1 /*
   2  * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
  26 #include "adlc.hpp"
  27 
  28 //==============================Instructions===================================
  29 //------------------------------InstructForm-----------------------------------
  30 InstructForm::InstructForm(const char *id, bool ideal_only)
  31   : _ident(id), _ideal_only(ideal_only),
  32     _localNames(cmpstr, hashstr, Form::arena),
  33     _effects(cmpstr, hashstr, Form::arena),
  34     _is_mach_constant(false),
  35     _needs_constant_base(false),
  36     _has_call(false)
  37 {
  38       _ftype = Form::INS;
  39 
  40       _matrule              = NULL;
  41       _insencode            = NULL;
  42       _constant             = NULL;
  43       _is_postalloc_expand  = false;
  44       _opcode               = NULL;
  45       _size                 = NULL;
  46       _attribs              = NULL;
  47       _predicate            = NULL;
  48       _exprule              = NULL;
  49       _rewrule              = NULL;
  50       _format               = NULL;
  51       _peephole             = NULL;
  52       _ins_pipe             = NULL;
  53       _uniq_idx             = NULL;
  54       _num_uniq             = 0;
  55       _cisc_spill_operand   = Not_cisc_spillable;// Which operand may cisc-spill
  56       _cisc_spill_alternate = NULL;            // possible cisc replacement
  57       _cisc_reg_mask_name   = NULL;
  58       _is_cisc_alternate    = false;
  59       _is_short_branch      = false;
  60       _short_branch_form    = NULL;
  61       _alignment            = 1;
  62 }
  63 
  64 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
  65   : _ident(id), _ideal_only(false),
  66     _localNames(instr->_localNames),
  67     _effects(instr->_effects),
  68     _is_mach_constant(false),
  69     _needs_constant_base(false),
  70     _has_call(false)
  71 {
  72       _ftype = Form::INS;
  73 
  74       _matrule               = rule;
  75       _insencode             = instr->_insencode;
  76       _constant              = instr->_constant;
  77       _is_postalloc_expand   = instr->_is_postalloc_expand;
  78       _opcode                = instr->_opcode;
  79       _size                  = instr->_size;
  80       _attribs               = instr->_attribs;
  81       _predicate             = instr->_predicate;
  82       _exprule               = instr->_exprule;
  83       _rewrule               = instr->_rewrule;
  84       _format                = instr->_format;
  85       _peephole              = instr->_peephole;
  86       _ins_pipe              = instr->_ins_pipe;
  87       _uniq_idx              = instr->_uniq_idx;
  88       _num_uniq              = instr->_num_uniq;
  89       _cisc_spill_operand    = Not_cisc_spillable; // Which operand may cisc-spill
  90       _cisc_spill_alternate  = NULL;               // possible cisc replacement
  91       _cisc_reg_mask_name    = NULL;
  92       _is_cisc_alternate     = false;
  93       _is_short_branch       = false;
  94       _short_branch_form     = NULL;
  95       _alignment             = 1;
  96      // Copy parameters
  97      const char *name;
  98      instr->_parameters.reset();
  99      for (; (name = instr->_parameters.iter()) != NULL;)
 100        _parameters.addName(name);
 101 }
 102 
 103 InstructForm::~InstructForm() {
 104 }
 105 
 106 InstructForm *InstructForm::is_instruction() const {
 107   return (InstructForm*)this;
 108 }
 109 
 110 bool InstructForm::ideal_only() const {
 111   return _ideal_only;
 112 }
 113 
 114 bool InstructForm::sets_result() const {
 115   return (_matrule != NULL && _matrule->sets_result());
 116 }
 117 
 118 bool InstructForm::needs_projections() {
 119   _components.reset();
 120   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 121     if (comp->isa(Component::KILL)) {
 122       return true;
 123     }
 124   }
 125   return false;
 126 }
 127 
 128 
 129 bool InstructForm::has_temps() {
 130   if (_matrule) {
 131     // Examine each component to see if it is a TEMP
 132     _components.reset();
 133     // Skip the first component, if already handled as (SET dst (...))
 134     Component *comp = NULL;
 135     if (sets_result())  comp = _components.iter();
 136     while ((comp = _components.iter()) != NULL) {
 137       if (comp->isa(Component::TEMP)) {
 138         return true;
 139       }
 140     }
 141   }
 142 
 143   return false;
 144 }
 145 
 146 uint InstructForm::num_defs_or_kills() {
 147   uint   defs_or_kills = 0;
 148 
 149   _components.reset();
 150   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 151     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
 152       ++defs_or_kills;
 153     }
 154   }
 155 
 156   return  defs_or_kills;
 157 }
 158 
 159 // This instruction has an expand rule?
 160 bool InstructForm::expands() const {
 161   return ( _exprule != NULL );
 162 }
 163 
 164 // This instruction has a late expand rule?
 165 bool InstructForm::postalloc_expands() const {
 166   return _is_postalloc_expand;
 167 }
 168 
 169 // This instruction has a peephole rule?
 170 Peephole *InstructForm::peepholes() const {
 171   return _peephole;
 172 }
 173 
 174 // This instruction has a peephole rule?
 175 void InstructForm::append_peephole(Peephole *peephole) {
 176   if( _peephole == NULL ) {
 177     _peephole = peephole;
 178   } else {
 179     _peephole->append_peephole(peephole);
 180   }
 181 }
 182 
 183 
 184 // ideal opcode enumeration
 185 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
 186   if( !_matrule ) return "Node"; // Something weird
 187   // Chain rules do not really have ideal Opcodes; use their source
 188   // operand ideal Opcode instead.
 189   if( is_simple_chain_rule(globalNames) ) {
 190     const char *src = _matrule->_rChild->_opType;
 191     OperandForm *src_op = globalNames[src]->is_operand();
 192     assert( src_op, "Not operand class of chain rule" );
 193     if( !src_op->_matrule ) return "Node";
 194     return src_op->_matrule->_opType;
 195   }
 196   // Operand chain rules do not really have ideal Opcodes
 197   if( _matrule->is_chain_rule(globalNames) )
 198     return "Node";
 199   return strcmp(_matrule->_opType,"Set")
 200     ? _matrule->_opType
 201     : _matrule->_rChild->_opType;
 202 }
 203 
 204 // Recursive check on all operands' match rules in my match rule
 205 bool InstructForm::is_pinned(FormDict &globals) {
 206   if ( ! _matrule)  return false;
 207 
 208   int  index   = 0;
 209   if (_matrule->find_type("Goto",          index)) return true;
 210   if (_matrule->find_type("If",            index)) return true;
 211   if (_matrule->find_type("CountedLoopEnd",index)) return true;
 212   if (_matrule->find_type("Return",        index)) return true;
 213   if (_matrule->find_type("Rethrow",       index)) return true;
 214   if (_matrule->find_type("TailCall",      index)) return true;
 215   if (_matrule->find_type("TailJump",      index)) return true;
 216   if (_matrule->find_type("Halt",          index)) return true;
 217   if (_matrule->find_type("Jump",          index)) return true;
 218 
 219   return is_parm(globals);
 220 }
 221 
 222 // Recursive check on all operands' match rules in my match rule
 223 bool InstructForm::is_projection(FormDict &globals) {
 224   if ( ! _matrule)  return false;
 225 
 226   int  index   = 0;
 227   if (_matrule->find_type("Goto",    index)) return true;
 228   if (_matrule->find_type("Return",  index)) return true;
 229   if (_matrule->find_type("Rethrow", index)) return true;
 230   if (_matrule->find_type("TailCall",index)) return true;
 231   if (_matrule->find_type("TailJump",index)) return true;
 232   if (_matrule->find_type("Halt",    index)) return true;
 233 
 234   return false;
 235 }
 236 
 237 // Recursive check on all operands' match rules in my match rule
 238 bool InstructForm::is_parm(FormDict &globals) {
 239   if ( ! _matrule)  return false;
 240 
 241   int  index   = 0;
 242   if (_matrule->find_type("Parm",index)) return true;
 243 
 244   return false;
 245 }
 246 
 247 bool InstructForm::is_ideal_negD() const {
 248   return (_matrule && _matrule->_rChild && strcmp(_matrule->_rChild->_opType, "NegD") == 0);
 249 }
 250 
 251 // Return 'true' if this instruction matches an ideal 'Copy*' node
 252 int InstructForm::is_ideal_copy() const {
 253   return _matrule ? _matrule->is_ideal_copy() : 0;
 254 }
 255 
 256 // Return 'true' if this instruction is too complex to rematerialize.
 257 int InstructForm::is_expensive() const {
 258   // We can prove it is cheap if it has an empty encoding.
 259   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
 260   if (is_empty_encoding())
 261     return 0;
 262 
 263   if (is_tls_instruction())
 264     return 1;
 265 
 266   if (_matrule == NULL)  return 0;
 267 
 268   return _matrule->is_expensive();
 269 }
 270 
 271 // Has an empty encoding if _size is a constant zero or there
 272 // are no ins_encode tokens.
 273 int InstructForm::is_empty_encoding() const {
 274   if (_insencode != NULL) {
 275     _insencode->reset();
 276     if (_insencode->encode_class_iter() == NULL) {
 277       return 1;
 278     }
 279   }
 280   if (_size != NULL && strcmp(_size, "0") == 0) {
 281     return 1;
 282   }
 283   return 0;
 284 }
 285 
 286 int InstructForm::is_tls_instruction() const {
 287   if (_ident != NULL &&
 288       ( ! strcmp( _ident,"tlsLoadP") ||
 289         ! strncmp(_ident,"tlsLoadP_",9)) ) {
 290     return 1;
 291   }
 292 
 293   if (_matrule != NULL && _insencode != NULL) {
 294     const char* opType = _matrule->_opType;
 295     if (strcmp(opType, "Set")==0)
 296       opType = _matrule->_rChild->_opType;
 297     if (strcmp(opType,"ThreadLocal")==0) {
 298       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
 299               (_ident == NULL ? "NULL" : _ident));
 300       return 1;
 301     }
 302   }
 303 
 304   return 0;
 305 }
 306 
 307 
 308 // Return 'true' if this instruction matches an ideal 'If' node
 309 bool InstructForm::is_ideal_if() const {
 310   if( _matrule == NULL ) return false;
 311 
 312   return _matrule->is_ideal_if();
 313 }
 314 
 315 // Return 'true' if this instruction matches an ideal 'FastLock' node
 316 bool InstructForm::is_ideal_fastlock() const {
 317   if( _matrule == NULL ) return false;
 318 
 319   return _matrule->is_ideal_fastlock();
 320 }
 321 
 322 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
 323 bool InstructForm::is_ideal_membar() const {
 324   if( _matrule == NULL ) return false;
 325 
 326   return _matrule->is_ideal_membar();
 327 }
 328 
 329 // Return 'true' if this instruction matches an ideal 'LoadPC' node
 330 bool InstructForm::is_ideal_loadPC() const {
 331   if( _matrule == NULL ) return false;
 332 
 333   return _matrule->is_ideal_loadPC();
 334 }
 335 
 336 // Return 'true' if this instruction matches an ideal 'Box' node
 337 bool InstructForm::is_ideal_box() const {
 338   if( _matrule == NULL ) return false;
 339 
 340   return _matrule->is_ideal_box();
 341 }
 342 
 343 // Return 'true' if this instruction matches an ideal 'Goto' node
 344 bool InstructForm::is_ideal_goto() const {
 345   if( _matrule == NULL ) return false;
 346 
 347   return _matrule->is_ideal_goto();
 348 }
 349 
 350 // Return 'true' if this instruction matches an ideal 'Jump' node
 351 bool InstructForm::is_ideal_jump() const {
 352   if( _matrule == NULL ) return false;
 353 
 354   return _matrule->is_ideal_jump();
 355 }
 356 
 357 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
 358 bool InstructForm::is_ideal_branch() const {
 359   if( _matrule == NULL ) return false;
 360 
 361   return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
 362 }
 363 
 364 
 365 // Return 'true' if this instruction matches an ideal 'Return' node
 366 bool InstructForm::is_ideal_return() const {
 367   if( _matrule == NULL ) return false;
 368 
 369   // Check MatchRule to see if the first entry is the ideal "Return" node
 370   int  index   = 0;
 371   if (_matrule->find_type("Return",index)) return true;
 372   if (_matrule->find_type("Rethrow",index)) return true;
 373   if (_matrule->find_type("TailCall",index)) return true;
 374   if (_matrule->find_type("TailJump",index)) return true;
 375 
 376   return false;
 377 }
 378 
 379 // Return 'true' if this instruction matches an ideal 'Halt' node
 380 bool InstructForm::is_ideal_halt() const {
 381   int  index   = 0;
 382   return _matrule && _matrule->find_type("Halt",index);
 383 }
 384 
 385 // Return 'true' if this instruction matches an ideal 'SafePoint' node
 386 bool InstructForm::is_ideal_safepoint() const {
 387   int  index   = 0;
 388   return _matrule && _matrule->find_type("SafePoint",index);
 389 }
 390 
 391 // Return 'true' if this instruction matches an ideal 'Nop' node
 392 bool InstructForm::is_ideal_nop() const {
 393   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
 394 }
 395 
 396 bool InstructForm::is_ideal_control() const {
 397   if ( ! _matrule)  return false;
 398 
 399   return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
 400 }
 401 
 402 // Return 'true' if this instruction matches an ideal 'Call' node
 403 Form::CallType InstructForm::is_ideal_call() const {
 404   if( _matrule == NULL ) return Form::invalid_type;
 405 
 406   // Check MatchRule to see if the first entry is the ideal "Call" node
 407   int  idx   = 0;
 408   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
 409   idx = 0;
 410   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
 411   idx = 0;
 412   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
 413   idx = 0;
 414   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
 415   idx = 0;
 416   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
 417   idx = 0;
 418   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
 419   idx = 0;
 420   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
 421   idx = 0;
 422 
 423   return Form::invalid_type;
 424 }
 425 
 426 // Return 'true' if this instruction matches an ideal 'Load?' node
 427 Form::DataType InstructForm::is_ideal_load() const {
 428   if( _matrule == NULL ) return Form::none;
 429 
 430   return  _matrule->is_ideal_load();
 431 }
 432 
 433 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
 434 bool InstructForm::skip_antidep_check() const {
 435   if( _matrule == NULL ) return false;
 436 
 437   return  _matrule->skip_antidep_check();
 438 }
 439 
 440 // Return 'true' if this instruction matches an ideal 'Load?' node
 441 Form::DataType InstructForm::is_ideal_store() const {
 442   if( _matrule == NULL ) return Form::none;
 443 
 444   return  _matrule->is_ideal_store();
 445 }
 446 
 447 // Return 'true' if this instruction matches an ideal vector node
 448 bool InstructForm::is_vector() const {
 449   if( _matrule == NULL ) return false;
 450 
 451   return _matrule->is_vector();
 452 }
 453 
 454 
 455 // Return the input register that must match the output register
 456 // If this is not required, return 0
 457 uint InstructForm::two_address(FormDict &globals) {
 458   uint  matching_input = 0;
 459   if(_components.count() == 0) return 0;
 460 
 461   _components.reset();
 462   Component *comp = _components.iter();
 463   // Check if there is a DEF
 464   if( comp->isa(Component::DEF) ) {
 465     // Check that this is a register
 466     const char  *def_type = comp->_type;
 467     const Form  *form     = globals[def_type];
 468     OperandForm *op       = form->is_operand();
 469     if( op ) {
 470       if( op->constrained_reg_class() != NULL &&
 471           op->interface_type(globals) == Form::register_interface ) {
 472         // Remember the local name for equality test later
 473         const char *def_name = comp->_name;
 474         // Check if a component has the same name and is a USE
 475         do {
 476           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
 477             return operand_position_format(def_name);
 478           }
 479         } while( (comp = _components.iter()) != NULL);
 480       }
 481     }
 482   }
 483 
 484   return 0;
 485 }
 486 
 487 
 488 // when chaining a constant to an instruction, returns 'true' and sets opType
 489 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
 490   const char *dummy  = NULL;
 491   const char *dummy2 = NULL;
 492   return is_chain_of_constant(globals, dummy, dummy2);
 493 }
 494 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
 495                 const char * &opTypeParam) {
 496   const char *result = NULL;
 497 
 498   return is_chain_of_constant(globals, opTypeParam, result);
 499 }
 500 
 501 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
 502                 const char * &opTypeParam, const char * &resultParam) {
 503   Form::DataType  data_type = Form::none;
 504   if ( ! _matrule)  return data_type;
 505 
 506   // !!!!!
 507   // The source of the chain rule is 'position = 1'
 508   uint         position = 1;
 509   const char  *result   = NULL;
 510   const char  *name     = NULL;
 511   const char  *opType   = NULL;
 512   // Here base_operand is looking for an ideal type to be returned (opType).
 513   if ( _matrule->is_chain_rule(globals)
 514        && _matrule->base_operand(position, globals, result, name, opType) ) {
 515     data_type = ideal_to_const_type(opType);
 516 
 517     // if it isn't an ideal constant type, just return
 518     if ( data_type == Form::none ) return data_type;
 519 
 520     // Ideal constant types also adjust the opType parameter.
 521     resultParam = result;
 522     opTypeParam = opType;
 523     return data_type;
 524   }
 525 
 526   return data_type;
 527 }
 528 
 529 // Check if a simple chain rule
 530 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
 531   if( _matrule && _matrule->sets_result()
 532       && _matrule->_rChild->_lChild == NULL
 533       && globals[_matrule->_rChild->_opType]
 534       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
 535     return true;
 536   }
 537   return false;
 538 }
 539 
 540 // check for structural rematerialization
 541 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
 542   bool   rematerialize = false;
 543 
 544   Form::DataType data_type = is_chain_of_constant(globals);
 545   if( data_type != Form::none )
 546     rematerialize = true;
 547 
 548   // Constants
 549   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
 550     rematerialize = true;
 551 
 552   // Pseudo-constants (values easily available to the runtime)
 553   if (is_empty_encoding() && is_tls_instruction())
 554     rematerialize = true;
 555 
 556   // 1-input, 1-output, such as copies or increments.
 557   if( _components.count() == 2 &&
 558       _components[0]->is(Component::DEF) &&
 559       _components[1]->isa(Component::USE) )
 560     rematerialize = true;
 561 
 562   // Check for an ideal 'Load?' and eliminate rematerialize option
 563   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
 564        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
 565        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
 566     rematerialize = false;
 567   }
 568 
 569   // Always rematerialize the flags.  They are more expensive to save &
 570   // restore than to recompute (and possibly spill the compare's inputs).
 571   if( _components.count() >= 1 ) {
 572     Component *c = _components[0];
 573     const Form *form = globals[c->_type];
 574     OperandForm *opform = form->is_operand();
 575     if( opform ) {
 576       // Avoid the special stack_slots register classes
 577       const char *rc_name = opform->constrained_reg_class();
 578       if( rc_name ) {
 579         if( strcmp(rc_name,"stack_slots") ) {
 580           // Check for ideal_type of RegFlags
 581           const char *type = opform->ideal_type( globals, registers );
 582           if( (type != NULL) && !strcmp(type, "RegFlags") )
 583             rematerialize = true;
 584         } else
 585           rematerialize = false; // Do not rematerialize things target stk
 586       }
 587     }
 588   }
 589 
 590   return rematerialize;
 591 }
 592 
 593 // loads from memory, so must check for anti-dependence
 594 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
 595   if ( skip_antidep_check() ) return false;
 596 
 597   // Machine independent loads must be checked for anti-dependences
 598   if( is_ideal_load() != Form::none )  return true;
 599 
 600   // !!!!! !!!!! !!!!!
 601   // TEMPORARY
 602   // if( is_simple_chain_rule(globals) )  return false;
 603 
 604   // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
 605   // but writes none
 606   if( _matrule && _matrule->_rChild &&
 607       ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
 608         strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
 609         strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
 610         strcmp(_matrule->_rChild->_opType,"StrIndexOfChar" )==0 ||
 611         strcmp(_matrule->_rChild->_opType,"HasNegatives" )==0 ||
 612         strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
 613     return true;
 614 
 615   // Check if instruction has a USE of a memory operand class, but no defs
 616   bool USE_of_memory  = false;
 617   bool DEF_of_memory  = false;
 618   Component     *comp = NULL;
 619   ComponentList &components = (ComponentList &)_components;
 620 
 621   components.reset();
 622   while( (comp = components.iter()) != NULL ) {
 623     const Form  *form = globals[comp->_type];
 624     if( !form ) continue;
 625     OpClassForm *op   = form->is_opclass();
 626     if( !op ) continue;
 627     if( form->interface_type(globals) == Form::memory_interface ) {
 628       if( comp->isa(Component::USE) ) USE_of_memory = true;
 629       if( comp->isa(Component::DEF) ) {
 630         OperandForm *oper = form->is_operand();
 631         if( oper && oper->is_user_name_for_sReg() ) {
 632           // Stack slots are unaliased memory handled by allocator
 633           oper = oper;  // debug stopping point !!!!!
 634         } else {
 635           DEF_of_memory = true;
 636         }
 637       }
 638     }
 639   }
 640   return (USE_of_memory && !DEF_of_memory);
 641 }
 642 
 643 
 644 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
 645   if( _matrule == NULL ) return false;
 646   if( !_matrule->_opType ) return false;
 647 
 648   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
 649   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
 650   if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
 651   if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
 652   if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
 653   if( strcmp(_matrule->_opType,"MemBarVolatile") == 0 ) return true;
 654   if( strcmp(_matrule->_opType,"StoreFence") == 0 ) return true;
 655   if( strcmp(_matrule->_opType,"LoadFence") == 0 ) return true;
 656 
 657   return false;
 658 }
 659 
 660 int InstructForm::memory_operand(FormDict &globals) const {
 661   // Machine independent loads must be checked for anti-dependences
 662   // Check if instruction has a USE of a memory operand class, or a def.
 663   int USE_of_memory  = 0;
 664   int DEF_of_memory  = 0;
 665   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
 666   const char*    last_memory_USE = NULL;
 667   Component     *unique          = NULL;
 668   Component     *comp            = NULL;
 669   ComponentList &components      = (ComponentList &)_components;
 670 
 671   components.reset();
 672   while( (comp = components.iter()) != NULL ) {
 673     const Form  *form = globals[comp->_type];
 674     if( !form ) continue;
 675     OpClassForm *op   = form->is_opclass();
 676     if( !op ) continue;
 677     if( op->stack_slots_only(globals) )  continue;
 678     if( form->interface_type(globals) == Form::memory_interface ) {
 679       if( comp->isa(Component::DEF) ) {
 680         last_memory_DEF = comp->_name;
 681         DEF_of_memory++;
 682         unique = comp;
 683       } else if( comp->isa(Component::USE) ) {
 684         if( last_memory_DEF != NULL ) {
 685           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
 686           last_memory_DEF = NULL;
 687         }
 688         // Handles same memory being used multiple times in the case of BMI1 instructions.
 689         if (last_memory_USE != NULL) {
 690           if (strcmp(comp->_name, last_memory_USE) != 0) {
 691             USE_of_memory++;
 692           }
 693         } else {
 694           USE_of_memory++;
 695         }
 696         last_memory_USE = comp->_name;
 697 
 698         if (DEF_of_memory == 0)  // defs take precedence
 699           unique = comp;
 700       } else {
 701         assert(last_memory_DEF == NULL, "unpaired memory DEF");
 702       }
 703     }
 704   }
 705   assert(last_memory_DEF == NULL, "unpaired memory DEF");
 706   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
 707   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
 708   if( (USE_of_memory + DEF_of_memory) > 0 ) {
 709     if( is_simple_chain_rule(globals) ) {
 710       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
 711       //((InstructForm*)this)->dump();
 712       // Preceding code prints nothing on sparc and these insns on intel:
 713       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
 714       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
 715       return NO_MEMORY_OPERAND;
 716     }
 717 
 718     if( DEF_of_memory == 1 ) {
 719       assert(unique != NULL, "");
 720       if( USE_of_memory == 0 ) {
 721         // unique def, no uses
 722       } else {
 723         // // unique def, some uses
 724         // // must return bottom unless all uses match def
 725         // unique = NULL;
 726 #ifdef S390
 727         // This case is important for move instructions on s390x.
 728         // On other platforms (e.g. x86), all uses always match the def.
 729         unique = NULL;
 730 #endif
 731       }
 732     } else if( DEF_of_memory > 0 ) {
 733       // multiple defs, don't care about uses
 734       unique = NULL;
 735     } else if( USE_of_memory == 1) {
 736       // unique use, no defs
 737       assert(unique != NULL, "");
 738     } else if( USE_of_memory > 0 ) {
 739       // multiple uses, no defs
 740       unique = NULL;
 741     } else {
 742       assert(false, "bad case analysis");
 743     }
 744     // process the unique DEF or USE, if there is one
 745     if( unique == NULL ) {
 746       return MANY_MEMORY_OPERANDS;
 747     } else {
 748       int pos = components.operand_position(unique->_name);
 749       if( unique->isa(Component::DEF) ) {
 750         pos += 1;                // get corresponding USE from DEF
 751       }
 752       assert(pos >= 1, "I was just looking at it!");
 753       return pos;
 754     }
 755   }
 756 
 757   // missed the memory op??
 758   if( true ) {  // %%% should not be necessary
 759     if( is_ideal_store() != Form::none ) {
 760       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 761       ((InstructForm*)this)->dump();
 762       // pretend it has multiple defs and uses
 763       return MANY_MEMORY_OPERANDS;
 764     }
 765     if( is_ideal_load()  != Form::none ) {
 766       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 767       ((InstructForm*)this)->dump();
 768       // pretend it has multiple uses and no defs
 769       return MANY_MEMORY_OPERANDS;
 770     }
 771   }
 772 
 773   return NO_MEMORY_OPERAND;
 774 }
 775 
 776 
 777 // This instruction captures the machine-independent bottom_type
 778 // Expected use is for pointer vs oop determination for LoadP
 779 bool InstructForm::captures_bottom_type(FormDict &globals) const {
 780   if (_matrule && _matrule->_rChild &&
 781       (!strcmp(_matrule->_rChild->_opType,"CastPP")       ||  // new result type
 782        !strcmp(_matrule->_rChild->_opType,"CastX2P")      ||  // new result type
 783        !strcmp(_matrule->_rChild->_opType,"DecodeN")      ||
 784        !strcmp(_matrule->_rChild->_opType,"EncodeP")      ||
 785        !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
 786        !strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
 787        !strcmp(_matrule->_rChild->_opType,"LoadN")        ||
 788        !strcmp(_matrule->_rChild->_opType,"LoadNKlass")   ||
 789        !strcmp(_matrule->_rChild->_opType,"CreateEx")     ||  // type of exception
 790        !strcmp(_matrule->_rChild->_opType,"CheckCastPP")  ||
 791        !strcmp(_matrule->_rChild->_opType,"GetAndSetP")   ||
 792        !strcmp(_matrule->_rChild->_opType,"GetAndSetN")   ||
 793        !strcmp(_matrule->_rChild->_opType,"CompareAndExchangeP") ||
 794        !strcmp(_matrule->_rChild->_opType,"CompareAndExchangeN")))  return true;
 795   else if ( is_ideal_load() == Form::idealP )                return true;
 796   else if ( is_ideal_store() != Form::none  )                return true;
 797 
 798   if (needs_base_oop_edge(globals)) return true;
 799 
 800   if (is_vector()) return true;
 801   if (is_mach_constant()) return true;
 802 
 803   return  false;
 804 }
 805 
 806 
 807 // Access instr_cost attribute or return NULL.
 808 const char* InstructForm::cost() {
 809   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
 810     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
 811       return cur->_val;
 812     }
 813   }
 814   return NULL;
 815 }
 816 
 817 // Return count of top-level operands.
 818 uint InstructForm::num_opnds() {
 819   int  num_opnds = _components.num_operands();
 820 
 821   // Need special handling for matching some ideal nodes
 822   // i.e. Matching a return node
 823   /*
 824   if( _matrule ) {
 825     if( strcmp(_matrule->_opType,"Return"   )==0 ||
 826         strcmp(_matrule->_opType,"Halt"     )==0 )
 827       return 3;
 828   }
 829     */
 830   return num_opnds;
 831 }
 832 
 833 const char* InstructForm::opnd_ident(int idx) {
 834   return _components.at(idx)->_name;
 835 }
 836 
 837 const char* InstructForm::unique_opnd_ident(uint idx) {
 838   uint i;
 839   for (i = 1; i < num_opnds(); ++i) {
 840     if (unique_opnds_idx(i) == idx) {
 841       break;
 842     }
 843   }
 844   return (_components.at(i) != NULL) ? _components.at(i)->_name : "";
 845 }
 846 
 847 // Return count of unmatched operands.
 848 uint InstructForm::num_post_match_opnds() {
 849   uint  num_post_match_opnds = _components.count();
 850   uint  num_match_opnds = _components.match_count();
 851   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
 852 
 853   return num_post_match_opnds;
 854 }
 855 
 856 // Return the number of leaves below this complex operand
 857 uint InstructForm::num_consts(FormDict &globals) const {
 858   if ( ! _matrule) return 0;
 859 
 860   // This is a recursive invocation on all operands in the matchrule
 861   return _matrule->num_consts(globals);
 862 }
 863 
 864 // Constants in match rule with specified type
 865 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
 866   if ( ! _matrule) return 0;
 867 
 868   // This is a recursive invocation on all operands in the matchrule
 869   return _matrule->num_consts(globals, type);
 870 }
 871 
 872 
 873 // Return the register class associated with 'leaf'.
 874 const char *InstructForm::out_reg_class(FormDict &globals) {
 875   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
 876 
 877   return NULL;
 878 }
 879 
 880 
 881 
 882 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
 883 uint InstructForm::oper_input_base(FormDict &globals) {
 884   if( !_matrule ) return 1;     // Skip control for most nodes
 885 
 886   // Need special handling for matching some ideal nodes
 887   // i.e. Matching a return node
 888   if( strcmp(_matrule->_opType,"Return"    )==0 ||
 889       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
 890       strcmp(_matrule->_opType,"TailCall"  )==0 ||
 891       strcmp(_matrule->_opType,"TailJump"  )==0 ||
 892       strcmp(_matrule->_opType,"SafePoint" )==0 ||
 893       strcmp(_matrule->_opType,"Halt"      )==0 )
 894     return AdlcVMDeps::Parms;   // Skip the machine-state edges
 895 
 896   if( _matrule->_rChild &&
 897       ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
 898         strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
 899         strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
 900         strcmp(_matrule->_rChild->_opType,"StrInflatedCopy"   )==0 ||
 901         strcmp(_matrule->_rChild->_opType,"StrCompressedCopy" )==0 ||
 902         strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 ||
 903         strcmp(_matrule->_rChild->_opType,"StrIndexOfChar")==0 ||
 904         strcmp(_matrule->_rChild->_opType,"HasNegatives")==0 ||
 905         strcmp(_matrule->_rChild->_opType,"EncodeISOArray")==0)) {
 906         // String.(compareTo/equals/indexOf) and Arrays.equals
 907         // and sun.nio.cs.iso8859_1$Encoder.EncodeISOArray
 908         // take 1 control and 1 memory edges.
 909         // Also String.(compressedCopy/inflatedCopy).
 910     return 2;
 911   }
 912 
 913   // Check for handling of 'Memory' input/edge in the ideal world.
 914   // The AD file writer is shielded from knowledge of these edges.
 915   int base = 1;                 // Skip control
 916   base += _matrule->needs_ideal_memory_edge(globals);
 917 
 918   // Also skip the base-oop value for uses of derived oops.
 919   // The AD file writer is shielded from knowledge of these edges.
 920   base += needs_base_oop_edge(globals);
 921 
 922   return base;
 923 }
 924 
 925 // This function determines the order of the MachOper in _opnds[]
 926 // by writing the operand names into the _components list.
 927 //
 928 // Implementation does not modify state of internal structures
 929 void InstructForm::build_components() {
 930   // Add top-level operands to the components
 931   if (_matrule)  _matrule->append_components(_localNames, _components);
 932 
 933   // Add parameters that "do not appear in match rule".
 934   bool has_temp = false;
 935   const char *name;
 936   const char *kill_name = NULL;
 937   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
 938     OperandForm *opForm = (OperandForm*)_localNames[name];
 939 
 940     Effect* e = NULL;
 941     {
 942       const Form* form = _effects[name];
 943       e = form ? form->is_effect() : NULL;
 944     }
 945 
 946     if (e != NULL) {
 947       has_temp |= e->is(Component::TEMP);
 948 
 949       // KILLs must be declared after any TEMPs because TEMPs are real
 950       // uses so their operand numbering must directly follow the real
 951       // inputs from the match rule.  Fixing the numbering seems
 952       // complex so simply enforce the restriction during parse.
 953       if (kill_name != NULL &&
 954           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
 955         OperandForm* kill = (OperandForm*)_localNames[kill_name];
 956         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
 957                              _ident, kill->_ident, kill_name);
 958       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
 959         kill_name = name;
 960       }
 961     }
 962 
 963     const Component *component  = _components.search(name);
 964     if ( component  == NULL ) {
 965       if (e) {
 966         _components.insert(name, opForm->_ident, e->_use_def, false);
 967         component = _components.search(name);
 968         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
 969           const Form *form = globalAD->globalNames()[component->_type];
 970           assert( form, "component type must be a defined form");
 971           OperandForm *op   = form->is_operand();
 972           if (op->_interface && op->_interface->is_RegInterface()) {
 973             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 974                                  _ident, opForm->_ident, name);
 975           }
 976         }
 977       } else {
 978         // This would be a nice warning but it triggers in a few places in a benign way
 979         // if (_matrule != NULL && !expands()) {
 980         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
 981         //                        _ident, opForm->_ident, name);
 982         // }
 983         _components.insert(name, opForm->_ident, Component::INVALID, false);
 984       }
 985     }
 986     else if (e) {
 987       // Component was found in the list
 988       // Check if there is a new effect that requires an extra component.
 989       // This happens when adding 'USE' to a component that is not yet one.
 990       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
 991         if (component->isa(Component::USE) && _matrule) {
 992           const Form *form = globalAD->globalNames()[component->_type];
 993           assert( form, "component type must be a defined form");
 994           OperandForm *op   = form->is_operand();
 995           if (op->_interface && op->_interface->is_RegInterface()) {
 996             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 997                                  _ident, opForm->_ident, name);
 998           }
 999         }
1000         _components.insert(name, opForm->_ident, e->_use_def, false);
1001       } else {
1002         Component  *comp = (Component*)component;
1003         comp->promote_use_def_info(e->_use_def);
1004       }
1005       // Component positions are zero based.
1006       int  pos  = _components.operand_position(name);
1007       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
1008               "Component::DEF can only occur in the first position");
1009     }
1010   }
1011 
1012   // Resolving the interactions between expand rules and TEMPs would
1013   // be complex so simply disallow it.
1014   if (_matrule == NULL && has_temp) {
1015     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
1016   }
1017 
1018   return;
1019 }
1020 
1021 // Return zero-based position in component list;  -1 if not in list.
1022 int   InstructForm::operand_position(const char *name, int usedef) {
1023   return unique_opnds_idx(_components.operand_position(name, usedef, this));
1024 }
1025 
1026 int   InstructForm::operand_position_format(const char *name) {
1027   return unique_opnds_idx(_components.operand_position_format(name, this));
1028 }
1029 
1030 // Return zero-based position in component list; -1 if not in list.
1031 int   InstructForm::label_position() {
1032   return unique_opnds_idx(_components.label_position());
1033 }
1034 
1035 int   InstructForm::method_position() {
1036   return unique_opnds_idx(_components.method_position());
1037 }
1038 
1039 // Return number of relocation entries needed for this instruction.
1040 uint  InstructForm::reloc(FormDict &globals) {
1041   uint reloc_entries  = 0;
1042   // Check for "Call" nodes
1043   if ( is_ideal_call() )      ++reloc_entries;
1044   if ( is_ideal_return() )    ++reloc_entries;
1045   if ( is_ideal_safepoint() ) ++reloc_entries;
1046 
1047 
1048   // Check if operands MAYBE oop pointers, by checking for ConP elements
1049   // Proceed through the leaves of the match-tree and check for ConPs
1050   if ( _matrule != NULL ) {
1051     uint         position = 0;
1052     const char  *result   = NULL;
1053     const char  *name     = NULL;
1054     const char  *opType   = NULL;
1055     while (_matrule->base_operand(position, globals, result, name, opType)) {
1056       if ( strcmp(opType,"ConP") == 0 ) {
1057 #ifdef SPARC
1058         reloc_entries += 2; // 1 for sethi + 1 for setlo
1059 #else
1060         ++reloc_entries;
1061 #endif
1062       }
1063       ++position;
1064     }
1065   }
1066 
1067   // Above is only a conservative estimate
1068   // because it did not check contents of operand classes.
1069   // !!!!! !!!!!
1070   // Add 1 to reloc info for each operand class in the component list.
1071   Component  *comp;
1072   _components.reset();
1073   while ( (comp = _components.iter()) != NULL ) {
1074     const Form        *form = globals[comp->_type];
1075     assert( form, "Did not find component's type in global names");
1076     const OpClassForm *opc  = form->is_opclass();
1077     const OperandForm *oper = form->is_operand();
1078     if ( opc && (oper == NULL) ) {
1079       ++reloc_entries;
1080     } else if ( oper ) {
1081       // floats and doubles loaded out of method's constant pool require reloc info
1082       Form::DataType type = oper->is_base_constant(globals);
1083       if ( (type == Form::idealF) || (type == Form::idealD) ) {
1084         ++reloc_entries;
1085       }
1086     }
1087   }
1088 
1089   // Float and Double constants may come from the CodeBuffer table
1090   // and require relocatable addresses for access
1091   // !!!!!
1092   // Check for any component being an immediate float or double.
1093   Form::DataType data_type = is_chain_of_constant(globals);
1094   if( data_type==idealD || data_type==idealF ) {
1095 #ifdef SPARC
1096     // sparc required more relocation entries for floating constants
1097     // (expires 9/98)
1098     reloc_entries += 6;
1099 #else
1100     reloc_entries++;
1101 #endif
1102   }
1103 
1104   return reloc_entries;
1105 }
1106 
1107 // Utility function defined in archDesc.cpp
1108 extern bool is_def(int usedef);
1109 
1110 // Return the result of reducing an instruction
1111 const char *InstructForm::reduce_result() {
1112   const char* result = "Universe";  // default
1113   _components.reset();
1114   Component *comp = _components.iter();
1115   if (comp != NULL && comp->isa(Component::DEF)) {
1116     result = comp->_type;
1117     // Override this if the rule is a store operation:
1118     if (_matrule && _matrule->_rChild &&
1119         is_store_to_memory(_matrule->_rChild->_opType))
1120       result = "Universe";
1121   }
1122   return result;
1123 }
1124 
1125 // Return the name of the operand on the right hand side of the binary match
1126 // Return NULL if there is no right hand side
1127 const char *InstructForm::reduce_right(FormDict &globals)  const {
1128   if( _matrule == NULL ) return NULL;
1129   return  _matrule->reduce_right(globals);
1130 }
1131 
1132 // Similar for left
1133 const char *InstructForm::reduce_left(FormDict &globals)   const {
1134   if( _matrule == NULL ) return NULL;
1135   return  _matrule->reduce_left(globals);
1136 }
1137 
1138 
1139 // Base class for this instruction, MachNode except for calls
1140 const char *InstructForm::mach_base_class(FormDict &globals)  const {
1141   if( is_ideal_call() == Form::JAVA_STATIC ) {
1142     return "MachCallStaticJavaNode";
1143   }
1144   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
1145     return "MachCallDynamicJavaNode";
1146   }
1147   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
1148     return "MachCallRuntimeNode";
1149   }
1150   else if( is_ideal_call() == Form::JAVA_LEAF ) {
1151     return "MachCallLeafNode";
1152   }
1153   else if (is_ideal_return()) {
1154     return "MachReturnNode";
1155   }
1156   else if (is_ideal_halt()) {
1157     return "MachHaltNode";
1158   }
1159   else if (is_ideal_safepoint()) {
1160     return "MachSafePointNode";
1161   }
1162   else if (is_ideal_if()) {
1163     return "MachIfNode";
1164   }
1165   else if (is_ideal_goto()) {
1166     return "MachGotoNode";
1167   }
1168   else if (is_ideal_fastlock()) {
1169     return "MachFastLockNode";
1170   }
1171   else if (is_ideal_nop()) {
1172     return "MachNopNode";
1173   }
1174   else if (is_mach_constant()) {
1175     return "MachConstantNode";
1176   }
1177   else if (captures_bottom_type(globals)) {
1178     return "MachTypeNode";
1179   } else {
1180     return "MachNode";
1181   }
1182   assert( false, "ShouldNotReachHere()");
1183   return NULL;
1184 }
1185 
1186 // Compare the instruction predicates for textual equality
1187 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
1188   const Predicate *pred1  = instr1->_predicate;
1189   const Predicate *pred2  = instr2->_predicate;
1190   if( pred1 == NULL && pred2 == NULL ) {
1191     // no predicates means they are identical
1192     return true;
1193   }
1194   if( pred1 != NULL && pred2 != NULL ) {
1195     // compare the predicates
1196     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
1197       return true;
1198     }
1199   }
1200 
1201   return false;
1202 }
1203 
1204 // Check if this instruction can cisc-spill to 'alternate'
1205 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
1206   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
1207   // Do not replace if a cisc-version has been found.
1208   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
1209 
1210   int         cisc_spill_operand = Maybe_cisc_spillable;
1211   char       *result             = NULL;
1212   char       *result2            = NULL;
1213   const char *op_name            = NULL;
1214   const char *reg_type           = NULL;
1215   FormDict   &globals            = AD.globalNames();
1216   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
1217   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
1218     cisc_spill_operand = operand_position(op_name, Component::USE);
1219     int def_oper  = operand_position(op_name, Component::DEF);
1220     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
1221       // Do not support cisc-spilling for destination operands and
1222       // make sure they have the same number of operands.
1223       _cisc_spill_alternate = instr;
1224       instr->set_cisc_alternate(true);
1225       if( AD._cisc_spill_debug ) {
1226         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
1227         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
1228       }
1229       // Record that a stack-version of the reg_mask is needed
1230       // !!!!!
1231       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
1232       assert( oper != NULL, "cisc-spilling non operand");
1233       const char *reg_class_name = oper->constrained_reg_class();
1234       AD.set_stack_or_reg(reg_class_name);
1235       const char *reg_mask_name  = AD.reg_mask(*oper);
1236       set_cisc_reg_mask_name(reg_mask_name);
1237       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
1238     } else {
1239       cisc_spill_operand = Not_cisc_spillable;
1240     }
1241   } else {
1242     cisc_spill_operand = Not_cisc_spillable;
1243   }
1244 
1245   set_cisc_spill_operand(cisc_spill_operand);
1246   return (cisc_spill_operand != Not_cisc_spillable);
1247 }
1248 
1249 // Check to see if this instruction can be replaced with the short branch
1250 // instruction `short-branch'
1251 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
1252   if (_matrule != NULL &&
1253       this != short_branch &&   // Don't match myself
1254       !is_short_branch() &&     // Don't match another short branch variant
1255       reduce_result() != NULL &&
1256       strstr(_ident, "restoreMask") == NULL && // Don't match side effects
1257       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
1258       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
1259     // The instructions are equivalent.
1260 
1261     // Now verify that both instructions have the same parameters and
1262     // the same effects. Both branch forms should have the same inputs
1263     // and resulting projections to correctly replace a long branch node
1264     // with corresponding short branch node during code generation.
1265 
1266     bool different = false;
1267     if (short_branch->_components.count() != _components.count()) {
1268        different = true;
1269     } else if (_components.count() > 0) {
1270       short_branch->_components.reset();
1271       _components.reset();
1272       Component *comp;
1273       while ((comp = _components.iter()) != NULL) {
1274         Component *short_comp = short_branch->_components.iter();
1275         if (short_comp == NULL ||
1276             short_comp->_type != comp->_type ||
1277             short_comp->_usedef != comp->_usedef) {
1278           different = true;
1279           break;
1280         }
1281       }
1282       if (short_branch->_components.iter() != NULL)
1283         different = true;
1284     }
1285     if (different) {
1286       globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
1287     }
1288     if (AD._adl_debug > 1 || AD._short_branch_debug) {
1289       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
1290     }
1291     _short_branch_form = short_branch;
1292     return true;
1293   }
1294   return false;
1295 }
1296 
1297 
1298 // --------------------------- FILE *output_routines
1299 //
1300 // Generate the format call for the replacement variable
1301 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
1302   // Handle special constant table variables.
1303   if (strcmp(rep_var, "constanttablebase") == 0) {
1304     fprintf(fp, "char reg[128];  ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
1305     fprintf(fp, "    st->print(\"%%s\", reg);\n");
1306     return;
1307   }
1308   if (strcmp(rep_var, "constantoffset") == 0) {
1309     fprintf(fp, "st->print(\"#%%d\", constant_offset_unchecked());\n");
1310     return;
1311   }
1312   if (strcmp(rep_var, "constantaddress") == 0) {
1313     fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset_unchecked());\n");
1314     return;
1315   }
1316 
1317   // Find replacement variable's type
1318   const Form *form   = _localNames[rep_var];
1319   if (form == NULL) {
1320     globalAD->syntax_err(_linenum, "Unknown replacement variable %s in format statement of %s.",
1321                          rep_var, _ident);
1322     return;
1323   }
1324   OpClassForm *opc   = form->is_opclass();
1325   assert( opc, "replacement variable was not found in local names");
1326   // Lookup the index position of the replacement variable
1327   int idx  = operand_position_format(rep_var);
1328   if ( idx == -1 ) {
1329     globalAD->syntax_err(_linenum, "Could not find replacement variable %s in format statement of %s.\n",
1330                          rep_var, _ident);
1331     assert(strcmp(opc->_ident, "label") == 0, "Unimplemented");
1332     return;
1333   }
1334 
1335   if (is_noninput_operand(idx)) {
1336     // This component isn't in the input array.  Print out the static
1337     // name of the register.
1338     OperandForm* oper = form->is_operand();
1339     if (oper != NULL && oper->is_bound_register()) {
1340       const RegDef* first = oper->get_RegClass()->find_first_elem();
1341       fprintf(fp, "    st->print_raw(\"%s\");\n", first->_regname);
1342     } else {
1343       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
1344     }
1345   } else {
1346     // Output the format call for this operand
1347     fprintf(fp,"opnd_array(%d)->",idx);
1348     if (idx == 0)
1349       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
1350     else
1351       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
1352   }
1353 }
1354 
1355 // Seach through operands to determine parameters unique positions.
1356 void InstructForm::set_unique_opnds() {
1357   uint* uniq_idx = NULL;
1358   uint  nopnds = num_opnds();
1359   uint  num_uniq = nopnds;
1360   uint i;
1361   _uniq_idx_length = 0;
1362   if (nopnds > 0) {
1363     // Allocate index array.  Worst case we're mapping from each
1364     // component back to an index and any DEF always goes at 0 so the
1365     // length of the array has to be the number of components + 1.
1366     _uniq_idx_length = _components.count() + 1;
1367     uniq_idx = (uint*) malloc(sizeof(uint) * _uniq_idx_length);
1368     for (i = 0; i < _uniq_idx_length; i++) {
1369       uniq_idx[i] = i;
1370     }
1371   }
1372   // Do it only if there is a match rule and no expand rule.  With an
1373   // expand rule it is done by creating new mach node in Expand()
1374   // method.
1375   if (nopnds > 0 && _matrule != NULL && _exprule == NULL) {
1376     const char *name;
1377     uint count;
1378     bool has_dupl_use = false;
1379 
1380     _parameters.reset();
1381     while ((name = _parameters.iter()) != NULL) {
1382       count = 0;
1383       uint position = 0;
1384       uint uniq_position = 0;
1385       _components.reset();
1386       Component *comp = NULL;
1387       if (sets_result()) {
1388         comp = _components.iter();
1389         position++;
1390       }
1391       // The next code is copied from the method operand_position().
1392       for (; (comp = _components.iter()) != NULL; ++position) {
1393         // When the first component is not a DEF,
1394         // leave space for the result operand!
1395         if (position==0 && (!comp->isa(Component::DEF))) {
1396           ++position;
1397         }
1398         if (strcmp(name, comp->_name) == 0) {
1399           if (++count > 1) {
1400             assert(position < _uniq_idx_length, "out of bounds");
1401             uniq_idx[position] = uniq_position;
1402             has_dupl_use = true;
1403           } else {
1404             uniq_position = position;
1405           }
1406         }
1407         if (comp->isa(Component::DEF) && comp->isa(Component::USE)) {
1408           ++position;
1409           if (position != 1)
1410             --position;   // only use two slots for the 1st USE_DEF
1411         }
1412       }
1413     }
1414     if (has_dupl_use) {
1415       for (i = 1; i < nopnds; i++) {
1416         if (i != uniq_idx[i]) {
1417           break;
1418         }
1419       }
1420       uint j = i;
1421       for (; i < nopnds; i++) {
1422         if (i == uniq_idx[i]) {
1423           uniq_idx[i] = j++;
1424         }
1425       }
1426       num_uniq = j;
1427     }
1428   }
1429   _uniq_idx = uniq_idx;
1430   _num_uniq = num_uniq;
1431 }
1432 
1433 // Generate index values needed for determining the operand position
1434 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
1435   uint  idx = 0;                  // position of operand in match rule
1436   int   cur_num_opnds = num_opnds();
1437 
1438   // Compute the index into vector of operand pointers:
1439   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
1440   // idx1 starts at oper_input_base()
1441   if ( cur_num_opnds >= 1 ) {
1442     fprintf(fp,"  // Start at oper_input_base() and count operands\n");
1443     fprintf(fp,"  unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
1444     fprintf(fp,"  unsigned %sidx1 = %d;", prefix, oper_input_base(globals));
1445     fprintf(fp," \t// %s\n", unique_opnd_ident(1));
1446 
1447     // Generate starting points for other unique operands if they exist
1448     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
1449       if( *receiver == 0 ) {
1450         fprintf(fp,"  unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();",
1451                 prefix, idx, prefix, idx-1, idx-1 );
1452       } else {
1453         fprintf(fp,"  unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();",
1454                 prefix, idx, prefix, idx-1, receiver, idx-1 );
1455       }
1456       fprintf(fp," \t// %s\n", unique_opnd_ident(idx));
1457     }
1458   }
1459   if( *receiver != 0 ) {
1460     // This value is used by generate_peepreplace when copying a node.
1461     // Don't emit it in other cases since it can hide bugs with the
1462     // use invalid idx's.
1463     fprintf(fp,"  unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
1464   }
1465 
1466 }
1467 
1468 // ---------------------------
1469 bool InstructForm::verify() {
1470   // !!!!! !!!!!
1471   // Check that a "label" operand occurs last in the operand list, if present
1472   return true;
1473 }
1474 
1475 void InstructForm::dump() {
1476   output(stderr);
1477 }
1478 
1479 void InstructForm::output(FILE *fp) {
1480   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
1481   if (_matrule)   _matrule->output(fp);
1482   if (_insencode) _insencode->output(fp);
1483   if (_constant)  _constant->output(fp);
1484   if (_opcode)    _opcode->output(fp);
1485   if (_attribs)   _attribs->output(fp);
1486   if (_predicate) _predicate->output(fp);
1487   if (_effects.Size()) {
1488     fprintf(fp,"Effects\n");
1489     _effects.dump();
1490   }
1491   if (_exprule)   _exprule->output(fp);
1492   if (_rewrule)   _rewrule->output(fp);
1493   if (_format)    _format->output(fp);
1494   if (_peephole)  _peephole->output(fp);
1495 }
1496 
1497 void MachNodeForm::dump() {
1498   output(stderr);
1499 }
1500 
1501 void MachNodeForm::output(FILE *fp) {
1502   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
1503 }
1504 
1505 //------------------------------build_predicate--------------------------------
1506 // Build instruction predicates.  If the user uses the same operand name
1507 // twice, we need to check that the operands are pointer-eequivalent in
1508 // the DFA during the labeling process.
1509 Predicate *InstructForm::build_predicate() {
1510   const int buflen = 1024;
1511   char buf[buflen], *s=buf;
1512   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
1513 
1514   MatchNode *mnode =
1515     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
1516   mnode->count_instr_names(names);
1517 
1518   uint first = 1;
1519   // Start with the predicate supplied in the .ad file.
1520   if (_predicate) {
1521     if (first) first = 0;
1522     strcpy(s, "("); s += strlen(s);
1523     strncpy(s, _predicate->_pred, buflen - strlen(s) - 1);
1524     s += strlen(s);
1525     strcpy(s, ")"); s += strlen(s);
1526   }
1527   for( DictI i(&names); i.test(); ++i ) {
1528     uintptr_t cnt = (uintptr_t)i._value;
1529     if( cnt > 1 ) {             // Need a predicate at all?
1530       assert( cnt == 2, "Unimplemented" );
1531       // Handle many pairs
1532       if( first ) first=0;
1533       else {                    // All tests must pass, so use '&&'
1534         strcpy(s," && ");
1535         s += strlen(s);
1536       }
1537       // Add predicate to working buffer
1538       sprintf(s,"/*%s*/(",(char*)i._key);
1539       s += strlen(s);
1540       mnode->build_instr_pred(s,(char*)i._key,0);
1541       s += strlen(s);
1542       strcpy(s," == "); s += strlen(s);
1543       mnode->build_instr_pred(s,(char*)i._key,1);
1544       s += strlen(s);
1545       strcpy(s,")"); s += strlen(s);
1546     }
1547   }
1548   if( s == buf ) s = NULL;
1549   else {
1550     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
1551     s = strdup(buf);
1552   }
1553   return new Predicate(s);
1554 }
1555 
1556 //------------------------------EncodeForm-------------------------------------
1557 // Constructor
1558 EncodeForm::EncodeForm()
1559   : _encClass(cmpstr,hashstr, Form::arena) {
1560 }
1561 EncodeForm::~EncodeForm() {
1562 }
1563 
1564 // record a new register class
1565 EncClass *EncodeForm::add_EncClass(const char *className) {
1566   EncClass *encClass = new EncClass(className);
1567   _eclasses.addName(className);
1568   _encClass.Insert(className,encClass);
1569   return encClass;
1570 }
1571 
1572 // Lookup the function body for an encoding class
1573 EncClass  *EncodeForm::encClass(const char *className) {
1574   assert( className != NULL, "Must provide a defined encoding name");
1575 
1576   EncClass *encClass = (EncClass*)_encClass[className];
1577   return encClass;
1578 }
1579 
1580 // Lookup the function body for an encoding class
1581 const char *EncodeForm::encClassBody(const char *className) {
1582   if( className == NULL ) return NULL;
1583 
1584   EncClass *encClass = (EncClass*)_encClass[className];
1585   assert( encClass != NULL, "Encode Class is missing.");
1586   encClass->_code.reset();
1587   const char *code = (const char*)encClass->_code.iter();
1588   assert( code != NULL, "Found an empty encode class body.");
1589 
1590   return code;
1591 }
1592 
1593 // Lookup the function body for an encoding class
1594 const char *EncodeForm::encClassPrototype(const char *className) {
1595   assert( className != NULL, "Encode class name must be non NULL.");
1596 
1597   return className;
1598 }
1599 
1600 void EncodeForm::dump() {                  // Debug printer
1601   output(stderr);
1602 }
1603 
1604 void EncodeForm::output(FILE *fp) {          // Write info to output files
1605   const char *name;
1606   fprintf(fp,"\n");
1607   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
1608   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
1609     ((EncClass*)_encClass[name])->output(fp);
1610   }
1611   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
1612 }
1613 //------------------------------EncClass---------------------------------------
1614 EncClass::EncClass(const char *name)
1615   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
1616 }
1617 EncClass::~EncClass() {
1618 }
1619 
1620 // Add a parameter <type,name> pair
1621 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
1622   _parameter_type.addName( parameter_type );
1623   _parameter_name.addName( parameter_name );
1624 }
1625 
1626 // Verify operand types in parameter list
1627 bool EncClass::check_parameter_types(FormDict &globals) {
1628   // !!!!!
1629   return false;
1630 }
1631 
1632 // Add the decomposed "code" sections of an encoding's code-block
1633 void EncClass::add_code(const char *code) {
1634   _code.addName(code);
1635 }
1636 
1637 // Add the decomposed "replacement variables" of an encoding's code-block
1638 void EncClass::add_rep_var(char *replacement_var) {
1639   _code.addName(NameList::_signal);
1640   _rep_vars.addName(replacement_var);
1641 }
1642 
1643 // Lookup the function body for an encoding class
1644 int EncClass::rep_var_index(const char *rep_var) {
1645   uint        position = 0;
1646   const char *name     = NULL;
1647 
1648   _parameter_name.reset();
1649   while ( (name = _parameter_name.iter()) != NULL ) {
1650     if ( strcmp(rep_var,name) == 0 ) return position;
1651     ++position;
1652   }
1653 
1654   return -1;
1655 }
1656 
1657 // Check after parsing
1658 bool EncClass::verify() {
1659   // 1!!!!
1660   // Check that each replacement variable, '$name' in architecture description
1661   // is actually a local variable for this encode class, or a reserved name
1662   // "primary, secondary, tertiary"
1663   return true;
1664 }
1665 
1666 void EncClass::dump() {
1667   output(stderr);
1668 }
1669 
1670 // Write info to output files
1671 void EncClass::output(FILE *fp) {
1672   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
1673 
1674   // Output the parameter list
1675   _parameter_type.reset();
1676   _parameter_name.reset();
1677   const char *type = _parameter_type.iter();
1678   const char *name = _parameter_name.iter();
1679   fprintf(fp, " ( ");
1680   for ( ; (type != NULL) && (name != NULL);
1681         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
1682     fprintf(fp, " %s %s,", type, name);
1683   }
1684   fprintf(fp, " ) ");
1685 
1686   // Output the code block
1687   _code.reset();
1688   _rep_vars.reset();
1689   const char *code;
1690   while ( (code = _code.iter()) != NULL ) {
1691     if ( _code.is_signal(code) ) {
1692       // A replacement variable
1693       const char *rep_var = _rep_vars.iter();
1694       fprintf(fp,"($%s)", rep_var);
1695     } else {
1696       // A section of code
1697       fprintf(fp,"%s", code);
1698     }
1699   }
1700 
1701 }
1702 
1703 //------------------------------Opcode-----------------------------------------
1704 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
1705   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
1706 }
1707 
1708 Opcode::~Opcode() {
1709 }
1710 
1711 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
1712   if( strcmp(param,"primary") == 0 ) {
1713     return Opcode::PRIMARY;
1714   }
1715   else if( strcmp(param,"secondary") == 0 ) {
1716     return Opcode::SECONDARY;
1717   }
1718   else if( strcmp(param,"tertiary") == 0 ) {
1719     return Opcode::TERTIARY;
1720   }
1721   return Opcode::NOT_AN_OPCODE;
1722 }
1723 
1724 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
1725   // Default values previously provided by MachNode::primary()...
1726   const char *description = NULL;
1727   const char *value       = NULL;
1728   // Check if user provided any opcode definitions
1729   if( this != NULL ) {
1730     // Update 'value' if user provided a definition in the instruction
1731     switch (desired_opcode) {
1732     case PRIMARY:
1733       description = "primary()";
1734       if( _primary   != NULL)  { value = _primary;     }
1735       break;
1736     case SECONDARY:
1737       description = "secondary()";
1738       if( _secondary != NULL ) { value = _secondary;   }
1739       break;
1740     case TERTIARY:
1741       description = "tertiary()";
1742       if( _tertiary  != NULL ) { value = _tertiary;    }
1743       break;
1744     default:
1745       assert( false, "ShouldNotReachHere();");
1746       break;
1747     }
1748   }
1749   if (value != NULL) {
1750     fprintf(fp, "(%s /*%s*/)", value, description);
1751   }
1752   return value != NULL;
1753 }
1754 
1755 void Opcode::dump() {
1756   output(stderr);
1757 }
1758 
1759 // Write info to output files
1760 void Opcode::output(FILE *fp) {
1761   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
1762   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
1763   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
1764 }
1765 
1766 //------------------------------InsEncode--------------------------------------
1767 InsEncode::InsEncode() {
1768 }
1769 InsEncode::~InsEncode() {
1770 }
1771 
1772 // Add "encode class name" and its parameters
1773 NameAndList *InsEncode::add_encode(char *encoding) {
1774   assert( encoding != NULL, "Must provide name for encoding");
1775 
1776   // add_parameter(NameList::_signal);
1777   NameAndList *encode = new NameAndList(encoding);
1778   _encoding.addName((char*)encode);
1779 
1780   return encode;
1781 }
1782 
1783 // Access the list of encodings
1784 void InsEncode::reset() {
1785   _encoding.reset();
1786   // _parameter.reset();
1787 }
1788 const char* InsEncode::encode_class_iter() {
1789   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
1790   return  ( encode_class != NULL ? encode_class->name() : NULL );
1791 }
1792 // Obtain parameter name from zero based index
1793 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
1794   NameAndList *params = (NameAndList*)_encoding.current();
1795   assert( params != NULL, "Internal Error");
1796   const char *param = (*params)[param_no];
1797 
1798   // Remove '$' if parser placed it there.
1799   return ( param != NULL && *param == '$') ? (param+1) : param;
1800 }
1801 
1802 void InsEncode::dump() {
1803   output(stderr);
1804 }
1805 
1806 // Write info to output files
1807 void InsEncode::output(FILE *fp) {
1808   NameAndList *encoding  = NULL;
1809   const char  *parameter = NULL;
1810 
1811   fprintf(fp,"InsEncode: ");
1812   _encoding.reset();
1813 
1814   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
1815     // Output the encoding being used
1816     fprintf(fp,"%s(", encoding->name() );
1817 
1818     // Output its parameter list, if any
1819     bool first_param = true;
1820     encoding->reset();
1821     while (  (parameter = encoding->iter()) != 0 ) {
1822       // Output the ',' between parameters
1823       if ( ! first_param )  fprintf(fp,", ");
1824       first_param = false;
1825       // Output the parameter
1826       fprintf(fp,"%s", parameter);
1827     } // done with parameters
1828     fprintf(fp,")  ");
1829   } // done with encodings
1830 
1831   fprintf(fp,"\n");
1832 }
1833 
1834 //------------------------------Effect-----------------------------------------
1835 static int effect_lookup(const char *name) {
1836   if (!strcmp(name, "USE")) return Component::USE;
1837   if (!strcmp(name, "DEF")) return Component::DEF;
1838   if (!strcmp(name, "USE_DEF")) return Component::USE_DEF;
1839   if (!strcmp(name, "KILL")) return Component::KILL;
1840   if (!strcmp(name, "USE_KILL")) return Component::USE_KILL;
1841   if (!strcmp(name, "TEMP")) return Component::TEMP;
1842   if (!strcmp(name, "TEMP_DEF")) return Component::TEMP_DEF;
1843   if (!strcmp(name, "INVALID")) return Component::INVALID;
1844   if (!strcmp(name, "CALL")) return Component::CALL;
1845   assert(false,"Invalid effect name specified\n");
1846   return Component::INVALID;
1847 }
1848 
1849 const char *Component::getUsedefName() {
1850   switch (_usedef) {
1851     case Component::INVALID:  return "INVALID";  break;
1852     case Component::USE:      return "USE";      break;
1853     case Component::USE_DEF:  return "USE_DEF";  break;
1854     case Component::USE_KILL: return "USE_KILL"; break;
1855     case Component::KILL:     return "KILL";     break;
1856     case Component::TEMP:     return "TEMP";     break;
1857     case Component::TEMP_DEF: return "TEMP_DEF"; break;
1858     case Component::DEF:      return "DEF";      break;
1859     case Component::CALL:     return "CALL";     break;
1860     default: assert(false, "unknown effect");
1861   }
1862   return "Undefined Use/Def info";
1863 }
1864 
1865 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
1866   _ftype = Form::EFF;
1867 }
1868 
1869 Effect::~Effect() {
1870 }
1871 
1872 // Dynamic type check
1873 Effect *Effect::is_effect() const {
1874   return (Effect*)this;
1875 }
1876 
1877 
1878 // True if this component is equal to the parameter.
1879 bool Effect::is(int use_def_kill_enum) const {
1880   return (_use_def == use_def_kill_enum ? true : false);
1881 }
1882 // True if this component is used/def'd/kill'd as the parameter suggests.
1883 bool Effect::isa(int use_def_kill_enum) const {
1884   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
1885 }
1886 
1887 void Effect::dump() {
1888   output(stderr);
1889 }
1890 
1891 void Effect::output(FILE *fp) {          // Write info to output files
1892   fprintf(fp,"Effect: %s\n", (_name?_name:""));
1893 }
1894 
1895 //------------------------------ExpandRule-------------------------------------
1896 ExpandRule::ExpandRule() : _expand_instrs(),
1897                            _newopconst(cmpstr, hashstr, Form::arena) {
1898   _ftype = Form::EXP;
1899 }
1900 
1901 ExpandRule::~ExpandRule() {                  // Destructor
1902 }
1903 
1904 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
1905   _expand_instrs.addName((char*)instruction_name_and_operand_list);
1906 }
1907 
1908 void ExpandRule::reset_instructions() {
1909   _expand_instrs.reset();
1910 }
1911 
1912 NameAndList* ExpandRule::iter_instructions() {
1913   return (NameAndList*)_expand_instrs.iter();
1914 }
1915 
1916 
1917 void ExpandRule::dump() {
1918   output(stderr);
1919 }
1920 
1921 void ExpandRule::output(FILE *fp) {         // Write info to output files
1922   NameAndList *expand_instr = NULL;
1923   const char *opid = NULL;
1924 
1925   fprintf(fp,"\nExpand Rule:\n");
1926 
1927   // Iterate over the instructions 'node' expands into
1928   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
1929     fprintf(fp,"%s(", expand_instr->name());
1930 
1931     // iterate over the operand list
1932     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1933       fprintf(fp,"%s ", opid);
1934     }
1935     fprintf(fp,");\n");
1936   }
1937 }
1938 
1939 //------------------------------RewriteRule------------------------------------
1940 RewriteRule::RewriteRule(char* params, char* block)
1941   : _tempParams(params), _tempBlock(block) { };  // Constructor
1942 RewriteRule::~RewriteRule() {                 // Destructor
1943 }
1944 
1945 void RewriteRule::dump() {
1946   output(stderr);
1947 }
1948 
1949 void RewriteRule::output(FILE *fp) {         // Write info to output files
1950   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
1951           (_tempParams?_tempParams:""),
1952           (_tempBlock?_tempBlock:""));
1953 }
1954 
1955 
1956 //==============================MachNodes======================================
1957 //------------------------------MachNodeForm-----------------------------------
1958 MachNodeForm::MachNodeForm(char *id)
1959   : _ident(id) {
1960 }
1961 
1962 MachNodeForm::~MachNodeForm() {
1963 }
1964 
1965 MachNodeForm *MachNodeForm::is_machnode() const {
1966   return (MachNodeForm*)this;
1967 }
1968 
1969 //==============================Operand Classes================================
1970 //------------------------------OpClassForm------------------------------------
1971 OpClassForm::OpClassForm(const char* id) : _ident(id) {
1972   _ftype = Form::OPCLASS;
1973 }
1974 
1975 OpClassForm::~OpClassForm() {
1976 }
1977 
1978 bool OpClassForm::ideal_only() const { return 0; }
1979 
1980 OpClassForm *OpClassForm::is_opclass() const {
1981   return (OpClassForm*)this;
1982 }
1983 
1984 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
1985   if( _oplst.count() == 0 ) return Form::no_interface;
1986 
1987   // Check that my operands have the same interface type
1988   Form::InterfaceType  interface;
1989   bool  first = true;
1990   NameList &op_list = (NameList &)_oplst;
1991   op_list.reset();
1992   const char *op_name;
1993   while( (op_name = op_list.iter()) != NULL ) {
1994     const Form  *form    = globals[op_name];
1995     OperandForm *operand = form->is_operand();
1996     assert( operand, "Entry in operand class that is not an operand");
1997     if( first ) {
1998       first     = false;
1999       interface = operand->interface_type(globals);
2000     } else {
2001       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
2002     }
2003   }
2004   return interface;
2005 }
2006 
2007 bool OpClassForm::stack_slots_only(FormDict &globals) const {
2008   if( _oplst.count() == 0 ) return false;  // how?
2009 
2010   NameList &op_list = (NameList &)_oplst;
2011   op_list.reset();
2012   const char *op_name;
2013   while( (op_name = op_list.iter()) != NULL ) {
2014     const Form  *form    = globals[op_name];
2015     OperandForm *operand = form->is_operand();
2016     assert( operand, "Entry in operand class that is not an operand");
2017     if( !operand->stack_slots_only(globals) )  return false;
2018   }
2019   return true;
2020 }
2021 
2022 
2023 void OpClassForm::dump() {
2024   output(stderr);
2025 }
2026 
2027 void OpClassForm::output(FILE *fp) {
2028   const char *name;
2029   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
2030   fprintf(fp,"\nCount = %d\n", _oplst.count());
2031   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
2032     fprintf(fp,"%s, ",name);
2033   }
2034   fprintf(fp,"\n");
2035 }
2036 
2037 
2038 //==============================Operands=======================================
2039 //------------------------------OperandForm------------------------------------
2040 OperandForm::OperandForm(const char* id)
2041   : OpClassForm(id), _ideal_only(false),
2042     _localNames(cmpstr, hashstr, Form::arena) {
2043       _ftype = Form::OPER;
2044 
2045       _matrule   = NULL;
2046       _interface = NULL;
2047       _attribs   = NULL;
2048       _predicate = NULL;
2049       _constraint= NULL;
2050       _construct = NULL;
2051       _format    = NULL;
2052 }
2053 OperandForm::OperandForm(const char* id, bool ideal_only)
2054   : OpClassForm(id), _ideal_only(ideal_only),
2055     _localNames(cmpstr, hashstr, Form::arena) {
2056       _ftype = Form::OPER;
2057 
2058       _matrule   = NULL;
2059       _interface = NULL;
2060       _attribs   = NULL;
2061       _predicate = NULL;
2062       _constraint= NULL;
2063       _construct = NULL;
2064       _format    = NULL;
2065 }
2066 OperandForm::~OperandForm() {
2067 }
2068 
2069 
2070 OperandForm *OperandForm::is_operand() const {
2071   return (OperandForm*)this;
2072 }
2073 
2074 bool OperandForm::ideal_only() const {
2075   return _ideal_only;
2076 }
2077 
2078 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
2079   if( _interface == NULL )  return Form::no_interface;
2080 
2081   return _interface->interface_type(globals);
2082 }
2083 
2084 
2085 bool OperandForm::stack_slots_only(FormDict &globals) const {
2086   if( _constraint == NULL )  return false;
2087   return _constraint->stack_slots_only();
2088 }
2089 
2090 
2091 // Access op_cost attribute or return NULL.
2092 const char* OperandForm::cost() {
2093   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
2094     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
2095       return cur->_val;
2096     }
2097   }
2098   return NULL;
2099 }
2100 
2101 // Return the number of leaves below this complex operand
2102 uint OperandForm::num_leaves() const {
2103   if ( ! _matrule) return 0;
2104 
2105   int num_leaves = _matrule->_numleaves;
2106   return num_leaves;
2107 }
2108 
2109 // Return the number of constants contained within this complex operand
2110 uint OperandForm::num_consts(FormDict &globals) const {
2111   if ( ! _matrule) return 0;
2112 
2113   // This is a recursive invocation on all operands in the matchrule
2114   return _matrule->num_consts(globals);
2115 }
2116 
2117 // Return the number of constants in match rule with specified type
2118 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
2119   if ( ! _matrule) return 0;
2120 
2121   // This is a recursive invocation on all operands in the matchrule
2122   return _matrule->num_consts(globals, type);
2123 }
2124 
2125 // Return the number of pointer constants contained within this complex operand
2126 uint OperandForm::num_const_ptrs(FormDict &globals) const {
2127   if ( ! _matrule) return 0;
2128 
2129   // This is a recursive invocation on all operands in the matchrule
2130   return _matrule->num_const_ptrs(globals);
2131 }
2132 
2133 uint OperandForm::num_edges(FormDict &globals) const {
2134   uint edges  = 0;
2135   uint leaves = num_leaves();
2136   uint consts = num_consts(globals);
2137 
2138   // If we are matching a constant directly, there are no leaves.
2139   edges = ( leaves > consts ) ? leaves - consts : 0;
2140 
2141   // !!!!!
2142   // Special case operands that do not have a corresponding ideal node.
2143   if( (edges == 0) && (consts == 0) ) {
2144     if( constrained_reg_class() != NULL ) {
2145       edges = 1;
2146     } else {
2147       if( _matrule
2148           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
2149         const Form *form = globals[_matrule->_opType];
2150         OperandForm *oper = form ? form->is_operand() : NULL;
2151         if( oper ) {
2152           return oper->num_edges(globals);
2153         }
2154       }
2155     }
2156   }
2157 
2158   return edges;
2159 }
2160 
2161 
2162 // Check if this operand is usable for cisc-spilling
2163 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
2164   const char *ideal = ideal_type(globals);
2165   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
2166   return is_cisc_reg;
2167 }
2168 
2169 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
2170   Form::InterfaceType my_interface = interface_type(globals);
2171   return (my_interface == memory_interface);
2172 }
2173 
2174 
2175 // node matches ideal 'Bool'
2176 bool OperandForm::is_ideal_bool() const {
2177   if( _matrule == NULL ) return false;
2178 
2179   return _matrule->is_ideal_bool();
2180 }
2181 
2182 // Require user's name for an sRegX to be stackSlotX
2183 Form::DataType OperandForm::is_user_name_for_sReg() const {
2184   DataType data_type = none;
2185   if( _ident != NULL ) {
2186     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
2187     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
2188     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
2189     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
2190     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
2191   }
2192   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
2193 
2194   return data_type;
2195 }
2196 
2197 
2198 // Return ideal type, if there is a single ideal type for this operand
2199 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
2200   const char *type = NULL;
2201   if (ideal_only()) type = _ident;
2202   else if( _matrule == NULL ) {
2203     // Check for condition code register
2204     const char *rc_name = constrained_reg_class();
2205     // !!!!!
2206     if (rc_name == NULL) return NULL;
2207     // !!!!! !!!!!
2208     // Check constraints on result's register class
2209     if( registers ) {
2210       RegClass *reg_class  = registers->getRegClass(rc_name);
2211       assert( reg_class != NULL, "Register class is not defined");
2212 
2213       // Check for ideal type of entries in register class, all are the same type
2214       reg_class->reset();
2215       RegDef *reg_def = reg_class->RegDef_iter();
2216       assert( reg_def != NULL, "No entries in register class");
2217       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
2218       // Return substring that names the register's ideal type
2219       type = reg_def->_idealtype + 3;
2220       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
2221       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
2222       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
2223     }
2224   }
2225   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
2226     // This operand matches a single type, at the top level.
2227     // Check for ideal type
2228     type = _matrule->_opType;
2229     if( strcmp(type,"Bool") == 0 )
2230       return "Bool";
2231     // transitive lookup
2232     const Form *frm = globals[type];
2233     OperandForm *op = frm->is_operand();
2234     type = op->ideal_type(globals, registers);
2235   }
2236   return type;
2237 }
2238 
2239 
2240 // If there is a single ideal type for this interface field, return it.
2241 const char *OperandForm::interface_ideal_type(FormDict &globals,
2242                                               const char *field) const {
2243   const char  *ideal_type = NULL;
2244   const char  *value      = NULL;
2245 
2246   // Check if "field" is valid for this operand's interface
2247   if ( ! is_interface_field(field, value) )   return ideal_type;
2248 
2249   // !!!!! !!!!! !!!!!
2250   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
2251 
2252   // Else, lookup type of field's replacement variable
2253 
2254   return ideal_type;
2255 }
2256 
2257 
2258 RegClass* OperandForm::get_RegClass() const {
2259   if (_interface && !_interface->is_RegInterface()) return NULL;
2260   return globalAD->get_registers()->getRegClass(constrained_reg_class());
2261 }
2262 
2263 
2264 bool OperandForm::is_bound_register() const {
2265   RegClass* reg_class = get_RegClass();
2266   if (reg_class == NULL) {
2267     return false;
2268   }
2269 
2270   const char* name = ideal_type(globalAD->globalNames());
2271   if (name == NULL) {
2272     return false;
2273   }
2274 
2275   uint size = 0;
2276   if (strcmp(name, "RegFlags") == 0) size = 1;
2277   if (strcmp(name, "RegI") == 0) size = 1;
2278   if (strcmp(name, "RegF") == 0) size = 1;
2279   if (strcmp(name, "RegD") == 0) size = 2;
2280   if (strcmp(name, "RegL") == 0) size = 2;
2281   if (strcmp(name, "RegN") == 0) size = 1;
2282   if (strcmp(name, "RegP") == 0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
2283   if (size == 0) {
2284     return false;
2285   }
2286   return size == reg_class->size();
2287 }
2288 
2289 
2290 // Check if this is a valid field for this operand,
2291 // Return 'true' if valid, and set the value to the string the user provided.
2292 bool  OperandForm::is_interface_field(const char *field,
2293                                       const char * &value) const {
2294   return false;
2295 }
2296 
2297 
2298 // Return register class name if a constraint specifies the register class.
2299 const char *OperandForm::constrained_reg_class() const {
2300   const char *reg_class  = NULL;
2301   if ( _constraint ) {
2302     // !!!!!
2303     Constraint *constraint = _constraint;
2304     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
2305       reg_class = _constraint->_arg;
2306     }
2307   }
2308 
2309   return reg_class;
2310 }
2311 
2312 
2313 // Return the register class associated with 'leaf'.
2314 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
2315   const char *reg_class = NULL; // "RegMask::Empty";
2316 
2317   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
2318     reg_class = constrained_reg_class();
2319     return reg_class;
2320   }
2321   const char *result   = NULL;
2322   const char *name     = NULL;
2323   const char *type     = NULL;
2324   // iterate through all base operands
2325   // until we reach the register that corresponds to "leaf"
2326   // This function is not looking for an ideal type.  It needs the first
2327   // level user type associated with the leaf.
2328   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
2329     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
2330     OperandForm *oper = form ? form->is_operand() : NULL;
2331     if( oper ) {
2332       reg_class = oper->constrained_reg_class();
2333       if( reg_class ) {
2334         reg_class = reg_class;
2335       } else {
2336         // ShouldNotReachHere();
2337       }
2338     } else {
2339       // ShouldNotReachHere();
2340     }
2341 
2342     // Increment our target leaf position if current leaf is not a candidate.
2343     if( reg_class == NULL)    ++leaf;
2344     // Exit the loop with the value of reg_class when at the correct index
2345     if( idx == leaf )         break;
2346     // May iterate through all base operands if reg_class for 'leaf' is NULL
2347   }
2348   return reg_class;
2349 }
2350 
2351 
2352 // Recursive call to construct list of top-level operands.
2353 // Implementation does not modify state of internal structures
2354 void OperandForm::build_components() {
2355   if (_matrule)  _matrule->append_components(_localNames, _components);
2356 
2357   // Add parameters that "do not appear in match rule".
2358   const char *name;
2359   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
2360     OperandForm *opForm = (OperandForm*)_localNames[name];
2361 
2362     if ( _components.operand_position(name) == -1 ) {
2363       _components.insert(name, opForm->_ident, Component::INVALID, false);
2364     }
2365   }
2366 
2367   return;
2368 }
2369 
2370 int OperandForm::operand_position(const char *name, int usedef) {
2371   return _components.operand_position(name, usedef, this);
2372 }
2373 
2374 
2375 // Return zero-based position in component list, only counting constants;
2376 // Return -1 if not in list.
2377 int OperandForm::constant_position(FormDict &globals, const Component *last) {
2378   // Iterate through components and count constants preceding 'constant'
2379   int position = 0;
2380   Component *comp;
2381   _components.reset();
2382   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
2383     // Special case for operands that take a single user-defined operand
2384     // Skip the initial definition in the component list.
2385     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2386 
2387     const char *type = comp->_type;
2388     // Lookup operand form for replacement variable's type
2389     const Form *form = globals[type];
2390     assert( form != NULL, "Component's type not found");
2391     OperandForm *oper = form ? form->is_operand() : NULL;
2392     if( oper ) {
2393       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
2394         ++position;
2395       }
2396     }
2397   }
2398 
2399   // Check for being passed a component that was not in the list
2400   if( comp != last )  position = -1;
2401 
2402   return position;
2403 }
2404 // Provide position of constant by "name"
2405 int OperandForm::constant_position(FormDict &globals, const char *name) {
2406   const Component *comp = _components.search(name);
2407   int idx = constant_position( globals, comp );
2408 
2409   return idx;
2410 }
2411 
2412 
2413 // Return zero-based position in component list, only counting constants;
2414 // Return -1 if not in list.
2415 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
2416   // Iterate through components and count registers preceding 'last'
2417   uint  position = 0;
2418   Component *comp;
2419   _components.reset();
2420   while( (comp = _components.iter()) != NULL
2421          && (strcmp(comp->_name,reg_name) != 0) ) {
2422     // Special case for operands that take a single user-defined operand
2423     // Skip the initial definition in the component list.
2424     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2425 
2426     const char *type = comp->_type;
2427     // Lookup operand form for component's type
2428     const Form *form = globals[type];
2429     assert( form != NULL, "Component's type not found");
2430     OperandForm *oper = form ? form->is_operand() : NULL;
2431     if( oper ) {
2432       if( oper->_matrule->is_base_register(globals) ) {
2433         ++position;
2434       }
2435     }
2436   }
2437 
2438   return position;
2439 }
2440 
2441 
2442 const char *OperandForm::reduce_result()  const {
2443   return _ident;
2444 }
2445 // Return the name of the operand on the right hand side of the binary match
2446 // Return NULL if there is no right hand side
2447 const char *OperandForm::reduce_right(FormDict &globals)  const {
2448   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
2449 }
2450 
2451 // Similar for left
2452 const char *OperandForm::reduce_left(FormDict &globals)   const {
2453   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
2454 }
2455 
2456 
2457 // --------------------------- FILE *output_routines
2458 //
2459 // Output code for disp_is_oop, if true.
2460 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
2461   //  Check it is a memory interface with a non-user-constant disp field
2462   if ( this->_interface == NULL ) return;
2463   MemInterface *mem_interface = this->_interface->is_MemInterface();
2464   if ( mem_interface == NULL )    return;
2465   const char   *disp  = mem_interface->_disp;
2466   if ( *disp != '$' )             return;
2467 
2468   // Lookup replacement variable in operand's component list
2469   const char   *rep_var = disp + 1;
2470   const Component *comp = this->_components.search(rep_var);
2471   assert( comp != NULL, "Replacement variable not found in components");
2472   // Lookup operand form for replacement variable's type
2473   const char      *type = comp->_type;
2474   Form            *form = (Form*)globals[type];
2475   assert( form != NULL, "Replacement variable's type not found");
2476   OperandForm     *op   = form->is_operand();
2477   assert( op, "Memory Interface 'disp' can only emit an operand form");
2478   // Check if this is a ConP, which may require relocation
2479   if ( op->is_base_constant(globals) == Form::idealP ) {
2480     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
2481     uint idx  = op->constant_position( globals, rep_var);
2482     fprintf(fp,"  virtual relocInfo::relocType disp_reloc() const {");
2483     fprintf(fp,  "  return _c%d->reloc();", idx);
2484     fprintf(fp, " }\n");
2485   }
2486 }
2487 
2488 // Generate code for internal and external format methods
2489 //
2490 // internal access to reg# node->_idx
2491 // access to subsumed constant _c0, _c1,
2492 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
2493   Form::DataType dtype;
2494   if (_matrule && (_matrule->is_base_register(globals) ||
2495                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2496     // !!!!! !!!!!
2497     fprintf(fp,"  { char reg_str[128];\n");
2498     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
2499     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2500     fprintf(fp,"  }\n");
2501   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2502     format_constant( fp, index, dtype );
2503   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2504     // Special format for Stack Slot Register
2505     fprintf(fp,"  { char reg_str[128];\n");
2506     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
2507     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2508     fprintf(fp,"  }\n");
2509   } else {
2510     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
2511     fflush(fp);
2512     fprintf(stderr,"No format defined for %s\n", _ident);
2513     dump();
2514     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
2515   }
2516 }
2517 
2518 // Similar to "int_format" but for cases where data is external to operand
2519 // external access to reg# node->in(idx)->_idx,
2520 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
2521   Form::DataType dtype;
2522   if (_matrule && (_matrule->is_base_register(globals) ||
2523                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2524     fprintf(fp,"  { char reg_str[128];\n");
2525     fprintf(fp,"    ra->dump_register(node->in(idx");
2526     if ( index != 0 ) fprintf(fp,              "+%d",index);
2527     fprintf(fp,                                      "),reg_str);\n");
2528     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2529     fprintf(fp,"  }\n");
2530   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2531     format_constant( fp, index, dtype );
2532   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2533     // Special format for Stack Slot Register
2534     fprintf(fp,"  { char reg_str[128];\n");
2535     fprintf(fp,"    ra->dump_register(node->in(idx");
2536     if ( index != 0 ) fprintf(fp,                  "+%d",index);
2537     fprintf(fp,                                       "),reg_str);\n");
2538     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2539     fprintf(fp,"  }\n");
2540   } else {
2541     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
2542     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
2543   }
2544 }
2545 
2546 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
2547   switch(const_type) {
2548   case Form::idealI: fprintf(fp,"  st->print(\"#%%d\", _c%d);\n", const_index); break;
2549   case Form::idealP: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
2550   case Form::idealNKlass:
2551   case Form::idealN: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
2552   case Form::idealL: fprintf(fp,"  st->print(\"#\" INT64_FORMAT, (int64_t)_c%d);\n", const_index); break;
2553   case Form::idealF: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
2554   case Form::idealD: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
2555   default:
2556     assert( false, "ShouldNotReachHere()");
2557   }
2558 }
2559 
2560 // Return the operand form corresponding to the given index, else NULL.
2561 OperandForm *OperandForm::constant_operand(FormDict &globals,
2562                                            uint      index) {
2563   // !!!!!
2564   // Check behavior on complex operands
2565   uint n_consts = num_consts(globals);
2566   if( n_consts > 0 ) {
2567     uint i = 0;
2568     const char *type;
2569     Component  *comp;
2570     _components.reset();
2571     if ((comp = _components.iter()) == NULL) {
2572       assert(n_consts == 1, "Bad component list detected.\n");
2573       // Current operand is THE operand
2574       if ( index == 0 ) {
2575         return this;
2576       }
2577     } // end if NULL
2578     else {
2579       // Skip the first component, it can not be a DEF of a constant
2580       do {
2581         type = comp->base_type(globals);
2582         // Check that "type" is a 'ConI', 'ConP', ...
2583         if ( ideal_to_const_type(type) != Form::none ) {
2584           // When at correct component, get corresponding Operand
2585           if ( index == 0 ) {
2586             return globals[comp->_type]->is_operand();
2587           }
2588           // Decrement number of constants to go
2589           --index;
2590         }
2591       } while((comp = _components.iter()) != NULL);
2592     }
2593   }
2594 
2595   // Did not find a constant for this index.
2596   return NULL;
2597 }
2598 
2599 // If this operand has a single ideal type, return its type
2600 Form::DataType OperandForm::simple_type(FormDict &globals) const {
2601   const char *type_name = ideal_type(globals);
2602   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
2603                                     : Form::none;
2604   return type;
2605 }
2606 
2607 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
2608   if ( _matrule == NULL )    return Form::none;
2609 
2610   return _matrule->is_base_constant(globals);
2611 }
2612 
2613 // "true" if this operand is a simple type that is swallowed
2614 bool  OperandForm::swallowed(FormDict &globals) const {
2615   Form::DataType type   = simple_type(globals);
2616   if( type != Form::none ) {
2617     return true;
2618   }
2619 
2620   return false;
2621 }
2622 
2623 // Output code to access the value of the index'th constant
2624 void OperandForm::access_constant(FILE *fp, FormDict &globals,
2625                                   uint const_index) {
2626   OperandForm *oper = constant_operand(globals, const_index);
2627   assert( oper, "Index exceeds number of constants in operand");
2628   Form::DataType dtype = oper->is_base_constant(globals);
2629 
2630   switch(dtype) {
2631   case idealI: fprintf(fp,"_c%d",           const_index); break;
2632   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
2633   case idealL: fprintf(fp,"_c%d",           const_index); break;
2634   case idealF: fprintf(fp,"_c%d",           const_index); break;
2635   case idealD: fprintf(fp,"_c%d",           const_index); break;
2636   default:
2637     assert( false, "ShouldNotReachHere()");
2638   }
2639 }
2640 
2641 
2642 void OperandForm::dump() {
2643   output(stderr);
2644 }
2645 
2646 void OperandForm::output(FILE *fp) {
2647   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
2648   if (_matrule)    _matrule->dump();
2649   if (_interface)  _interface->dump();
2650   if (_attribs)    _attribs->dump();
2651   if (_predicate)  _predicate->dump();
2652   if (_constraint) _constraint->dump();
2653   if (_construct)  _construct->dump();
2654   if (_format)     _format->dump();
2655 }
2656 
2657 //------------------------------Constraint-------------------------------------
2658 Constraint::Constraint(const char *func, const char *arg)
2659   : _func(func), _arg(arg) {
2660 }
2661 Constraint::~Constraint() { /* not owner of char* */
2662 }
2663 
2664 bool Constraint::stack_slots_only() const {
2665   return strcmp(_func, "ALLOC_IN_RC") == 0
2666       && strcmp(_arg,  "stack_slots") == 0;
2667 }
2668 
2669 void Constraint::dump() {
2670   output(stderr);
2671 }
2672 
2673 void Constraint::output(FILE *fp) {           // Write info to output files
2674   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
2675   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
2676 }
2677 
2678 //------------------------------Predicate--------------------------------------
2679 Predicate::Predicate(char *pr)
2680   : _pred(pr) {
2681 }
2682 Predicate::~Predicate() {
2683 }
2684 
2685 void Predicate::dump() {
2686   output(stderr);
2687 }
2688 
2689 void Predicate::output(FILE *fp) {
2690   fprintf(fp,"Predicate");  // Write to output files
2691 }
2692 //------------------------------Interface--------------------------------------
2693 Interface::Interface(const char *name) : _name(name) {
2694 }
2695 Interface::~Interface() {
2696 }
2697 
2698 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
2699   Interface *thsi = (Interface*)this;
2700   if ( thsi->is_RegInterface()   ) return Form::register_interface;
2701   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
2702   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
2703   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
2704 
2705   return Form::no_interface;
2706 }
2707 
2708 RegInterface   *Interface::is_RegInterface() {
2709   if ( strcmp(_name,"REG_INTER") != 0 )
2710     return NULL;
2711   return (RegInterface*)this;
2712 }
2713 MemInterface   *Interface::is_MemInterface() {
2714   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
2715   return (MemInterface*)this;
2716 }
2717 ConstInterface *Interface::is_ConstInterface() {
2718   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
2719   return (ConstInterface*)this;
2720 }
2721 CondInterface  *Interface::is_CondInterface() {
2722   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
2723   return (CondInterface*)this;
2724 }
2725 
2726 
2727 void Interface::dump() {
2728   output(stderr);
2729 }
2730 
2731 // Write info to output files
2732 void Interface::output(FILE *fp) {
2733   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
2734 }
2735 
2736 //------------------------------RegInterface-----------------------------------
2737 RegInterface::RegInterface() : Interface("REG_INTER") {
2738 }
2739 RegInterface::~RegInterface() {
2740 }
2741 
2742 void RegInterface::dump() {
2743   output(stderr);
2744 }
2745 
2746 // Write info to output files
2747 void RegInterface::output(FILE *fp) {
2748   Interface::output(fp);
2749 }
2750 
2751 //------------------------------ConstInterface---------------------------------
2752 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
2753 }
2754 ConstInterface::~ConstInterface() {
2755 }
2756 
2757 void ConstInterface::dump() {
2758   output(stderr);
2759 }
2760 
2761 // Write info to output files
2762 void ConstInterface::output(FILE *fp) {
2763   Interface::output(fp);
2764 }
2765 
2766 //------------------------------MemInterface-----------------------------------
2767 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
2768   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
2769 }
2770 MemInterface::~MemInterface() {
2771   // not owner of any character arrays
2772 }
2773 
2774 void MemInterface::dump() {
2775   output(stderr);
2776 }
2777 
2778 // Write info to output files
2779 void MemInterface::output(FILE *fp) {
2780   Interface::output(fp);
2781   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
2782   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
2783   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
2784   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
2785   // fprintf(fp,"\n");
2786 }
2787 
2788 //------------------------------CondInterface----------------------------------
2789 CondInterface::CondInterface(const char* equal,         const char* equal_format,
2790                              const char* not_equal,     const char* not_equal_format,
2791                              const char* less,          const char* less_format,
2792                              const char* greater_equal, const char* greater_equal_format,
2793                              const char* less_equal,    const char* less_equal_format,
2794                              const char* greater,       const char* greater_format,
2795                              const char* overflow,      const char* overflow_format,
2796                              const char* no_overflow,   const char* no_overflow_format)
2797   : Interface("COND_INTER"),
2798     _equal(equal),                 _equal_format(equal_format),
2799     _not_equal(not_equal),         _not_equal_format(not_equal_format),
2800     _less(less),                   _less_format(less_format),
2801     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
2802     _less_equal(less_equal),       _less_equal_format(less_equal_format),
2803     _greater(greater),             _greater_format(greater_format),
2804     _overflow(overflow),           _overflow_format(overflow_format),
2805     _no_overflow(no_overflow),     _no_overflow_format(no_overflow_format) {
2806 }
2807 CondInterface::~CondInterface() {
2808   // not owner of any character arrays
2809 }
2810 
2811 void CondInterface::dump() {
2812   output(stderr);
2813 }
2814 
2815 // Write info to output files
2816 void CondInterface::output(FILE *fp) {
2817   Interface::output(fp);
2818   if ( _equal  != NULL )     fprintf(fp," equal        == %s\n", _equal);
2819   if ( _not_equal  != NULL ) fprintf(fp," not_equal    == %s\n", _not_equal);
2820   if ( _less  != NULL )      fprintf(fp," less         == %s\n", _less);
2821   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal    == %s\n", _greater_equal);
2822   if ( _less_equal  != NULL ) fprintf(fp," less_equal   == %s\n", _less_equal);
2823   if ( _greater  != NULL )    fprintf(fp," greater      == %s\n", _greater);
2824   if ( _overflow != NULL )    fprintf(fp," overflow     == %s\n", _overflow);
2825   if ( _no_overflow != NULL ) fprintf(fp," no_overflow  == %s\n", _no_overflow);
2826   // fprintf(fp,"\n");
2827 }
2828 
2829 //------------------------------ConstructRule----------------------------------
2830 ConstructRule::ConstructRule(char *cnstr)
2831   : _construct(cnstr) {
2832 }
2833 ConstructRule::~ConstructRule() {
2834 }
2835 
2836 void ConstructRule::dump() {
2837   output(stderr);
2838 }
2839 
2840 void ConstructRule::output(FILE *fp) {
2841   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
2842 }
2843 
2844 
2845 //==============================Shared Forms===================================
2846 //------------------------------AttributeForm----------------------------------
2847 int         AttributeForm::_insId   = 0;           // start counter at 0
2848 int         AttributeForm::_opId    = 0;           // start counter at 0
2849 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
2850 const char* AttributeForm::_op_cost  = "op_cost";  // required name
2851 
2852 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
2853   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
2854     if (type==OP_ATTR) {
2855       id = ++_opId;
2856     }
2857     else if (type==INS_ATTR) {
2858       id = ++_insId;
2859     }
2860     else assert( false,"");
2861 }
2862 AttributeForm::~AttributeForm() {
2863 }
2864 
2865 // Dynamic type check
2866 AttributeForm *AttributeForm::is_attribute() const {
2867   return (AttributeForm*)this;
2868 }
2869 
2870 
2871 // inlined  // int  AttributeForm::type() { return id;}
2872 
2873 void AttributeForm::dump() {
2874   output(stderr);
2875 }
2876 
2877 void AttributeForm::output(FILE *fp) {
2878   if( _attrname && _attrdef ) {
2879     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
2880             _attrname, _attrdef);
2881   }
2882   else {
2883     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
2884             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
2885   }
2886 }
2887 
2888 //------------------------------Component--------------------------------------
2889 Component::Component(const char *name, const char *type, int usedef)
2890   : _name(name), _type(type), _usedef(usedef) {
2891     _ftype = Form::COMP;
2892 }
2893 Component::~Component() {
2894 }
2895 
2896 // True if this component is equal to the parameter.
2897 bool Component::is(int use_def_kill_enum) const {
2898   return (_usedef == use_def_kill_enum ? true : false);
2899 }
2900 // True if this component is used/def'd/kill'd as the parameter suggests.
2901 bool Component::isa(int use_def_kill_enum) const {
2902   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
2903 }
2904 
2905 // Extend this component with additional use/def/kill behavior
2906 int Component::promote_use_def_info(int new_use_def) {
2907   _usedef |= new_use_def;
2908 
2909   return _usedef;
2910 }
2911 
2912 // Check the base type of this component, if it has one
2913 const char *Component::base_type(FormDict &globals) {
2914   const Form *frm = globals[_type];
2915   if (frm == NULL) return NULL;
2916   OperandForm *op = frm->is_operand();
2917   if (op == NULL) return NULL;
2918   if (op->ideal_only()) return op->_ident;
2919   return (char *)op->ideal_type(globals);
2920 }
2921 
2922 void Component::dump() {
2923   output(stderr);
2924 }
2925 
2926 void Component::output(FILE *fp) {
2927   fprintf(fp,"Component:");  // Write to output files
2928   fprintf(fp, "  name = %s", _name);
2929   fprintf(fp, ", type = %s", _type);
2930   assert(_usedef != 0, "unknown effect");
2931   fprintf(fp, ", use/def = %s\n", getUsedefName());
2932 }
2933 
2934 
2935 //------------------------------ComponentList---------------------------------
2936 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
2937 }
2938 ComponentList::~ComponentList() {
2939   // // This list may not own its elements if copied via assignment
2940   // Component *component;
2941   // for (reset(); (component = iter()) != NULL;) {
2942   //   delete component;
2943   // }
2944 }
2945 
2946 void   ComponentList::insert(Component *component, bool mflag) {
2947   NameList::addName((char *)component);
2948   if(mflag) _matchcnt++;
2949 }
2950 void   ComponentList::insert(const char *name, const char *opType, int usedef,
2951                              bool mflag) {
2952   Component * component = new Component(name, opType, usedef);
2953   insert(component, mflag);
2954 }
2955 Component *ComponentList::current() { return (Component*)NameList::current(); }
2956 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
2957 Component *ComponentList::match_iter() {
2958   if(_iter < _matchcnt) return (Component*)NameList::iter();
2959   return NULL;
2960 }
2961 Component *ComponentList::post_match_iter() {
2962   Component *comp = iter();
2963   // At end of list?
2964   if ( comp == NULL ) {
2965     return comp;
2966   }
2967   // In post-match components?
2968   if (_iter > match_count()-1) {
2969     return comp;
2970   }
2971 
2972   return post_match_iter();
2973 }
2974 
2975 void       ComponentList::reset()   { NameList::reset(); }
2976 int        ComponentList::count()   { return NameList::count(); }
2977 
2978 Component *ComponentList::operator[](int position) {
2979   // Shortcut complete iteration if there are not enough entries
2980   if (position >= count()) return NULL;
2981 
2982   int        index     = 0;
2983   Component *component = NULL;
2984   for (reset(); (component = iter()) != NULL;) {
2985     if (index == position) {
2986       return component;
2987     }
2988     ++index;
2989   }
2990 
2991   return NULL;
2992 }
2993 
2994 const Component *ComponentList::search(const char *name) {
2995   PreserveIter pi(this);
2996   reset();
2997   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
2998     if( strcmp(comp->_name,name) == 0 ) return comp;
2999   }
3000 
3001   return NULL;
3002 }
3003 
3004 // Return number of USEs + number of DEFs
3005 // When there are no components, or the first component is a USE,
3006 // then we add '1' to hold a space for the 'result' operand.
3007 int ComponentList::num_operands() {
3008   PreserveIter pi(this);
3009   uint       count = 1;           // result operand
3010   uint       position = 0;
3011 
3012   Component *component  = NULL;
3013   for( reset(); (component = iter()) != NULL; ++position ) {
3014     if( component->isa(Component::USE) ||
3015         ( position == 0 && (! component->isa(Component::DEF))) ) {
3016       ++count;
3017     }
3018   }
3019 
3020   return count;
3021 }
3022 
3023 // Return zero-based position of operand 'name' in list;  -1 if not in list.
3024 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
3025 int ComponentList::operand_position(const char *name, int usedef, Form *fm) {
3026   PreserveIter pi(this);
3027   int position = 0;
3028   int num_opnds = num_operands();
3029   Component *component;
3030   Component* preceding_non_use = NULL;
3031   Component* first_def = NULL;
3032   for (reset(); (component = iter()) != NULL; ++position) {
3033     // When the first component is not a DEF,
3034     // leave space for the result operand!
3035     if ( position==0 && (! component->isa(Component::DEF)) ) {
3036       ++position;
3037       ++num_opnds;
3038     }
3039     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
3040       // When the first entry in the component list is a DEF and a USE
3041       // Treat them as being separate, a DEF first, then a USE
3042       if( position==0
3043           && usedef==Component::USE && component->isa(Component::DEF) ) {
3044         assert(position+1 < num_opnds, "advertised index in bounds");
3045         return position+1;
3046       } else {
3047         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
3048           fprintf(stderr, "the name '%s(%s)' should not precede the name '%s(%s)'",
3049                   preceding_non_use->_name, preceding_non_use->getUsedefName(),
3050                   name, component->getUsedefName());
3051           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
3052           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
3053           fprintf(stderr,  "\n");
3054         }
3055         if( position >= num_opnds ) {
3056           fprintf(stderr, "the name '%s' is too late in its name list", name);
3057           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
3058           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
3059           fprintf(stderr,  "\n");
3060         }
3061         assert(position < num_opnds, "advertised index in bounds");
3062         return position;
3063       }
3064     }
3065     if( component->isa(Component::DEF)
3066         && component->isa(Component::USE) ) {
3067       ++position;
3068       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3069     }
3070     if( component->isa(Component::DEF) && !first_def ) {
3071       first_def = component;
3072     }
3073     if( !component->isa(Component::USE) && component != first_def ) {
3074       preceding_non_use = component;
3075     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
3076       preceding_non_use = NULL;
3077     }
3078   }
3079   return Not_in_list;
3080 }
3081 
3082 // Find position for this name, regardless of use/def information
3083 int ComponentList::operand_position(const char *name) {
3084   PreserveIter pi(this);
3085   int position = 0;
3086   Component *component;
3087   for (reset(); (component = iter()) != NULL; ++position) {
3088     // When the first component is not a DEF,
3089     // leave space for the result operand!
3090     if ( position==0 && (! component->isa(Component::DEF)) ) {
3091       ++position;
3092     }
3093     if (strcmp(name, component->_name)==0) {
3094       return position;
3095     }
3096     if( component->isa(Component::DEF)
3097         && component->isa(Component::USE) ) {
3098       ++position;
3099       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3100     }
3101   }
3102   return Not_in_list;
3103 }
3104 
3105 int ComponentList::operand_position_format(const char *name, Form *fm) {
3106   PreserveIter pi(this);
3107   int  first_position = operand_position(name);
3108   int  use_position   = operand_position(name, Component::USE, fm);
3109 
3110   return ((first_position < use_position) ? use_position : first_position);
3111 }
3112 
3113 int ComponentList::label_position() {
3114   PreserveIter pi(this);
3115   int position = 0;
3116   reset();
3117   for( Component *comp; (comp = iter()) != NULL; ++position) {
3118     // When the first component is not a DEF,
3119     // leave space for the result operand!
3120     if ( position==0 && (! comp->isa(Component::DEF)) ) {
3121       ++position;
3122     }
3123     if (strcmp(comp->_type, "label")==0) {
3124       return position;
3125     }
3126     if( comp->isa(Component::DEF)
3127         && comp->isa(Component::USE) ) {
3128       ++position;
3129       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3130     }
3131   }
3132 
3133   return -1;
3134 }
3135 
3136 int ComponentList::method_position() {
3137   PreserveIter pi(this);
3138   int position = 0;
3139   reset();
3140   for( Component *comp; (comp = iter()) != NULL; ++position) {
3141     // When the first component is not a DEF,
3142     // leave space for the result operand!
3143     if ( position==0 && (! comp->isa(Component::DEF)) ) {
3144       ++position;
3145     }
3146     if (strcmp(comp->_type, "method")==0) {
3147       return position;
3148     }
3149     if( comp->isa(Component::DEF)
3150         && comp->isa(Component::USE) ) {
3151       ++position;
3152       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3153     }
3154   }
3155 
3156   return -1;
3157 }
3158 
3159 void ComponentList::dump() { output(stderr); }
3160 
3161 void ComponentList::output(FILE *fp) {
3162   PreserveIter pi(this);
3163   fprintf(fp, "\n");
3164   Component *component;
3165   for (reset(); (component = iter()) != NULL;) {
3166     component->output(fp);
3167   }
3168   fprintf(fp, "\n");
3169 }
3170 
3171 //------------------------------MatchNode--------------------------------------
3172 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
3173                      const char *opType, MatchNode *lChild, MatchNode *rChild)
3174   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
3175     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
3176     _commutative_id(0) {
3177   _numleaves = (lChild ? lChild->_numleaves : 0)
3178                + (rChild ? rChild->_numleaves : 0);
3179 }
3180 
3181 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
3182   : _AD(ad), _result(mnode._result), _name(mnode._name),
3183     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
3184     _internalop(0), _numleaves(mnode._numleaves),
3185     _commutative_id(mnode._commutative_id) {
3186 }
3187 
3188 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
3189   : _AD(ad), _result(mnode._result), _name(mnode._name),
3190     _opType(mnode._opType),
3191     _internalop(0), _numleaves(mnode._numleaves),
3192     _commutative_id(mnode._commutative_id) {
3193   if (mnode._lChild) {
3194     _lChild = new MatchNode(ad, *mnode._lChild, clone);
3195   } else {
3196     _lChild = NULL;
3197   }
3198   if (mnode._rChild) {
3199     _rChild = new MatchNode(ad, *mnode._rChild, clone);
3200   } else {
3201     _rChild = NULL;
3202   }
3203 }
3204 
3205 MatchNode::~MatchNode() {
3206   // // This node may not own its children if copied via assignment
3207   // if( _lChild ) delete _lChild;
3208   // if( _rChild ) delete _rChild;
3209 }
3210 
3211 bool  MatchNode::find_type(const char *type, int &position) const {
3212   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
3213   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
3214 
3215   if (strcmp(type,_opType)==0)  {
3216     return true;
3217   } else {
3218     ++position;
3219   }
3220   return false;
3221 }
3222 
3223 // Recursive call collecting info on top-level operands, not transitive.
3224 // Implementation does not modify state of internal structures.
3225 void MatchNode::append_components(FormDict& locals, ComponentList& components,
3226                                   bool def_flag) const {
3227   int usedef = def_flag ? Component::DEF : Component::USE;
3228   FormDict &globals = _AD.globalNames();
3229 
3230   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3231   // Base case
3232   if (_lChild==NULL && _rChild==NULL) {
3233     // If _opType is not an operation, do not build a component for it #####
3234     const Form *f = globals[_opType];
3235     if( f != NULL ) {
3236       // Add non-ideals that are operands, operand-classes,
3237       if( ! f->ideal_only()
3238           && (f->is_opclass() || f->is_operand()) ) {
3239         components.insert(_name, _opType, usedef, true);
3240       }
3241     }
3242     return;
3243   }
3244   // Promote results of "Set" to DEF
3245   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
3246   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
3247   tmpdef_flag = false;   // only applies to component immediately following 'Set'
3248   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
3249 }
3250 
3251 // Find the n'th base-operand in the match node,
3252 // recursively investigates match rules of user-defined operands.
3253 //
3254 // Implementation does not modify state of internal structures since they
3255 // can be shared.
3256 bool MatchNode::base_operand(uint &position, FormDict &globals,
3257                              const char * &result, const char * &name,
3258                              const char * &opType) const {
3259   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
3260   // Base case
3261   if (_lChild==NULL && _rChild==NULL) {
3262     // Check for special case: "Universe", "label"
3263     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
3264       if (position == 0) {
3265         result = _result;
3266         name   = _name;
3267         opType = _opType;
3268         return 1;
3269       } else {
3270         -- position;
3271         return 0;
3272       }
3273     }
3274 
3275     const Form *form = globals[_opType];
3276     MatchNode *matchNode = NULL;
3277     // Check for user-defined type
3278     if (form) {
3279       // User operand or instruction?
3280       OperandForm  *opForm = form->is_operand();
3281       InstructForm *inForm = form->is_instruction();
3282       if ( opForm ) {
3283         matchNode = (MatchNode*)opForm->_matrule;
3284       } else if ( inForm ) {
3285         matchNode = (MatchNode*)inForm->_matrule;
3286       }
3287     }
3288     // if this is user-defined, recurse on match rule
3289     // User-defined operand and instruction forms have a match-rule.
3290     if (matchNode) {
3291       return (matchNode->base_operand(position,globals,result,name,opType));
3292     } else {
3293       // Either not a form, or a system-defined form (no match rule).
3294       if (position==0) {
3295         result = _result;
3296         name   = _name;
3297         opType = _opType;
3298         return 1;
3299       } else {
3300         --position;
3301         return 0;
3302       }
3303     }
3304 
3305   } else {
3306     // Examine the left child and right child as well
3307     if (_lChild) {
3308       if (_lChild->base_operand(position, globals, result, name, opType))
3309         return 1;
3310     }
3311 
3312     if (_rChild) {
3313       if (_rChild->base_operand(position, globals, result, name, opType))
3314         return 1;
3315     }
3316   }
3317 
3318   return 0;
3319 }
3320 
3321 // Recursive call on all operands' match rules in my match rule.
3322 uint  MatchNode::num_consts(FormDict &globals) const {
3323   uint        index      = 0;
3324   uint        num_consts = 0;
3325   const char *result;
3326   const char *name;
3327   const char *opType;
3328 
3329   for (uint position = index;
3330        base_operand(position,globals,result,name,opType); position = index) {
3331     ++index;
3332     if( ideal_to_const_type(opType) )        num_consts++;
3333   }
3334 
3335   return num_consts;
3336 }
3337 
3338 // Recursive call on all operands' match rules in my match rule.
3339 // Constants in match rule subtree with specified type
3340 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
3341   uint        index      = 0;
3342   uint        num_consts = 0;
3343   const char *result;
3344   const char *name;
3345   const char *opType;
3346 
3347   for (uint position = index;
3348        base_operand(position,globals,result,name,opType); position = index) {
3349     ++index;
3350     if( ideal_to_const_type(opType) == type ) num_consts++;
3351   }
3352 
3353   return num_consts;
3354 }
3355 
3356 // Recursive call on all operands' match rules in my match rule.
3357 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
3358   return  num_consts( globals, Form::idealP );
3359 }
3360 
3361 bool  MatchNode::sets_result() const {
3362   return   ( (strcmp(_name,"Set") == 0) ? true : false );
3363 }
3364 
3365 const char *MatchNode::reduce_right(FormDict &globals) const {
3366   // If there is no right reduction, return NULL.
3367   const char      *rightStr    = NULL;
3368 
3369   // If we are a "Set", start from the right child.
3370   const MatchNode *const mnode = sets_result() ?
3371     (const MatchNode *)this->_rChild :
3372     (const MatchNode *)this;
3373 
3374   // If our right child exists, it is the right reduction
3375   if ( mnode->_rChild ) {
3376     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
3377       : mnode->_rChild->_opType;
3378   }
3379   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
3380   return rightStr;
3381 }
3382 
3383 const char *MatchNode::reduce_left(FormDict &globals) const {
3384   // If there is no left reduction, return NULL.
3385   const char  *leftStr  = NULL;
3386 
3387   // If we are a "Set", start from the right child.
3388   const MatchNode *const mnode = sets_result() ?
3389     (const MatchNode *)this->_rChild :
3390     (const MatchNode *)this;
3391 
3392   // If our left child exists, it is the left reduction
3393   if ( mnode->_lChild ) {
3394     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
3395       : mnode->_lChild->_opType;
3396   } else {
3397     // May be simple chain rule: (Set dst operand_form_source)
3398     if ( sets_result() ) {
3399       OperandForm *oper = globals[mnode->_opType]->is_operand();
3400       if( oper ) {
3401         leftStr = mnode->_opType;
3402       }
3403     }
3404   }
3405   return leftStr;
3406 }
3407 
3408 //------------------------------count_instr_names------------------------------
3409 // Count occurrences of operands names in the leaves of the instruction
3410 // match rule.
3411 void MatchNode::count_instr_names( Dict &names ) {
3412   if( this == NULL ) return;
3413   if( _lChild ) _lChild->count_instr_names(names);
3414   if( _rChild ) _rChild->count_instr_names(names);
3415   if( !_lChild && !_rChild ) {
3416     uintptr_t cnt = (uintptr_t)names[_name];
3417     cnt++;                      // One more name found
3418     names.Insert(_name,(void*)cnt);
3419   }
3420 }
3421 
3422 //------------------------------build_instr_pred-------------------------------
3423 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
3424 // can skip some leading instances of 'name'.
3425 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
3426   if( _lChild ) {
3427     if( !cnt ) strcpy( buf, "_kids[0]->" );
3428     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
3429     if( cnt < 0 ) return cnt;   // Found it, all done
3430   }
3431   if( _rChild ) {
3432     if( !cnt ) strcpy( buf, "_kids[1]->" );
3433     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
3434     if( cnt < 0 ) return cnt;   // Found it, all done
3435   }
3436   if( !_lChild && !_rChild ) {  // Found a leaf
3437     // Wrong name?  Give up...
3438     if( strcmp(name,_name) ) return cnt;
3439     if( !cnt ) strcpy(buf,"_leaf");
3440     return cnt-1;
3441   }
3442   return cnt;
3443 }
3444 
3445 
3446 //------------------------------build_internalop-------------------------------
3447 // Build string representation of subtree
3448 void MatchNode::build_internalop( ) {
3449   char *iop, *subtree;
3450   const char *lstr, *rstr;
3451   // Build string representation of subtree
3452   // Operation lchildType rchildType
3453   int len = (int)strlen(_opType) + 4;
3454   lstr = (_lChild) ? ((_lChild->_internalop) ?
3455                        _lChild->_internalop : _lChild->_opType) : "";
3456   rstr = (_rChild) ? ((_rChild->_internalop) ?
3457                        _rChild->_internalop : _rChild->_opType) : "";
3458   len += (int)strlen(lstr) + (int)strlen(rstr);
3459   subtree = (char *)malloc(len);
3460   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
3461   // Hash the subtree string in _internalOps; if a name exists, use it
3462   iop = (char *)_AD._internalOps[subtree];
3463   // Else create a unique name, and add it to the hash table
3464   if (iop == NULL) {
3465     iop = subtree;
3466     _AD._internalOps.Insert(subtree, iop);
3467     _AD._internalOpNames.addName(iop);
3468     _AD._internalMatch.Insert(iop, this);
3469   }
3470   // Add the internal operand name to the MatchNode
3471   _internalop = iop;
3472   _result = iop;
3473 }
3474 
3475 
3476 void MatchNode::dump() {
3477   output(stderr);
3478 }
3479 
3480 void MatchNode::output(FILE *fp) {
3481   if (_lChild==0 && _rChild==0) {
3482     fprintf(fp," %s",_name);    // operand
3483   }
3484   else {
3485     fprintf(fp," (%s ",_name);  // " (opcodeName "
3486     if(_lChild) _lChild->output(fp); //               left operand
3487     if(_rChild) _rChild->output(fp); //                    right operand
3488     fprintf(fp,")");                 //                                 ")"
3489   }
3490 }
3491 
3492 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
3493   static const char *needs_ideal_memory_list[] = {
3494     "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
3495     "StoreB","StoreC","Store" ,"StoreFP",
3496     "LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
3497     "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
3498     "StoreVector", "LoadVector",
3499     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
3500     "LoadPLocked",
3501     "StorePConditional", "StoreIConditional", "StoreLConditional",
3502     "CompareAndSwapB", "CompareAndSwapS", "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
3503     "WeakCompareAndSwapB", "WeakCompareAndSwapS", "WeakCompareAndSwapI", "WeakCompareAndSwapL", "WeakCompareAndSwapP", "WeakCompareAndSwapN",
3504     "CompareAndExchangeB", "CompareAndExchangeS", "CompareAndExchangeI", "CompareAndExchangeL", "CompareAndExchangeP", "CompareAndExchangeN",
3505     "StoreCM",
3506     "ClearArray",
3507     "GetAndSetB", "GetAndSetS", "GetAndAddI", "GetAndSetI", "GetAndSetP",
3508     "GetAndAddB", "GetAndAddS", "GetAndAddL", "GetAndSetL", "GetAndSetN",
3509   };
3510   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
3511   if( strcmp(_opType,"PrefetchAllocation")==0 )
3512     return 1;
3513   if( _lChild ) {
3514     const char *opType = _lChild->_opType;
3515     for( int i=0; i<cnt; i++ )
3516       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3517         return 1;
3518     if( _lChild->needs_ideal_memory_edge(globals) )
3519       return 1;
3520   }
3521   if( _rChild ) {
3522     const char *opType = _rChild->_opType;
3523     for( int i=0; i<cnt; i++ )
3524       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3525         return 1;
3526     if( _rChild->needs_ideal_memory_edge(globals) )
3527       return 1;
3528   }
3529 
3530   return 0;
3531 }
3532 
3533 // TRUE if defines a derived oop, and so needs a base oop edge present
3534 // post-matching.
3535 int MatchNode::needs_base_oop_edge() const {
3536   if( !strcmp(_opType,"AddP") ) return 1;
3537   if( strcmp(_opType,"Set") ) return 0;
3538   return !strcmp(_rChild->_opType,"AddP");
3539 }
3540 
3541 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
3542   if( is_simple_chain_rule(globals) ) {
3543     const char *src = _matrule->_rChild->_opType;
3544     OperandForm *src_op = globals[src]->is_operand();
3545     assert( src_op, "Not operand class of chain rule" );
3546     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
3547   }                             // Else check instruction
3548 
3549   return _matrule ? _matrule->needs_base_oop_edge() : 0;
3550 }
3551 
3552 
3553 //-------------------------cisc spilling methods-------------------------------
3554 // helper routines and methods for detecting cisc-spilling instructions
3555 //-------------------------cisc_spill_merge------------------------------------
3556 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
3557   int cisc_spillable  = Maybe_cisc_spillable;
3558 
3559   // Combine results of left and right checks
3560   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
3561     // neither side is spillable, nor prevents cisc spilling
3562     cisc_spillable = Maybe_cisc_spillable;
3563   }
3564   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
3565     // right side is spillable
3566     cisc_spillable = right_spillable;
3567   }
3568   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
3569     // left side is spillable
3570     cisc_spillable = left_spillable;
3571   }
3572   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
3573     // left or right prevents cisc spilling this instruction
3574     cisc_spillable = Not_cisc_spillable;
3575   }
3576   else {
3577     // Only allow one to spill
3578     cisc_spillable = Not_cisc_spillable;
3579   }
3580 
3581   return cisc_spillable;
3582 }
3583 
3584 //-------------------------root_ops_match--------------------------------------
3585 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
3586   // Base Case: check that the current operands/operations match
3587   assert( op1, "Must have op's name");
3588   assert( op2, "Must have op's name");
3589   const Form *form1 = globals[op1];
3590   const Form *form2 = globals[op2];
3591 
3592   return (form1 == form2);
3593 }
3594 
3595 //-------------------------cisc_spill_match_node-------------------------------
3596 // Recursively check two MatchRules for legal conversion via cisc-spilling
3597 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
3598   int cisc_spillable  = Maybe_cisc_spillable;
3599   int left_spillable  = Maybe_cisc_spillable;
3600   int right_spillable = Maybe_cisc_spillable;
3601 
3602   // Check that each has same number of operands at this level
3603   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
3604     return Not_cisc_spillable;
3605 
3606   // Base Case: check that the current operands/operations match
3607   // or are CISC spillable
3608   assert( _opType, "Must have _opType");
3609   assert( mRule2->_opType, "Must have _opType");
3610   const Form *form  = globals[_opType];
3611   const Form *form2 = globals[mRule2->_opType];
3612   if( form == form2 ) {
3613     cisc_spillable = Maybe_cisc_spillable;
3614   } else {
3615     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
3616     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
3617     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
3618     DataType data_type = Form::none;
3619     if (form->is_operand()) {
3620       // Make sure the loadX matches the type of the reg
3621       data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
3622     }
3623     // Detect reg vs (loadX memory)
3624     if( form->is_cisc_reg(globals)
3625         && form2_inst
3626         && data_type != Form::none
3627         && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
3628         && (name_left != NULL)       // NOT (load)
3629         && (name_right == NULL) ) {  // NOT (load memory foo)
3630       const Form *form2_left = name_left ? globals[name_left] : NULL;
3631       if( form2_left && form2_left->is_cisc_mem(globals) ) {
3632         cisc_spillable = Is_cisc_spillable;
3633         operand        = _name;
3634         reg_type       = _result;
3635         return Is_cisc_spillable;
3636       } else {
3637         cisc_spillable = Not_cisc_spillable;
3638       }
3639     }
3640     // Detect reg vs memory
3641     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
3642       cisc_spillable = Is_cisc_spillable;
3643       operand        = _name;
3644       reg_type       = _result;
3645       return Is_cisc_spillable;
3646     } else {
3647       cisc_spillable = Not_cisc_spillable;
3648     }
3649   }
3650 
3651   // If cisc is still possible, check rest of tree
3652   if( cisc_spillable == Maybe_cisc_spillable ) {
3653     // Check that each has same number of operands at this level
3654     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3655 
3656     // Check left operands
3657     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
3658       left_spillable = Maybe_cisc_spillable;
3659     } else  if (_lChild != NULL) {
3660       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
3661     }
3662 
3663     // Check right operands
3664     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3665       right_spillable =  Maybe_cisc_spillable;
3666     } else if (_rChild != NULL) {
3667       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3668     }
3669 
3670     // Combine results of left and right checks
3671     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3672   }
3673 
3674   return cisc_spillable;
3675 }
3676 
3677 //---------------------------cisc_spill_match_rule------------------------------
3678 // Recursively check two MatchRules for legal conversion via cisc-spilling
3679 // This method handles the root of Match tree,
3680 // general recursive checks done in MatchNode
3681 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
3682                                            MatchRule* mRule2, const char* &operand,
3683                                            const char* &reg_type) {
3684   int cisc_spillable  = Maybe_cisc_spillable;
3685   int left_spillable  = Maybe_cisc_spillable;
3686   int right_spillable = Maybe_cisc_spillable;
3687 
3688   // Check that each sets a result
3689   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
3690   // Check that each has same number of operands at this level
3691   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3692 
3693   // Check left operands: at root, must be target of 'Set'
3694   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
3695     left_spillable = Not_cisc_spillable;
3696   } else {
3697     // Do not support cisc-spilling instruction's target location
3698     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
3699       left_spillable = Maybe_cisc_spillable;
3700     } else {
3701       left_spillable = Not_cisc_spillable;
3702     }
3703   }
3704 
3705   // Check right operands: recursive walk to identify reg->mem operand
3706   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3707     right_spillable =  Maybe_cisc_spillable;
3708   } else {
3709     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3710   }
3711 
3712   // Combine results of left and right checks
3713   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3714 
3715   return cisc_spillable;
3716 }
3717 
3718 //----------------------------- equivalent ------------------------------------
3719 // Recursively check to see if two match rules are equivalent.
3720 // This rule handles the root.
3721 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
3722   // Check that each sets a result
3723   if (sets_result() != mRule2->sets_result()) {
3724     return false;
3725   }
3726 
3727   // Check that the current operands/operations match
3728   assert( _opType, "Must have _opType");
3729   assert( mRule2->_opType, "Must have _opType");
3730   const Form *form  = globals[_opType];
3731   const Form *form2 = globals[mRule2->_opType];
3732   if( form != form2 ) {
3733     return false;
3734   }
3735 
3736   if (_lChild ) {
3737     if( !_lChild->equivalent(globals, mRule2->_lChild) )
3738       return false;
3739   } else if (mRule2->_lChild) {
3740     return false; // I have NULL left child, mRule2 has non-NULL left child.
3741   }
3742 
3743   if (_rChild ) {
3744     if( !_rChild->equivalent(globals, mRule2->_rChild) )
3745       return false;
3746   } else if (mRule2->_rChild) {
3747     return false; // I have NULL right child, mRule2 has non-NULL right child.
3748   }
3749 
3750   // We've made it through the gauntlet.
3751   return true;
3752 }
3753 
3754 //----------------------------- equivalent ------------------------------------
3755 // Recursively check to see if two match rules are equivalent.
3756 // This rule handles the operands.
3757 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
3758   if( !mNode2 )
3759     return false;
3760 
3761   // Check that the current operands/operations match
3762   assert( _opType, "Must have _opType");
3763   assert( mNode2->_opType, "Must have _opType");
3764   const Form *form  = globals[_opType];
3765   const Form *form2 = globals[mNode2->_opType];
3766   if( form != form2 ) {
3767     return false;
3768   }
3769 
3770   // Check that their children also match
3771   if (_lChild ) {
3772     if( !_lChild->equivalent(globals, mNode2->_lChild) )
3773       return false;
3774   } else if (mNode2->_lChild) {
3775     return false; // I have NULL left child, mNode2 has non-NULL left child.
3776   }
3777 
3778   if (_rChild ) {
3779     if( !_rChild->equivalent(globals, mNode2->_rChild) )
3780       return false;
3781   } else if (mNode2->_rChild) {
3782     return false; // I have NULL right child, mNode2 has non-NULL right child.
3783   }
3784 
3785   // We've made it through the gauntlet.
3786   return true;
3787 }
3788 
3789 //-------------------------- has_commutative_op -------------------------------
3790 // Recursively check for commutative operations with subtree operands
3791 // which could be swapped.
3792 void MatchNode::count_commutative_op(int& count) {
3793   static const char *commut_op_list[] = {
3794     "AddI","AddL","AddF","AddD",
3795     "AndI","AndL",
3796     "MaxI","MinI",
3797     "MulI","MulL","MulF","MulD",
3798     "OrI" ,"OrL" ,
3799     "XorI","XorL"
3800   };
3801   int cnt = sizeof(commut_op_list)/sizeof(char*);
3802 
3803   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
3804     // Don't swap if right operand is an immediate constant.
3805     bool is_const = false;
3806     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
3807       FormDict &globals = _AD.globalNames();
3808       const Form *form = globals[_rChild->_opType];
3809       if ( form ) {
3810         OperandForm  *oper = form->is_operand();
3811         if( oper && oper->interface_type(globals) == Form::constant_interface )
3812           is_const = true;
3813       }
3814     }
3815     if( !is_const ) {
3816       for( int i=0; i<cnt; i++ ) {
3817         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
3818           count++;
3819           _commutative_id = count; // id should be > 0
3820           break;
3821         }
3822       }
3823     }
3824   }
3825   if( _lChild )
3826     _lChild->count_commutative_op(count);
3827   if( _rChild )
3828     _rChild->count_commutative_op(count);
3829 }
3830 
3831 //-------------------------- swap_commutative_op ------------------------------
3832 // Recursively swap specified commutative operation with subtree operands.
3833 void MatchNode::swap_commutative_op(bool atroot, int id) {
3834   if( _commutative_id == id ) { // id should be > 0
3835     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
3836             "not swappable operation");
3837     MatchNode* tmp = _lChild;
3838     _lChild = _rChild;
3839     _rChild = tmp;
3840     // Don't exit here since we need to build internalop.
3841   }
3842 
3843   bool is_set = ( strcmp(_opType, "Set") == 0 );
3844   if( _lChild )
3845     _lChild->swap_commutative_op(is_set, id);
3846   if( _rChild )
3847     _rChild->swap_commutative_op(is_set, id);
3848 
3849   // If not the root, reduce this subtree to an internal operand
3850   if( !atroot && (_lChild || _rChild) ) {
3851     build_internalop();
3852   }
3853 }
3854 
3855 //-------------------------- swap_commutative_op ------------------------------
3856 // Recursively swap specified commutative operation with subtree operands.
3857 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
3858   assert(match_rules_cnt < 100," too many match rule clones");
3859   // Clone
3860   MatchRule* clone = new MatchRule(_AD, this);
3861   // Swap operands of commutative operation
3862   ((MatchNode*)clone)->swap_commutative_op(true, count);
3863   char* buf = (char*) malloc(strlen(instr_ident) + 4);
3864   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
3865   clone->_result = buf;
3866 
3867   clone->_next = this->_next;
3868   this-> _next = clone;
3869   if( (--count) > 0 ) {
3870     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3871     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3872   }
3873 }
3874 
3875 //------------------------------MatchRule--------------------------------------
3876 MatchRule::MatchRule(ArchDesc &ad)
3877   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
3878     _next = NULL;
3879 }
3880 
3881 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
3882   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
3883     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
3884     _next = NULL;
3885 }
3886 
3887 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
3888                      int numleaves)
3889   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
3890     _numchilds(0) {
3891       _next = NULL;
3892       mroot->_lChild = NULL;
3893       mroot->_rChild = NULL;
3894       delete mroot;
3895       _numleaves = numleaves;
3896       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
3897 }
3898 MatchRule::~MatchRule() {
3899 }
3900 
3901 // Recursive call collecting info on top-level operands, not transitive.
3902 // Implementation does not modify state of internal structures.
3903 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
3904   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3905 
3906   MatchNode::append_components(locals, components,
3907                                false /* not necessarily a def */);
3908 }
3909 
3910 // Recursive call on all operands' match rules in my match rule.
3911 // Implementation does not modify state of internal structures  since they
3912 // can be shared.
3913 // The MatchNode that is called first treats its
3914 bool MatchRule::base_operand(uint &position0, FormDict &globals,
3915                              const char *&result, const char * &name,
3916                              const char * &opType)const{
3917   uint position = position0;
3918 
3919   return (MatchNode::base_operand( position, globals, result, name, opType));
3920 }
3921 
3922 
3923 bool MatchRule::is_base_register(FormDict &globals) const {
3924   uint   position = 1;
3925   const char  *result   = NULL;
3926   const char  *name     = NULL;
3927   const char  *opType   = NULL;
3928   if (!base_operand(position, globals, result, name, opType)) {
3929     position = 0;
3930     if( base_operand(position, globals, result, name, opType) &&
3931         (strcmp(opType,"RegI")==0 ||
3932          strcmp(opType,"RegP")==0 ||
3933          strcmp(opType,"RegN")==0 ||
3934          strcmp(opType,"RegL")==0 ||
3935          strcmp(opType,"RegF")==0 ||
3936          strcmp(opType,"RegD")==0 ||
3937          strcmp(opType,"VecS")==0 ||
3938          strcmp(opType,"VecD")==0 ||
3939          strcmp(opType,"VecX")==0 ||
3940          strcmp(opType,"VecY")==0 ||
3941          strcmp(opType,"VecZ")==0 ||
3942          strcmp(opType,"Reg" )==0) ) {
3943       return 1;
3944     }
3945   }
3946   return 0;
3947 }
3948 
3949 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
3950   uint         position = 1;
3951   const char  *result   = NULL;
3952   const char  *name     = NULL;
3953   const char  *opType   = NULL;
3954   if (!base_operand(position, globals, result, name, opType)) {
3955     position = 0;
3956     if (base_operand(position, globals, result, name, opType)) {
3957       return ideal_to_const_type(opType);
3958     }
3959   }
3960   return Form::none;
3961 }
3962 
3963 bool MatchRule::is_chain_rule(FormDict &globals) const {
3964 
3965   // Check for chain rule, and do not generate a match list for it
3966   if ((_lChild == NULL) && (_rChild == NULL) ) {
3967     const Form *form = globals[_opType];
3968     // If this is ideal, then it is a base match, not a chain rule.
3969     if ( form && form->is_operand() && (!form->ideal_only())) {
3970       return true;
3971     }
3972   }
3973   // Check for "Set" form of chain rule, and do not generate a match list
3974   if (_rChild) {
3975     const char *rch = _rChild->_opType;
3976     const Form *form = globals[rch];
3977     if ((!strcmp(_opType,"Set") &&
3978          ((form) && form->is_operand()))) {
3979       return true;
3980     }
3981   }
3982   return false;
3983 }
3984 
3985 int MatchRule::is_ideal_copy() const {
3986   if( _rChild ) {
3987     const char  *opType = _rChild->_opType;
3988 #if 1
3989     if( strcmp(opType,"CastIP")==0 )
3990       return 1;
3991 #else
3992     if( strcmp(opType,"CastII")==0 )
3993       return 1;
3994     // Do not treat *CastPP this way, because it
3995     // may transfer a raw pointer to an oop.
3996     // If the register allocator were to coalesce this
3997     // into a single LRG, the GC maps would be incorrect.
3998     //if( strcmp(opType,"CastPP")==0 )
3999     //  return 1;
4000     //if( strcmp(opType,"CheckCastPP")==0 )
4001     //  return 1;
4002     //
4003     // Do not treat CastX2P or CastP2X this way, because
4004     // raw pointers and int types are treated differently
4005     // when saving local & stack info for safepoints in
4006     // Output().
4007     //if( strcmp(opType,"CastX2P")==0 )
4008     //  return 1;
4009     //if( strcmp(opType,"CastP2X")==0 )
4010     //  return 1;
4011 #endif
4012   }
4013   if( is_chain_rule(_AD.globalNames()) &&
4014       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
4015     return 1;
4016   return 0;
4017 }
4018 
4019 
4020 int MatchRule::is_expensive() const {
4021   if( _rChild ) {
4022     const char  *opType = _rChild->_opType;
4023     if( strcmp(opType,"AtanD")==0 ||
4024         strcmp(opType,"DivD")==0 ||
4025         strcmp(opType,"DivF")==0 ||
4026         strcmp(opType,"DivI")==0 ||
4027         strcmp(opType,"Log10D")==0 ||
4028         strcmp(opType,"ModD")==0 ||
4029         strcmp(opType,"ModF")==0 ||
4030         strcmp(opType,"ModI")==0 ||
4031         strcmp(opType,"SqrtD")==0 ||
4032         strcmp(opType,"TanD")==0 ||
4033         strcmp(opType,"ConvD2F")==0 ||
4034         strcmp(opType,"ConvD2I")==0 ||
4035         strcmp(opType,"ConvD2L")==0 ||
4036         strcmp(opType,"ConvF2D")==0 ||
4037         strcmp(opType,"ConvF2I")==0 ||
4038         strcmp(opType,"ConvF2L")==0 ||
4039         strcmp(opType,"ConvI2D")==0 ||
4040         strcmp(opType,"ConvI2F")==0 ||
4041         strcmp(opType,"ConvI2L")==0 ||
4042         strcmp(opType,"ConvL2D")==0 ||
4043         strcmp(opType,"ConvL2F")==0 ||
4044         strcmp(opType,"ConvL2I")==0 ||
4045         strcmp(opType,"DecodeN")==0 ||
4046         strcmp(opType,"EncodeP")==0 ||
4047         strcmp(opType,"EncodePKlass")==0 ||
4048         strcmp(opType,"DecodeNKlass")==0 ||
4049         strcmp(opType,"FmaD") == 0 ||
4050         strcmp(opType,"FmaF") == 0 ||
4051         strcmp(opType,"RoundDouble")==0 ||
4052         strcmp(opType,"RoundFloat")==0 ||
4053         strcmp(opType,"ReverseBytesI")==0 ||
4054         strcmp(opType,"ReverseBytesL")==0 ||
4055         strcmp(opType,"ReverseBytesUS")==0 ||
4056         strcmp(opType,"ReverseBytesS")==0 ||
4057         strcmp(opType,"ReplicateB")==0 ||
4058         strcmp(opType,"ReplicateS")==0 ||
4059         strcmp(opType,"ReplicateI")==0 ||
4060         strcmp(opType,"ReplicateL")==0 ||
4061         strcmp(opType,"ReplicateF")==0 ||
4062         strcmp(opType,"ReplicateD")==0 ||
4063         strcmp(opType,"AddReductionVI")==0 ||
4064         strcmp(opType,"AddReductionVL")==0 ||
4065         strcmp(opType,"AddReductionVF")==0 ||
4066         strcmp(opType,"AddReductionVD")==0 ||
4067         strcmp(opType,"MulReductionVI")==0 ||
4068         strcmp(opType,"MulReductionVL")==0 ||
4069         strcmp(opType,"MulReductionVF")==0 ||
4070         strcmp(opType,"MulReductionVD")==0 ||
4071         0 /* 0 to line up columns nicely */ )
4072       return 1;
4073   }
4074   return 0;
4075 }
4076 
4077 bool MatchRule::is_ideal_if() const {
4078   if( !_opType ) return false;
4079   return
4080     !strcmp(_opType,"If"            ) ||
4081     !strcmp(_opType,"CountedLoopEnd");
4082 }
4083 
4084 bool MatchRule::is_ideal_fastlock() const {
4085   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4086     return (strcmp(_rChild->_opType,"FastLock") == 0);
4087   }
4088   return false;
4089 }
4090 
4091 bool MatchRule::is_ideal_membar() const {
4092   if( !_opType ) return false;
4093   return
4094     !strcmp(_opType,"MemBarAcquire") ||
4095     !strcmp(_opType,"MemBarRelease") ||
4096     !strcmp(_opType,"MemBarAcquireLock") ||
4097     !strcmp(_opType,"MemBarReleaseLock") ||
4098     !strcmp(_opType,"LoadFence" ) ||
4099     !strcmp(_opType,"StoreFence") ||
4100     !strcmp(_opType,"MemBarVolatile") ||
4101     !strcmp(_opType,"MemBarCPUOrder") ||
4102     !strcmp(_opType,"MemBarStoreStore");
4103 }
4104 
4105 bool MatchRule::is_ideal_loadPC() const {
4106   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4107     return (strcmp(_rChild->_opType,"LoadPC") == 0);
4108   }
4109   return false;
4110 }
4111 
4112 bool MatchRule::is_ideal_box() const {
4113   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4114     return (strcmp(_rChild->_opType,"Box") == 0);
4115   }
4116   return false;
4117 }
4118 
4119 bool MatchRule::is_ideal_goto() const {
4120   bool   ideal_goto = false;
4121 
4122   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
4123     ideal_goto = true;
4124   }
4125   return ideal_goto;
4126 }
4127 
4128 bool MatchRule::is_ideal_jump() const {
4129   if( _opType ) {
4130     if( !strcmp(_opType,"Jump") )
4131       return true;
4132   }
4133   return false;
4134 }
4135 
4136 bool MatchRule::is_ideal_bool() const {
4137   if( _opType ) {
4138     if( !strcmp(_opType,"Bool") )
4139       return true;
4140   }
4141   return false;
4142 }
4143 
4144 
4145 Form::DataType MatchRule::is_ideal_load() const {
4146   Form::DataType ideal_load = Form::none;
4147 
4148   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4149     const char *opType = _rChild->_opType;
4150     ideal_load = is_load_from_memory(opType);
4151   }
4152 
4153   return ideal_load;
4154 }
4155 
4156 bool MatchRule::is_vector() const {
4157   static const char *vector_list[] = {
4158     "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
4159     "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
4160     "MulVS","MulVI","MulVL","MulVF","MulVD",
4161     "CMoveVD",
4162     "DivVF","DivVD",
4163     "AbsVF","AbsVD",
4164     "NegVF","NegVD",
4165     "SqrtVD",
4166     "AndV" ,"XorV" ,"OrV",
4167     "AddReductionVI", "AddReductionVL",
4168     "AddReductionVF", "AddReductionVD",
4169     "MulReductionVI", "MulReductionVL",
4170     "MulReductionVF", "MulReductionVD",
4171     "LShiftCntV","RShiftCntV",
4172     "LShiftVB","LShiftVS","LShiftVI","LShiftVL",
4173     "RShiftVB","RShiftVS","RShiftVI","RShiftVL",
4174     "URShiftVB","URShiftVS","URShiftVI","URShiftVL",
4175     "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
4176     "LoadVector","StoreVector",
4177     // Next are not supported currently.
4178     "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
4179     "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
4180   };
4181   int cnt = sizeof(vector_list)/sizeof(char*);
4182   if (_rChild) {
4183     const char  *opType = _rChild->_opType;
4184     for (int i=0; i<cnt; i++)
4185       if (strcmp(opType,vector_list[i]) == 0)
4186         return true;
4187   }
4188   return false;
4189 }
4190 
4191 
4192 bool MatchRule::skip_antidep_check() const {
4193   // Some loads operate on what is effectively immutable memory so we
4194   // should skip the anti dep computations.  For some of these nodes
4195   // the rewritable field keeps the anti dep logic from triggering but
4196   // for certain kinds of LoadKlass it does not since they are
4197   // actually reading memory which could be rewritten by the runtime,
4198   // though never by generated code.  This disables it uniformly for
4199   // the nodes that behave like this: LoadKlass, LoadNKlass and
4200   // LoadRange.
4201   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4202     const char *opType = _rChild->_opType;
4203     if (strcmp("LoadKlass", opType) == 0 ||
4204         strcmp("LoadNKlass", opType) == 0 ||
4205         strcmp("LoadRange", opType) == 0) {
4206       return true;
4207     }
4208   }
4209 
4210   return false;
4211 }
4212 
4213 
4214 Form::DataType MatchRule::is_ideal_store() const {
4215   Form::DataType ideal_store = Form::none;
4216 
4217   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4218     const char *opType = _rChild->_opType;
4219     ideal_store = is_store_to_memory(opType);
4220   }
4221 
4222   return ideal_store;
4223 }
4224 
4225 
4226 void MatchRule::dump() {
4227   output(stderr);
4228 }
4229 
4230 // Write just one line.
4231 void MatchRule::output_short(FILE *fp) {
4232   fprintf(fp,"MatchRule: ( %s",_name);
4233   if (_lChild) _lChild->output(fp);
4234   if (_rChild) _rChild->output(fp);
4235   fprintf(fp," )");
4236 }
4237 
4238 void MatchRule::output(FILE *fp) {
4239   output_short(fp);
4240   fprintf(fp,"\n   nesting depth = %d\n", _depth);
4241   if (_result) fprintf(fp,"   Result Type = %s", _result);
4242   fprintf(fp,"\n");
4243 }
4244 
4245 //------------------------------Attribute--------------------------------------
4246 Attribute::Attribute(char *id, char* val, int type)
4247   : _ident(id), _val(val), _atype(type) {
4248 }
4249 Attribute::~Attribute() {
4250 }
4251 
4252 int Attribute::int_val(ArchDesc &ad) {
4253   // Make sure it is an integer constant:
4254   int result = 0;
4255   if (!_val || !ADLParser::is_int_token(_val, result)) {
4256     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
4257                   _ident, _val ? _val : "");
4258   }
4259   return result;
4260 }
4261 
4262 void Attribute::dump() {
4263   output(stderr);
4264 } // Debug printer
4265 
4266 // Write to output files
4267 void Attribute::output(FILE *fp) {
4268   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
4269 }
4270 
4271 //------------------------------FormatRule----------------------------------
4272 FormatRule::FormatRule(char *temp)
4273   : _temp(temp) {
4274 }
4275 FormatRule::~FormatRule() {
4276 }
4277 
4278 void FormatRule::dump() {
4279   output(stderr);
4280 }
4281 
4282 // Write to output files
4283 void FormatRule::output(FILE *fp) {
4284   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
4285   fprintf(fp,"\n");
4286 }