1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "opto/ad.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/idealGraphPrinter.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/memnode.hpp"
  34 #include "opto/movenode.hpp"
  35 #include "opto/opcodes.hpp"
  36 #include "opto/regmask.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/type.hpp"
  40 #include "opto/vectornode.hpp"
  41 #include "runtime/os.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 
  44 OptoReg::Name OptoReg::c_frame_pointer;
  45 
  46 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  47 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  48 RegMask Matcher::STACK_ONLY_mask;
  49 RegMask Matcher::c_frame_ptr_mask;
  50 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  51 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  52 
  53 //---------------------------Matcher-------------------------------------------
  54 Matcher::Matcher()
  55 : PhaseTransform( Phase::Ins_Select ),
  56 #ifdef ASSERT
  57   _old2new_map(C->comp_arena()),
  58   _new2old_map(C->comp_arena()),
  59 #endif
  60   _shared_nodes(C->comp_arena()),
  61   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  62   _swallowed(swallowed),
  63   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  64   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  65   _must_clone(must_clone),
  66   _register_save_policy(register_save_policy),
  67   _c_reg_save_policy(c_reg_save_policy),
  68   _register_save_type(register_save_type),
  69   _ruleName(ruleName),
  70   _allocation_started(false),
  71   _states_arena(Chunk::medium_size),
  72   _visited(&_states_arena),
  73   _shared(&_states_arena),
  74   _dontcare(&_states_arena) {
  75   C->set_matcher(this);
  76 
  77   idealreg2spillmask  [Op_RegI] = NULL;
  78   idealreg2spillmask  [Op_RegN] = NULL;
  79   idealreg2spillmask  [Op_RegL] = NULL;
  80   idealreg2spillmask  [Op_RegF] = NULL;
  81   idealreg2spillmask  [Op_RegD] = NULL;
  82   idealreg2spillmask  [Op_RegP] = NULL;
  83   idealreg2spillmask  [Op_VecS] = NULL;
  84   idealreg2spillmask  [Op_VecD] = NULL;
  85   idealreg2spillmask  [Op_VecX] = NULL;
  86   idealreg2spillmask  [Op_VecY] = NULL;
  87   idealreg2spillmask  [Op_VecZ] = NULL;
  88   idealreg2spillmask  [Op_RegFlags] = NULL;
  89 
  90   idealreg2debugmask  [Op_RegI] = NULL;
  91   idealreg2debugmask  [Op_RegN] = NULL;
  92   idealreg2debugmask  [Op_RegL] = NULL;
  93   idealreg2debugmask  [Op_RegF] = NULL;
  94   idealreg2debugmask  [Op_RegD] = NULL;
  95   idealreg2debugmask  [Op_RegP] = NULL;
  96   idealreg2debugmask  [Op_VecS] = NULL;
  97   idealreg2debugmask  [Op_VecD] = NULL;
  98   idealreg2debugmask  [Op_VecX] = NULL;
  99   idealreg2debugmask  [Op_VecY] = NULL;
 100   idealreg2debugmask  [Op_VecZ] = NULL;
 101   idealreg2debugmask  [Op_RegFlags] = NULL;
 102 
 103   idealreg2mhdebugmask[Op_RegI] = NULL;
 104   idealreg2mhdebugmask[Op_RegN] = NULL;
 105   idealreg2mhdebugmask[Op_RegL] = NULL;
 106   idealreg2mhdebugmask[Op_RegF] = NULL;
 107   idealreg2mhdebugmask[Op_RegD] = NULL;
 108   idealreg2mhdebugmask[Op_RegP] = NULL;
 109   idealreg2mhdebugmask[Op_VecS] = NULL;
 110   idealreg2mhdebugmask[Op_VecD] = NULL;
 111   idealreg2mhdebugmask[Op_VecX] = NULL;
 112   idealreg2mhdebugmask[Op_VecY] = NULL;
 113   idealreg2mhdebugmask[Op_VecZ] = NULL;
 114   idealreg2mhdebugmask[Op_RegFlags] = NULL;
 115 
 116   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 117 }
 118 
 119 //------------------------------warp_incoming_stk_arg------------------------
 120 // This warps a VMReg into an OptoReg::Name
 121 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 122   OptoReg::Name warped;
 123   if( reg->is_stack() ) {  // Stack slot argument?
 124     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 125     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 126     if( warped >= _in_arg_limit )
 127       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 128     if (!RegMask::can_represent_arg(warped)) {
 129       // the compiler cannot represent this method's calling sequence
 130       C->record_method_not_compilable("unsupported incoming calling sequence");
 131       return OptoReg::Bad;
 132     }
 133     return warped;
 134   }
 135   return OptoReg::as_OptoReg(reg);
 136 }
 137 
 138 //---------------------------compute_old_SP------------------------------------
 139 OptoReg::Name Compile::compute_old_SP() {
 140   int fixed    = fixed_slots();
 141   int preserve = in_preserve_stack_slots();
 142   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 143 }
 144 
 145 
 146 
 147 #ifdef ASSERT
 148 void Matcher::verify_new_nodes_only(Node* xroot) {
 149   // Make sure that the new graph only references new nodes
 150   ResourceMark rm;
 151   Unique_Node_List worklist;
 152   VectorSet visited(Thread::current()->resource_area());
 153   worklist.push(xroot);
 154   while (worklist.size() > 0) {
 155     Node* n = worklist.pop();
 156     visited <<= n->_idx;
 157     assert(C->node_arena()->contains(n), "dead node");
 158     for (uint j = 0; j < n->req(); j++) {
 159       Node* in = n->in(j);
 160       if (in != NULL) {
 161         assert(C->node_arena()->contains(in), "dead node");
 162         if (!visited.test(in->_idx)) {
 163           worklist.push(in);
 164         }
 165       }
 166     }
 167   }
 168 }
 169 #endif
 170 
 171 
 172 //---------------------------match---------------------------------------------
 173 void Matcher::match( ) {
 174   if( MaxLabelRootDepth < 100 ) { // Too small?
 175     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 176     MaxLabelRootDepth = 100;
 177   }
 178   // One-time initialization of some register masks.
 179   init_spill_mask( C->root()->in(1) );
 180   _return_addr_mask = return_addr();
 181 #ifdef _LP64
 182   // Pointers take 2 slots in 64-bit land
 183   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 184 #endif
 185 
 186   // Map a Java-signature return type into return register-value
 187   // machine registers for 0, 1 and 2 returned values.
 188   const TypeTuple *range = C->tf()->range();
 189   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 190     // Get ideal-register return type
 191     uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 192     // Get machine return register
 193     uint sop = C->start()->Opcode();
 194     OptoRegPair regs = return_value(ireg, false);
 195 
 196     // And mask for same
 197     _return_value_mask = RegMask(regs.first());
 198     if( OptoReg::is_valid(regs.second()) )
 199       _return_value_mask.Insert(regs.second());
 200   }
 201 
 202   // ---------------
 203   // Frame Layout
 204 
 205   // Need the method signature to determine the incoming argument types,
 206   // because the types determine which registers the incoming arguments are
 207   // in, and this affects the matched code.
 208   const TypeTuple *domain = C->tf()->domain();
 209   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 210   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 211   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 212   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 213   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 214   uint i;
 215   for( i = 0; i<argcnt; i++ ) {
 216     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 217   }
 218 
 219   // Pass array of ideal registers and length to USER code (from the AD file)
 220   // that will convert this to an array of register numbers.
 221   const StartNode *start = C->start();
 222   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 223 #ifdef ASSERT
 224   // Sanity check users' calling convention.  Real handy while trying to
 225   // get the initial port correct.
 226   { for (uint i = 0; i<argcnt; i++) {
 227       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 228         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 229         _parm_regs[i].set_bad();
 230         continue;
 231       }
 232       VMReg parm_reg = vm_parm_regs[i].first();
 233       assert(parm_reg->is_valid(), "invalid arg?");
 234       if (parm_reg->is_reg()) {
 235         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 236         assert(can_be_java_arg(opto_parm_reg) ||
 237                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 238                opto_parm_reg == inline_cache_reg(),
 239                "parameters in register must be preserved by runtime stubs");
 240       }
 241       for (uint j = 0; j < i; j++) {
 242         assert(parm_reg != vm_parm_regs[j].first(),
 243                "calling conv. must produce distinct regs");
 244       }
 245     }
 246   }
 247 #endif
 248 
 249   // Do some initial frame layout.
 250 
 251   // Compute the old incoming SP (may be called FP) as
 252   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 253   _old_SP = C->compute_old_SP();
 254   assert( is_even(_old_SP), "must be even" );
 255 
 256   // Compute highest incoming stack argument as
 257   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 258   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 259   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 260   for( i = 0; i < argcnt; i++ ) {
 261     // Permit args to have no register
 262     _calling_convention_mask[i].Clear();
 263     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 264       continue;
 265     }
 266     // calling_convention returns stack arguments as a count of
 267     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 268     // the allocators point of view, taking into account all the
 269     // preserve area, locks & pad2.
 270 
 271     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 272     if( OptoReg::is_valid(reg1))
 273       _calling_convention_mask[i].Insert(reg1);
 274 
 275     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 276     if( OptoReg::is_valid(reg2))
 277       _calling_convention_mask[i].Insert(reg2);
 278 
 279     // Saved biased stack-slot register number
 280     _parm_regs[i].set_pair(reg2, reg1);
 281   }
 282 
 283   // Finally, make sure the incoming arguments take up an even number of
 284   // words, in case the arguments or locals need to contain doubleword stack
 285   // slots.  The rest of the system assumes that stack slot pairs (in
 286   // particular, in the spill area) which look aligned will in fact be
 287   // aligned relative to the stack pointer in the target machine.  Double
 288   // stack slots will always be allocated aligned.
 289   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 290 
 291   // Compute highest outgoing stack argument as
 292   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 293   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 294   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 295 
 296   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
 297     // the compiler cannot represent this method's calling sequence
 298     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 299   }
 300 
 301   if (C->failing())  return;  // bailed out on incoming arg failure
 302 
 303   // ---------------
 304   // Collect roots of matcher trees.  Every node for which
 305   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 306   // can be a valid interior of some tree.
 307   find_shared( C->root() );
 308   find_shared( C->top() );
 309 
 310   C->print_method(PHASE_BEFORE_MATCHING);
 311 
 312   // Create new ideal node ConP #NULL even if it does exist in old space
 313   // to avoid false sharing if the corresponding mach node is not used.
 314   // The corresponding mach node is only used in rare cases for derived
 315   // pointers.
 316   Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR);
 317 
 318   // Swap out to old-space; emptying new-space
 319   Arena *old = C->node_arena()->move_contents(C->old_arena());
 320 
 321   // Save debug and profile information for nodes in old space:
 322   _old_node_note_array = C->node_note_array();
 323   if (_old_node_note_array != NULL) {
 324     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 325                            (C->comp_arena(), _old_node_note_array->length(),
 326                             0, NULL));
 327   }
 328 
 329   // Pre-size the new_node table to avoid the need for range checks.
 330   grow_new_node_array(C->unique());
 331 
 332   // Reset node counter so MachNodes start with _idx at 0
 333   int live_nodes = C->live_nodes();
 334   C->set_unique(0);
 335   C->reset_dead_node_list();
 336 
 337   // Recursively match trees from old space into new space.
 338   // Correct leaves of new-space Nodes; they point to old-space.
 339   _visited.Clear();             // Clear visit bits for xform call
 340   C->set_cached_top_node(xform( C->top(), live_nodes ));
 341   if (!C->failing()) {
 342     Node* xroot =        xform( C->root(), 1 );
 343     if (xroot == NULL) {
 344       Matcher::soft_match_failure();  // recursive matching process failed
 345       C->record_method_not_compilable("instruction match failed");
 346     } else {
 347       // During matching shared constants were attached to C->root()
 348       // because xroot wasn't available yet, so transfer the uses to
 349       // the xroot.
 350       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 351         Node* n = C->root()->fast_out(j);
 352         if (C->node_arena()->contains(n)) {
 353           assert(n->in(0) == C->root(), "should be control user");
 354           n->set_req(0, xroot);
 355           --j;
 356           --jmax;
 357         }
 358       }
 359 
 360       // Generate new mach node for ConP #NULL
 361       assert(new_ideal_null != NULL, "sanity");
 362       _mach_null = match_tree(new_ideal_null);
 363       // Don't set control, it will confuse GCM since there are no uses.
 364       // The control will be set when this node is used first time
 365       // in find_base_for_derived().
 366       assert(_mach_null != NULL, "");
 367 
 368       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 369 
 370 #ifdef ASSERT
 371       verify_new_nodes_only(xroot);
 372 #endif
 373     }
 374   }
 375   if (C->top() == NULL || C->root() == NULL) {
 376     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 377   }
 378   if (C->failing()) {
 379     // delete old;
 380     old->destruct_contents();
 381     return;
 382   }
 383   assert( C->top(), "" );
 384   assert( C->root(), "" );
 385   validate_null_checks();
 386 
 387   // Now smoke old-space
 388   NOT_DEBUG( old->destruct_contents() );
 389 
 390   // ------------------------
 391   // Set up save-on-entry registers
 392   Fixup_Save_On_Entry( );
 393 }
 394 
 395 
 396 //------------------------------Fixup_Save_On_Entry----------------------------
 397 // The stated purpose of this routine is to take care of save-on-entry
 398 // registers.  However, the overall goal of the Match phase is to convert into
 399 // machine-specific instructions which have RegMasks to guide allocation.
 400 // So what this procedure really does is put a valid RegMask on each input
 401 // to the machine-specific variations of all Return, TailCall and Halt
 402 // instructions.  It also adds edgs to define the save-on-entry values (and of
 403 // course gives them a mask).
 404 
 405 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 406   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 407   // Do all the pre-defined register masks
 408   rms[TypeFunc::Control  ] = RegMask::Empty;
 409   rms[TypeFunc::I_O      ] = RegMask::Empty;
 410   rms[TypeFunc::Memory   ] = RegMask::Empty;
 411   rms[TypeFunc::ReturnAdr] = ret_adr;
 412   rms[TypeFunc::FramePtr ] = fp;
 413   return rms;
 414 }
 415 
 416 //---------------------------init_first_stack_mask-----------------------------
 417 // Create the initial stack mask used by values spilling to the stack.
 418 // Disallow any debug info in outgoing argument areas by setting the
 419 // initial mask accordingly.
 420 void Matcher::init_first_stack_mask() {
 421 
 422   // Allocate storage for spill masks as masks for the appropriate load type.
 423   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+5));
 424 
 425   idealreg2spillmask  [Op_RegN] = &rms[0];
 426   idealreg2spillmask  [Op_RegI] = &rms[1];
 427   idealreg2spillmask  [Op_RegL] = &rms[2];
 428   idealreg2spillmask  [Op_RegF] = &rms[3];
 429   idealreg2spillmask  [Op_RegD] = &rms[4];
 430   idealreg2spillmask  [Op_RegP] = &rms[5];
 431 
 432   idealreg2debugmask  [Op_RegN] = &rms[6];
 433   idealreg2debugmask  [Op_RegI] = &rms[7];
 434   idealreg2debugmask  [Op_RegL] = &rms[8];
 435   idealreg2debugmask  [Op_RegF] = &rms[9];
 436   idealreg2debugmask  [Op_RegD] = &rms[10];
 437   idealreg2debugmask  [Op_RegP] = &rms[11];
 438 
 439   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 440   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 441   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 442   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 443   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 444   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 445 
 446   idealreg2spillmask  [Op_VecS] = &rms[18];
 447   idealreg2spillmask  [Op_VecD] = &rms[19];
 448   idealreg2spillmask  [Op_VecX] = &rms[20];
 449   idealreg2spillmask  [Op_VecY] = &rms[21];
 450   idealreg2spillmask  [Op_VecZ] = &rms[22];
 451 
 452   OptoReg::Name i;
 453 
 454   // At first, start with the empty mask
 455   C->FIRST_STACK_mask().Clear();
 456 
 457   // Add in the incoming argument area
 458   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 459   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
 460     C->FIRST_STACK_mask().Insert(i);
 461   }
 462   // Add in all bits past the outgoing argument area
 463   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 464             "must be able to represent all call arguments in reg mask");
 465   OptoReg::Name init = _out_arg_limit;
 466   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
 467     C->FIRST_STACK_mask().Insert(i);
 468   }
 469   // Finally, set the "infinite stack" bit.
 470   C->FIRST_STACK_mask().set_AllStack();
 471 
 472   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 473   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 474   // Keep spill masks aligned.
 475   aligned_stack_mask.clear_to_pairs();
 476   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 477 
 478   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 479 #ifdef _LP64
 480   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 481    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 482    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
 483 #else
 484    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 485 #endif
 486   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 487    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 488   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 489    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
 490   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 491    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 492   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 493    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
 494 
 495   if (Matcher::vector_size_supported(T_BYTE,4)) {
 496     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
 497      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
 498   }
 499   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 500     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
 501     // RA guarantees such alignment since it is needed for Double and Long values.
 502     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
 503      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
 504   }
 505   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 506     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
 507     //
 508     // RA can use input arguments stack slots for spills but until RA
 509     // we don't know frame size and offset of input arg stack slots.
 510     //
 511     // Exclude last input arg stack slots to avoid spilling vectors there
 512     // otherwise vector spills could stomp over stack slots in caller frame.
 513     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 514     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
 515       aligned_stack_mask.Remove(in);
 516       in = OptoReg::add(in, -1);
 517     }
 518      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 519      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 520     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
 521      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
 522   }
 523   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 524     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
 525     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 526     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
 527       aligned_stack_mask.Remove(in);
 528       in = OptoReg::add(in, -1);
 529     }
 530      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 531      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 532     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
 533      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
 534   }
 535   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 536     // For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
 537     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 538     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
 539       aligned_stack_mask.Remove(in);
 540       in = OptoReg::add(in, -1);
 541     }
 542      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
 543      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 544     *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ];
 545      idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask);
 546   }
 547    if (UseFPUForSpilling) {
 548      // This mask logic assumes that the spill operations are
 549      // symmetric and that the registers involved are the same size.
 550      // On sparc for instance we may have to use 64 bit moves will
 551      // kill 2 registers when used with F0-F31.
 552      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 553      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 554 #ifdef _LP64
 555      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 556      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 557      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 558      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 559 #else
 560      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 561 #ifdef ARM
 562      // ARM has support for moving 64bit values between a pair of
 563      // integer registers and a double register
 564      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 565      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 566 #endif
 567 #endif
 568    }
 569 
 570   // Make up debug masks.  Any spill slot plus callee-save registers.
 571   // Caller-save registers are assumed to be trashable by the various
 572   // inline-cache fixup routines.
 573   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 574   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 575   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 576   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 577   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 578   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 579 
 580   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 581   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 582   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 583   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 584   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 585   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 586 
 587   // Prevent stub compilations from attempting to reference
 588   // callee-saved registers from debug info
 589   bool exclude_soe = !Compile::current()->is_method_compilation();
 590 
 591   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 592     // registers the caller has to save do not work
 593     if( _register_save_policy[i] == 'C' ||
 594         _register_save_policy[i] == 'A' ||
 595         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 596       idealreg2debugmask  [Op_RegN]->Remove(i);
 597       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 598       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 599       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 600       idealreg2debugmask  [Op_RegD]->Remove(i);
 601       idealreg2debugmask  [Op_RegP]->Remove(i);
 602 
 603       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 604       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 605       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 606       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 607       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 608       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 609     }
 610   }
 611 
 612   // Subtract the register we use to save the SP for MethodHandle
 613   // invokes to from the debug mask.
 614   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 615   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 616   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 617   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 618   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 619   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 620   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 621 }
 622 
 623 //---------------------------is_save_on_entry----------------------------------
 624 bool Matcher::is_save_on_entry( int reg ) {
 625   return
 626     _register_save_policy[reg] == 'E' ||
 627     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 628     // Also save argument registers in the trampolining stubs
 629     (C->save_argument_registers() && is_spillable_arg(reg));
 630 }
 631 
 632 //---------------------------Fixup_Save_On_Entry-------------------------------
 633 void Matcher::Fixup_Save_On_Entry( ) {
 634   init_first_stack_mask();
 635 
 636   Node *root = C->root();       // Short name for root
 637   // Count number of save-on-entry registers.
 638   uint soe_cnt = number_of_saved_registers();
 639   uint i;
 640 
 641   // Find the procedure Start Node
 642   StartNode *start = C->start();
 643   assert( start, "Expect a start node" );
 644 
 645   // Save argument registers in the trampolining stubs
 646   if( C->save_argument_registers() )
 647     for( i = 0; i < _last_Mach_Reg; i++ )
 648       if( is_spillable_arg(i) )
 649         soe_cnt++;
 650 
 651   // Input RegMask array shared by all Returns.
 652   // The type for doubles and longs has a count of 2, but
 653   // there is only 1 returned value
 654   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 655   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 656   // Returns have 0 or 1 returned values depending on call signature.
 657   // Return register is specified by return_value in the AD file.
 658   if (ret_edge_cnt > TypeFunc::Parms)
 659     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 660 
 661   // Input RegMask array shared by all Rethrows.
 662   uint reth_edge_cnt = TypeFunc::Parms+1;
 663   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 664   // Rethrow takes exception oop only, but in the argument 0 slot.
 665   OptoReg::Name reg = find_receiver(false);
 666   if (reg >= 0) {
 667     reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
 668 #ifdef _LP64
 669     // Need two slots for ptrs in 64-bit land
 670     reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
 671 #endif
 672   }
 673 
 674   // Input RegMask array shared by all TailCalls
 675   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 676   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 677 
 678   // Input RegMask array shared by all TailJumps
 679   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 680   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 681 
 682   // TailCalls have 2 returned values (target & moop), whose masks come
 683   // from the usual MachNode/MachOper mechanism.  Find a sample
 684   // TailCall to extract these masks and put the correct masks into
 685   // the tail_call_rms array.
 686   for( i=1; i < root->req(); i++ ) {
 687     MachReturnNode *m = root->in(i)->as_MachReturn();
 688     if( m->ideal_Opcode() == Op_TailCall ) {
 689       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 690       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 691       break;
 692     }
 693   }
 694 
 695   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 696   // from the usual MachNode/MachOper mechanism.  Find a sample
 697   // TailJump to extract these masks and put the correct masks into
 698   // the tail_jump_rms array.
 699   for( i=1; i < root->req(); i++ ) {
 700     MachReturnNode *m = root->in(i)->as_MachReturn();
 701     if( m->ideal_Opcode() == Op_TailJump ) {
 702       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 703       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 704       break;
 705     }
 706   }
 707 
 708   // Input RegMask array shared by all Halts
 709   uint halt_edge_cnt = TypeFunc::Parms;
 710   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 711 
 712   // Capture the return input masks into each exit flavor
 713   for( i=1; i < root->req(); i++ ) {
 714     MachReturnNode *exit = root->in(i)->as_MachReturn();
 715     switch( exit->ideal_Opcode() ) {
 716       case Op_Return   : exit->_in_rms = ret_rms;  break;
 717       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 718       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 719       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 720       case Op_Halt     : exit->_in_rms = halt_rms; break;
 721       default          : ShouldNotReachHere();
 722     }
 723   }
 724 
 725   // Next unused projection number from Start.
 726   int proj_cnt = C->tf()->domain()->cnt();
 727 
 728   // Do all the save-on-entry registers.  Make projections from Start for
 729   // them, and give them a use at the exit points.  To the allocator, they
 730   // look like incoming register arguments.
 731   for( i = 0; i < _last_Mach_Reg; i++ ) {
 732     if( is_save_on_entry(i) ) {
 733 
 734       // Add the save-on-entry to the mask array
 735       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 736       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 737       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 738       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 739       // Halts need the SOE registers, but only in the stack as debug info.
 740       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 741       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 742 
 743       Node *mproj;
 744 
 745       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 746       // into a single RegD.
 747       if( (i&1) == 0 &&
 748           _register_save_type[i  ] == Op_RegF &&
 749           _register_save_type[i+1] == Op_RegF &&
 750           is_save_on_entry(i+1) ) {
 751         // Add other bit for double
 752         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 753         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 754         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 755         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 756         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 757         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 758         proj_cnt += 2;          // Skip 2 for doubles
 759       }
 760       else if( (i&1) == 1 &&    // Else check for high half of double
 761                _register_save_type[i-1] == Op_RegF &&
 762                _register_save_type[i  ] == Op_RegF &&
 763                is_save_on_entry(i-1) ) {
 764         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 765         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 766         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 767         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 768         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 769         mproj = C->top();
 770       }
 771       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 772       // into a single RegL.
 773       else if( (i&1) == 0 &&
 774           _register_save_type[i  ] == Op_RegI &&
 775           _register_save_type[i+1] == Op_RegI &&
 776         is_save_on_entry(i+1) ) {
 777         // Add other bit for long
 778         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 779         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 780         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 781         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 782         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 783         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 784         proj_cnt += 2;          // Skip 2 for longs
 785       }
 786       else if( (i&1) == 1 &&    // Else check for high half of long
 787                _register_save_type[i-1] == Op_RegI &&
 788                _register_save_type[i  ] == Op_RegI &&
 789                is_save_on_entry(i-1) ) {
 790         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 791         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 792         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 793         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 794         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 795         mproj = C->top();
 796       } else {
 797         // Make a projection for it off the Start
 798         mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 799       }
 800 
 801       ret_edge_cnt ++;
 802       reth_edge_cnt ++;
 803       tail_call_edge_cnt ++;
 804       tail_jump_edge_cnt ++;
 805       halt_edge_cnt ++;
 806 
 807       // Add a use of the SOE register to all exit paths
 808       for( uint j=1; j < root->req(); j++ )
 809         root->in(j)->add_req(mproj);
 810     } // End of if a save-on-entry register
 811   } // End of for all machine registers
 812 }
 813 
 814 //------------------------------init_spill_mask--------------------------------
 815 void Matcher::init_spill_mask( Node *ret ) {
 816   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 817 
 818   OptoReg::c_frame_pointer = c_frame_pointer();
 819   c_frame_ptr_mask = c_frame_pointer();
 820 #ifdef _LP64
 821   // pointers are twice as big
 822   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 823 #endif
 824 
 825   // Start at OptoReg::stack0()
 826   STACK_ONLY_mask.Clear();
 827   OptoReg::Name init = OptoReg::stack2reg(0);
 828   // STACK_ONLY_mask is all stack bits
 829   OptoReg::Name i;
 830   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 831     STACK_ONLY_mask.Insert(i);
 832   // Also set the "infinite stack" bit.
 833   STACK_ONLY_mask.set_AllStack();
 834 
 835   // Copy the register names over into the shared world
 836   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 837     // SharedInfo::regName[i] = regName[i];
 838     // Handy RegMasks per machine register
 839     mreg2regmask[i].Insert(i);
 840   }
 841 
 842   // Grab the Frame Pointer
 843   Node *fp  = ret->in(TypeFunc::FramePtr);
 844   Node *mem = ret->in(TypeFunc::Memory);
 845   const TypePtr* atp = TypePtr::BOTTOM;
 846   // Share frame pointer while making spill ops
 847   set_shared(fp);
 848 
 849   // Compute generic short-offset Loads
 850 #ifdef _LP64
 851   MachNode *spillCP = match_tree(new LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 852 #endif
 853   MachNode *spillI  = match_tree(new LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
 854   MachNode *spillL  = match_tree(new LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest, false));
 855   MachNode *spillF  = match_tree(new LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
 856   MachNode *spillD  = match_tree(new LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
 857   MachNode *spillP  = match_tree(new LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 858   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 859          spillD != NULL && spillP != NULL, "");
 860   // Get the ADLC notion of the right regmask, for each basic type.
 861 #ifdef _LP64
 862   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 863 #endif
 864   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 865   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 866   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 867   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 868   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 869 
 870   // Vector regmasks.
 871   if (Matcher::vector_size_supported(T_BYTE,4)) {
 872     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 873     MachNode *spillVectS = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
 874     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
 875   }
 876   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 877     MachNode *spillVectD = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
 878     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
 879   }
 880   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 881     MachNode *spillVectX = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
 882     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
 883   }
 884   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 885     MachNode *spillVectY = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
 886     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
 887   }
 888   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 889     MachNode *spillVectZ = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTZ));
 890     idealreg2regmask[Op_VecZ] = &spillVectZ->out_RegMask();
 891   }
 892 }
 893 
 894 #ifdef ASSERT
 895 static void match_alias_type(Compile* C, Node* n, Node* m) {
 896   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 897   const TypePtr* nat = n->adr_type();
 898   const TypePtr* mat = m->adr_type();
 899   int nidx = C->get_alias_index(nat);
 900   int midx = C->get_alias_index(mat);
 901   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 902   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 903     for (uint i = 1; i < n->req(); i++) {
 904       Node* n1 = n->in(i);
 905       const TypePtr* n1at = n1->adr_type();
 906       if (n1at != NULL) {
 907         nat = n1at;
 908         nidx = C->get_alias_index(n1at);
 909       }
 910     }
 911   }
 912   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 913   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 914     switch (n->Opcode()) {
 915     case Op_PrefetchAllocation:
 916       nidx = Compile::AliasIdxRaw;
 917       nat = TypeRawPtr::BOTTOM;
 918       break;
 919     }
 920   }
 921   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 922     switch (n->Opcode()) {
 923     case Op_ClearArray:
 924       midx = Compile::AliasIdxRaw;
 925       mat = TypeRawPtr::BOTTOM;
 926       break;
 927     }
 928   }
 929   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 930     switch (n->Opcode()) {
 931     case Op_Return:
 932     case Op_Rethrow:
 933     case Op_Halt:
 934     case Op_TailCall:
 935     case Op_TailJump:
 936       nidx = Compile::AliasIdxBot;
 937       nat = TypePtr::BOTTOM;
 938       break;
 939     }
 940   }
 941   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 942     switch (n->Opcode()) {
 943     case Op_StrComp:
 944     case Op_StrEquals:
 945     case Op_StrIndexOf:
 946     case Op_StrIndexOfChar:
 947     case Op_AryEq:
 948     case Op_HasNegatives:
 949     case Op_MemBarVolatile:
 950     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 951     case Op_StrInflatedCopy:
 952     case Op_StrCompressedCopy:
 953     case Op_OnSpinWait:
 954     case Op_EncodeISOArray:
 955       nidx = Compile::AliasIdxTop;
 956       nat = NULL;
 957       break;
 958     }
 959   }
 960   if (nidx != midx) {
 961     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 962       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 963       n->dump();
 964       m->dump();
 965     }
 966     assert(C->subsume_loads() && C->must_alias(nat, midx),
 967            "must not lose alias info when matching");
 968   }
 969 }
 970 #endif
 971 
 972 //------------------------------xform------------------------------------------
 973 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 974 // Node in new-space.  Given a new-space Node, recursively walk his children.
 975 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
 976 Node *Matcher::xform( Node *n, int max_stack ) {
 977   // Use one stack to keep both: child's node/state and parent's node/index
 978   MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
 979   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
 980 
 981   while (mstack.is_nonempty()) {
 982     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
 983     if (C->failing()) return NULL;
 984     n = mstack.node();          // Leave node on stack
 985     Node_State nstate = mstack.state();
 986     if (nstate == Visit) {
 987       mstack.set_state(Post_Visit);
 988       Node *oldn = n;
 989       // Old-space or new-space check
 990       if (!C->node_arena()->contains(n)) {
 991         // Old space!
 992         Node* m;
 993         if (has_new_node(n)) {  // Not yet Label/Reduced
 994           m = new_node(n);
 995         } else {
 996           if (!is_dontcare(n)) { // Matcher can match this guy
 997             // Calls match special.  They match alone with no children.
 998             // Their children, the incoming arguments, match normally.
 999             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1000             if (C->failing())  return NULL;
1001             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1002           } else {                  // Nothing the matcher cares about
1003             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
1004               // Convert to machine-dependent projection
1005               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1006 #ifdef ASSERT
1007               _new2old_map.map(m->_idx, n);
1008 #endif
1009               if (m->in(0) != NULL) // m might be top
1010                 collect_null_checks(m, n);
1011             } else {                // Else just a regular 'ol guy
1012               m = n->clone();       // So just clone into new-space
1013 #ifdef ASSERT
1014               _new2old_map.map(m->_idx, n);
1015 #endif
1016               // Def-Use edges will be added incrementally as Uses
1017               // of this node are matched.
1018               assert(m->outcnt() == 0, "no Uses of this clone yet");
1019             }
1020           }
1021 
1022           set_new_node(n, m);       // Map old to new
1023           if (_old_node_note_array != NULL) {
1024             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1025                                                   n->_idx);
1026             C->set_node_notes_at(m->_idx, nn);
1027           }
1028           debug_only(match_alias_type(C, n, m));
1029         }
1030         n = m;    // n is now a new-space node
1031         mstack.set_node(n);
1032       }
1033 
1034       // New space!
1035       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1036 
1037       int i;
1038       // Put precedence edges on stack first (match them last).
1039       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1040         Node *m = oldn->in(i);
1041         if (m == NULL) break;
1042         // set -1 to call add_prec() instead of set_req() during Step1
1043         mstack.push(m, Visit, n, -1);
1044       }
1045 
1046       // Handle precedence edges for interior nodes
1047       for (i = n->len()-1; (uint)i >= n->req(); i--) {
1048         Node *m = n->in(i);
1049         if (m == NULL || C->node_arena()->contains(m)) continue;
1050         n->rm_prec(i);
1051         // set -1 to call add_prec() instead of set_req() during Step1
1052         mstack.push(m, Visit, n, -1);
1053       }
1054 
1055       // For constant debug info, I'd rather have unmatched constants.
1056       int cnt = n->req();
1057       JVMState* jvms = n->jvms();
1058       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1059 
1060       // Now do only debug info.  Clone constants rather than matching.
1061       // Constants are represented directly in the debug info without
1062       // the need for executable machine instructions.
1063       // Monitor boxes are also represented directly.
1064       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1065         Node *m = n->in(i);          // Get input
1066         int op = m->Opcode();
1067         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1068         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1069             op == Op_ConF || op == Op_ConD || op == Op_ConL
1070             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1071             ) {
1072           m = m->clone();
1073 #ifdef ASSERT
1074           _new2old_map.map(m->_idx, n);
1075 #endif
1076           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1077           mstack.push(m->in(0), Visit, m, 0);
1078         } else {
1079           mstack.push(m, Visit, n, i);
1080         }
1081       }
1082 
1083       // And now walk his children, and convert his inputs to new-space.
1084       for( ; i >= 0; --i ) { // For all normal inputs do
1085         Node *m = n->in(i);  // Get input
1086         if(m != NULL)
1087           mstack.push(m, Visit, n, i);
1088       }
1089 
1090     }
1091     else if (nstate == Post_Visit) {
1092       // Set xformed input
1093       Node *p = mstack.parent();
1094       if (p != NULL) { // root doesn't have parent
1095         int i = (int)mstack.index();
1096         if (i >= 0)
1097           p->set_req(i, n); // required input
1098         else if (i == -1)
1099           p->add_prec(n);   // precedence input
1100         else
1101           ShouldNotReachHere();
1102       }
1103       mstack.pop(); // remove processed node from stack
1104     }
1105     else {
1106       ShouldNotReachHere();
1107     }
1108   } // while (mstack.is_nonempty())
1109   return n; // Return new-space Node
1110 }
1111 
1112 //------------------------------warp_outgoing_stk_arg------------------------
1113 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1114   // Convert outgoing argument location to a pre-biased stack offset
1115   if (reg->is_stack()) {
1116     OptoReg::Name warped = reg->reg2stack();
1117     // Adjust the stack slot offset to be the register number used
1118     // by the allocator.
1119     warped = OptoReg::add(begin_out_arg_area, warped);
1120     // Keep track of the largest numbered stack slot used for an arg.
1121     // Largest used slot per call-site indicates the amount of stack
1122     // that is killed by the call.
1123     if( warped >= out_arg_limit_per_call )
1124       out_arg_limit_per_call = OptoReg::add(warped,1);
1125     if (!RegMask::can_represent_arg(warped)) {
1126       C->record_method_not_compilable("unsupported calling sequence");
1127       return OptoReg::Bad;
1128     }
1129     return warped;
1130   }
1131   return OptoReg::as_OptoReg(reg);
1132 }
1133 
1134 
1135 //------------------------------match_sfpt-------------------------------------
1136 // Helper function to match call instructions.  Calls match special.
1137 // They match alone with no children.  Their children, the incoming
1138 // arguments, match normally.
1139 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1140   MachSafePointNode *msfpt = NULL;
1141   MachCallNode      *mcall = NULL;
1142   uint               cnt;
1143   // Split out case for SafePoint vs Call
1144   CallNode *call;
1145   const TypeTuple *domain;
1146   ciMethod*        method = NULL;
1147   bool             is_method_handle_invoke = false;  // for special kill effects
1148   if( sfpt->is_Call() ) {
1149     call = sfpt->as_Call();
1150     domain = call->tf()->domain();
1151     cnt = domain->cnt();
1152 
1153     // Match just the call, nothing else
1154     MachNode *m = match_tree(call);
1155     if (C->failing())  return NULL;
1156     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1157 
1158     // Copy data from the Ideal SafePoint to the machine version
1159     mcall = m->as_MachCall();
1160 
1161     mcall->set_tf(         call->tf());
1162     mcall->set_entry_point(call->entry_point());
1163     mcall->set_cnt(        call->cnt());
1164 
1165     if( mcall->is_MachCallJava() ) {
1166       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1167       const CallJavaNode *call_java =  call->as_CallJava();
1168       method = call_java->method();
1169       mcall_java->_method = method;
1170       mcall_java->_bci = call_java->_bci;
1171       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1172       is_method_handle_invoke = call_java->is_method_handle_invoke();
1173       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1174       mcall_java->_override_symbolic_info = call_java->override_symbolic_info();
1175       if (is_method_handle_invoke) {
1176         C->set_has_method_handle_invokes(true);
1177       }
1178       if( mcall_java->is_MachCallStaticJava() )
1179         mcall_java->as_MachCallStaticJava()->_name =
1180          call_java->as_CallStaticJava()->_name;
1181       if( mcall_java->is_MachCallDynamicJava() )
1182         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1183          call_java->as_CallDynamicJava()->_vtable_index;
1184     }
1185     else if( mcall->is_MachCallRuntime() ) {
1186       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1187     }
1188     msfpt = mcall;
1189   }
1190   // This is a non-call safepoint
1191   else {
1192     call = NULL;
1193     domain = NULL;
1194     MachNode *mn = match_tree(sfpt);
1195     if (C->failing())  return NULL;
1196     msfpt = mn->as_MachSafePoint();
1197     cnt = TypeFunc::Parms;
1198   }
1199 
1200   // Advertise the correct memory effects (for anti-dependence computation).
1201   msfpt->set_adr_type(sfpt->adr_type());
1202 
1203   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1204   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1205   // Empty them all.
1206   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1207 
1208   // Do all the pre-defined non-Empty register masks
1209   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1210   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1211 
1212   // Place first outgoing argument can possibly be put.
1213   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1214   assert( is_even(begin_out_arg_area), "" );
1215   // Compute max outgoing register number per call site.
1216   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1217   // Calls to C may hammer extra stack slots above and beyond any arguments.
1218   // These are usually backing store for register arguments for varargs.
1219   if( call != NULL && call->is_CallRuntime() )
1220     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1221 
1222 
1223   // Do the normal argument list (parameters) register masks
1224   int argcnt = cnt - TypeFunc::Parms;
1225   if( argcnt > 0 ) {          // Skip it all if we have no args
1226     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1227     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1228     int i;
1229     for( i = 0; i < argcnt; i++ ) {
1230       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1231     }
1232     // V-call to pick proper calling convention
1233     call->calling_convention( sig_bt, parm_regs, argcnt );
1234 
1235 #ifdef ASSERT
1236     // Sanity check users' calling convention.  Really handy during
1237     // the initial porting effort.  Fairly expensive otherwise.
1238     { for (int i = 0; i<argcnt; i++) {
1239       if( !parm_regs[i].first()->is_valid() &&
1240           !parm_regs[i].second()->is_valid() ) continue;
1241       VMReg reg1 = parm_regs[i].first();
1242       VMReg reg2 = parm_regs[i].second();
1243       for (int j = 0; j < i; j++) {
1244         if( !parm_regs[j].first()->is_valid() &&
1245             !parm_regs[j].second()->is_valid() ) continue;
1246         VMReg reg3 = parm_regs[j].first();
1247         VMReg reg4 = parm_regs[j].second();
1248         if( !reg1->is_valid() ) {
1249           assert( !reg2->is_valid(), "valid halvsies" );
1250         } else if( !reg3->is_valid() ) {
1251           assert( !reg4->is_valid(), "valid halvsies" );
1252         } else {
1253           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1254           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1255           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1256           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1257           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1258           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1259         }
1260       }
1261     }
1262     }
1263 #endif
1264 
1265     // Visit each argument.  Compute its outgoing register mask.
1266     // Return results now can have 2 bits returned.
1267     // Compute max over all outgoing arguments both per call-site
1268     // and over the entire method.
1269     for( i = 0; i < argcnt; i++ ) {
1270       // Address of incoming argument mask to fill in
1271       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1272       if( !parm_regs[i].first()->is_valid() &&
1273           !parm_regs[i].second()->is_valid() ) {
1274         continue;               // Avoid Halves
1275       }
1276       // Grab first register, adjust stack slots and insert in mask.
1277       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1278       if (OptoReg::is_valid(reg1))
1279         rm->Insert( reg1 );
1280       // Grab second register (if any), adjust stack slots and insert in mask.
1281       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1282       if (OptoReg::is_valid(reg2))
1283         rm->Insert( reg2 );
1284     } // End of for all arguments
1285 
1286     // Compute number of stack slots needed to restore stack in case of
1287     // Pascal-style argument popping.
1288     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1289   }
1290 
1291   // Compute the max stack slot killed by any call.  These will not be
1292   // available for debug info, and will be used to adjust FIRST_STACK_mask
1293   // after all call sites have been visited.
1294   if( _out_arg_limit < out_arg_limit_per_call)
1295     _out_arg_limit = out_arg_limit_per_call;
1296 
1297   if (mcall) {
1298     // Kill the outgoing argument area, including any non-argument holes and
1299     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1300     // Since the max-per-method covers the max-per-call-site and debug info
1301     // is excluded on the max-per-method basis, debug info cannot land in
1302     // this killed area.
1303     uint r_cnt = mcall->tf()->range()->cnt();
1304     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1305     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1306       C->record_method_not_compilable("unsupported outgoing calling sequence");
1307     } else {
1308       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1309         proj->_rout.Insert(OptoReg::Name(i));
1310     }
1311     if (proj->_rout.is_NotEmpty()) {
1312       push_projection(proj);
1313     }
1314   }
1315   // Transfer the safepoint information from the call to the mcall
1316   // Move the JVMState list
1317   msfpt->set_jvms(sfpt->jvms());
1318   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1319     jvms->set_map(sfpt);
1320   }
1321 
1322   // Debug inputs begin just after the last incoming parameter
1323   assert((mcall == NULL) || (mcall->jvms() == NULL) ||
1324          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
1325 
1326   // Move the OopMap
1327   msfpt->_oop_map = sfpt->_oop_map;
1328 
1329   // Add additional edges.
1330   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1331     // For these calls we can not add MachConstantBase in expand(), as the
1332     // ins are not complete then.
1333     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1334     if (msfpt->jvms() &&
1335         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1336       // We added an edge before jvms, so we must adapt the position of the ins.
1337       msfpt->jvms()->adapt_position(+1);
1338     }
1339   }
1340 
1341   // Registers killed by the call are set in the local scheduling pass
1342   // of Global Code Motion.
1343   return msfpt;
1344 }
1345 
1346 //---------------------------match_tree----------------------------------------
1347 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1348 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1349 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1350 // a Load's result RegMask for memoization in idealreg2regmask[]
1351 MachNode *Matcher::match_tree( const Node *n ) {
1352   assert( n->Opcode() != Op_Phi, "cannot match" );
1353   assert( !n->is_block_start(), "cannot match" );
1354   // Set the mark for all locally allocated State objects.
1355   // When this call returns, the _states_arena arena will be reset
1356   // freeing all State objects.
1357   ResourceMark rm( &_states_arena );
1358 
1359   LabelRootDepth = 0;
1360 
1361   // StoreNodes require their Memory input to match any LoadNodes
1362   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1363 #ifdef ASSERT
1364   Node* save_mem_node = _mem_node;
1365   _mem_node = n->is_Store() ? (Node*)n : NULL;
1366 #endif
1367   // State object for root node of match tree
1368   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1369   State *s = new (&_states_arena) State;
1370   s->_kids[0] = NULL;
1371   s->_kids[1] = NULL;
1372   s->_leaf = (Node*)n;
1373   // Label the input tree, allocating labels from top-level arena
1374   Label_Root( n, s, n->in(0), mem );
1375   if (C->failing())  return NULL;
1376 
1377   // The minimum cost match for the whole tree is found at the root State
1378   uint mincost = max_juint;
1379   uint cost = max_juint;
1380   uint i;
1381   for( i = 0; i < NUM_OPERANDS; i++ ) {
1382     if( s->valid(i) &&                // valid entry and
1383         s->_cost[i] < cost &&         // low cost and
1384         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1385       cost = s->_cost[mincost=i];
1386   }
1387   if (mincost == max_juint) {
1388 #ifndef PRODUCT
1389     tty->print("No matching rule for:");
1390     s->dump();
1391 #endif
1392     Matcher::soft_match_failure();
1393     return NULL;
1394   }
1395   // Reduce input tree based upon the state labels to machine Nodes
1396   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1397 #ifdef ASSERT
1398   _old2new_map.map(n->_idx, m);
1399   _new2old_map.map(m->_idx, (Node*)n);
1400 #endif
1401 
1402   // Add any Matcher-ignored edges
1403   uint cnt = n->req();
1404   uint start = 1;
1405   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1406   if( n->is_AddP() ) {
1407     assert( mem == (Node*)1, "" );
1408     start = AddPNode::Base+1;
1409   }
1410   for( i = start; i < cnt; i++ ) {
1411     if( !n->match_edge(i) ) {
1412       if( i < m->req() )
1413         m->ins_req( i, n->in(i) );
1414       else
1415         m->add_req( n->in(i) );
1416     }
1417   }
1418 
1419   debug_only( _mem_node = save_mem_node; )
1420   return m;
1421 }
1422 
1423 
1424 //------------------------------match_into_reg---------------------------------
1425 // Choose to either match this Node in a register or part of the current
1426 // match tree.  Return true for requiring a register and false for matching
1427 // as part of the current match tree.
1428 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1429 
1430   const Type *t = m->bottom_type();
1431 
1432   if (t->singleton()) {
1433     // Never force constants into registers.  Allow them to match as
1434     // constants or registers.  Copies of the same value will share
1435     // the same register.  See find_shared_node.
1436     return false;
1437   } else {                      // Not a constant
1438     // Stop recursion if they have different Controls.
1439     Node* m_control = m->in(0);
1440     // Control of load's memory can post-dominates load's control.
1441     // So use it since load can't float above its memory.
1442     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1443     if (control && m_control && control != m_control && control != mem_control) {
1444 
1445       // Actually, we can live with the most conservative control we
1446       // find, if it post-dominates the others.  This allows us to
1447       // pick up load/op/store trees where the load can float a little
1448       // above the store.
1449       Node *x = control;
1450       const uint max_scan = 6;  // Arbitrary scan cutoff
1451       uint j;
1452       for (j=0; j<max_scan; j++) {
1453         if (x->is_Region())     // Bail out at merge points
1454           return true;
1455         x = x->in(0);
1456         if (x == m_control)     // Does 'control' post-dominate
1457           break;                // m->in(0)?  If so, we can use it
1458         if (x == mem_control)   // Does 'control' post-dominate
1459           break;                // mem_control?  If so, we can use it
1460       }
1461       if (j == max_scan)        // No post-domination before scan end?
1462         return true;            // Then break the match tree up
1463     }
1464     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1465         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1466       // These are commonly used in address expressions and can
1467       // efficiently fold into them on X64 in some cases.
1468       return false;
1469     }
1470   }
1471 
1472   // Not forceable cloning.  If shared, put it into a register.
1473   return shared;
1474 }
1475 
1476 
1477 //------------------------------Instruction Selection--------------------------
1478 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1479 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1480 // things the Matcher does not match (e.g., Memory), and things with different
1481 // Controls (hence forced into different blocks).  We pass in the Control
1482 // selected for this entire State tree.
1483 
1484 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1485 // Store and the Load must have identical Memories (as well as identical
1486 // pointers).  Since the Matcher does not have anything for Memory (and
1487 // does not handle DAGs), I have to match the Memory input myself.  If the
1488 // Tree root is a Store, I require all Loads to have the identical memory.
1489 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1490   // Since Label_Root is a recursive function, its possible that we might run
1491   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1492   LabelRootDepth++;
1493   if (LabelRootDepth > MaxLabelRootDepth) {
1494     C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth");
1495     return NULL;
1496   }
1497   uint care = 0;                // Edges matcher cares about
1498   uint cnt = n->req();
1499   uint i = 0;
1500 
1501   // Examine children for memory state
1502   // Can only subsume a child into your match-tree if that child's memory state
1503   // is not modified along the path to another input.
1504   // It is unsafe even if the other inputs are separate roots.
1505   Node *input_mem = NULL;
1506   for( i = 1; i < cnt; i++ ) {
1507     if( !n->match_edge(i) ) continue;
1508     Node *m = n->in(i);         // Get ith input
1509     assert( m, "expect non-null children" );
1510     if( m->is_Load() ) {
1511       if( input_mem == NULL ) {
1512         input_mem = m->in(MemNode::Memory);
1513       } else if( input_mem != m->in(MemNode::Memory) ) {
1514         input_mem = NodeSentinel;
1515       }
1516     }
1517   }
1518 
1519   for( i = 1; i < cnt; i++ ){// For my children
1520     if( !n->match_edge(i) ) continue;
1521     Node *m = n->in(i);         // Get ith input
1522     // Allocate states out of a private arena
1523     State *s = new (&_states_arena) State;
1524     svec->_kids[care++] = s;
1525     assert( care <= 2, "binary only for now" );
1526 
1527     // Recursively label the State tree.
1528     s->_kids[0] = NULL;
1529     s->_kids[1] = NULL;
1530     s->_leaf = m;
1531 
1532     // Check for leaves of the State Tree; things that cannot be a part of
1533     // the current tree.  If it finds any, that value is matched as a
1534     // register operand.  If not, then the normal matching is used.
1535     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1536         //
1537         // Stop recursion if this is LoadNode and the root of this tree is a
1538         // StoreNode and the load & store have different memories.
1539         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1540         // Can NOT include the match of a subtree when its memory state
1541         // is used by any of the other subtrees
1542         (input_mem == NodeSentinel) ) {
1543       // Print when we exclude matching due to different memory states at input-loads
1544       if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1545         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) {
1546         tty->print_cr("invalid input_mem");
1547       }
1548       // Switch to a register-only opcode; this value must be in a register
1549       // and cannot be subsumed as part of a larger instruction.
1550       s->DFA( m->ideal_reg(), m );
1551 
1552     } else {
1553       // If match tree has no control and we do, adopt it for entire tree
1554       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1555         control = m->in(0);         // Pick up control
1556       // Else match as a normal part of the match tree.
1557       control = Label_Root(m,s,control,mem);
1558       if (C->failing()) return NULL;
1559     }
1560   }
1561 
1562 
1563   // Call DFA to match this node, and return
1564   svec->DFA( n->Opcode(), n );
1565 
1566 #ifdef ASSERT
1567   uint x;
1568   for( x = 0; x < _LAST_MACH_OPER; x++ )
1569     if( svec->valid(x) )
1570       break;
1571 
1572   if (x >= _LAST_MACH_OPER) {
1573     n->dump();
1574     svec->dump();
1575     assert( false, "bad AD file" );
1576   }
1577 #endif
1578   return control;
1579 }
1580 
1581 
1582 // Con nodes reduced using the same rule can share their MachNode
1583 // which reduces the number of copies of a constant in the final
1584 // program.  The register allocator is free to split uses later to
1585 // split live ranges.
1586 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1587   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1588 
1589   // See if this Con has already been reduced using this rule.
1590   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1591   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1592   if (last != NULL && rule == last->rule()) {
1593     // Don't expect control change for DecodeN
1594     if (leaf->is_DecodeNarrowPtr())
1595       return last;
1596     // Get the new space root.
1597     Node* xroot = new_node(C->root());
1598     if (xroot == NULL) {
1599       // This shouldn't happen give the order of matching.
1600       return NULL;
1601     }
1602 
1603     // Shared constants need to have their control be root so they
1604     // can be scheduled properly.
1605     Node* control = last->in(0);
1606     if (control != xroot) {
1607       if (control == NULL || control == C->root()) {
1608         last->set_req(0, xroot);
1609       } else {
1610         assert(false, "unexpected control");
1611         return NULL;
1612       }
1613     }
1614     return last;
1615   }
1616   return NULL;
1617 }
1618 
1619 
1620 //------------------------------ReduceInst-------------------------------------
1621 // Reduce a State tree (with given Control) into a tree of MachNodes.
1622 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1623 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1624 // Each MachNode has a number of complicated MachOper operands; each
1625 // MachOper also covers a further tree of Ideal Nodes.
1626 
1627 // The root of the Ideal match tree is always an instruction, so we enter
1628 // the recursion here.  After building the MachNode, we need to recurse
1629 // the tree checking for these cases:
1630 // (1) Child is an instruction -
1631 //     Build the instruction (recursively), add it as an edge.
1632 //     Build a simple operand (register) to hold the result of the instruction.
1633 // (2) Child is an interior part of an instruction -
1634 //     Skip over it (do nothing)
1635 // (3) Child is the start of a operand -
1636 //     Build the operand, place it inside the instruction
1637 //     Call ReduceOper.
1638 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1639   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1640 
1641   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1642   if (shared_node != NULL) {
1643     return shared_node;
1644   }
1645 
1646   // Build the object to represent this state & prepare for recursive calls
1647   MachNode *mach = s->MachNodeGenerator(rule);
1648   mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]);
1649   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1650   Node *leaf = s->_leaf;
1651   // Check for instruction or instruction chain rule
1652   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1653     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1654            "duplicating node that's already been matched");
1655     // Instruction
1656     mach->add_req( leaf->in(0) ); // Set initial control
1657     // Reduce interior of complex instruction
1658     ReduceInst_Interior( s, rule, mem, mach, 1 );
1659   } else {
1660     // Instruction chain rules are data-dependent on their inputs
1661     mach->add_req(0);             // Set initial control to none
1662     ReduceInst_Chain_Rule( s, rule, mem, mach );
1663   }
1664 
1665   // If a Memory was used, insert a Memory edge
1666   if( mem != (Node*)1 ) {
1667     mach->ins_req(MemNode::Memory,mem);
1668 #ifdef ASSERT
1669     // Verify adr type after matching memory operation
1670     const MachOper* oper = mach->memory_operand();
1671     if (oper != NULL && oper != (MachOper*)-1) {
1672       // It has a unique memory operand.  Find corresponding ideal mem node.
1673       Node* m = NULL;
1674       if (leaf->is_Mem()) {
1675         m = leaf;
1676       } else {
1677         m = _mem_node;
1678         assert(m != NULL && m->is_Mem(), "expecting memory node");
1679       }
1680       const Type* mach_at = mach->adr_type();
1681       // DecodeN node consumed by an address may have different type
1682       // then its input. Don't compare types for such case.
1683       if (m->adr_type() != mach_at &&
1684           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1685            m->in(MemNode::Address)->is_AddP() &&
1686            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
1687            m->in(MemNode::Address)->is_AddP() &&
1688            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1689            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
1690         mach_at = m->adr_type();
1691       }
1692       if (m->adr_type() != mach_at) {
1693         m->dump();
1694         tty->print_cr("mach:");
1695         mach->dump(1);
1696       }
1697       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1698     }
1699 #endif
1700   }
1701 
1702   // If the _leaf is an AddP, insert the base edge
1703   if (leaf->is_AddP()) {
1704     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1705   }
1706 
1707   uint number_of_projections_prior = number_of_projections();
1708 
1709   // Perform any 1-to-many expansions required
1710   MachNode *ex = mach->Expand(s, _projection_list, mem);
1711   if (ex != mach) {
1712     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1713     if( ex->in(1)->is_Con() )
1714       ex->in(1)->set_req(0, C->root());
1715     // Remove old node from the graph
1716     for( uint i=0; i<mach->req(); i++ ) {
1717       mach->set_req(i,NULL);
1718     }
1719 #ifdef ASSERT
1720     _new2old_map.map(ex->_idx, s->_leaf);
1721 #endif
1722   }
1723 
1724   // PhaseChaitin::fixup_spills will sometimes generate spill code
1725   // via the matcher.  By the time, nodes have been wired into the CFG,
1726   // and any further nodes generated by expand rules will be left hanging
1727   // in space, and will not get emitted as output code.  Catch this.
1728   // Also, catch any new register allocation constraints ("projections")
1729   // generated belatedly during spill code generation.
1730   if (_allocation_started) {
1731     guarantee(ex == mach, "no expand rules during spill generation");
1732     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1733   }
1734 
1735   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1736     // Record the con for sharing
1737     _shared_nodes.map(leaf->_idx, ex);
1738   }
1739 
1740   return ex;
1741 }
1742 
1743 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) {
1744   for (uint i = n->req(); i < n->len(); i++) {
1745     if (n->in(i) != NULL) {
1746       mach->add_prec(n->in(i));
1747     }
1748   }
1749 }
1750 
1751 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1752   // 'op' is what I am expecting to receive
1753   int op = _leftOp[rule];
1754   // Operand type to catch childs result
1755   // This is what my child will give me.
1756   int opnd_class_instance = s->_rule[op];
1757   // Choose between operand class or not.
1758   // This is what I will receive.
1759   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1760   // New rule for child.  Chase operand classes to get the actual rule.
1761   int newrule = s->_rule[catch_op];
1762 
1763   if( newrule < NUM_OPERANDS ) {
1764     // Chain from operand or operand class, may be output of shared node
1765     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1766             "Bad AD file: Instruction chain rule must chain from operand");
1767     // Insert operand into array of operands for this instruction
1768     mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance);
1769 
1770     ReduceOper( s, newrule, mem, mach );
1771   } else {
1772     // Chain from the result of an instruction
1773     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1774     mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]);
1775     Node *mem1 = (Node*)1;
1776     debug_only(Node *save_mem_node = _mem_node;)
1777     mach->add_req( ReduceInst(s, newrule, mem1) );
1778     debug_only(_mem_node = save_mem_node;)
1779   }
1780   return;
1781 }
1782 
1783 
1784 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1785   handle_precedence_edges(s->_leaf, mach);
1786 
1787   if( s->_leaf->is_Load() ) {
1788     Node *mem2 = s->_leaf->in(MemNode::Memory);
1789     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1790     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1791     mem = mem2;
1792   }
1793   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1794     if( mach->in(0) == NULL )
1795       mach->set_req(0, s->_leaf->in(0));
1796   }
1797 
1798   // Now recursively walk the state tree & add operand list.
1799   for( uint i=0; i<2; i++ ) {   // binary tree
1800     State *newstate = s->_kids[i];
1801     if( newstate == NULL ) break;      // Might only have 1 child
1802     // 'op' is what I am expecting to receive
1803     int op;
1804     if( i == 0 ) {
1805       op = _leftOp[rule];
1806     } else {
1807       op = _rightOp[rule];
1808     }
1809     // Operand type to catch childs result
1810     // This is what my child will give me.
1811     int opnd_class_instance = newstate->_rule[op];
1812     // Choose between operand class or not.
1813     // This is what I will receive.
1814     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1815     // New rule for child.  Chase operand classes to get the actual rule.
1816     int newrule = newstate->_rule[catch_op];
1817 
1818     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1819       // Operand/operandClass
1820       // Insert operand into array of operands for this instruction
1821       mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance);
1822       ReduceOper( newstate, newrule, mem, mach );
1823 
1824     } else {                    // Child is internal operand or new instruction
1825       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1826         // internal operand --> call ReduceInst_Interior
1827         // Interior of complex instruction.  Do nothing but recurse.
1828         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1829       } else {
1830         // instruction --> call build operand(  ) to catch result
1831         //             --> ReduceInst( newrule )
1832         mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]);
1833         Node *mem1 = (Node*)1;
1834         debug_only(Node *save_mem_node = _mem_node;)
1835         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1836         debug_only(_mem_node = save_mem_node;)
1837       }
1838     }
1839     assert( mach->_opnds[num_opnds-1], "" );
1840   }
1841   return num_opnds;
1842 }
1843 
1844 // This routine walks the interior of possible complex operands.
1845 // At each point we check our children in the match tree:
1846 // (1) No children -
1847 //     We are a leaf; add _leaf field as an input to the MachNode
1848 // (2) Child is an internal operand -
1849 //     Skip over it ( do nothing )
1850 // (3) Child is an instruction -
1851 //     Call ReduceInst recursively and
1852 //     and instruction as an input to the MachNode
1853 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1854   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1855   State *kid = s->_kids[0];
1856   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1857 
1858   // Leaf?  And not subsumed?
1859   if( kid == NULL && !_swallowed[rule] ) {
1860     mach->add_req( s->_leaf );  // Add leaf pointer
1861     return;                     // Bail out
1862   }
1863 
1864   if( s->_leaf->is_Load() ) {
1865     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1866     mem = s->_leaf->in(MemNode::Memory);
1867     debug_only(_mem_node = s->_leaf;)
1868   }
1869 
1870   handle_precedence_edges(s->_leaf, mach);
1871 
1872   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1873     if( !mach->in(0) )
1874       mach->set_req(0,s->_leaf->in(0));
1875     else {
1876       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1877     }
1878   }
1879 
1880   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1881     int newrule;
1882     if( i == 0)
1883       newrule = kid->_rule[_leftOp[rule]];
1884     else
1885       newrule = kid->_rule[_rightOp[rule]];
1886 
1887     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1888       // Internal operand; recurse but do nothing else
1889       ReduceOper( kid, newrule, mem, mach );
1890 
1891     } else {                    // Child is a new instruction
1892       // Reduce the instruction, and add a direct pointer from this
1893       // machine instruction to the newly reduced one.
1894       Node *mem1 = (Node*)1;
1895       debug_only(Node *save_mem_node = _mem_node;)
1896       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1897       debug_only(_mem_node = save_mem_node;)
1898     }
1899   }
1900 }
1901 
1902 
1903 // -------------------------------------------------------------------------
1904 // Java-Java calling convention
1905 // (what you use when Java calls Java)
1906 
1907 //------------------------------find_receiver----------------------------------
1908 // For a given signature, return the OptoReg for parameter 0.
1909 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1910   VMRegPair regs;
1911   BasicType sig_bt = T_OBJECT;
1912   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1913   // Return argument 0 register.  In the LP64 build pointers
1914   // take 2 registers, but the VM wants only the 'main' name.
1915   return OptoReg::as_OptoReg(regs.first());
1916 }
1917 
1918 // This function identifies sub-graphs in which a 'load' node is
1919 // input to two different nodes, and such that it can be matched
1920 // with BMI instructions like blsi, blsr, etc.
1921 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
1922 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
1923 // refers to the same node.
1924 #ifdef X86
1925 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
1926 // This is a temporary solution until we make DAGs expressible in ADL.
1927 template<typename ConType>
1928 class FusedPatternMatcher {
1929   Node* _op1_node;
1930   Node* _mop_node;
1931   int _con_op;
1932 
1933   static int match_next(Node* n, int next_op, int next_op_idx) {
1934     if (n->in(1) == NULL || n->in(2) == NULL) {
1935       return -1;
1936     }
1937 
1938     if (next_op_idx == -1) { // n is commutative, try rotations
1939       if (n->in(1)->Opcode() == next_op) {
1940         return 1;
1941       } else if (n->in(2)->Opcode() == next_op) {
1942         return 2;
1943       }
1944     } else {
1945       assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
1946       if (n->in(next_op_idx)->Opcode() == next_op) {
1947         return next_op_idx;
1948       }
1949     }
1950     return -1;
1951   }
1952 public:
1953   FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
1954     _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
1955 
1956   bool match(int op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
1957              int op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
1958              typename ConType::NativeType con_value) {
1959     if (_op1_node->Opcode() != op1) {
1960       return false;
1961     }
1962     if (_mop_node->outcnt() > 2) {
1963       return false;
1964     }
1965     op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
1966     if (op1_op2_idx == -1) {
1967       return false;
1968     }
1969     // Memory operation must be the other edge
1970     int op1_mop_idx = (op1_op2_idx & 1) + 1;
1971 
1972     // Check that the mop node is really what we want
1973     if (_op1_node->in(op1_mop_idx) == _mop_node) {
1974       Node *op2_node = _op1_node->in(op1_op2_idx);
1975       if (op2_node->outcnt() > 1) {
1976         return false;
1977       }
1978       assert(op2_node->Opcode() == op2, "Should be");
1979       op2_con_idx = match_next(op2_node, _con_op, op2_con_idx);
1980       if (op2_con_idx == -1) {
1981         return false;
1982       }
1983       // Memory operation must be the other edge
1984       int op2_mop_idx = (op2_con_idx & 1) + 1;
1985       // Check that the memory operation is the same node
1986       if (op2_node->in(op2_mop_idx) == _mop_node) {
1987         // Now check the constant
1988         const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
1989         if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
1990           return true;
1991         }
1992       }
1993     }
1994     return false;
1995   }
1996 };
1997 
1998 
1999 bool Matcher::is_bmi_pattern(Node *n, Node *m) {
2000   if (n != NULL && m != NULL) {
2001     if (m->Opcode() == Op_LoadI) {
2002       FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
2003       return bmii.match(Op_AndI, -1, Op_SubI,  1,  0)  ||
2004              bmii.match(Op_AndI, -1, Op_AddI, -1, -1)  ||
2005              bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
2006     } else if (m->Opcode() == Op_LoadL) {
2007       FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
2008       return bmil.match(Op_AndL, -1, Op_SubL,  1,  0) ||
2009              bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
2010              bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
2011     }
2012   }
2013   return false;
2014 }
2015 #endif // X86
2016 
2017 bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
2018   Node *off = m->in(AddPNode::Offset);
2019   if (off->is_Con()) {
2020     address_visited.test_set(m->_idx); // Flag as address_visited
2021     mstack.push(m->in(AddPNode::Address), Pre_Visit);
2022     // Clone X+offset as it also folds into most addressing expressions
2023     mstack.push(off, Visit);
2024     mstack.push(m->in(AddPNode::Base), Pre_Visit);
2025     return true;
2026   }
2027   return false;
2028 }
2029 
2030 // A method-klass-holder may be passed in the inline_cache_reg
2031 // and then expanded into the inline_cache_reg and a method_oop register
2032 //   defined in ad_<arch>.cpp
2033 
2034 //------------------------------find_shared------------------------------------
2035 // Set bits if Node is shared or otherwise a root
2036 void Matcher::find_shared( Node *n ) {
2037   // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
2038   MStack mstack(C->live_nodes() * 2);
2039   // Mark nodes as address_visited if they are inputs to an address expression
2040   VectorSet address_visited(Thread::current()->resource_area());
2041   mstack.push(n, Visit);     // Don't need to pre-visit root node
2042   while (mstack.is_nonempty()) {
2043     n = mstack.node();       // Leave node on stack
2044     Node_State nstate = mstack.state();
2045     uint nop = n->Opcode();
2046     if (nstate == Pre_Visit) {
2047       if (address_visited.test(n->_idx)) { // Visited in address already?
2048         // Flag as visited and shared now.
2049         set_visited(n);
2050       }
2051       if (is_visited(n)) {   // Visited already?
2052         // Node is shared and has no reason to clone.  Flag it as shared.
2053         // This causes it to match into a register for the sharing.
2054         set_shared(n);       // Flag as shared and
2055         mstack.pop();        // remove node from stack
2056         continue;
2057       }
2058       nstate = Visit; // Not already visited; so visit now
2059     }
2060     if (nstate == Visit) {
2061       mstack.set_state(Post_Visit);
2062       set_visited(n);   // Flag as visited now
2063       bool mem_op = false;
2064 
2065       switch( nop ) {  // Handle some opcodes special
2066       case Op_Phi:             // Treat Phis as shared roots
2067       case Op_Parm:
2068       case Op_Proj:            // All handled specially during matching
2069       case Op_SafePointScalarObject:
2070         set_shared(n);
2071         set_dontcare(n);
2072         break;
2073       case Op_If:
2074       case Op_CountedLoopEnd:
2075         mstack.set_state(Alt_Post_Visit); // Alternative way
2076         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2077         // with matching cmp/branch in 1 instruction.  The Matcher needs the
2078         // Bool and CmpX side-by-side, because it can only get at constants
2079         // that are at the leaves of Match trees, and the Bool's condition acts
2080         // as a constant here.
2081         mstack.push(n->in(1), Visit);         // Clone the Bool
2082         mstack.push(n->in(0), Pre_Visit);     // Visit control input
2083         continue; // while (mstack.is_nonempty())
2084       case Op_ConvI2D:         // These forms efficiently match with a prior
2085       case Op_ConvI2F:         //   Load but not a following Store
2086         if( n->in(1)->is_Load() &&        // Prior load
2087             n->outcnt() == 1 &&           // Not already shared
2088             n->unique_out()->is_Store() ) // Following store
2089           set_shared(n);       // Force it to be a root
2090         break;
2091       case Op_ReverseBytesI:
2092       case Op_ReverseBytesL:
2093         if( n->in(1)->is_Load() &&        // Prior load
2094             n->outcnt() == 1 )            // Not already shared
2095           set_shared(n);                  // Force it to be a root
2096         break;
2097       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
2098       case Op_IfFalse:
2099       case Op_IfTrue:
2100       case Op_MachProj:
2101       case Op_MergeMem:
2102       case Op_Catch:
2103       case Op_CatchProj:
2104       case Op_CProj:
2105       case Op_JumpProj:
2106       case Op_JProj:
2107       case Op_NeverBranch:
2108         set_dontcare(n);
2109         break;
2110       case Op_Jump:
2111         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2112         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2113         continue;                             // while (mstack.is_nonempty())
2114       case Op_StrComp:
2115       case Op_StrEquals:
2116       case Op_StrIndexOf:
2117       case Op_StrIndexOfChar:
2118       case Op_AryEq:
2119       case Op_HasNegatives:
2120       case Op_StrInflatedCopy:
2121       case Op_StrCompressedCopy:
2122       case Op_EncodeISOArray:
2123       case Op_FmaD:
2124       case Op_FmaF:
2125         set_shared(n); // Force result into register (it will be anyways)
2126         break;
2127       case Op_ConP: {  // Convert pointers above the centerline to NUL
2128         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2129         const TypePtr* tp = tn->type()->is_ptr();
2130         if (tp->_ptr == TypePtr::AnyNull) {
2131           tn->set_type(TypePtr::NULL_PTR);
2132         }
2133         break;
2134       }
2135       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2136         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2137         const TypePtr* tp = tn->type()->make_ptr();
2138         if (tp && tp->_ptr == TypePtr::AnyNull) {
2139           tn->set_type(TypeNarrowOop::NULL_PTR);
2140         }
2141         break;
2142       }
2143       case Op_Binary:         // These are introduced in the Post_Visit state.
2144         ShouldNotReachHere();
2145         break;
2146       case Op_ClearArray:
2147       case Op_SafePoint:
2148         mem_op = true;
2149         break;
2150       default:
2151         if( n->is_Store() ) {
2152           // Do match stores, despite no ideal reg
2153           mem_op = true;
2154           break;
2155         }
2156         if( n->is_Mem() ) { // Loads and LoadStores
2157           mem_op = true;
2158           // Loads must be root of match tree due to prior load conflict
2159           if( C->subsume_loads() == false )
2160             set_shared(n);
2161         }
2162         // Fall into default case
2163         if( !n->ideal_reg() )
2164           set_dontcare(n);  // Unmatchable Nodes
2165       } // end_switch
2166 
2167       for(int i = n->req() - 1; i >= 0; --i) { // For my children
2168         Node *m = n->in(i); // Get ith input
2169         if (m == NULL) continue;  // Ignore NULLs
2170         uint mop = m->Opcode();
2171 
2172         // Must clone all producers of flags, or we will not match correctly.
2173         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2174         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2175         // are also there, so we may match a float-branch to int-flags and
2176         // expect the allocator to haul the flags from the int-side to the
2177         // fp-side.  No can do.
2178         if( _must_clone[mop] ) {
2179           mstack.push(m, Visit);
2180           continue; // for(int i = ...)
2181         }
2182 
2183         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2184           // Bases used in addresses must be shared but since
2185           // they are shared through a DecodeN they may appear
2186           // to have a single use so force sharing here.
2187           set_shared(m->in(AddPNode::Base)->in(1));
2188         }
2189 
2190         // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
2191 #ifdef X86
2192         if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
2193           mstack.push(m, Visit);
2194           continue;
2195         }
2196 #endif
2197 
2198         // Clone addressing expressions as they are "free" in memory access instructions
2199         if (mem_op && i == MemNode::Address && mop == Op_AddP &&
2200             // When there are other uses besides address expressions
2201             // put it on stack and mark as shared.
2202             !is_visited(m)) {
2203           // Some inputs for address expression are not put on stack
2204           // to avoid marking them as shared and forcing them into register
2205           // if they are used only in address expressions.
2206           // But they should be marked as shared if there are other uses
2207           // besides address expressions.
2208 
2209           if (clone_address_expressions(m->as_AddP(), mstack, address_visited)) {
2210             continue;
2211           }
2212         }   // if( mem_op &&
2213         mstack.push(m, Pre_Visit);
2214       }     // for(int i = ...)
2215     }
2216     else if (nstate == Alt_Post_Visit) {
2217       mstack.pop(); // Remove node from stack
2218       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2219       // shared and all users of the Bool need to move the Cmp in parallel.
2220       // This leaves both the Bool and the If pointing at the Cmp.  To
2221       // prevent the Matcher from trying to Match the Cmp along both paths
2222       // BoolNode::match_edge always returns a zero.
2223 
2224       // We reorder the Op_If in a pre-order manner, so we can visit without
2225       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2226       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2227     }
2228     else if (nstate == Post_Visit) {
2229       mstack.pop(); // Remove node from stack
2230 
2231       // Now hack a few special opcodes
2232       switch( n->Opcode() ) {       // Handle some opcodes special
2233       case Op_StorePConditional:
2234       case Op_StoreIConditional:
2235       case Op_StoreLConditional:
2236       case Op_CompareAndExchangeB:
2237       case Op_CompareAndExchangeS:
2238       case Op_CompareAndExchangeI:
2239       case Op_CompareAndExchangeL:
2240       case Op_CompareAndExchangeP:
2241       case Op_CompareAndExchangeN:
2242       case Op_WeakCompareAndSwapB:
2243       case Op_WeakCompareAndSwapS:
2244       case Op_WeakCompareAndSwapI:
2245       case Op_WeakCompareAndSwapL:
2246       case Op_WeakCompareAndSwapP:
2247       case Op_WeakCompareAndSwapN:
2248       case Op_CompareAndSwapB:
2249       case Op_CompareAndSwapS:
2250       case Op_CompareAndSwapI:
2251       case Op_CompareAndSwapL:
2252       case Op_CompareAndSwapP:
2253       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2254         Node *newval = n->in(MemNode::ValueIn );
2255         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2256         Node *pair = new BinaryNode( oldval, newval );
2257         n->set_req(MemNode::ValueIn,pair);
2258         n->del_req(LoadStoreConditionalNode::ExpectedIn);
2259         break;
2260       }
2261       case Op_CMoveD:              // Convert trinary to binary-tree
2262       case Op_CMoveF:
2263       case Op_CMoveI:
2264       case Op_CMoveL:
2265       case Op_CMoveN:
2266       case Op_CMoveP:
2267       case Op_CMoveVD:  {
2268         // Restructure into a binary tree for Matching.  It's possible that
2269         // we could move this code up next to the graph reshaping for IfNodes
2270         // or vice-versa, but I do not want to debug this for Ladybird.
2271         // 10/2/2000 CNC.
2272         Node *pair1 = new BinaryNode(n->in(1),n->in(1)->in(1));
2273         n->set_req(1,pair1);
2274         Node *pair2 = new BinaryNode(n->in(2),n->in(3));
2275         n->set_req(2,pair2);
2276         n->del_req(3);
2277         break;
2278       }
2279       case Op_LoopLimit: {
2280         Node *pair1 = new BinaryNode(n->in(1),n->in(2));
2281         n->set_req(1,pair1);
2282         n->set_req(2,n->in(3));
2283         n->del_req(3);
2284         break;
2285       }
2286       case Op_StrEquals:
2287       case Op_StrIndexOfChar: {
2288         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2289         n->set_req(2,pair1);
2290         n->set_req(3,n->in(4));
2291         n->del_req(4);
2292         break;
2293       }
2294       case Op_StrComp:
2295       case Op_StrIndexOf: {
2296         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2297         n->set_req(2,pair1);
2298         Node *pair2 = new BinaryNode(n->in(4),n->in(5));
2299         n->set_req(3,pair2);
2300         n->del_req(5);
2301         n->del_req(4);
2302         break;
2303       }
2304       case Op_StrCompressedCopy:
2305       case Op_StrInflatedCopy:
2306       case Op_EncodeISOArray: {
2307         // Restructure into a binary tree for Matching.
2308         Node* pair = new BinaryNode(n->in(3), n->in(4));
2309         n->set_req(3, pair);
2310         n->del_req(4);
2311         break;
2312       }
2313       case Op_FmaD:
2314       case Op_FmaF: {
2315         // Restructure into a binary tree for Matching.
2316         Node* pair = new BinaryNode(n->in(1), n->in(2));
2317         n->set_req(2, pair);
2318         n->set_req(1, n->in(3));
2319         n->del_req(3);
2320         break;
2321       }
2322       default:
2323         break;
2324       }
2325     }
2326     else {
2327       ShouldNotReachHere();
2328     }
2329   } // end of while (mstack.is_nonempty())
2330 }
2331 
2332 #ifdef ASSERT
2333 // machine-independent root to machine-dependent root
2334 void Matcher::dump_old2new_map() {
2335   _old2new_map.dump();
2336 }
2337 #endif
2338 
2339 //---------------------------collect_null_checks-------------------------------
2340 // Find null checks in the ideal graph; write a machine-specific node for
2341 // it.  Used by later implicit-null-check handling.  Actually collects
2342 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2343 // value being tested.
2344 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2345   Node *iff = proj->in(0);
2346   if( iff->Opcode() == Op_If ) {
2347     // During matching If's have Bool & Cmp side-by-side
2348     BoolNode *b = iff->in(1)->as_Bool();
2349     Node *cmp = iff->in(2);
2350     int opc = cmp->Opcode();
2351     if (opc != Op_CmpP && opc != Op_CmpN) return;
2352 
2353     const Type* ct = cmp->in(2)->bottom_type();
2354     if (ct == TypePtr::NULL_PTR ||
2355         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2356 
2357       bool push_it = false;
2358       if( proj->Opcode() == Op_IfTrue ) {
2359 #ifndef PRODUCT
2360         extern int all_null_checks_found;
2361         all_null_checks_found++;
2362 #endif
2363         if( b->_test._test == BoolTest::ne ) {
2364           push_it = true;
2365         }
2366       } else {
2367         assert( proj->Opcode() == Op_IfFalse, "" );
2368         if( b->_test._test == BoolTest::eq ) {
2369           push_it = true;
2370         }
2371       }
2372       if( push_it ) {
2373         _null_check_tests.push(proj);
2374         Node* val = cmp->in(1);
2375 #ifdef _LP64
2376         if (val->bottom_type()->isa_narrowoop() &&
2377             !Matcher::narrow_oop_use_complex_address()) {
2378           //
2379           // Look for DecodeN node which should be pinned to orig_proj.
2380           // On platforms (Sparc) which can not handle 2 adds
2381           // in addressing mode we have to keep a DecodeN node and
2382           // use it to do implicit NULL check in address.
2383           //
2384           // DecodeN node was pinned to non-null path (orig_proj) during
2385           // CastPP transformation in final_graph_reshaping_impl().
2386           //
2387           uint cnt = orig_proj->outcnt();
2388           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2389             Node* d = orig_proj->raw_out(i);
2390             if (d->is_DecodeN() && d->in(1) == val) {
2391               val = d;
2392               val->set_req(0, NULL); // Unpin now.
2393               // Mark this as special case to distinguish from
2394               // a regular case: CmpP(DecodeN, NULL).
2395               val = (Node*)(((intptr_t)val) | 1);
2396               break;
2397             }
2398           }
2399         }
2400 #endif
2401         _null_check_tests.push(val);
2402       }
2403     }
2404   }
2405 }
2406 
2407 //---------------------------validate_null_checks------------------------------
2408 // Its possible that the value being NULL checked is not the root of a match
2409 // tree.  If so, I cannot use the value in an implicit null check.
2410 void Matcher::validate_null_checks( ) {
2411   uint cnt = _null_check_tests.size();
2412   for( uint i=0; i < cnt; i+=2 ) {
2413     Node *test = _null_check_tests[i];
2414     Node *val = _null_check_tests[i+1];
2415     bool is_decoden = ((intptr_t)val) & 1;
2416     val = (Node*)(((intptr_t)val) & ~1);
2417     if (has_new_node(val)) {
2418       Node* new_val = new_node(val);
2419       if (is_decoden) {
2420         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2421         // Note: new_val may have a control edge if
2422         // the original ideal node DecodeN was matched before
2423         // it was unpinned in Matcher::collect_null_checks().
2424         // Unpin the mach node and mark it.
2425         new_val->set_req(0, NULL);
2426         new_val = (Node*)(((intptr_t)new_val) | 1);
2427       }
2428       // Is a match-tree root, so replace with the matched value
2429       _null_check_tests.map(i+1, new_val);
2430     } else {
2431       // Yank from candidate list
2432       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2433       _null_check_tests.map(i,_null_check_tests[--cnt]);
2434       _null_check_tests.pop();
2435       _null_check_tests.pop();
2436       i-=2;
2437     }
2438   }
2439 }
2440 
2441 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2442 // atomic instruction acting as a store_load barrier without any
2443 // intervening volatile load, and thus we don't need a barrier here.
2444 // We retain the Node to act as a compiler ordering barrier.
2445 bool Matcher::post_store_load_barrier(const Node* vmb) {
2446   Compile* C = Compile::current();
2447   assert(vmb->is_MemBar(), "");
2448   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2449   const MemBarNode* membar = vmb->as_MemBar();
2450 
2451   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2452   Node* ctrl = NULL;
2453   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2454     Node* p = membar->fast_out(i);
2455     assert(p->is_Proj(), "only projections here");
2456     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2457         !C->node_arena()->contains(p)) { // Unmatched old-space only
2458       ctrl = p;
2459       break;
2460     }
2461   }
2462   assert((ctrl != NULL), "missing control projection");
2463 
2464   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2465     Node *x = ctrl->fast_out(j);
2466     int xop = x->Opcode();
2467 
2468     // We don't need current barrier if we see another or a lock
2469     // before seeing volatile load.
2470     //
2471     // Op_Fastunlock previously appeared in the Op_* list below.
2472     // With the advent of 1-0 lock operations we're no longer guaranteed
2473     // that a monitor exit operation contains a serializing instruction.
2474 
2475     if (xop == Op_MemBarVolatile ||
2476         xop == Op_CompareAndExchangeB ||
2477         xop == Op_CompareAndExchangeS ||
2478         xop == Op_CompareAndExchangeI ||
2479         xop == Op_CompareAndExchangeL ||
2480         xop == Op_CompareAndExchangeP ||
2481         xop == Op_CompareAndExchangeN ||
2482         xop == Op_WeakCompareAndSwapB ||
2483         xop == Op_WeakCompareAndSwapS ||
2484         xop == Op_WeakCompareAndSwapL ||
2485         xop == Op_WeakCompareAndSwapP ||
2486         xop == Op_WeakCompareAndSwapN ||
2487         xop == Op_WeakCompareAndSwapI ||
2488         xop == Op_CompareAndSwapB ||
2489         xop == Op_CompareAndSwapS ||
2490         xop == Op_CompareAndSwapL ||
2491         xop == Op_CompareAndSwapP ||
2492         xop == Op_CompareAndSwapN ||
2493         xop == Op_CompareAndSwapI) {
2494       return true;
2495     }
2496 
2497     // Op_FastLock previously appeared in the Op_* list above.
2498     // With biased locking we're no longer guaranteed that a monitor
2499     // enter operation contains a serializing instruction.
2500     if ((xop == Op_FastLock) && !UseBiasedLocking) {
2501       return true;
2502     }
2503 
2504     if (x->is_MemBar()) {
2505       // We must retain this membar if there is an upcoming volatile
2506       // load, which will be followed by acquire membar.
2507       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2508         return false;
2509       } else {
2510         // For other kinds of barriers, check by pretending we
2511         // are them, and seeing if we can be removed.
2512         return post_store_load_barrier(x->as_MemBar());
2513       }
2514     }
2515 
2516     // probably not necessary to check for these
2517     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2518       return false;
2519     }
2520   }
2521   return false;
2522 }
2523 
2524 // Check whether node n is a branch to an uncommon trap that we could
2525 // optimize as test with very high branch costs in case of going to
2526 // the uncommon trap. The code must be able to be recompiled to use
2527 // a cheaper test.
2528 bool Matcher::branches_to_uncommon_trap(const Node *n) {
2529   // Don't do it for natives, adapters, or runtime stubs
2530   Compile *C = Compile::current();
2531   if (!C->is_method_compilation()) return false;
2532 
2533   assert(n->is_If(), "You should only call this on if nodes.");
2534   IfNode *ifn = n->as_If();
2535 
2536   Node *ifFalse = NULL;
2537   for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2538     if (ifn->fast_out(i)->is_IfFalse()) {
2539       ifFalse = ifn->fast_out(i);
2540       break;
2541     }
2542   }
2543   assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
2544 
2545   Node *reg = ifFalse;
2546   int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
2547                // Alternatively use visited set?  Seems too expensive.
2548   while (reg != NULL && cnt > 0) {
2549     CallNode *call = NULL;
2550     RegionNode *nxt_reg = NULL;
2551     for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2552       Node *o = reg->fast_out(i);
2553       if (o->is_Call()) {
2554         call = o->as_Call();
2555       }
2556       if (o->is_Region()) {
2557         nxt_reg = o->as_Region();
2558       }
2559     }
2560 
2561     if (call &&
2562         call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
2563       const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2564       if (trtype->isa_int() && trtype->is_int()->is_con()) {
2565         jint tr_con = trtype->is_int()->get_con();
2566         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2567         Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2568         assert((int)reason < (int)BitsPerInt, "recode bit map");
2569 
2570         if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2571             && action != Deoptimization::Action_none) {
2572           // This uncommon trap is sure to recompile, eventually.
2573           // When that happens, C->too_many_traps will prevent
2574           // this transformation from happening again.
2575           return true;
2576         }
2577       }
2578     }
2579 
2580     reg = nxt_reg;
2581     cnt--;
2582   }
2583 
2584   return false;
2585 }
2586 
2587 //=============================================================================
2588 //---------------------------State---------------------------------------------
2589 State::State(void) {
2590 #ifdef ASSERT
2591   _id = 0;
2592   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2593   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2594   //memset(_cost, -1, sizeof(_cost));
2595   //memset(_rule, -1, sizeof(_rule));
2596 #endif
2597   memset(_valid, 0, sizeof(_valid));
2598 }
2599 
2600 #ifdef ASSERT
2601 State::~State() {
2602   _id = 99;
2603   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2604   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2605   memset(_cost, -3, sizeof(_cost));
2606   memset(_rule, -3, sizeof(_rule));
2607 }
2608 #endif
2609 
2610 #ifndef PRODUCT
2611 //---------------------------dump----------------------------------------------
2612 void State::dump() {
2613   tty->print("\n");
2614   dump(0);
2615 }
2616 
2617 void State::dump(int depth) {
2618   for( int j = 0; j < depth; j++ )
2619     tty->print("   ");
2620   tty->print("--N: ");
2621   _leaf->dump();
2622   uint i;
2623   for( i = 0; i < _LAST_MACH_OPER; i++ )
2624     // Check for valid entry
2625     if( valid(i) ) {
2626       for( int j = 0; j < depth; j++ )
2627         tty->print("   ");
2628         assert(_cost[i] != max_juint, "cost must be a valid value");
2629         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2630         tty->print_cr("%s  %d  %s",
2631                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2632       }
2633   tty->cr();
2634 
2635   for( i=0; i<2; i++ )
2636     if( _kids[i] )
2637       _kids[i]->dump(depth+1);
2638 }
2639 #endif