1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
  26 #define CPU_X86_VM_VM_VERSION_X86_HPP
  27 
  28 #include "runtime/globals_extension.hpp"
  29 #include "runtime/vm_version.hpp"
  30 
  31 class VM_Version : public Abstract_VM_Version {
  32   friend class VMStructs;
  33   friend class JVMCIVMStructs;
  34 
  35  public:
  36   // cpuid result register layouts.  These are all unions of a uint32_t
  37   // (in case anyone wants access to the register as a whole) and a bitfield.
  38 
  39   union StdCpuid1Eax {
  40     uint32_t value;
  41     struct {
  42       uint32_t stepping   : 4,
  43                model      : 4,
  44                family     : 4,
  45                proc_type  : 2,
  46                           : 2,
  47                ext_model  : 4,
  48                ext_family : 8,
  49                           : 4;
  50     } bits;
  51   };
  52 
  53   union StdCpuid1Ebx { // example, unused
  54     uint32_t value;
  55     struct {
  56       uint32_t brand_id         : 8,
  57                clflush_size     : 8,
  58                threads_per_cpu  : 8,
  59                apic_id          : 8;
  60     } bits;
  61   };
  62 
  63   union StdCpuid1Ecx {
  64     uint32_t value;
  65     struct {
  66       uint32_t sse3     : 1,
  67                clmul    : 1,
  68                         : 1,
  69                monitor  : 1,
  70                         : 1,
  71                vmx      : 1,
  72                         : 1,
  73                est      : 1,
  74                         : 1,
  75                ssse3    : 1,
  76                cid      : 1,
  77                         : 1,
  78                fma      : 1,
  79                cmpxchg16: 1,
  80                         : 4,
  81                dca      : 1,
  82                sse4_1   : 1,
  83                sse4_2   : 1,
  84                         : 2,
  85                popcnt   : 1,
  86                         : 1,
  87                aes      : 1,
  88                         : 1,
  89                osxsave  : 1,
  90                avx      : 1,
  91                         : 3;
  92     } bits;
  93   };
  94 
  95   union StdCpuid1Edx {
  96     uint32_t value;
  97     struct {
  98       uint32_t          : 4,
  99                tsc      : 1,
 100                         : 3,
 101                cmpxchg8 : 1,
 102                         : 6,
 103                cmov     : 1,
 104                         : 3,
 105                clflush  : 1,
 106                         : 3,
 107                mmx      : 1,
 108                fxsr     : 1,
 109                sse      : 1,
 110                sse2     : 1,
 111                         : 1,
 112                ht       : 1,
 113                         : 3;
 114     } bits;
 115   };
 116 
 117   union DcpCpuid4Eax {
 118     uint32_t value;
 119     struct {
 120       uint32_t cache_type    : 5,
 121                              : 21,
 122                cores_per_cpu : 6;
 123     } bits;
 124   };
 125 
 126   union DcpCpuid4Ebx {
 127     uint32_t value;
 128     struct {
 129       uint32_t L1_line_size  : 12,
 130                partitions    : 10,
 131                associativity : 10;
 132     } bits;
 133   };
 134 
 135   union TplCpuidBEbx {
 136     uint32_t value;
 137     struct {
 138       uint32_t logical_cpus : 16,
 139                             : 16;
 140     } bits;
 141   };
 142 
 143   union ExtCpuid1Ecx {
 144     uint32_t value;
 145     struct {
 146       uint32_t LahfSahf     : 1,
 147                CmpLegacy    : 1,
 148                             : 3,
 149                lzcnt_intel  : 1,
 150                lzcnt        : 1,
 151                sse4a        : 1,
 152                misalignsse  : 1,
 153                prefetchw    : 1,
 154                             : 22;
 155     } bits;
 156   };
 157 
 158   union ExtCpuid1Edx {
 159     uint32_t value;
 160     struct {
 161       uint32_t           : 22,
 162                mmx_amd   : 1,
 163                mmx       : 1,
 164                fxsr      : 1,
 165                          : 4,
 166                long_mode : 1,
 167                tdnow2    : 1,
 168                tdnow     : 1;
 169     } bits;
 170   };
 171 
 172   union ExtCpuid5Ex {
 173     uint32_t value;
 174     struct {
 175       uint32_t L1_line_size : 8,
 176                L1_tag_lines : 8,
 177                L1_assoc     : 8,
 178                L1_size      : 8;
 179     } bits;
 180   };
 181 
 182   union ExtCpuid7Edx {
 183     uint32_t value;
 184     struct {
 185       uint32_t               : 8,
 186               tsc_invariance : 1,
 187                              : 23;
 188     } bits;
 189   };
 190 
 191   union ExtCpuid8Ecx {
 192     uint32_t value;
 193     struct {
 194       uint32_t cores_per_cpu : 8,
 195                              : 24;
 196     } bits;
 197   };
 198 
 199   union SefCpuid7Eax {
 200     uint32_t value;
 201   };
 202 
 203   union SefCpuid7Ebx {
 204     uint32_t value;
 205     struct {
 206       uint32_t fsgsbase : 1,
 207                         : 2,
 208                    bmi1 : 1,
 209                         : 1,
 210                    avx2 : 1,
 211                         : 2,
 212                    bmi2 : 1,
 213                    erms : 1,
 214                         : 1,
 215                     rtm : 1,
 216                         : 4,
 217                 avx512f : 1,
 218                avx512dq : 1,
 219                         : 1,
 220                     adx : 1,
 221                         : 6,
 222                avx512pf : 1,
 223                avx512er : 1,
 224                avx512cd : 1,
 225                     sha : 1,
 226                avx512bw : 1,
 227                avx512vl : 1;
 228     } bits;
 229   };
 230 
 231   union XemXcr0Eax {
 232     uint32_t value;
 233     struct {
 234       uint32_t x87     : 1,
 235                sse     : 1,
 236                ymm     : 1,
 237                bndregs : 1,
 238                bndcsr  : 1,
 239                opmask  : 1,
 240                zmm512  : 1,
 241                zmm32   : 1,
 242                        : 24;
 243     } bits;
 244   };
 245 
 246 protected:
 247   static int _cpu;
 248   static int _model;
 249   static int _stepping;
 250 
 251   static address   _cpuinfo_segv_addr; // address of instruction which causes SEGV
 252   static address   _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
 253 
 254   enum Feature_Flag {
 255     CPU_CX8      = (1 << 0), // next bits are from cpuid 1 (EDX)
 256     CPU_CMOV     = (1 << 1),
 257     CPU_FXSR     = (1 << 2),
 258     CPU_HT       = (1 << 3),
 259     CPU_MMX      = (1 << 4),
 260     CPU_3DNOW_PREFETCH = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
 261                                    // may not necessarily support other 3dnow instructions
 262     CPU_SSE      = (1 << 6),
 263     CPU_SSE2     = (1 << 7),
 264     CPU_SSE3     = (1 << 8),  // SSE3 comes from cpuid 1 (ECX)
 265     CPU_SSSE3    = (1 << 9),
 266     CPU_SSE4A    = (1 << 10),
 267     CPU_SSE4_1   = (1 << 11),
 268     CPU_SSE4_2   = (1 << 12),
 269     CPU_POPCNT   = (1 << 13),
 270     CPU_LZCNT    = (1 << 14),
 271     CPU_TSC      = (1 << 15),
 272     CPU_TSCINV   = (1 << 16),
 273     CPU_AVX      = (1 << 17),
 274     CPU_AVX2     = (1 << 18),
 275     CPU_AES      = (1 << 19),
 276     CPU_ERMS     = (1 << 20), // enhanced 'rep movsb/stosb' instructions
 277     CPU_CLMUL    = (1 << 21), // carryless multiply for CRC
 278     CPU_BMI1     = (1 << 22),
 279     CPU_BMI2     = (1 << 23),
 280     CPU_RTM      = (1 << 24), // Restricted Transactional Memory instructions
 281     CPU_ADX      = (1 << 25),
 282     CPU_AVX512F  = (1 << 26), // AVX 512bit foundation instructions
 283     CPU_AVX512DQ = (1 << 27),
 284     CPU_AVX512PF = (1 << 28),
 285     CPU_AVX512ER = (1 << 29),
 286     CPU_AVX512CD = (1 << 30)
 287     // Keeping sign bit 31 unassigned.
 288   };
 289 
 290 #define CPU_AVX512BW ((uint64_t)UCONST64(0x100000000)) // enums are limited to 31 bit
 291 #define CPU_AVX512VL ((uint64_t)UCONST64(0x200000000)) // EVEX instructions with smaller vector length
 292 #define CPU_SHA ((uint64_t)UCONST64(0x400000000))      // SHA instructions
 293 #define CPU_FMA ((uint64_t)UCONST64(0x800000000))      // FMA instructions
 294 #define CPU_VZEROUPPER ((uint64_t)UCONST64(0x1000000000))      // Vzeroupper instruction
 295 
 296   enum Extended_Family {
 297     // AMD
 298     CPU_FAMILY_AMD_11H       = 0x11,
 299     // Intel
 300     CPU_FAMILY_INTEL_CORE    = 6,
 301     CPU_MODEL_NEHALEM        = 0x1e,
 302     CPU_MODEL_NEHALEM_EP     = 0x1a,
 303     CPU_MODEL_NEHALEM_EX     = 0x2e,
 304     CPU_MODEL_WESTMERE       = 0x25,
 305     CPU_MODEL_WESTMERE_EP    = 0x2c,
 306     CPU_MODEL_WESTMERE_EX    = 0x2f,
 307     CPU_MODEL_SANDYBRIDGE    = 0x2a,
 308     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
 309     CPU_MODEL_IVYBRIDGE_EP   = 0x3a,
 310     CPU_MODEL_HASWELL_E3     = 0x3c,
 311     CPU_MODEL_HASWELL_E7     = 0x3f,
 312     CPU_MODEL_BROADWELL      = 0x3d,
 313     CPU_MODEL_SKYLAKE        = CPU_MODEL_HASWELL_E3
 314   };
 315 
 316   // cpuid information block.  All info derived from executing cpuid with
 317   // various function numbers is stored here.  Intel and AMD info is
 318   // merged in this block: accessor methods disentangle it.
 319   //
 320   // The info block is laid out in subblocks of 4 dwords corresponding to
 321   // eax, ebx, ecx and edx, whether or not they contain anything useful.
 322   struct CpuidInfo {
 323     // cpuid function 0
 324     uint32_t std_max_function;
 325     uint32_t std_vendor_name_0;
 326     uint32_t std_vendor_name_1;
 327     uint32_t std_vendor_name_2;
 328 
 329     // cpuid function 1
 330     StdCpuid1Eax std_cpuid1_eax;
 331     StdCpuid1Ebx std_cpuid1_ebx;
 332     StdCpuid1Ecx std_cpuid1_ecx;
 333     StdCpuid1Edx std_cpuid1_edx;
 334 
 335     // cpuid function 4 (deterministic cache parameters)
 336     DcpCpuid4Eax dcp_cpuid4_eax;
 337     DcpCpuid4Ebx dcp_cpuid4_ebx;
 338     uint32_t     dcp_cpuid4_ecx; // unused currently
 339     uint32_t     dcp_cpuid4_edx; // unused currently
 340 
 341     // cpuid function 7 (structured extended features)
 342     SefCpuid7Eax sef_cpuid7_eax;
 343     SefCpuid7Ebx sef_cpuid7_ebx;
 344     uint32_t     sef_cpuid7_ecx; // unused currently
 345     uint32_t     sef_cpuid7_edx; // unused currently
 346 
 347     // cpuid function 0xB (processor topology)
 348     // ecx = 0
 349     uint32_t     tpl_cpuidB0_eax;
 350     TplCpuidBEbx tpl_cpuidB0_ebx;
 351     uint32_t     tpl_cpuidB0_ecx; // unused currently
 352     uint32_t     tpl_cpuidB0_edx; // unused currently
 353 
 354     // ecx = 1
 355     uint32_t     tpl_cpuidB1_eax;
 356     TplCpuidBEbx tpl_cpuidB1_ebx;
 357     uint32_t     tpl_cpuidB1_ecx; // unused currently
 358     uint32_t     tpl_cpuidB1_edx; // unused currently
 359 
 360     // ecx = 2
 361     uint32_t     tpl_cpuidB2_eax;
 362     TplCpuidBEbx tpl_cpuidB2_ebx;
 363     uint32_t     tpl_cpuidB2_ecx; // unused currently
 364     uint32_t     tpl_cpuidB2_edx; // unused currently
 365 
 366     // cpuid function 0x80000000 // example, unused
 367     uint32_t ext_max_function;
 368     uint32_t ext_vendor_name_0;
 369     uint32_t ext_vendor_name_1;
 370     uint32_t ext_vendor_name_2;
 371 
 372     // cpuid function 0x80000001
 373     uint32_t     ext_cpuid1_eax; // reserved
 374     uint32_t     ext_cpuid1_ebx; // reserved
 375     ExtCpuid1Ecx ext_cpuid1_ecx;
 376     ExtCpuid1Edx ext_cpuid1_edx;
 377 
 378     // cpuid functions 0x80000002 thru 0x80000004: example, unused
 379     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
 380     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
 381     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
 382 
 383     // cpuid function 0x80000005 // AMD L1, Intel reserved
 384     uint32_t     ext_cpuid5_eax; // unused currently
 385     uint32_t     ext_cpuid5_ebx; // reserved
 386     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
 387     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
 388 
 389     // cpuid function 0x80000007
 390     uint32_t     ext_cpuid7_eax; // reserved
 391     uint32_t     ext_cpuid7_ebx; // reserved
 392     uint32_t     ext_cpuid7_ecx; // reserved
 393     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
 394 
 395     // cpuid function 0x80000008
 396     uint32_t     ext_cpuid8_eax; // unused currently
 397     uint32_t     ext_cpuid8_ebx; // reserved
 398     ExtCpuid8Ecx ext_cpuid8_ecx;
 399     uint32_t     ext_cpuid8_edx; // reserved
 400 
 401     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
 402     XemXcr0Eax   xem_xcr0_eax;
 403     uint32_t     xem_xcr0_edx; // reserved
 404 
 405     // Space to save ymm registers after signal handle
 406     int          ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
 407 
 408     // Space to save zmm registers after signal handle
 409     int          zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31
 410   };
 411 
 412   // The actual cpuid info block
 413   static CpuidInfo _cpuid_info;
 414 
 415   // Extractors and predicates
 416   static uint32_t extended_cpu_family() {
 417     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
 418     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
 419     return result;
 420   }
 421 
 422   static uint32_t extended_cpu_model() {
 423     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
 424     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
 425     return result;
 426   }
 427 
 428   static uint32_t cpu_stepping() {
 429     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
 430     return result;
 431   }
 432 
 433   static uint logical_processor_count() {
 434     uint result = threads_per_core();
 435     return result;
 436   }
 437 
 438   static uint64_t feature_flags() {
 439     uint64_t result = 0;
 440     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
 441       result |= CPU_CX8;
 442     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
 443       result |= CPU_CMOV;
 444     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
 445         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
 446       result |= CPU_FXSR;
 447     // HT flag is set for multi-core processors also.
 448     if (threads_per_core() > 1)
 449       result |= CPU_HT;
 450     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
 451         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
 452       result |= CPU_MMX;
 453     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
 454       result |= CPU_SSE;
 455     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
 456       result |= CPU_SSE2;
 457     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
 458       result |= CPU_SSE3;
 459     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
 460       result |= CPU_SSSE3;
 461     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
 462       result |= CPU_SSE4_1;
 463     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
 464       result |= CPU_SSE4_2;
 465     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
 466       result |= CPU_POPCNT;
 467     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
 468         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
 469         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
 470         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
 471       result |= CPU_AVX;
 472       result |= CPU_VZEROUPPER;
 473       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
 474         result |= CPU_AVX2;
 475       if (_cpuid_info.sef_cpuid7_ebx.bits.avx512f != 0 &&
 476           _cpuid_info.xem_xcr0_eax.bits.opmask != 0 &&
 477           _cpuid_info.xem_xcr0_eax.bits.zmm512 != 0 &&
 478           _cpuid_info.xem_xcr0_eax.bits.zmm32 != 0) {
 479         result |= CPU_AVX512F;
 480         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512cd != 0)
 481           result |= CPU_AVX512CD;
 482         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512dq != 0)
 483           result |= CPU_AVX512DQ;
 484         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512pf != 0)
 485           result |= CPU_AVX512PF;
 486         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512er != 0)
 487           result |= CPU_AVX512ER;
 488         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512bw != 0)
 489           result |= CPU_AVX512BW;
 490         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512vl != 0)
 491           result |= CPU_AVX512VL;
 492       }
 493     }
 494     if(_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
 495       result |= CPU_BMI1;
 496     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
 497       result |= CPU_TSC;
 498     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
 499       result |= CPU_TSCINV;
 500     if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
 501       result |= CPU_AES;
 502     if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
 503       result |= CPU_ERMS;
 504     if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
 505       result |= CPU_CLMUL;
 506     if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0)
 507       result |= CPU_RTM;
 508 
 509     // AMD features.
 510     if (is_amd()) {
 511       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
 512           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
 513         result |= CPU_3DNOW_PREFETCH;
 514       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
 515         result |= CPU_LZCNT;
 516       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
 517         result |= CPU_SSE4A;
 518     }
 519     // Intel features.
 520     if(is_intel()) {
 521       if(_cpuid_info.sef_cpuid7_ebx.bits.adx != 0)
 522          result |= CPU_ADX;
 523       if(_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
 524         result |= CPU_BMI2;
 525       if (_cpuid_info.sef_cpuid7_ebx.bits.sha != 0)
 526         result |= CPU_SHA;
 527       if(_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
 528         result |= CPU_LZCNT;
 529       if (_cpuid_info.std_cpuid1_ecx.bits.fma != 0)
 530         result |= CPU_FMA;
 531       // for Intel, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw
 532       if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) {
 533         result |= CPU_3DNOW_PREFETCH;
 534       }
 535     }
 536 
 537     return result;
 538   }
 539 
 540   static bool os_supports_avx_vectors() {
 541     bool retVal = false;
 542     if (supports_evex()) {
 543       // Verify that OS save/restore all bits of EVEX registers
 544       // during signal processing.
 545       int nreg = 2 LP64_ONLY(+2);
 546       retVal = true;
 547       for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
 548         if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
 549           retVal = false;
 550           break;
 551         }
 552       }
 553     } else if (supports_avx()) {
 554       // Verify that OS save/restore all bits of AVX registers
 555       // during signal processing.
 556       int nreg = 2 LP64_ONLY(+2);
 557       retVal = true;
 558       for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
 559         if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
 560           retVal = false;
 561           break;
 562         }
 563       }
 564       // zmm_save will be set on a EVEX enabled machine even if we choose AVX code gen
 565       if (retVal == false) {
 566         // Verify that OS save/restore all bits of EVEX registers
 567         // during signal processing.
 568         int nreg = 2 LP64_ONLY(+2);
 569         retVal = true;
 570         for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
 571           if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
 572             retVal = false;
 573             break;
 574           }
 575         }
 576       }
 577     }
 578     return retVal;
 579   }
 580 
 581   static void get_processor_features();
 582 
 583 public:
 584   // Offsets for cpuid asm stub
 585   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
 586   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
 587   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
 588   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
 589   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
 590   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
 591   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
 592   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
 593   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
 594   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
 595   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
 596   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
 597   static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
 598   static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); }
 599 
 600   // The value used to check ymm register after signal handle
 601   static int ymm_test_value()    { return 0xCAFEBABE; }
 602 
 603   static void get_cpu_info_wrapper();
 604   static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
 605   static bool  is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
 606   static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
 607   static address  cpuinfo_cont_addr()           { return _cpuinfo_cont_addr; }
 608 
 609   static void clean_cpuFeatures()   { _features = 0; }
 610   static void set_avx_cpuFeatures() {
 611     _features = (CPU_SSE | CPU_SSE2 | CPU_AVX | CPU_VZEROUPPER );
 612     if( is_intel() ) { // Intel cpus specific settings
 613       if ((cpu_family() == 0x06) &&
 614           ((extended_cpu_model() == 0x57) ||   // Xeon Phi 3200/5200/7200
 615           (extended_cpu_model() == 0x85))) {  // Future Xeon Phi
 616         _features &= ~CPU_VZEROUPPER;
 617       }
 618     }
 619   }
 620   static void set_evex_cpuFeatures() {
 621     _features = (CPU_AVX512F | CPU_SSE | CPU_SSE2 | CPU_VZEROUPPER );
 622     if( is_intel() ) { // Intel cpus specific settings
 623       if ((cpu_family() == 0x06) &&
 624           ((extended_cpu_model() == 0x57) ||   // Xeon Phi 3200/5200/7200
 625           (extended_cpu_model() == 0x85))) {  // Future Xeon Phi
 626         _features &= ~CPU_VZEROUPPER;
 627       }
 628     }
 629   }
 630 
 631 
 632   // Initialization
 633   static void initialize();
 634 
 635   // Override Abstract_VM_Version implementation
 636   static bool use_biased_locking();
 637 
 638   // Asserts
 639   static void assert_is_initialized() {
 640     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
 641   }
 642 
 643   //
 644   // Processor family:
 645   //       3   -  386
 646   //       4   -  486
 647   //       5   -  Pentium
 648   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
 649   //              Pentium M, Core Solo, Core Duo, Core2 Duo
 650   //    family 6 model:   9,        13,       14,        15
 651   //    0x0f   -  Pentium 4, Opteron
 652   //
 653   // Note: The cpu family should be used to select between
 654   //       instruction sequences which are valid on all Intel
 655   //       processors.  Use the feature test functions below to
 656   //       determine whether a particular instruction is supported.
 657   //
 658   static int  cpu_family()        { return _cpu;}
 659   static bool is_P6()             { return cpu_family() >= 6; }
 660   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
 661   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
 662 
 663   static bool supports_processor_topology() {
 664     return (_cpuid_info.std_max_function >= 0xB) &&
 665            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
 666            // Some cpus have max cpuid >= 0xB but do not support processor topology.
 667            (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
 668   }
 669 
 670   static uint cores_per_cpu()  {
 671     uint result = 1;
 672     if (is_intel()) {
 673       bool supports_topology = supports_processor_topology();
 674       if (supports_topology) {
 675         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
 676                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 677       }
 678       if (!supports_topology || result == 0) {
 679         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
 680       }
 681     } else if (is_amd()) {
 682       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
 683     }
 684     return result;
 685   }
 686 
 687   static uint threads_per_core()  {
 688     uint result = 1;
 689     if (is_intel() && supports_processor_topology()) {
 690       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 691     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
 692       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
 693                cores_per_cpu();
 694     }
 695     return (result == 0 ? 1 : result);
 696   }
 697 
 698   static intx L1_line_size()  {
 699     intx result = 0;
 700     if (is_intel()) {
 701       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
 702     } else if (is_amd()) {
 703       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
 704     }
 705     if (result < 32) // not defined ?
 706       result = 32;   // 32 bytes by default on x86 and other x64
 707     return result;
 708   }
 709 
 710   static intx prefetch_data_size()  {
 711     return L1_line_size();
 712   }
 713 
 714   //
 715   // Feature identification
 716   //
 717   static bool supports_cpuid()    { return _features  != 0; }
 718   static bool supports_cmpxchg8() { return (_features & CPU_CX8) != 0; }
 719   static bool supports_cmov()     { return (_features & CPU_CMOV) != 0; }
 720   static bool supports_fxsr()     { return (_features & CPU_FXSR) != 0; }
 721   static bool supports_ht()       { return (_features & CPU_HT) != 0; }
 722   static bool supports_mmx()      { return (_features & CPU_MMX) != 0; }
 723   static bool supports_sse()      { return (_features & CPU_SSE) != 0; }
 724   static bool supports_sse2()     { return (_features & CPU_SSE2) != 0; }
 725   static bool supports_sse3()     { return (_features & CPU_SSE3) != 0; }
 726   static bool supports_ssse3()    { return (_features & CPU_SSSE3)!= 0; }
 727   static bool supports_sse4_1()   { return (_features & CPU_SSE4_1) != 0; }
 728   static bool supports_sse4_2()   { return (_features & CPU_SSE4_2) != 0; }
 729   static bool supports_popcnt()   { return (_features & CPU_POPCNT) != 0; }
 730   static bool supports_avx()      { return (_features & CPU_AVX) != 0; }
 731   static bool supports_avx2()     { return (_features & CPU_AVX2) != 0; }
 732   static bool supports_tsc()      { return (_features & CPU_TSC)    != 0; }
 733   static bool supports_aes()      { return (_features & CPU_AES) != 0; }
 734   static bool supports_erms()     { return (_features & CPU_ERMS) != 0; }
 735   static bool supports_clmul()    { return (_features & CPU_CLMUL) != 0; }
 736   static bool supports_rtm()      { return (_features & CPU_RTM) != 0; }
 737   static bool supports_bmi1()     { return (_features & CPU_BMI1) != 0; }
 738   static bool supports_bmi2()     { return (_features & CPU_BMI2) != 0; }
 739   static bool supports_adx()      { return (_features & CPU_ADX) != 0; }
 740   static bool supports_evex()     { return (_features & CPU_AVX512F) != 0; }
 741   static bool supports_avx512dq() { return (_features & CPU_AVX512DQ) != 0; }
 742   static bool supports_avx512pf() { return (_features & CPU_AVX512PF) != 0; }
 743   static bool supports_avx512er() { return (_features & CPU_AVX512ER) != 0; }
 744   static bool supports_avx512cd() { return (_features & CPU_AVX512CD) != 0; }
 745   static bool supports_avx512bw() { return (_features & CPU_AVX512BW) != 0; }
 746   static bool supports_avx512vl() { return (_features & CPU_AVX512VL) != 0; }
 747   static bool supports_avx512vlbw() { return (supports_avx512bw() && supports_avx512vl()); }
 748   static bool supports_avx512novl() { return (supports_evex() && !supports_avx512vl()); }
 749   static bool supports_avx512nobw() { return (supports_evex() && !supports_avx512bw()); }
 750   static bool supports_avx256only() { return (supports_avx2() && !supports_evex()); }
 751   static bool supports_avxonly()    { return ((supports_avx2() || supports_avx()) && !supports_evex()); }
 752   static bool supports_sha()        { return (_features & CPU_SHA) != 0; }
 753   static bool supports_fma()        { return (_features & CPU_FMA) != 0; }
 754   static bool supports_vzeroupper() { return (_features & CPU_VZEROUPPER) != 0; }
 755 
 756   // Intel features
 757   static bool is_intel_family_core() { return is_intel() &&
 758                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
 759 
 760   static bool is_intel_tsc_synched_at_init()  {
 761     if (is_intel_family_core()) {
 762       uint32_t ext_model = extended_cpu_model();
 763       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
 764           ext_model == CPU_MODEL_WESTMERE_EP    ||
 765           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
 766           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
 767         // <= 2-socket invariant tsc support. EX versions are usually used
 768         // in > 2-socket systems and likely don't synchronize tscs at
 769         // initialization.
 770         // Code that uses tsc values must be prepared for them to arbitrarily
 771         // jump forward or backward.
 772         return true;
 773       }
 774     }
 775     return false;
 776   }
 777 
 778   // AMD features
 779   static bool supports_3dnow_prefetch()    { return (_features & CPU_3DNOW_PREFETCH) != 0; }
 780   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
 781   static bool supports_lzcnt()    { return (_features & CPU_LZCNT) != 0; }
 782   static bool supports_sse4a()    { return (_features & CPU_SSE4A) != 0; }
 783 
 784   static bool is_amd_Barcelona()  { return is_amd() &&
 785                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
 786 
 787   // Intel and AMD newer cores support fast timestamps well
 788   static bool supports_tscinv_bit() {
 789     return (_features & CPU_TSCINV) != 0;
 790   }
 791   static bool supports_tscinv() {
 792     return supports_tscinv_bit() &&
 793            ( (is_amd() && !is_amd_Barcelona()) ||
 794              is_intel_tsc_synched_at_init() );
 795   }
 796 
 797   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
 798   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
 799                                            supports_sse3() && _model != 0x1C; }
 800 
 801   static bool supports_compare_and_exchange() { return true; }
 802 
 803   static intx allocate_prefetch_distance() {
 804     // This method should be called before allocate_prefetch_style().
 805     //
 806     // Hardware prefetching (distance/size in bytes):
 807     // Pentium 3 -  64 /  32
 808     // Pentium 4 - 256 / 128
 809     // Athlon    -  64 /  32 ????
 810     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
 811     // Core      - 128 /  64
 812     //
 813     // Software prefetching (distance in bytes / instruction with best score):
 814     // Pentium 3 - 128 / prefetchnta
 815     // Pentium 4 - 512 / prefetchnta
 816     // Athlon    - 128 / prefetchnta
 817     // Opteron   - 256 / prefetchnta
 818     // Core      - 256 / prefetchnta
 819     // It will be used only when AllocatePrefetchStyle > 0
 820 
 821     intx count = AllocatePrefetchDistance;
 822     if (count < 0) {   // default ?
 823       if (is_amd()) {  // AMD
 824         if (supports_sse2())
 825           count = 256; // Opteron
 826         else
 827           count = 128; // Athlon
 828       } else {         // Intel
 829         if (supports_sse2())
 830           if (cpu_family() == 6) {
 831             count = 256; // Pentium M, Core, Core2
 832           } else {
 833             count = 512; // Pentium 4
 834           }
 835         else
 836           count = 128; // Pentium 3 (and all other old CPUs)
 837       }
 838     }
 839     return count;
 840   }
 841   static intx allocate_prefetch_style() {
 842     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
 843     // Return 0 if AllocatePrefetchDistance was not defined.
 844     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
 845   }
 846 
 847   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
 848   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
 849   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
 850   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
 851 
 852   // gc copy/scan is disabled if prefetchw isn't supported, because
 853   // Prefetch::write emits an inlined prefetchw on Linux.
 854   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
 855   // The used prefetcht0 instruction works for both amd64 and em64t.
 856   static intx prefetch_copy_interval_in_bytes() {
 857     intx interval = PrefetchCopyIntervalInBytes;
 858     return interval >= 0 ? interval : 576;
 859   }
 860   static intx prefetch_scan_interval_in_bytes() {
 861     intx interval = PrefetchScanIntervalInBytes;
 862     return interval >= 0 ? interval : 576;
 863   }
 864   static intx prefetch_fields_ahead() {
 865     intx count = PrefetchFieldsAhead;
 866     return count >= 0 ? count : 1;
 867   }
 868   static uint32_t get_xsave_header_lower_segment() {
 869     return _cpuid_info.xem_xcr0_eax.value;
 870   }
 871   static uint32_t get_xsave_header_upper_segment() {
 872     return _cpuid_info.xem_xcr0_edx;
 873   }
 874 
 875   // SSE2 and later processors implement a 'pause' instruction
 876   // that can be used for efficient implementation of
 877   // the intrinsic for java.lang.Thread.onSpinWait()
 878   static bool supports_on_spin_wait() { return supports_sse2(); }
 879 };
 880 
 881 #endif // CPU_X86_VM_VM_VERSION_X86_HPP