1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "logging/log.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "runtime/java.hpp"
  31 #include "runtime/os.hpp"
  32 #include "runtime/stubCodeGenerator.hpp"
  33 #include "vm_version_x86.hpp"
  34 
  35 
  36 int VM_Version::_cpu;
  37 int VM_Version::_model;
  38 int VM_Version::_stepping;
  39 VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, };
  40 
  41 // Address of instruction which causes SEGV
  42 address VM_Version::_cpuinfo_segv_addr = 0;
  43 // Address of instruction after the one which causes SEGV
  44 address VM_Version::_cpuinfo_cont_addr = 0;
  45 
  46 static BufferBlob* stub_blob;
  47 static const int stub_size = 1000;
  48 
  49 extern "C" {
  50   typedef void (*get_cpu_info_stub_t)(void*);
  51 }
  52 static get_cpu_info_stub_t get_cpu_info_stub = NULL;
  53 
  54 
  55 class VM_Version_StubGenerator: public StubCodeGenerator {
  56  public:
  57 
  58   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
  59 
  60   address generate_get_cpu_info() {
  61     // Flags to test CPU type.
  62     const uint32_t HS_EFL_AC = 0x40000;
  63     const uint32_t HS_EFL_ID = 0x200000;
  64     // Values for when we don't have a CPUID instruction.
  65     const int      CPU_FAMILY_SHIFT = 8;
  66     const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT);
  67     const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT);
  68     bool use_evex = FLAG_IS_DEFAULT(UseAVX) || (UseAVX > 2);
  69 
  70     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
  71     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done, wrapup;
  72     Label legacy_setup, save_restore_except, legacy_save_restore, start_simd_check;
  73 
  74     StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub");
  75 #   define __ _masm->
  76 
  77     address start = __ pc();
  78 
  79     //
  80     // void get_cpu_info(VM_Version::CpuidInfo* cpuid_info);
  81     //
  82     // LP64: rcx and rdx are first and second argument registers on windows
  83 
  84     __ push(rbp);
  85 #ifdef _LP64
  86     __ mov(rbp, c_rarg0); // cpuid_info address
  87 #else
  88     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
  89 #endif
  90     __ push(rbx);
  91     __ push(rsi);
  92     __ pushf();          // preserve rbx, and flags
  93     __ pop(rax);
  94     __ push(rax);
  95     __ mov(rcx, rax);
  96     //
  97     // if we are unable to change the AC flag, we have a 386
  98     //
  99     __ xorl(rax, HS_EFL_AC);
 100     __ push(rax);
 101     __ popf();
 102     __ pushf();
 103     __ pop(rax);
 104     __ cmpptr(rax, rcx);
 105     __ jccb(Assembler::notEqual, detect_486);
 106 
 107     __ movl(rax, CPU_FAMILY_386);
 108     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 109     __ jmp(done);
 110 
 111     //
 112     // If we are unable to change the ID flag, we have a 486 which does
 113     // not support the "cpuid" instruction.
 114     //
 115     __ bind(detect_486);
 116     __ mov(rax, rcx);
 117     __ xorl(rax, HS_EFL_ID);
 118     __ push(rax);
 119     __ popf();
 120     __ pushf();
 121     __ pop(rax);
 122     __ cmpptr(rcx, rax);
 123     __ jccb(Assembler::notEqual, detect_586);
 124 
 125     __ bind(cpu486);
 126     __ movl(rax, CPU_FAMILY_486);
 127     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 128     __ jmp(done);
 129 
 130     //
 131     // At this point, we have a chip which supports the "cpuid" instruction
 132     //
 133     __ bind(detect_586);
 134     __ xorl(rax, rax);
 135     __ cpuid();
 136     __ orl(rax, rax);
 137     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
 138                                         // value of at least 1, we give up and
 139                                         // assume a 486
 140     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 141     __ movl(Address(rsi, 0), rax);
 142     __ movl(Address(rsi, 4), rbx);
 143     __ movl(Address(rsi, 8), rcx);
 144     __ movl(Address(rsi,12), rdx);
 145 
 146     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
 147     __ jccb(Assembler::belowEqual, std_cpuid4);
 148 
 149     //
 150     // cpuid(0xB) Processor Topology
 151     //
 152     __ movl(rax, 0xb);
 153     __ xorl(rcx, rcx);   // Threads level
 154     __ cpuid();
 155 
 156     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
 157     __ movl(Address(rsi, 0), rax);
 158     __ movl(Address(rsi, 4), rbx);
 159     __ movl(Address(rsi, 8), rcx);
 160     __ movl(Address(rsi,12), rdx);
 161 
 162     __ movl(rax, 0xb);
 163     __ movl(rcx, 1);     // Cores level
 164     __ cpuid();
 165     __ push(rax);
 166     __ andl(rax, 0x1f);  // Determine if valid topology level
 167     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 168     __ andl(rax, 0xffff);
 169     __ pop(rax);
 170     __ jccb(Assembler::equal, std_cpuid4);
 171 
 172     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
 173     __ movl(Address(rsi, 0), rax);
 174     __ movl(Address(rsi, 4), rbx);
 175     __ movl(Address(rsi, 8), rcx);
 176     __ movl(Address(rsi,12), rdx);
 177 
 178     __ movl(rax, 0xb);
 179     __ movl(rcx, 2);     // Packages level
 180     __ cpuid();
 181     __ push(rax);
 182     __ andl(rax, 0x1f);  // Determine if valid topology level
 183     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 184     __ andl(rax, 0xffff);
 185     __ pop(rax);
 186     __ jccb(Assembler::equal, std_cpuid4);
 187 
 188     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
 189     __ movl(Address(rsi, 0), rax);
 190     __ movl(Address(rsi, 4), rbx);
 191     __ movl(Address(rsi, 8), rcx);
 192     __ movl(Address(rsi,12), rdx);
 193 
 194     //
 195     // cpuid(0x4) Deterministic cache params
 196     //
 197     __ bind(std_cpuid4);
 198     __ movl(rax, 4);
 199     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
 200     __ jccb(Assembler::greater, std_cpuid1);
 201 
 202     __ xorl(rcx, rcx);   // L1 cache
 203     __ cpuid();
 204     __ push(rax);
 205     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
 206     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
 207     __ pop(rax);
 208     __ jccb(Assembler::equal, std_cpuid1);
 209 
 210     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
 211     __ movl(Address(rsi, 0), rax);
 212     __ movl(Address(rsi, 4), rbx);
 213     __ movl(Address(rsi, 8), rcx);
 214     __ movl(Address(rsi,12), rdx);
 215 
 216     //
 217     // Standard cpuid(0x1)
 218     //
 219     __ bind(std_cpuid1);
 220     __ movl(rax, 1);
 221     __ cpuid();
 222     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 223     __ movl(Address(rsi, 0), rax);
 224     __ movl(Address(rsi, 4), rbx);
 225     __ movl(Address(rsi, 8), rcx);
 226     __ movl(Address(rsi,12), rdx);
 227 
 228     //
 229     // Check if OS has enabled XGETBV instruction to access XCR0
 230     // (OSXSAVE feature flag) and CPU supports AVX
 231     //
 232     __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
 233     __ cmpl(rcx, 0x18000000);
 234     __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
 235 
 236     //
 237     // XCR0, XFEATURE_ENABLED_MASK register
 238     //
 239     __ xorl(rcx, rcx);   // zero for XCR0 register
 240     __ xgetbv();
 241     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
 242     __ movl(Address(rsi, 0), rax);
 243     __ movl(Address(rsi, 4), rdx);
 244 
 245     //
 246     // cpuid(0x7) Structured Extended Features
 247     //
 248     __ bind(sef_cpuid);
 249     __ movl(rax, 7);
 250     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
 251     __ jccb(Assembler::greater, ext_cpuid);
 252 
 253     __ xorl(rcx, rcx);
 254     __ cpuid();
 255     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 256     __ movl(Address(rsi, 0), rax);
 257     __ movl(Address(rsi, 4), rbx);
 258 
 259     //
 260     // Extended cpuid(0x80000000)
 261     //
 262     __ bind(ext_cpuid);
 263     __ movl(rax, 0x80000000);
 264     __ cpuid();
 265     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
 266     __ jcc(Assembler::belowEqual, done);
 267     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
 268     __ jccb(Assembler::belowEqual, ext_cpuid1);
 269     __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
 270     __ jccb(Assembler::belowEqual, ext_cpuid5);
 271     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
 272     __ jccb(Assembler::belowEqual, ext_cpuid7);
 273     //
 274     // Extended cpuid(0x80000008)
 275     //
 276     __ movl(rax, 0x80000008);
 277     __ cpuid();
 278     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
 279     __ movl(Address(rsi, 0), rax);
 280     __ movl(Address(rsi, 4), rbx);
 281     __ movl(Address(rsi, 8), rcx);
 282     __ movl(Address(rsi,12), rdx);
 283 
 284     //
 285     // Extended cpuid(0x80000007)
 286     //
 287     __ bind(ext_cpuid7);
 288     __ movl(rax, 0x80000007);
 289     __ cpuid();
 290     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
 291     __ movl(Address(rsi, 0), rax);
 292     __ movl(Address(rsi, 4), rbx);
 293     __ movl(Address(rsi, 8), rcx);
 294     __ movl(Address(rsi,12), rdx);
 295 
 296     //
 297     // Extended cpuid(0x80000005)
 298     //
 299     __ bind(ext_cpuid5);
 300     __ movl(rax, 0x80000005);
 301     __ cpuid();
 302     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
 303     __ movl(Address(rsi, 0), rax);
 304     __ movl(Address(rsi, 4), rbx);
 305     __ movl(Address(rsi, 8), rcx);
 306     __ movl(Address(rsi,12), rdx);
 307 
 308     //
 309     // Extended cpuid(0x80000001)
 310     //
 311     __ bind(ext_cpuid1);
 312     __ movl(rax, 0x80000001);
 313     __ cpuid();
 314     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
 315     __ movl(Address(rsi, 0), rax);
 316     __ movl(Address(rsi, 4), rbx);
 317     __ movl(Address(rsi, 8), rcx);
 318     __ movl(Address(rsi,12), rdx);
 319 
 320     //
 321     // Check if OS has enabled XGETBV instruction to access XCR0
 322     // (OSXSAVE feature flag) and CPU supports AVX
 323     //
 324     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 325     __ movl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
 326     __ andl(rcx, Address(rsi, 8)); // cpuid1 bits osxsave | avx
 327     __ cmpl(rcx, 0x18000000);
 328     __ jccb(Assembler::notEqual, done); // jump if AVX is not supported
 329 
 330     __ movl(rax, 0x6);
 331     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 332     __ cmpl(rax, 0x6);
 333     __ jccb(Assembler::equal, start_simd_check); // return if AVX is not supported
 334 
 335     // we need to bridge farther than imm8, so we use this island as a thunk
 336     __ bind(done);
 337     __ jmp(wrapup);
 338 
 339     __ bind(start_simd_check);
 340     //
 341     // Some OSs have a bug when upper 128/256bits of YMM/ZMM
 342     // registers are not restored after a signal processing.
 343     // Generate SEGV here (reference through NULL)
 344     // and check upper YMM/ZMM bits after it.
 345     //
 346     intx saved_useavx = UseAVX;
 347     intx saved_usesse = UseSSE;
 348     // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
 349     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 350     __ movl(rax, 0x10000);
 351     __ andl(rax, Address(rsi, 4)); // xcr0 bits sse | ymm
 352     __ cmpl(rax, 0x10000);
 353     __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
 354     // check _cpuid_info.xem_xcr0_eax.bits.opmask
 355     // check _cpuid_info.xem_xcr0_eax.bits.zmm512
 356     // check _cpuid_info.xem_xcr0_eax.bits.zmm32
 357     __ movl(rax, 0xE0);
 358     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 359     __ cmpl(rax, 0xE0);
 360     __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
 361 
 362     // If UseAVX is unitialized or is set by the user to include EVEX
 363     if (use_evex) {
 364       // EVEX setup: run in lowest evex mode
 365       VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
 366       UseAVX = 3;
 367       UseSSE = 2;
 368 #ifdef _WINDOWS
 369       // xmm5-xmm15 are not preserved by caller on windows
 370       // https://msdn.microsoft.com/en-us/library/9z1stfyw.aspx
 371       __ subptr(rsp, 64);
 372       __ evmovdqul(Address(rsp, 0), xmm7, Assembler::AVX_512bit);
 373 #ifdef _LP64
 374       __ subptr(rsp, 64);
 375       __ evmovdqul(Address(rsp, 0), xmm8, Assembler::AVX_512bit);
 376       __ subptr(rsp, 64);
 377       __ evmovdqul(Address(rsp, 0), xmm31, Assembler::AVX_512bit);
 378 #endif // _LP64
 379 #endif // _WINDOWS
 380 
 381       // load value into all 64 bytes of zmm7 register
 382       __ movl(rcx, VM_Version::ymm_test_value());
 383       __ movdl(xmm0, rcx);
 384       __ movl(rcx, 0xffff);
 385       __ kmovwl(k1, rcx);
 386       __ evpbroadcastd(xmm0, xmm0, Assembler::AVX_512bit);
 387       __ evmovdqul(xmm7, xmm0, Assembler::AVX_512bit);
 388 #ifdef _LP64
 389       __ evmovdqul(xmm8, xmm0, Assembler::AVX_512bit);
 390       __ evmovdqul(xmm31, xmm0, Assembler::AVX_512bit);
 391 #endif
 392       VM_Version::clean_cpuFeatures();
 393       __ jmp(save_restore_except);
 394     }
 395 
 396     __ bind(legacy_setup);
 397     // AVX setup
 398     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
 399     UseAVX = 1;
 400     UseSSE = 2;
 401 #ifdef _WINDOWS
 402     __ subptr(rsp, 32);
 403     __ vmovdqu(Address(rsp, 0), xmm7);
 404 #ifdef _LP64
 405     __ subptr(rsp, 32);
 406     __ vmovdqu(Address(rsp, 0), xmm8);
 407     __ subptr(rsp, 32);
 408     __ vmovdqu(Address(rsp, 0), xmm15);
 409 #endif // _LP64
 410 #endif // _WINDOWS
 411 
 412     // load value into all 32 bytes of ymm7 register
 413     __ movl(rcx, VM_Version::ymm_test_value());
 414 
 415     __ movdl(xmm0, rcx);
 416     __ pshufd(xmm0, xmm0, 0x00);
 417     __ vinsertf128_high(xmm0, xmm0);
 418     __ vmovdqu(xmm7, xmm0);
 419 #ifdef _LP64
 420     __ vmovdqu(xmm8, xmm0);
 421     __ vmovdqu(xmm15, xmm0);
 422 #endif
 423     VM_Version::clean_cpuFeatures();
 424 
 425     __ bind(save_restore_except);
 426     __ xorl(rsi, rsi);
 427     VM_Version::set_cpuinfo_segv_addr(__ pc());
 428     // Generate SEGV
 429     __ movl(rax, Address(rsi, 0));
 430 
 431     VM_Version::set_cpuinfo_cont_addr(__ pc());
 432     // Returns here after signal. Save xmm0 to check it later.
 433 
 434     // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
 435     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 436     __ movl(rax, 0x10000);
 437     __ andl(rax, Address(rsi, 4));
 438     __ cmpl(rax, 0x10000);
 439     __ jccb(Assembler::notEqual, legacy_save_restore);
 440     // check _cpuid_info.xem_xcr0_eax.bits.opmask
 441     // check _cpuid_info.xem_xcr0_eax.bits.zmm512
 442     // check _cpuid_info.xem_xcr0_eax.bits.zmm32
 443     __ movl(rax, 0xE0);
 444     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 445     __ cmpl(rax, 0xE0);
 446     __ jccb(Assembler::notEqual, legacy_save_restore);
 447 
 448     // If UseAVX is unitialized or is set by the user to include EVEX
 449     if (use_evex) {
 450       // EVEX check: run in lowest evex mode
 451       VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
 452       UseAVX = 3;
 453       UseSSE = 2;
 454       __ lea(rsi, Address(rbp, in_bytes(VM_Version::zmm_save_offset())));
 455       __ evmovdqul(Address(rsi, 0), xmm0, Assembler::AVX_512bit);
 456       __ evmovdqul(Address(rsi, 64), xmm7, Assembler::AVX_512bit);
 457 #ifdef _LP64
 458       __ evmovdqul(Address(rsi, 128), xmm8, Assembler::AVX_512bit);
 459       __ evmovdqul(Address(rsi, 192), xmm31, Assembler::AVX_512bit);
 460 #endif
 461 
 462 #ifdef _WINDOWS
 463 #ifdef _LP64
 464       __ evmovdqul(xmm31, Address(rsp, 0), Assembler::AVX_512bit);
 465       __ addptr(rsp, 64);
 466       __ evmovdqul(xmm8, Address(rsp, 0), Assembler::AVX_512bit);
 467       __ addptr(rsp, 64);
 468 #endif // _LP64
 469       __ evmovdqul(xmm7, Address(rsp, 0), Assembler::AVX_512bit);
 470       __ addptr(rsp, 64);
 471 #endif // _WINDOWS
 472       VM_Version::clean_cpuFeatures();
 473       UseAVX = saved_useavx;
 474       UseSSE = saved_usesse;
 475       __ jmp(wrapup);
 476     }
 477 
 478     __ bind(legacy_save_restore);
 479     // AVX check
 480     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
 481     UseAVX = 1;
 482     UseSSE = 2;
 483     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
 484     __ vmovdqu(Address(rsi, 0), xmm0);
 485     __ vmovdqu(Address(rsi, 32), xmm7);
 486 #ifdef _LP64
 487     __ vmovdqu(Address(rsi, 64), xmm8);
 488     __ vmovdqu(Address(rsi, 96), xmm15);
 489 #endif
 490 
 491 #ifdef _WINDOWS
 492 #ifdef _LP64
 493     __ vmovdqu(xmm15, Address(rsp, 0));
 494     __ addptr(rsp, 32);
 495     __ vmovdqu(xmm8, Address(rsp, 0));
 496     __ addptr(rsp, 32);
 497 #endif // _LP64
 498     __ vmovdqu(xmm7, Address(rsp, 0));
 499     __ addptr(rsp, 32);
 500 #endif // _WINDOWS
 501     VM_Version::clean_cpuFeatures();
 502     UseAVX = saved_useavx;
 503     UseSSE = saved_usesse;
 504 
 505     __ bind(wrapup);
 506     __ popf();
 507     __ pop(rsi);
 508     __ pop(rbx);
 509     __ pop(rbp);
 510     __ ret(0);
 511 
 512 #   undef __
 513 
 514     return start;
 515   };
 516 };
 517 
 518 void VM_Version::get_processor_features() {
 519 
 520   _cpu = 4; // 486 by default
 521   _model = 0;
 522   _stepping = 0;
 523   _features = 0;
 524   _logical_processors_per_package = 1;
 525   // i486 internal cache is both I&D and has a 16-byte line size
 526   _L1_data_cache_line_size = 16;
 527 
 528   // Get raw processor info
 529 
 530   get_cpu_info_stub(&_cpuid_info);
 531 
 532   assert_is_initialized();
 533   _cpu = extended_cpu_family();
 534   _model = extended_cpu_model();
 535   _stepping = cpu_stepping();
 536 
 537   if (cpu_family() > 4) { // it supports CPUID
 538     _features = feature_flags();
 539     // Logical processors are only available on P4s and above,
 540     // and only if hyperthreading is available.
 541     _logical_processors_per_package = logical_processor_count();
 542     _L1_data_cache_line_size = L1_line_size();
 543   }
 544 
 545   _supports_cx8 = supports_cmpxchg8();
 546   // xchg and xadd instructions
 547   _supports_atomic_getset4 = true;
 548   _supports_atomic_getadd4 = true;
 549   LP64_ONLY(_supports_atomic_getset8 = true);
 550   LP64_ONLY(_supports_atomic_getadd8 = true);
 551 
 552 #ifdef _LP64
 553   // OS should support SSE for x64 and hardware should support at least SSE2.
 554   if (!VM_Version::supports_sse2()) {
 555     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
 556   }
 557   // in 64 bit the use of SSE2 is the minimum
 558   if (UseSSE < 2) UseSSE = 2;
 559 #endif
 560 
 561 #ifdef AMD64
 562   // flush_icache_stub have to be generated first.
 563   // That is why Icache line size is hard coded in ICache class,
 564   // see icache_x86.hpp. It is also the reason why we can't use
 565   // clflush instruction in 32-bit VM since it could be running
 566   // on CPU which does not support it.
 567   //
 568   // The only thing we can do is to verify that flushed
 569   // ICache::line_size has correct value.
 570   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
 571   // clflush_size is size in quadwords (8 bytes).
 572   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
 573 #endif
 574 
 575   // If the OS doesn't support SSE, we can't use this feature even if the HW does
 576   if (!os::supports_sse())
 577     _features &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
 578 
 579   if (UseSSE < 4) {
 580     _features &= ~CPU_SSE4_1;
 581     _features &= ~CPU_SSE4_2;
 582   }
 583 
 584   if (UseSSE < 3) {
 585     _features &= ~CPU_SSE3;
 586     _features &= ~CPU_SSSE3;
 587     _features &= ~CPU_SSE4A;
 588   }
 589 
 590   if (UseSSE < 2)
 591     _features &= ~CPU_SSE2;
 592 
 593   if (UseSSE < 1)
 594     _features &= ~CPU_SSE;
 595 
 596   // first try initial setting and detect what we can support
 597   if (UseAVX > 0) {
 598     if (UseAVX > 2 && supports_evex()) {
 599       UseAVX = 3;
 600     } else if (UseAVX > 1 && supports_avx2()) {
 601       UseAVX = 2;
 602     } else if (UseAVX > 0 && supports_avx()) {
 603       UseAVX = 1;
 604     } else {
 605       UseAVX = 0;
 606     }
 607   } else if (UseAVX < 0) {
 608     UseAVX = 0;
 609   }
 610 
 611   if (UseAVX < 3) {
 612     _features &= ~CPU_AVX512F;
 613     _features &= ~CPU_AVX512DQ;
 614     _features &= ~CPU_AVX512CD;
 615     _features &= ~CPU_AVX512BW;
 616     _features &= ~CPU_AVX512VL;
 617   }
 618 
 619   if (UseAVX < 2)
 620     _features &= ~CPU_AVX2;
 621 
 622   if (UseAVX < 1)
 623     _features &= ~CPU_AVX;
 624 
 625   if (!UseAES && !FLAG_IS_DEFAULT(UseAES))
 626     _features &= ~CPU_AES;
 627 
 628   if (logical_processors_per_package() == 1) {
 629     // HT processor could be installed on a system which doesn't support HT.
 630     _features &= ~CPU_HT;
 631   }
 632 
 633   char buf[256];
 634   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
 635                cores_per_cpu(), threads_per_core(),
 636                cpu_family(), _model, _stepping,
 637                (supports_cmov() ? ", cmov" : ""),
 638                (supports_cmpxchg8() ? ", cx8" : ""),
 639                (supports_fxsr() ? ", fxsr" : ""),
 640                (supports_mmx()  ? ", mmx"  : ""),
 641                (supports_sse()  ? ", sse"  : ""),
 642                (supports_sse2() ? ", sse2" : ""),
 643                (supports_sse3() ? ", sse3" : ""),
 644                (supports_ssse3()? ", ssse3": ""),
 645                (supports_sse4_1() ? ", sse4.1" : ""),
 646                (supports_sse4_2() ? ", sse4.2" : ""),
 647                (supports_popcnt() ? ", popcnt" : ""),
 648                (supports_avx()    ? ", avx" : ""),
 649                (supports_avx2()   ? ", avx2" : ""),
 650                (supports_aes()    ? ", aes" : ""),
 651                (supports_clmul()  ? ", clmul" : ""),
 652                (supports_erms()   ? ", erms" : ""),
 653                (supports_rtm()    ? ", rtm" : ""),
 654                (supports_mmx_ext() ? ", mmxext" : ""),
 655                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
 656                (supports_lzcnt()   ? ", lzcnt": ""),
 657                (supports_sse4a()   ? ", sse4a": ""),
 658                (supports_ht() ? ", ht": ""),
 659                (supports_tsc() ? ", tsc": ""),
 660                (supports_tscinv_bit() ? ", tscinvbit": ""),
 661                (supports_tscinv() ? ", tscinv": ""),
 662                (supports_bmi1() ? ", bmi1" : ""),
 663                (supports_bmi2() ? ", bmi2" : ""),
 664                (supports_adx() ? ", adx" : ""),
 665                (supports_evex() ? ", evex" : ""),
 666                (supports_sha() ? ", sha" : ""),
 667                (supports_fma() ? ", fma" : ""));
 668   _features_string = os::strdup(buf);
 669 
 670   // UseSSE is set to the smaller of what hardware supports and what
 671   // the command line requires.  I.e., you cannot set UseSSE to 2 on
 672   // older Pentiums which do not support it.
 673   if (UseSSE > 4) UseSSE=4;
 674   if (UseSSE < 0) UseSSE=0;
 675   if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
 676     UseSSE = MIN2((intx)3,UseSSE);
 677   if (!supports_sse3()) // Drop to 2 if no SSE3 support
 678     UseSSE = MIN2((intx)2,UseSSE);
 679   if (!supports_sse2()) // Drop to 1 if no SSE2 support
 680     UseSSE = MIN2((intx)1,UseSSE);
 681   if (!supports_sse ()) // Drop to 0 if no SSE  support
 682     UseSSE = 0;
 683 
 684   // Use AES instructions if available.
 685   if (supports_aes()) {
 686     if (FLAG_IS_DEFAULT(UseAES)) {
 687       FLAG_SET_DEFAULT(UseAES, true);
 688     }
 689     if (!UseAES) {
 690       if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 691         warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled.");
 692       }
 693       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 694     } else {
 695       if (UseSSE > 2) {
 696         if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 697           FLAG_SET_DEFAULT(UseAESIntrinsics, true);
 698         }
 699       } else {
 700         // The AES intrinsic stubs require AES instruction support (of course)
 701         // but also require sse3 mode or higher for instructions it use.
 702         if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 703           warning("X86 AES intrinsics require SSE3 instructions or higher. Intrinsics will be disabled.");
 704         }
 705         FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 706       }
 707 
 708       // --AES-CTR begins--
 709       if (!UseAESIntrinsics) {
 710         if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 711           warning("AES-CTR intrinsics require UseAESIntrinsics flag to be enabled. Intrinsics will be disabled.");
 712           FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 713         }
 714       } else {
 715         if(supports_sse4_1()) {
 716           if (FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 717             FLAG_SET_DEFAULT(UseAESCTRIntrinsics, true);
 718           }
 719         } else {
 720            // The AES-CTR intrinsic stubs require AES instruction support (of course)
 721            // but also require sse4.1 mode or higher for instructions it use.
 722           if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 723              warning("X86 AES-CTR intrinsics require SSE4.1 instructions or higher. Intrinsics will be disabled.");
 724            }
 725            FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 726         }
 727       }
 728       // --AES-CTR ends--
 729     }
 730   } else if (UseAES || UseAESIntrinsics || UseAESCTRIntrinsics) {
 731     if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
 732       warning("AES instructions are not available on this CPU");
 733       FLAG_SET_DEFAULT(UseAES, false);
 734     }
 735     if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 736       warning("AES intrinsics are not available on this CPU");
 737       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 738     }
 739     if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 740       warning("AES-CTR intrinsics are not available on this CPU");
 741       FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 742     }
 743   }
 744 
 745   // Use CLMUL instructions if available.
 746   if (supports_clmul()) {
 747     if (FLAG_IS_DEFAULT(UseCLMUL)) {
 748       UseCLMUL = true;
 749     }
 750   } else if (UseCLMUL) {
 751     if (!FLAG_IS_DEFAULT(UseCLMUL))
 752       warning("CLMUL instructions not available on this CPU (AVX may also be required)");
 753     FLAG_SET_DEFAULT(UseCLMUL, false);
 754   }
 755 
 756   if (UseCLMUL && (UseSSE > 2)) {
 757     if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
 758       UseCRC32Intrinsics = true;
 759     }
 760   } else if (UseCRC32Intrinsics) {
 761     if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
 762       warning("CRC32 Intrinsics requires CLMUL instructions (not available on this CPU)");
 763     FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
 764   }
 765 
 766   if (supports_sse4_2()) {
 767     if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
 768       UseCRC32CIntrinsics = true;
 769     }
 770   }
 771   else if (UseCRC32CIntrinsics) {
 772     if (!FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
 773       warning("CRC32C intrinsics are not available on this CPU");
 774     }
 775     FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
 776   }
 777 
 778   // GHASH/GCM intrinsics
 779   if (UseCLMUL && (UseSSE > 2)) {
 780     if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
 781       UseGHASHIntrinsics = true;
 782     }
 783   } else if (UseGHASHIntrinsics) {
 784     if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics))
 785       warning("GHASH intrinsic requires CLMUL and SSE2 instructions on this CPU");
 786     FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
 787   }
 788 
 789   if (supports_fma() && UseSSE >= 2) {
 790     if (FLAG_IS_DEFAULT(UseFMA)) {
 791       UseFMA = true;
 792     }
 793   } else if (UseFMA) {
 794     warning("FMA instructions are not available on this CPU");
 795     FLAG_SET_DEFAULT(UseFMA, false);
 796   }
 797 
 798   if (supports_sha() LP64_ONLY(|| supports_avx2() && supports_bmi2())) {
 799     if (FLAG_IS_DEFAULT(UseSHA)) {
 800       UseSHA = true;
 801     }
 802   } else if (UseSHA) {
 803     warning("SHA instructions are not available on this CPU");
 804     FLAG_SET_DEFAULT(UseSHA, false);
 805   }
 806 
 807   if (supports_sha() && UseSHA) {
 808     if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) {
 809       FLAG_SET_DEFAULT(UseSHA1Intrinsics, true);
 810     }
 811   } else if (UseSHA1Intrinsics) {
 812     warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
 813     FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
 814   }
 815 
 816   if (UseSHA) {
 817     if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) {
 818       FLAG_SET_DEFAULT(UseSHA256Intrinsics, true);
 819     }
 820   } else if (UseSHA256Intrinsics) {
 821     warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
 822     FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
 823   }
 824 
 825   if (UseSHA) {
 826     if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) {
 827       FLAG_SET_DEFAULT(UseSHA512Intrinsics, true);
 828     }
 829   } else if (UseSHA512Intrinsics) {
 830     warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
 831     FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
 832   }
 833 
 834   if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) {
 835     FLAG_SET_DEFAULT(UseSHA, false);
 836   }
 837 
 838   if (UseAdler32Intrinsics) {
 839     warning("Adler32Intrinsics not available on this CPU.");
 840     FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
 841   }
 842 
 843   if (!supports_rtm() && UseRTMLocking) {
 844     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 845     // setting during arguments processing. See use_biased_locking().
 846     // VM_Version_init() is executed after UseBiasedLocking is used
 847     // in Thread::allocate().
 848     vm_exit_during_initialization("RTM instructions are not available on this CPU");
 849   }
 850 
 851 #if INCLUDE_RTM_OPT
 852   if (UseRTMLocking) {
 853     if (is_client_compilation_mode_vm()) {
 854       // Only C2 does RTM locking optimization.
 855       // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 856       // setting during arguments processing. See use_biased_locking().
 857       vm_exit_during_initialization("RTM locking optimization is not supported in emulated client VM");
 858     }
 859     if (is_intel_family_core()) {
 860       if ((_model == CPU_MODEL_HASWELL_E3) ||
 861           (_model == CPU_MODEL_HASWELL_E7 && _stepping < 3) ||
 862           (_model == CPU_MODEL_BROADWELL  && _stepping < 4)) {
 863         // currently a collision between SKL and HSW_E3
 864         if (!UnlockExperimentalVMOptions && UseAVX < 3) {
 865           vm_exit_during_initialization("UseRTMLocking is only available as experimental option on this platform. It must be enabled via -XX:+UnlockExperimentalVMOptions flag.");
 866         } else {
 867           warning("UseRTMLocking is only available as experimental option on this platform.");
 868         }
 869       }
 870     }
 871     if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
 872       // RTM locking should be used only for applications with
 873       // high lock contention. For now we do not use it by default.
 874       vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
 875     }
 876     if (!is_power_of_2(RTMTotalCountIncrRate)) {
 877       warning("RTMTotalCountIncrRate must be a power of 2, resetting it to 64");
 878       FLAG_SET_DEFAULT(RTMTotalCountIncrRate, 64);
 879     }
 880     if (RTMAbortRatio < 0 || RTMAbortRatio > 100) {
 881       warning("RTMAbortRatio must be in the range 0 to 100, resetting it to 50");
 882       FLAG_SET_DEFAULT(RTMAbortRatio, 50);
 883     }
 884   } else { // !UseRTMLocking
 885     if (UseRTMForStackLocks) {
 886       if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
 887         warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
 888       }
 889       FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
 890     }
 891     if (UseRTMDeopt) {
 892       FLAG_SET_DEFAULT(UseRTMDeopt, false);
 893     }
 894     if (PrintPreciseRTMLockingStatistics) {
 895       FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
 896     }
 897   }
 898 #else
 899   if (UseRTMLocking) {
 900     // Only C2 does RTM locking optimization.
 901     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 902     // setting during arguments processing. See use_biased_locking().
 903     vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
 904   }
 905 #endif
 906 
 907 #ifdef COMPILER2
 908   if (UseFPUForSpilling) {
 909     if (UseSSE < 2) {
 910       // Only supported with SSE2+
 911       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
 912     }
 913   }
 914 #endif
 915 #if defined(COMPILER2) || INCLUDE_JVMCI
 916   if (MaxVectorSize > 0) {
 917     if (!is_power_of_2(MaxVectorSize)) {
 918       warning("MaxVectorSize must be a power of 2");
 919       FLAG_SET_DEFAULT(MaxVectorSize, 64);
 920     }
 921     if (MaxVectorSize > 64) {
 922       FLAG_SET_DEFAULT(MaxVectorSize, 64);
 923     }
 924     if (MaxVectorSize > 16 && (UseAVX == 0 || !os_supports_avx_vectors())) {
 925       // 32 bytes vectors (in YMM) are only supported with AVX+
 926       FLAG_SET_DEFAULT(MaxVectorSize, 16);
 927     }
 928     if (UseSSE < 2) {
 929       // Vectors (in XMM) are only supported with SSE2+
 930       FLAG_SET_DEFAULT(MaxVectorSize, 0);
 931     }
 932 #if defined(COMPILER2) && defined(ASSERT)
 933     if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
 934       tty->print_cr("State of YMM registers after signal handle:");
 935       int nreg = 2 LP64_ONLY(+2);
 936       const char* ymm_name[4] = {"0", "7", "8", "15"};
 937       for (int i = 0; i < nreg; i++) {
 938         tty->print("YMM%s:", ymm_name[i]);
 939         for (int j = 7; j >=0; j--) {
 940           tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
 941         }
 942         tty->cr();
 943       }
 944     }
 945 #endif // COMPILER2 && ASSERT
 946   }
 947 #endif // COMPILER2 || INCLUDE_JVMCI
 948 
 949 #ifdef COMPILER2
 950 #ifdef _LP64
 951   if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
 952     UseMultiplyToLenIntrinsic = true;
 953   }
 954   if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
 955     UseSquareToLenIntrinsic = true;
 956   }
 957   if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
 958     UseMulAddIntrinsic = true;
 959   }
 960   if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
 961     UseMontgomeryMultiplyIntrinsic = true;
 962   }
 963   if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
 964     UseMontgomerySquareIntrinsic = true;
 965   }
 966 #else
 967   if (UseMultiplyToLenIntrinsic) {
 968     if (!FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
 969       warning("multiplyToLen intrinsic is not available in 32-bit VM");
 970     }
 971     FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false);
 972   }
 973   if (UseMontgomeryMultiplyIntrinsic) {
 974     if (!FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
 975       warning("montgomeryMultiply intrinsic is not available in 32-bit VM");
 976     }
 977     FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, false);
 978   }
 979   if (UseMontgomerySquareIntrinsic) {
 980     if (!FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
 981       warning("montgomerySquare intrinsic is not available in 32-bit VM");
 982     }
 983     FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, false);
 984   }
 985   if (UseSquareToLenIntrinsic) {
 986     if (!FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
 987       warning("squareToLen intrinsic is not available in 32-bit VM");
 988     }
 989     FLAG_SET_DEFAULT(UseSquareToLenIntrinsic, false);
 990   }
 991   if (UseMulAddIntrinsic) {
 992     if (!FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
 993       warning("mulAdd intrinsic is not available in 32-bit VM");
 994     }
 995     FLAG_SET_DEFAULT(UseMulAddIntrinsic, false);
 996   }
 997 #endif
 998 #endif // COMPILER2
 999 
1000   // On new cpus instructions which update whole XMM register should be used
1001   // to prevent partial register stall due to dependencies on high half.
1002   //
1003   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
1004   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
1005   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
1006   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
1007 
1008   if( is_amd() ) { // AMD cpus specific settings
1009     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
1010       // Use it on new AMD cpus starting from Opteron.
1011       UseAddressNop = true;
1012     }
1013     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
1014       // Use it on new AMD cpus starting from Opteron.
1015       UseNewLongLShift = true;
1016     }
1017     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
1018       if (supports_sse4a()) {
1019         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
1020       } else {
1021         UseXmmLoadAndClearUpper = false;
1022       }
1023     }
1024     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
1025       if( supports_sse4a() ) {
1026         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
1027       } else {
1028         UseXmmRegToRegMoveAll = false;
1029       }
1030     }
1031     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
1032       if( supports_sse4a() ) {
1033         UseXmmI2F = true;
1034       } else {
1035         UseXmmI2F = false;
1036       }
1037     }
1038     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
1039       if( supports_sse4a() ) {
1040         UseXmmI2D = true;
1041       } else {
1042         UseXmmI2D = false;
1043       }
1044     }
1045     if (supports_sse4_2()) {
1046       if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
1047         FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
1048       }
1049     } else {
1050       if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
1051         warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
1052       }
1053       FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
1054     }
1055 
1056     // some defaults for AMD family 15h
1057     if ( cpu_family() == 0x15 ) {
1058       // On family 15h processors default is no sw prefetch
1059       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
1060         AllocatePrefetchStyle = 0;
1061       }
1062       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
1063       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
1064         AllocatePrefetchInstr = 3;
1065       }
1066       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
1067       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1068         UseXMMForArrayCopy = true;
1069       }
1070       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1071         UseUnalignedLoadStores = true;
1072       }
1073     }
1074 
1075 #ifdef COMPILER2
1076     if (MaxVectorSize > 16) {
1077       // Limit vectors size to 16 bytes on current AMD cpus.
1078       FLAG_SET_DEFAULT(MaxVectorSize, 16);
1079     }
1080 #endif // COMPILER2
1081   }
1082 
1083   if( is_intel() ) { // Intel cpus specific settings
1084     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
1085       UseStoreImmI16 = false; // don't use it on Intel cpus
1086     }
1087     if( cpu_family() == 6 || cpu_family() == 15 ) {
1088       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
1089         // Use it on all Intel cpus starting from PentiumPro
1090         UseAddressNop = true;
1091       }
1092     }
1093     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
1094       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
1095     }
1096     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
1097       if( supports_sse3() ) {
1098         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
1099       } else {
1100         UseXmmRegToRegMoveAll = false;
1101       }
1102     }
1103     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
1104 #ifdef COMPILER2
1105       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
1106         // For new Intel cpus do the next optimization:
1107         // don't align the beginning of a loop if there are enough instructions
1108         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
1109         // in current fetch line (OptoLoopAlignment) or the padding
1110         // is big (> MaxLoopPad).
1111         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
1112         // generated NOP instructions. 11 is the largest size of one
1113         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
1114         MaxLoopPad = 11;
1115       }
1116 #endif // COMPILER2
1117       if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1118         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
1119       }
1120       if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
1121         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1122           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
1123         }
1124       }
1125       if (supports_sse4_2()) {
1126         if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
1127           FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
1128         }
1129       } else {
1130         if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
1131           warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
1132         }
1133         FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
1134       }
1135     }
1136     if ((cpu_family() == 0x06) &&
1137         ((extended_cpu_model() == 0x36) || // Centerton
1138          (extended_cpu_model() == 0x37) || // Silvermont
1139          (extended_cpu_model() == 0x4D))) {
1140 #ifdef COMPILER2
1141       if (FLAG_IS_DEFAULT(OptoScheduling)) {
1142         OptoScheduling = true;
1143       }
1144 #endif
1145       if (supports_sse4_2()) { // Silvermont
1146         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1147           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
1148         }
1149       }
1150     }
1151     if(FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
1152       AllocatePrefetchInstr = 3;
1153     }
1154   }
1155 
1156 #ifdef _LP64
1157   if (UseSSE42Intrinsics) {
1158     if (FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
1159       UseVectorizedMismatchIntrinsic = true;
1160     }
1161   } else if (UseVectorizedMismatchIntrinsic) {
1162     if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic))
1163       warning("vectorizedMismatch intrinsics are not available on this CPU");
1164     FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
1165   }
1166 #else
1167   if (UseVectorizedMismatchIntrinsic) {
1168     if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
1169       warning("vectorizedMismatch intrinsic is not available in 32-bit VM");
1170     }
1171     FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
1172   }
1173 #endif // _LP64
1174 
1175   // Use count leading zeros count instruction if available.
1176   if (supports_lzcnt()) {
1177     if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
1178       UseCountLeadingZerosInstruction = true;
1179     }
1180    } else if (UseCountLeadingZerosInstruction) {
1181     warning("lzcnt instruction is not available on this CPU");
1182     FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
1183   }
1184 
1185   // Use count trailing zeros instruction if available
1186   if (supports_bmi1()) {
1187     // tzcnt does not require VEX prefix
1188     if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
1189       if (!UseBMI1Instructions && !FLAG_IS_DEFAULT(UseBMI1Instructions)) {
1190         // Don't use tzcnt if BMI1 is switched off on command line.
1191         UseCountTrailingZerosInstruction = false;
1192       } else {
1193         UseCountTrailingZerosInstruction = true;
1194       }
1195     }
1196   } else if (UseCountTrailingZerosInstruction) {
1197     warning("tzcnt instruction is not available on this CPU");
1198     FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
1199   }
1200 
1201   // BMI instructions (except tzcnt) use an encoding with VEX prefix.
1202   // VEX prefix is generated only when AVX > 0.
1203   if (supports_bmi1() && supports_avx()) {
1204     if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
1205       UseBMI1Instructions = true;
1206     }
1207   } else if (UseBMI1Instructions) {
1208     warning("BMI1 instructions are not available on this CPU (AVX is also required)");
1209     FLAG_SET_DEFAULT(UseBMI1Instructions, false);
1210   }
1211 
1212   if (supports_bmi2() && supports_avx()) {
1213     if (FLAG_IS_DEFAULT(UseBMI2Instructions)) {
1214       UseBMI2Instructions = true;
1215     }
1216   } else if (UseBMI2Instructions) {
1217     warning("BMI2 instructions are not available on this CPU (AVX is also required)");
1218     FLAG_SET_DEFAULT(UseBMI2Instructions, false);
1219   }
1220 
1221   // Use population count instruction if available.
1222   if (supports_popcnt()) {
1223     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
1224       UsePopCountInstruction = true;
1225     }
1226   } else if (UsePopCountInstruction) {
1227     warning("POPCNT instruction is not available on this CPU");
1228     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
1229   }
1230 
1231   // Use fast-string operations if available.
1232   if (supports_erms()) {
1233     if (FLAG_IS_DEFAULT(UseFastStosb)) {
1234       UseFastStosb = true;
1235     }
1236   } else if (UseFastStosb) {
1237     warning("fast-string operations are not available on this CPU");
1238     FLAG_SET_DEFAULT(UseFastStosb, false);
1239   }
1240 
1241 #ifdef COMPILER2
1242   if (FLAG_IS_DEFAULT(AlignVector)) {
1243     // Modern processors allow misaligned memory operations for vectors.
1244     AlignVector = !UseUnalignedLoadStores;
1245   }
1246 #endif // COMPILER2
1247 
1248   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
1249   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
1250 
1251   // Allocation prefetch settings
1252   intx cache_line_size = prefetch_data_size();
1253   if( cache_line_size > AllocatePrefetchStepSize )
1254     AllocatePrefetchStepSize = cache_line_size;
1255 
1256   AllocatePrefetchDistance = allocate_prefetch_distance();
1257   AllocatePrefetchStyle    = allocate_prefetch_style();
1258 
1259   if (is_intel() && cpu_family() == 6 && supports_sse3()) {
1260     if (AllocatePrefetchStyle == 2) { // watermark prefetching on Core
1261 #ifdef _LP64
1262       AllocatePrefetchDistance = 384;
1263 #else
1264       AllocatePrefetchDistance = 320;
1265 #endif
1266     }
1267     if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus
1268       AllocatePrefetchDistance = 192;
1269       if (FLAG_IS_DEFAULT(AllocatePrefetchLines)) {
1270         FLAG_SET_DEFAULT(AllocatePrefetchLines, 4);
1271       }
1272     }
1273 #ifdef COMPILER2
1274     if (supports_sse4_2()) {
1275       if (FLAG_IS_DEFAULT(UseFPUForSpilling)) {
1276         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
1277       }
1278     }
1279 #endif
1280   }
1281 
1282 #ifdef _LP64
1283   // Prefetch settings
1284   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
1285   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
1286   PrefetchFieldsAhead         = prefetch_fields_ahead();
1287 #endif
1288 
1289   if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
1290      (cache_line_size > ContendedPaddingWidth))
1291      ContendedPaddingWidth = cache_line_size;
1292 
1293   // This machine allows unaligned memory accesses
1294   if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) {
1295     FLAG_SET_DEFAULT(UseUnalignedAccesses, true);
1296   }
1297 
1298 #ifndef PRODUCT
1299   if (log_is_enabled(Info, os, cpu)) {
1300     outputStream* log = Log(os, cpu)::info_stream();
1301     log->print_cr("Logical CPUs per core: %u",
1302                   logical_processors_per_package());
1303     log->print_cr("L1 data cache line size: %u", L1_data_cache_line_size());
1304     log->print("UseSSE=%d", (int) UseSSE);
1305     if (UseAVX > 0) {
1306       log->print("  UseAVX=%d", (int) UseAVX);
1307     }
1308     if (UseAES) {
1309       log->print("  UseAES=1");
1310     }
1311 #ifdef COMPILER2
1312     if (MaxVectorSize > 0) {
1313       log->print("  MaxVectorSize=%d", (int) MaxVectorSize);
1314     }
1315 #endif
1316     log->cr();
1317     log->print("Allocation");
1318     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
1319       log->print_cr(": no prefetching");
1320     } else {
1321       log->print(" prefetching: ");
1322       if (UseSSE == 0 && supports_3dnow_prefetch()) {
1323         log->print("PREFETCHW");
1324       } else if (UseSSE >= 1) {
1325         if (AllocatePrefetchInstr == 0) {
1326           log->print("PREFETCHNTA");
1327         } else if (AllocatePrefetchInstr == 1) {
1328           log->print("PREFETCHT0");
1329         } else if (AllocatePrefetchInstr == 2) {
1330           log->print("PREFETCHT2");
1331         } else if (AllocatePrefetchInstr == 3) {
1332           log->print("PREFETCHW");
1333         }
1334       }
1335       if (AllocatePrefetchLines > 1) {
1336         log->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize);
1337       } else {
1338         log->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize);
1339       }
1340     }
1341 
1342     if (PrefetchCopyIntervalInBytes > 0) {
1343       log->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
1344     }
1345     if (PrefetchScanIntervalInBytes > 0) {
1346       log->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
1347     }
1348     if (PrefetchFieldsAhead > 0) {
1349       log->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead);
1350     }
1351     if (ContendedPaddingWidth > 0) {
1352       log->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
1353     }
1354   }
1355 #endif // !PRODUCT
1356 }
1357 
1358 bool VM_Version::use_biased_locking() {
1359 #if INCLUDE_RTM_OPT
1360   // RTM locking is most useful when there is high lock contention and
1361   // low data contention.  With high lock contention the lock is usually
1362   // inflated and biased locking is not suitable for that case.
1363   // RTM locking code requires that biased locking is off.
1364   // Note: we can't switch off UseBiasedLocking in get_processor_features()
1365   // because it is used by Thread::allocate() which is called before
1366   // VM_Version::initialize().
1367   if (UseRTMLocking && UseBiasedLocking) {
1368     if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
1369       FLAG_SET_DEFAULT(UseBiasedLocking, false);
1370     } else {
1371       warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
1372       UseBiasedLocking = false;
1373     }
1374   }
1375 #endif
1376   return UseBiasedLocking;
1377 }
1378 
1379 void VM_Version::initialize() {
1380   ResourceMark rm;
1381   // Making this stub must be FIRST use of assembler
1382 
1383   stub_blob = BufferBlob::create("get_cpu_info_stub", stub_size);
1384   if (stub_blob == NULL) {
1385     vm_exit_during_initialization("Unable to allocate get_cpu_info_stub");
1386   }
1387   CodeBuffer c(stub_blob);
1388   VM_Version_StubGenerator g(&c);
1389   get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t,
1390                                      g.generate_get_cpu_info());
1391 
1392   get_processor_features();
1393 }