {
1343     // Delay calculation
1344     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1345     testptr(tmpReg, tmpReg);
1346     jccb(Assembler::equal, L_done);
1347   }
1348   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1349   //   Aborted transactions = abort_count * 100
1350   //   All transactions = total_count *  RTMTotalCountIncrRate
1351   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1352 
1353   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1354   cmpptr(tmpReg, RTMAbortThreshold);
1355   jccb(Assembler::below, L_check_always_rtm2);
1356   imulptr(tmpReg, tmpReg, 100);
1357 
1358   Register scrReg = rtm_counters_Reg;
1359   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1360   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1361   imulptr(scrReg, scrReg, RTMAbortRatio);
1362   cmpptr(tmpReg, scrReg);
1363   jccb(Assembler::below, L_check_always_rtm1);
1364   if (method_data != NULL) {
1365     // set rtm_state to "no rtm" in MDO
1366     mov_metadata(tmpReg, method_data);
1367     if (os::is_MP()) {
1368       lock();
1369     }
1370     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1371   }
1372   jmpb(L_done);
1373   bind(L_check_always_rtm1);
1374   // Reload RTMLockingCounters* address
1375   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1376   bind(L_check_always_rtm2);
1377   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1378   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1379   jccb(Assembler::below, L_done);
1380   if (method_data != NULL) {
1381     // set rtm_state to "always rtm" in MDO
1382     mov_metadata(tmpReg, method_data);
1383     if (os::is_MP()) {
1384       lock();
1385     }
1386     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1387   }
1388   bind(L_done);
1389 }
1390 
1391 // Update counters and perform abort ratio calculation
1392 // input:  abort_status_Reg
1393 // rtm_counters_Reg, flags are killed
1394 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1395                                    Register rtm_counters_Reg,
1396                                    RTMLockingCounters* rtm_counters,
1397                                    Metadata* method_data,
1398                                    bool profile_rtm) {
1399 
1400   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1401   // update rtm counters based on rax value at abort
1402   // reads abort_status_Reg, updates flags
1403   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1404   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1405   if (profile_rtm) {
1406     // Save abort status because abort_status_Reg is used by following code.
1407     if (RTMRetryCount > 0) {
1408       push(abort_status_Reg);
1409     }
1410     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1411     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1412     // restore abort status
1413     if (RTMRetryCount > 0) {
1414       pop(abort_status_Reg);
1415     }
1416   }
1417 }
1418 
1419 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1420 // inputs: retry_count_Reg
1421 //       : abort_status_Reg
1422 // output: retry_count_Reg decremented by 1
1423 // flags are killed
1424 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1425   Label doneRetry;
1426   assert(abort_status_Reg == rax, "");
1427   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1428   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1429   // if reason is in 0x6 and retry count != 0 then retry
1430   andptr(abort_status_Reg, 0x6);
1431   jccb(Assembler::zero, doneRetry);
1432   testl(retry_count_Reg, retry_count_Reg);
1433   jccb(Assembler::zero, doneRetry);
1434   pause();
1435   decrementl(retry_count_Reg);
1436   jmp(retryLabel);
1437   bind(doneRetry);
1438 }
1439 
1440 // Spin and retry if lock is busy,
1441 // inputs: box_Reg (monitor address)
1442 //       : retry_count_Reg
1443 // output: retry_count_Reg decremented by 1
1444 //       : clear z flag if retry count exceeded
1445 // tmp_Reg, scr_Reg, flags are killed
1446 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1447                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1448   Label SpinLoop, SpinExit, doneRetry;
1449   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1450 
1451   testl(retry_count_Reg, retry_count_Reg);
1452   jccb(Assembler::zero, doneRetry);
1453   decrementl(retry_count_Reg);
1454   movptr(scr_Reg, RTMSpinLoopCount);
1455 
1456   bind(SpinLoop);
1457   pause();
1458   decrementl(scr_Reg);
1459   jccb(Assembler::lessEqual, SpinExit);
1460   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1461   testptr(tmp_Reg, tmp_Reg);
1462   jccb(Assembler::notZero, SpinLoop);
1463 
1464   bind(SpinExit);
1465   jmp(retryLabel);
1466   bind(doneRetry);
1467   incrementl(retry_count_Reg); // clear z flag
1468 }
1469 
1470 // Use RTM for normal stack locks
1471 // Input: objReg (object to lock)
1472 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1473                                        Register retry_on_abort_count_Reg,
1474                                        RTMLockingCounters* stack_rtm_counters,
1475                                        Metadata* method_data, bool profile_rtm,
1476                                        Label& DONE_LABEL, Label& IsInflated) {
1477   assert(UseRTMForStackLocks, "why call this otherwise?");
1478   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1479   assert(tmpReg == rax, "");
1480   assert(scrReg == rdx, "");
1481   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1482 
1483   if (RTMRetryCount > 0) {
1484     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1485     bind(L_rtm_retry);
1486   }
1487   movptr(tmpReg, Address(objReg, 0));
1488   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1489   jcc(Assembler::notZero, IsInflated);
1490 
1491   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1492     Label L_noincrement;
1493     if (RTMTotalCountIncrRate > 1) {
1494       // tmpReg, scrReg and flags are killed
1495       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1496     }
1497     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1498     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1499     bind(L_noincrement);
1500   }
1501   xbegin(L_on_abort);
1502   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1503   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1504   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1505   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1506 
1507   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1508   if (UseRTMXendForLockBusy) {
1509     xend();
1510     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1511     jmp(L_decrement_retry);
1512   }
1513   else {
1514     xabort(0);
1515   }
1516   bind(L_on_abort);
1517   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1518     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1519   }
1520   bind(L_decrement_retry);
1521   if (RTMRetryCount > 0) {
1522     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1523     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1524   }
1525 }
1526 
1527 // Use RTM for inflating locks
1528 // inputs: objReg (object to lock)
1529 //         boxReg (on-stack box address (displaced header location) - KILLED)
1530 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1531 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1532                                           Register scrReg, Register retry_on_busy_count_Reg,
1533                                           Register retry_on_abort_count_Reg,
1534                                           RTMLockingCounters* rtm_counters,
1535                                           Metadata* method_data, bool profile_rtm,
1536                                           Label& DONE_LABEL) {
1537   assert(UseRTMLocking, "why call this otherwise?");
1538   assert(tmpReg == rax, "");
1539   assert(scrReg == rdx, "");
1540   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1541   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1542 
1543   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1544   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1545   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1546 
1547   if (RTMRetryCount > 0) {
1548     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1549     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1550     bind(L_rtm_retry);
1551   }
1552   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1553     Label L_noincrement;
1554     if (RTMTotalCountIncrRate > 1) {
1555       // tmpReg, scrReg and flags are killed
1556       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1557     }
1558     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1559     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1560     bind(L_noincrement);
1561   }
1562   xbegin(L_on_abort);
1563   movptr(tmpReg, Address(objReg, 0));
1564   movptr(tmpReg, Address(tmpReg, owner_offset));
1565   testptr(tmpReg, tmpReg);
1566   jcc(Assembler::zero, DONE_LABEL);
1567   if (UseRTMXendForLockBusy) {
1568     xend();
1569     jmp(L_decrement_retry);
1570   }
1571   else {
1572     xabort(0);
1573   }
1574   bind(L_on_abort);
1575   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1576   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1577     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1578   }
1579   if (RTMRetryCount > 0) {
1580     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1581     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1582   }
1583 
1584   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1585   testptr(tmpReg, tmpReg) ;
1586   jccb(Assembler::notZero, L_decrement_retry) ;
1587 
1588   // Appears unlocked - try to swing _owner from null to non-null.
1589   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1590 #ifdef _LP64
1591   Register threadReg = r15_thread;
1592 #else
1593   get_thread(scrReg);
1594   Register threadReg = scrReg;
1595 #endif
1596   if (os::is_MP()) {
1597     lock();
1598   }
1599   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1600 
1601   if (RTMRetryCount > 0) {
1602     // success done else retry
1603     jccb(Assembler::equal, DONE_LABEL) ;
1604     bind(L_decrement_retry);
1605     // Spin and retry if lock is busy.
1606     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1607   }
1608   else {
1609     bind(L_decrement_retry);
1610   }
1611 }
1612 
1613 #endif //  INCLUDE_RTM_OPT
1614 
1615 // Fast_Lock and Fast_Unlock used by C2
1616 
1617 // Because the transitions from emitted code to the runtime
1618 // monitorenter/exit helper stubs are so slow it's critical that
1619 // we inline both the stack-locking fast-path and the inflated fast path.
1620 //
1621 // See also: cmpFastLock and cmpFastUnlock.
1622 //
1623 // What follows is a specialized inline transliteration of the code
1624 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1625 // another option would be to emit TrySlowEnter and TrySlowExit methods
1626 // at startup-time.  These methods would accept arguments as
1627 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1628 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1629 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1630 // In practice, however, the # of lock sites is bounded and is usually small.
1631 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1632 // if the processor uses simple bimodal branch predictors keyed by EIP
1633 // Since the helper routines would be called from multiple synchronization
1634 // sites.
1635 //
1636 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1637 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1638 // to those specialized methods.  That'd give us a mostly platform-independent
1639 // implementation that the JITs could optimize and inline at their pleasure.
1640 // Done correctly, the only time we'd need to cross to native could would be
1641 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1642 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1643 // (b) explicit barriers or fence operations.
1644 //
1645 // TODO:
1646 //
1647 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1648 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1649 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1650 //    the lock operators would typically be faster than reifying Self.
1651 //
1652 // *  Ideally I'd define the primitives as:
1653 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1654 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1655 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1656 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1657 //    Furthermore the register assignments are overconstrained, possibly resulting in
1658 //    sub-optimal code near the synchronization site.
1659 //
1660 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1661 //    Alternately, use a better sp-proximity test.
1662 //
1663 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1664 //    Either one is sufficient to uniquely identify a thread.
1665 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1666 //
1667 // *  Intrinsify notify() and notifyAll() for the common cases where the
1668 //    object is locked by the calling thread but the waitlist is empty.
1669 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1670 //
1671 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1672 //    But beware of excessive branch density on AMD Opterons.
1673 //
1674 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1675 //    or failure of the fast-path.  If the fast-path fails then we pass
1676 //    control to the slow-path, typically in C.  In Fast_Lock and
1677 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1678 //    will emit a conditional branch immediately after the node.
1679 //    So we have branches to branches and lots of ICC.ZF games.
1680 //    Instead, it might be better to have C2 pass a "FailureLabel"
1681 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1682 //    will drop through the node.  ICC.ZF is undefined at exit.
1683 //    In the case of failure, the node will branch directly to the
1684 //    FailureLabel
1685 
1686 
1687 // obj: object to lock
1688 // box: on-stack box address (displaced header location) - KILLED
1689 // rax,: tmp -- KILLED
1690 // scr: tmp -- KILLED
1691 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1692                                Register scrReg, Register cx1Reg, Register cx2Reg,
1693                                BiasedLockingCounters* counters,
1694                                RTMLockingCounters* rtm_counters,
1695                                RTMLockingCounters* stack_rtm_counters,
1696                                Metadata* method_data,
1697                                bool use_rtm, bool profile_rtm) {
1698   // Ensure the register assignments are disjoint
1699   assert(tmpReg == rax, "");
1700 
1701   if (use_rtm) {
1702     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1703   } else {
1704     assert(cx1Reg == noreg, "");
1705     assert(cx2Reg == noreg, "");
1706     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1707   }
1708 
1709   if (counters != NULL) {
1710     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1711   }
1712   if (EmitSync & 1) {
1713       // set box->dhw = markOopDesc::unused_mark()
1714       // Force all sync thru slow-path: slow_enter() and slow_exit()
1715       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1716       cmpptr (rsp, (int32_t)NULL_WORD);
1717   } else {
1718     // Possible cases that we'll encounter in fast_lock
1719     // ------------------------------------------------
1720     // * Inflated
1721     //    -- unlocked
1722     //    -- Locked
1723     //       = by self
1724     //       = by other
1725     // * biased
1726     //    -- by Self
1727     //    -- by other
1728     // * neutral
1729     // * stack-locked
1730     //    -- by self
1731     //       = sp-proximity test hits
1732     //       = sp-proximity test generates false-negative
1733     //    -- by other
1734     //
1735 
1736     Label IsInflated, DONE_LABEL;
1737 
1738     // it's stack-locked, biased or neutral
1739     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1740     // order to reduce the number of conditional branches in the most common cases.
1741     // Beware -- there's a subtle invariant that fetch of the markword
1742     // at [FETCH], below, will never observe a biased encoding (*101b).
1743     // If this invariant is not held we risk exclusion (safety) failure.
1744     if (UseBiasedLocking && !UseOptoBiasInlining) {
1745       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1746     }
1747 
1748 #if INCLUDE_RTM_OPT
1749     if (UseRTMForStackLocks && use_rtm) {
1750       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1751                         stack_rtm_counters, method_data, profile_rtm,
1752                         DONE_LABEL, IsInflated);
1753     }
1754 #endif // INCLUDE_RTM_OPT
1755 
1756     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1757     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1758     jccb(Assembler::notZero, IsInflated);
1759 
1760     // Attempt stack-locking ...
1761     orptr (tmpReg, markOopDesc::unlocked_value);
1762     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1763     if (os::is_MP()) {
1764       lock();
1765     }
1766     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1767     if (counters != NULL) {
1768       cond_inc32(Assembler::equal,
1769                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1770     }
1771     jcc(Assembler::equal, DONE_LABEL);           // Success
1772 
1773     // Recursive locking.
1774     // The object is stack-locked: markword contains stack pointer to BasicLock.
1775     // Locked by current thread if difference with current SP is less than one page.
1776     subptr(tmpReg, rsp);
1777     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1778     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1779     movptr(Address(boxReg, 0), tmpReg);
1780     if (counters != NULL) {
1781       cond_inc32(Assembler::equal,
1782                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1783     }
1784     jmp(DONE_LABEL);
1785 
1786     bind(IsInflated);
1787     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1788 
1789 #if INCLUDE_RTM_OPT
1790     // Use the same RTM locking code in 32- and 64-bit VM.
1791     if (use_rtm) {
1792       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1793                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1794     } else {
1795 #endif // INCLUDE_RTM_OPT
1796 
1797 #ifndef _LP64
1798     // The object is inflated.
1799 
1800     // boxReg refers to the on-stack BasicLock in the current frame.
1801     // We'd like to write:
1802     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1803     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1804     // additional latency as we have another ST in the store buffer that must drain.
1805 
1806     if (EmitSync & 8192) {
1807        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1808        get_thread (scrReg);
1809        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1810        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1811        if (os::is_MP()) {
1812          lock();
1813        }
1814        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1815     } else
1816     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1817        // register juggle because we need tmpReg for cmpxchgptr below
1818        movptr(scrReg, boxReg);
1819        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1820 
1821        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1822        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1823           // prefetchw [eax + Offset(_owner)-2]
1824           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1825        }
1826 
1827        if ((EmitSync & 64) == 0) {
1828          // Optimistic form: consider XORL tmpReg,tmpReg
1829          movptr(tmpReg, NULL_WORD);
1830        } else {
1831          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1832          // Test-And-CAS instead of CAS
1833          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1834          testptr(tmpReg, tmpReg);                   // Locked ?
1835          jccb  (Assembler::notZero, DONE_LABEL);
1836        }
1837 
1838        // Appears unlocked - try to swing _owner from null to non-null.
1839        // Ideally, I'd manifest "Self" with get_thread and then attempt
1840        // to CAS the register containing Self into m->Owner.
1841        // But we don't have enough registers, so instead we can either try to CAS
1842        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1843        // we later store "Self" into m->Owner.  Transiently storing a stack address
1844        // (rsp or the address of the box) into  m->owner is harmless.
1845        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1846        if (os::is_MP()) {
1847          lock();
1848        }
1849        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1850        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1851        // If we weren't able to swing _owner from NULL to the BasicLock
1852        // then take the slow path.
1853        jccb  (Assembler::notZero, DONE_LABEL);
1854        // update _owner from BasicLock to thread
1855        get_thread (scrReg);                    // beware: clobbers ICCs
1856        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1857        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1858 
1859        // If the CAS fails we can either retry or pass control to the slow-path.
1860        // We use the latter tactic.
1861        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1862        // If the CAS was successful ...
1863        //   Self has acquired the lock
1864        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1865        // Intentional fall-through into DONE_LABEL ...
1866     } else {
1867        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1868        movptr(boxReg, tmpReg);
1869 
1870        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1871        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1872           // prefetchw [eax + Offset(_owner)-2]
1873           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1874        }
1875 
1876        if ((EmitSync & 64) == 0) {
1877          // Optimistic form
1878          xorptr  (tmpReg, tmpReg);
1879        } else {
1880          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1881          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1882          testptr(tmpReg, tmpReg);                   // Locked ?
1883          jccb  (Assembler::notZero, DONE_LABEL);
1884        }
1885 
1886        // Appears unlocked - try to swing _owner from null to non-null.
1887        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1888        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1889        get_thread (scrReg);
1890        if (os::is_MP()) {
1891          lock();
1892        }
1893        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1894 
1895        // If the CAS fails we can either retry or pass control to the slow-path.
1896        // We use the latter tactic.
1897        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1898        // If the CAS was successful ...
1899        //   Self has acquired the lock
1900        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1901        // Intentional fall-through into DONE_LABEL ...
1902     }
1903 #else // _LP64
1904     // It's inflated
1905     movq(scrReg, tmpReg);
1906     xorq(tmpReg, tmpReg);
1907 
1908     if (os::is_MP()) {
1909       lock();
1910     }
1911     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1912     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1913     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1914     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1915     // Intentional fall-through into DONE_LABEL ...
1916     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1917 #endif // _LP64
1918 #if INCLUDE_RTM_OPT
1919     } // use_rtm()
1920 #endif
1921     // DONE_LABEL is a hot target - we'd really like to place it at the
1922     // start of cache line by padding with NOPs.
1923     // See the AMD and Intel software optimization manuals for the
1924     // most efficient "long" NOP encodings.
1925     // Unfortunately none of our alignment mechanisms suffice.
1926     bind(DONE_LABEL);
1927 
1928     // At DONE_LABEL the icc ZFlag is set as follows ...
1929     // Fast_Unlock uses the same protocol.
1930     // ZFlag == 1 -> Success
1931     // ZFlag == 0 -> Failure - force control through the slow-path
1932   }
1933 }
1934 
1935 // obj: object to unlock
1936 // box: box address (displaced header location), killed.  Must be EAX.
1937 // tmp: killed, cannot be obj nor box.
1938 //
1939 // Some commentary on balanced locking:
1940 //
1941 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1942 // Methods that don't have provably balanced locking are forced to run in the
1943 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1944 // The interpreter provides two properties:
1945 // I1:  At return-time the interpreter automatically and quietly unlocks any
1946 //      objects acquired the current activation (frame).  Recall that the
1947 //      interpreter maintains an on-stack list of locks currently held by
1948 //      a frame.
1949 // I2:  If a method attempts to unlock an object that is not held by the
1950 //      the frame the interpreter throws IMSX.
1951 //
1952 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1953 // B() doesn't have provably balanced locking so it runs in the interpreter.
1954 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1955 // is still locked by A().
1956 //
1957 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1958 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1959 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1960 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1961 // Arguably given that the spec legislates the JNI case as undefined our implementation
1962 // could reasonably *avoid* checking owner in Fast_Unlock().
1963 // In the interest of performance we elide m->Owner==Self check in unlock.
1964 // A perfectly viable alternative is to elide the owner check except when
1965 // Xcheck:jni is enabled.
1966 
1967 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1968   assert(boxReg == rax, "");
1969   assert_different_registers(objReg, boxReg, tmpReg);
1970 
1971   if (EmitSync & 4) {
1972     // Disable - inhibit all inlining.  Force control through the slow-path
1973     cmpptr (rsp, 0);
1974   } else {
1975     Label DONE_LABEL, Stacked, CheckSucc;
1976 
1977     // Critically, the biased locking test must have precedence over
1978     // and appear before the (box->dhw == 0) recursive stack-lock test.
1979     if (UseBiasedLocking && !UseOptoBiasInlining) {
1980        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1981     }
1982 
1983 #if INCLUDE_RTM_OPT
1984     if (UseRTMForStackLocks && use_rtm) {
1985       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1986       Label L_regular_unlock;
1987       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1988       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1989       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1990       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1991       xend();                                       // otherwise end...
1992       jmp(DONE_LABEL);                              // ... and we're done
1993       bind(L_regular_unlock);
1994     }
1995 #endif
1996 
1997     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1998     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1999     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
2000     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2001     jccb  (Assembler::zero, Stacked);
2002 
2003     // It's inflated.
2004 #if INCLUDE_RTM_OPT
2005     if (use_rtm) {
2006       Label L_regular_inflated_unlock;
2007       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2008       movptr(boxReg, Address(tmpReg, owner_offset));
2009       testptr(boxReg, boxReg);
2010       jccb(Assembler::notZero, L_regular_inflated_unlock);
2011       xend();
2012       jmpb(DONE_LABEL);
2013       bind(L_regular_inflated_unlock);
2014     }
2015 #endif
2016 
2017     // Despite our balanced locking property we still check that m->_owner == Self
2018     // as java routines or native JNI code called by this thread might
2019     // have released the lock.
2020     // Refer to the comments in synchronizer.cpp for how we might encode extra
2021     // state in _succ so we can avoid fetching EntryList|cxq.
2022     //
2023     // I'd like to add more cases in fast_lock() and fast_unlock() --
2024     // such as recursive enter and exit -- but we have to be wary of
2025     // I$ bloat, T$ effects and BP$ effects.
2026     //
2027     // If there's no contention try a 1-0 exit.  That is, exit without
2028     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2029     // we detect and recover from the race that the 1-0 exit admits.
2030     //
2031     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2032     // before it STs null into _owner, releasing the lock.  Updates
2033     // to data protected by the critical section must be visible before
2034     // we drop the lock (and thus before any other thread could acquire
2035     // the lock and observe the fields protected by the lock).
2036     // IA32's memory-model is SPO, so STs are ordered with respect to
2037     // each other and there's no need for an explicit barrier (fence).
2038     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2039 #ifndef _LP64
2040     get_thread (boxReg);
2041     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2042       // prefetchw [ebx + Offset(_owner)-2]
2043       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2044     }
2045 
2046     // Note that we could employ various encoding schemes to reduce
2047     // the number of loads below (currently 4) to just 2 or 3.
2048     // Refer to the comments in synchronizer.cpp.
2049     // In practice the chain of fetches doesn't seem to impact performance, however.
2050     xorptr(boxReg, boxReg);
2051     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2052        // Attempt to reduce branch density - AMD's branch predictor.
2053        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2054        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2055        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2056        jccb  (Assembler::notZero, DONE_LABEL);
2057        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2058        jmpb  (DONE_LABEL);
2059     } else {
2060        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2061        jccb  (Assembler::notZero, DONE_LABEL);
2062        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2063        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2064        jccb  (Assembler::notZero, CheckSucc);
2065        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2066        jmpb  (DONE_LABEL);
2067     }
2068 
2069     // The Following code fragment (EmitSync & 65536) improves the performance of
2070     // contended applications and contended synchronization microbenchmarks.
2071     // Unfortunately the emission of the code - even though not executed - causes regressions
2072     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2073     // with an equal number of never-executed NOPs results in the same regression.
2074     // We leave it off by default.
2075 
2076     if ((EmitSync & 65536) != 0) {
2077        Label LSuccess, LGoSlowPath ;
2078 
2079        bind  (CheckSucc);
2080 
2081        // Optional pre-test ... it's safe to elide this
2082        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2083        jccb(Assembler::zero, LGoSlowPath);
2084 
2085        // We have a classic Dekker-style idiom:
2086        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2087        // There are a number of ways to implement the barrier:
2088        // (1) lock:andl &m->_owner, 0
2089        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2090        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2091        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2092        // (2) If supported, an explicit MFENCE is appealing.
2093        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2094        //     particularly if the write-buffer is full as might be the case if
2095        //     if stores closely precede the fence or fence-equivalent instruction.
2096        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2097        //     as the situation has changed with Nehalem and Shanghai.
2098        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2099        //     The $lines underlying the top-of-stack should be in M-state.
2100        //     The locked add instruction is serializing, of course.
2101        // (4) Use xchg, which is serializing
2102        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2103        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2104        //     The integer condition codes will tell us if succ was 0.
2105        //     Since _succ and _owner should reside in the same $line and
2106        //     we just stored into _owner, it's likely that the $line
2107        //     remains in M-state for the lock:orl.
2108        //
2109        // We currently use (3), although it's likely that switching to (2)
2110        // is correct for the future.
2111 
2112        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2113        if (os::is_MP()) {
2114          lock(); addptr(Address(rsp, 0), 0);
2115        }
2116        // Ratify _succ remains non-null
2117        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2118        jccb  (Assembler::notZero, LSuccess);
2119 
2120        xorptr(boxReg, boxReg);                  // box is really EAX
2121        if (os::is_MP()) { lock(); }
2122        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2123        // There's no successor so we tried to regrab the lock with the
2124        // placeholder value. If that didn't work, then another thread
2125        // grabbed the lock so we're done (and exit was a success).
2126        jccb  (Assembler::notEqual, LSuccess);
2127        // Since we're low on registers we installed rsp as a placeholding in _owner.
2128        // Now install Self over rsp.  This is safe as we're transitioning from
2129        // non-null to non=null
2130        get_thread (boxReg);
2131        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2132        // Intentional fall-through into LGoSlowPath ...
2133 
2134        bind  (LGoSlowPath);
2135        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2136        jmpb  (DONE_LABEL);
2137 
2138        bind  (LSuccess);
2139        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2140        jmpb  (DONE_LABEL);
2141     }
2142 
2143     bind (Stacked);
2144     // It's not inflated and it's not recursively stack-locked and it's not biased.
2145     // It must be stack-locked.
2146     // Try to reset the header to displaced header.
2147     // The "box" value on the stack is stable, so we can reload
2148     // and be assured we observe the same value as above.
2149     movptr(tmpReg, Address(boxReg, 0));
2150     if (os::is_MP()) {
2151       lock();
2152     }
2153     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2154     // Intention fall-thru into DONE_LABEL
2155 
2156     // DONE_LABEL is a hot target - we'd really like to place it at the
2157     // start of cache line by padding with NOPs.
2158     // See the AMD and Intel software optimization manuals for the
2159     // most efficient "long" NOP encodings.
2160     // Unfortunately none of our alignment mechanisms suffice.
2161     if ((EmitSync & 65536) == 0) {
2162        bind (CheckSucc);
2163     }
2164 #else // _LP64
2165     // It's inflated
2166     if (EmitSync & 1024) {
2167       // Emit code to check that _owner == Self
2168       // We could fold the _owner test into subsequent code more efficiently
2169       // than using a stand-alone check, but since _owner checking is off by
2170       // default we don't bother. We also might consider predicating the
2171       // _owner==Self check on Xcheck:jni or running on a debug build.
2172       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2173       xorptr(boxReg, r15_thread);
2174     } else {
2175       xorptr(boxReg, boxReg);
2176     }
2177     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2178     jccb  (Assembler::notZero, DONE_LABEL);
2179     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2180     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2181     jccb  (Assembler::notZero, CheckSucc);
2182     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2183     jmpb  (DONE_LABEL);
2184 
2185     if ((EmitSync & 65536) == 0) {
2186       // Try to avoid passing control into the slow_path ...
2187       Label LSuccess, LGoSlowPath ;
2188       bind  (CheckSucc);
2189 
2190       // The following optional optimization can be elided if necessary
2191       // Effectively: if (succ == null) goto SlowPath
2192       // The code reduces the window for a race, however,
2193       // and thus benefits performance.
2194       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2195       jccb  (Assembler::zero, LGoSlowPath);
2196 
2197       xorptr(boxReg, boxReg);
2198       if ((EmitSync & 16) && os::is_MP()) {
2199         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2200       } else {
2201         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2202         if (os::is_MP()) {
2203           // Memory barrier/fence
2204           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2205           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2206           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2207           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2208           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2209           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2210           lock(); addl(Address(rsp, 0), 0);
2211         }
2212       }
2213       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2214       jccb  (Assembler::notZero, LSuccess);
2215 
2216       // Rare inopportune interleaving - race.
2217       // The successor vanished in the small window above.
2218       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2219       // We need to ensure progress and succession.
2220       // Try to reacquire the lock.
2221       // If that fails then the new owner is responsible for succession and this
2222       // thread needs to take no further action and can exit via the fast path (success).
2223       // If the re-acquire succeeds then pass control into the slow path.
2224       // As implemented, this latter mode is horrible because we generated more
2225       // coherence traffic on the lock *and* artifically extended the critical section
2226       // length while by virtue of passing control into the slow path.
2227 
2228       // box is really RAX -- the following CMPXCHG depends on that binding
2229       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2230       if (os::is_MP()) { lock(); }
2231       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2232       // There's no successor so we tried to regrab the lock.
2233       // If that didn't work, then another thread grabbed the
2234       // lock so we're done (and exit was a success).
2235       jccb  (Assembler::notEqual, LSuccess);
2236       // Intentional fall-through into slow-path
2237 
2238       bind  (LGoSlowPath);
2239       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2240       jmpb  (DONE_LABEL);
2241 
2242       bind  (LSuccess);
2243       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2244       jmpb  (DONE_LABEL);
2245     }
2246 
2247     bind  (Stacked);
2248     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2249     if (os::is_MP()) { lock(); }
2250     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2251 
2252     if (EmitSync & 65536) {
2253        bind (CheckSucc);
2254     }
2255 #endif
2256     bind(DONE_LABEL);
2257   }
2258 }
2259 #endif // COMPILER2
2260 
2261 void MacroAssembler::c2bool(Register x) {
2262   // implements x == 0 ? 0 : 1
2263   // note: must only look at least-significant byte of x
2264   //       since C-style booleans are stored in one byte
2265   //       only! (was bug)
2266   andl(x, 0xFF);
2267   setb(Assembler::notZero, x);
2268 }
2269 
2270 // Wouldn't need if AddressLiteral version had new name
2271 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2272   Assembler::call(L, rtype);
2273 }
2274 
2275 void MacroAssembler::call(Register entry) {
2276   Assembler::call(entry);
2277 }
2278 
2279 void MacroAssembler::call(AddressLiteral entry) {
2280   if (reachable(entry)) {
2281     Assembler::call_literal(entry.target(), entry.rspec());
2282   } else {
2283     lea(rscratch1, entry);
2284     Assembler::call(rscratch1);
2285   }
2286 }
2287 
2288 void MacroAssembler::ic_call(address entry, jint method_index) {
2289   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2290   movptr(rax, (intptr_t)Universe::non_oop_word());
2291   call(AddressLiteral(entry, rh));
2292 }
2293 
2294 // Implementation of call_VM versions
2295 
2296 void MacroAssembler::call_VM(Register oop_result,
2297                              address entry_point,
2298                              bool check_exceptions) {
2299   Label C, E;
2300   call(C, relocInfo::none);
2301   jmp(E);
2302 
2303   bind(C);
2304   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2305   ret(0);
2306 
2307   bind(E);
2308 }
2309 
2310 void MacroAssembler::call_VM(Register oop_result,
2311                              address entry_point,
2312                              Register arg_1,
2313                              bool check_exceptions) {
2314   Label C, E;
2315   call(C, relocInfo::none);
2316   jmp(E);
2317 
2318   bind(C);
2319   pass_arg1(this, arg_1);
2320   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2321   ret(0);
2322 
2323   bind(E);
2324 }
2325 
2326 void MacroAssembler::call_VM(Register oop_result,
2327                              address entry_point,
2328                              Register arg_1,
2329                              Register arg_2,
2330                              bool check_exceptions) {
2331   Label C, E;
2332   call(C, relocInfo::none);
2333   jmp(E);
2334 
2335   bind(C);
2336 
2337   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2338 
2339   pass_arg2(this, arg_2);
2340   pass_arg1(this, arg_1);
2341   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2342   ret(0);
2343 
2344   bind(E);
2345 }
2346 
2347 void MacroAssembler::call_VM(Register oop_result,
2348                              address entry_point,
2349                              Register arg_1,
2350                              Register arg_2,
2351                              Register arg_3,
2352                              bool check_exceptions) {
2353   Label C, E;
2354   call(C, relocInfo::none);
2355   jmp(E);
2356 
2357   bind(C);
2358 
2359   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2360   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2361   pass_arg3(this, arg_3);
2362 
2363   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2364   pass_arg2(this, arg_2);
2365 
2366   pass_arg1(this, arg_1);
2367   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2368   ret(0);
2369 
2370   bind(E);
2371 }
2372 
2373 void MacroAssembler::call_VM(Register oop_result,
2374                              Register last_java_sp,
2375                              address entry_point,
2376                              int number_of_arguments,
2377                              bool check_exceptions) {
2378   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2379   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2380 }
2381 
2382 void MacroAssembler::call_VM(Register oop_result,
2383                              Register last_java_sp,
2384                              address entry_point,
2385                              Register arg_1,
2386                              bool check_exceptions) {
2387   pass_arg1(this, arg_1);
2388   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2389 }
2390 
2391 void MacroAssembler::call_VM(Register oop_result,
2392                              Register last_java_sp,
2393                              address entry_point,
2394                              Register arg_1,
2395                              Register arg_2,
2396                              bool check_exceptions) {
2397 
2398   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2399   pass_arg2(this, arg_2);
2400   pass_arg1(this, arg_1);
2401   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2402 }
2403 
2404 void MacroAssembler::call_VM(Register oop_result,
2405                              Register last_java_sp,
2406                              address entry_point,
2407                              Register arg_1,
2408                              Register arg_2,
2409                              Register arg_3,
2410                              bool check_exceptions) {
2411   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2412   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2413   pass_arg3(this, arg_3);
2414   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2415   pass_arg2(this, arg_2);
2416   pass_arg1(this, arg_1);
2417   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2418 }
2419 
2420 void MacroAssembler::super_call_VM(Register oop_result,
2421                                    Register last_java_sp,
2422                                    address entry_point,
2423                                    int number_of_arguments,
2424                                    bool check_exceptions) {
2425   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2426   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2427 }
2428 
2429 void MacroAssembler::super_call_VM(Register oop_result,
2430                                    Register last_java_sp,
2431                                    address entry_point,
2432                                    Register arg_1,
2433                                    bool check_exceptions) {
2434   pass_arg1(this, arg_1);
2435   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2436 }
2437 
2438 void MacroAssembler::super_call_VM(Register oop_result,
2439                                    Register last_java_sp,
2440                                    address entry_point,
2441                                    Register arg_1,
2442                                    Register arg_2,
2443                                    bool check_exceptions) {
2444 
2445   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2446   pass_arg2(this, arg_2);
2447   pass_arg1(this, arg_1);
2448   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2449 }
2450 
2451 void MacroAssembler::super_call_VM(Register oop_result,
2452                                    Register last_java_sp,
2453                                    address entry_point,
2454                                    Register arg_1,
2455                                    Register arg_2,
2456                                    Register arg_3,
2457                                    bool check_exceptions) {
2458   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2459   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2460   pass_arg3(this, arg_3);
2461   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2462   pass_arg2(this, arg_2);
2463   pass_arg1(this, arg_1);
2464   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2465 }
2466 
2467 void MacroAssembler::call_VM_base(Register oop_result,
2468                                   Register java_thread,
2469                                   Register last_java_sp,
2470                                   address  entry_point,
2471                                   int      number_of_arguments,
2472                                   bool     check_exceptions) {
2473   // determine java_thread register
2474   if (!java_thread->is_valid()) {
2475 #ifdef _LP64
2476     java_thread = r15_thread;
2477 #else
2478     java_thread = rdi;
2479     get_thread(java_thread);
2480 #endif // LP64
2481   }
2482   // determine last_java_sp register
2483   if (!last_java_sp->is_valid()) {
2484     last_java_sp = rsp;
2485   }
2486   // debugging support
2487   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2488   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2489 #ifdef ASSERT
2490   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2491   // r12 is the heapbase.
2492   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2493 #endif // ASSERT
2494 
2495   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2496   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2497 
2498   // push java thread (becomes first argument of C function)
2499 
2500   NOT_LP64(push(java_thread); number_of_arguments++);
2501   LP64_ONLY(mov(c_rarg0, r15_thread));
2502 
2503   // set last Java frame before call
2504   assert(last_java_sp != rbp, "can't use ebp/rbp");
2505 
2506   // Only interpreter should have to set fp
2507   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2508 
2509   // do the call, remove parameters
2510   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2511 
2512   // restore the thread (cannot use the pushed argument since arguments
2513   // may be overwritten by C code generated by an optimizing compiler);
2514   // however can use the register value directly if it is callee saved.
2515   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2516     // rdi & rsi (also r15) are callee saved -> nothing to do
2517 #ifdef ASSERT
2518     guarantee(java_thread != rax, "change this code");
2519     push(rax);
2520     { Label L;
2521       get_thread(rax);
2522       cmpptr(java_thread, rax);
2523       jcc(Assembler::equal, L);
2524       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2525       bind(L);
2526     }
2527     pop(rax);
2528 #endif
2529   } else {
2530     get_thread(java_thread);
2531   }
2532   // reset last Java frame
2533   // Only interpreter should have to clear fp
2534   reset_last_Java_frame(java_thread, true);
2535 
2536    // C++ interp handles this in the interpreter
2537   check_and_handle_popframe(java_thread);
2538   check_and_handle_earlyret(java_thread);
2539 
2540   if (check_exceptions) {
2541     // check for pending exceptions (java_thread is set upon return)
2542     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2543 #ifndef _LP64
2544     jump_cc(Assembler::notEqual,
2545             RuntimeAddress(StubRoutines::forward_exception_entry()));
2546 #else
2547     // This used to conditionally jump to forward_exception however it is
2548     // possible if we relocate that the branch will not reach. So we must jump
2549     // around so we can always reach
2550 
2551     Label ok;
2552     jcc(Assembler::equal, ok);
2553     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2554     bind(ok);
2555 #endif // LP64
2556   }
2557 
2558   // get oop result if there is one and reset the value in the thread
2559   if (oop_result->is_valid()) {
2560     get_vm_result(oop_result, java_thread);
2561   }
2562 }
2563 
2564 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2565 
2566   // Calculate the value for last_Java_sp
2567   // somewhat subtle. call_VM does an intermediate call
2568   // which places a return address on the stack just under the
2569   // stack pointer as the user finsihed with it. This allows
2570   // use to retrieve last_Java_pc from last_Java_sp[-1].
2571   // On 32bit we then have to push additional args on the stack to accomplish
2572   // the actual requested call. On 64bit call_VM only can use register args
2573   // so the only extra space is the return address that call_VM created.
2574   // This hopefully explains the calculations here.
2575 
2576 #ifdef _LP64
2577   // We've pushed one address, correct last_Java_sp
2578   lea(rax, Address(rsp, wordSize));
2579 #else
2580   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2581 #endif // LP64
2582 
2583   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2584 
2585 }
2586 
2587 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2588 void MacroAssembler::call_VM_leaf0(address entry_point) {
2589   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2590 }
2591 
2592 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2593   call_VM_leaf_base(entry_point, number_of_arguments);
2594 }
2595 
2596 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2597   pass_arg0(this, arg_0);
2598   call_VM_leaf(entry_point, 1);
2599 }
2600 
2601 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2602 
2603   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2604   pass_arg1(this, arg_1);
2605   pass_arg0(this, arg_0);
2606   call_VM_leaf(entry_point, 2);
2607 }
2608 
2609 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2610   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2611   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2612   pass_arg2(this, arg_2);
2613   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2614   pass_arg1(this, arg_1);
2615   pass_arg0(this, arg_0);
2616   call_VM_leaf(entry_point, 3);
2617 }
2618 
2619 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2620   pass_arg0(this, arg_0);
2621   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2622 }
2623 
2624 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2625 
2626   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2627   pass_arg1(this, arg_1);
2628   pass_arg0(this, arg_0);
2629   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2630 }
2631 
2632 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2633   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2634   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2635   pass_arg2(this, arg_2);
2636   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2637   pass_arg1(this, arg_1);
2638   pass_arg0(this, arg_0);
2639   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2640 }
2641 
2642 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2643   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2644   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2645   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2646   pass_arg3(this, arg_3);
2647   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2648   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2649   pass_arg2(this, arg_2);
2650   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2651   pass_arg1(this, arg_1);
2652   pass_arg0(this, arg_0);
2653   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2654 }
2655 
2656 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2657   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2658   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2659   verify_oop(oop_result, "broken oop in call_VM_base");
2660 }
2661 
2662 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2663   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2664   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2665 }
2666 
2667 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2668 }
2669 
2670 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2671 }
2672 
2673 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2674   if (reachable(src1)) {
2675     cmpl(as_Address(src1), imm);
2676   } else {
2677     lea(rscratch1, src1);
2678     cmpl(Address(rscratch1, 0), imm);
2679   }
2680 }
2681 
2682 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2683   assert(!src2.is_lval(), "use cmpptr");
2684   if (reachable(src2)) {
2685     cmpl(src1, as_Address(src2));
2686   } else {
2687     lea(rscratch1, src2);
2688     cmpl(src1, Address(rscratch1, 0));
2689   }
2690 }
2691 
2692 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2693   Assembler::cmpl(src1, imm);
2694 }
2695 
2696 void MacroAssembler::cmp32(Register src1, Address src2) {
2697   Assembler::cmpl(src1, src2);
2698 }
2699 
2700 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2701   ucomisd(opr1, opr2);
2702 
2703   Label L;
2704   if (unordered_is_less) {
2705     movl(dst, -1);
2706     jcc(Assembler::parity, L);
2707     jcc(Assembler::below , L);
2708     movl(dst, 0);
2709     jcc(Assembler::equal , L);
2710     increment(dst);
2711   } else { // unordered is greater
2712     movl(dst, 1);
2713     jcc(Assembler::parity, L);
2714     jcc(Assembler::above , L);
2715     movl(dst, 0);
2716     jcc(Assembler::equal , L);
2717     decrementl(dst);
2718   }
2719   bind(L);
2720 }
2721 
2722 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2723   ucomiss(opr1, opr2);
2724 
2725   Label L;
2726   if (unordered_is_less) {
2727     movl(dst, -1);
2728     jcc(Assembler::parity, L);
2729     jcc(Assembler::below , L);
2730     movl(dst, 0);
2731     jcc(Assembler::equal , L);
2732     increment(dst);
2733   } else { // unordered is greater
2734     movl(dst, 1);
2735     jcc(Assembler::parity, L);
2736     jcc(Assembler::above , L);
2737     movl(dst, 0);
2738     jcc(Assembler::equal , L);
2739     decrementl(dst);
2740   }
2741   bind(L);
2742 }
2743 
2744 
2745 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2746   if (reachable(src1)) {
2747     cmpb(as_Address(src1), imm);
2748   } else {
2749     lea(rscratch1, src1);
2750     cmpb(Address(rscratch1, 0), imm);
2751   }
2752 }
2753 
2754 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2755 #ifdef _LP64
2756   if (src2.is_lval()) {
2757     movptr(rscratch1, src2);
2758     Assembler::cmpq(src1, rscratch1);
2759   } else if (reachable(src2)) {
2760     cmpq(src1, as_Address(src2));
2761   } else {
2762     lea(rscratch1, src2);
2763     Assembler::cmpq(src1, Address(rscratch1, 0));
2764   }
2765 #else
2766   if (src2.is_lval()) {
2767     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2768   } else {
2769     cmpl(src1, as_Address(src2));
2770   }
2771 #endif // _LP64
2772 }
2773 
2774 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2775   assert(src2.is_lval(), "not a mem-mem compare");
2776 #ifdef _LP64
2777   // moves src2's literal address
2778   movptr(rscratch1, src2);
2779   Assembler::cmpq(src1, rscratch1);
2780 #else
2781   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2782 #endif // _LP64
2783 }
2784 
2785 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2786   if (reachable(adr)) {
2787     if (os::is_MP())
2788       lock();
2789     cmpxchgptr(reg, as_Address(adr));
2790   } else {
2791     lea(rscratch1, adr);
2792     if (os::is_MP())
2793       lock();
2794     cmpxchgptr(reg, Address(rscratch1, 0));
2795   }
2796 }
2797 
2798 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2799   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2800 }
2801 
2802 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2803   if (reachable(src)) {
2804     Assembler::comisd(dst, as_Address(src));
2805   } else {
2806     lea(rscratch1, src);
2807     Assembler::comisd(dst, Address(rscratch1, 0));
2808   }
2809 }
2810 
2811 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2812   if (reachable(src)) {
2813     Assembler::comiss(dst, as_Address(src));
2814   } else {
2815     lea(rscratch1, src);
2816     Assembler::comiss(dst, Address(rscratch1, 0));
2817   }
2818 }
2819 
2820 
2821 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2822   Condition negated_cond = negate_condition(cond);
2823   Label L;
2824   jcc(negated_cond, L);
2825   pushf(); // Preserve flags
2826   atomic_incl(counter_addr);
2827   popf();
2828   bind(L);
2829 }
2830 
2831 int MacroAssembler::corrected_idivl(Register reg) {
2832   // Full implementation of Java idiv and irem; checks for
2833   // special case as described in JVM spec., p.243 & p.271.
2834   // The function returns the (pc) offset of the idivl
2835   // instruction - may be needed for implicit exceptions.
2836   //
2837   //         normal case                           special case
2838   //
2839   // input : rax,: dividend                         min_int
2840   //         reg: divisor   (may not be rax,/rdx)   -1
2841   //
2842   // output: rax,: quotient  (= rax, idiv reg)       min_int
2843   //         rdx: remainder (= rax, irem reg)       0
2844   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2845   const int min_int = 0x80000000;
2846   Label normal_case, special_case;
2847 
2848   // check for special case
2849   cmpl(rax, min_int);
2850   jcc(Assembler::notEqual, normal_case);
2851   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2852   cmpl(reg, -1);
2853   jcc(Assembler::equal, special_case);
2854 
2855   // handle normal case
2856   bind(normal_case);
2857   cdql();
2858   int idivl_offset = offset();
2859   idivl(reg);
2860 
2861   // normal and special case exit
2862   bind(special_case);
2863 
2864   return idivl_offset;
2865 }
2866 
2867 
2868 
2869 void MacroAssembler::decrementl(Register reg, int value) {
2870   if (value == min_jint) {subl(reg, value) ; return; }
2871   if (value <  0) { incrementl(reg, -value); return; }
2872   if (value == 0) {                        ; return; }
2873   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2874   /* else */      { subl(reg, value)       ; return; }
2875 }
2876 
2877 void MacroAssembler::decrementl(Address dst, int value) {
2878   if (value == min_jint) {subl(dst, value) ; return; }
2879   if (value <  0) { incrementl(dst, -value); return; }
2880   if (value == 0) {                        ; return; }
2881   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2882   /* else */      { subl(dst, value)       ; return; }
2883 }
2884 
2885 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2886   assert (shift_value > 0, "illegal shift value");
2887   Label _is_positive;
2888   testl (reg, reg);
2889   jcc (Assembler::positive, _is_positive);
2890   int offset = (1 << shift_value) - 1 ;
2891 
2892   if (offset == 1) {
2893     incrementl(reg);
2894   } else {
2895     addl(reg, offset);
2896   }
2897 
2898   bind (_is_positive);
2899   sarl(reg, shift_value);
2900 }
2901 
2902 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2903   if (reachable(src)) {
2904     Assembler::divsd(dst, as_Address(src));
2905   } else {
2906     lea(rscratch1, src);
2907     Assembler::divsd(dst, Address(rscratch1, 0));
2908   }
2909 }
2910 
2911 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2912   if (reachable(src)) {
2913     Assembler::divss(dst, as_Address(src));
2914   } else {
2915     lea(rscratch1, src);
2916     Assembler::divss(dst, Address(rscratch1, 0));
2917   }
2918 }
2919 
2920 // !defined(COMPILER2) is because of stupid core builds
2921 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2922 void MacroAssembler::empty_FPU_stack() {
2923   if (VM_Version::supports_mmx()) {
2924     emms();
2925   } else {
2926     for (int i = 8; i-- > 0; ) ffree(i);
2927   }
2928 }
2929 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2930 
2931 
2932 // Defines obj, preserves var_size_in_bytes
2933 void MacroAssembler::eden_allocate(Register obj,
2934                                    Register var_size_in_bytes,
2935                                    int con_size_in_bytes,
2936                                    Register t1,
2937                                    Label& slow_case) {
2938   assert(obj == rax, "obj must be in rax, for cmpxchg");
2939   assert_different_registers(obj, var_size_in_bytes, t1);
2940   if (!Universe::heap()->supports_inline_contig_alloc()) {
2941     jmp(slow_case);
2942   } else {
2943     Register end = t1;
2944     Label retry;
2945     bind(retry);
2946     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2947     movptr(obj, heap_top);
2948     if (var_size_in_bytes == noreg) {
2949       lea(end, Address(obj, con_size_in_bytes));
2950     } else {
2951       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2952     }
2953     // if end < obj then we wrapped around => object too long => slow case
2954     cmpptr(end, obj);
2955     jcc(Assembler::below, slow_case);
2956     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2957     jcc(Assembler::above, slow_case);
2958     // Compare obj with the top addr, and if still equal, store the new top addr in
2959     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2960     // it otherwise. Use lock prefix for atomicity on MPs.
2961     locked_cmpxchgptr(end, heap_top);
2962     jcc(Assembler::notEqual, retry);
2963   }
2964 }
2965 
2966 void MacroAssembler::enter() {
2967   push(rbp);
2968   mov(rbp, rsp);
2969 }
2970 
2971 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2972 void MacroAssembler::fat_nop() {
2973   if (UseAddressNop) {
2974     addr_nop_5();
2975   } else {
2976     emit_int8(0x26); // es:
2977     emit_int8(0x2e); // cs:
2978     emit_int8(0x64); // fs:
2979     emit_int8(0x65); // gs:
2980     emit_int8((unsigned char)0x90);
2981   }
2982 }
2983 
2984 void MacroAssembler::fcmp(Register tmp) {
2985   fcmp(tmp, 1, true, true);
2986 }
2987 
2988 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2989   assert(!pop_right || pop_left, "usage error");
2990   if (VM_Version::supports_cmov()) {
2991     assert(tmp == noreg, "unneeded temp");
2992     if (pop_left) {
2993       fucomip(index);
2994     } else {
2995       fucomi(index);
2996     }
2997     if (pop_right) {
2998       fpop();
2999     }
3000   } else {
3001     assert(tmp != noreg, "need temp");
3002     if (pop_left) {
3003       if (pop_right) {
3004         fcompp();
3005       } else {
3006         fcomp(index);
3007       }
3008     } else {
3009       fcom(index);
3010     }
3011     // convert FPU condition into eflags condition via rax,
3012     save_rax(tmp);
3013     fwait(); fnstsw_ax();
3014     sahf();
3015     restore_rax(tmp);
3016   }
3017   // condition codes set as follows:
3018   //
3019   // CF (corresponds to C0) if x < y
3020   // PF (corresponds to C2) if unordered
3021   // ZF (corresponds to C3) if x = y
3022 }
3023 
3024 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3025   fcmp2int(dst, unordered_is_less, 1, true, true);
3026 }
3027 
3028 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3029   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3030   Label L;
3031   if (unordered_is_less) {
3032     movl(dst, -1);
3033     jcc(Assembler::parity, L);
3034     jcc(Assembler::below , L);
3035     movl(dst, 0);
3036     jcc(Assembler::equal , L);
3037     increment(dst);
3038   } else { // unordered is greater
3039     movl(dst, 1);
3040     jcc(Assembler::parity, L);
3041     jcc(Assembler::above , L);
3042     movl(dst, 0);
3043     jcc(Assembler::equal , L);
3044     decrementl(dst);
3045   }
3046   bind(L);
3047 }
3048 
3049 void MacroAssembler::fld_d(AddressLiteral src) {
3050   fld_d(as_Address(src));
3051 }
3052 
3053 void MacroAssembler::fld_s(AddressLiteral src) {
3054   fld_s(as_Address(src));
3055 }
3056 
3057 void MacroAssembler::fld_x(AddressLiteral src) {
3058   Assembler::fld_x(as_Address(src));
3059 }
3060 
3061 void MacroAssembler::fldcw(AddressLiteral src) {
3062   Assembler::fldcw(as_Address(src));
3063 }
3064 
3065 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3066   if (reachable(src)) {
3067     Assembler::mulpd(dst, as_Address(src));
3068   } else {
3069     lea(rscratch1, src);
3070     Assembler::mulpd(dst, Address(rscratch1, 0));
3071   }
3072 }
3073 
3074 void MacroAssembler::increase_precision() {
3075   subptr(rsp, BytesPerWord);
3076   fnstcw(Address(rsp, 0));
3077   movl(rax, Address(rsp, 0));
3078   orl(rax, 0x300);
3079   push(rax);
3080   fldcw(Address(rsp, 0));
3081   pop(rax);
3082 }
3083 
3084 void MacroAssembler::restore_precision() {
3085   fldcw(Address(rsp, 0));
3086   addptr(rsp, BytesPerWord);
3087 }
3088 
3089 void MacroAssembler::fpop() {
3090   ffree();
3091   fincstp();
3092 }
3093 
3094 void MacroAssembler::load_float(Address src) {
3095   if (UseSSE >= 1) {
3096     movflt(xmm0, src);
3097   } else {
3098     LP64_ONLY(ShouldNotReachHere());
3099     NOT_LP64(fld_s(src));
3100   }
3101 }
3102 
3103 void MacroAssembler::store_float(Address dst) {
3104   if (UseSSE >= 1) {
3105     movflt(dst, xmm0);
3106   } else {
3107     LP64_ONLY(ShouldNotReachHere());
3108     NOT_LP64(fstp_s(dst));
3109   }
3110 }
3111 
3112 void MacroAssembler::load_double(Address src) {
3113   if (UseSSE >= 2) {
3114     movdbl(xmm0, src);
3115   } else {
3116     LP64_ONLY(ShouldNotReachHere());
3117     NOT_LP64(fld_d(src));
3118   }
3119 }
3120 
3121 void MacroAssembler::store_double(Address dst) {
3122   if (UseSSE >= 2) {
3123     movdbl(dst, xmm0);
3124   } else {
3125     LP64_ONLY(ShouldNotReachHere());
3126     NOT_LP64(fstp_d(dst));
3127   }
3128 }
3129 
3130 void MacroAssembler::fremr(Register tmp) {
3131   save_rax(tmp);
3132   { Label L;
3133     bind(L);
3134     fprem();
3135     fwait(); fnstsw_ax();
3136 #ifdef _LP64
3137     testl(rax, 0x400);
3138     jcc(Assembler::notEqual, L);
3139 #else
3140     sahf();
3141     jcc(Assembler::parity, L);
3142 #endif // _LP64
3143   }
3144   restore_rax(tmp);
3145   // Result is in ST0.
3146   // Note: fxch & fpop to get rid of ST1
3147   // (otherwise FPU stack could overflow eventually)
3148   fxch(1);
3149   fpop();
3150 }
3151 
3152 // dst = c = a * b + c
3153 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3154   Assembler::vfmadd231sd(c, a, b);
3155   if (dst != c) {
3156     movdbl(dst, c);
3157   }
3158 }
3159 
3160 // dst = c = a * b + c
3161 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3162   Assembler::vfmadd231ss(c, a, b);
3163   if (dst != c) {
3164     movflt(dst, c);
3165   }
3166 }
3167 
3168 
3169 
3170 
3171 void MacroAssembler::incrementl(AddressLiteral dst) {
3172   if (reachable(dst)) {
3173     incrementl(as_Address(dst));
3174   } else {
3175     lea(rscratch1, dst);
3176     incrementl(Address(rscratch1, 0));
3177   }
3178 }
3179 
3180 void MacroAssembler::incrementl(ArrayAddress dst) {
3181   incrementl(as_Address(dst));
3182 }
3183 
3184 void MacroAssembler::incrementl(Register reg, int value) {
3185   if (value == min_jint) {addl(reg, value) ; return; }
3186   if (value <  0) { decrementl(reg, -value); return; }
3187   if (value == 0) {                        ; return; }
3188   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3189   /* else */      { addl(reg, value)       ; return; }
3190 }
3191 
3192 void MacroAssembler::incrementl(Address dst, int value) {
3193   if (value == min_jint) {addl(dst, value) ; return; }
3194   if (value <  0) { decrementl(dst, -value); return; }
3195   if (value == 0) {                        ; return; }
3196   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3197   /* else */      { addl(dst, value)       ; return; }
3198 }
3199 
3200 void MacroAssembler::jump(AddressLiteral dst) {
3201   if (reachable(dst)) {
3202     jmp_literal(dst.target(), dst.rspec());
3203   } else {
3204     lea(rscratch1, dst);
3205     jmp(rscratch1);
3206   }
3207 }
3208 
3209 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3210   if (reachable(dst)) {
3211     InstructionMark im(this);
3212     relocate(dst.reloc());
3213     const int short_size = 2;
3214     const int long_size = 6;
3215     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3216     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3217       // 0111 tttn #8-bit disp
3218       emit_int8(0x70 | cc);
3219       emit_int8((offs - short_size) & 0xFF);
3220     } else {
3221       // 0000 1111 1000 tttn #32-bit disp
3222       emit_int8(0x0F);
3223       emit_int8((unsigned char)(0x80 | cc));
3224       emit_int32(offs - long_size);
3225     }
3226   } else {
3227 #ifdef ASSERT
3228     warning("reversing conditional branch");
3229 #endif /* ASSERT */
3230     Label skip;
3231     jccb(reverse[cc], skip);
3232     lea(rscratch1, dst);
3233     Assembler::jmp(rscratch1);
3234     bind(skip);
3235   }
3236 }
3237 
3238 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3239   if (reachable(src)) {
3240     Assembler::ldmxcsr(as_Address(src));
3241   } else {
3242     lea(rscratch1, src);
3243     Assembler::ldmxcsr(Address(rscratch1, 0));
3244   }
3245 }
3246 
3247 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3248   int off;
3249   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3250     off = offset();
3251     movsbl(dst, src); // movsxb
3252   } else {
3253     off = load_unsigned_byte(dst, src);
3254     shll(dst, 24);
3255     sarl(dst, 24);
3256   }
3257   return off;
3258 }
3259 
3260 // Note: load_signed_short used to be called load_signed_word.
3261 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3262 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3263 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3264 int MacroAssembler::load_signed_short(Register dst, Address src) {
3265   int off;
3266   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3267     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3268     // version but this is what 64bit has always done. This seems to imply
3269     // that users are only using 32bits worth.
3270     off = offset();
3271     movswl(dst, src); // movsxw
3272   } else {
3273     off = load_unsigned_short(dst, src);
3274     shll(dst, 16);
3275     sarl(dst, 16);
3276   }
3277   return off;
3278 }
3279 
3280 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3281   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3282   // and "3.9 Partial Register Penalties", p. 22).
3283   int off;
3284   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3285     off = offset();
3286     movzbl(dst, src); // movzxb
3287   } else {
3288     xorl(dst, dst);
3289     off = offset();
3290     movb(dst, src);
3291   }
3292   return off;
3293 }
3294 
3295 // Note: load_unsigned_short used to be called load_unsigned_word.
3296 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3297   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3298   // and "3.9 Partial Register Penalties", p. 22).
3299   int off;
3300   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3301     off = offset();
3302     movzwl(dst, src); // movzxw
3303   } else {
3304     xorl(dst, dst);
3305     off = offset();
3306     movw(dst, src);
3307   }
3308   return off;
3309 }
3310 
3311 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3312   switch (size_in_bytes) {
3313 #ifndef _LP64
3314   case  8:
3315     assert(dst2 != noreg, "second dest register required");
3316     movl(dst,  src);
3317     movl(dst2, src.plus_disp(BytesPerInt));
3318     break;
3319 #else
3320   case  8:  movq(dst, src); break;
3321 #endif
3322   case  4:  movl(dst, src); break;
3323   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3324   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3325   default:  ShouldNotReachHere();
3326   }
3327 }
3328 
3329 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3330   switch (size_in_bytes) {
3331 #ifndef _LP64
3332   case  8:
3333     assert(src2 != noreg, "second source register required");
3334     movl(dst,                        src);
3335     movl(dst.plus_disp(BytesPerInt), src2);
3336     break;
3337 #else
3338   case  8:  movq(dst, src); break;
3339 #endif
3340   case  4:  movl(dst, src); break;
3341   case  2:  movw(dst, src); break;
3342   case  1:  movb(dst, src); break;
3343   default:  ShouldNotReachHere();
3344   }
3345 }
3346 
3347 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3348   if (reachable(dst)) {
3349     movl(as_Address(dst), src);
3350   } else {
3351     lea(rscratch1, dst);
3352     movl(Address(rscratch1, 0), src);
3353   }
3354 }
3355 
3356 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3357   if (reachable(src)) {
3358     movl(dst, as_Address(src));
3359   } else {
3360     lea(rscratch1, src);
3361     movl(dst, Address(rscratch1, 0));
3362   }
3363 }
3364 
3365 // C++ bool manipulation
3366 
3367 void MacroAssembler::movbool(Register dst, Address src) {
3368   if(sizeof(bool) == 1)
3369     movb(dst, src);
3370   else if(sizeof(bool) == 2)
3371     movw(dst, src);
3372   else if(sizeof(bool) == 4)
3373     movl(dst, src);
3374   else
3375     // unsupported
3376     ShouldNotReachHere();
3377 }
3378 
3379 void MacroAssembler::movbool(Address dst, bool boolconst) {
3380   if(sizeof(bool) == 1)
3381     movb(dst, (int) boolconst);
3382   else if(sizeof(bool) == 2)
3383     movw(dst, (int) boolconst);
3384   else if(sizeof(bool) == 4)
3385     movl(dst, (int) boolconst);
3386   else
3387     // unsupported
3388     ShouldNotReachHere();
3389 }
3390 
3391 void MacroAssembler::movbool(Address dst, Register src) {
3392   if(sizeof(bool) == 1)
3393     movb(dst, src);
3394   else if(sizeof(bool) == 2)
3395     movw(dst, src);
3396   else if(sizeof(bool) == 4)
3397     movl(dst, src);
3398   else
3399     // unsupported
3400     ShouldNotReachHere();
3401 }
3402 
3403 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3404   movb(as_Address(dst), src);
3405 }
3406 
3407 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3408   if (reachable(src)) {
3409     movdl(dst, as_Address(src));
3410   } else {
3411     lea(rscratch1, src);
3412     movdl(dst, Address(rscratch1, 0));
3413   }
3414 }
3415 
3416 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3417   if (reachable(src)) {
3418     movq(dst, as_Address(src));
3419   } else {
3420     lea(rscratch1, src);
3421     movq(dst, Address(rscratch1, 0));
3422   }
3423 }
3424 
3425 void MacroAssembler::setvectmask(Register dst, Register src) {
3426   Assembler::movl(dst, 1);
3427   Assembler::shlxl(dst, dst, src);
3428   Assembler::decl(dst);
3429   Assembler::kmovdl(k1, dst);
3430   Assembler::movl(dst, src);
3431 }
3432 
3433 void MacroAssembler::restorevectmask() {
3434   Assembler::knotwl(k1, k0);
3435 }
3436 
3437 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3438   if (reachable(src)) {
3439     if (UseXmmLoadAndClearUpper) {
3440       movsd (dst, as_Address(src));
3441     } else {
3442       movlpd(dst, as_Address(src));
3443     }
3444   } else {
3445     lea(rscratch1, src);
3446     if (UseXmmLoadAndClearUpper) {
3447       movsd (dst, Address(rscratch1, 0));
3448     } else {
3449       movlpd(dst, Address(rscratch1, 0));
3450     }
3451   }
3452 }
3453 
3454 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3455   if (reachable(src)) {
3456     movss(dst, as_Address(src));
3457   } else {
3458     lea(rscratch1, src);
3459     movss(dst, Address(rscratch1, 0));
3460   }
3461 }
3462 
3463 void MacroAssembler::movptr(Register dst, Register src) {
3464   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3465 }
3466 
3467 void MacroAssembler::movptr(Register dst, Address src) {
3468   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3469 }
3470 
3471 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3472 void MacroAssembler::movptr(Register dst, intptr_t src) {
3473   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3474 }
3475 
3476 void MacroAssembler::movptr(Address dst, Register src) {
3477   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3478 }
3479 
3480 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3481   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3482     Assembler::vextractf32x4(dst, src, 0);
3483   } else {
3484     Assembler::movdqu(dst, src);
3485   }
3486 }
3487 
3488 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3489   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3490     Assembler::vinsertf32x4(dst, dst, src, 0);
3491   } else {
3492     Assembler::movdqu(dst, src);
3493   }
3494 }
3495 
3496 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3497   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3498     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3499   } else {
3500     Assembler::movdqu(dst, src);
3501   }
3502 }
3503 
3504 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3505   if (reachable(src)) {
3506     movdqu(dst, as_Address(src));
3507   } else {
3508     lea(scratchReg, src);
3509     movdqu(dst, Address(scratchReg, 0));
3510   }
3511 }
3512 
3513 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3514   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3515     vextractf64x4_low(dst, src);
3516   } else {
3517     Assembler::vmovdqu(dst, src);
3518   }
3519 }
3520 
3521 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3522   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3523     vinsertf64x4_low(dst, src);
3524   } else {
3525     Assembler::vmovdqu(dst, src);
3526   }
3527 }
3528 
3529 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3530   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3531     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3532   }
3533   else {
3534     Assembler::vmovdqu(dst, src);
3535   }
3536 }
3537 
3538 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3539   if (reachable(src)) {
3540     vmovdqu(dst, as_Address(src));
3541   }
3542   else {
3543     lea(rscratch1, src);
3544     vmovdqu(dst, Address(rscratch1, 0));
3545   }
3546 }
3547 
3548 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3549   if (reachable(src)) {
3550     Assembler::movdqa(dst, as_Address(src));
3551   } else {
3552     lea(rscratch1, src);
3553     Assembler::movdqa(dst, Address(rscratch1, 0));
3554   }
3555 }
3556 
3557 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3558   if (reachable(src)) {
3559     Assembler::movsd(dst, as_Address(src));
3560   } else {
3561     lea(rscratch1, src);
3562     Assembler::movsd(dst, Address(rscratch1, 0));
3563   }
3564 }
3565 
3566 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3567   if (reachable(src)) {
3568     Assembler::movss(dst, as_Address(src));
3569   } else {
3570     lea(rscratch1, src);
3571     Assembler::movss(dst, Address(rscratch1, 0));
3572   }
3573 }
3574 
3575 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3576   if (reachable(src)) {
3577     Assembler::mulsd(dst, as_Address(src));
3578   } else {
3579     lea(rscratch1, src);
3580     Assembler::mulsd(dst, Address(rscratch1, 0));
3581   }
3582 }
3583 
3584 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3585   if (reachable(src)) {
3586     Assembler::mulss(dst, as_Address(src));
3587   } else {
3588     lea(rscratch1, src);
3589     Assembler::mulss(dst, Address(rscratch1, 0));
3590   }
3591 }
3592 
3593 void MacroAssembler::null_check(Register reg, int offset) {
3594   if (needs_explicit_null_check(offset)) {
3595     // provoke OS NULL exception if reg = NULL by
3596     // accessing M[reg] w/o changing any (non-CC) registers
3597     // NOTE: cmpl is plenty here to provoke a segv
3598     cmpptr(rax, Address(reg, 0));
3599     // Note: should probably use testl(rax, Address(reg, 0));
3600     //       may be shorter code (however, this version of
3601     //       testl needs to be implemented first)
3602   } else {
3603     // nothing to do, (later) access of M[reg + offset]
3604     // will provoke OS NULL exception if reg = NULL
3605   }
3606 }
3607 
3608 void MacroAssembler::os_breakpoint() {
3609   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3610   // (e.g., MSVC can't call ps() otherwise)
3611   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3612 }
3613 
3614 #ifdef _LP64
3615 #define XSTATE_BV 0x200
3616 #endif
3617 
3618 void MacroAssembler::pop_CPU_state() {
3619   pop_FPU_state();
3620   pop_IU_state();
3621 }
3622 
3623 void MacroAssembler::pop_FPU_state() {
3624 #ifndef _LP64
3625   frstor(Address(rsp, 0));
3626 #else
3627   fxrstor(Address(rsp, 0));
3628 #endif
3629   addptr(rsp, FPUStateSizeInWords * wordSize);
3630 }
3631 
3632 void MacroAssembler::pop_IU_state() {
3633   popa();
3634   LP64_ONLY(addq(rsp, 8));
3635   popf();
3636 }
3637 
3638 // Save Integer and Float state
3639 // Warning: Stack must be 16 byte aligned (64bit)
3640 void MacroAssembler::push_CPU_state() {
3641   push_IU_state();
3642   push_FPU_state();
3643 }
3644 
3645 void MacroAssembler::push_FPU_state() {
3646   subptr(rsp, FPUStateSizeInWords * wordSize);
3647 #ifndef _LP64
3648   fnsave(Address(rsp, 0));
3649   fwait();
3650 #else
3651   fxsave(Address(rsp, 0));
3652 #endif // LP64
3653 }
3654 
3655 void MacroAssembler::push_IU_state() {
3656   // Push flags first because pusha kills them
3657   pushf();
3658   // Make sure rsp stays 16-byte aligned
3659   LP64_ONLY(subq(rsp, 8));
3660   pusha();
3661 }
3662 
3663 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3664   if (!java_thread->is_valid()) {
3665     java_thread = rdi;
3666     get_thread(java_thread);
3667   }
3668   // we must set sp to zero to clear frame
3669   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3670   if (clear_fp) {
3671     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3672   }
3673 
3674   // Always clear the pc because it could have been set by make_walkable()
3675   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3676 
3677   vzeroupper();
3678 }
3679 
3680 void MacroAssembler::restore_rax(Register tmp) {
3681   if (tmp == noreg) pop(rax);
3682   else if (tmp != rax) mov(rax, tmp);
3683 }
3684 
3685 void MacroAssembler::round_to(Register reg, int modulus) {
3686   addptr(reg, modulus - 1);
3687   andptr(reg, -modulus);
3688 }
3689 
3690 void MacroAssembler::save_rax(Register tmp) {
3691   if (tmp == noreg) push(rax);
3692   else if (tmp != rax) mov(tmp, rax);
3693 }
3694 
3695 // Write serialization page so VM thread can do a pseudo remote membar.
3696 // We use the current thread pointer to calculate a thread specific
3697 // offset to write to within the page. This minimizes bus traffic
3698 // due to cache line collision.
3699 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3700   movl(tmp, thread);
3701   shrl(tmp, os::get_serialize_page_shift_count());
3702   andl(tmp, (os::vm_page_size() - sizeof(int)));
3703 
3704   Address index(noreg, tmp, Address::times_1);
3705   ExternalAddress page(os::get_memory_serialize_page());
3706 
3707   // Size of store must match masking code above
3708   movl(as_Address(ArrayAddress(page, index)), tmp);
3709 }
3710 
3711 // Calls to C land
3712 //
3713 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3714 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3715 // has to be reset to 0. This is required to allow proper stack traversal.
3716 void MacroAssembler::set_last_Java_frame(Register java_thread,
3717                                          Register last_java_sp,
3718                                          Register last_java_fp,
3719                                          address  last_java_pc) {
3720   vzeroupper();
3721   // determine java_thread register
3722   if (!java_thread->is_valid()) {
3723     java_thread = rdi;
3724     get_thread(java_thread);
3725   }
3726   // determine last_java_sp register
3727   if (!last_java_sp->is_valid()) {
3728     last_java_sp = rsp;
3729   }
3730 
3731   // last_java_fp is optional
3732 
3733   if (last_java_fp->is_valid()) {
3734     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3735   }
3736 
3737   // last_java_pc is optional
3738 
3739   if (last_java_pc != NULL) {
3740     lea(Address(java_thread,
3741                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3742         InternalAddress(last_java_pc));
3743 
3744   }
3745   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3746 }
3747 
3748 void MacroAssembler::shlptr(Register dst, int imm8) {
3749   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3750 }
3751 
3752 void MacroAssembler::shrptr(Register dst, int imm8) {
3753   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3754 }
3755 
3756 void MacroAssembler::sign_extend_byte(Register reg) {
3757   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3758     movsbl(reg, reg); // movsxb
3759   } else {
3760     shll(reg, 24);
3761     sarl(reg, 24);
3762   }
3763 }
3764 
3765 void MacroAssembler::sign_extend_short(Register reg) {
3766   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3767     movswl(reg, reg); // movsxw
3768   } else {
3769     shll(reg, 16);
3770     sarl(reg, 16);
3771   }
3772 }
3773 
3774 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3775   assert(reachable(src), "Address should be reachable");
3776   testl(dst, as_Address(src));
3777 }
3778 
3779 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3780   int dst_enc = dst->encoding();
3781   int src_enc = src->encoding();
3782   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3783     Assembler::pcmpeqb(dst, src);
3784   } else if ((dst_enc < 16) && (src_enc < 16)) {
3785     Assembler::pcmpeqb(dst, src);
3786   } else if (src_enc < 16) {
3787     subptr(rsp, 64);
3788     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3789     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3790     Assembler::pcmpeqb(xmm0, src);
3791     movdqu(dst, xmm0);
3792     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3793     addptr(rsp, 64);
3794   } else if (dst_enc < 16) {
3795     subptr(rsp, 64);
3796     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3797     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3798     Assembler::pcmpeqb(dst, xmm0);
3799     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3800     addptr(rsp, 64);
3801   } else {
3802     subptr(rsp, 64);
3803     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3804     subptr(rsp, 64);
3805     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3806     movdqu(xmm0, src);
3807     movdqu(xmm1, dst);
3808     Assembler::pcmpeqb(xmm1, xmm0);
3809     movdqu(dst, xmm1);
3810     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3811     addptr(rsp, 64);
3812     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3813     addptr(rsp, 64);
3814   }
3815 }
3816 
3817 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3818   int dst_enc = dst->encoding();
3819   int src_enc = src->encoding();
3820   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3821     Assembler::pcmpeqw(dst, src);
3822   } else if ((dst_enc < 16) && (src_enc < 16)) {
3823     Assembler::pcmpeqw(dst, src);
3824   } else if (src_enc < 16) {
3825     subptr(rsp, 64);
3826     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3827     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3828     Assembler::pcmpeqw(xmm0, src);
3829     movdqu(dst, xmm0);
3830     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3831     addptr(rsp, 64);
3832   } else if (dst_enc < 16) {
3833     subptr(rsp, 64);
3834     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3835     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3836     Assembler::pcmpeqw(dst, xmm0);
3837     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3838     addptr(rsp, 64);
3839   } else {
3840     subptr(rsp, 64);
3841     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3842     subptr(rsp, 64);
3843     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3844     movdqu(xmm0, src);
3845     movdqu(xmm1, dst);
3846     Assembler::pcmpeqw(xmm1, xmm0);
3847     movdqu(dst, xmm1);
3848     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3849     addptr(rsp, 64);
3850     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3851     addptr(rsp, 64);
3852   }
3853 }
3854 
3855 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3856   int dst_enc = dst->encoding();
3857   if (dst_enc < 16) {
3858     Assembler::pcmpestri(dst, src, imm8);
3859   } else {
3860     subptr(rsp, 64);
3861     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3862     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3863     Assembler::pcmpestri(xmm0, src, imm8);
3864     movdqu(dst, xmm0);
3865     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3866     addptr(rsp, 64);
3867   }
3868 }
3869 
3870 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3871   int dst_enc = dst->encoding();
3872   int src_enc = src->encoding();
3873   if ((dst_enc < 16) && (src_enc < 16)) {
3874     Assembler::pcmpestri(dst, src, imm8);
3875   } else if (src_enc < 16) {
3876     subptr(rsp, 64);
3877     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3878     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3879     Assembler::pcmpestri(xmm0, src, imm8);
3880     movdqu(dst, xmm0);
3881     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3882     addptr(rsp, 64);
3883   } else if (dst_enc < 16) {
3884     subptr(rsp, 64);
3885     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3886     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3887     Assembler::pcmpestri(dst, xmm0, imm8);
3888     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3889     addptr(rsp, 64);
3890   } else {
3891     subptr(rsp, 64);
3892     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3893     subptr(rsp, 64);
3894     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3895     movdqu(xmm0, src);
3896     movdqu(xmm1, dst);
3897     Assembler::pcmpestri(xmm1, xmm0, imm8);
3898     movdqu(dst, xmm1);
3899     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3900     addptr(rsp, 64);
3901     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3902     addptr(rsp, 64);
3903   }
3904 }
3905 
3906 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3907   int dst_enc = dst->encoding();
3908   int src_enc = src->encoding();
3909   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3910     Assembler::pmovzxbw(dst, src);
3911   } else if ((dst_enc < 16) && (src_enc < 16)) {
3912     Assembler::pmovzxbw(dst, src);
3913   } else if (src_enc < 16) {
3914     subptr(rsp, 64);
3915     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3916     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3917     Assembler::pmovzxbw(xmm0, src);
3918     movdqu(dst, xmm0);
3919     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3920     addptr(rsp, 64);
3921   } else if (dst_enc < 16) {
3922     subptr(rsp, 64);
3923     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3924     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3925     Assembler::pmovzxbw(dst, xmm0);
3926     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3927     addptr(rsp, 64);
3928   } else {
3929     subptr(rsp, 64);
3930     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3931     subptr(rsp, 64);
3932     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3933     movdqu(xmm0, src);
3934     movdqu(xmm1, dst);
3935     Assembler::pmovzxbw(xmm1, xmm0);
3936     movdqu(dst, xmm1);
3937     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3938     addptr(rsp, 64);
3939     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3940     addptr(rsp, 64);
3941   }
3942 }
3943 
3944 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3945   int dst_enc = dst->encoding();
3946   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3947     Assembler::pmovzxbw(dst, src);
3948   } else if (dst_enc < 16) {
3949     Assembler::pmovzxbw(dst, src);
3950   } else {
3951     subptr(rsp, 64);
3952     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3953     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3954     Assembler::pmovzxbw(xmm0, src);
3955     movdqu(dst, xmm0);
3956     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3957     addptr(rsp, 64);
3958   }
3959 }
3960 
3961 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3962   int src_enc = src->encoding();
3963   if (src_enc < 16) {
3964     Assembler::pmovmskb(dst, src);
3965   } else {
3966     subptr(rsp, 64);
3967     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3968     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3969     Assembler::pmovmskb(dst, xmm0);
3970     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3971     addptr(rsp, 64);
3972   }
3973 }
3974 
3975 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3976   int dst_enc = dst->encoding();
3977   int src_enc = src->encoding();
3978   if ((dst_enc < 16) && (src_enc < 16)) {
3979     Assembler::ptest(dst, src);
3980   } else if (src_enc < 16) {
3981     subptr(rsp, 64);
3982     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3983     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3984     Assembler::ptest(xmm0, src);
3985     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3986     addptr(rsp, 64);
3987   } else if (dst_enc < 16) {
3988     subptr(rsp, 64);
3989     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3990     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3991     Assembler::ptest(dst, xmm0);
3992     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3993     addptr(rsp, 64);
3994   } else {
3995     subptr(rsp, 64);
3996     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3997     subptr(rsp, 64);
3998     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3999     movdqu(xmm0, src);
4000     movdqu(xmm1, dst);
4001     Assembler::ptest(xmm1, xmm0);
4002     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4003     addptr(rsp, 64);
4004     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4005     addptr(rsp, 64);
4006   }
4007 }
4008 
4009 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
4010   if (reachable(src)) {
4011     Assembler::sqrtsd(dst, as_Address(src));
4012   } else {
4013     lea(rscratch1, src);
4014     Assembler::sqrtsd(dst, Address(rscratch1, 0));
4015   }
4016 }
4017 
4018 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
4019   if (reachable(src)) {
4020     Assembler::sqrtss(dst, as_Address(src));
4021   } else {
4022     lea(rscratch1, src);
4023     Assembler::sqrtss(dst, Address(rscratch1, 0));
4024   }
4025 }
4026 
4027 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
4028   if (reachable(src)) {
4029     Assembler::subsd(dst, as_Address(src));
4030   } else {
4031     lea(rscratch1, src);
4032     Assembler::subsd(dst, Address(rscratch1, 0));
4033   }
4034 }
4035 
4036 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4037   if (reachable(src)) {
4038     Assembler::subss(dst, as_Address(src));
4039   } else {
4040     lea(rscratch1, src);
4041     Assembler::subss(dst, Address(rscratch1, 0));
4042   }
4043 }
4044 
4045 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4046   if (reachable(src)) {
4047     Assembler::ucomisd(dst, as_Address(src));
4048   } else {
4049     lea(rscratch1, src);
4050     Assembler::ucomisd(dst, Address(rscratch1, 0));
4051   }
4052 }
4053 
4054 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4055   if (reachable(src)) {
4056     Assembler::ucomiss(dst, as_Address(src));
4057   } else {
4058     lea(rscratch1, src);
4059     Assembler::ucomiss(dst, Address(rscratch1, 0));
4060   }
4061 }
4062 
4063 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4064   // Used in sign-bit flipping with aligned address.
4065   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4066   if (reachable(src)) {
4067     Assembler::xorpd(dst, as_Address(src));
4068   } else {
4069     lea(rscratch1, src);
4070     Assembler::xorpd(dst, Address(rscratch1, 0));
4071   }
4072 }
4073 
4074 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4075   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4076     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4077   }
4078   else {
4079     Assembler::xorpd(dst, src);
4080   }
4081 }
4082 
4083 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4084   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4085     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4086   } else {
4087     Assembler::xorps(dst, src);
4088   }
4089 }
4090 
4091 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4092   // Used in sign-bit flipping with aligned address.
4093   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4094   if (reachable(src)) {
4095     Assembler::xorps(dst, as_Address(src));
4096   } else {
4097     lea(rscratch1, src);
4098     Assembler::xorps(dst, Address(rscratch1, 0));
4099   }
4100 }
4101 
4102 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4103   // Used in sign-bit flipping with aligned address.
4104   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4105   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4106   if (reachable(src)) {
4107     Assembler::pshufb(dst, as_Address(src));
4108   } else {
4109     lea(rscratch1, src);
4110     Assembler::pshufb(dst, Address(rscratch1, 0));
4111   }
4112 }
4113 
4114 // AVX 3-operands instructions
4115 
4116 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4117   if (reachable(src)) {
4118     vaddsd(dst, nds, as_Address(src));
4119   } else {
4120     lea(rscratch1, src);
4121     vaddsd(dst, nds, Address(rscratch1, 0));
4122   }
4123 }
4124 
4125 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4126   if (reachable(src)) {
4127     vaddss(dst, nds, as_Address(src));
4128   } else {
4129     lea(rscratch1, src);
4130     vaddss(dst, nds, Address(rscratch1, 0));
4131   }
4132 }
4133 
4134 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4135   int dst_enc = dst->encoding();
4136   int nds_enc = nds->encoding();
4137   int src_enc = src->encoding();
4138   if ((dst_enc < 16) && (nds_enc < 16)) {
4139     vandps(dst, nds, negate_field, vector_len);
4140   } else if ((src_enc < 16) && (dst_enc < 16)) {
4141     movss(src, nds);
4142     vandps(dst, src, negate_field, vector_len);
4143   } else if (src_enc < 16) {
4144     movss(src, nds);
4145     vandps(src, src, negate_field, vector_len);
4146     movss(dst, src);
4147   } else if (dst_enc < 16) {
4148     movdqu(src, xmm0);
4149     movss(xmm0, nds);
4150     vandps(dst, xmm0, negate_field, vector_len);
4151     movdqu(xmm0, src);
4152   } else if (nds_enc < 16) {
4153     movdqu(src, xmm0);
4154     vandps(xmm0, nds, negate_field, vector_len);
4155     movss(dst, xmm0);
4156     movdqu(xmm0, src);
4157   } else {
4158     movdqu(src, xmm0);
4159     movss(xmm0, nds);
4160     vandps(xmm0, xmm0, negate_field, vector_len);
4161     movss(dst, xmm0);
4162     movdqu(xmm0, src);
4163   }
4164 }
4165 
4166 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4167   int dst_enc = dst->encoding();
4168   int nds_enc = nds->encoding();
4169   int src_enc = src->encoding();
4170   if ((dst_enc < 16) && (nds_enc < 16)) {
4171     vandpd(dst, nds, negate_field, vector_len);
4172   } else if ((src_enc < 16) && (dst_enc < 16)) {
4173     movsd(src, nds);
4174     vandpd(dst, src, negate_field, vector_len);
4175   } else if (src_enc < 16) {
4176     movsd(src, nds);
4177     vandpd(src, src, negate_field, vector_len);
4178     movsd(dst, src);
4179   } else if (dst_enc < 16) {
4180     movdqu(src, xmm0);
4181     movsd(xmm0, nds);
4182     vandpd(dst, xmm0, negate_field, vector_len);
4183     movdqu(xmm0, src);
4184   } else if (nds_enc < 16) {
4185     movdqu(src, xmm0);
4186     vandpd(xmm0, nds, negate_field, vector_len);
4187     movsd(dst, xmm0);
4188     movdqu(xmm0, src);
4189   } else {
4190     movdqu(src, xmm0);
4191     movsd(xmm0, nds);
4192     vandpd(xmm0, xmm0, negate_field, vector_len);
4193     movsd(dst, xmm0);
4194     movdqu(xmm0, src);
4195   }
4196 }
4197 
4198 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4199   int dst_enc = dst->encoding();
4200   int nds_enc = nds->encoding();
4201   int src_enc = src->encoding();
4202   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4203     Assembler::vpaddb(dst, nds, src, vector_len);
4204   } else if ((dst_enc < 16) && (src_enc < 16)) {
4205     Assembler::vpaddb(dst, dst, src, vector_len);
4206   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4207     // use nds as scratch for src
4208     evmovdqul(nds, src, Assembler::AVX_512bit);
4209     Assembler::vpaddb(dst, dst, nds, vector_len);
4210   } else if ((src_enc < 16) && (nds_enc < 16)) {
4211     // use nds as scratch for dst
4212     evmovdqul(nds, dst, Assembler::AVX_512bit);
4213     Assembler::vpaddb(nds, nds, src, vector_len);
4214     evmovdqul(dst, nds, Assembler::AVX_512bit);
4215   } else if (dst_enc < 16) {
4216     // use nds as scatch for xmm0 to hold src
4217     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4218     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4219     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4220     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4221   } else {
4222     // worse case scenario, all regs are in the upper bank
4223     subptr(rsp, 64);
4224     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4225     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4226     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4227     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4228     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4229     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4230     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4231     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4232     addptr(rsp, 64);
4233   }
4234 }
4235 
4236 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4237   int dst_enc = dst->encoding();
4238   int nds_enc = nds->encoding();
4239   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4240     Assembler::vpaddb(dst, nds, src, vector_len);
4241   } else if (dst_enc < 16) {
4242     Assembler::vpaddb(dst, dst, src, vector_len);
4243   } else if (nds_enc < 16) {
4244     // implies dst_enc in upper bank with src as scratch
4245     evmovdqul(nds, dst, Assembler::AVX_512bit);
4246     Assembler::vpaddb(nds, nds, src, vector_len);
4247     evmovdqul(dst, nds, Assembler::AVX_512bit);
4248   } else {
4249     // worse case scenario, all regs in upper bank
4250     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4251     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4252     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4253     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4254   }
4255 }
4256 
4257 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4258   int dst_enc = dst->encoding();
4259   int nds_enc = nds->encoding();
4260   int src_enc = src->encoding();
4261   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4262     Assembler::vpaddw(dst, nds, src, vector_len);
4263   } else if ((dst_enc < 16) && (src_enc < 16)) {
4264     Assembler::vpaddw(dst, dst, src, vector_len);
4265   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4266     // use nds as scratch for src
4267     evmovdqul(nds, src, Assembler::AVX_512bit);
4268     Assembler::vpaddw(dst, dst, nds, vector_len);
4269   } else if ((src_enc < 16) && (nds_enc < 16)) {
4270     // use nds as scratch for dst
4271     evmovdqul(nds, dst, Assembler::AVX_512bit);
4272     Assembler::vpaddw(nds, nds, src, vector_len);
4273     evmovdqul(dst, nds, Assembler::AVX_512bit);
4274   } else if (dst_enc < 16) {
4275     // use nds as scatch for xmm0 to hold src
4276     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4277     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4278     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4279     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4280   } else {
4281     // worse case scenario, all regs are in the upper bank
4282     subptr(rsp, 64);
4283     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4284     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4285     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4286     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4287     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4288     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4289     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4290     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4291     addptr(rsp, 64);
4292   }
4293 }
4294 
4295 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4296   int dst_enc = dst->encoding();
4297   int nds_enc = nds->encoding();
4298   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4299     Assembler::vpaddw(dst, nds, src, vector_len);
4300   } else if (dst_enc < 16) {
4301     Assembler::vpaddw(dst, dst, src, vector_len);
4302   } else if (nds_enc < 16) {
4303     // implies dst_enc in upper bank with src as scratch
4304     evmovdqul(nds, dst, Assembler::AVX_512bit);
4305     Assembler::vpaddw(nds, nds, src, vector_len);
4306     evmovdqul(dst, nds, Assembler::AVX_512bit);
4307   } else {
4308     // worse case scenario, all regs in upper bank
4309     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4310     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4311     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4312     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4313   }
4314 }
4315 
4316 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4317   if (reachable(src)) {
4318     Assembler::vpand(dst, nds, as_Address(src), vector_len);
4319   } else {
4320     lea(rscratch1, src);
4321     Assembler::vpand(dst, nds, Address(rscratch1, 0), vector_len);
4322   }
4323 }
4324 
4325 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4326   int dst_enc = dst->encoding();
4327   int src_enc = src->encoding();
4328   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4329     Assembler::vpbroadcastw(dst, src);
4330   } else if ((dst_enc < 16) && (src_enc < 16)) {
4331     Assembler::vpbroadcastw(dst, src);
4332   } else if (src_enc < 16) {
4333     subptr(rsp, 64);
4334     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4335     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4336     Assembler::vpbroadcastw(xmm0, src);
4337     movdqu(dst, xmm0);
4338     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4339     addptr(rsp, 64);
4340   } else if (dst_enc < 16) {
4341     subptr(rsp, 64);
4342     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4343     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4344     Assembler::vpbroadcastw(dst, xmm0);
4345     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4346     addptr(rsp, 64);
4347   } else {
4348     subptr(rsp, 64);
4349     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4350     subptr(rsp, 64);
4351     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4352     movdqu(xmm0, src);
4353     movdqu(xmm1, dst);
4354     Assembler::vpbroadcastw(xmm1, xmm0);
4355     movdqu(dst, xmm1);
4356     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4357     addptr(rsp, 64);
4358     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4359     addptr(rsp, 64);
4360   }
4361 }
4362 
4363 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4364   int dst_enc = dst->encoding();
4365   int nds_enc = nds->encoding();
4366   int src_enc = src->encoding();
4367   assert(dst_enc == nds_enc, "");
4368   if ((dst_enc < 16) && (src_enc < 16)) {
4369     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4370   } else if (src_enc < 16) {
4371     subptr(rsp, 64);
4372     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4373     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4374     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4375     movdqu(dst, xmm0);
4376     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4377     addptr(rsp, 64);
4378   } else if (dst_enc < 16) {
4379     subptr(rsp, 64);
4380     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4381     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4382     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4383     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4384     addptr(rsp, 64);
4385   } else {
4386     subptr(rsp, 64);
4387     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4388     subptr(rsp, 64);
4389     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4390     movdqu(xmm0, src);
4391     movdqu(xmm1, dst);
4392     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4393     movdqu(dst, xmm1);
4394     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4395     addptr(rsp, 64);
4396     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4397     addptr(rsp, 64);
4398   }
4399 }
4400 
4401 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4402   int dst_enc = dst->encoding();
4403   int nds_enc = nds->encoding();
4404   int src_enc = src->encoding();
4405   assert(dst_enc == nds_enc, "");
4406   if ((dst_enc < 16) && (src_enc < 16)) {
4407     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4408   } else if (src_enc < 16) {
4409     subptr(rsp, 64);
4410     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4411     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4412     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4413     movdqu(dst, xmm0);
4414     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4415     addptr(rsp, 64);
4416   } else if (dst_enc < 16) {
4417     subptr(rsp, 64);
4418     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4419     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4420     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4421     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4422     addptr(rsp, 64);
4423   } else {
4424     subptr(rsp, 64);
4425     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4426     subptr(rsp, 64);
4427     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4428     movdqu(xmm0, src);
4429     movdqu(xmm1, dst);
4430     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4431     movdqu(dst, xmm1);
4432     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4433     addptr(rsp, 64);
4434     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4435     addptr(rsp, 64);
4436   }
4437 }
4438 
4439 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4440   int dst_enc = dst->encoding();
4441   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4442     Assembler::vpmovzxbw(dst, src, vector_len);
4443   } else if (dst_enc < 16) {
4444     Assembler::vpmovzxbw(dst, src, vector_len);
4445   } else {
4446     subptr(rsp, 64);
4447     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4448     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4449     Assembler::vpmovzxbw(xmm0, src, vector_len);
4450     movdqu(dst, xmm0);
4451     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4452     addptr(rsp, 64);
4453   }
4454 }
4455 
4456 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4457   int src_enc = src->encoding();
4458   if (src_enc < 16) {
4459     Assembler::vpmovmskb(dst, src);
4460   } else {
4461     subptr(rsp, 64);
4462     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4463     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4464     Assembler::vpmovmskb(dst, xmm0);
4465     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4466     addptr(rsp, 64);
4467   }
4468 }
4469 
4470 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4471   int dst_enc = dst->encoding();
4472   int nds_enc = nds->encoding();
4473   int src_enc = src->encoding();
4474   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4475     Assembler::vpmullw(dst, nds, src, vector_len);
4476   } else if ((dst_enc < 16) && (src_enc < 16)) {
4477     Assembler::vpmullw(dst, dst, src, vector_len);
4478   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4479     // use nds as scratch for src
4480     evmovdqul(nds, src, Assembler::AVX_512bit);
4481     Assembler::vpmullw(dst, dst, nds, vector_len);
4482   } else if ((src_enc < 16) && (nds_enc < 16)) {
4483     // use nds as scratch for dst
4484     evmovdqul(nds, dst, Assembler::AVX_512bit);
4485     Assembler::vpmullw(nds, nds, src, vector_len);
4486     evmovdqul(dst, nds, Assembler::AVX_512bit);
4487   } else if (dst_enc < 16) {
4488     // use nds as scatch for xmm0 to hold src
4489     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4490     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4491     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4492     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4493   } else {
4494     // worse case scenario, all regs are in the upper bank
4495     subptr(rsp, 64);
4496     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4497     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4498     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4499     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4500     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4501     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4502     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4503     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4504     addptr(rsp, 64);
4505   }
4506 }
4507 
4508 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4509   int dst_enc = dst->encoding();
4510   int nds_enc = nds->encoding();
4511   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4512     Assembler::vpmullw(dst, nds, src, vector_len);
4513   } else if (dst_enc < 16) {
4514     Assembler::vpmullw(dst, dst, src, vector_len);
4515   } else if (nds_enc < 16) {
4516     // implies dst_enc in upper bank with src as scratch
4517     evmovdqul(nds, dst, Assembler::AVX_512bit);
4518     Assembler::vpmullw(nds, nds, src, vector_len);
4519     evmovdqul(dst, nds, Assembler::AVX_512bit);
4520   } else {
4521     // worse case scenario, all regs in upper bank
4522     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4523     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4524     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4525     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4526   }
4527 }
4528 
4529 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4530   int dst_enc = dst->encoding();
4531   int nds_enc = nds->encoding();
4532   int src_enc = src->encoding();
4533   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4534     Assembler::vpsubb(dst, nds, src, vector_len);
4535   } else if ((dst_enc < 16) && (src_enc < 16)) {
4536     Assembler::vpsubb(dst, dst, src, vector_len);
4537   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4538     // use nds as scratch for src
4539     evmovdqul(nds, src, Assembler::AVX_512bit);
4540     Assembler::vpsubb(dst, dst, nds, vector_len);
4541   } else if ((src_enc < 16) && (nds_enc < 16)) {
4542     // use nds as scratch for dst
4543     evmovdqul(nds, dst, Assembler::AVX_512bit);
4544     Assembler::vpsubb(nds, nds, src, vector_len);
4545     evmovdqul(dst, nds, Assembler::AVX_512bit);
4546   } else if (dst_enc < 16) {
4547     // use nds as scatch for xmm0 to hold src
4548     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4549     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4550     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4551     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4552   } else {
4553     // worse case scenario, all regs are in the upper bank
4554     subptr(rsp, 64);
4555     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4556     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4557     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4558     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4559     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4560     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4561     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4562     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4563     addptr(rsp, 64);
4564   }
4565 }
4566 
4567 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4568   int dst_enc = dst->encoding();
4569   int nds_enc = nds->encoding();
4570   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4571     Assembler::vpsubb(dst, nds, src, vector_len);
4572   } else if (dst_enc < 16) {
4573     Assembler::vpsubb(dst, dst, src, vector_len);
4574   } else if (nds_enc < 16) {
4575     // implies dst_enc in upper bank with src as scratch
4576     evmovdqul(nds, dst, Assembler::AVX_512bit);
4577     Assembler::vpsubb(nds, nds, src, vector_len);
4578     evmovdqul(dst, nds, Assembler::AVX_512bit);
4579   } else {
4580     // worse case scenario, all regs in upper bank
4581     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4582     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4583     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4584     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4585   }
4586 }
4587 
4588 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4589   int dst_enc = dst->encoding();
4590   int nds_enc = nds->encoding();
4591   int src_enc = src->encoding();
4592   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4593     Assembler::vpsubw(dst, nds, src, vector_len);
4594   } else if ((dst_enc < 16) && (src_enc < 16)) {
4595     Assembler::vpsubw(dst, dst, src, vector_len);
4596   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4597     // use nds as scratch for src
4598     evmovdqul(nds, src, Assembler::AVX_512bit);
4599     Assembler::vpsubw(dst, dst, nds, vector_len);
4600   } else if ((src_enc < 16) && (nds_enc < 16)) {
4601     // use nds as scratch for dst
4602     evmovdqul(nds, dst, Assembler::AVX_512bit);
4603     Assembler::vpsubw(nds, nds, src, vector_len);
4604     evmovdqul(dst, nds, Assembler::AVX_512bit);
4605   } else if (dst_enc < 16) {
4606     // use nds as scatch for xmm0 to hold src
4607     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4608     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4609     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4610     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4611   } else {
4612     // worse case scenario, all regs are in the upper bank
4613     subptr(rsp, 64);
4614     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4615     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4616     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4617     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4618     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4619     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4620     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4621     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4622     addptr(rsp, 64);
4623   }
4624 }
4625 
4626 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4627   int dst_enc = dst->encoding();
4628   int nds_enc = nds->encoding();
4629   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4630     Assembler::vpsubw(dst, nds, src, vector_len);
4631   } else if (dst_enc < 16) {
4632     Assembler::vpsubw(dst, dst, src, vector_len);
4633   } else if (nds_enc < 16) {
4634     // implies dst_enc in upper bank with src as scratch
4635     evmovdqul(nds, dst, Assembler::AVX_512bit);
4636     Assembler::vpsubw(nds, nds, src, vector_len);
4637     evmovdqul(dst, nds, Assembler::AVX_512bit);
4638   } else {
4639     // worse case scenario, all regs in upper bank
4640     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4641     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4642     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4643     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4644   }
4645 }
4646 
4647 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4648   int dst_enc = dst->encoding();
4649   int nds_enc = nds->encoding();
4650   int shift_enc = shift->encoding();
4651   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4652     Assembler::vpsraw(dst, nds, shift, vector_len);
4653   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4654     Assembler::vpsraw(dst, dst, shift, vector_len);
4655   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4656     // use nds_enc as scratch with shift
4657     evmovdqul(nds, shift, Assembler::AVX_512bit);
4658     Assembler::vpsraw(dst, dst, nds, vector_len);
4659   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4660     // use nds as scratch with dst
4661     evmovdqul(nds, dst, Assembler::AVX_512bit);
4662     Assembler::vpsraw(nds, nds, shift, vector_len);
4663     evmovdqul(dst, nds, Assembler::AVX_512bit);
4664   } else if (dst_enc < 16) {
4665     // use nds to save a copy of xmm0 and hold shift
4666     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4667     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4668     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4669     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4670   } else if (nds_enc < 16) {
4671     // use nds as dest as temps
4672     evmovdqul(nds, dst, Assembler::AVX_512bit);
4673     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4674     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4675     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4676     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4677     evmovdqul(dst, nds, Assembler::AVX_512bit);
4678   } else {
4679     // worse case scenario, all regs are in the upper bank
4680     subptr(rsp, 64);
4681     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4682     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4683     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4684     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4685     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4686     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4687     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4688     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4689     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4690     addptr(rsp, 64);
4691   }
4692 }
4693 
4694 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4695   int dst_enc = dst->encoding();
4696   int nds_enc = nds->encoding();
4697   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4698     Assembler::vpsraw(dst, nds, shift, vector_len);
4699   } else if (dst_enc < 16) {
4700     Assembler::vpsraw(dst, dst, shift, vector_len);
4701   } else if (nds_enc < 16) {
4702     // use nds as scratch
4703     evmovdqul(nds, dst, Assembler::AVX_512bit);
4704     Assembler::vpsraw(nds, nds, shift, vector_len);
4705     evmovdqul(dst, nds, Assembler::AVX_512bit);
4706   } else {
4707     // use nds as scratch for xmm0
4708     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4709     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4710     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4711     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4712   }
4713 }
4714 
4715 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4716   int dst_enc = dst->encoding();
4717   int nds_enc = nds->encoding();
4718   int shift_enc = shift->encoding();
4719   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4720     Assembler::vpsrlw(dst, nds, shift, vector_len);
4721   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4722     Assembler::vpsrlw(dst, dst, shift, vector_len);
4723   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4724     // use nds_enc as scratch with shift
4725     evmovdqul(nds, shift, Assembler::AVX_512bit);
4726     Assembler::vpsrlw(dst, dst, nds, vector_len);
4727   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4728     // use nds as scratch with dst
4729     evmovdqul(nds, dst, Assembler::AVX_512bit);
4730     Assembler::vpsrlw(nds, nds, shift, vector_len);
4731     evmovdqul(dst, nds, Assembler::AVX_512bit);
4732   } else if (dst_enc < 16) {
4733     // use nds to save a copy of xmm0 and hold shift
4734     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4735     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4736     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4737     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4738   } else if (nds_enc < 16) {
4739     // use nds as dest as temps
4740     evmovdqul(nds, dst, Assembler::AVX_512bit);
4741     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4742     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4743     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4744     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4745     evmovdqul(dst, nds, Assembler::AVX_512bit);
4746   } else {
4747     // worse case scenario, all regs are in the upper bank
4748     subptr(rsp, 64);
4749     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4750     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4751     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4752     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4753     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4754     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4755     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4756     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4757     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4758     addptr(rsp, 64);
4759   }
4760 }
4761 
4762 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4763   int dst_enc = dst->encoding();
4764   int nds_enc = nds->encoding();
4765   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4766     Assembler::vpsrlw(dst, nds, shift, vector_len);
4767   } else if (dst_enc < 16) {
4768     Assembler::vpsrlw(dst, dst, shift, vector_len);
4769   } else if (nds_enc < 16) {
4770     // use nds as scratch
4771     evmovdqul(nds, dst, Assembler::AVX_512bit);
4772     Assembler::vpsrlw(nds, nds, shift, vector_len);
4773     evmovdqul(dst, nds, Assembler::AVX_512bit);
4774   } else {
4775     // use nds as scratch for xmm0
4776     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4777     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4778     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4779     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4780   }
4781 }
4782 
4783 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4784   int dst_enc = dst->encoding();
4785   int nds_enc = nds->encoding();
4786   int shift_enc = shift->encoding();
4787   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4788     Assembler::vpsllw(dst, nds, shift, vector_len);
4789   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4790     Assembler::vpsllw(dst, dst, shift, vector_len);
4791   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4792     // use nds_enc as scratch with shift
4793     evmovdqul(nds, shift, Assembler::AVX_512bit);
4794     Assembler::vpsllw(dst, dst, nds, vector_len);
4795   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4796     // use nds as scratch with dst
4797     evmovdqul(nds, dst, Assembler::AVX_512bit);
4798     Assembler::vpsllw(nds, nds, shift, vector_len);
4799     evmovdqul(dst, nds, Assembler::AVX_512bit);
4800   } else if (dst_enc < 16) {
4801     // use nds to save a copy of xmm0 and hold shift
4802     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4803     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4804     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4805     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4806   } else if (nds_enc < 16) {
4807     // use nds as dest as temps
4808     evmovdqul(nds, dst, Assembler::AVX_512bit);
4809     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4810     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4811     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4812     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4813     evmovdqul(dst, nds, Assembler::AVX_512bit);
4814   } else {
4815     // worse case scenario, all regs are in the upper bank
4816     subptr(rsp, 64);
4817     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4818     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4819     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4820     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4821     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4822     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4823     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4824     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4825     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4826     addptr(rsp, 64);
4827   }
4828 }
4829 
4830 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4831   int dst_enc = dst->encoding();
4832   int nds_enc = nds->encoding();
4833   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4834     Assembler::vpsllw(dst, nds, shift, vector_len);
4835   } else if (dst_enc < 16) {
4836     Assembler::vpsllw(dst, dst, shift, vector_len);
4837   } else if (nds_enc < 16) {
4838     // use nds as scratch
4839     evmovdqul(nds, dst, Assembler::AVX_512bit);
4840     Assembler::vpsllw(nds, nds, shift, vector_len);
4841     evmovdqul(dst, nds, Assembler::AVX_512bit);
4842   } else {
4843     // use nds as scratch for xmm0
4844     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4845     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4846     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4847     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4848   }
4849 }
4850 
4851 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4852   int dst_enc = dst->encoding();
4853   int src_enc = src->encoding();
4854   if ((dst_enc < 16) && (src_enc < 16)) {
4855     Assembler::vptest(dst, src);
4856   } else if (src_enc < 16) {
4857     subptr(rsp, 64);
4858     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4859     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4860     Assembler::vptest(xmm0, src);
4861     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4862     addptr(rsp, 64);
4863   } else if (dst_enc < 16) {
4864     subptr(rsp, 64);
4865     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4866     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4867     Assembler::vptest(dst, xmm0);
4868     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4869     addptr(rsp, 64);
4870   } else {
4871     subptr(rsp, 64);
4872     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4873     subptr(rsp, 64);
4874     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4875     movdqu(xmm0, src);
4876     movdqu(xmm1, dst);
4877     Assembler::vptest(xmm1, xmm0);
4878     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4879     addptr(rsp, 64);
4880     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4881     addptr(rsp, 64);
4882   }
4883 }
4884 
4885 // This instruction exists within macros, ergo we cannot control its input
4886 // when emitted through those patterns.
4887 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4888   if (VM_Version::supports_avx512nobw()) {
4889     int dst_enc = dst->encoding();
4890     int src_enc = src->encoding();
4891     if (dst_enc == src_enc) {
4892       if (dst_enc < 16) {
4893         Assembler::punpcklbw(dst, src);
4894       } else {
4895         subptr(rsp, 64);
4896         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4897         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4898         Assembler::punpcklbw(xmm0, xmm0);
4899         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4900         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4901         addptr(rsp, 64);
4902       }
4903     } else {
4904       if ((src_enc < 16) && (dst_enc < 16)) {
4905         Assembler::punpcklbw(dst, src);
4906       } else if (src_enc < 16) {
4907         subptr(rsp, 64);
4908         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4909         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4910         Assembler::punpcklbw(xmm0, src);
4911         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4912         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4913         addptr(rsp, 64);
4914       } else if (dst_enc < 16) {
4915         subptr(rsp, 64);
4916         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4917         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4918         Assembler::punpcklbw(dst, xmm0);
4919         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4920         addptr(rsp, 64);
4921       } else {
4922         subptr(rsp, 64);
4923         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4924         subptr(rsp, 64);
4925         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4926         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4927         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4928         Assembler::punpcklbw(xmm0, xmm1);
4929         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4930         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4931         addptr(rsp, 64);
4932         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4933         addptr(rsp, 64);
4934       }
4935     }
4936   } else {
4937     Assembler::punpcklbw(dst, src);
4938   }
4939 }
4940 
4941 // This instruction exists within macros, ergo we cannot control its input
4942 // when emitted through those patterns.
4943 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4944   if (VM_Version::supports_avx512nobw()) {
4945     int dst_enc = dst->encoding();
4946     int src_enc = src->encoding();
4947     if (dst_enc == src_enc) {
4948       if (dst_enc < 16) {
4949         Assembler::pshuflw(dst, src, mode);
4950       } else {
4951         subptr(rsp, 64);
4952         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4953         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4954         Assembler::pshuflw(xmm0, xmm0, mode);
4955         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4956         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4957         addptr(rsp, 64);
4958       }
4959     } else {
4960       if ((src_enc < 16) && (dst_enc < 16)) {
4961         Assembler::pshuflw(dst, src, mode);
4962       } else if (src_enc < 16) {
4963         subptr(rsp, 64);
4964         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4965         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4966         Assembler::pshuflw(xmm0, src, mode);
4967         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4968         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4969         addptr(rsp, 64);
4970       } else if (dst_enc < 16) {
4971         subptr(rsp, 64);
4972         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4973         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4974         Assembler::pshuflw(dst, xmm0, mode);
4975         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4976         addptr(rsp, 64);
4977       } else {
4978         subptr(rsp, 64);
4979         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4980         subptr(rsp, 64);
4981         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4982         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4983         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4984         Assembler::pshuflw(xmm0, xmm1, mode);
4985         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4986         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4987         addptr(rsp, 64);
4988         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4989         addptr(rsp, 64);
4990       }
4991     }
4992   } else {
4993     Assembler::pshuflw(dst, src, mode);
4994   }
4995 }
4996 
4997 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4998   if (reachable(src)) {
4999     vandpd(dst, nds, as_Address(src), vector_len);
5000   } else {
5001     lea(rscratch1, src);
5002     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
5003   }
5004 }
5005 
5006 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5007   if (reachable(src)) {
5008     vandps(dst, nds, as_Address(src), vector_len);
5009   } else {
5010     lea(rscratch1, src);
5011     vandps(dst, nds, Address(rscratch1, 0), vector_len);
5012   }
5013 }
5014 
5015 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5016   if (reachable(src)) {
5017     vdivsd(dst, nds, as_Address(src));
5018   } else {
5019     lea(rscratch1, src);
5020     vdivsd(dst, nds, Address(rscratch1, 0));
5021   }
5022 }
5023 
5024 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5025   if (reachable(src)) {
5026     vdivss(dst, nds, as_Address(src));
5027   } else {
5028     lea(rscratch1, src);
5029     vdivss(dst, nds, Address(rscratch1, 0));
5030   }
5031 }
5032 
5033 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5034   if (reachable(src)) {
5035     vmulsd(dst, nds, as_Address(src));
5036   } else {
5037     lea(rscratch1, src);
5038     vmulsd(dst, nds, Address(rscratch1, 0));
5039   }
5040 }
5041 
5042 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5043   if (reachable(src)) {
5044     vmulss(dst, nds, as_Address(src));
5045   } else {
5046     lea(rscratch1, src);
5047     vmulss(dst, nds, Address(rscratch1, 0));
5048   }
5049 }
5050 
5051 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5052   if (reachable(src)) {
5053     vsubsd(dst, nds, as_Address(src));
5054   } else {
5055     lea(rscratch1, src);
5056     vsubsd(dst, nds, Address(rscratch1, 0));
5057   }
5058 }
5059 
5060 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5061   if (reachable(src)) {
5062     vsubss(dst, nds, as_Address(src));
5063   } else {
5064     lea(rscratch1, src);
5065     vsubss(dst, nds, Address(rscratch1, 0));
5066   }
5067 }
5068 
5069 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5070   int nds_enc = nds->encoding();
5071   int dst_enc = dst->encoding();
5072   bool dst_upper_bank = (dst_enc > 15);
5073   bool nds_upper_bank = (nds_enc > 15);
5074   if (VM_Version::supports_avx512novl() &&
5075       (nds_upper_bank || dst_upper_bank)) {
5076     if (dst_upper_bank) {
5077       subptr(rsp, 64);
5078       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5079       movflt(xmm0, nds);
5080       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5081       movflt(dst, xmm0);
5082       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5083       addptr(rsp, 64);
5084     } else {
5085       movflt(dst, nds);
5086       vxorps(dst, dst, src, Assembler::AVX_128bit);
5087     }
5088   } else {
5089     vxorps(dst, nds, src, Assembler::AVX_128bit);
5090   }
5091 }
5092 
5093 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5094   int nds_enc = nds->encoding();
5095   int dst_enc = dst->encoding();
5096   bool dst_upper_bank = (dst_enc > 15);
5097   bool nds_upper_bank = (nds_enc > 15);
5098   if (VM_Version::supports_avx512novl() &&
5099       (nds_upper_bank || dst_upper_bank)) {
5100     if (dst_upper_bank) {
5101       subptr(rsp, 64);
5102       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5103       movdbl(xmm0, nds);
5104       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5105       movdbl(dst, xmm0);
5106       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5107       addptr(rsp, 64);
5108     } else {
5109       movdbl(dst, nds);
5110       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5111     }
5112   } else {
5113     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5114   }
5115 }
5116 
5117 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5118   if (reachable(src)) {
5119     vxorpd(dst, nds, as_Address(src), vector_len);
5120   } else {
5121     lea(rscratch1, src);
5122     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5123   }
5124 }
5125 
5126 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5127   if (reachable(src)) {
5128     vxorps(dst, nds, as_Address(src), vector_len);
5129   } else {
5130     lea(rscratch1, src);
5131     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5132   }
5133 }
5134 
5135 
5136 //////////////////////////////////////////////////////////////////////////////////
5137 #if INCLUDE_ALL_GCS
5138 
5139 void MacroAssembler::g1_write_barrier_pre(Register obj,
5140                                           Register pre_val,
5141                                           Register thread,
5142                                           Register tmp,
5143                                           bool tosca_live,
5144                                           bool expand_call) {
5145 
5146   // If expand_call is true then we expand the call_VM_leaf macro
5147   // directly to skip generating the check by
5148   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
5149 
5150 #ifdef _LP64
5151   assert(thread == r15_thread, "must be");
5152 #endif // _LP64
5153 
5154   Label done;
5155   Label runtime;
5156 
5157   assert(pre_val != noreg, "check this code");
5158 
5159   if (obj != noreg) {
5160     assert_different_registers(obj, pre_val, tmp);
5161     assert(pre_val != rax, "check this code");
5162   }
5163 
5164   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5165                                        SATBMarkQueue::byte_offset_of_active()));
5166   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5167                                        SATBMarkQueue::byte_offset_of_index()));
5168   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5169                                        SATBMarkQueue::byte_offset_of_buf()));
5170 
5171 
5172   // Is marking active?
5173   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
5174     cmpl(in_progress, 0);
5175   } else {
5176     assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
5177     cmpb(in_progress, 0);
5178   }
5179   jcc(Assembler::equal, done);
5180 
5181   // Do we need to load the previous value?
5182   if (obj != noreg) {
5183     load_heap_oop(pre_val, Address(obj, 0));
5184   }
5185 
5186   // Is the previous value null?
5187   cmpptr(pre_val, (int32_t) NULL_WORD);
5188   jcc(Assembler::equal, done);
5189 
5190   // Can we store original value in the thread's buffer?
5191   // Is index == 0?
5192   // (The index field is typed as size_t.)
5193 
5194   movptr(tmp, index);                   // tmp := *index_adr
5195   cmpptr(tmp, 0);                       // tmp == 0?
5196   jcc(Assembler::equal, runtime);       // If yes, goto runtime
5197 
5198   subptr(tmp, wordSize);                // tmp := tmp - wordSize
5199   movptr(index, tmp);                   // *index_adr := tmp
5200   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
5201 
5202   // Record the previous value
5203   movptr(Address(tmp, 0), pre_val);
5204   jmp(done);
5205 
5206   bind(runtime);
5207   // save the live input values
5208   if(tosca_live) push(rax);
5209 
5210   if (obj != noreg && obj != rax)
5211     push(obj);
5212 
5213   if (pre_val != rax)
5214     push(pre_val);
5215 
5216   // Calling the runtime using the regular call_VM_leaf mechanism generates
5217   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
5218   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
5219   //
5220   // If we care generating the pre-barrier without a frame (e.g. in the
5221   // intrinsified Reference.get() routine) then ebp might be pointing to
5222   // the caller frame and so this check will most likely fail at runtime.
5223   //
5224   // Expanding the call directly bypasses the generation of the check.
5225   // So when we do not have have a full interpreter frame on the stack
5226   // expand_call should be passed true.
5227 
5228   NOT_LP64( push(thread); )
5229 
5230   if (expand_call) {
5231     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
5232     pass_arg1(this, thread);
5233     pass_arg0(this, pre_val);
5234     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
5235   } else {
5236     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
5237   }
5238 
5239   NOT_LP64( pop(thread); )
5240 
5241   // save the live input values
5242   if (pre_val != rax)
5243     pop(pre_val);
5244 
5245   if (obj != noreg && obj != rax)
5246     pop(obj);
5247 
5248   if(tosca_live) pop(rax);
5249 
5250   bind(done);
5251 }
5252 
5253 void MacroAssembler::g1_write_barrier_post(Register store_addr,
5254                                            Register new_val,
5255                                            Register thread,
5256                                            Register tmp,
5257                                            Register tmp2) {
5258 #ifdef _LP64
5259   assert(thread == r15_thread, "must be");
5260 #endif // _LP64
5261 
5262   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5263                                        DirtyCardQueue::byte_offset_of_index()));
5264   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5265                                        DirtyCardQueue::byte_offset_of_buf()));
5266 
5267   CardTableModRefBS* ct =
5268     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
5269   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5270 
5271   Label done;
5272   Label runtime;
5273 
5274   // Does store cross heap regions?
5275 
5276   movptr(tmp, store_addr);
5277   xorptr(tmp, new_val);
5278   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
5279   jcc(Assembler::equal, done);
5280 
5281   // crosses regions, storing NULL?
5282 
5283   cmpptr(new_val, (int32_t) NULL_WORD);
5284   jcc(Assembler::equal, done);
5285 
5286   // storing region crossing non-NULL, is card already dirty?
5287 
5288   const Register card_addr = tmp;
5289   const Register cardtable = tmp2;
5290 
5291   movptr(card_addr, store_addr);
5292   shrptr(card_addr, CardTableModRefBS::card_shift);
5293   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
5294   // a valid address and therefore is not properly handled by the relocation code.
5295   movptr(cardtable, (intptr_t)ct->byte_map_base);
5296   addptr(card_addr, cardtable);
5297 
5298   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
5299   jcc(Assembler::equal, done);
5300 
5301   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
5302   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5303   jcc(Assembler::equal, done);
5304 
5305 
5306   // storing a region crossing, non-NULL oop, card is clean.
5307   // dirty card and log.
5308 
5309   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5310 
5311   cmpl(queue_index, 0);
5312   jcc(Assembler::equal, runtime);
5313   subl(queue_index, wordSize);
5314   movptr(tmp2, buffer);
5315 #ifdef _LP64
5316   movslq(rscratch1, queue_index);
5317   addq(tmp2, rscratch1);
5318   movq(Address(tmp2, 0), card_addr);
5319 #else
5320   addl(tmp2, queue_index);
5321   movl(Address(tmp2, 0), card_addr);
5322 #endif
5323   jmp(done);
5324 
5325   bind(runtime);
5326   // save the live input values
5327   push(store_addr);
5328   push(new_val);
5329 #ifdef _LP64
5330   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
5331 #else
5332   push(thread);
5333   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
5334   pop(thread);
5335 #endif
5336   pop(new_val);
5337   pop(store_addr);
5338 
5339   bind(done);
5340 }
5341 
5342 #endif // INCLUDE_ALL_GCS
5343 //////////////////////////////////////////////////////////////////////////////////
5344 
5345 
5346 void MacroAssembler::store_check(Register obj, Address dst) {
5347   store_check(obj);
5348 }
5349 
5350 void MacroAssembler::store_check(Register obj) {
5351   // Does a store check for the oop in register obj. The content of
5352   // register obj is destroyed afterwards.
5353   BarrierSet* bs = Universe::heap()->barrier_set();
5354   assert(bs->kind() == BarrierSet::CardTableForRS ||
5355          bs->kind() == BarrierSet::CardTableExtension,
5356          "Wrong barrier set kind");
5357 
5358   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
5359   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5360 
5361   shrptr(obj, CardTableModRefBS::card_shift);
5362 
5363   Address card_addr;
5364 
5365   // The calculation for byte_map_base is as follows:
5366   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
5367   // So this essentially converts an address to a displacement and it will
5368   // never need to be relocated. On 64bit however the value may be too
5369   // large for a 32bit displacement.
5370   intptr_t disp = (intptr_t) ct->byte_map_base;
5371   if (is_simm32(disp)) {
5372     card_addr = Address(noreg, obj, Address::times_1, disp);
5373   } else {
5374     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
5375     // displacement and done in a single instruction given favorable mapping and a
5376     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
5377     // entry and that entry is not properly handled by the relocation code.
5378     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
5379     Address index(noreg, obj, Address::times_1);
5380     card_addr = as_Address(ArrayAddress(cardtable, index));
5381   }
5382 
5383   int dirty = CardTableModRefBS::dirty_card_val();
5384   if (UseCondCardMark) {
5385     Label L_already_dirty;
5386     if (UseConcMarkSweepGC) {
5387       membar(Assembler::StoreLoad);
5388     }
5389     cmpb(card_addr, dirty);
5390     jcc(Assembler::equal, L_already_dirty);
5391     movb(card_addr, dirty);
5392     bind(L_already_dirty);
5393   } else {
5394     movb(card_addr, dirty);
5395   }
5396 }
5397 
5398 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5399   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5400 }
5401 
5402 // Force generation of a 4 byte immediate value even if it fits into 8bit
5403 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5404   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5405 }
5406 
5407 void MacroAssembler::subptr(Register dst, Register src) {
5408   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5409 }
5410 
5411 // C++ bool manipulation
5412 void MacroAssembler::testbool(Register dst) {
5413   if(sizeof(bool) == 1)
5414     testb(dst, 0xff);
5415   else if(sizeof(bool) == 2) {
5416     // testw implementation needed for two byte bools
5417     ShouldNotReachHere();
5418   } else if(sizeof(bool) == 4)
5419     testl(dst, dst);
5420   else
5421     // unsupported
5422     ShouldNotReachHere();
5423 }
5424 
5425 void MacroAssembler::testptr(Register dst, Register src) {
5426   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5427 }
5428 
5429 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5430 void MacroAssembler::tlab_allocate(Register obj,
5431                                    Register var_size_in_bytes,
5432                                    int con_size_in_bytes,
5433                                    Register t1,
5434                                    Register t2,
5435                                    Label& slow_case) {
5436   assert_different_registers(obj, t1, t2);
5437   assert_different_registers(obj, var_size_in_bytes, t1);
5438   Register end = t2;
5439   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
5440 
5441   verify_tlab();
5442 
5443   NOT_LP64(get_thread(thread));
5444 
5445   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
5446   if (var_size_in_bytes == noreg) {
5447     lea(end, Address(obj, con_size_in_bytes));
5448   } else {
5449     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
5450   }
5451   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
5452   jcc(Assembler::above, slow_case);
5453 
5454   // update the tlab top pointer
5455   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
5456 
5457   // recover var_size_in_bytes if necessary
5458   if (var_size_in_bytes == end) {
5459     subptr(var_size_in_bytes, obj);
5460   }
5461   verify_tlab();
5462 }
5463 
5464 // Preserves rbx, and rdx.
5465 Register MacroAssembler::tlab_refill(Label& retry,
5466                                      Label& try_eden,
5467                                      Label& slow_case) {
5468   Register top = rax;
5469   Register t1  = rcx; // object size
5470   Register t2  = rsi;
5471   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
5472   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
5473   Label do_refill, discard_tlab;
5474 
5475   if (!Universe::heap()->supports_inline_contig_alloc()) {
5476     // No allocation in the shared eden.
5477     jmp(slow_case);
5478   }
5479 
5480   NOT_LP64(get_thread(thread_reg));
5481 
5482   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5483   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5484 
5485   // calculate amount of free space
5486   subptr(t1, top);
5487   shrptr(t1, LogHeapWordSize);
5488 
5489   // Retain tlab and allocate object in shared space if
5490   // the amount free in the tlab is too large to discard.
5491   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
5492   jcc(Assembler::lessEqual, discard_tlab);
5493 
5494   // Retain
5495   // %%% yuck as movptr...
5496   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
5497   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
5498   if (TLABStats) {
5499     // increment number of slow_allocations
5500     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
5501   }
5502   jmp(try_eden);
5503 
5504   bind(discard_tlab);
5505   if (TLABStats) {
5506     // increment number of refills
5507     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
5508     // accumulate wastage -- t1 is amount free in tlab
5509     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
5510   }
5511 
5512   // if tlab is currently allocated (top or end != null) then
5513   // fill [top, end + alignment_reserve) with array object
5514   testptr(top, top);
5515   jcc(Assembler::zero, do_refill);
5516 
5517   // set up the mark word
5518   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
5519   // set the length to the remaining space
5520   subptr(t1, typeArrayOopDesc::header_size(T_INT));
5521   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
5522   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
5523   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
5524   // set klass to intArrayKlass
5525   // dubious reloc why not an oop reloc?
5526   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
5527   // store klass last.  concurrent gcs assumes klass length is valid if
5528   // klass field is not null.
5529   store_klass(top, t1);
5530 
5531   movptr(t1, top);
5532   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5533   incr_allocated_bytes(thread_reg, t1, 0);
5534 
5535   // refill the tlab with an eden allocation
5536   bind(do_refill);
5537   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5538   shlptr(t1, LogHeapWordSize);
5539   // allocate new tlab, address returned in top
5540   eden_allocate(top, t1, 0, t2, slow_case);
5541 
5542   // Check that t1 was preserved in eden_allocate.
5543 #ifdef ASSERT
5544   if (UseTLAB) {
5545     Label ok;
5546     Register tsize = rsi;
5547     assert_different_registers(tsize, thread_reg, t1);
5548     push(tsize);
5549     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5550     shlptr(tsize, LogHeapWordSize);
5551     cmpptr(t1, tsize);
5552     jcc(Assembler::equal, ok);
5553     STOP("assert(t1 != tlab size)");
5554     should_not_reach_here();
5555 
5556     bind(ok);
5557     pop(tsize);
5558   }
5559 #endif
5560   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
5561   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
5562   addptr(top, t1);
5563   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
5564   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
5565 
5566   if (ZeroTLAB) {
5567     // This is a fast TLAB refill, therefore the GC is not notified of it.
5568     // So compiled code must fill the new TLAB with zeroes.
5569     movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5570     zero_memory(top, t1, 0, t2);
5571   }
5572 
5573   verify_tlab();
5574   jmp(retry);
5575 
5576   return thread_reg; // for use by caller
5577 }
5578 
5579 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5580 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5581   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5582   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5583   Label done;
5584 
5585   testptr(length_in_bytes, length_in_bytes);
5586   jcc(Assembler::zero, done);
5587 
5588   // initialize topmost word, divide index by 2, check if odd and test if zero
5589   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5590 #ifdef ASSERT
5591   {
5592     Label L;
5593     testptr(length_in_bytes, BytesPerWord - 1);
5594     jcc(Assembler::zero, L);
5595     stop("length must be a multiple of BytesPerWord");
5596     bind(L);
5597   }
5598 #endif
5599   Register index = length_in_bytes;
5600   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5601   if (UseIncDec) {
5602     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5603   } else {
5604     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5605     shrptr(index, 1);
5606   }
5607 #ifndef _LP64
5608   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5609   {
5610     Label even;
5611     // note: if index was a multiple of 8, then it cannot
5612     //       be 0 now otherwise it must have been 0 before
5613     //       => if it is even, we don't need to check for 0 again
5614     jcc(Assembler::carryClear, even);
5615     // clear topmost word (no jump would be needed if conditional assignment worked here)
5616     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5617     // index could be 0 now, must check again
5618     jcc(Assembler::zero, done);
5619     bind(even);
5620   }
5621 #endif // !_LP64
5622   // initialize remaining object fields: index is a multiple of 2 now
5623   {
5624     Label loop;
5625     bind(loop);
5626     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5627     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5628     decrement(index);
5629     jcc(Assembler::notZero, loop);
5630   }
5631 
5632   bind(done);
5633 }
5634 
5635 void MacroAssembler::incr_allocated_bytes(Register thread,
5636                                           Register var_size_in_bytes,
5637                                           int con_size_in_bytes,
5638                                           Register t1) {
5639   if (!thread->is_valid()) {
5640 #ifdef _LP64
5641     thread = r15_thread;
5642 #else
5643     assert(t1->is_valid(), "need temp reg");
5644     thread = t1;
5645     get_thread(thread);
5646 #endif
5647   }
5648 
5649 #ifdef _LP64
5650   if (var_size_in_bytes->is_valid()) {
5651     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5652   } else {
5653     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5654   }
5655 #else
5656   if (var_size_in_bytes->is_valid()) {
5657     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5658   } else {
5659     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5660   }
5661   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
5662 #endif
5663 }
5664 
5665 // Look up the method for a megamorphic invokeinterface call.
5666 // The target method is determined by <intf_klass, itable_index>.
5667 // The receiver klass is in recv_klass.
5668 // On success, the result will be in method_result, and execution falls through.
5669 // On failure, execution transfers to the given label.
5670 void MacroAssembler::lookup_interface_method(Register recv_klass,
5671                                              Register intf_klass,
5672                                              RegisterOrConstant itable_index,
5673                                              Register method_result,
5674                                              Register scan_temp,
5675                                              Label& L_no_such_interface) {
5676   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
5677   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5678          "caller must use same register for non-constant itable index as for method");
5679 
5680   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5681   int vtable_base = in_bytes(Klass::vtable_start_offset());
5682   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5683   int scan_step   = itableOffsetEntry::size() * wordSize;
5684   int vte_size    = vtableEntry::size_in_bytes();
5685   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5686   assert(vte_size == wordSize, "else adjust times_vte_scale");
5687 
5688   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
5689 
5690   // %%% Could store the aligned, prescaled offset in the klassoop.
5691   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5692 
5693   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5694   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5695   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5696 
5697   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5698   //   if (scan->interface() == intf) {
5699   //     result = (klass + scan->offset() + itable_index);
5700   //   }
5701   // }
5702   Label search, found_method;
5703 
5704   for (int peel = 1; peel >= 0; peel--) {
5705     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5706     cmpptr(intf_klass, method_result);
5707 
5708     if (peel) {
5709       jccb(Assembler::equal, found_method);
5710     } else {
5711       jccb(Assembler::notEqual, search);
5712       // (invert the test to fall through to found_method...)
5713     }
5714 
5715     if (!peel)  break;
5716 
5717     bind(search);
5718 
5719     // Check that the previous entry is non-null.  A null entry means that
5720     // the receiver class doesn't implement the interface, and wasn't the
5721     // same as when the caller was compiled.
5722     testptr(method_result, method_result);
5723     jcc(Assembler::zero, L_no_such_interface);
5724     addptr(scan_temp, scan_step);
5725   }
5726 
5727   bind(found_method);
5728 
5729   // Got a hit.
5730   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5731   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5732 }
5733 
5734 
5735 // virtual method calling
5736 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5737                                            RegisterOrConstant vtable_index,
5738                                            Register method_result) {
5739   const int base = in_bytes(Klass::vtable_start_offset());
5740   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5741   Address vtable_entry_addr(recv_klass,
5742                             vtable_index, Address::times_ptr,
5743                             base + vtableEntry::method_offset_in_bytes());
5744   movptr(method_result, vtable_entry_addr);
5745 }
5746 
5747 
5748 void MacroAssembler::check_klass_subtype(Register sub_klass,
5749                            Register super_klass,
5750                            Register temp_reg,
5751                            Label& L_success) {
5752   Label L_failure;
5753   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5754   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5755   bind(L_failure);
5756 }
5757 
5758 
5759 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5760                                                    Register super_klass,
5761                                                    Register temp_reg,
5762                                                    Label* L_success,
5763                                                    Label* L_failure,
5764                                                    Label* L_slow_path,
5765                                         RegisterOrConstant super_check_offset) {
5766   assert_different_registers(sub_klass, super_klass, temp_reg);
5767   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5768   if (super_check_offset.is_register()) {
5769     assert_different_registers(sub_klass, super_klass,
5770                                super_check_offset.as_register());
5771   } else if (must_load_sco) {
5772     assert(temp_reg != noreg, "supply either a temp or a register offset");
5773   }
5774 
5775   Label L_fallthrough;
5776   int label_nulls = 0;
5777   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5778   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5779   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5780   assert(label_nulls <= 1, "at most one NULL in the batch");
5781 
5782   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5783   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5784   Address super_check_offset_addr(super_klass, sco_offset);
5785 
5786   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5787   // range of a jccb.  If this routine grows larger, reconsider at
5788   // least some of these.
5789 #define local_jcc(assembler_cond, label)                                \
5790   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5791   else                             jcc( assembler_cond, label) /*omit semi*/
5792 
5793   // Hacked jmp, which may only be used just before L_fallthrough.
5794 #define final_jmp(label)                                                \
5795   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5796   else                            jmp(label)                /*omit semi*/
5797 
5798   // If the pointers are equal, we are done (e.g., String[] elements).
5799   // This self-check enables sharing of secondary supertype arrays among
5800   // non-primary types such as array-of-interface.  Otherwise, each such
5801   // type would need its own customized SSA.
5802   // We move this check to the front of the fast path because many
5803   // type checks are in fact trivially successful in this manner,
5804   // so we get a nicely predicted branch right at the start of the check.
5805   cmpptr(sub_klass, super_klass);
5806   local_jcc(Assembler::equal, *L_success);
5807 
5808   // Check the supertype display:
5809   if (must_load_sco) {
5810     // Positive movl does right thing on LP64.
5811     movl(temp_reg, super_check_offset_addr);
5812     super_check_offset = RegisterOrConstant(temp_reg);
5813   }
5814   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5815   cmpptr(super_klass, super_check_addr); // load displayed supertype
5816 
5817   // This check has worked decisively for primary supers.
5818   // Secondary supers are sought in the super_cache ('super_cache_addr').
5819   // (Secondary supers are interfaces and very deeply nested subtypes.)
5820   // This works in the same check above because of a tricky aliasing
5821   // between the super_cache and the primary super display elements.
5822   // (The 'super_check_addr' can address either, as the case requires.)
5823   // Note that the cache is updated below if it does not help us find
5824   // what we need immediately.
5825   // So if it was a primary super, we can just fail immediately.
5826   // Otherwise, it's the slow path for us (no success at this point).
5827 
5828   if (super_check_offset.is_register()) {
5829     local_jcc(Assembler::equal, *L_success);
5830     cmpl(super_check_offset.as_register(), sc_offset);
5831     if (L_failure == &L_fallthrough) {
5832       local_jcc(Assembler::equal, *L_slow_path);
5833     } else {
5834       local_jcc(Assembler::notEqual, *L_failure);
5835       final_jmp(*L_slow_path);
5836     }
5837   } else if (super_check_offset.as_constant() == sc_offset) {
5838     // Need a slow path; fast failure is impossible.
5839     if (L_slow_path == &L_fallthrough) {
5840       local_jcc(Assembler::equal, *L_success);
5841     } else {
5842       local_jcc(Assembler::notEqual, *L_slow_path);
5843       final_jmp(*L_success);
5844     }
5845   } else {
5846     // No slow path; it's a fast decision.
5847     if (L_failure == &L_fallthrough) {
5848       local_jcc(Assembler::equal, *L_success);
5849     } else {
5850       local_jcc(Assembler::notEqual, *L_failure);
5851       final_jmp(*L_success);
5852     }
5853   }
5854 
5855   bind(L_fallthrough);
5856 
5857 #undef local_jcc
5858 #undef final_jmp
5859 }
5860 
5861 
5862 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5863                                                    Register super_klass,
5864                                                    Register temp_reg,
5865                                                    Register temp2_reg,
5866                                                    Label* L_success,
5867                                                    Label* L_failure,
5868                                                    bool set_cond_codes) {
5869   assert_different_registers(sub_klass, super_klass, temp_reg);
5870   if (temp2_reg != noreg)
5871     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5872 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5873 
5874   Label L_fallthrough;
5875   int label_nulls = 0;
5876   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5877   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5878   assert(label_nulls <= 1, "at most one NULL in the batch");
5879 
5880   // a couple of useful fields in sub_klass:
5881   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5882   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5883   Address secondary_supers_addr(sub_klass, ss_offset);
5884   Address super_cache_addr(     sub_klass, sc_offset);
5885 
5886   // Do a linear scan of the secondary super-klass chain.
5887   // This code is rarely used, so simplicity is a virtue here.
5888   // The repne_scan instruction uses fixed registers, which we must spill.
5889   // Don't worry too much about pre-existing connections with the input regs.
5890 
5891   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5892   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5893 
5894   // Get super_klass value into rax (even if it was in rdi or rcx).
5895   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5896   if (super_klass != rax || UseCompressedOops) {
5897     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5898     mov(rax, super_klass);
5899   }
5900   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5901   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5902 
5903 #ifndef PRODUCT
5904   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5905   ExternalAddress pst_counter_addr((address) pst_counter);
5906   NOT_LP64(  incrementl(pst_counter_addr) );
5907   LP64_ONLY( lea(rcx, pst_counter_addr) );
5908   LP64_ONLY( incrementl(Address(rcx, 0)) );
5909 #endif //PRODUCT
5910 
5911   // We will consult the secondary-super array.
5912   movptr(rdi, secondary_supers_addr);
5913   // Load the array length.  (Positive movl does right thing on LP64.)
5914   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5915   // Skip to start of data.
5916   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5917 
5918   // Scan RCX words at [RDI] for an occurrence of RAX.
5919   // Set NZ/Z based on last compare.
5920   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5921   // not change flags (only scas instruction which is repeated sets flags).
5922   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5923 
5924     testptr(rax,rax); // Set Z = 0
5925     repne_scan();
5926 
5927   // Unspill the temp. registers:
5928   if (pushed_rdi)  pop(rdi);
5929   if (pushed_rcx)  pop(rcx);
5930   if (pushed_rax)  pop(rax);
5931 
5932   if (set_cond_codes) {
5933     // Special hack for the AD files:  rdi is guaranteed non-zero.
5934     assert(!pushed_rdi, "rdi must be left non-NULL");
5935     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5936   }
5937 
5938   if (L_failure == &L_fallthrough)
5939         jccb(Assembler::notEqual, *L_failure);
5940   else  jcc(Assembler::notEqual, *L_failure);
5941 
5942   // Success.  Cache the super we found and proceed in triumph.
5943   movptr(super_cache_addr, super_klass);
5944 
5945   if (L_success != &L_fallthrough) {
5946     jmp(*L_success);
5947   }
5948 
5949 #undef IS_A_TEMP
5950 
5951   bind(L_fallthrough);
5952 }
5953 
5954 
5955 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5956   if (VM_Version::supports_cmov()) {
5957     cmovl(cc, dst, src);
5958   } else {
5959     Label L;
5960     jccb(negate_condition(cc), L);
5961     movl(dst, src);
5962     bind(L);
5963   }
5964 }
5965 
5966 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5967   if (VM_Version::supports_cmov()) {
5968     cmovl(cc, dst, src);
5969   } else {
5970     Label L;
5971     jccb(negate_condition(cc), L);
5972     movl(dst, src);
5973     bind(L);
5974   }
5975 }
5976 
5977 void MacroAssembler::verify_oop(Register reg, const char* s) {
5978   if (!VerifyOops) return;
5979 
5980   // Pass register number to verify_oop_subroutine
5981   const char* b = NULL;
5982   {
5983     ResourceMark rm;
5984     stringStream ss;
5985     ss.print("verify_oop: %s: %s", reg->name(), s);
5986     b = code_string(ss.as_string());
5987   }
5988   BLOCK_COMMENT("verify_oop {");
5989 #ifdef _LP64
5990   push(rscratch1);                    // save r10, trashed by movptr()
5991 #endif
5992   push(rax);                          // save rax,
5993   push(reg);                          // pass register argument
5994   ExternalAddress buffer((address) b);
5995   // avoid using pushptr, as it modifies scratch registers
5996   // and our contract is not to modify anything
5997   movptr(rax, buffer.addr());
5998   push(rax);
5999   // call indirectly to solve generation ordering problem
6000   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6001   call(rax);
6002   // Caller pops the arguments (oop, message) and restores rax, r10
6003   BLOCK_COMMENT("} verify_oop");
6004 }
6005 
6006 
6007 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
6008                                                       Register tmp,
6009                                                       int offset) {
6010   intptr_t value = *delayed_value_addr;
6011   if (value != 0)
6012     return RegisterOrConstant(value + offset);
6013 
6014   // load indirectly to solve generation ordering problem
6015   movptr(tmp, ExternalAddress((address) delayed_value_addr));
6016 
6017 #ifdef ASSERT
6018   { Label L;
6019     testptr(tmp, tmp);
6020     if (WizardMode) {
6021       const char* buf = NULL;
6022       {
6023         ResourceMark rm;
6024         stringStream ss;
6025         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
6026         buf = code_string(ss.as_string());
6027       }
6028       jcc(Assembler::notZero, L);
6029       STOP(buf);
6030     } else {
6031       jccb(Assembler::notZero, L);
6032       hlt();
6033     }
6034     bind(L);
6035   }
6036 #endif
6037 
6038   if (offset != 0)
6039     addptr(tmp, offset);
6040 
6041   return RegisterOrConstant(tmp);
6042 }
6043 
6044 
6045 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
6046                                          int extra_slot_offset) {
6047   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
6048   int stackElementSize = Interpreter::stackElementSize;
6049   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
6050 #ifdef ASSERT
6051   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
6052   assert(offset1 - offset == stackElementSize, "correct arithmetic");
6053 #endif
6054   Register             scale_reg    = noreg;
6055   Address::ScaleFactor scale_factor = Address::no_scale;
6056   if (arg_slot.is_constant()) {
6057     offset += arg_slot.as_constant() * stackElementSize;
6058   } else {
6059     scale_reg    = arg_slot.as_register();
6060     scale_factor = Address::times(stackElementSize);
6061   }
6062   offset += wordSize;           // return PC is on stack
6063   return Address(rsp, scale_reg, scale_factor, offset);
6064 }
6065 
6066 
6067 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
6068   if (!VerifyOops) return;
6069 
6070   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
6071   // Pass register number to verify_oop_subroutine
6072   const char* b = NULL;
6073   {
6074     ResourceMark rm;
6075     stringStream ss;
6076     ss.print("verify_oop_addr: %s", s);
6077     b = code_string(ss.as_string());
6078   }
6079 #ifdef _LP64
6080   push(rscratch1);                    // save r10, trashed by movptr()
6081 #endif
6082   push(rax);                          // save rax,
6083   // addr may contain rsp so we will have to adjust it based on the push
6084   // we just did (and on 64 bit we do two pushes)
6085   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
6086   // stores rax into addr which is backwards of what was intended.
6087   if (addr.uses(rsp)) {
6088     lea(rax, addr);
6089     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
6090   } else {
6091     pushptr(addr);
6092   }
6093 
6094   ExternalAddress buffer((address) b);
6095   // pass msg argument
6096   // avoid using pushptr, as it modifies scratch registers
6097   // and our contract is not to modify anything
6098   movptr(rax, buffer.addr());
6099   push(rax);
6100 
6101   // call indirectly to solve generation ordering problem
6102   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6103   call(rax);
6104   // Caller pops the arguments (addr, message) and restores rax, r10.
6105 }
6106 
6107 void MacroAssembler::verify_tlab() {
6108 #ifdef ASSERT
6109   if (UseTLAB && VerifyOops) {
6110     Label next, ok;
6111     Register t1 = rsi;
6112     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
6113 
6114     push(t1);
6115     NOT_LP64(push(thread_reg));
6116     NOT_LP64(get_thread(thread_reg));
6117 
6118     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6119     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
6120     jcc(Assembler::aboveEqual, next);
6121     STOP("assert(top >= start)");
6122     should_not_reach_here();
6123 
6124     bind(next);
6125     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
6126     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6127     jcc(Assembler::aboveEqual, ok);
6128     STOP("assert(top <= end)");
6129     should_not_reach_here();
6130 
6131     bind(ok);
6132     NOT_LP64(pop(thread_reg));
6133     pop(t1);
6134   }
6135 #endif
6136 }
6137 
6138 class ControlWord {
6139  public:
6140   int32_t _value;
6141 
6142   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
6143   int  precision_control() const       { return  (_value >>  8) & 3      ; }
6144   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6145   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6146   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6147   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6148   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6149   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6150 
6151   void print() const {
6152     // rounding control
6153     const char* rc;
6154     switch (rounding_control()) {
6155       case 0: rc = "round near"; break;
6156       case 1: rc = "round down"; break;
6157       case 2: rc = "round up  "; break;
6158       case 3: rc = "chop      "; break;
6159     };
6160     // precision control
6161     const char* pc;
6162     switch (precision_control()) {
6163       case 0: pc = "24 bits "; break;
6164       case 1: pc = "reserved"; break;
6165       case 2: pc = "53 bits "; break;
6166       case 3: pc = "64 bits "; break;
6167     };
6168     // flags
6169     char f[9];
6170     f[0] = ' ';
6171     f[1] = ' ';
6172     f[2] = (precision   ()) ? 'P' : 'p';
6173     f[3] = (underflow   ()) ? 'U' : 'u';
6174     f[4] = (overflow    ()) ? 'O' : 'o';
6175     f[5] = (zero_divide ()) ? 'Z' : 'z';
6176     f[6] = (denormalized()) ? 'D' : 'd';
6177     f[7] = (invalid     ()) ? 'I' : 'i';
6178     f[8] = '\x0';
6179     // output
6180     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
6181   }
6182 
6183 };
6184 
6185 class StatusWord {
6186  public:
6187   int32_t _value;
6188 
6189   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
6190   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
6191   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
6192   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
6193   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
6194   int  top() const                     { return  (_value >> 11) & 7      ; }
6195   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
6196   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
6197   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6198   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6199   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6200   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6201   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6202   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6203 
6204   void print() const {
6205     // condition codes
6206     char c[5];
6207     c[0] = (C3()) ? '3' : '-';
6208     c[1] = (C2()) ? '2' : '-';
6209     c[2] = (C1()) ? '1' : '-';
6210     c[3] = (C0()) ? '0' : '-';
6211     c[4] = '\x0';
6212     // flags
6213     char f[9];
6214     f[0] = (error_status()) ? 'E' : '-';
6215     f[1] = (stack_fault ()) ? 'S' : '-';
6216     f[2] = (precision   ()) ? 'P' : '-';
6217     f[3] = (underflow   ()) ? 'U' : '-';
6218     f[4] = (overflow    ()) ? 'O' : '-';
6219     f[5] = (zero_divide ()) ? 'Z' : '-';
6220     f[6] = (denormalized()) ? 'D' : '-';
6221     f[7] = (invalid     ()) ? 'I' : '-';
6222     f[8] = '\x0';
6223     // output
6224     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
6225   }
6226 
6227 };
6228 
6229 class TagWord {
6230  public:
6231   int32_t _value;
6232 
6233   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
6234 
6235   void print() const {
6236     printf("%04x", _value & 0xFFFF);
6237   }
6238 
6239 };
6240 
6241 class FPU_Register {
6242  public:
6243   int32_t _m0;
6244   int32_t _m1;
6245   int16_t _ex;
6246 
6247   bool is_indefinite() const           {
6248     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
6249   }
6250 
6251   void print() const {
6252     char  sign = (_ex < 0) ? '-' : '+';
6253     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
6254     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
6255   };
6256 
6257 };
6258 
6259 class FPU_State {
6260  public:
6261   enum {
6262     register_size       = 10,
6263     number_of_registers =  8,
6264     register_mask       =  7
6265   };
6266 
6267   ControlWord  _control_word;
6268   StatusWord   _status_word;
6269   TagWord      _tag_word;
6270   int32_t      _error_offset;
6271   int32_t      _error_selector;
6272   int32_t      _data_offset;
6273   int32_t      _data_selector;
6274   int8_t       _register[register_size * number_of_registers];
6275 
6276   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
6277   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
6278 
6279   const char* tag_as_string(int tag) const {
6280     switch (tag) {
6281       case 0: return "valid";
6282       case 1: return "zero";
6283       case 2: return "special";
6284       case 3: return "empty";
6285     }
6286     ShouldNotReachHere();
6287     return NULL;
6288   }
6289 
6290   void print() const {
6291     // print computation registers
6292     { int t = _status_word.top();
6293       for (int i = 0; i < number_of_registers; i++) {
6294         int j = (i - t) & register_mask;
6295         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
6296         st(j)->print();
6297         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
6298       }
6299     }
6300     printf("\n");
6301     // print control registers
6302     printf("ctrl = "); _control_word.print(); printf("\n");
6303     printf("stat = "); _status_word .print(); printf("\n");
6304     printf("tags = "); _tag_word    .print(); printf("\n");
6305   }
6306 
6307 };
6308 
6309 class Flag_Register {
6310  public:
6311   int32_t _value;
6312 
6313   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
6314   bool direction() const               { return ((_value >> 10) & 1) != 0; }
6315   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
6316   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
6317   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
6318   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
6319   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
6320 
6321   void print() const {
6322     // flags
6323     char f[8];
6324     f[0] = (overflow       ()) ? 'O' : '-';
6325     f[1] = (direction      ()) ? 'D' : '-';
6326     f[2] = (sign           ()) ? 'S' : '-';
6327     f[3] = (zero           ()) ? 'Z' : '-';
6328     f[4] = (auxiliary_carry()) ? 'A' : '-';
6329     f[5] = (parity         ()) ? 'P' : '-';
6330     f[6] = (carry          ()) ? 'C' : '-';
6331     f[7] = '\x0';
6332     // output
6333     printf("%08x  flags = %s", _value, f);
6334   }
6335 
6336 };
6337 
6338 class IU_Register {
6339  public:
6340   int32_t _value;
6341 
6342   void print() const {
6343     printf("%08x  %11d", _value, _value);
6344   }
6345 
6346 };
6347 
6348 class IU_State {
6349  public:
6350   Flag_Register _eflags;
6351   IU_Register   _rdi;
6352   IU_Register   _rsi;
6353   IU_Register   _rbp;
6354   IU_Register   _rsp;
6355   IU_Register   _rbx;
6356   IU_Register   _rdx;
6357   IU_Register   _rcx;
6358   IU_Register   _rax;
6359 
6360   void print() const {
6361     // computation registers
6362     printf("rax,  = "); _rax.print(); printf("\n");
6363     printf("rbx,  = "); _rbx.print(); printf("\n");
6364     printf("rcx  = "); _rcx.print(); printf("\n");
6365     printf("rdx  = "); _rdx.print(); printf("\n");
6366     printf("rdi  = "); _rdi.print(); printf("\n");
6367     printf("rsi  = "); _rsi.print(); printf("\n");
6368     printf("rbp,  = "); _rbp.print(); printf("\n");
6369     printf("rsp  = "); _rsp.print(); printf("\n");
6370     printf("\n");
6371     // control registers
6372     printf("flgs = "); _eflags.print(); printf("\n");
6373   }
6374 };
6375 
6376 
6377 class CPU_State {
6378  public:
6379   FPU_State _fpu_state;
6380   IU_State  _iu_state;
6381 
6382   void print() const {
6383     printf("--------------------------------------------------\n");
6384     _iu_state .print();
6385     printf("\n");
6386     _fpu_state.print();
6387     printf("--------------------------------------------------\n");
6388   }
6389 
6390 };
6391 
6392 
6393 static void _print_CPU_state(CPU_State* state) {
6394   state->print();
6395 };
6396 
6397 
6398 void MacroAssembler::print_CPU_state() {
6399   push_CPU_state();
6400   push(rsp);                // pass CPU state
6401   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6402   addptr(rsp, wordSize);       // discard argument
6403   pop_CPU_state();
6404 }
6405 
6406 
6407 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6408   static int counter = 0;
6409   FPU_State* fs = &state->_fpu_state;
6410   counter++;
6411   // For leaf calls, only verify that the top few elements remain empty.
6412   // We only need 1 empty at the top for C2 code.
6413   if( stack_depth < 0 ) {
6414     if( fs->tag_for_st(7) != 3 ) {
6415       printf("FPR7 not empty\n");
6416       state->print();
6417       assert(false, "error");
6418       return false;
6419     }
6420     return true;                // All other stack states do not matter
6421   }
6422 
6423   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6424          "bad FPU control word");
6425 
6426   // compute stack depth
6427   int i = 0;
6428   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6429   int d = i;
6430   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6431   // verify findings
6432   if (i != FPU_State::number_of_registers) {
6433     // stack not contiguous
6434     printf("%s: stack not contiguous at ST%d\n", s, i);
6435     state->print();
6436     assert(false, "error");
6437     return false;
6438   }
6439   // check if computed stack depth corresponds to expected stack depth
6440   if (stack_depth < 0) {
6441     // expected stack depth is -stack_depth or less
6442     if (d > -stack_depth) {
6443       // too many elements on the stack
6444       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6445       state->print();
6446       assert(false, "error");
6447       return false;
6448     }
6449   } else {
6450     // expected stack depth is stack_depth
6451     if (d != stack_depth) {
6452       // wrong stack depth
6453       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6454       state->print();
6455       assert(false, "error");
6456       return false;
6457     }
6458   }
6459   // everything is cool
6460   return true;
6461 }
6462 
6463 
6464 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6465   if (!VerifyFPU) return;
6466   push_CPU_state();
6467   push(rsp);                // pass CPU state
6468   ExternalAddress msg((address) s);
6469   // pass message string s
6470   pushptr(msg.addr());
6471   push(stack_depth);        // pass stack depth
6472   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6473   addptr(rsp, 3 * wordSize);   // discard arguments
6474   // check for error
6475   { Label L;
6476     testl(rax, rax);
6477     jcc(Assembler::notZero, L);
6478     int3();                  // break if error condition
6479     bind(L);
6480   }
6481   pop_CPU_state();
6482 }
6483 
6484 void MacroAssembler::restore_cpu_control_state_after_jni() {
6485   // Either restore the MXCSR register after returning from the JNI Call
6486   // or verify that it wasn't changed (with -Xcheck:jni flag).
6487   if (VM_Version::supports_sse()) {
6488     if (RestoreMXCSROnJNICalls) {
6489       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6490     } else if (CheckJNICalls) {
6491       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6492     }
6493   }
6494   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6495   vzeroupper();
6496 
6497 #ifndef _LP64
6498   // Either restore the x87 floating pointer control word after returning
6499   // from the JNI call or verify that it wasn't changed.
6500   if (CheckJNICalls) {
6501     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6502   }
6503 #endif // _LP64
6504 }
6505 
6506 void MacroAssembler::load_mirror(Register mirror, Register method) {
6507   // get mirror
6508   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
6509   movptr(mirror, Address(method, Method::const_offset()));
6510   movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
6511   movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
6512   movptr(mirror, Address(mirror, mirror_offset));
6513 }
6514 
6515 void MacroAssembler::load_klass(Register dst, Register src) {
6516 #ifdef _LP64
6517   if (UseCompressedClassPointers) {
6518     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6519     decode_klass_not_null(dst);
6520   } else
6521 #endif
6522     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6523 }
6524 
6525 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6526   load_klass(dst, src);
6527   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6528 }
6529 
6530 void MacroAssembler::store_klass(Register dst, Register src) {
6531 #ifdef _LP64
6532   if (UseCompressedClassPointers) {
6533     encode_klass_not_null(src);
6534     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6535   } else
6536 #endif
6537     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6538 }
6539 
6540 void MacroAssembler::load_heap_oop(Register dst, Address src) {
6541 #ifdef _LP64
6542   // FIXME: Must change all places where we try to load the klass.
6543   if (UseCompressedOops) {
6544     movl(dst, src);
6545     decode_heap_oop(dst);
6546   } else
6547 #endif
6548     movptr(dst, src);
6549 }
6550 
6551 // Doesn't do verfication, generates fixed size code
6552 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
6553 #ifdef _LP64
6554   if (UseCompressedOops) {
6555     movl(dst, src);
6556     decode_heap_oop_not_null(dst);
6557   } else
6558 #endif
6559     movptr(dst, src);
6560 }
6561 
6562 void MacroAssembler::store_heap_oop(Address dst, Register src) {
6563 #ifdef _LP64
6564   if (UseCompressedOops) {
6565     assert(!dst.uses(src), "not enough registers");
6566     encode_heap_oop(src);
6567     movl(dst, src);
6568   } else
6569 #endif
6570     movptr(dst, src);
6571 }
6572 
6573 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
6574   assert_different_registers(src1, tmp);
6575 #ifdef _LP64
6576   if (UseCompressedOops) {
6577     bool did_push = false;
6578     if (tmp == noreg) {
6579       tmp = rax;
6580       push(tmp);
6581       did_push = true;
6582       assert(!src2.uses(rsp), "can't push");
6583     }
6584     load_heap_oop(tmp, src2);
6585     cmpptr(src1, tmp);
6586     if (did_push)  pop(tmp);
6587   } else
6588 #endif
6589     cmpptr(src1, src2);
6590 }
6591 
6592 // Used for storing NULLs.
6593 void MacroAssembler::store_heap_oop_null(Address dst) {
6594 #ifdef _LP64
6595   if (UseCompressedOops) {
6596     movl(dst, (int32_t)NULL_WORD);
6597   } else {
6598     movslq(dst, (int32_t)NULL_WORD);
6599   }
6600 #else
6601   movl(dst, (int32_t)NULL_WORD);
6602 #endif
6603 }
6604 
6605 #ifdef _LP64
6606 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6607   if (UseCompressedClassPointers) {
6608     // Store to klass gap in destination
6609     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6610   }
6611 }
6612 
6613 #ifdef ASSERT
6614 void MacroAssembler::verify_heapbase(const char* msg) {
6615   assert (UseCompressedOops, "should be compressed");
6616   assert (Universe::heap() != NULL, "java heap should be initialized");
6617   if (CheckCompressedOops) {
6618     Label ok;
6619     push(rscratch1); // cmpptr trashes rscratch1
6620     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6621     jcc(Assembler::equal, ok);
6622     STOP(msg);
6623     bind(ok);
6624     pop(rscratch1);
6625   }
6626 }
6627 #endif
6628 
6629 // Algorithm must match oop.inline.hpp encode_heap_oop.
6630 void MacroAssembler::encode_heap_oop(Register r) {
6631 #ifdef ASSERT
6632   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6633 #endif
6634   verify_oop(r, "broken oop in encode_heap_oop");
6635   if (Universe::narrow_oop_base() == NULL) {
6636     if (Universe::narrow_oop_shift() != 0) {
6637       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6638       shrq(r, LogMinObjAlignmentInBytes);
6639     }
6640     return;
6641   }
6642   testq(r, r);
6643   cmovq(Assembler::equal, r, r12_heapbase);
6644   subq(r, r12_heapbase);
6645   shrq(r, LogMinObjAlignmentInBytes);
6646 }
6647 
6648 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6649 #ifdef ASSERT
6650   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6651   if (CheckCompressedOops) {
6652     Label ok;
6653     testq(r, r);
6654     jcc(Assembler::notEqual, ok);
6655     STOP("null oop passed to encode_heap_oop_not_null");
6656     bind(ok);
6657   }
6658 #endif
6659   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6660   if (Universe::narrow_oop_base() != NULL) {
6661     subq(r, r12_heapbase);
6662   }
6663   if (Universe::narrow_oop_shift() != 0) {
6664     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6665     shrq(r, LogMinObjAlignmentInBytes);
6666   }
6667 }
6668 
6669 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6670 #ifdef ASSERT
6671   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6672   if (CheckCompressedOops) {
6673     Label ok;
6674     testq(src, src);
6675     jcc(Assembler::notEqual, ok);
6676     STOP("null oop passed to encode_heap_oop_not_null2");
6677     bind(ok);
6678   }
6679 #endif
6680   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6681   if (dst != src) {
6682     movq(dst, src);
6683   }
6684   if (Universe::narrow_oop_base() != NULL) {
6685     subq(dst, r12_heapbase);
6686   }
6687   if (Universe::narrow_oop_shift() != 0) {
6688     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6689     shrq(dst, LogMinObjAlignmentInBytes);
6690   }
6691 }
6692 
6693 void  MacroAssembler::decode_heap_oop(Register r) {
6694 #ifdef ASSERT
6695   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6696 #endif
6697   if (Universe::narrow_oop_base() == NULL) {
6698     if (Universe::narrow_oop_shift() != 0) {
6699       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6700       shlq(r, LogMinObjAlignmentInBytes);
6701     }
6702   } else {
6703     Label done;
6704     shlq(r, LogMinObjAlignmentInBytes);
6705     jccb(Assembler::equal, done);
6706     addq(r, r12_heapbase);
6707     bind(done);
6708   }
6709   verify_oop(r, "broken oop in decode_heap_oop");
6710 }
6711 
6712 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6713   // Note: it will change flags
6714   assert (UseCompressedOops, "should only be used for compressed headers");
6715   assert (Universe::heap() != NULL, "java heap should be initialized");
6716   // Cannot assert, unverified entry point counts instructions (see .ad file)
6717   // vtableStubs also counts instructions in pd_code_size_limit.
6718   // Also do not verify_oop as this is called by verify_oop.
6719   if (Universe::narrow_oop_shift() != 0) {
6720     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6721     shlq(r, LogMinObjAlignmentInBytes);
6722     if (Universe::narrow_oop_base() != NULL) {
6723       addq(r, r12_heapbase);
6724     }
6725   } else {
6726     assert (Universe::narrow_oop_base() == NULL, "sanity");
6727   }
6728 }
6729 
6730 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6731   // Note: it will change flags
6732   assert (UseCompressedOops, "should only be used for compressed headers");
6733   assert (Universe::heap() != NULL, "java heap should be initialized");
6734   // Cannot assert, unverified entry point counts instructions (see .ad file)
6735   // vtableStubs also counts instructions in pd_code_size_limit.
6736   // Also do not verify_oop as this is called by verify_oop.
6737   if (Universe::narrow_oop_shift() != 0) {
6738     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6739     if (LogMinObjAlignmentInBytes == Address::times_8) {
6740       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6741     } else {
6742       if (dst != src) {
6743         movq(dst, src);
6744       }
6745       shlq(dst, LogMinObjAlignmentInBytes);
6746       if (Universe::narrow_oop_base() != NULL) {
6747         addq(dst, r12_heapbase);
6748       }
6749     }
6750   } else {
6751     assert (Universe::narrow_oop_base() == NULL, "sanity");
6752     if (dst != src) {
6753       movq(dst, src);
6754     }
6755   }
6756 }
6757 
6758 void MacroAssembler::encode_klass_not_null(Register r) {
6759   if (Universe::narrow_klass_base() != NULL) {
6760     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6761     assert(r != r12_heapbase, "Encoding a klass in r12");
6762     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6763     subq(r, r12_heapbase);
6764   }
6765   if (Universe::narrow_klass_shift() != 0) {
6766     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6767     shrq(r, LogKlassAlignmentInBytes);
6768   }
6769   if (Universe::narrow_klass_base() != NULL) {
6770     reinit_heapbase();
6771   }
6772 }
6773 
6774 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6775   if (dst == src) {
6776     encode_klass_not_null(src);
6777   } else {
6778     if (Universe::narrow_klass_base() != NULL) {
6779       mov64(dst, (int64_t)Universe::narrow_klass_base());
6780       negq(dst);
6781       addq(dst, src);
6782     } else {
6783       movptr(dst, src);
6784     }
6785     if (Universe::narrow_klass_shift() != 0) {
6786       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6787       shrq(dst, LogKlassAlignmentInBytes);
6788     }
6789   }
6790 }
6791 
6792 // Function instr_size_for_decode_klass_not_null() counts the instructions
6793 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6794 // when (Universe::heap() != NULL).  Hence, if the instructions they
6795 // generate change, then this method needs to be updated.
6796 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6797   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6798   if (Universe::narrow_klass_base() != NULL) {
6799     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6800     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6801   } else {
6802     // longest load decode klass function, mov64, leaq
6803     return 16;
6804   }
6805 }
6806 
6807 // !!! If the instructions that get generated here change then function
6808 // instr_size_for_decode_klass_not_null() needs to get updated.
6809 void  MacroAssembler::decode_klass_not_null(Register r) {
6810   // Note: it will change flags
6811   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6812   assert(r != r12_heapbase, "Decoding a klass in r12");
6813   // Cannot assert, unverified entry point counts instructions (see .ad file)
6814   // vtableStubs also counts instructions in pd_code_size_limit.
6815   // Also do not verify_oop as this is called by verify_oop.
6816   if (Universe::narrow_klass_shift() != 0) {
6817     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6818     shlq(r, LogKlassAlignmentInBytes);
6819   }
6820   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6821   if (Universe::narrow_klass_base() != NULL) {
6822     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6823     addq(r, r12_heapbase);
6824     reinit_heapbase();
6825   }
6826 }
6827 
6828 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6829   // Note: it will change flags
6830   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6831   if (dst == src) {
6832     decode_klass_not_null(dst);
6833   } else {
6834     // Cannot assert, unverified entry point counts instructions (see .ad file)
6835     // vtableStubs also counts instructions in pd_code_size_limit.
6836     // Also do not verify_oop as this is called by verify_oop.
6837     mov64(dst, (int64_t)Universe::narrow_klass_base());
6838     if (Universe::narrow_klass_shift() != 0) {
6839       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6840       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6841       leaq(dst, Address(dst, src, Address::times_8, 0));
6842     } else {
6843       addq(dst, src);
6844     }
6845   }
6846 }
6847 
6848 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6849   assert (UseCompressedOops, "should only be used for compressed headers");
6850   assert (Universe::heap() != NULL, "java heap should be initialized");
6851   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6852   int oop_index = oop_recorder()->find_index(obj);
6853   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6854   mov_narrow_oop(dst, oop_index, rspec);
6855 }
6856 
6857 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6858   assert (UseCompressedOops, "should only be used for compressed headers");
6859   assert (Universe::heap() != NULL, "java heap should be initialized");
6860   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6861   int oop_index = oop_recorder()->find_index(obj);
6862   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6863   mov_narrow_oop(dst, oop_index, rspec);
6864 }
6865 
6866 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6867   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6868   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6869   int klass_index = oop_recorder()->find_index(k);
6870   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6871   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6872 }
6873 
6874 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6875   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6876   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6877   int klass_index = oop_recorder()->find_index(k);
6878   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6879   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6880 }
6881 
6882 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6883   assert (UseCompressedOops, "should only be used for compressed headers");
6884   assert (Universe::heap() != NULL, "java heap should be initialized");
6885   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6886   int oop_index = oop_recorder()->find_index(obj);
6887   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6888   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6889 }
6890 
6891 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6892   assert (UseCompressedOops, "should only be used for compressed headers");
6893   assert (Universe::heap() != NULL, "java heap should be initialized");
6894   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6895   int oop_index = oop_recorder()->find_index(obj);
6896   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6897   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6898 }
6899 
6900 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6901   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6902   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6903   int klass_index = oop_recorder()->find_index(k);
6904   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6905   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6906 }
6907 
6908 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6909   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6910   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6911   int klass_index = oop_recorder()->find_index(k);
6912   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6913   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6914 }
6915 
6916 void MacroAssembler::reinit_heapbase() {
6917   if (UseCompressedOops || UseCompressedClassPointers) {
6918     if (Universe::heap() != NULL) {
6919       if (Universe::narrow_oop_base() == NULL) {
6920         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6921       } else {
6922         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6923       }
6924     } else {
6925       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6926     }
6927   }
6928 }
6929 
6930 #endif // _LP64
6931 
6932 
6933 // C2 compiled method's prolog code.
6934 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6935 
6936   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6937   // NativeJump::patch_verified_entry will be able to patch out the entry
6938   // code safely. The push to verify stack depth is ok at 5 bytes,
6939   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6940   // stack bang then we must use the 6 byte frame allocation even if
6941   // we have no frame. :-(
6942   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6943 
6944   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6945   // Remove word for return addr
6946   framesize -= wordSize;
6947   stack_bang_size -= wordSize;
6948 
6949   // Calls to C2R adapters often do not accept exceptional returns.
6950   // We require that their callers must bang for them.  But be careful, because
6951   // some VM calls (such as call site linkage) can use several kilobytes of
6952   // stack.  But the stack safety zone should account for that.
6953   // See bugs 4446381, 4468289, 4497237.
6954   if (stack_bang_size > 0) {
6955     generate_stack_overflow_check(stack_bang_size);
6956 
6957     // We always push rbp, so that on return to interpreter rbp, will be
6958     // restored correctly and we can correct the stack.
6959     push(rbp);
6960     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6961     if (PreserveFramePointer) {
6962       mov(rbp, rsp);
6963     }
6964     // Remove word for ebp
6965     framesize -= wordSize;
6966 
6967     // Create frame
6968     if (framesize) {
6969       subptr(rsp, framesize);
6970     }
6971   } else {
6972     // Create frame (force generation of a 4 byte immediate value)
6973     subptr_imm32(rsp, framesize);
6974 
6975     // Save RBP register now.
6976     framesize -= wordSize;
6977     movptr(Address(rsp, framesize), rbp);
6978     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6979     if (PreserveFramePointer) {
6980       movptr(rbp, rsp);
6981       if (framesize > 0) {
6982         addptr(rbp, framesize);
6983       }
6984     }
6985   }
6986 
6987   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6988     framesize -= wordSize;
6989     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6990   }
6991 
6992 #ifndef _LP64
6993   // If method sets FPU control word do it now
6994   if (fp_mode_24b) {
6995     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6996   }
6997   if (UseSSE >= 2 && VerifyFPU) {
6998     verify_FPU(0, "FPU stack must be clean on entry");
6999   }
7000 #endif
7001 
7002 #ifdef ASSERT
7003   if (VerifyStackAtCalls) {
7004     Label L;
7005     push(rax);
7006     mov(rax, rsp);
7007     andptr(rax, StackAlignmentInBytes-1);
7008     cmpptr(rax, StackAlignmentInBytes-wordSize);
7009     pop(rax);
7010     jcc(Assembler::equal, L);
7011     STOP("Stack is not properly aligned!");
7012     bind(L);
7013   }
7014 #endif
7015 
7016 }
7017 
7018 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, bool is_large) {
7019   // cnt - number of qwords (8-byte words).
7020   // base - start address, qword aligned.
7021   // is_large - if optimizers know cnt is larger than InitArrayShortSize
7022   assert(base==rdi, "base register must be edi for rep stos");
7023   assert(tmp==rax,   "tmp register must be eax for rep stos");
7024   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
7025   assert(InitArrayShortSize % BytesPerLong == 0,
7026     "InitArrayShortSize should be the multiple of BytesPerLong");
7027 
7028   Label DONE;
7029 
7030   xorptr(tmp, tmp);
7031 
7032   if (!is_large) {
7033     Label LOOP, LONG;
7034     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
7035     jccb(Assembler::greater, LONG);
7036 
7037     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7038 
7039     decrement(cnt);
7040     jccb(Assembler::negative, DONE); // Zero length
7041 
7042     // Use individual pointer-sized stores for small counts:
7043     BIND(LOOP);
7044     movptr(Address(base, cnt, Address::times_ptr), tmp);
7045     decrement(cnt);
7046     jccb(Assembler::greaterEqual, LOOP);
7047     jmpb(DONE);
7048 
7049     BIND(LONG);
7050   }
7051 
7052   // Use longer rep-prefixed ops for non-small counts:
7053   if (UseFastStosb) {
7054     shlptr(cnt, 3); // convert to number of bytes
7055     rep_stosb();
7056   } else {
7057     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7058     rep_stos();
7059   }
7060 
7061   BIND(DONE);
7062 }
7063 
7064 #ifdef COMPILER2
7065 
7066 // IndexOf for constant substrings with size >= 8 chars
7067 // which don't need to be loaded through stack.
7068 void MacroAssembler::string_indexofC8(Register str1, Register str2,
7069                                       Register cnt1, Register cnt2,
7070                                       int int_cnt2,  Register result,
7071                                       XMMRegister vec, Register tmp,
7072                                       int ae) {
7073   ShortBranchVerifier sbv(this);
7074   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7075   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7076 
7077   // This method uses the pcmpestri instruction with bound registers
7078   //   inputs:
7079   //     xmm - substring
7080   //     rax - substring length (elements count)
7081   //     mem - scanned string
7082   //     rdx - string length (elements count)
7083   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7084   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7085   //   outputs:
7086   //     rcx - matched index in string
7087   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7088   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7089   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7090   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7091   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7092 
7093   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
7094         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
7095         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
7096 
7097   // Note, inline_string_indexOf() generates checks:
7098   // if (substr.count > string.count) return -1;
7099   // if (substr.count == 0) return 0;
7100   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
7101 
7102   // Load substring.
7103   if (ae == StrIntrinsicNode::UL) {
7104     pmovzxbw(vec, Address(str2, 0));
7105   } else {
7106     movdqu(vec, Address(str2, 0));
7107   }
7108   movl(cnt2, int_cnt2);
7109   movptr(result, str1); // string addr
7110 
7111   if (int_cnt2 > stride) {
7112     jmpb(SCAN_TO_SUBSTR);
7113 
7114     // Reload substr for rescan, this code
7115     // is executed only for large substrings (> 8 chars)
7116     bind(RELOAD_SUBSTR);
7117     if (ae == StrIntrinsicNode::UL) {
7118       pmovzxbw(vec, Address(str2, 0));
7119     } else {
7120       movdqu(vec, Address(str2, 0));
7121     }
7122     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
7123 
7124     bind(RELOAD_STR);
7125     // We came here after the beginning of the substring was
7126     // matched but the rest of it was not so we need to search
7127     // again. Start from the next element after the previous match.
7128 
7129     // cnt2 is number of substring reminding elements and
7130     // cnt1 is number of string reminding elements when cmp failed.
7131     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
7132     subl(cnt1, cnt2);
7133     addl(cnt1, int_cnt2);
7134     movl(cnt2, int_cnt2); // Now restore cnt2
7135 
7136     decrementl(cnt1);     // Shift to next element
7137     cmpl(cnt1, cnt2);
7138     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7139 
7140     addptr(result, (1<<scale1));
7141 
7142   } // (int_cnt2 > 8)
7143 
7144   // Scan string for start of substr in 16-byte vectors
7145   bind(SCAN_TO_SUBSTR);
7146   pcmpestri(vec, Address(result, 0), mode);
7147   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7148   subl(cnt1, stride);
7149   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7150   cmpl(cnt1, cnt2);
7151   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7152   addptr(result, 16);
7153   jmpb(SCAN_TO_SUBSTR);
7154 
7155   // Found a potential substr
7156   bind(FOUND_CANDIDATE);
7157   // Matched whole vector if first element matched (tmp(rcx) == 0).
7158   if (int_cnt2 == stride) {
7159     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
7160   } else { // int_cnt2 > 8
7161     jccb(Assembler::overflow, FOUND_SUBSTR);
7162   }
7163   // After pcmpestri tmp(rcx) contains matched element index
7164   // Compute start addr of substr
7165   lea(result, Address(result, tmp, scale1));
7166 
7167   // Make sure string is still long enough
7168   subl(cnt1, tmp);
7169   cmpl(cnt1, cnt2);
7170   if (int_cnt2 == stride) {
7171     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7172   } else { // int_cnt2 > 8
7173     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
7174   }
7175   // Left less then substring.
7176 
7177   bind(RET_NOT_FOUND);
7178   movl(result, -1);
7179   jmp(EXIT);
7180 
7181   if (int_cnt2 > stride) {
7182     // This code is optimized for the case when whole substring
7183     // is matched if its head is matched.
7184     bind(MATCH_SUBSTR_HEAD);
7185     pcmpestri(vec, Address(result, 0), mode);
7186     // Reload only string if does not match
7187     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
7188 
7189     Label CONT_SCAN_SUBSTR;
7190     // Compare the rest of substring (> 8 chars).
7191     bind(FOUND_SUBSTR);
7192     // First 8 chars are already matched.
7193     negptr(cnt2);
7194     addptr(cnt2, stride);
7195 
7196     bind(SCAN_SUBSTR);
7197     subl(cnt1, stride);
7198     cmpl(cnt2, -stride); // Do not read beyond substring
7199     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
7200     // Back-up strings to avoid reading beyond substring:
7201     // cnt1 = cnt1 - cnt2 + 8
7202     addl(cnt1, cnt2); // cnt2 is negative
7203     addl(cnt1, stride);
7204     movl(cnt2, stride); negptr(cnt2);
7205     bind(CONT_SCAN_SUBSTR);
7206     if (int_cnt2 < (int)G) {
7207       int tail_off1 = int_cnt2<<scale1;
7208       int tail_off2 = int_cnt2<<scale2;
7209       if (ae == StrIntrinsicNode::UL) {
7210         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
7211       } else {
7212         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
7213       }
7214       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
7215     } else {
7216       // calculate index in register to avoid integer overflow (int_cnt2*2)
7217       movl(tmp, int_cnt2);
7218       addptr(tmp, cnt2);
7219       if (ae == StrIntrinsicNode::UL) {
7220         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
7221       } else {
7222         movdqu(vec, Address(str2, tmp, scale2, 0));
7223       }
7224       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
7225     }
7226     // Need to reload strings pointers if not matched whole vector
7227     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7228     addptr(cnt2, stride);
7229     jcc(Assembler::negative, SCAN_SUBSTR);
7230     // Fall through if found full substring
7231 
7232   } // (int_cnt2 > 8)
7233 
7234   bind(RET_FOUND);
7235   // Found result if we matched full small substring.
7236   // Compute substr offset
7237   subptr(result, str1);
7238   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7239     shrl(result, 1); // index
7240   }
7241   bind(EXIT);
7242 
7243 } // string_indexofC8
7244 
7245 // Small strings are loaded through stack if they cross page boundary.
7246 void MacroAssembler::string_indexof(Register str1, Register str2,
7247                                     Register cnt1, Register cnt2,
7248                                     int int_cnt2,  Register result,
7249                                     XMMRegister vec, Register tmp,
7250                                     int ae) {
7251   ShortBranchVerifier sbv(this);
7252   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7253   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7254 
7255   //
7256   // int_cnt2 is length of small (< 8 chars) constant substring
7257   // or (-1) for non constant substring in which case its length
7258   // is in cnt2 register.
7259   //
7260   // Note, inline_string_indexOf() generates checks:
7261   // if (substr.count > string.count) return -1;
7262   // if (substr.count == 0) return 0;
7263   //
7264   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7265   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
7266   // This method uses the pcmpestri instruction with bound registers
7267   //   inputs:
7268   //     xmm - substring
7269   //     rax - substring length (elements count)
7270   //     mem - scanned string
7271   //     rdx - string length (elements count)
7272   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7273   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7274   //   outputs:
7275   //     rcx - matched index in string
7276   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7277   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7278   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7279   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7280 
7281   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
7282         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
7283         FOUND_CANDIDATE;
7284 
7285   { //========================================================
7286     // We don't know where these strings are located
7287     // and we can't read beyond them. Load them through stack.
7288     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
7289 
7290     movptr(tmp, rsp); // save old SP
7291 
7292     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
7293       if (int_cnt2 == (1>>scale2)) { // One byte
7294         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
7295         load_unsigned_byte(result, Address(str2, 0));
7296         movdl(vec, result); // move 32 bits
7297       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
7298         // Not enough header space in 32-bit VM: 12+3 = 15.
7299         movl(result, Address(str2, -1));
7300         shrl(result, 8);
7301         movdl(vec, result); // move 32 bits
7302       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
7303         load_unsigned_short(result, Address(str2, 0));
7304         movdl(vec, result); // move 32 bits
7305       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
7306         movdl(vec, Address(str2, 0)); // move 32 bits
7307       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
7308         movq(vec, Address(str2, 0));  // move 64 bits
7309       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
7310         // Array header size is 12 bytes in 32-bit VM
7311         // + 6 bytes for 3 chars == 18 bytes,
7312         // enough space to load vec and shift.
7313         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
7314         if (ae == StrIntrinsicNode::UL) {
7315           int tail_off = int_cnt2-8;
7316           pmovzxbw(vec, Address(str2, tail_off));
7317           psrldq(vec, -2*tail_off);
7318         }
7319         else {
7320           int tail_off = int_cnt2*(1<<scale2);
7321           movdqu(vec, Address(str2, tail_off-16));
7322           psrldq(vec, 16-tail_off);
7323         }
7324       }
7325     } else { // not constant substring
7326       cmpl(cnt2, stride);
7327       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
7328 
7329       // We can read beyond string if srt+16 does not cross page boundary
7330       // since heaps are aligned and mapped by pages.
7331       assert(os::vm_page_size() < (int)G, "default page should be small");
7332       movl(result, str2); // We need only low 32 bits
7333       andl(result, (os::vm_page_size()-1));
7334       cmpl(result, (os::vm_page_size()-16));
7335       jccb(Assembler::belowEqual, CHECK_STR);
7336 
7337       // Move small strings to stack to allow load 16 bytes into vec.
7338       subptr(rsp, 16);
7339       int stk_offset = wordSize-(1<<scale2);
7340       push(cnt2);
7341 
7342       bind(COPY_SUBSTR);
7343       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7344         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7345         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7346       } else if (ae == StrIntrinsicNode::UU) {
7347         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7348         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7349       }
7350       decrement(cnt2);
7351       jccb(Assembler::notZero, COPY_SUBSTR);
7352 
7353       pop(cnt2);
7354       movptr(str2, rsp);  // New substring address
7355     } // non constant
7356 
7357     bind(CHECK_STR);
7358     cmpl(cnt1, stride);
7359     jccb(Assembler::aboveEqual, BIG_STRINGS);
7360 
7361     // Check cross page boundary.
7362     movl(result, str1); // We need only low 32 bits
7363     andl(result, (os::vm_page_size()-1));
7364     cmpl(result, (os::vm_page_size()-16));
7365     jccb(Assembler::belowEqual, BIG_STRINGS);
7366 
7367     subptr(rsp, 16);
7368     int stk_offset = -(1<<scale1);
7369     if (int_cnt2 < 0) { // not constant
7370       push(cnt2);
7371       stk_offset += wordSize;
7372     }
7373     movl(cnt2, cnt1);
7374 
7375     bind(COPY_STR);
7376     if (ae == StrIntrinsicNode::LL) {
7377       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7378       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7379     } else {
7380       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7381       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7382     }
7383     decrement(cnt2);
7384     jccb(Assembler::notZero, COPY_STR);
7385 
7386     if (int_cnt2 < 0) { // not constant
7387       pop(cnt2);
7388     }
7389     movptr(str1, rsp);  // New string address
7390 
7391     bind(BIG_STRINGS);
7392     // Load substring.
7393     if (int_cnt2 < 0) { // -1
7394       if (ae == StrIntrinsicNode::UL) {
7395         pmovzxbw(vec, Address(str2, 0));
7396       } else {
7397         movdqu(vec, Address(str2, 0));
7398       }
7399       push(cnt2);       // substr count
7400       push(str2);       // substr addr
7401       push(str1);       // string addr
7402     } else {
7403       // Small (< 8 chars) constant substrings are loaded already.
7404       movl(cnt2, int_cnt2);
7405     }
7406     push(tmp);  // original SP
7407 
7408   } // Finished loading
7409 
7410   //========================================================
7411   // Start search
7412   //
7413 
7414   movptr(result, str1); // string addr
7415 
7416   if (int_cnt2  < 0) {  // Only for non constant substring
7417     jmpb(SCAN_TO_SUBSTR);
7418 
7419     // SP saved at sp+0
7420     // String saved at sp+1*wordSize
7421     // Substr saved at sp+2*wordSize
7422     // Substr count saved at sp+3*wordSize
7423 
7424     // Reload substr for rescan, this code
7425     // is executed only for large substrings (> 8 chars)
7426     bind(RELOAD_SUBSTR);
7427     movptr(str2, Address(rsp, 2*wordSize));
7428     movl(cnt2, Address(rsp, 3*wordSize));
7429     if (ae == StrIntrinsicNode::UL) {
7430       pmovzxbw(vec, Address(str2, 0));
7431     } else {
7432       movdqu(vec, Address(str2, 0));
7433     }
7434     // We came here after the beginning of the substring was
7435     // matched but the rest of it was not so we need to search
7436     // again. Start from the next element after the previous match.
7437     subptr(str1, result); // Restore counter
7438     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7439       shrl(str1, 1);
7440     }
7441     addl(cnt1, str1);
7442     decrementl(cnt1);   // Shift to next element
7443     cmpl(cnt1, cnt2);
7444     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7445 
7446     addptr(result, (1<<scale1));
7447   } // non constant
7448 
7449   // Scan string for start of substr in 16-byte vectors
7450   bind(SCAN_TO_SUBSTR);
7451   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7452   pcmpestri(vec, Address(result, 0), mode);
7453   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7454   subl(cnt1, stride);
7455   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7456   cmpl(cnt1, cnt2);
7457   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7458   addptr(result, 16);
7459 
7460   bind(ADJUST_STR);
7461   cmpl(cnt1, stride); // Do not read beyond string
7462   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7463   // Back-up string to avoid reading beyond string.
7464   lea(result, Address(result, cnt1, scale1, -16));
7465   movl(cnt1, stride);
7466   jmpb(SCAN_TO_SUBSTR);
7467 
7468   // Found a potential substr
7469   bind(FOUND_CANDIDATE);
7470   // After pcmpestri tmp(rcx) contains matched element index
7471 
7472   // Make sure string is still long enough
7473   subl(cnt1, tmp);
7474   cmpl(cnt1, cnt2);
7475   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7476   // Left less then substring.
7477 
7478   bind(RET_NOT_FOUND);
7479   movl(result, -1);
7480   jmpb(CLEANUP);
7481 
7482   bind(FOUND_SUBSTR);
7483   // Compute start addr of substr
7484   lea(result, Address(result, tmp, scale1));
7485   if (int_cnt2 > 0) { // Constant substring
7486     // Repeat search for small substring (< 8 chars)
7487     // from new point without reloading substring.
7488     // Have to check that we don't read beyond string.
7489     cmpl(tmp, stride-int_cnt2);
7490     jccb(Assembler::greater, ADJUST_STR);
7491     // Fall through if matched whole substring.
7492   } else { // non constant
7493     assert(int_cnt2 == -1, "should be != 0");
7494 
7495     addl(tmp, cnt2);
7496     // Found result if we matched whole substring.
7497     cmpl(tmp, stride);
7498     jccb(Assembler::lessEqual, RET_FOUND);
7499 
7500     // Repeat search for small substring (<= 8 chars)
7501     // from new point 'str1' without reloading substring.
7502     cmpl(cnt2, stride);
7503     // Have to check that we don't read beyond string.
7504     jccb(Assembler::lessEqual, ADJUST_STR);
7505 
7506     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7507     // Compare the rest of substring (> 8 chars).
7508     movptr(str1, result);
7509 
7510     cmpl(tmp, cnt2);
7511     // First 8 chars are already matched.
7512     jccb(Assembler::equal, CHECK_NEXT);
7513 
7514     bind(SCAN_SUBSTR);
7515     pcmpestri(vec, Address(str1, 0), mode);
7516     // Need to reload strings pointers if not matched whole vector
7517     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7518 
7519     bind(CHECK_NEXT);
7520     subl(cnt2, stride);
7521     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7522     addptr(str1, 16);
7523     if (ae == StrIntrinsicNode::UL) {
7524       addptr(str2, 8);
7525     } else {
7526       addptr(str2, 16);
7527     }
7528     subl(cnt1, stride);
7529     cmpl(cnt2, stride); // Do not read beyond substring
7530     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7531     // Back-up strings to avoid reading beyond substring.
7532 
7533     if (ae == StrIntrinsicNode::UL) {
7534       lea(str2, Address(str2, cnt2, scale2, -8));
7535       lea(str1, Address(str1, cnt2, scale1, -16));
7536     } else {
7537       lea(str2, Address(str2, cnt2, scale2, -16));
7538       lea(str1, Address(str1, cnt2, scale1, -16));
7539     }
7540     subl(cnt1, cnt2);
7541     movl(cnt2, stride);
7542     addl(cnt1, stride);
7543     bind(CONT_SCAN_SUBSTR);
7544     if (ae == StrIntrinsicNode::UL) {
7545       pmovzxbw(vec, Address(str2, 0));
7546     } else {
7547       movdqu(vec, Address(str2, 0));
7548     }
7549     jmp(SCAN_SUBSTR);
7550 
7551     bind(RET_FOUND_LONG);
7552     movptr(str1, Address(rsp, wordSize));
7553   } // non constant
7554 
7555   bind(RET_FOUND);
7556   // Compute substr offset
7557   subptr(result, str1);
7558   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7559     shrl(result, 1); // index
7560   }
7561   bind(CLEANUP);
7562   pop(rsp); // restore SP
7563 
7564 } // string_indexof
7565 
7566 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7567                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7568   ShortBranchVerifier sbv(this);
7569   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7570 
7571   int stride = 8;
7572 
7573   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7574         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7575         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7576         FOUND_SEQ_CHAR, DONE_LABEL;
7577 
7578   movptr(result, str1);
7579   if (UseAVX >= 2) {
7580     cmpl(cnt1, stride);
7581     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7582     cmpl(cnt1, 2*stride);
7583     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
7584     movdl(vec1, ch);
7585     vpbroadcastw(vec1, vec1);
7586     vpxor(vec2, vec2);
7587     movl(tmp, cnt1);
7588     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7589     andl(cnt1,0x0000000F);  //tail count (in chars)
7590 
7591     bind(SCAN_TO_16_CHAR_LOOP);
7592     vmovdqu(vec3, Address(result, 0));
7593     vpcmpeqw(vec3, vec3, vec1, 1);
7594     vptest(vec2, vec3);
7595     jcc(Assembler::carryClear, FOUND_CHAR);
7596     addptr(result, 32);
7597     subl(tmp, 2*stride);
7598     jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7599     jmp(SCAN_TO_8_CHAR);
7600     bind(SCAN_TO_8_CHAR_INIT);
7601     movdl(vec1, ch);
7602     pshuflw(vec1, vec1, 0x00);
7603     pshufd(vec1, vec1, 0);
7604     pxor(vec2, vec2);
7605   }
7606   bind(SCAN_TO_8_CHAR);
7607   cmpl(cnt1, stride);
7608   if (UseAVX >= 2) {
7609     jcc(Assembler::less, SCAN_TO_CHAR);
7610   } else {
7611     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7612     movdl(vec1, ch);
7613     pshuflw(vec1, vec1, 0x00);
7614     pshufd(vec1, vec1, 0);
7615     pxor(vec2, vec2);
7616   }
7617   movl(tmp, cnt1);
7618   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7619   andl(cnt1,0x00000007);  //tail count (in chars)
7620 
7621   bind(SCAN_TO_8_CHAR_LOOP);
7622   movdqu(vec3, Address(result, 0));
7623   pcmpeqw(vec3, vec1);
7624   ptest(vec2, vec3);
7625   jcc(Assembler::carryClear, FOUND_CHAR);
7626   addptr(result, 16);
7627   subl(tmp, stride);
7628   jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7629   bind(SCAN_TO_CHAR);
7630   testl(cnt1, cnt1);
7631   jcc(Assembler::zero, RET_NOT_FOUND);
7632   bind(SCAN_TO_CHAR_LOOP);
7633   load_unsigned_short(tmp, Address(result, 0));
7634   cmpl(ch, tmp);
7635   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7636   addptr(result, 2);
7637   subl(cnt1, 1);
7638   jccb(Assembler::zero, RET_NOT_FOUND);
7639   jmp(SCAN_TO_CHAR_LOOP);
7640 
7641   bind(RET_NOT_FOUND);
7642   movl(result, -1);
7643   jmpb(DONE_LABEL);
7644 
7645   bind(FOUND_CHAR);
7646   if (UseAVX >= 2) {
7647     vpmovmskb(tmp, vec3);
7648   } else {
7649     pmovmskb(tmp, vec3);
7650   }
7651   bsfl(ch, tmp);
7652   addl(result, ch);
7653 
7654   bind(FOUND_SEQ_CHAR);
7655   subptr(result, str1);
7656   shrl(result, 1);
7657 
7658   bind(DONE_LABEL);
7659 } // string_indexof_char
7660 
7661 // helper function for string_compare
7662 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7663                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7664                                         Address::ScaleFactor scale2, Register index, int ae) {
7665   if (ae == StrIntrinsicNode::LL) {
7666     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7667     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7668   } else if (ae == StrIntrinsicNode::UU) {
7669     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7670     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7671   } else {
7672     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7673     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7674   }
7675 }
7676 
7677 // Compare strings, used for char[] and byte[].
7678 void MacroAssembler::string_compare(Register str1, Register str2,
7679                                     Register cnt1, Register cnt2, Register result,
7680                                     XMMRegister vec1, int ae) {
7681   ShortBranchVerifier sbv(this);
7682   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7683   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7684   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7685   int stride2x2 = 0x40;
7686   Address::ScaleFactor scale = Address::no_scale;
7687   Address::ScaleFactor scale1 = Address::no_scale;
7688   Address::ScaleFactor scale2 = Address::no_scale;
7689 
7690   if (ae != StrIntrinsicNode::LL) {
7691     stride2x2 = 0x20;
7692   }
7693 
7694   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7695     shrl(cnt2, 1);
7696   }
7697   // Compute the minimum of the string lengths and the
7698   // difference of the string lengths (stack).
7699   // Do the conditional move stuff
7700   movl(result, cnt1);
7701   subl(cnt1, cnt2);
7702   push(cnt1);
7703   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7704 
7705   // Is the minimum length zero?
7706   testl(cnt2, cnt2);
7707   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7708   if (ae == StrIntrinsicNode::LL) {
7709     // Load first bytes
7710     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7711     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7712   } else if (ae == StrIntrinsicNode::UU) {
7713     // Load first characters
7714     load_unsigned_short(result, Address(str1, 0));
7715     load_unsigned_short(cnt1, Address(str2, 0));
7716   } else {
7717     load_unsigned_byte(result, Address(str1, 0));
7718     load_unsigned_short(cnt1, Address(str2, 0));
7719   }
7720   subl(result, cnt1);
7721   jcc(Assembler::notZero,  POP_LABEL);
7722 
7723   if (ae == StrIntrinsicNode::UU) {
7724     // Divide length by 2 to get number of chars
7725     shrl(cnt2, 1);
7726   }
7727   cmpl(cnt2, 1);
7728   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7729 
7730   // Check if the strings start at the same location and setup scale and stride
7731   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7732     cmpptr(str1, str2);
7733     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7734     if (ae == StrIntrinsicNode::LL) {
7735       scale = Address::times_1;
7736       stride = 16;
7737     } else {
7738       scale = Address::times_2;
7739       stride = 8;
7740     }
7741   } else {
7742     scale1 = Address::times_1;
7743     scale2 = Address::times_2;
7744     // scale not used
7745     stride = 8;
7746   }
7747 
7748   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7749     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7750     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7751     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7752     Label COMPARE_TAIL_LONG;
7753     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7754 
7755     int pcmpmask = 0x19;
7756     if (ae == StrIntrinsicNode::LL) {
7757       pcmpmask &= ~0x01;
7758     }
7759 
7760     // Setup to compare 16-chars (32-bytes) vectors,
7761     // start from first character again because it has aligned address.
7762     if (ae == StrIntrinsicNode::LL) {
7763       stride2 = 32;
7764     } else {
7765       stride2 = 16;
7766     }
7767     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7768       adr_stride = stride << scale;
7769     } else {
7770       adr_stride1 = 8;  //stride << scale1;
7771       adr_stride2 = 16; //stride << scale2;
7772     }
7773 
7774     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7775     // rax and rdx are used by pcmpestri as elements counters
7776     movl(result, cnt2);
7777     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7778     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7779 
7780     // fast path : compare first 2 8-char vectors.
7781     bind(COMPARE_16_CHARS);
7782     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7783       movdqu(vec1, Address(str1, 0));
7784     } else {
7785       pmovzxbw(vec1, Address(str1, 0));
7786     }
7787     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7788     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7789 
7790     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7791       movdqu(vec1, Address(str1, adr_stride));
7792       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7793     } else {
7794       pmovzxbw(vec1, Address(str1, adr_stride1));
7795       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7796     }
7797     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7798     addl(cnt1, stride);
7799 
7800     // Compare the characters at index in cnt1
7801     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7802     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7803     subl(result, cnt2);
7804     jmp(POP_LABEL);
7805 
7806     // Setup the registers to start vector comparison loop
7807     bind(COMPARE_WIDE_VECTORS);
7808     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7809       lea(str1, Address(str1, result, scale));
7810       lea(str2, Address(str2, result, scale));
7811     } else {
7812       lea(str1, Address(str1, result, scale1));
7813       lea(str2, Address(str2, result, scale2));
7814     }
7815     subl(result, stride2);
7816     subl(cnt2, stride2);
7817     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
7818     negptr(result);
7819 
7820     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
7821     bind(COMPARE_WIDE_VECTORS_LOOP);
7822 
7823 #ifdef _LP64
7824     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7825       cmpl(cnt2, stride2x2);
7826       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7827       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
7828       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
7829 
7830       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7831       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7832         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
7833         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7834       } else {
7835         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
7836         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7837       }
7838       kortestql(k7, k7);
7839       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
7840       addptr(result, stride2x2);  // update since we already compared at this addr
7841       subl(cnt2, stride2x2);      // and sub the size too
7842       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7843 
7844       vpxor(vec1, vec1);
7845       jmpb(COMPARE_WIDE_TAIL);
7846     }//if (VM_Version::supports_avx512vlbw())
7847 #endif // _LP64
7848 
7849 
7850     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7851     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7852       vmovdqu(vec1, Address(str1, result, scale));
7853       vpxor(vec1, Address(str2, result, scale));
7854     } else {
7855       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
7856       vpxor(vec1, Address(str2, result, scale2));
7857     }
7858     vptest(vec1, vec1);
7859     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
7860     addptr(result, stride2);
7861     subl(cnt2, stride2);
7862     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
7863     // clean upper bits of YMM registers
7864     vpxor(vec1, vec1);
7865 
7866     // compare wide vectors tail
7867     bind(COMPARE_WIDE_TAIL);
7868     testptr(result, result);
7869     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7870 
7871     movl(result, stride2);
7872     movl(cnt2, result);
7873     negptr(result);
7874     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7875 
7876     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
7877     bind(VECTOR_NOT_EQUAL);
7878     // clean upper bits of YMM registers
7879     vpxor(vec1, vec1);
7880     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7881       lea(str1, Address(str1, result, scale));
7882       lea(str2, Address(str2, result, scale));
7883     } else {
7884       lea(str1, Address(str1, result, scale1));
7885       lea(str2, Address(str2, result, scale2));
7886     }
7887     jmp(COMPARE_16_CHARS);
7888 
7889     // Compare tail chars, length between 1 to 15 chars
7890     bind(COMPARE_TAIL_LONG);
7891     movl(cnt2, result);
7892     cmpl(cnt2, stride);
7893     jcc(Assembler::less, COMPARE_SMALL_STR);
7894 
7895     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7896       movdqu(vec1, Address(str1, 0));
7897     } else {
7898       pmovzxbw(vec1, Address(str1, 0));
7899     }
7900     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7901     jcc(Assembler::below, COMPARE_INDEX_CHAR);
7902     subptr(cnt2, stride);
7903     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7904     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7905       lea(str1, Address(str1, result, scale));
7906       lea(str2, Address(str2, result, scale));
7907     } else {
7908       lea(str1, Address(str1, result, scale1));
7909       lea(str2, Address(str2, result, scale2));
7910     }
7911     negptr(cnt2);
7912     jmpb(WHILE_HEAD_LABEL);
7913 
7914     bind(COMPARE_SMALL_STR);
7915   } else if (UseSSE42Intrinsics) {
7916     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
7917     int pcmpmask = 0x19;
7918     // Setup to compare 8-char (16-byte) vectors,
7919     // start from first character again because it has aligned address.
7920     movl(result, cnt2);
7921     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
7922     if (ae == StrIntrinsicNode::LL) {
7923       pcmpmask &= ~0x01;
7924     }
7925     jcc(Assembler::zero, COMPARE_TAIL);
7926     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7927       lea(str1, Address(str1, result, scale));
7928       lea(str2, Address(str2, result, scale));
7929     } else {
7930       lea(str1, Address(str1, result, scale1));
7931       lea(str2, Address(str2, result, scale2));
7932     }
7933     negptr(result);
7934 
7935     // pcmpestri
7936     //   inputs:
7937     //     vec1- substring
7938     //     rax - negative string length (elements count)
7939     //     mem - scanned string
7940     //     rdx - string length (elements count)
7941     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
7942     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
7943     //   outputs:
7944     //     rcx - first mismatched element index
7945     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7946 
7947     bind(COMPARE_WIDE_VECTORS);
7948     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7949       movdqu(vec1, Address(str1, result, scale));
7950       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7951     } else {
7952       pmovzxbw(vec1, Address(str1, result, scale1));
7953       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7954     }
7955     // After pcmpestri cnt1(rcx) contains mismatched element index
7956 
7957     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
7958     addptr(result, stride);
7959     subptr(cnt2, stride);
7960     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
7961 
7962     // compare wide vectors tail
7963     testptr(result, result);
7964     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7965 
7966     movl(cnt2, stride);
7967     movl(result, stride);
7968     negptr(result);
7969     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7970       movdqu(vec1, Address(str1, result, scale));
7971       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7972     } else {
7973       pmovzxbw(vec1, Address(str1, result, scale1));
7974       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7975     }
7976     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
7977 
7978     // Mismatched characters in the vectors
7979     bind(VECTOR_NOT_EQUAL);
7980     addptr(cnt1, result);
7981     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7982     subl(result, cnt2);
7983     jmpb(POP_LABEL);
7984 
7985     bind(COMPARE_TAIL); // limit is zero
7986     movl(cnt2, result);
7987     // Fallthru to tail compare
7988   }
7989   // Shift str2 and str1 to the end of the arrays, negate min
7990   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7991     lea(str1, Address(str1, cnt2, scale));
7992     lea(str2, Address(str2, cnt2, scale));
7993   } else {
7994     lea(str1, Address(str1, cnt2, scale1));
7995     lea(str2, Address(str2, cnt2, scale2));
7996   }
7997   decrementl(cnt2);  // first character was compared already
7998   negptr(cnt2);
7999 
8000   // Compare the rest of the elements
8001   bind(WHILE_HEAD_LABEL);
8002   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
8003   subl(result, cnt1);
8004   jccb(Assembler::notZero, POP_LABEL);
8005   increment(cnt2);
8006   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
8007 
8008   // Strings are equal up to min length.  Return the length difference.
8009   bind(LENGTH_DIFF_LABEL);
8010   pop(result);
8011   if (ae == StrIntrinsicNode::UU) {
8012     // Divide diff by 2 to get number of chars
8013     sarl(result, 1);
8014   }
8015   jmpb(DONE_LABEL);
8016 
8017 #ifdef _LP64
8018   if (VM_Version::supports_avx512vlbw()) {
8019 
8020     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
8021 
8022     kmovql(cnt1, k7);
8023     notq(cnt1);
8024     bsfq(cnt2, cnt1);
8025     if (ae != StrIntrinsicNode::LL) {
8026       // Divide diff by 2 to get number of chars
8027       sarl(cnt2, 1);
8028     }
8029     addq(result, cnt2);
8030     if (ae == StrIntrinsicNode::LL) {
8031       load_unsigned_byte(cnt1, Address(str2, result));
8032       load_unsigned_byte(result, Address(str1, result));
8033     } else if (ae == StrIntrinsicNode::UU) {
8034       load_unsigned_short(cnt1, Address(str2, result, scale));
8035       load_unsigned_short(result, Address(str1, result, scale));
8036     } else {
8037       load_unsigned_short(cnt1, Address(str2, result, scale2));
8038       load_unsigned_byte(result, Address(str1, result, scale1));
8039     }
8040     subl(result, cnt1);
8041     jmpb(POP_LABEL);
8042   }//if (VM_Version::supports_avx512vlbw())
8043 #endif // _LP64
8044 
8045   // Discard the stored length difference
8046   bind(POP_LABEL);
8047   pop(cnt1);
8048 
8049   // That's it
8050   bind(DONE_LABEL);
8051   if(ae == StrIntrinsicNode::UL) {
8052     negl(result);
8053   }
8054 
8055 }
8056 
8057 // Search for Non-ASCII character (Negative byte value) in a byte array,
8058 // return true if it has any and false otherwise.
8059 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
8060 //   @HotSpotIntrinsicCandidate
8061 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
8062 //     for (int i = off; i < off + len; i++) {
8063 //       if (ba[i] < 0) {
8064 //         return true;
8065 //       }
8066 //     }
8067 //     return false;
8068 //   }
8069 void MacroAssembler::has_negatives(Register ary1, Register len,
8070   Register result, Register tmp1,
8071   XMMRegister vec1, XMMRegister vec2) {
8072   // rsi: byte array
8073   // rcx: len
8074   // rax: result
8075   ShortBranchVerifier sbv(this);
8076   assert_different_registers(ary1, len, result, tmp1);
8077   assert_different_registers(vec1, vec2);
8078   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
8079 
8080   // len == 0
8081   testl(len, len);
8082   jcc(Assembler::zero, FALSE_LABEL);
8083 
8084   if ((UseAVX > 2) && // AVX512
8085     VM_Version::supports_avx512vlbw() &&
8086     VM_Version::supports_bmi2()) {
8087 
8088     set_vector_masking();  // opening of the stub context for programming mask registers
8089 
8090     Label test_64_loop, test_tail;
8091     Register tmp3_aliased = len;
8092 
8093     movl(tmp1, len);
8094     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
8095 
8096     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
8097     andl(len, ~(64 - 1));    // vector count (in chars)
8098     jccb(Assembler::zero, test_tail);
8099 
8100     lea(ary1, Address(ary1, len, Address::times_1));
8101     negptr(len);
8102 
8103     bind(test_64_loop);
8104     // Check whether our 64 elements of size byte contain negatives
8105     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
8106     kortestql(k2, k2);
8107     jcc(Assembler::notZero, TRUE_LABEL);
8108 
8109     addptr(len, 64);
8110     jccb(Assembler::notZero, test_64_loop);
8111 
8112 
8113     bind(test_tail);
8114     // bail out when there is nothing to be done
8115     testl(tmp1, -1);
8116     jcc(Assembler::zero, FALSE_LABEL);
8117 
8118     // Save k1
8119     kmovql(k3, k1);
8120 
8121     // ~(~0 << len) applied up to two times (for 32-bit scenario)
8122 #ifdef _LP64
8123     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
8124     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
8125     notq(tmp3_aliased);
8126     kmovql(k1, tmp3_aliased);
8127 #else
8128     Label k_init;
8129     jmp(k_init);
8130 
8131     // We could not read 64-bits from a general purpose register thus we move
8132     // data required to compose 64 1's to the instruction stream
8133     // We emit 64 byte wide series of elements from 0..63 which later on would
8134     // be used as a compare targets with tail count contained in tmp1 register.
8135     // Result would be a k1 register having tmp1 consecutive number or 1
8136     // counting from least significant bit.
8137     address tmp = pc();
8138     emit_int64(0x0706050403020100);
8139     emit_int64(0x0F0E0D0C0B0A0908);
8140     emit_int64(0x1716151413121110);
8141     emit_int64(0x1F1E1D1C1B1A1918);
8142     emit_int64(0x2726252423222120);
8143     emit_int64(0x2F2E2D2C2B2A2928);
8144     emit_int64(0x3736353433323130);
8145     emit_int64(0x3F3E3D3C3B3A3938);
8146 
8147     bind(k_init);
8148     lea(len, InternalAddress(tmp));
8149     // create mask to test for negative byte inside a vector
8150     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
8151     evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
8152 
8153 #endif
8154     evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
8155     ktestq(k2, k1);
8156     // Restore k1
8157     kmovql(k1, k3);
8158     jcc(Assembler::notZero, TRUE_LABEL);
8159 
8160     jmp(FALSE_LABEL);
8161 
8162     clear_vector_masking();   // closing of the stub context for programming mask registers
8163   } else {
8164     movl(result, len); // copy
8165 
8166     if (UseAVX == 2 && UseSSE >= 2) {
8167       // With AVX2, use 32-byte vector compare
8168       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8169 
8170       // Compare 32-byte vectors
8171       andl(result, 0x0000001f);  //   tail count (in bytes)
8172       andl(len, 0xffffffe0);   // vector count (in bytes)
8173       jccb(Assembler::zero, COMPARE_TAIL);
8174 
8175       lea(ary1, Address(ary1, len, Address::times_1));
8176       negptr(len);
8177 
8178       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
8179       movdl(vec2, tmp1);
8180       vpbroadcastd(vec2, vec2);
8181 
8182       bind(COMPARE_WIDE_VECTORS);
8183       vmovdqu(vec1, Address(ary1, len, Address::times_1));
8184       vptest(vec1, vec2);
8185       jccb(Assembler::notZero, TRUE_LABEL);
8186       addptr(len, 32);
8187       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8188 
8189       testl(result, result);
8190       jccb(Assembler::zero, FALSE_LABEL);
8191 
8192       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8193       vptest(vec1, vec2);
8194       jccb(Assembler::notZero, TRUE_LABEL);
8195       jmpb(FALSE_LABEL);
8196 
8197       bind(COMPARE_TAIL); // len is zero
8198       movl(len, result);
8199       // Fallthru to tail compare
8200     } else if (UseSSE42Intrinsics) {
8201       // With SSE4.2, use double quad vector compare
8202       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8203 
8204       // Compare 16-byte vectors
8205       andl(result, 0x0000000f);  //   tail count (in bytes)
8206       andl(len, 0xfffffff0);   // vector count (in bytes)
8207       jccb(Assembler::zero, COMPARE_TAIL);
8208 
8209       lea(ary1, Address(ary1, len, Address::times_1));
8210       negptr(len);
8211 
8212       movl(tmp1, 0x80808080);
8213       movdl(vec2, tmp1);
8214       pshufd(vec2, vec2, 0);
8215 
8216       bind(COMPARE_WIDE_VECTORS);
8217       movdqu(vec1, Address(ary1, len, Address::times_1));
8218       ptest(vec1, vec2);
8219       jccb(Assembler::notZero, TRUE_LABEL);
8220       addptr(len, 16);
8221       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8222 
8223       testl(result, result);
8224       jccb(Assembler::zero, FALSE_LABEL);
8225 
8226       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8227       ptest(vec1, vec2);
8228       jccb(Assembler::notZero, TRUE_LABEL);
8229       jmpb(FALSE_LABEL);
8230 
8231       bind(COMPARE_TAIL); // len is zero
8232       movl(len, result);
8233       // Fallthru to tail compare
8234     }
8235   }
8236   // Compare 4-byte vectors
8237   andl(len, 0xfffffffc); // vector count (in bytes)
8238   jccb(Assembler::zero, COMPARE_CHAR);
8239 
8240   lea(ary1, Address(ary1, len, Address::times_1));
8241   negptr(len);
8242 
8243   bind(COMPARE_VECTORS);
8244   movl(tmp1, Address(ary1, len, Address::times_1));
8245   andl(tmp1, 0x80808080);
8246   jccb(Assembler::notZero, TRUE_LABEL);
8247   addptr(len, 4);
8248   jcc(Assembler::notZero, COMPARE_VECTORS);
8249 
8250   // Compare trailing char (final 2 bytes), if any
8251   bind(COMPARE_CHAR);
8252   testl(result, 0x2);   // tail  char
8253   jccb(Assembler::zero, COMPARE_BYTE);
8254   load_unsigned_short(tmp1, Address(ary1, 0));
8255   andl(tmp1, 0x00008080);
8256   jccb(Assembler::notZero, TRUE_LABEL);
8257   subptr(result, 2);
8258   lea(ary1, Address(ary1, 2));
8259 
8260   bind(COMPARE_BYTE);
8261   testl(result, 0x1);   // tail  byte
8262   jccb(Assembler::zero, FALSE_LABEL);
8263   load_unsigned_byte(tmp1, Address(ary1, 0));
8264   andl(tmp1, 0x00000080);
8265   jccb(Assembler::notEqual, TRUE_LABEL);
8266   jmpb(FALSE_LABEL);
8267 
8268   bind(TRUE_LABEL);
8269   movl(result, 1);   // return true
8270   jmpb(DONE);
8271 
8272   bind(FALSE_LABEL);
8273   xorl(result, result); // return false
8274 
8275   // That's it
8276   bind(DONE);
8277   if (UseAVX >= 2 && UseSSE >= 2) {
8278     // clean upper bits of YMM registers
8279     vpxor(vec1, vec1);
8280     vpxor(vec2, vec2);
8281   }
8282 }
8283 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
8284 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8285                                    Register limit, Register result, Register chr,
8286                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
8287   ShortBranchVerifier sbv(this);
8288   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
8289 
8290   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8291   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
8292 
8293   if (is_array_equ) {
8294     // Check the input args
8295     cmpptr(ary1, ary2);
8296     jcc(Assembler::equal, TRUE_LABEL);
8297 
8298     // Need additional checks for arrays_equals.
8299     testptr(ary1, ary1);
8300     jcc(Assembler::zero, FALSE_LABEL);
8301     testptr(ary2, ary2);
8302     jcc(Assembler::zero, FALSE_LABEL);
8303 
8304     // Check the lengths
8305     movl(limit, Address(ary1, length_offset));
8306     cmpl(limit, Address(ary2, length_offset));
8307     jcc(Assembler::notEqual, FALSE_LABEL);
8308   }
8309 
8310   // count == 0
8311   testl(limit, limit);
8312   jcc(Assembler::zero, TRUE_LABEL);
8313 
8314   if (is_array_equ) {
8315     // Load array address
8316     lea(ary1, Address(ary1, base_offset));
8317     lea(ary2, Address(ary2, base_offset));
8318   }
8319 
8320   if (is_array_equ && is_char) {
8321     // arrays_equals when used for char[].
8322     shll(limit, 1);      // byte count != 0
8323   }
8324   movl(result, limit); // copy
8325 
8326   if (UseAVX >= 2) {
8327     // With AVX2, use 32-byte vector compare
8328     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8329 
8330     // Compare 32-byte vectors
8331     andl(result, 0x0000001f);  //   tail count (in bytes)
8332     andl(limit, 0xffffffe0);   // vector count (in bytes)
8333     jcc(Assembler::zero, COMPARE_TAIL);
8334 
8335     lea(ary1, Address(ary1, limit, Address::times_1));
8336     lea(ary2, Address(ary2, limit, Address::times_1));
8337     negptr(limit);
8338 
8339     bind(COMPARE_WIDE_VECTORS);
8340 
8341 #ifdef _LP64
8342     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8343       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8344 
8345       cmpl(limit, -64);
8346       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8347 
8348       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8349 
8350       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8351       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8352       kortestql(k7, k7);
8353       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8354       addptr(limit, 64);  // update since we already compared at this addr
8355       cmpl(limit, -64);
8356       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8357 
8358       // At this point we may still need to compare -limit+result bytes.
8359       // We could execute the next two instruction and just continue via non-wide path:
8360       //  cmpl(limit, 0);
8361       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8362       // But since we stopped at the points ary{1,2}+limit which are
8363       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8364       // (|limit| <= 32 and result < 32),
8365       // we may just compare the last 64 bytes.
8366       //
8367       addptr(result, -64);   // it is safe, bc we just came from this area
8368       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8369       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8370       kortestql(k7, k7);
8371       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8372 
8373       jmp(TRUE_LABEL);
8374 
8375       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8376 
8377     }//if (VM_Version::supports_avx512vlbw())
8378 #endif //_LP64
8379 
8380     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8381     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8382     vpxor(vec1, vec2);
8383 
8384     vptest(vec1, vec1);
8385     jcc(Assembler::notZero, FALSE_LABEL);
8386     addptr(limit, 32);
8387     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8388 
8389     testl(result, result);
8390     jcc(Assembler::zero, TRUE_LABEL);
8391 
8392     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8393     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8394     vpxor(vec1, vec2);
8395 
8396     vptest(vec1, vec1);
8397     jccb(Assembler::notZero, FALSE_LABEL);
8398     jmpb(TRUE_LABEL);
8399 
8400     bind(COMPARE_TAIL); // limit is zero
8401     movl(limit, result);
8402     // Fallthru to tail compare
8403   } else if (UseSSE42Intrinsics) {
8404     // With SSE4.2, use double quad vector compare
8405     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8406 
8407     // Compare 16-byte vectors
8408     andl(result, 0x0000000f);  //   tail count (in bytes)
8409     andl(limit, 0xfffffff0);   // vector count (in bytes)
8410     jcc(Assembler::zero, COMPARE_TAIL);
8411 
8412     lea(ary1, Address(ary1, limit, Address::times_1));
8413     lea(ary2, Address(ary2, limit, Address::times_1));
8414     negptr(limit);
8415 
8416     bind(COMPARE_WIDE_VECTORS);
8417     movdqu(vec1, Address(ary1, limit, Address::times_1));
8418     movdqu(vec2, Address(ary2, limit, Address::times_1));
8419     pxor(vec1, vec2);
8420 
8421     ptest(vec1, vec1);
8422     jcc(Assembler::notZero, FALSE_LABEL);
8423     addptr(limit, 16);
8424     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8425 
8426     testl(result, result);
8427     jcc(Assembler::zero, TRUE_LABEL);
8428 
8429     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8430     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8431     pxor(vec1, vec2);
8432 
8433     ptest(vec1, vec1);
8434     jccb(Assembler::notZero, FALSE_LABEL);
8435     jmpb(TRUE_LABEL);
8436 
8437     bind(COMPARE_TAIL); // limit is zero
8438     movl(limit, result);
8439     // Fallthru to tail compare
8440   }
8441 
8442   // Compare 4-byte vectors
8443   andl(limit, 0xfffffffc); // vector count (in bytes)
8444   jccb(Assembler::zero, COMPARE_CHAR);
8445 
8446   lea(ary1, Address(ary1, limit, Address::times_1));
8447   lea(ary2, Address(ary2, limit, Address::times_1));
8448   negptr(limit);
8449 
8450   bind(COMPARE_VECTORS);
8451   movl(chr, Address(ary1, limit, Address::times_1));
8452   cmpl(chr, Address(ary2, limit, Address::times_1));
8453   jccb(Assembler::notEqual, FALSE_LABEL);
8454   addptr(limit, 4);
8455   jcc(Assembler::notZero, COMPARE_VECTORS);
8456 
8457   // Compare trailing char (final 2 bytes), if any
8458   bind(COMPARE_CHAR);
8459   testl(result, 0x2);   // tail  char
8460   jccb(Assembler::zero, COMPARE_BYTE);
8461   load_unsigned_short(chr, Address(ary1, 0));
8462   load_unsigned_short(limit, Address(ary2, 0));
8463   cmpl(chr, limit);
8464   jccb(Assembler::notEqual, FALSE_LABEL);
8465 
8466   if (is_array_equ && is_char) {
8467     bind(COMPARE_BYTE);
8468   } else {
8469     lea(ary1, Address(ary1, 2));
8470     lea(ary2, Address(ary2, 2));
8471 
8472     bind(COMPARE_BYTE);
8473     testl(result, 0x1);   // tail  byte
8474     jccb(Assembler::zero, TRUE_LABEL);
8475     load_unsigned_byte(chr, Address(ary1, 0));
8476     load_unsigned_byte(limit, Address(ary2, 0));
8477     cmpl(chr, limit);
8478     jccb(Assembler::notEqual, FALSE_LABEL);
8479   }
8480   bind(TRUE_LABEL);
8481   movl(result, 1);   // return true
8482   jmpb(DONE);
8483 
8484   bind(FALSE_LABEL);
8485   xorl(result, result); // return false
8486 
8487   // That's it
8488   bind(DONE);
8489   if (UseAVX >= 2) {
8490     // clean upper bits of YMM registers
8491     vpxor(vec1, vec1);
8492     vpxor(vec2, vec2);
8493   }
8494 }
8495 
8496 #endif
8497 
8498 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8499                                    Register to, Register value, Register count,
8500                                    Register rtmp, XMMRegister xtmp) {
8501   ShortBranchVerifier sbv(this);
8502   assert_different_registers(to, value, count, rtmp);
8503   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8504   Label L_fill_2_bytes, L_fill_4_bytes;
8505 
8506   int shift = -1;
8507   switch (t) {
8508     case T_BYTE:
8509       shift = 2;
8510       break;
8511     case T_SHORT:
8512       shift = 1;
8513       break;
8514     case T_INT:
8515       shift = 0;
8516       break;
8517     default: ShouldNotReachHere();
8518   }
8519 
8520   if (t == T_BYTE) {
8521     andl(value, 0xff);
8522     movl(rtmp, value);
8523     shll(rtmp, 8);
8524     orl(value, rtmp);
8525   }
8526   if (t == T_SHORT) {
8527     andl(value, 0xffff);
8528   }
8529   if (t == T_BYTE || t == T_SHORT) {
8530     movl(rtmp, value);
8531     shll(rtmp, 16);
8532     orl(value, rtmp);
8533   }
8534 
8535   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8536   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8537   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8538     // align source address at 4 bytes address boundary
8539     if (t == T_BYTE) {
8540       // One byte misalignment happens only for byte arrays
8541       testptr(to, 1);
8542       jccb(Assembler::zero, L_skip_align1);
8543       movb(Address(to, 0), value);
8544       increment(to);
8545       decrement(count);
8546       BIND(L_skip_align1);
8547     }
8548     // Two bytes misalignment happens only for byte and short (char) arrays
8549     testptr(to, 2);
8550     jccb(Assembler::zero, L_skip_align2);
8551     movw(Address(to, 0), value);
8552     addptr(to, 2);
8553     subl(count, 1<<(shift-1));
8554     BIND(L_skip_align2);
8555   }
8556   if (UseSSE < 2) {
8557     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8558     // Fill 32-byte chunks
8559     subl(count, 8 << shift);
8560     jcc(Assembler::less, L_check_fill_8_bytes);
8561     align(16);
8562 
8563     BIND(L_fill_32_bytes_loop);
8564 
8565     for (int i = 0; i < 32; i += 4) {
8566       movl(Address(to, i), value);
8567     }
8568 
8569     addptr(to, 32);
8570     subl(count, 8 << shift);
8571     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8572     BIND(L_check_fill_8_bytes);
8573     addl(count, 8 << shift);
8574     jccb(Assembler::zero, L_exit);
8575     jmpb(L_fill_8_bytes);
8576 
8577     //
8578     // length is too short, just fill qwords
8579     //
8580     BIND(L_fill_8_bytes_loop);
8581     movl(Address(to, 0), value);
8582     movl(Address(to, 4), value);
8583     addptr(to, 8);
8584     BIND(L_fill_8_bytes);
8585     subl(count, 1 << (shift + 1));
8586     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8587     // fall through to fill 4 bytes
8588   } else {
8589     Label L_fill_32_bytes;
8590     if (!UseUnalignedLoadStores) {
8591       // align to 8 bytes, we know we are 4 byte aligned to start
8592       testptr(to, 4);
8593       jccb(Assembler::zero, L_fill_32_bytes);
8594       movl(Address(to, 0), value);
8595       addptr(to, 4);
8596       subl(count, 1<<shift);
8597     }
8598     BIND(L_fill_32_bytes);
8599     {
8600       assert( UseSSE >= 2, "supported cpu only" );
8601       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8602       if (UseAVX > 2) {
8603         movl(rtmp, 0xffff);
8604         kmovwl(k1, rtmp);
8605       }
8606       movdl(xtmp, value);
8607       if (UseAVX > 2 && UseUnalignedLoadStores) {
8608         // Fill 64-byte chunks
8609         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8610         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8611 
8612         subl(count, 16 << shift);
8613         jcc(Assembler::less, L_check_fill_32_bytes);
8614         align(16);
8615 
8616         BIND(L_fill_64_bytes_loop);
8617         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8618         addptr(to, 64);
8619         subl(count, 16 << shift);
8620         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8621 
8622         BIND(L_check_fill_32_bytes);
8623         addl(count, 8 << shift);
8624         jccb(Assembler::less, L_check_fill_8_bytes);
8625         vmovdqu(Address(to, 0), xtmp);
8626         addptr(to, 32);
8627         subl(count, 8 << shift);
8628 
8629         BIND(L_check_fill_8_bytes);
8630       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8631         // Fill 64-byte chunks
8632         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8633         vpbroadcastd(xtmp, xtmp);
8634 
8635         subl(count, 16 << shift);
8636         jcc(Assembler::less, L_check_fill_32_bytes);
8637         align(16);
8638 
8639         BIND(L_fill_64_bytes_loop);
8640         vmovdqu(Address(to, 0), xtmp);
8641         vmovdqu(Address(to, 32), xtmp);
8642         addptr(to, 64);
8643         subl(count, 16 << shift);
8644         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8645 
8646         BIND(L_check_fill_32_bytes);
8647         addl(count, 8 << shift);
8648         jccb(Assembler::less, L_check_fill_8_bytes);
8649         vmovdqu(Address(to, 0), xtmp);
8650         addptr(to, 32);
8651         subl(count, 8 << shift);
8652 
8653         BIND(L_check_fill_8_bytes);
8654         // clean upper bits of YMM registers
8655         movdl(xtmp, value);
8656         pshufd(xtmp, xtmp, 0);
8657       } else {
8658         // Fill 32-byte chunks
8659         pshufd(xtmp, xtmp, 0);
8660 
8661         subl(count, 8 << shift);
8662         jcc(Assembler::less, L_check_fill_8_bytes);
8663         align(16);
8664 
8665         BIND(L_fill_32_bytes_loop);
8666 
8667         if (UseUnalignedLoadStores) {
8668           movdqu(Address(to, 0), xtmp);
8669           movdqu(Address(to, 16), xtmp);
8670         } else {
8671           movq(Address(to, 0), xtmp);
8672           movq(Address(to, 8), xtmp);
8673           movq(Address(to, 16), xtmp);
8674           movq(Address(to, 24), xtmp);
8675         }
8676 
8677         addptr(to, 32);
8678         subl(count, 8 << shift);
8679         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8680 
8681         BIND(L_check_fill_8_bytes);
8682       }
8683       addl(count, 8 << shift);
8684       jccb(Assembler::zero, L_exit);
8685       jmpb(L_fill_8_bytes);
8686 
8687       //
8688       // length is too short, just fill qwords
8689       //
8690       BIND(L_fill_8_bytes_loop);
8691       movq(Address(to, 0), xtmp);
8692       addptr(to, 8);
8693       BIND(L_fill_8_bytes);
8694       subl(count, 1 << (shift + 1));
8695       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8696     }
8697   }
8698   // fill trailing 4 bytes
8699   BIND(L_fill_4_bytes);
8700   testl(count, 1<<shift);
8701   jccb(Assembler::zero, L_fill_2_bytes);
8702   movl(Address(to, 0), value);
8703   if (t == T_BYTE || t == T_SHORT) {
8704     addptr(to, 4);
8705     BIND(L_fill_2_bytes);
8706     // fill trailing 2 bytes
8707     testl(count, 1<<(shift-1));
8708     jccb(Assembler::zero, L_fill_byte);
8709     movw(Address(to, 0), value);
8710     if (t == T_BYTE) {
8711       addptr(to, 2);
8712       BIND(L_fill_byte);
8713       // fill trailing byte
8714       testl(count, 1);
8715       jccb(Assembler::zero, L_exit);
8716       movb(Address(to, 0), value);
8717     } else {
8718       BIND(L_fill_byte);
8719     }
8720   } else {
8721     BIND(L_fill_2_bytes);
8722   }
8723   BIND(L_exit);
8724 }
8725 
8726 // encode char[] to byte[] in ISO_8859_1
8727    //@HotSpotIntrinsicCandidate
8728    //private static int implEncodeISOArray(byte[] sa, int sp,
8729    //byte[] da, int dp, int len) {
8730    //  int i = 0;
8731    //  for (; i < len; i++) {
8732    //    char c = StringUTF16.getChar(sa, sp++);
8733    //    if (c > '\u00FF')
8734    //      break;
8735    //    da[dp++] = (byte)c;
8736    //  }
8737    //  return i;
8738    //}
8739 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8740   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8741   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8742   Register tmp5, Register result) {
8743 
8744   // rsi: src
8745   // rdi: dst
8746   // rdx: len
8747   // rcx: tmp5
8748   // rax: result
8749   ShortBranchVerifier sbv(this);
8750   assert_different_registers(src, dst, len, tmp5, result);
8751   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8752 
8753   // set result
8754   xorl(result, result);
8755   // check for zero length
8756   testl(len, len);
8757   jcc(Assembler::zero, L_done);
8758 
8759   movl(result, len);
8760 
8761   // Setup pointers
8762   lea(src, Address(src, len, Address::times_2)); // char[]
8763   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8764   negptr(len);
8765 
8766   if (UseSSE42Intrinsics || UseAVX >= 2) {
8767     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8768     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8769 
8770     if (UseAVX >= 2) {
8771       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8772       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8773       movdl(tmp1Reg, tmp5);
8774       vpbroadcastd(tmp1Reg, tmp1Reg);
8775       jmp(L_chars_32_check);
8776 
8777       bind(L_copy_32_chars);
8778       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8779       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8780       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8781       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8782       jccb(Assembler::notZero, L_copy_32_chars_exit);
8783       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8784       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8785       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8786 
8787       bind(L_chars_32_check);
8788       addptr(len, 32);
8789       jcc(Assembler::lessEqual, L_copy_32_chars);
8790 
8791       bind(L_copy_32_chars_exit);
8792       subptr(len, 16);
8793       jccb(Assembler::greater, L_copy_16_chars_exit);
8794 
8795     } else if (UseSSE42Intrinsics) {
8796       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8797       movdl(tmp1Reg, tmp5);
8798       pshufd(tmp1Reg, tmp1Reg, 0);
8799       jmpb(L_chars_16_check);
8800     }
8801 
8802     bind(L_copy_16_chars);
8803     if (UseAVX >= 2) {
8804       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
8805       vptest(tmp2Reg, tmp1Reg);
8806       jcc(Assembler::notZero, L_copy_16_chars_exit);
8807       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
8808       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
8809     } else {
8810       if (UseAVX > 0) {
8811         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8812         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8813         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
8814       } else {
8815         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8816         por(tmp2Reg, tmp3Reg);
8817         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8818         por(tmp2Reg, tmp4Reg);
8819       }
8820       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8821       jccb(Assembler::notZero, L_copy_16_chars_exit);
8822       packuswb(tmp3Reg, tmp4Reg);
8823     }
8824     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
8825 
8826     bind(L_chars_16_check);
8827     addptr(len, 16);
8828     jcc(Assembler::lessEqual, L_copy_16_chars);
8829 
8830     bind(L_copy_16_chars_exit);
8831     if (UseAVX >= 2) {
8832       // clean upper bits of YMM registers
8833       vpxor(tmp2Reg, tmp2Reg);
8834       vpxor(tmp3Reg, tmp3Reg);
8835       vpxor(tmp4Reg, tmp4Reg);
8836       movdl(tmp1Reg, tmp5);
8837       pshufd(tmp1Reg, tmp1Reg, 0);
8838     }
8839     subptr(len, 8);
8840     jccb(Assembler::greater, L_copy_8_chars_exit);
8841 
8842     bind(L_copy_8_chars);
8843     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
8844     ptest(tmp3Reg, tmp1Reg);
8845     jccb(Assembler::notZero, L_copy_8_chars_exit);
8846     packuswb(tmp3Reg, tmp1Reg);
8847     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
8848     addptr(len, 8);
8849     jccb(Assembler::lessEqual, L_copy_8_chars);
8850 
8851     bind(L_copy_8_chars_exit);
8852     subptr(len, 8);
8853     jccb(Assembler::zero, L_done);
8854   }
8855 
8856   bind(L_copy_1_char);
8857   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
8858   testl(tmp5, 0xff00);      // check if Unicode char
8859   jccb(Assembler::notZero, L_copy_1_char_exit);
8860   movb(Address(dst, len, Address::times_1, 0), tmp5);
8861   addptr(len, 1);
8862   jccb(Assembler::less, L_copy_1_char);
8863 
8864   bind(L_copy_1_char_exit);
8865   addptr(result, len); // len is negative count of not processed elements
8866 
8867   bind(L_done);
8868 }
8869 
8870 #ifdef _LP64
8871 /**
8872  * Helper for multiply_to_len().
8873  */
8874 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
8875   addq(dest_lo, src1);
8876   adcq(dest_hi, 0);
8877   addq(dest_lo, src2);
8878   adcq(dest_hi, 0);
8879 }
8880 
8881 /**
8882  * Multiply 64 bit by 64 bit first loop.
8883  */
8884 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
8885                                            Register y, Register y_idx, Register z,
8886                                            Register carry, Register product,
8887                                            Register idx, Register kdx) {
8888   //
8889   //  jlong carry, x[], y[], z[];
8890   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8891   //    huge_128 product = y[idx] * x[xstart] + carry;
8892   //    z[kdx] = (jlong)product;
8893   //    carry  = (jlong)(product >>> 64);
8894   //  }
8895   //  z[xstart] = carry;
8896   //
8897 
8898   Label L_first_loop, L_first_loop_exit;
8899   Label L_one_x, L_one_y, L_multiply;
8900 
8901   decrementl(xstart);
8902   jcc(Assembler::negative, L_one_x);
8903 
8904   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8905   rorq(x_xstart, 32); // convert big-endian to little-endian
8906 
8907   bind(L_first_loop);
8908   decrementl(idx);
8909   jcc(Assembler::negative, L_first_loop_exit);
8910   decrementl(idx);
8911   jcc(Assembler::negative, L_one_y);
8912   movq(y_idx, Address(y, idx, Address::times_4,  0));
8913   rorq(y_idx, 32); // convert big-endian to little-endian
8914   bind(L_multiply);
8915   movq(product, x_xstart);
8916   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
8917   addq(product, carry);
8918   adcq(rdx, 0);
8919   subl(kdx, 2);
8920   movl(Address(z, kdx, Address::times_4,  4), product);
8921   shrq(product, 32);
8922   movl(Address(z, kdx, Address::times_4,  0), product);
8923   movq(carry, rdx);
8924   jmp(L_first_loop);
8925 
8926   bind(L_one_y);
8927   movl(y_idx, Address(y,  0));
8928   jmp(L_multiply);
8929 
8930   bind(L_one_x);
8931   movl(x_xstart, Address(x,  0));
8932   jmp(L_first_loop);
8933 
8934   bind(L_first_loop_exit);
8935 }
8936 
8937 /**
8938  * Multiply 64 bit by 64 bit and add 128 bit.
8939  */
8940 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
8941                                             Register yz_idx, Register idx,
8942                                             Register carry, Register product, int offset) {
8943   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
8944   //     z[kdx] = (jlong)product;
8945 
8946   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
8947   rorq(yz_idx, 32); // convert big-endian to little-endian
8948   movq(product, x_xstart);
8949   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
8950   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
8951   rorq(yz_idx, 32); // convert big-endian to little-endian
8952 
8953   add2_with_carry(rdx, product, carry, yz_idx);
8954 
8955   movl(Address(z, idx, Address::times_4,  offset+4), product);
8956   shrq(product, 32);
8957   movl(Address(z, idx, Address::times_4,  offset), product);
8958 
8959 }
8960 
8961 /**
8962  * Multiply 128 bit by 128 bit. Unrolled inner loop.
8963  */
8964 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
8965                                              Register yz_idx, Register idx, Register jdx,
8966                                              Register carry, Register product,
8967                                              Register carry2) {
8968   //   jlong carry, x[], y[], z[];
8969   //   int kdx = ystart+1;
8970   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
8971   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
8972   //     z[kdx+idx+1] = (jlong)product;
8973   //     jlong carry2  = (jlong)(product >>> 64);
8974   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
8975   //     z[kdx+idx] = (jlong)product;
8976   //     carry  = (jlong)(product >>> 64);
8977   //   }
8978   //   idx += 2;
8979   //   if (idx > 0) {
8980   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
8981   //     z[kdx+idx] = (jlong)product;
8982   //     carry  = (jlong)(product >>> 64);
8983   //   }
8984   //
8985 
8986   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
8987 
8988   movl(jdx, idx);
8989   andl(jdx, 0xFFFFFFFC);
8990   shrl(jdx, 2);
8991 
8992   bind(L_third_loop);
8993   subl(jdx, 1);
8994   jcc(Assembler::negative, L_third_loop_exit);
8995   subl(idx, 4);
8996 
8997   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
8998   movq(carry2, rdx);
8999 
9000   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
9001   movq(carry, rdx);
9002   jmp(L_third_loop);
9003 
9004   bind (L_third_loop_exit);
9005 
9006   andl (idx, 0x3);
9007   jcc(Assembler::zero, L_post_third_loop_done);
9008 
9009   Label L_check_1;
9010   subl(idx, 2);
9011   jcc(Assembler::negative, L_check_1);
9012 
9013   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
9014   movq(carry, rdx);
9015 
9016   bind (L_check_1);
9017   addl (idx, 0x2);
9018   andl (idx, 0x1);
9019   subl(idx, 1);
9020   jcc(Assembler::negative, L_post_third_loop_done);
9021 
9022   movl(yz_idx, Address(y, idx, Address::times_4,  0));
9023   movq(product, x_xstart);
9024   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
9025   movl(yz_idx, Address(z, idx, Address::times_4,  0));
9026 
9027   add2_with_carry(rdx, product, yz_idx, carry);
9028 
9029   movl(Address(z, idx, Address::times_4,  0), product);
9030   shrq(product, 32);
9031 
9032   shlq(rdx, 32);
9033   orq(product, rdx);
9034   movq(carry, product);
9035 
9036   bind(L_post_third_loop_done);
9037 }
9038 
9039 /**
9040  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
9041  *
9042  */
9043 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
9044                                                   Register carry, Register carry2,
9045                                                   Register idx, Register jdx,
9046                                                   Register yz_idx1, Register yz_idx2,
9047                                                   Register tmp, Register tmp3, Register tmp4) {
9048   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
9049 
9050   //   jlong carry, x[], y[], z[];
9051   //   int kdx = ystart+1;
9052   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9053   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
9054   //     jlong carry2  = (jlong)(tmp3 >>> 64);
9055   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
9056   //     carry  = (jlong)(tmp4 >>> 64);
9057   //     z[kdx+idx+1] = (jlong)tmp3;
9058   //     z[kdx+idx] = (jlong)tmp4;
9059   //   }
9060   //   idx += 2;
9061   //   if (idx > 0) {
9062   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
9063   //     z[kdx+idx] = (jlong)yz_idx1;
9064   //     carry  = (jlong)(yz_idx1 >>> 64);
9065   //   }
9066   //
9067 
9068   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9069 
9070   movl(jdx, idx);
9071   andl(jdx, 0xFFFFFFFC);
9072   shrl(jdx, 2);
9073 
9074   bind(L_third_loop);
9075   subl(jdx, 1);
9076   jcc(Assembler::negative, L_third_loop_exit);
9077   subl(idx, 4);
9078 
9079   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
9080   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
9081   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
9082   rorxq(yz_idx2, yz_idx2, 32);
9083 
9084   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
9085   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
9086 
9087   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
9088   rorxq(yz_idx1, yz_idx1, 32);
9089   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9090   rorxq(yz_idx2, yz_idx2, 32);
9091 
9092   if (VM_Version::supports_adx()) {
9093     adcxq(tmp3, carry);
9094     adoxq(tmp3, yz_idx1);
9095 
9096     adcxq(tmp4, tmp);
9097     adoxq(tmp4, yz_idx2);
9098 
9099     movl(carry, 0); // does not affect flags
9100     adcxq(carry2, carry);
9101     adoxq(carry2, carry);
9102   } else {
9103     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
9104     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
9105   }
9106   movq(carry, carry2);
9107 
9108   movl(Address(z, idx, Address::times_4, 12), tmp3);
9109   shrq(tmp3, 32);
9110   movl(Address(z, idx, Address::times_4,  8), tmp3);
9111 
9112   movl(Address(z, idx, Address::times_4,  4), tmp4);
9113   shrq(tmp4, 32);
9114   movl(Address(z, idx, Address::times_4,  0), tmp4);
9115 
9116   jmp(L_third_loop);
9117 
9118   bind (L_third_loop_exit);
9119 
9120   andl (idx, 0x3);
9121   jcc(Assembler::zero, L_post_third_loop_done);
9122 
9123   Label L_check_1;
9124   subl(idx, 2);
9125   jcc(Assembler::negative, L_check_1);
9126 
9127   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
9128   rorxq(yz_idx1, yz_idx1, 32);
9129   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
9130   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9131   rorxq(yz_idx2, yz_idx2, 32);
9132 
9133   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
9134 
9135   movl(Address(z, idx, Address::times_4,  4), tmp3);
9136   shrq(tmp3, 32);
9137   movl(Address(z, idx, Address::times_4,  0), tmp3);
9138   movq(carry, tmp4);
9139 
9140   bind (L_check_1);
9141   addl (idx, 0x2);
9142   andl (idx, 0x1);
9143   subl(idx, 1);
9144   jcc(Assembler::negative, L_post_third_loop_done);
9145   movl(tmp4, Address(y, idx, Address::times_4,  0));
9146   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
9147   movl(tmp4, Address(z, idx, Address::times_4,  0));
9148 
9149   add2_with_carry(carry2, tmp3, tmp4, carry);
9150 
9151   movl(Address(z, idx, Address::times_4,  0), tmp3);
9152   shrq(tmp3, 32);
9153 
9154   shlq(carry2, 32);
9155   orq(tmp3, carry2);
9156   movq(carry, tmp3);
9157 
9158   bind(L_post_third_loop_done);
9159 }
9160 
9161 /**
9162  * Code for BigInteger::multiplyToLen() instrinsic.
9163  *
9164  * rdi: x
9165  * rax: xlen
9166  * rsi: y
9167  * rcx: ylen
9168  * r8:  z
9169  * r11: zlen
9170  * r12: tmp1
9171  * r13: tmp2
9172  * r14: tmp3
9173  * r15: tmp4
9174  * rbx: tmp5
9175  *
9176  */
9177 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
9178                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
9179   ShortBranchVerifier sbv(this);
9180   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
9181 
9182   push(tmp1);
9183   push(tmp2);
9184   push(tmp3);
9185   push(tmp4);
9186   push(tmp5);
9187 
9188   push(xlen);
9189   push(zlen);
9190 
9191   const Register idx = tmp1;
9192   const Register kdx = tmp2;
9193   const Register xstart = tmp3;
9194 
9195   const Register y_idx = tmp4;
9196   const Register carry = tmp5;
9197   const Register product  = xlen;
9198   const Register x_xstart = zlen;  // reuse register
9199 
9200   // First Loop.
9201   //
9202   //  final static long LONG_MASK = 0xffffffffL;
9203   //  int xstart = xlen - 1;
9204   //  int ystart = ylen - 1;
9205   //  long carry = 0;
9206   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
9207   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
9208   //    z[kdx] = (int)product;
9209   //    carry = product >>> 32;
9210   //  }
9211   //  z[xstart] = (int)carry;
9212   //
9213 
9214   movl(idx, ylen);      // idx = ylen;
9215   movl(kdx, zlen);      // kdx = xlen+ylen;
9216   xorq(carry, carry);   // carry = 0;
9217 
9218   Label L_done;
9219 
9220   movl(xstart, xlen);
9221   decrementl(xstart);
9222   jcc(Assembler::negative, L_done);
9223 
9224   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
9225 
9226   Label L_second_loop;
9227   testl(kdx, kdx);
9228   jcc(Assembler::zero, L_second_loop);
9229 
9230   Label L_carry;
9231   subl(kdx, 1);
9232   jcc(Assembler::zero, L_carry);
9233 
9234   movl(Address(z, kdx, Address::times_4,  0), carry);
9235   shrq(carry, 32);
9236   subl(kdx, 1);
9237 
9238   bind(L_carry);
9239   movl(Address(z, kdx, Address::times_4,  0), carry);
9240 
9241   // Second and third (nested) loops.
9242   //
9243   // for (int i = xstart-1; i >= 0; i--) { // Second loop
9244   //   carry = 0;
9245   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
9246   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
9247   //                    (z[k] & LONG_MASK) + carry;
9248   //     z[k] = (int)product;
9249   //     carry = product >>> 32;
9250   //   }
9251   //   z[i] = (int)carry;
9252   // }
9253   //
9254   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
9255 
9256   const Register jdx = tmp1;
9257 
9258   bind(L_second_loop);
9259   xorl(carry, carry);    // carry = 0;
9260   movl(jdx, ylen);       // j = ystart+1
9261 
9262   subl(xstart, 1);       // i = xstart-1;
9263   jcc(Assembler::negative, L_done);
9264 
9265   push (z);
9266 
9267   Label L_last_x;
9268   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
9269   subl(xstart, 1);       // i = xstart-1;
9270   jcc(Assembler::negative, L_last_x);
9271 
9272   if (UseBMI2Instructions) {
9273     movq(rdx,  Address(x, xstart, Address::times_4,  0));
9274     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
9275   } else {
9276     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9277     rorq(x_xstart, 32);  // convert big-endian to little-endian
9278   }
9279 
9280   Label L_third_loop_prologue;
9281   bind(L_third_loop_prologue);
9282 
9283   push (x);
9284   push (xstart);
9285   push (ylen);
9286 
9287 
9288   if (UseBMI2Instructions) {
9289     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
9290   } else { // !UseBMI2Instructions
9291     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
9292   }
9293 
9294   pop(ylen);
9295   pop(xlen);
9296   pop(x);
9297   pop(z);
9298 
9299   movl(tmp3, xlen);
9300   addl(tmp3, 1);
9301   movl(Address(z, tmp3, Address::times_4,  0), carry);
9302   subl(tmp3, 1);
9303   jccb(Assembler::negative, L_done);
9304 
9305   shrq(carry, 32);
9306   movl(Address(z, tmp3, Address::times_4,  0), carry);
9307   jmp(L_second_loop);
9308 
9309   // Next infrequent code is moved outside loops.
9310   bind(L_last_x);
9311   if (UseBMI2Instructions) {
9312     movl(rdx, Address(x,  0));
9313   } else {
9314     movl(x_xstart, Address(x,  0));
9315   }
9316   jmp(L_third_loop_prologue);
9317 
9318   bind(L_done);
9319 
9320   pop(zlen);
9321   pop(xlen);
9322 
9323   pop(tmp5);
9324   pop(tmp4);
9325   pop(tmp3);
9326   pop(tmp2);
9327   pop(tmp1);
9328 }
9329 
9330 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
9331   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
9332   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
9333   Label VECTOR64_LOOP, VECTOR64_TAIL, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
9334   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
9335   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
9336   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9337   Label SAME_TILL_END, DONE;
9338   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9339 
9340   //scale is in rcx in both Win64 and Unix
9341   ShortBranchVerifier sbv(this);
9342 
9343   shlq(length);
9344   xorq(result, result);
9345 
9346   if ((UseAVX > 2) &&
9347       VM_Version::supports_avx512vlbw()) {
9348     set_vector_masking();  // opening of the stub context for programming mask registers
9349     cmpq(length, 64);
9350     jcc(Assembler::less, VECTOR32_TAIL);
9351     movq(tmp1, length);
9352     andq(tmp1, 0x3F);      // tail count
9353     andq(length, ~(0x3F)); //vector count
9354 
9355     bind(VECTOR64_LOOP);
9356     // AVX512 code to compare 64 byte vectors.
9357     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
9358     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
9359     kortestql(k7, k7);
9360     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
9361     addq(result, 64);
9362     subq(length, 64);
9363     jccb(Assembler::notZero, VECTOR64_LOOP);
9364 
9365     //bind(VECTOR64_TAIL);
9366     testq(tmp1, tmp1);
9367     jcc(Assembler::zero, SAME_TILL_END);
9368 
9369     bind(VECTOR64_TAIL);
9370     // AVX512 code to compare upto 63 byte vectors.
9371     // Save k1
9372     kmovql(k3, k1);
9373     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
9374     shlxq(tmp2, tmp2, tmp1);
9375     notq(tmp2);
9376     kmovql(k1, tmp2);
9377 
9378     evmovdqub(rymm0, k1, Address(obja, result), Assembler::AVX_512bit);
9379     evpcmpeqb(k7, k1, rymm0, Address(objb, result), Assembler::AVX_512bit);
9380 
9381     ktestql(k7, k1);
9382     // Restore k1
9383     kmovql(k1, k3);
9384     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
9385 
9386     bind(VECTOR64_NOT_EQUAL);
9387     kmovql(tmp1, k7);
9388     notq(tmp1);
9389     tzcntq(tmp1, tmp1);
9390     addq(result, tmp1);
9391     shrq(result);
9392     jmp(DONE);
9393     bind(VECTOR32_TAIL);
9394     clear_vector_masking();   // closing of the stub context for programming mask registers
9395   }
9396 
9397   cmpq(length, 8);
9398   jcc(Assembler::equal, VECTOR8_LOOP);
9399   jcc(Assembler::less, VECTOR4_TAIL);
9400 
9401   if (UseAVX >= 2) {
9402 
9403     cmpq(length, 16);
9404     jcc(Assembler::equal, VECTOR16_LOOP);
9405     jcc(Assembler::less, VECTOR8_LOOP);
9406 
9407     cmpq(length, 32);
9408     jccb(Assembler::less, VECTOR16_TAIL);
9409 
9410     subq(length, 32);
9411     bind(VECTOR32_LOOP);
9412     vmovdqu(rymm0, Address(obja, result));
9413     vmovdqu(rymm1, Address(objb, result));
9414     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9415     vptest(rymm2, rymm2);
9416     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9417     addq(result, 32);
9418     subq(length, 32);
9419     jccb(Assembler::greaterEqual, VECTOR32_LOOP);
9420     addq(length, 32);
9421     jcc(Assembler::equal, SAME_TILL_END);
9422     //falling through if less than 32 bytes left //close the branch here.
9423 
9424     bind(VECTOR16_TAIL);
9425     cmpq(length, 16);
9426     jccb(Assembler::less, VECTOR8_TAIL);
9427     bind(VECTOR16_LOOP);
9428     movdqu(rymm0, Address(obja, result));
9429     movdqu(rymm1, Address(objb, result));
9430     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9431     ptest(rymm2, rymm2);
9432     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9433     addq(result, 16);
9434     subq(length, 16);
9435     jcc(Assembler::equal, SAME_TILL_END);
9436     //falling through if less than 16 bytes left
9437   } else {//regular intrinsics
9438 
9439     cmpq(length, 16);
9440     jccb(Assembler::less, VECTOR8_TAIL);
9441 
9442     subq(length, 16);
9443     bind(VECTOR16_LOOP);
9444     movdqu(rymm0, Address(obja, result));
9445     movdqu(rymm1, Address(objb, result));
9446     pxor(rymm0, rymm1);
9447     ptest(rymm0, rymm0);
9448     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9449     addq(result, 16);
9450     subq(length, 16);
9451     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9452     addq(length, 16);
9453     jcc(Assembler::equal, SAME_TILL_END);
9454     //falling through if less than 16 bytes left
9455   }
9456 
9457   bind(VECTOR8_TAIL);
9458   cmpq(length, 8);
9459   jccb(Assembler::less, VECTOR4_TAIL);
9460   bind(VECTOR8_LOOP);
9461   movq(tmp1, Address(obja, result));
9462   movq(tmp2, Address(objb, result));
9463   xorq(tmp1, tmp2);
9464   testq(tmp1, tmp1);
9465   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9466   addq(result, 8);
9467   subq(length, 8);
9468   jcc(Assembler::equal, SAME_TILL_END);
9469   //falling through if less than 8 bytes left
9470 
9471   bind(VECTOR4_TAIL);
9472   cmpq(length, 4);
9473   jccb(Assembler::less, BYTES_TAIL);
9474   bind(VECTOR4_LOOP);
9475   movl(tmp1, Address(obja, result));
9476   xorl(tmp1, Address(objb, result));
9477   testl(tmp1, tmp1);
9478   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9479   addq(result, 4);
9480   subq(length, 4);
9481   jcc(Assembler::equal, SAME_TILL_END);
9482   //falling through if less than 4 bytes left
9483 
9484   bind(BYTES_TAIL);
9485   bind(BYTES_LOOP);
9486   load_unsigned_byte(tmp1, Address(obja, result));
9487   load_unsigned_byte(tmp2, Address(objb, result));
9488   xorl(tmp1, tmp2);
9489   testl(tmp1, tmp1);
9490   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9491   decq(length);
9492   jccb(Assembler::zero, SAME_TILL_END);
9493   incq(result);
9494   load_unsigned_byte(tmp1, Address(obja, result));
9495   load_unsigned_byte(tmp2, Address(objb, result));
9496   xorl(tmp1, tmp2);
9497   testl(tmp1, tmp1);
9498   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9499   decq(length);
9500   jccb(Assembler::zero, SAME_TILL_END);
9501   incq(result);
9502   load_unsigned_byte(tmp1, Address(obja, result));
9503   load_unsigned_byte(tmp2, Address(objb, result));
9504   xorl(tmp1, tmp2);
9505   testl(tmp1, tmp1);
9506   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9507   jmpb(SAME_TILL_END);
9508 
9509   if (UseAVX >= 2) {
9510     bind(VECTOR32_NOT_EQUAL);
9511     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9512     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9513     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9514     vpmovmskb(tmp1, rymm0);
9515     bsfq(tmp1, tmp1);
9516     addq(result, tmp1);
9517     shrq(result);
9518     jmpb(DONE);
9519   }
9520 
9521   bind(VECTOR16_NOT_EQUAL);
9522   if (UseAVX >= 2) {
9523     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9524     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9525     pxor(rymm0, rymm2);
9526   } else {
9527     pcmpeqb(rymm2, rymm2);
9528     pxor(rymm0, rymm1);
9529     pcmpeqb(rymm0, rymm1);
9530     pxor(rymm0, rymm2);
9531   }
9532   pmovmskb(tmp1, rymm0);
9533   bsfq(tmp1, tmp1);
9534   addq(result, tmp1);
9535   shrq(result);
9536   jmpb(DONE);
9537 
9538   bind(VECTOR8_NOT_EQUAL);
9539   bind(VECTOR4_NOT_EQUAL);
9540   bsfq(tmp1, tmp1);
9541   shrq(tmp1, 3);
9542   addq(result, tmp1);
9543   bind(BYTES_NOT_EQUAL);
9544   shrq(result);
9545   jmpb(DONE);
9546 
9547   bind(SAME_TILL_END);
9548   mov64(result, -1);
9549 
9550   bind(DONE);
9551 }
9552 
9553 //Helper functions for square_to_len()
9554 
9555 /**
9556  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9557  * Preserves x and z and modifies rest of the registers.
9558  */
9559 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9560   // Perform square and right shift by 1
9561   // Handle odd xlen case first, then for even xlen do the following
9562   // jlong carry = 0;
9563   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9564   //     huge_128 product = x[j:j+1] * x[j:j+1];
9565   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9566   //     z[i+2:i+3] = (jlong)(product >>> 1);
9567   //     carry = (jlong)product;
9568   // }
9569 
9570   xorq(tmp5, tmp5);     // carry
9571   xorq(rdxReg, rdxReg);
9572   xorl(tmp1, tmp1);     // index for x
9573   xorl(tmp4, tmp4);     // index for z
9574 
9575   Label L_first_loop, L_first_loop_exit;
9576 
9577   testl(xlen, 1);
9578   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9579 
9580   // Square and right shift by 1 the odd element using 32 bit multiply
9581   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9582   imulq(raxReg, raxReg);
9583   shrq(raxReg, 1);
9584   adcq(tmp5, 0);
9585   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9586   incrementl(tmp1);
9587   addl(tmp4, 2);
9588 
9589   // Square and  right shift by 1 the rest using 64 bit multiply
9590   bind(L_first_loop);
9591   cmpptr(tmp1, xlen);
9592   jccb(Assembler::equal, L_first_loop_exit);
9593 
9594   // Square
9595   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9596   rorq(raxReg, 32);    // convert big-endian to little-endian
9597   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9598 
9599   // Right shift by 1 and save carry
9600   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9601   rcrq(rdxReg, 1);
9602   rcrq(raxReg, 1);
9603   adcq(tmp5, 0);
9604 
9605   // Store result in z
9606   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9607   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9608 
9609   // Update indices for x and z
9610   addl(tmp1, 2);
9611   addl(tmp4, 4);
9612   jmp(L_first_loop);
9613 
9614   bind(L_first_loop_exit);
9615 }
9616 
9617 
9618 /**
9619  * Perform the following multiply add operation using BMI2 instructions
9620  * carry:sum = sum + op1*op2 + carry
9621  * op2 should be in rdx
9622  * op2 is preserved, all other registers are modified
9623  */
9624 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9625   // assert op2 is rdx
9626   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9627   addq(sum, carry);
9628   adcq(tmp2, 0);
9629   addq(sum, op1);
9630   adcq(tmp2, 0);
9631   movq(carry, tmp2);
9632 }
9633 
9634 /**
9635  * Perform the following multiply add operation:
9636  * carry:sum = sum + op1*op2 + carry
9637  * Preserves op1, op2 and modifies rest of registers
9638  */
9639 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9640   // rdx:rax = op1 * op2
9641   movq(raxReg, op2);
9642   mulq(op1);
9643 
9644   //  rdx:rax = sum + carry + rdx:rax
9645   addq(sum, carry);
9646   adcq(rdxReg, 0);
9647   addq(sum, raxReg);
9648   adcq(rdxReg, 0);
9649 
9650   // carry:sum = rdx:sum
9651   movq(carry, rdxReg);
9652 }
9653 
9654 /**
9655  * Add 64 bit long carry into z[] with carry propogation.
9656  * Preserves z and carry register values and modifies rest of registers.
9657  *
9658  */
9659 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9660   Label L_fourth_loop, L_fourth_loop_exit;
9661 
9662   movl(tmp1, 1);
9663   subl(zlen, 2);
9664   addq(Address(z, zlen, Address::times_4, 0), carry);
9665 
9666   bind(L_fourth_loop);
9667   jccb(Assembler::carryClear, L_fourth_loop_exit);
9668   subl(zlen, 2);
9669   jccb(Assembler::negative, L_fourth_loop_exit);
9670   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9671   jmp(L_fourth_loop);
9672   bind(L_fourth_loop_exit);
9673 }
9674 
9675 /**
9676  * Shift z[] left by 1 bit.
9677  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9678  *
9679  */
9680 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9681 
9682   Label L_fifth_loop, L_fifth_loop_exit;
9683 
9684   // Fifth loop
9685   // Perform primitiveLeftShift(z, zlen, 1)
9686 
9687   const Register prev_carry = tmp1;
9688   const Register new_carry = tmp4;
9689   const Register value = tmp2;
9690   const Register zidx = tmp3;
9691 
9692   // int zidx, carry;
9693   // long value;
9694   // carry = 0;
9695   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9696   //    (carry:value)  = (z[i] << 1) | carry ;
9697   //    z[i] = value;
9698   // }
9699 
9700   movl(zidx, zlen);
9701   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9702 
9703   bind(L_fifth_loop);
9704   decl(zidx);  // Use decl to preserve carry flag
9705   decl(zidx);
9706   jccb(Assembler::negative, L_fifth_loop_exit);
9707 
9708   if (UseBMI2Instructions) {
9709      movq(value, Address(z, zidx, Address::times_4, 0));
9710      rclq(value, 1);
9711      rorxq(value, value, 32);
9712      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9713   }
9714   else {
9715     // clear new_carry
9716     xorl(new_carry, new_carry);
9717 
9718     // Shift z[i] by 1, or in previous carry and save new carry
9719     movq(value, Address(z, zidx, Address::times_4, 0));
9720     shlq(value, 1);
9721     adcl(new_carry, 0);
9722 
9723     orq(value, prev_carry);
9724     rorq(value, 0x20);
9725     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9726 
9727     // Set previous carry = new carry
9728     movl(prev_carry, new_carry);
9729   }
9730   jmp(L_fifth_loop);
9731 
9732   bind(L_fifth_loop_exit);
9733 }
9734 
9735 
9736 /**
9737  * Code for BigInteger::squareToLen() intrinsic
9738  *
9739  * rdi: x
9740  * rsi: len
9741  * r8:  z
9742  * rcx: zlen
9743  * r12: tmp1
9744  * r13: tmp2
9745  * r14: tmp3
9746  * r15: tmp4
9747  * rbx: tmp5
9748  *
9749  */
9750 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9751 
9752   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9753   push(tmp1);
9754   push(tmp2);
9755   push(tmp3);
9756   push(tmp4);
9757   push(tmp5);
9758 
9759   // First loop
9760   // Store the squares, right shifted one bit (i.e., divided by 2).
9761   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9762 
9763   // Add in off-diagonal sums.
9764   //
9765   // Second, third (nested) and fourth loops.
9766   // zlen +=2;
9767   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9768   //    carry = 0;
9769   //    long op2 = x[xidx:xidx+1];
9770   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9771   //       k -= 2;
9772   //       long op1 = x[j:j+1];
9773   //       long sum = z[k:k+1];
9774   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9775   //       z[k:k+1] = sum;
9776   //    }
9777   //    add_one_64(z, k, carry, tmp_regs);
9778   // }
9779 
9780   const Register carry = tmp5;
9781   const Register sum = tmp3;
9782   const Register op1 = tmp4;
9783   Register op2 = tmp2;
9784 
9785   push(zlen);
9786   push(len);
9787   addl(zlen,2);
9788   bind(L_second_loop);
9789   xorq(carry, carry);
9790   subl(zlen, 4);
9791   subl(len, 2);
9792   push(zlen);
9793   push(len);
9794   cmpl(len, 0);
9795   jccb(Assembler::lessEqual, L_second_loop_exit);
9796 
9797   // Multiply an array by one 64 bit long.
9798   if (UseBMI2Instructions) {
9799     op2 = rdxReg;
9800     movq(op2, Address(x, len, Address::times_4,  0));
9801     rorxq(op2, op2, 32);
9802   }
9803   else {
9804     movq(op2, Address(x, len, Address::times_4,  0));
9805     rorq(op2, 32);
9806   }
9807 
9808   bind(L_third_loop);
9809   decrementl(len);
9810   jccb(Assembler::negative, L_third_loop_exit);
9811   decrementl(len);
9812   jccb(Assembler::negative, L_last_x);
9813 
9814   movq(op1, Address(x, len, Address::times_4,  0));
9815   rorq(op1, 32);
9816 
9817   bind(L_multiply);
9818   subl(zlen, 2);
9819   movq(sum, Address(z, zlen, Address::times_4,  0));
9820 
9821   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9822   if (UseBMI2Instructions) {
9823     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9824   }
9825   else {
9826     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9827   }
9828 
9829   movq(Address(z, zlen, Address::times_4, 0), sum);
9830 
9831   jmp(L_third_loop);
9832   bind(L_third_loop_exit);
9833 
9834   // Fourth loop
9835   // Add 64 bit long carry into z with carry propogation.
9836   // Uses offsetted zlen.
9837   add_one_64(z, zlen, carry, tmp1);
9838 
9839   pop(len);
9840   pop(zlen);
9841   jmp(L_second_loop);
9842 
9843   // Next infrequent code is moved outside loops.
9844   bind(L_last_x);
9845   movl(op1, Address(x, 0));
9846   jmp(L_multiply);
9847 
9848   bind(L_second_loop_exit);
9849   pop(len);
9850   pop(zlen);
9851   pop(len);
9852   pop(zlen);
9853 
9854   // Fifth loop
9855   // Shift z left 1 bit.
9856   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
9857 
9858   // z[zlen-1] |= x[len-1] & 1;
9859   movl(tmp3, Address(x, len, Address::times_4, -4));
9860   andl(tmp3, 1);
9861   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
9862 
9863   pop(tmp5);
9864   pop(tmp4);
9865   pop(tmp3);
9866   pop(tmp2);
9867   pop(tmp1);
9868 }
9869 
9870 /**
9871  * Helper function for mul_add()
9872  * Multiply the in[] by int k and add to out[] starting at offset offs using
9873  * 128 bit by 32 bit multiply and return the carry in tmp5.
9874  * Only quad int aligned length of in[] is operated on in this function.
9875  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
9876  * This function preserves out, in and k registers.
9877  * len and offset point to the appropriate index in "in" & "out" correspondingly
9878  * tmp5 has the carry.
9879  * other registers are temporary and are modified.
9880  *
9881  */
9882 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
9883   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
9884   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9885 
9886   Label L_first_loop, L_first_loop_exit;
9887 
9888   movl(tmp1, len);
9889   shrl(tmp1, 2);
9890 
9891   bind(L_first_loop);
9892   subl(tmp1, 1);
9893   jccb(Assembler::negative, L_first_loop_exit);
9894 
9895   subl(len, 4);
9896   subl(offset, 4);
9897 
9898   Register op2 = tmp2;
9899   const Register sum = tmp3;
9900   const Register op1 = tmp4;
9901   const Register carry = tmp5;
9902 
9903   if (UseBMI2Instructions) {
9904     op2 = rdxReg;
9905   }
9906 
9907   movq(op1, Address(in, len, Address::times_4,  8));
9908   rorq(op1, 32);
9909   movq(sum, Address(out, offset, Address::times_4,  8));
9910   rorq(sum, 32);
9911   if (UseBMI2Instructions) {
9912     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9913   }
9914   else {
9915     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9916   }
9917   // Store back in big endian from little endian
9918   rorq(sum, 0x20);
9919   movq(Address(out, offset, Address::times_4,  8), sum);
9920 
9921   movq(op1, Address(in, len, Address::times_4,  0));
9922   rorq(op1, 32);
9923   movq(sum, Address(out, offset, Address::times_4,  0));
9924   rorq(sum, 32);
9925   if (UseBMI2Instructions) {
9926     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9927   }
9928   else {
9929     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9930   }
9931   // Store back in big endian from little endian
9932   rorq(sum, 0x20);
9933   movq(Address(out, offset, Address::times_4,  0), sum);
9934 
9935   jmp(L_first_loop);
9936   bind(L_first_loop_exit);
9937 }
9938 
9939 /**
9940  * Code for BigInteger::mulAdd() intrinsic
9941  *
9942  * rdi: out
9943  * rsi: in
9944  * r11: offs (out.length - offset)
9945  * rcx: len
9946  * r8:  k
9947  * r12: tmp1
9948  * r13: tmp2
9949  * r14: tmp3
9950  * r15: tmp4
9951  * rbx: tmp5
9952  * Multiply the in[] by word k and add to out[], return the carry in rax
9953  */
9954 void MacroAssembler::mul_add(Register out, Register in, Register offs,
9955    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
9956    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9957 
9958   Label L_carry, L_last_in, L_done;
9959 
9960 // carry = 0;
9961 // for (int j=len-1; j >= 0; j--) {
9962 //    long product = (in[j] & LONG_MASK) * kLong +
9963 //                   (out[offs] & LONG_MASK) + carry;
9964 //    out[offs--] = (int)product;
9965 //    carry = product >>> 32;
9966 // }
9967 //
9968   push(tmp1);
9969   push(tmp2);
9970   push(tmp3);
9971   push(tmp4);
9972   push(tmp5);
9973 
9974   Register op2 = tmp2;
9975   const Register sum = tmp3;
9976   const Register op1 = tmp4;
9977   const Register carry =  tmp5;
9978 
9979   if (UseBMI2Instructions) {
9980     op2 = rdxReg;
9981     movl(op2, k);
9982   }
9983   else {
9984     movl(op2, k);
9985   }
9986 
9987   xorq(carry, carry);
9988 
9989   //First loop
9990 
9991   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
9992   //The carry is in tmp5
9993   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
9994 
9995   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
9996   decrementl(len);
9997   jccb(Assembler::negative, L_carry);
9998   decrementl(len);
9999   jccb(Assembler::negative, L_last_in);
10000 
10001   movq(op1, Address(in, len, Address::times_4,  0));
10002   rorq(op1, 32);
10003 
10004   subl(offs, 2);
10005   movq(sum, Address(out, offs, Address::times_4,  0));
10006   rorq(sum, 32);
10007 
10008   if (UseBMI2Instructions) {
10009     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10010   }
10011   else {
10012     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10013   }
10014 
10015   // Store back in big endian from little endian
10016   rorq(sum, 0x20);
10017   movq(Address(out, offs, Address::times_4,  0), sum);
10018 
10019   testl(len, len);
10020   jccb(Assembler::zero, L_carry);
10021 
10022   //Multiply the last in[] entry, if any
10023   bind(L_last_in);
10024   movl(op1, Address(in, 0));
10025   movl(sum, Address(out, offs, Address::times_4,  -4));
10026 
10027   movl(raxReg, k);
10028   mull(op1); //tmp4 * eax -> edx:eax
10029   addl(sum, carry);
10030   adcl(rdxReg, 0);
10031   addl(sum, raxReg);
10032   adcl(rdxReg, 0);
10033   movl(carry, rdxReg);
10034 
10035   movl(Address(out, offs, Address::times_4,  -4), sum);
10036 
10037   bind(L_carry);
10038   //return tmp5/carry as carry in rax
10039   movl(rax, carry);
10040 
10041   bind(L_done);
10042   pop(tmp5);
10043   pop(tmp4);
10044   pop(tmp3);
10045   pop(tmp2);
10046   pop(tmp1);
10047 }
10048 #endif
10049 
10050 /**
10051  * Emits code to update CRC-32 with a byte value according to constants in table
10052  *
10053  * @param [in,out]crc   Register containing the crc.
10054  * @param [in]val       Register containing the byte to fold into the CRC.
10055  * @param [in]table     Register containing the table of crc constants.
10056  *
10057  * uint32_t crc;
10058  * val = crc_table[(val ^ crc) & 0xFF];
10059  * crc = val ^ (crc >> 8);
10060  *
10061  */
10062 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
10063   xorl(val, crc);
10064   andl(val, 0xFF);
10065   shrl(crc, 8); // unsigned shift
10066   xorl(crc, Address(table, val, Address::times_4, 0));
10067 }
10068 
10069 /**
10070  * Fold 128-bit data chunk
10071  */
10072 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
10073   if (UseAVX > 0) {
10074     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
10075     vpclmulldq(xcrc, xK, xcrc); // [63:0]
10076     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
10077     pxor(xcrc, xtmp);
10078   } else {
10079     movdqa(xtmp, xcrc);
10080     pclmulhdq(xtmp, xK);   // [123:64]
10081     pclmulldq(xcrc, xK);   // [63:0]
10082     pxor(xcrc, xtmp);
10083     movdqu(xtmp, Address(buf, offset));
10084     pxor(xcrc, xtmp);
10085   }
10086 }
10087 
10088 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
10089   if (UseAVX > 0) {
10090     vpclmulhdq(xtmp, xK, xcrc);
10091     vpclmulldq(xcrc, xK, xcrc);
10092     pxor(xcrc, xbuf);
10093     pxor(xcrc, xtmp);
10094   } else {
10095     movdqa(xtmp, xcrc);
10096     pclmulhdq(xtmp, xK);
10097     pclmulldq(xcrc, xK);
10098     pxor(xcrc, xbuf);
10099     pxor(xcrc, xtmp);
10100   }
10101 }
10102 
10103 /**
10104  * 8-bit folds to compute 32-bit CRC
10105  *
10106  * uint64_t xcrc;
10107  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
10108  */
10109 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
10110   movdl(tmp, xcrc);
10111   andl(tmp, 0xFF);
10112   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
10113   psrldq(xcrc, 1); // unsigned shift one byte
10114   pxor(xcrc, xtmp);
10115 }
10116 
10117 /**
10118  * uint32_t crc;
10119  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
10120  */
10121 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
10122   movl(tmp, crc);
10123   andl(tmp, 0xFF);
10124   shrl(crc, 8);
10125   xorl(crc, Address(table, tmp, Address::times_4, 0));
10126 }
10127 
10128 /**
10129  * @param crc   register containing existing CRC (32-bit)
10130  * @param buf   register pointing to input byte buffer (byte*)
10131  * @param len   register containing number of bytes
10132  * @param table register that will contain address of CRC table
10133  * @param tmp   scratch register
10134  */
10135 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
10136   assert_different_registers(crc, buf, len, table, tmp, rax);
10137 
10138   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
10139   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
10140 
10141   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
10142   // context for the registers used, where all instructions below are using 128-bit mode
10143   // On EVEX without VL and BW, these instructions will all be AVX.
10144   if (VM_Version::supports_avx512vlbw()) {
10145     movl(tmp, 0xffff);
10146     kmovwl(k1, tmp);
10147   }
10148 
10149   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
10150   notl(crc); // ~crc
10151   cmpl(len, 16);
10152   jcc(Assembler::less, L_tail);
10153 
10154   // Align buffer to 16 bytes
10155   movl(tmp, buf);
10156   andl(tmp, 0xF);
10157   jccb(Assembler::zero, L_aligned);
10158   subl(tmp,  16);
10159   addl(len, tmp);
10160 
10161   align(4);
10162   BIND(L_align_loop);
10163   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10164   update_byte_crc32(crc, rax, table);
10165   increment(buf);
10166   incrementl(tmp);
10167   jccb(Assembler::less, L_align_loop);
10168 
10169   BIND(L_aligned);
10170   movl(tmp, len); // save
10171   shrl(len, 4);
10172   jcc(Assembler::zero, L_tail_restore);
10173 
10174   // Fold crc into first bytes of vector
10175   movdqa(xmm1, Address(buf, 0));
10176   movdl(rax, xmm1);
10177   xorl(crc, rax);
10178   if (VM_Version::supports_sse4_1()) {
10179     pinsrd(xmm1, crc, 0);
10180   } else {
10181     pinsrw(xmm1, crc, 0);
10182     shrl(crc, 16);
10183     pinsrw(xmm1, crc, 1);
10184   }
10185   addptr(buf, 16);
10186   subl(len, 4); // len > 0
10187   jcc(Assembler::less, L_fold_tail);
10188 
10189   movdqa(xmm2, Address(buf,  0));
10190   movdqa(xmm3, Address(buf, 16));
10191   movdqa(xmm4, Address(buf, 32));
10192   addptr(buf, 48);
10193   subl(len, 3);
10194   jcc(Assembler::lessEqual, L_fold_512b);
10195 
10196   // Fold total 512 bits of polynomial on each iteration,
10197   // 128 bits per each of 4 parallel streams.
10198   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
10199 
10200   align(32);
10201   BIND(L_fold_512b_loop);
10202   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10203   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
10204   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
10205   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
10206   addptr(buf, 64);
10207   subl(len, 4);
10208   jcc(Assembler::greater, L_fold_512b_loop);
10209 
10210   // Fold 512 bits to 128 bits.
10211   BIND(L_fold_512b);
10212   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10213   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
10214   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
10215   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
10216 
10217   // Fold the rest of 128 bits data chunks
10218   BIND(L_fold_tail);
10219   addl(len, 3);
10220   jccb(Assembler::lessEqual, L_fold_128b);
10221   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10222 
10223   BIND(L_fold_tail_loop);
10224   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10225   addptr(buf, 16);
10226   decrementl(len);
10227   jccb(Assembler::greater, L_fold_tail_loop);
10228 
10229   // Fold 128 bits in xmm1 down into 32 bits in crc register.
10230   BIND(L_fold_128b);
10231   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
10232   if (UseAVX > 0) {
10233     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
10234     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
10235     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
10236   } else {
10237     movdqa(xmm2, xmm0);
10238     pclmulqdq(xmm2, xmm1, 0x1);
10239     movdqa(xmm3, xmm0);
10240     pand(xmm3, xmm2);
10241     pclmulqdq(xmm0, xmm3, 0x1);
10242   }
10243   psrldq(xmm1, 8);
10244   psrldq(xmm2, 4);
10245   pxor(xmm0, xmm1);
10246   pxor(xmm0, xmm2);
10247 
10248   // 8 8-bit folds to compute 32-bit CRC.
10249   for (int j = 0; j < 4; j++) {
10250     fold_8bit_crc32(xmm0, table, xmm1, rax);
10251   }
10252   movdl(crc, xmm0); // mov 32 bits to general register
10253   for (int j = 0; j < 4; j++) {
10254     fold_8bit_crc32(crc, table, rax);
10255   }
10256 
10257   BIND(L_tail_restore);
10258   movl(len, tmp); // restore
10259   BIND(L_tail);
10260   andl(len, 0xf);
10261   jccb(Assembler::zero, L_exit);
10262 
10263   // Fold the rest of bytes
10264   align(4);
10265   BIND(L_tail_loop);
10266   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10267   update_byte_crc32(crc, rax, table);
10268   increment(buf);
10269   decrementl(len);
10270   jccb(Assembler::greater, L_tail_loop);
10271 
10272   BIND(L_exit);
10273   notl(crc); // ~c
10274 }
10275 
10276 #ifdef _LP64
10277 // S. Gueron / Information Processing Letters 112 (2012) 184
10278 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
10279 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
10280 // Output: the 64-bit carry-less product of B * CONST
10281 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
10282                                      Register tmp1, Register tmp2, Register tmp3) {
10283   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10284   if (n > 0) {
10285     addq(tmp3, n * 256 * 8);
10286   }
10287   //    Q1 = TABLEExt[n][B & 0xFF];
10288   movl(tmp1, in);
10289   andl(tmp1, 0x000000FF);
10290   shll(tmp1, 3);
10291   addq(tmp1, tmp3);
10292   movq(tmp1, Address(tmp1, 0));
10293 
10294   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10295   movl(tmp2, in);
10296   shrl(tmp2, 8);
10297   andl(tmp2, 0x000000FF);
10298   shll(tmp2, 3);
10299   addq(tmp2, tmp3);
10300   movq(tmp2, Address(tmp2, 0));
10301 
10302   shlq(tmp2, 8);
10303   xorq(tmp1, tmp2);
10304 
10305   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10306   movl(tmp2, in);
10307   shrl(tmp2, 16);
10308   andl(tmp2, 0x000000FF);
10309   shll(tmp2, 3);
10310   addq(tmp2, tmp3);
10311   movq(tmp2, Address(tmp2, 0));
10312 
10313   shlq(tmp2, 16);
10314   xorq(tmp1, tmp2);
10315 
10316   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10317   shrl(in, 24);
10318   andl(in, 0x000000FF);
10319   shll(in, 3);
10320   addq(in, tmp3);
10321   movq(in, Address(in, 0));
10322 
10323   shlq(in, 24);
10324   xorq(in, tmp1);
10325   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10326 }
10327 
10328 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10329                                       Register in_out,
10330                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10331                                       XMMRegister w_xtmp2,
10332                                       Register tmp1,
10333                                       Register n_tmp2, Register n_tmp3) {
10334   if (is_pclmulqdq_supported) {
10335     movdl(w_xtmp1, in_out); // modified blindly
10336 
10337     movl(tmp1, const_or_pre_comp_const_index);
10338     movdl(w_xtmp2, tmp1);
10339     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10340 
10341     movdq(in_out, w_xtmp1);
10342   } else {
10343     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10344   }
10345 }
10346 
10347 // Recombination Alternative 2: No bit-reflections
10348 // T1 = (CRC_A * U1) << 1
10349 // T2 = (CRC_B * U2) << 1
10350 // C1 = T1 >> 32
10351 // C2 = T2 >> 32
10352 // T1 = T1 & 0xFFFFFFFF
10353 // T2 = T2 & 0xFFFFFFFF
10354 // T1 = CRC32(0, T1)
10355 // T2 = CRC32(0, T2)
10356 // C1 = C1 ^ T1
10357 // C2 = C2 ^ T2
10358 // CRC = C1 ^ C2 ^ CRC_C
10359 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10360                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10361                                      Register tmp1, Register tmp2,
10362                                      Register n_tmp3) {
10363   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10364   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10365   shlq(in_out, 1);
10366   movl(tmp1, in_out);
10367   shrq(in_out, 32);
10368   xorl(tmp2, tmp2);
10369   crc32(tmp2, tmp1, 4);
10370   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10371   shlq(in1, 1);
10372   movl(tmp1, in1);
10373   shrq(in1, 32);
10374   xorl(tmp2, tmp2);
10375   crc32(tmp2, tmp1, 4);
10376   xorl(in1, tmp2);
10377   xorl(in_out, in1);
10378   xorl(in_out, in2);
10379 }
10380 
10381 // Set N to predefined value
10382 // Subtract from a lenght of a buffer
10383 // execute in a loop:
10384 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10385 // for i = 1 to N do
10386 //  CRC_A = CRC32(CRC_A, A[i])
10387 //  CRC_B = CRC32(CRC_B, B[i])
10388 //  CRC_C = CRC32(CRC_C, C[i])
10389 // end for
10390 // Recombine
10391 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10392                                        Register in_out1, Register in_out2, Register in_out3,
10393                                        Register tmp1, Register tmp2, Register tmp3,
10394                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10395                                        Register tmp4, Register tmp5,
10396                                        Register n_tmp6) {
10397   Label L_processPartitions;
10398   Label L_processPartition;
10399   Label L_exit;
10400 
10401   bind(L_processPartitions);
10402   cmpl(in_out1, 3 * size);
10403   jcc(Assembler::less, L_exit);
10404     xorl(tmp1, tmp1);
10405     xorl(tmp2, tmp2);
10406     movq(tmp3, in_out2);
10407     addq(tmp3, size);
10408 
10409     bind(L_processPartition);
10410       crc32(in_out3, Address(in_out2, 0), 8);
10411       crc32(tmp1, Address(in_out2, size), 8);
10412       crc32(tmp2, Address(in_out2, size * 2), 8);
10413       addq(in_out2, 8);
10414       cmpq(in_out2, tmp3);
10415       jcc(Assembler::less, L_processPartition);
10416     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10417             w_xtmp1, w_xtmp2, w_xtmp3,
10418             tmp4, tmp5,
10419             n_tmp6);
10420     addq(in_out2, 2 * size);
10421     subl(in_out1, 3 * size);
10422     jmp(L_processPartitions);
10423 
10424   bind(L_exit);
10425 }
10426 #else
10427 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10428                                      Register tmp1, Register tmp2, Register tmp3,
10429                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10430   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10431   if (n > 0) {
10432     addl(tmp3, n * 256 * 8);
10433   }
10434   //    Q1 = TABLEExt[n][B & 0xFF];
10435   movl(tmp1, in_out);
10436   andl(tmp1, 0x000000FF);
10437   shll(tmp1, 3);
10438   addl(tmp1, tmp3);
10439   movq(xtmp1, Address(tmp1, 0));
10440 
10441   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10442   movl(tmp2, in_out);
10443   shrl(tmp2, 8);
10444   andl(tmp2, 0x000000FF);
10445   shll(tmp2, 3);
10446   addl(tmp2, tmp3);
10447   movq(xtmp2, Address(tmp2, 0));
10448 
10449   psllq(xtmp2, 8);
10450   pxor(xtmp1, xtmp2);
10451 
10452   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10453   movl(tmp2, in_out);
10454   shrl(tmp2, 16);
10455   andl(tmp2, 0x000000FF);
10456   shll(tmp2, 3);
10457   addl(tmp2, tmp3);
10458   movq(xtmp2, Address(tmp2, 0));
10459 
10460   psllq(xtmp2, 16);
10461   pxor(xtmp1, xtmp2);
10462 
10463   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10464   shrl(in_out, 24);
10465   andl(in_out, 0x000000FF);
10466   shll(in_out, 3);
10467   addl(in_out, tmp3);
10468   movq(xtmp2, Address(in_out, 0));
10469 
10470   psllq(xtmp2, 24);
10471   pxor(xtmp1, xtmp2); // Result in CXMM
10472   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10473 }
10474 
10475 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10476                                       Register in_out,
10477                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10478                                       XMMRegister w_xtmp2,
10479                                       Register tmp1,
10480                                       Register n_tmp2, Register n_tmp3) {
10481   if (is_pclmulqdq_supported) {
10482     movdl(w_xtmp1, in_out);
10483 
10484     movl(tmp1, const_or_pre_comp_const_index);
10485     movdl(w_xtmp2, tmp1);
10486     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10487     // Keep result in XMM since GPR is 32 bit in length
10488   } else {
10489     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10490   }
10491 }
10492 
10493 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10494                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10495                                      Register tmp1, Register tmp2,
10496                                      Register n_tmp3) {
10497   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10498   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10499 
10500   psllq(w_xtmp1, 1);
10501   movdl(tmp1, w_xtmp1);
10502   psrlq(w_xtmp1, 32);
10503   movdl(in_out, w_xtmp1);
10504 
10505   xorl(tmp2, tmp2);
10506   crc32(tmp2, tmp1, 4);
10507   xorl(in_out, tmp2);
10508 
10509   psllq(w_xtmp2, 1);
10510   movdl(tmp1, w_xtmp2);
10511   psrlq(w_xtmp2, 32);
10512   movdl(in1, w_xtmp2);
10513 
10514   xorl(tmp2, tmp2);
10515   crc32(tmp2, tmp1, 4);
10516   xorl(in1, tmp2);
10517   xorl(in_out, in1);
10518   xorl(in_out, in2);
10519 }
10520 
10521 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10522                                        Register in_out1, Register in_out2, Register in_out3,
10523                                        Register tmp1, Register tmp2, Register tmp3,
10524                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10525                                        Register tmp4, Register tmp5,
10526                                        Register n_tmp6) {
10527   Label L_processPartitions;
10528   Label L_processPartition;
10529   Label L_exit;
10530 
10531   bind(L_processPartitions);
10532   cmpl(in_out1, 3 * size);
10533   jcc(Assembler::less, L_exit);
10534     xorl(tmp1, tmp1);
10535     xorl(tmp2, tmp2);
10536     movl(tmp3, in_out2);
10537     addl(tmp3, size);
10538 
10539     bind(L_processPartition);
10540       crc32(in_out3, Address(in_out2, 0), 4);
10541       crc32(tmp1, Address(in_out2, size), 4);
10542       crc32(tmp2, Address(in_out2, size*2), 4);
10543       crc32(in_out3, Address(in_out2, 0+4), 4);
10544       crc32(tmp1, Address(in_out2, size+4), 4);
10545       crc32(tmp2, Address(in_out2, size*2+4), 4);
10546       addl(in_out2, 8);
10547       cmpl(in_out2, tmp3);
10548       jcc(Assembler::less, L_processPartition);
10549 
10550         push(tmp3);
10551         push(in_out1);
10552         push(in_out2);
10553         tmp4 = tmp3;
10554         tmp5 = in_out1;
10555         n_tmp6 = in_out2;
10556 
10557       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10558             w_xtmp1, w_xtmp2, w_xtmp3,
10559             tmp4, tmp5,
10560             n_tmp6);
10561 
10562         pop(in_out2);
10563         pop(in_out1);
10564         pop(tmp3);
10565 
10566     addl(in_out2, 2 * size);
10567     subl(in_out1, 3 * size);
10568     jmp(L_processPartitions);
10569 
10570   bind(L_exit);
10571 }
10572 #endif //LP64
10573 
10574 #ifdef _LP64
10575 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10576 // Input: A buffer I of L bytes.
10577 // Output: the CRC32C value of the buffer.
10578 // Notations:
10579 // Write L = 24N + r, with N = floor (L/24).
10580 // r = L mod 24 (0 <= r < 24).
10581 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10582 // N quadwords, and R consists of r bytes.
10583 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10584 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10585 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10586 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10587 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10588                                           Register tmp1, Register tmp2, Register tmp3,
10589                                           Register tmp4, Register tmp5, Register tmp6,
10590                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10591                                           bool is_pclmulqdq_supported) {
10592   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10593   Label L_wordByWord;
10594   Label L_byteByByteProlog;
10595   Label L_byteByByte;
10596   Label L_exit;
10597 
10598   if (is_pclmulqdq_supported ) {
10599     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10600     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10601 
10602     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10603     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10604 
10605     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10606     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10607     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10608   } else {
10609     const_or_pre_comp_const_index[0] = 1;
10610     const_or_pre_comp_const_index[1] = 0;
10611 
10612     const_or_pre_comp_const_index[2] = 3;
10613     const_or_pre_comp_const_index[3] = 2;
10614 
10615     const_or_pre_comp_const_index[4] = 5;
10616     const_or_pre_comp_const_index[5] = 4;
10617    }
10618   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10619                     in2, in1, in_out,
10620                     tmp1, tmp2, tmp3,
10621                     w_xtmp1, w_xtmp2, w_xtmp3,
10622                     tmp4, tmp5,
10623                     tmp6);
10624   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10625                     in2, in1, in_out,
10626                     tmp1, tmp2, tmp3,
10627                     w_xtmp1, w_xtmp2, w_xtmp3,
10628                     tmp4, tmp5,
10629                     tmp6);
10630   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10631                     in2, in1, in_out,
10632                     tmp1, tmp2, tmp3,
10633                     w_xtmp1, w_xtmp2, w_xtmp3,
10634                     tmp4, tmp5,
10635                     tmp6);
10636   movl(tmp1, in2);
10637   andl(tmp1, 0x00000007);
10638   negl(tmp1);
10639   addl(tmp1, in2);
10640   addq(tmp1, in1);
10641 
10642   BIND(L_wordByWord);
10643   cmpq(in1, tmp1);
10644   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10645     crc32(in_out, Address(in1, 0), 4);
10646     addq(in1, 4);
10647     jmp(L_wordByWord);
10648 
10649   BIND(L_byteByByteProlog);
10650   andl(in2, 0x00000007);
10651   movl(tmp2, 1);
10652 
10653   BIND(L_byteByByte);
10654   cmpl(tmp2, in2);
10655   jccb(Assembler::greater, L_exit);
10656     crc32(in_out, Address(in1, 0), 1);
10657     incq(in1);
10658     incl(tmp2);
10659     jmp(L_byteByByte);
10660 
10661   BIND(L_exit);
10662 }
10663 #else
10664 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10665                                           Register tmp1, Register  tmp2, Register tmp3,
10666                                           Register tmp4, Register  tmp5, Register tmp6,
10667                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10668                                           bool is_pclmulqdq_supported) {
10669   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10670   Label L_wordByWord;
10671   Label L_byteByByteProlog;
10672   Label L_byteByByte;
10673   Label L_exit;
10674 
10675   if (is_pclmulqdq_supported) {
10676     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10677     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10678 
10679     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10680     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10681 
10682     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10683     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10684   } else {
10685     const_or_pre_comp_const_index[0] = 1;
10686     const_or_pre_comp_const_index[1] = 0;
10687 
10688     const_or_pre_comp_const_index[2] = 3;
10689     const_or_pre_comp_const_index[3] = 2;
10690 
10691     const_or_pre_comp_const_index[4] = 5;
10692     const_or_pre_comp_const_index[5] = 4;
10693   }
10694   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10695                     in2, in1, in_out,
10696                     tmp1, tmp2, tmp3,
10697                     w_xtmp1, w_xtmp2, w_xtmp3,
10698                     tmp4, tmp5,
10699                     tmp6);
10700   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10701                     in2, in1, in_out,
10702                     tmp1, tmp2, tmp3,
10703                     w_xtmp1, w_xtmp2, w_xtmp3,
10704                     tmp4, tmp5,
10705                     tmp6);
10706   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10707                     in2, in1, in_out,
10708                     tmp1, tmp2, tmp3,
10709                     w_xtmp1, w_xtmp2, w_xtmp3,
10710                     tmp4, tmp5,
10711                     tmp6);
10712   movl(tmp1, in2);
10713   andl(tmp1, 0x00000007);
10714   negl(tmp1);
10715   addl(tmp1, in2);
10716   addl(tmp1, in1);
10717 
10718   BIND(L_wordByWord);
10719   cmpl(in1, tmp1);
10720   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10721     crc32(in_out, Address(in1,0), 4);
10722     addl(in1, 4);
10723     jmp(L_wordByWord);
10724 
10725   BIND(L_byteByByteProlog);
10726   andl(in2, 0x00000007);
10727   movl(tmp2, 1);
10728 
10729   BIND(L_byteByByte);
10730   cmpl(tmp2, in2);
10731   jccb(Assembler::greater, L_exit);
10732     movb(tmp1, Address(in1, 0));
10733     crc32(in_out, tmp1, 1);
10734     incl(in1);
10735     incl(tmp2);
10736     jmp(L_byteByByte);
10737 
10738   BIND(L_exit);
10739 }
10740 #endif // LP64
10741 #undef BIND
10742 #undef BLOCK_COMMENT
10743 
10744 // Compress char[] array to byte[].
10745 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
10746 //   @HotSpotIntrinsicCandidate
10747 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
10748 //     for (int i = 0; i < len; i++) {
10749 //       int c = src[srcOff++];
10750 //       if (c >>> 8 != 0) {
10751 //         return 0;
10752 //       }
10753 //       dst[dstOff++] = (byte)c;
10754 //     }
10755 //     return len;
10756 //   }
10757 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10758   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10759   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10760   Register tmp5, Register result) {
10761   Label copy_chars_loop, return_length, return_zero, done, below_threshold;
10762 
10763   // rsi: src
10764   // rdi: dst
10765   // rdx: len
10766   // rcx: tmp5
10767   // rax: result
10768 
10769   // rsi holds start addr of source char[] to be compressed
10770   // rdi holds start addr of destination byte[]
10771   // rdx holds length
10772 
10773   assert(len != result, "");
10774 
10775   // save length for return
10776   push(len);
10777 
10778   if ((UseAVX > 2) && // AVX512
10779     VM_Version::supports_avx512vlbw() &&
10780     VM_Version::supports_bmi2()) {
10781 
10782     set_vector_masking();  // opening of the stub context for programming mask registers
10783 
10784     Label copy_32_loop, copy_loop_tail, restore_k1_return_zero;
10785 
10786     // alignement
10787     Label post_alignement;
10788 
10789     // if length of the string is less than 16, handle it in an old fashioned
10790     // way
10791     testl(len, -32);
10792     jcc(Assembler::zero, below_threshold);
10793 
10794     // First check whether a character is compressable ( <= 0xFF).
10795     // Create mask to test for Unicode chars inside zmm vector
10796     movl(result, 0x00FF);
10797     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
10798 
10799     // Save k1
10800     kmovql(k3, k1);
10801 
10802     testl(len, -64);
10803     jcc(Assembler::zero, post_alignement);
10804 
10805     movl(tmp5, dst);
10806     andl(tmp5, (32 - 1));
10807     negl(tmp5);
10808     andl(tmp5, (32 - 1));
10809 
10810     // bail out when there is nothing to be done
10811     testl(tmp5, 0xFFFFFFFF);
10812     jcc(Assembler::zero, post_alignement);
10813 
10814     // ~(~0 << len), where len is the # of remaining elements to process
10815     movl(result, 0xFFFFFFFF);
10816     shlxl(result, result, tmp5);
10817     notl(result);
10818     kmovdl(k1, result);
10819 
10820     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10821     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10822     ktestd(k2, k1);
10823     jcc(Assembler::carryClear, restore_k1_return_zero);
10824 
10825     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10826 
10827     addptr(src, tmp5);
10828     addptr(src, tmp5);
10829     addptr(dst, tmp5);
10830     subl(len, tmp5);
10831 
10832     bind(post_alignement);
10833     // end of alignement
10834 
10835     movl(tmp5, len);
10836     andl(tmp5, (32 - 1));    // tail count (in chars)
10837     andl(len, ~(32 - 1));    // vector count (in chars)
10838     jcc(Assembler::zero, copy_loop_tail);
10839 
10840     lea(src, Address(src, len, Address::times_2));
10841     lea(dst, Address(dst, len, Address::times_1));
10842     negptr(len);
10843 
10844     bind(copy_32_loop);
10845     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
10846     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10847     kortestdl(k2, k2);
10848     jcc(Assembler::carryClear, restore_k1_return_zero);
10849 
10850     // All elements in current processed chunk are valid candidates for
10851     // compression. Write a truncated byte elements to the memory.
10852     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
10853     addptr(len, 32);
10854     jcc(Assembler::notZero, copy_32_loop);
10855 
10856     bind(copy_loop_tail);
10857     // bail out when there is nothing to be done
10858     testl(tmp5, 0xFFFFFFFF);
10859     // Restore k1
10860     kmovql(k1, k3);
10861     jcc(Assembler::zero, return_length);
10862 
10863     movl(len, tmp5);
10864 
10865     // ~(~0 << len), where len is the # of remaining elements to process
10866     movl(result, 0xFFFFFFFF);
10867     shlxl(result, result, len);
10868     notl(result);
10869 
10870     kmovdl(k1, result);
10871 
10872     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10873     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10874     ktestd(k2, k1);
10875     jcc(Assembler::carryClear, restore_k1_return_zero);
10876 
10877     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10878     // Restore k1
10879     kmovql(k1, k3);
10880     jmp(return_length);
10881 
10882     bind(restore_k1_return_zero);
10883     // Restore k1
10884     kmovql(k1, k3);
10885     jmp(return_zero);
10886 
10887     clear_vector_masking();   // closing of the stub context for programming mask registers
10888   }
10889   if (UseSSE42Intrinsics) {
10890     Label copy_32_loop, copy_16, copy_tail;
10891 
10892     bind(below_threshold);
10893 
10894     movl(result, len);
10895 
10896     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
10897 
10898     // vectored compression
10899     andl(len, 0xfffffff0);    // vector count (in chars)
10900     andl(result, 0x0000000f);    // tail count (in chars)
10901     testl(len, len);
10902     jccb(Assembler::zero, copy_16);
10903 
10904     // compress 16 chars per iter
10905     movdl(tmp1Reg, tmp5);
10906     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10907     pxor(tmp4Reg, tmp4Reg);
10908 
10909     lea(src, Address(src, len, Address::times_2));
10910     lea(dst, Address(dst, len, Address::times_1));
10911     negptr(len);
10912 
10913     bind(copy_32_loop);
10914     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
10915     por(tmp4Reg, tmp2Reg);
10916     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
10917     por(tmp4Reg, tmp3Reg);
10918     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
10919     jcc(Assembler::notZero, return_zero);
10920     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
10921     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
10922     addptr(len, 16);
10923     jcc(Assembler::notZero, copy_32_loop);
10924 
10925     // compress next vector of 8 chars (if any)
10926     bind(copy_16);
10927     movl(len, result);
10928     andl(len, 0xfffffff8);    // vector count (in chars)
10929     andl(result, 0x00000007);    // tail count (in chars)
10930     testl(len, len);
10931     jccb(Assembler::zero, copy_tail);
10932 
10933     movdl(tmp1Reg, tmp5);
10934     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10935     pxor(tmp3Reg, tmp3Reg);
10936 
10937     movdqu(tmp2Reg, Address(src, 0));
10938     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
10939     jccb(Assembler::notZero, return_zero);
10940     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
10941     movq(Address(dst, 0), tmp2Reg);
10942     addptr(src, 16);
10943     addptr(dst, 8);
10944 
10945     bind(copy_tail);
10946     movl(len, result);
10947   }
10948   // compress 1 char per iter
10949   testl(len, len);
10950   jccb(Assembler::zero, return_length);
10951   lea(src, Address(src, len, Address::times_2));
10952   lea(dst, Address(dst, len, Address::times_1));
10953   negptr(len);
10954 
10955   bind(copy_chars_loop);
10956   load_unsigned_short(result, Address(src, len, Address::times_2));
10957   testl(result, 0xff00);      // check if Unicode char
10958   jccb(Assembler::notZero, return_zero);
10959   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
10960   increment(len);
10961   jcc(Assembler::notZero, copy_chars_loop);
10962 
10963   // if compression succeeded, return length
10964   bind(return_length);
10965   pop(result);
10966   jmpb(done);
10967 
10968   // if compression failed, return 0
10969   bind(return_zero);
10970   xorl(result, result);
10971   addptr(rsp, wordSize);
10972 
10973   bind(done);
10974 }
10975 
10976 // Inflate byte[] array to char[].
10977 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
10978 //   @HotSpotIntrinsicCandidate
10979 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
10980 //     for (int i = 0; i < len; i++) {
10981 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
10982 //     }
10983 //   }
10984 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
10985   XMMRegister tmp1, Register tmp2) {
10986   Label copy_chars_loop, done, below_threshold;
10987   // rsi: src
10988   // rdi: dst
10989   // rdx: len
10990   // rcx: tmp2
10991 
10992   // rsi holds start addr of source byte[] to be inflated
10993   // rdi holds start addr of destination char[]
10994   // rdx holds length
10995   assert_different_registers(src, dst, len, tmp2);
10996 
10997   if ((UseAVX > 2) && // AVX512
10998     VM_Version::supports_avx512vlbw() &&
10999     VM_Version::supports_bmi2()) {
11000 
11001     set_vector_masking();  // opening of the stub context for programming mask registers
11002 
11003     Label copy_32_loop, copy_tail;
11004     Register tmp3_aliased = len;
11005 
11006     // if length of the string is less than 16, handle it in an old fashioned
11007     // way
11008     testl(len, -16);
11009     jcc(Assembler::zero, below_threshold);
11010 
11011     // In order to use only one arithmetic operation for the main loop we use
11012     // this pre-calculation
11013     movl(tmp2, len);
11014     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
11015     andl(len, -32);     // vector count
11016     jccb(Assembler::zero, copy_tail);
11017 
11018     lea(src, Address(src, len, Address::times_1));
11019     lea(dst, Address(dst, len, Address::times_2));
11020     negptr(len);
11021 
11022 
11023     // inflate 32 chars per iter
11024     bind(copy_32_loop);
11025     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
11026     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
11027     addptr(len, 32);
11028     jcc(Assembler::notZero, copy_32_loop);
11029 
11030     bind(copy_tail);
11031     // bail out when there is nothing to be done
11032     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
11033     jcc(Assembler::zero, done);
11034 
11035     // Save k1
11036     kmovql(k2, k1);
11037 
11038     // ~(~0 << length), where length is the # of remaining elements to process
11039     movl(tmp3_aliased, -1);
11040     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
11041     notl(tmp3_aliased);
11042     kmovdl(k1, tmp3_aliased);
11043     evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
11044     evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
11045 
11046     // Restore k1
11047     kmovql(k1, k2);
11048     jmp(done);
11049 
11050     clear_vector_masking();   // closing of the stub context for programming mask registers
11051   }
11052   if (UseSSE42Intrinsics) {
11053     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
11054 
11055     movl(tmp2, len);
11056 
11057     if (UseAVX > 1) {
11058       andl(tmp2, (16 - 1));
11059       andl(len, -16);
11060       jccb(Assembler::zero, copy_new_tail);
11061     } else {
11062       andl(tmp2, 0x00000007);   // tail count (in chars)
11063       andl(len, 0xfffffff8);    // vector count (in chars)
11064       jccb(Assembler::zero, copy_tail);
11065     }
11066 
11067     // vectored inflation
11068     lea(src, Address(src, len, Address::times_1));
11069     lea(dst, Address(dst, len, Address::times_2));
11070     negptr(len);
11071 
11072     if (UseAVX > 1) {
11073       bind(copy_16_loop);
11074       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
11075       vmovdqu(Address(dst, len, Address::times_2), tmp1);
11076       addptr(len, 16);
11077       jcc(Assembler::notZero, copy_16_loop);
11078 
11079       bind(below_threshold);
11080       bind(copy_new_tail);
11081       if ((UseAVX > 2) &&
11082         VM_Version::supports_avx512vlbw() &&
11083         VM_Version::supports_bmi2()) {
11084         movl(tmp2, len);
11085       } else {
11086         movl(len, tmp2);
11087       }
11088       andl(tmp2, 0x00000007);
11089       andl(len, 0xFFFFFFF8);
11090       jccb(Assembler::zero, copy_tail);
11091 
11092       pmovzxbw(tmp1, Address(src, 0));
11093       movdqu(Address(dst, 0), tmp1);
11094       addptr(src, 8);
11095       addptr(dst, 2 * 8);
11096 
11097       jmp(copy_tail, true);
11098     }
11099 
11100     // inflate 8 chars per iter
11101     bind(copy_8_loop);
11102     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
11103     movdqu(Address(dst, len, Address::times_2), tmp1);
11104     addptr(len, 8);
11105     jcc(Assembler::notZero, copy_8_loop);
11106 
11107     bind(copy_tail);
11108     movl(len, tmp2);
11109 
11110     cmpl(len, 4);
11111     jccb(Assembler::less, copy_bytes);
11112 
11113     movdl(tmp1, Address(src, 0));  // load 4 byte chars
11114     pmovzxbw(tmp1, tmp1);
11115     movq(Address(dst, 0), tmp1);
11116     subptr(len, 4);
11117     addptr(src, 4);
11118     addptr(dst, 8);
11119 
11120     bind(copy_bytes);
11121   }
11122   testl(len, len);
11123   jccb(Assembler::zero, done);
11124   lea(src, Address(src, len, Address::times_1));
11125   lea(dst, Address(dst, len, Address::times_2));
11126   negptr(len);
11127 
11128   // inflate 1 char per iter
11129   bind(copy_chars_loop);
11130   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
11131   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
11132   increment(len);
11133   jcc(Assembler::notZero, copy_chars_loop);
11134 
11135   bind(done);
11136 }
11137 
11138 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
11139   switch (cond) {
11140     // Note some conditions are synonyms for others
11141     case Assembler::zero:         return Assembler::notZero;
11142     case Assembler::notZero:      return Assembler::zero;
11143     case Assembler::less:         return Assembler::greaterEqual;
11144     case Assembler::lessEqual:    return Assembler::greater;
11145     case Assembler::greater:      return Assembler::lessEqual;
11146     case Assembler::greaterEqual: return Assembler::less;
11147     case Assembler::below:        return Assembler::aboveEqual;
11148     case Assembler::belowEqual:   return Assembler::above;
11149     case Assembler::above:        return Assembler::belowEqual;
11150     case Assembler::aboveEqual:   return Assembler::below;
11151     case Assembler::overflow:     return Assembler::noOverflow;
11152     case Assembler::noOverflow:   return Assembler::overflow;
11153     case Assembler::negative:     return Assembler::positive;
11154     case Assembler::positive:     return Assembler::negative;
11155     case Assembler::parity:       return Assembler::noParity;
11156     case Assembler::noParity:     return Assembler::parity;
11157   }
11158   ShouldNotReachHere(); return Assembler::overflow;
11159 }
11160 
11161 SkipIfEqual::SkipIfEqual(
11162     MacroAssembler* masm, const bool* flag_addr, bool value) {
11163   _masm = masm;
11164   _masm->cmp8(ExternalAddress((address)flag_addr), value);
11165   _masm->jcc(Assembler::equal, _label);
11166 }
11167 
11168 SkipIfEqual::~SkipIfEqual() {
11169   _masm->bind(_label);
11170 }
11171 
11172 // 32-bit Windows has its own fast-path implementation
11173 // of get_thread
11174 #if !defined(WIN32) || defined(_LP64)
11175 
11176 // This is simply a call to Thread::current()
11177 void MacroAssembler::get_thread(Register thread) {
11178   if (thread != rax) {
11179     push(rax);
11180   }
11181   LP64_ONLY(push(rdi);)
11182   LP64_ONLY(push(rsi);)
11183   push(rdx);
11184   push(rcx);
11185 #ifdef _LP64
11186   push(r8);
11187   push(r9);
11188   push(r10);
11189   push(r11);
11190 #endif
11191 
11192   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
11193 
11194 #ifdef _LP64
11195   pop(r11);
11196   pop(r10);
11197   pop(r9);
11198   pop(r8);
11199 #endif
11200   pop(rcx);
11201   pop(rdx);
11202   LP64_ONLY(pop(rsi);)
11203   LP64_ONLY(pop(rdi);)
11204   if (thread != rax) {
11205     mov(thread, rax);
11206     pop(rax);
11207   }
11208 }
11209 
11210 #endif