1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "logging/log.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "runtime/java.hpp"
  31 #include "runtime/os.hpp"
  32 #include "runtime/stubCodeGenerator.hpp"
  33 #include "vm_version_x86.hpp"
  34 
  35 
  36 int VM_Version::_cpu;
  37 int VM_Version::_model;
  38 int VM_Version::_stepping;
  39 VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, };
  40 
  41 // Address of instruction which causes SEGV
  42 address VM_Version::_cpuinfo_segv_addr = 0;
  43 // Address of instruction after the one which causes SEGV
  44 address VM_Version::_cpuinfo_cont_addr = 0;
  45 
  46 static BufferBlob* stub_blob;
  47 static const int stub_size = 1000;
  48 
  49 extern "C" {
  50   typedef void (*get_cpu_info_stub_t)(void*);
  51 }
  52 static get_cpu_info_stub_t get_cpu_info_stub = NULL;
  53 
  54 
  55 class VM_Version_StubGenerator: public StubCodeGenerator {
  56  public:
  57 
  58   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
  59 
  60   address generate_get_cpu_info() {
  61     // Flags to test CPU type.
  62     const uint32_t HS_EFL_AC = 0x40000;
  63     const uint32_t HS_EFL_ID = 0x200000;
  64     // Values for when we don't have a CPUID instruction.
  65     const int      CPU_FAMILY_SHIFT = 8;
  66     const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT);
  67     const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT);
  68     bool use_evex = FLAG_IS_DEFAULT(UseAVX) || (UseAVX > 2);
  69 
  70     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
  71     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done, wrapup;
  72     Label legacy_setup, save_restore_except, legacy_save_restore, start_simd_check;
  73 
  74     StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub");
  75 #   define __ _masm->
  76 
  77     address start = __ pc();
  78 
  79     //
  80     // void get_cpu_info(VM_Version::CpuidInfo* cpuid_info);
  81     //
  82     // LP64: rcx and rdx are first and second argument registers on windows
  83 
  84     __ push(rbp);
  85 #ifdef _LP64
  86     __ mov(rbp, c_rarg0); // cpuid_info address
  87 #else
  88     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
  89 #endif
  90     __ push(rbx);
  91     __ push(rsi);
  92     __ pushf();          // preserve rbx, and flags
  93     __ pop(rax);
  94     __ push(rax);
  95     __ mov(rcx, rax);
  96     //
  97     // if we are unable to change the AC flag, we have a 386
  98     //
  99     __ xorl(rax, HS_EFL_AC);
 100     __ push(rax);
 101     __ popf();
 102     __ pushf();
 103     __ pop(rax);
 104     __ cmpptr(rax, rcx);
 105     __ jccb(Assembler::notEqual, detect_486);
 106 
 107     __ movl(rax, CPU_FAMILY_386);
 108     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 109     __ jmp(done);
 110 
 111     //
 112     // If we are unable to change the ID flag, we have a 486 which does
 113     // not support the "cpuid" instruction.
 114     //
 115     __ bind(detect_486);
 116     __ mov(rax, rcx);
 117     __ xorl(rax, HS_EFL_ID);
 118     __ push(rax);
 119     __ popf();
 120     __ pushf();
 121     __ pop(rax);
 122     __ cmpptr(rcx, rax);
 123     __ jccb(Assembler::notEqual, detect_586);
 124 
 125     __ bind(cpu486);
 126     __ movl(rax, CPU_FAMILY_486);
 127     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 128     __ jmp(done);
 129 
 130     //
 131     // At this point, we have a chip which supports the "cpuid" instruction
 132     //
 133     __ bind(detect_586);
 134     __ xorl(rax, rax);
 135     __ cpuid();
 136     __ orl(rax, rax);
 137     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
 138                                         // value of at least 1, we give up and
 139                                         // assume a 486
 140     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 141     __ movl(Address(rsi, 0), rax);
 142     __ movl(Address(rsi, 4), rbx);
 143     __ movl(Address(rsi, 8), rcx);
 144     __ movl(Address(rsi,12), rdx);
 145 
 146     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
 147     __ jccb(Assembler::belowEqual, std_cpuid4);
 148 
 149     //
 150     // cpuid(0xB) Processor Topology
 151     //
 152     __ movl(rax, 0xb);
 153     __ xorl(rcx, rcx);   // Threads level
 154     __ cpuid();
 155 
 156     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
 157     __ movl(Address(rsi, 0), rax);
 158     __ movl(Address(rsi, 4), rbx);
 159     __ movl(Address(rsi, 8), rcx);
 160     __ movl(Address(rsi,12), rdx);
 161 
 162     __ movl(rax, 0xb);
 163     __ movl(rcx, 1);     // Cores level
 164     __ cpuid();
 165     __ push(rax);
 166     __ andl(rax, 0x1f);  // Determine if valid topology level
 167     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 168     __ andl(rax, 0xffff);
 169     __ pop(rax);
 170     __ jccb(Assembler::equal, std_cpuid4);
 171 
 172     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
 173     __ movl(Address(rsi, 0), rax);
 174     __ movl(Address(rsi, 4), rbx);
 175     __ movl(Address(rsi, 8), rcx);
 176     __ movl(Address(rsi,12), rdx);
 177 
 178     __ movl(rax, 0xb);
 179     __ movl(rcx, 2);     // Packages level
 180     __ cpuid();
 181     __ push(rax);
 182     __ andl(rax, 0x1f);  // Determine if valid topology level
 183     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 184     __ andl(rax, 0xffff);
 185     __ pop(rax);
 186     __ jccb(Assembler::equal, std_cpuid4);
 187 
 188     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
 189     __ movl(Address(rsi, 0), rax);
 190     __ movl(Address(rsi, 4), rbx);
 191     __ movl(Address(rsi, 8), rcx);
 192     __ movl(Address(rsi,12), rdx);
 193 
 194     //
 195     // cpuid(0x4) Deterministic cache params
 196     //
 197     __ bind(std_cpuid4);
 198     __ movl(rax, 4);
 199     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
 200     __ jccb(Assembler::greater, std_cpuid1);
 201 
 202     __ xorl(rcx, rcx);   // L1 cache
 203     __ cpuid();
 204     __ push(rax);
 205     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
 206     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
 207     __ pop(rax);
 208     __ jccb(Assembler::equal, std_cpuid1);
 209 
 210     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
 211     __ movl(Address(rsi, 0), rax);
 212     __ movl(Address(rsi, 4), rbx);
 213     __ movl(Address(rsi, 8), rcx);
 214     __ movl(Address(rsi,12), rdx);
 215 
 216     //
 217     // Standard cpuid(0x1)
 218     //
 219     __ bind(std_cpuid1);
 220     __ movl(rax, 1);
 221     __ cpuid();
 222     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 223     __ movl(Address(rsi, 0), rax);
 224     __ movl(Address(rsi, 4), rbx);
 225     __ movl(Address(rsi, 8), rcx);
 226     __ movl(Address(rsi,12), rdx);
 227 
 228     //
 229     // Check if OS has enabled XGETBV instruction to access XCR0
 230     // (OSXSAVE feature flag) and CPU supports AVX
 231     //
 232     __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
 233     __ cmpl(rcx, 0x18000000);
 234     __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
 235 
 236     //
 237     // XCR0, XFEATURE_ENABLED_MASK register
 238     //
 239     __ xorl(rcx, rcx);   // zero for XCR0 register
 240     __ xgetbv();
 241     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
 242     __ movl(Address(rsi, 0), rax);
 243     __ movl(Address(rsi, 4), rdx);
 244 
 245     //
 246     // cpuid(0x7) Structured Extended Features
 247     //
 248     __ bind(sef_cpuid);
 249     __ movl(rax, 7);
 250     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
 251     __ jccb(Assembler::greater, ext_cpuid);
 252 
 253     __ xorl(rcx, rcx);
 254     __ cpuid();
 255     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 256     __ movl(Address(rsi, 0), rax);
 257     __ movl(Address(rsi, 4), rbx);
 258 
 259     //
 260     // Extended cpuid(0x80000000)
 261     //
 262     __ bind(ext_cpuid);
 263     __ movl(rax, 0x80000000);
 264     __ cpuid();
 265     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
 266     __ jcc(Assembler::belowEqual, done);
 267     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
 268     __ jccb(Assembler::belowEqual, ext_cpuid1);
 269     __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
 270     __ jccb(Assembler::belowEqual, ext_cpuid5);
 271     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
 272     __ jccb(Assembler::belowEqual, ext_cpuid7);
 273     //
 274     // Extended cpuid(0x80000008)
 275     //
 276     __ movl(rax, 0x80000008);
 277     __ cpuid();
 278     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
 279     __ movl(Address(rsi, 0), rax);
 280     __ movl(Address(rsi, 4), rbx);
 281     __ movl(Address(rsi, 8), rcx);
 282     __ movl(Address(rsi,12), rdx);
 283 
 284     //
 285     // Extended cpuid(0x80000007)
 286     //
 287     __ bind(ext_cpuid7);
 288     __ movl(rax, 0x80000007);
 289     __ cpuid();
 290     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
 291     __ movl(Address(rsi, 0), rax);
 292     __ movl(Address(rsi, 4), rbx);
 293     __ movl(Address(rsi, 8), rcx);
 294     __ movl(Address(rsi,12), rdx);
 295 
 296     //
 297     // Extended cpuid(0x80000005)
 298     //
 299     __ bind(ext_cpuid5);
 300     __ movl(rax, 0x80000005);
 301     __ cpuid();
 302     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
 303     __ movl(Address(rsi, 0), rax);
 304     __ movl(Address(rsi, 4), rbx);
 305     __ movl(Address(rsi, 8), rcx);
 306     __ movl(Address(rsi,12), rdx);
 307 
 308     //
 309     // Extended cpuid(0x80000001)
 310     //
 311     __ bind(ext_cpuid1);
 312     __ movl(rax, 0x80000001);
 313     __ cpuid();
 314     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
 315     __ movl(Address(rsi, 0), rax);
 316     __ movl(Address(rsi, 4), rbx);
 317     __ movl(Address(rsi, 8), rcx);
 318     __ movl(Address(rsi,12), rdx);
 319 
 320     //
 321     // Check if OS has enabled XGETBV instruction to access XCR0
 322     // (OSXSAVE feature flag) and CPU supports AVX
 323     //
 324     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 325     __ movl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
 326     __ andl(rcx, Address(rsi, 8)); // cpuid1 bits osxsave | avx
 327     __ cmpl(rcx, 0x18000000);
 328     __ jccb(Assembler::notEqual, done); // jump if AVX is not supported
 329 
 330     __ movl(rax, 0x6);
 331     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 332     __ cmpl(rax, 0x6);
 333     __ jccb(Assembler::equal, start_simd_check); // return if AVX is not supported
 334 
 335     // we need to bridge farther than imm8, so we use this island as a thunk
 336     __ bind(done);
 337     __ jmp(wrapup);
 338 
 339     __ bind(start_simd_check);
 340     //
 341     // Some OSs have a bug when upper 128/256bits of YMM/ZMM
 342     // registers are not restored after a signal processing.
 343     // Generate SEGV here (reference through NULL)
 344     // and check upper YMM/ZMM bits after it.
 345     //
 346     intx saved_useavx = UseAVX;
 347     intx saved_usesse = UseSSE;
 348     // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
 349     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 350     __ movl(rax, 0x10000);
 351     __ andl(rax, Address(rsi, 4)); // xcr0 bits sse | ymm
 352     __ cmpl(rax, 0x10000);
 353     __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
 354     // check _cpuid_info.xem_xcr0_eax.bits.opmask
 355     // check _cpuid_info.xem_xcr0_eax.bits.zmm512
 356     // check _cpuid_info.xem_xcr0_eax.bits.zmm32
 357     __ movl(rax, 0xE0);
 358     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 359     __ cmpl(rax, 0xE0);
 360     __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
 361 
 362     // If UseAVX is unitialized or is set by the user to include EVEX
 363     if (use_evex) {
 364       // EVEX setup: run in lowest evex mode
 365       VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
 366       UseAVX = 3;
 367       UseSSE = 2;
 368 #ifdef _WINDOWS
 369       // xmm5-xmm15 are not preserved by caller on windows
 370       // https://msdn.microsoft.com/en-us/library/9z1stfyw.aspx
 371       __ subptr(rsp, 64);
 372       __ evmovdqul(Address(rsp, 0), xmm7, Assembler::AVX_512bit);
 373 #ifdef _LP64
 374       __ subptr(rsp, 64);
 375       __ evmovdqul(Address(rsp, 0), xmm8, Assembler::AVX_512bit);
 376       __ subptr(rsp, 64);
 377       __ evmovdqul(Address(rsp, 0), xmm31, Assembler::AVX_512bit);
 378 #endif // _LP64
 379 #endif // _WINDOWS
 380 
 381       // load value into all 64 bytes of zmm7 register
 382       __ movl(rcx, VM_Version::ymm_test_value());
 383       __ movdl(xmm0, rcx);
 384       __ movl(rcx, 0xffff);
 385       __ kmovwl(k1, rcx);
 386       __ evpbroadcastd(xmm0, xmm0, Assembler::AVX_512bit);
 387       __ evmovdqul(xmm7, xmm0, Assembler::AVX_512bit);
 388 #ifdef _LP64
 389       __ evmovdqul(xmm8, xmm0, Assembler::AVX_512bit);
 390       __ evmovdqul(xmm31, xmm0, Assembler::AVX_512bit);
 391 #endif
 392       VM_Version::clean_cpuFeatures();
 393       __ jmp(save_restore_except);
 394     }
 395 
 396     __ bind(legacy_setup);
 397     // AVX setup
 398     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
 399     UseAVX = 1;
 400     UseSSE = 2;
 401 #ifdef _WINDOWS
 402     __ subptr(rsp, 32);
 403     __ vmovdqu(Address(rsp, 0), xmm7);
 404 #ifdef _LP64
 405     __ subptr(rsp, 32);
 406     __ vmovdqu(Address(rsp, 0), xmm8);
 407     __ subptr(rsp, 32);
 408     __ vmovdqu(Address(rsp, 0), xmm15);
 409 #endif // _LP64
 410 #endif // _WINDOWS
 411 
 412     // load value into all 32 bytes of ymm7 register
 413     __ movl(rcx, VM_Version::ymm_test_value());
 414 
 415     __ movdl(xmm0, rcx);
 416     __ pshufd(xmm0, xmm0, 0x00);
 417     __ vinsertf128_high(xmm0, xmm0);
 418     __ vmovdqu(xmm7, xmm0);
 419 #ifdef _LP64
 420     __ vmovdqu(xmm8, xmm0);
 421     __ vmovdqu(xmm15, xmm0);
 422 #endif
 423     VM_Version::clean_cpuFeatures();
 424 
 425     __ bind(save_restore_except);
 426     __ xorl(rsi, rsi);
 427     VM_Version::set_cpuinfo_segv_addr(__ pc());
 428     // Generate SEGV
 429     __ movl(rax, Address(rsi, 0));
 430 
 431     VM_Version::set_cpuinfo_cont_addr(__ pc());
 432     // Returns here after signal. Save xmm0 to check it later.
 433 
 434     // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
 435     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 436     __ movl(rax, 0x10000);
 437     __ andl(rax, Address(rsi, 4));
 438     __ cmpl(rax, 0x10000);
 439     __ jcc(Assembler::notEqual, legacy_save_restore);
 440     // check _cpuid_info.xem_xcr0_eax.bits.opmask
 441     // check _cpuid_info.xem_xcr0_eax.bits.zmm512
 442     // check _cpuid_info.xem_xcr0_eax.bits.zmm32
 443     __ movl(rax, 0xE0);
 444     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 445     __ cmpl(rax, 0xE0);
 446     __ jcc(Assembler::notEqual, legacy_save_restore);
 447 
 448     // If UseAVX is unitialized or is set by the user to include EVEX
 449     if (use_evex) {
 450       // EVEX check: run in lowest evex mode
 451       VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
 452       UseAVX = 3;
 453       UseSSE = 2;
 454       __ lea(rsi, Address(rbp, in_bytes(VM_Version::zmm_save_offset())));
 455       __ evmovdqul(Address(rsi, 0), xmm0, Assembler::AVX_512bit);
 456       __ evmovdqul(Address(rsi, 64), xmm7, Assembler::AVX_512bit);
 457 #ifdef _LP64
 458       __ evmovdqul(Address(rsi, 128), xmm8, Assembler::AVX_512bit);
 459       __ evmovdqul(Address(rsi, 192), xmm31, Assembler::AVX_512bit);
 460 #endif
 461 
 462 #ifdef _WINDOWS
 463 #ifdef _LP64
 464       __ evmovdqul(xmm31, Address(rsp, 0), Assembler::AVX_512bit);
 465       __ addptr(rsp, 64);
 466       __ evmovdqul(xmm8, Address(rsp, 0), Assembler::AVX_512bit);
 467       __ addptr(rsp, 64);
 468 #endif // _LP64
 469       __ evmovdqul(xmm7, Address(rsp, 0), Assembler::AVX_512bit);
 470       __ addptr(rsp, 64);
 471 #endif // _WINDOWS
 472       generate_vzeroupper(wrapup);
 473       VM_Version::clean_cpuFeatures();
 474       UseAVX = saved_useavx;
 475       UseSSE = saved_usesse;
 476       __ jmp(wrapup);
 477    }
 478 
 479     __ bind(legacy_save_restore);
 480     // AVX check
 481     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
 482     UseAVX = 1;
 483     UseSSE = 2;
 484     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
 485     __ vmovdqu(Address(rsi, 0), xmm0);
 486     __ vmovdqu(Address(rsi, 32), xmm7);
 487 #ifdef _LP64
 488     __ vmovdqu(Address(rsi, 64), xmm8);
 489     __ vmovdqu(Address(rsi, 96), xmm15);
 490 #endif
 491 
 492 #ifdef _WINDOWS
 493 #ifdef _LP64
 494     __ vmovdqu(xmm15, Address(rsp, 0));
 495     __ addptr(rsp, 32);
 496     __ vmovdqu(xmm8, Address(rsp, 0));
 497     __ addptr(rsp, 32);
 498 #endif // _LP64
 499     __ vmovdqu(xmm7, Address(rsp, 0));
 500     __ addptr(rsp, 32);
 501 #endif // _WINDOWS
 502     generate_vzeroupper(wrapup);
 503     VM_Version::clean_cpuFeatures();
 504     UseAVX = saved_useavx;
 505     UseSSE = saved_usesse;
 506 
 507     __ bind(wrapup);
 508     __ popf();
 509     __ pop(rsi);
 510     __ pop(rbx);
 511     __ pop(rbp);
 512     __ ret(0);
 513 
 514 #   undef __
 515 
 516     return start;
 517   };
 518   void generate_vzeroupper(Label& L_wrapup) {
 519 #   define __ _masm->
 520     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 521     __ cmpl(Address(rsi, 4), 0x756e6547);  // 'uneG'
 522     __ jcc(Assembler::notEqual, L_wrapup);
 523     __ movl(rcx, 0x0FFF0FF0);
 524     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 525     __ andl(rcx, Address(rsi, 0));
 526     __ cmpl(rcx, 0x00050670);              // If it is Xeon Phi 3200/5200/7200
 527     __ jcc(Assembler::equal, L_wrapup);
 528     __ cmpl(rcx, 0x00080650);              // If it is Future Xeon Phi
 529     __ jcc(Assembler::equal, L_wrapup);
 530     __ vzeroupper();
 531 #   undef __
 532   }
 533 };
 534 
 535 void VM_Version::get_processor_features() {
 536 
 537   _cpu = 4; // 486 by default
 538   _model = 0;
 539   _stepping = 0;
 540   _features = 0;
 541   _logical_processors_per_package = 1;
 542   // i486 internal cache is both I&D and has a 16-byte line size
 543   _L1_data_cache_line_size = 16;
 544 
 545   // Get raw processor info
 546 
 547   get_cpu_info_stub(&_cpuid_info);
 548 
 549   assert_is_initialized();
 550   _cpu = extended_cpu_family();
 551   _model = extended_cpu_model();
 552   _stepping = cpu_stepping();
 553 
 554   if (cpu_family() > 4) { // it supports CPUID
 555     _features = feature_flags();
 556     // Logical processors are only available on P4s and above,
 557     // and only if hyperthreading is available.
 558     _logical_processors_per_package = logical_processor_count();
 559     _L1_data_cache_line_size = L1_line_size();
 560   }
 561 
 562   _supports_cx8 = supports_cmpxchg8();
 563   // xchg and xadd instructions
 564   _supports_atomic_getset4 = true;
 565   _supports_atomic_getadd4 = true;
 566   LP64_ONLY(_supports_atomic_getset8 = true);
 567   LP64_ONLY(_supports_atomic_getadd8 = true);
 568 
 569 #ifdef _LP64
 570   // OS should support SSE for x64 and hardware should support at least SSE2.
 571   if (!VM_Version::supports_sse2()) {
 572     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
 573   }
 574   // in 64 bit the use of SSE2 is the minimum
 575   if (UseSSE < 2) UseSSE = 2;
 576 #endif
 577 
 578 #ifdef AMD64
 579   // flush_icache_stub have to be generated first.
 580   // That is why Icache line size is hard coded in ICache class,
 581   // see icache_x86.hpp. It is also the reason why we can't use
 582   // clflush instruction in 32-bit VM since it could be running
 583   // on CPU which does not support it.
 584   //
 585   // The only thing we can do is to verify that flushed
 586   // ICache::line_size has correct value.
 587   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
 588   // clflush_size is size in quadwords (8 bytes).
 589   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
 590 #endif
 591 
 592   // If the OS doesn't support SSE, we can't use this feature even if the HW does
 593   if (!os::supports_sse())
 594     _features &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
 595 
 596   if (UseSSE < 4) {
 597     _features &= ~CPU_SSE4_1;
 598     _features &= ~CPU_SSE4_2;
 599   }
 600 
 601   if (UseSSE < 3) {
 602     _features &= ~CPU_SSE3;
 603     _features &= ~CPU_SSSE3;
 604     _features &= ~CPU_SSE4A;
 605   }
 606 
 607   if (UseSSE < 2)
 608     _features &= ~CPU_SSE2;
 609 
 610   if (UseSSE < 1)
 611     _features &= ~CPU_SSE;
 612 
 613   // first try initial setting and detect what we can support
 614   if (UseAVX > 0) {
 615     if (UseAVX > 2 && supports_evex()) {
 616       UseAVX = 3;
 617     } else if (UseAVX > 1 && supports_avx2()) {
 618       UseAVX = 2;
 619     } else if (UseAVX > 0 && supports_avx()) {
 620       UseAVX = 1;
 621     } else {
 622       UseAVX = 0;
 623     }
 624   } else if (UseAVX < 0) {
 625     UseAVX = 0;
 626   }
 627 
 628   if (UseAVX < 3) {
 629     _features &= ~CPU_AVX512F;
 630     _features &= ~CPU_AVX512DQ;
 631     _features &= ~CPU_AVX512CD;
 632     _features &= ~CPU_AVX512BW;
 633     _features &= ~CPU_AVX512VL;
 634   }
 635 
 636   if (UseAVX < 2)
 637     _features &= ~CPU_AVX2;
 638 
 639   if (UseAVX < 1) {
 640     _features &= ~CPU_AVX;
 641     _features &= ~CPU_VZEROUPPER;
 642   }
 643 
 644   if (!UseAES && !FLAG_IS_DEFAULT(UseAES))
 645     _features &= ~CPU_AES;
 646 
 647   if (logical_processors_per_package() == 1) {
 648     // HT processor could be installed on a system which doesn't support HT.
 649     _features &= ~CPU_HT;
 650   }
 651 
 652   if( is_intel() ) { // Intel cpus specific settings
 653     if ((cpu_family() == 0x06) &&
 654         ((extended_cpu_model() == 0x57) ||   // Xeon Phi 3200/5200/7200
 655         (extended_cpu_model() == 0x85))) {  // Future Xeon Phi
 656       _features &= ~CPU_VZEROUPPER;
 657      if (FLAG_IS_DEFAULT(UseIncDec)){
 658      FLAG_SET_DEFAULT(UseIncDec, false);
 659          }
 660 #ifdef COMPILER2
 661           if (FLAG_IS_DEFAULT(OptoScheduling)) {
 662                   OptoScheduling = true;
 663           }
 664 #endif
 665  if (supports_sse4_2()) { // Silvermont
 666   if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
 667          UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
 668         }
 669  }
 670 
 671         }
 672   }
 673 
 674   char buf[256];
 675   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
 676                cores_per_cpu(), threads_per_core(),
 677                cpu_family(), _model, _stepping,
 678                (supports_cmov() ? ", cmov" : ""),
 679                (supports_cmpxchg8() ? ", cx8" : ""),
 680                (supports_fxsr() ? ", fxsr" : ""),
 681                (supports_mmx()  ? ", mmx"  : ""),
 682                (supports_sse()  ? ", sse"  : ""),
 683                (supports_sse2() ? ", sse2" : ""),
 684                (supports_sse3() ? ", sse3" : ""),
 685                (supports_ssse3()? ", ssse3": ""),
 686                (supports_sse4_1() ? ", sse4.1" : ""),
 687                (supports_sse4_2() ? ", sse4.2" : ""),
 688                (supports_popcnt() ? ", popcnt" : ""),
 689                (supports_avx()    ? ", avx" : ""),
 690                (supports_avx2()   ? ", avx2" : ""),
 691                (supports_aes()    ? ", aes" : ""),
 692                (supports_clmul()  ? ", clmul" : ""),
 693                (supports_erms()   ? ", erms" : ""),
 694                (supports_rtm()    ? ", rtm" : ""),
 695                (supports_mmx_ext() ? ", mmxext" : ""),
 696                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
 697                (supports_lzcnt()   ? ", lzcnt": ""),
 698                (supports_sse4a()   ? ", sse4a": ""),
 699                (supports_ht() ? ", ht": ""),
 700                (supports_tsc() ? ", tsc": ""),
 701                (supports_tscinv_bit() ? ", tscinvbit": ""),
 702                (supports_tscinv() ? ", tscinv": ""),
 703                (supports_bmi1() ? ", bmi1" : ""),
 704                (supports_bmi2() ? ", bmi2" : ""),
 705                (supports_adx() ? ", adx" : ""),
 706                (supports_evex() ? ", evex" : ""),
 707                (supports_sha() ? ", sha" : ""),
 708                (supports_fma() ? ", fma" : ""));
 709   _features_string = os::strdup(buf);
 710 
 711   // UseSSE is set to the smaller of what hardware supports and what
 712   // the command line requires.  I.e., you cannot set UseSSE to 2 on
 713   // older Pentiums which do not support it.
 714   if (UseSSE > 4) UseSSE=4;
 715   if (UseSSE < 0) UseSSE=0;
 716   if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
 717     UseSSE = MIN2((intx)3,UseSSE);
 718   if (!supports_sse3()) // Drop to 2 if no SSE3 support
 719     UseSSE = MIN2((intx)2,UseSSE);
 720   if (!supports_sse2()) // Drop to 1 if no SSE2 support
 721     UseSSE = MIN2((intx)1,UseSSE);
 722   if (!supports_sse ()) // Drop to 0 if no SSE  support
 723     UseSSE = 0;
 724 
 725   // Use AES instructions if available.
 726   if (supports_aes()) {
 727     if (FLAG_IS_DEFAULT(UseAES)) {
 728       FLAG_SET_DEFAULT(UseAES, true);
 729     }
 730     if (!UseAES) {
 731       if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 732         warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled.");
 733       }
 734       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 735     } else {
 736       if (UseSSE > 2) {
 737         if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 738           FLAG_SET_DEFAULT(UseAESIntrinsics, true);
 739         }
 740       } else {
 741         // The AES intrinsic stubs require AES instruction support (of course)
 742         // but also require sse3 mode or higher for instructions it use.
 743         if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 744           warning("X86 AES intrinsics require SSE3 instructions or higher. Intrinsics will be disabled.");
 745         }
 746         FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 747       }
 748 
 749       // --AES-CTR begins--
 750       if (!UseAESIntrinsics) {
 751         if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 752           warning("AES-CTR intrinsics require UseAESIntrinsics flag to be enabled. Intrinsics will be disabled.");
 753           FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 754         }
 755       } else {
 756         if(supports_sse4_1()) {
 757           if (FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 758             FLAG_SET_DEFAULT(UseAESCTRIntrinsics, true);
 759           }
 760         } else {
 761            // The AES-CTR intrinsic stubs require AES instruction support (of course)
 762            // but also require sse4.1 mode or higher for instructions it use.
 763           if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 764              warning("X86 AES-CTR intrinsics require SSE4.1 instructions or higher. Intrinsics will be disabled.");
 765            }
 766            FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 767         }
 768       }
 769       // --AES-CTR ends--
 770     }
 771   } else if (UseAES || UseAESIntrinsics || UseAESCTRIntrinsics) {
 772     if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
 773       warning("AES instructions are not available on this CPU");
 774       FLAG_SET_DEFAULT(UseAES, false);
 775     }
 776     if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 777       warning("AES intrinsics are not available on this CPU");
 778       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 779     }
 780     if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 781       warning("AES-CTR intrinsics are not available on this CPU");
 782       FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 783     }
 784   }
 785 
 786   // Use CLMUL instructions if available.
 787   if (supports_clmul()) {
 788     if (FLAG_IS_DEFAULT(UseCLMUL)) {
 789       UseCLMUL = true;
 790     }
 791   } else if (UseCLMUL) {
 792     if (!FLAG_IS_DEFAULT(UseCLMUL))
 793       warning("CLMUL instructions not available on this CPU (AVX may also be required)");
 794     FLAG_SET_DEFAULT(UseCLMUL, false);
 795   }
 796 
 797   if (UseCLMUL && (UseSSE > 2)) {
 798     if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
 799       UseCRC32Intrinsics = true;
 800     }
 801   } else if (UseCRC32Intrinsics) {
 802     if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
 803       warning("CRC32 Intrinsics requires CLMUL instructions (not available on this CPU)");
 804     FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
 805   }
 806 
 807   if (supports_sse4_2() && supports_clmul()) {
 808     if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
 809       UseCRC32CIntrinsics = true;
 810     }
 811   } else if (UseCRC32CIntrinsics) {
 812     if (!FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
 813       warning("CRC32C intrinsics are not available on this CPU");
 814     }
 815     FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
 816   }
 817 
 818   // GHASH/GCM intrinsics
 819   if (UseCLMUL && (UseSSE > 2)) {
 820     if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
 821       UseGHASHIntrinsics = true;
 822     }
 823   } else if (UseGHASHIntrinsics) {
 824     if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics))
 825       warning("GHASH intrinsic requires CLMUL and SSE2 instructions on this CPU");
 826     FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
 827   }
 828 
 829   if (supports_fma() && UseSSE >= 2) {
 830     if (FLAG_IS_DEFAULT(UseFMA)) {
 831       UseFMA = true;
 832     }
 833   } else if (UseFMA) {
 834     warning("FMA instructions are not available on this CPU");
 835     FLAG_SET_DEFAULT(UseFMA, false);
 836   }
 837 
 838   if (supports_sha() LP64_ONLY(|| supports_avx2() && supports_bmi2())) {
 839     if (FLAG_IS_DEFAULT(UseSHA)) {
 840       UseSHA = true;
 841     }
 842   } else if (UseSHA) {
 843     warning("SHA instructions are not available on this CPU");
 844     FLAG_SET_DEFAULT(UseSHA, false);
 845   }
 846 
 847   if (supports_sha() && UseSHA) {
 848     if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) {
 849       FLAG_SET_DEFAULT(UseSHA1Intrinsics, true);
 850     }
 851   } else if (UseSHA1Intrinsics) {
 852     warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
 853     FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
 854   }
 855 
 856   if (UseSHA) {
 857     if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) {
 858       FLAG_SET_DEFAULT(UseSHA256Intrinsics, true);
 859     }
 860   } else if (UseSHA256Intrinsics) {
 861     warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
 862     FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
 863   }
 864 
 865   if (UseSHA) {
 866     if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) {
 867       FLAG_SET_DEFAULT(UseSHA512Intrinsics, true);
 868     }
 869   } else if (UseSHA512Intrinsics) {
 870     warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
 871     FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
 872   }
 873 
 874   if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) {
 875     FLAG_SET_DEFAULT(UseSHA, false);
 876   }
 877 
 878   if (UseAdler32Intrinsics) {
 879     warning("Adler32Intrinsics not available on this CPU.");
 880     FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
 881   }
 882 
 883   if (!supports_rtm() && UseRTMLocking) {
 884     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 885     // setting during arguments processing. See use_biased_locking().
 886     // VM_Version_init() is executed after UseBiasedLocking is used
 887     // in Thread::allocate().
 888     vm_exit_during_initialization("RTM instructions are not available on this CPU");
 889   }
 890 
 891 #if INCLUDE_RTM_OPT
 892   if (UseRTMLocking) {
 893     if (is_client_compilation_mode_vm()) {
 894       // Only C2 does RTM locking optimization.
 895       // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 896       // setting during arguments processing. See use_biased_locking().
 897       vm_exit_during_initialization("RTM locking optimization is not supported in emulated client VM");
 898     }
 899     if (is_intel_family_core()) {
 900       if ((_model == CPU_MODEL_HASWELL_E3) ||
 901           (_model == CPU_MODEL_HASWELL_E7 && _stepping < 3) ||
 902           (_model == CPU_MODEL_BROADWELL  && _stepping < 4)) {
 903         // currently a collision between SKL and HSW_E3
 904         if (!UnlockExperimentalVMOptions && UseAVX < 3) {
 905           vm_exit_during_initialization("UseRTMLocking is only available as experimental option on this platform. It must be enabled via -XX:+UnlockExperimentalVMOptions flag.");
 906         } else {
 907           warning("UseRTMLocking is only available as experimental option on this platform.");
 908         }
 909       }
 910     }
 911     if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
 912       // RTM locking should be used only for applications with
 913       // high lock contention. For now we do not use it by default.
 914       vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
 915     }
 916     if (!is_power_of_2(RTMTotalCountIncrRate)) {
 917       warning("RTMTotalCountIncrRate must be a power of 2, resetting it to 64");
 918       FLAG_SET_DEFAULT(RTMTotalCountIncrRate, 64);
 919     }
 920     if (RTMAbortRatio < 0 || RTMAbortRatio > 100) {
 921       warning("RTMAbortRatio must be in the range 0 to 100, resetting it to 50");
 922       FLAG_SET_DEFAULT(RTMAbortRatio, 50);
 923     }
 924   } else { // !UseRTMLocking
 925     if (UseRTMForStackLocks) {
 926       if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
 927         warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
 928       }
 929       FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
 930     }
 931     if (UseRTMDeopt) {
 932       FLAG_SET_DEFAULT(UseRTMDeopt, false);
 933     }
 934     if (PrintPreciseRTMLockingStatistics) {
 935       FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
 936     }
 937   }
 938 #else
 939   if (UseRTMLocking) {
 940     // Only C2 does RTM locking optimization.
 941     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 942     // setting during arguments processing. See use_biased_locking().
 943     vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
 944   }
 945 #endif
 946 
 947 #ifdef COMPILER2
 948   if (UseFPUForSpilling) {
 949     if (UseSSE < 2) {
 950       // Only supported with SSE2+
 951       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
 952     }
 953   }
 954 #endif
 955 #if defined(COMPILER2) || INCLUDE_JVMCI
 956   if (MaxVectorSize > 0) {
 957     if (!is_power_of_2(MaxVectorSize)) {
 958       warning("MaxVectorSize must be a power of 2");
 959       FLAG_SET_DEFAULT(MaxVectorSize, 64);
 960     }
 961     if (UseSSE < 2) {
 962       // Vectors (in XMM) are only supported with SSE2+
 963       if (MaxVectorSize > 0) {
 964         if (!FLAG_IS_DEFAULT(MaxVectorSize))
 965           warning("MaxVectorSize must be 0");
 966         FLAG_SET_DEFAULT(MaxVectorSize, 0);
 967       }
 968     }
 969     else if (UseAVX == 0 || !os_supports_avx_vectors()) {
 970       // 32 bytes vectors (in YMM) are only supported with AVX+
 971       if (MaxVectorSize > 16) {
 972         if (!FLAG_IS_DEFAULT(MaxVectorSize))
 973           warning("MaxVectorSize must be <= 16");
 974         FLAG_SET_DEFAULT(MaxVectorSize, 16);
 975       }
 976     }
 977     else if (UseAVX == 1 || UseAVX == 2) {
 978       // 64 bytes vectors (in ZMM) are only supported with AVX 3
 979       if (MaxVectorSize > 32) {
 980         if (!FLAG_IS_DEFAULT(MaxVectorSize))
 981           warning("MaxVectorSize must be <= 32");
 982         FLAG_SET_DEFAULT(MaxVectorSize, 32);
 983       }
 984     }
 985     else if (UseAVX > 2 ) {
 986       if (MaxVectorSize > 64) {
 987         if (!FLAG_IS_DEFAULT(MaxVectorSize))
 988           warning("MaxVectorSize must be <= 64");
 989         FLAG_SET_DEFAULT(MaxVectorSize, 64);
 990       }
 991     }
 992 #if defined(COMPILER2) && defined(ASSERT)
 993     if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
 994       tty->print_cr("State of YMM registers after signal handle:");
 995       int nreg = 2 LP64_ONLY(+2);
 996       const char* ymm_name[4] = {"0", "7", "8", "15"};
 997       for (int i = 0; i < nreg; i++) {
 998         tty->print("YMM%s:", ymm_name[i]);
 999         for (int j = 7; j >=0; j--) {
1000           tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
1001         }
1002         tty->cr();
1003       }
1004     }
1005 #endif // COMPILER2 && ASSERT
1006   }
1007 #endif // COMPILER2 || INCLUDE_JVMCI
1008 
1009 #ifdef COMPILER2
1010 #ifdef _LP64
1011   if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
1012     UseMultiplyToLenIntrinsic = true;
1013   }
1014   if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
1015     UseSquareToLenIntrinsic = true;
1016   }
1017   if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
1018     UseMulAddIntrinsic = true;
1019   }
1020   if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
1021     UseMontgomeryMultiplyIntrinsic = true;
1022   }
1023   if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
1024     UseMontgomerySquareIntrinsic = true;
1025   }
1026 #else
1027   if (UseMultiplyToLenIntrinsic) {
1028     if (!FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
1029       warning("multiplyToLen intrinsic is not available in 32-bit VM");
1030     }
1031     FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false);
1032   }
1033   if (UseMontgomeryMultiplyIntrinsic) {
1034     if (!FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
1035       warning("montgomeryMultiply intrinsic is not available in 32-bit VM");
1036     }
1037     FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, false);
1038   }
1039   if (UseMontgomerySquareIntrinsic) {
1040     if (!FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
1041       warning("montgomerySquare intrinsic is not available in 32-bit VM");
1042     }
1043     FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, false);
1044   }
1045   if (UseSquareToLenIntrinsic) {
1046     if (!FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
1047       warning("squareToLen intrinsic is not available in 32-bit VM");
1048     }
1049     FLAG_SET_DEFAULT(UseSquareToLenIntrinsic, false);
1050   }
1051   if (UseMulAddIntrinsic) {
1052     if (!FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
1053       warning("mulAdd intrinsic is not available in 32-bit VM");
1054     }
1055     FLAG_SET_DEFAULT(UseMulAddIntrinsic, false);
1056   }
1057 #endif
1058 #endif // COMPILER2
1059 
1060   // On new cpus instructions which update whole XMM register should be used
1061   // to prevent partial register stall due to dependencies on high half.
1062   //
1063   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
1064   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
1065   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
1066   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
1067 
1068   if( is_amd() ) { // AMD cpus specific settings
1069     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
1070       // Use it on new AMD cpus starting from Opteron.
1071       UseAddressNop = true;
1072     }
1073     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
1074       // Use it on new AMD cpus starting from Opteron.
1075       UseNewLongLShift = true;
1076     }
1077     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
1078       if (supports_sse4a()) {
1079         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
1080       } else {
1081         UseXmmLoadAndClearUpper = false;
1082       }
1083     }
1084     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
1085       if( supports_sse4a() ) {
1086         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
1087       } else {
1088         UseXmmRegToRegMoveAll = false;
1089       }
1090     }
1091     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
1092       if( supports_sse4a() ) {
1093         UseXmmI2F = true;
1094       } else {
1095         UseXmmI2F = false;
1096       }
1097     }
1098     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
1099       if( supports_sse4a() ) {
1100         UseXmmI2D = true;
1101       } else {
1102         UseXmmI2D = false;
1103       }
1104     }
1105     if (supports_sse4_2()) {
1106       if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
1107         FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
1108       }
1109     } else {
1110       if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
1111         warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
1112       }
1113       FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
1114     }
1115 
1116     // some defaults for AMD family 15h
1117     if ( cpu_family() == 0x15 ) {
1118       // On family 15h processors default is no sw prefetch
1119       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
1120         AllocatePrefetchStyle = 0;
1121       }
1122       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
1123       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
1124         AllocatePrefetchInstr = 3;
1125       }
1126       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
1127       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1128         UseXMMForArrayCopy = true;
1129       }
1130       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1131         UseUnalignedLoadStores = true;
1132       }
1133     }
1134 
1135 #ifdef COMPILER2
1136     if (MaxVectorSize > 16) {
1137       // Limit vectors size to 16 bytes on current AMD cpus.
1138       FLAG_SET_DEFAULT(MaxVectorSize, 16);
1139     }
1140 #endif // COMPILER2
1141   }
1142 
1143   if( is_intel() ) { // Intel cpus specific settings
1144     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
1145       UseStoreImmI16 = false; // don't use it on Intel cpus
1146     }
1147     if( cpu_family() == 6 || cpu_family() == 15 ) {
1148       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
1149         // Use it on all Intel cpus starting from PentiumPro
1150         UseAddressNop = true;
1151       }
1152     }
1153     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
1154       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
1155     }
1156     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
1157       if( supports_sse3() ) {
1158         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
1159       } else {
1160         UseXmmRegToRegMoveAll = false;
1161       }
1162     }
1163     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
1164 #ifdef COMPILER2
1165       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
1166         // For new Intel cpus do the next optimization:
1167         // don't align the beginning of a loop if there are enough instructions
1168         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
1169         // in current fetch line (OptoLoopAlignment) or the padding
1170         // is big (> MaxLoopPad).
1171         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
1172         // generated NOP instructions. 11 is the largest size of one
1173         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
1174         MaxLoopPad = 11;
1175       }
1176 #endif // COMPILER2
1177       if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1178         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
1179       }
1180       if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
1181         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1182           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
1183         }
1184       }
1185       if (supports_sse4_2()) {
1186         if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
1187           FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
1188         }
1189       } else {
1190         if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
1191           warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
1192         }
1193         FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
1194       }
1195     }
1196     if ((cpu_family() == 0x06) &&
1197         ((extended_cpu_model() == 0x36) || // Centerton
1198          (extended_cpu_model() == 0x37) || // Silvermont
1199          (extended_cpu_model() == 0x4D))) {
1200 #ifdef COMPILER2
1201       if (FLAG_IS_DEFAULT(OptoScheduling)) {
1202         OptoScheduling = true;
1203       }
1204 #endif
1205       if (supports_sse4_2()) { // Silvermont
1206         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1207           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
1208         }
1209       }
1210           if (FLAG_IS_DEFAULT(UseIncDec)){
1211                   FLAG_SET_DEFAULT(UseIncDec, false);
1212           }
1213         }
1214     if(FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
1215       AllocatePrefetchInstr = 3;
1216     }
1217   }
1218 
1219 #ifdef _LP64
1220   if (UseSSE42Intrinsics) {
1221     if (FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
1222       UseVectorizedMismatchIntrinsic = true;
1223     }
1224   } else if (UseVectorizedMismatchIntrinsic) {
1225     if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic))
1226       warning("vectorizedMismatch intrinsics are not available on this CPU");
1227     FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
1228   }
1229 #else
1230   if (UseVectorizedMismatchIntrinsic) {
1231     if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
1232       warning("vectorizedMismatch intrinsic is not available in 32-bit VM");
1233     }
1234     FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
1235   }
1236 #endif // _LP64
1237 
1238   // Use count leading zeros count instruction if available.
1239   if (supports_lzcnt()) {
1240     if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
1241       UseCountLeadingZerosInstruction = true;
1242     }
1243    } else if (UseCountLeadingZerosInstruction) {
1244     warning("lzcnt instruction is not available on this CPU");
1245     FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
1246   }
1247 
1248   // Use count trailing zeros instruction if available
1249   if (supports_bmi1()) {
1250     // tzcnt does not require VEX prefix
1251     if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
1252       if (!UseBMI1Instructions && !FLAG_IS_DEFAULT(UseBMI1Instructions)) {
1253         // Don't use tzcnt if BMI1 is switched off on command line.
1254         UseCountTrailingZerosInstruction = false;
1255       } else {
1256         UseCountTrailingZerosInstruction = true;
1257       }
1258     }
1259   } else if (UseCountTrailingZerosInstruction) {
1260     warning("tzcnt instruction is not available on this CPU");
1261     FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
1262   }
1263 
1264   // BMI instructions (except tzcnt) use an encoding with VEX prefix.
1265   // VEX prefix is generated only when AVX > 0.
1266   if (supports_bmi1() && supports_avx()) {
1267     if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
1268       UseBMI1Instructions = true;
1269     }
1270   } else if (UseBMI1Instructions) {
1271     warning("BMI1 instructions are not available on this CPU (AVX is also required)");
1272     FLAG_SET_DEFAULT(UseBMI1Instructions, false);
1273   }
1274 
1275   if (supports_bmi2() && supports_avx()) {
1276     if (FLAG_IS_DEFAULT(UseBMI2Instructions)) {
1277       UseBMI2Instructions = true;
1278     }
1279   } else if (UseBMI2Instructions) {
1280     warning("BMI2 instructions are not available on this CPU (AVX is also required)");
1281     FLAG_SET_DEFAULT(UseBMI2Instructions, false);
1282   }
1283 
1284   // Use population count instruction if available.
1285   if (supports_popcnt()) {
1286     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
1287       UsePopCountInstruction = true;
1288     }
1289   } else if (UsePopCountInstruction) {
1290     warning("POPCNT instruction is not available on this CPU");
1291     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
1292   }
1293 
1294   // Use fast-string operations if available.
1295   if (supports_erms()) {
1296     if (FLAG_IS_DEFAULT(UseFastStosb)) {
1297       UseFastStosb = true;
1298     }
1299   } else if (UseFastStosb) {
1300     warning("fast-string operations are not available on this CPU");
1301     FLAG_SET_DEFAULT(UseFastStosb, false);
1302   }
1303 
1304 #ifdef COMPILER2
1305   if (FLAG_IS_DEFAULT(AlignVector)) {
1306     // Modern processors allow misaligned memory operations for vectors.
1307     AlignVector = !UseUnalignedLoadStores;
1308   }
1309 #endif // COMPILER2
1310 
1311   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
1312   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
1313 
1314   // Allocation prefetch settings
1315   intx cache_line_size = prefetch_data_size();
1316   if( cache_line_size > AllocatePrefetchStepSize )
1317     AllocatePrefetchStepSize = cache_line_size;
1318 
1319   AllocatePrefetchDistance = allocate_prefetch_distance();
1320   AllocatePrefetchStyle    = allocate_prefetch_style();
1321 
1322   if (is_intel() && cpu_family() == 6 && supports_sse3()) {
1323     if (AllocatePrefetchStyle == 2) { // watermark prefetching on Core
1324 #ifdef _LP64
1325       AllocatePrefetchDistance = 384;
1326 #else
1327       AllocatePrefetchDistance = 320;
1328 #endif
1329     }
1330     if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus
1331       AllocatePrefetchDistance = 192;
1332       if (FLAG_IS_DEFAULT(AllocatePrefetchLines)) {
1333         FLAG_SET_DEFAULT(AllocatePrefetchLines, 4);
1334       }
1335     }
1336 #ifdef COMPILER2
1337     if (supports_sse4_2()) {
1338       if (FLAG_IS_DEFAULT(UseFPUForSpilling)) {
1339         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
1340       }
1341     }
1342 #endif
1343   }
1344 
1345 #ifdef _LP64
1346   // Prefetch settings
1347   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
1348   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
1349   PrefetchFieldsAhead         = prefetch_fields_ahead();
1350 #endif
1351 
1352   if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
1353      (cache_line_size > ContendedPaddingWidth))
1354      ContendedPaddingWidth = cache_line_size;
1355 
1356   // This machine allows unaligned memory accesses
1357   if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) {
1358     FLAG_SET_DEFAULT(UseUnalignedAccesses, true);
1359   }
1360 
1361 #ifndef PRODUCT
1362   if (log_is_enabled(Info, os, cpu)) {
1363     outputStream* log = Log(os, cpu)::info_stream();
1364     log->print_cr("Logical CPUs per core: %u",
1365                   logical_processors_per_package());
1366     log->print_cr("L1 data cache line size: %u", L1_data_cache_line_size());
1367     log->print("UseSSE=%d", (int) UseSSE);
1368     if (UseAVX > 0) {
1369       log->print("  UseAVX=%d", (int) UseAVX);
1370     }
1371     if (UseAES) {
1372       log->print("  UseAES=1");
1373     }
1374 #ifdef COMPILER2
1375     if (MaxVectorSize > 0) {
1376       log->print("  MaxVectorSize=%d", (int) MaxVectorSize);
1377     }
1378 #endif
1379     log->cr();
1380     log->print("Allocation");
1381     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
1382       log->print_cr(": no prefetching");
1383     } else {
1384       log->print(" prefetching: ");
1385       if (UseSSE == 0 && supports_3dnow_prefetch()) {
1386         log->print("PREFETCHW");
1387       } else if (UseSSE >= 1) {
1388         if (AllocatePrefetchInstr == 0) {
1389           log->print("PREFETCHNTA");
1390         } else if (AllocatePrefetchInstr == 1) {
1391           log->print("PREFETCHT0");
1392         } else if (AllocatePrefetchInstr == 2) {
1393           log->print("PREFETCHT2");
1394         } else if (AllocatePrefetchInstr == 3) {
1395           log->print("PREFETCHW");
1396         }
1397       }
1398       if (AllocatePrefetchLines > 1) {
1399         log->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize);
1400       } else {
1401         log->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize);
1402       }
1403     }
1404 
1405     if (PrefetchCopyIntervalInBytes > 0) {
1406       log->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
1407     }
1408     if (PrefetchScanIntervalInBytes > 0) {
1409       log->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
1410     }
1411     if (PrefetchFieldsAhead > 0) {
1412       log->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead);
1413     }
1414     if (ContendedPaddingWidth > 0) {
1415       log->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
1416     }
1417   }
1418 #endif // !PRODUCT
1419 }
1420 
1421 bool VM_Version::use_biased_locking() {
1422 #if INCLUDE_RTM_OPT
1423   // RTM locking is most useful when there is high lock contention and
1424   // low data contention.  With high lock contention the lock is usually
1425   // inflated and biased locking is not suitable for that case.
1426   // RTM locking code requires that biased locking is off.
1427   // Note: we can't switch off UseBiasedLocking in get_processor_features()
1428   // because it is used by Thread::allocate() which is called before
1429   // VM_Version::initialize().
1430   if (UseRTMLocking && UseBiasedLocking) {
1431     if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
1432       FLAG_SET_DEFAULT(UseBiasedLocking, false);
1433     } else {
1434       warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
1435       UseBiasedLocking = false;
1436     }
1437   }
1438 #endif
1439   return UseBiasedLocking;
1440 }
1441 
1442 void VM_Version::initialize() {
1443   ResourceMark rm;
1444   // Making this stub must be FIRST use of assembler
1445 
1446   stub_blob = BufferBlob::create("get_cpu_info_stub", stub_size);
1447   if (stub_blob == NULL) {
1448     vm_exit_during_initialization("Unable to allocate get_cpu_info_stub");
1449   }
1450   CodeBuffer c(stub_blob);
1451   VM_Version_StubGenerator g(&c);
1452   get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t,
1453                                      g.generate_get_cpu_info());
1454 
1455   get_processor_features();
1456 }