1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/cardTableModRefBS.hpp"
  31 #include "gc/shared/collectedHeap.inline.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/klass.inline.hpp"
  36 #include "prims/methodHandles.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/interfaceSupport.hpp"
  39 #include "runtime/objectMonitor.hpp"
  40 #include "runtime/os.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/thread.hpp"
  44 #include "utilities/macros.hpp"
  45 #if INCLUDE_ALL_GCS
  46 #include "gc/g1/g1CollectedHeap.inline.hpp"
  47 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  48 #include "gc/g1/heapRegion.hpp"
  49 #endif // INCLUDE_ALL_GCS
  50 #include "crc32c.h"
  51 #ifdef COMPILER2
  52 #include "opto/intrinsicnode.hpp"
  53 #endif
  54 
  55 #ifdef PRODUCT
  56 #define BLOCK_COMMENT(str) /* nothing */
  57 #define STOP(error) stop(error)
  58 #else
  59 #define BLOCK_COMMENT(str) block_comment(str)
  60 #define STOP(error) block_comment(error); stop(error)
  61 #endif
  62 
  63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  64 
  65 #ifdef ASSERT
  66 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  67 #endif
  68 
  69 static Assembler::Condition reverse[] = {
  70     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  71     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  72     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  73     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  74     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  75     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  76     Assembler::above          /* belowEqual    = 0x6 */ ,
  77     Assembler::belowEqual     /* above         = 0x7 */ ,
  78     Assembler::positive       /* negative      = 0x8 */ ,
  79     Assembler::negative       /* positive      = 0x9 */ ,
  80     Assembler::noParity       /* parity        = 0xa */ ,
  81     Assembler::parity         /* noParity      = 0xb */ ,
  82     Assembler::greaterEqual   /* less          = 0xc */ ,
  83     Assembler::less           /* greaterEqual  = 0xd */ ,
  84     Assembler::greater        /* lessEqual     = 0xe */ ,
  85     Assembler::lessEqual      /* greater       = 0xf, */
  86 
  87 };
  88 
  89 
  90 // Implementation of MacroAssembler
  91 
  92 // First all the versions that have distinct versions depending on 32/64 bit
  93 // Unless the difference is trivial (1 line or so).
  94 
  95 #ifndef _LP64
  96 
  97 // 32bit versions
  98 
  99 Address MacroAssembler::as_Address(AddressLiteral adr) {
 100   return Address(adr.target(), adr.rspec());
 101 }
 102 
 103 Address MacroAssembler::as_Address(ArrayAddress adr) {
 104   return Address::make_array(adr);
 105 }
 106 
 107 void MacroAssembler::call_VM_leaf_base(address entry_point,
 108                                        int number_of_arguments) {
 109   call(RuntimeAddress(entry_point));
 110   increment(rsp, number_of_arguments * wordSize);
 111 }
 112 
 113 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 114   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 115 }
 116 
 117 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 118   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 119 }
 120 
 121 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 122   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 123 }
 124 
 125 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 126   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 127 }
 128 
 129 void MacroAssembler::extend_sign(Register hi, Register lo) {
 130   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 131   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 132     cdql();
 133   } else {
 134     movl(hi, lo);
 135     sarl(hi, 31);
 136   }
 137 }
 138 
 139 void MacroAssembler::jC2(Register tmp, Label& L) {
 140   // set parity bit if FPU flag C2 is set (via rax)
 141   save_rax(tmp);
 142   fwait(); fnstsw_ax();
 143   sahf();
 144   restore_rax(tmp);
 145   // branch
 146   jcc(Assembler::parity, L);
 147 }
 148 
 149 void MacroAssembler::jnC2(Register tmp, Label& L) {
 150   // set parity bit if FPU flag C2 is set (via rax)
 151   save_rax(tmp);
 152   fwait(); fnstsw_ax();
 153   sahf();
 154   restore_rax(tmp);
 155   // branch
 156   jcc(Assembler::noParity, L);
 157 }
 158 
 159 // 32bit can do a case table jump in one instruction but we no longer allow the base
 160 // to be installed in the Address class
 161 void MacroAssembler::jump(ArrayAddress entry) {
 162   jmp(as_Address(entry));
 163 }
 164 
 165 // Note: y_lo will be destroyed
 166 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 167   // Long compare for Java (semantics as described in JVM spec.)
 168   Label high, low, done;
 169 
 170   cmpl(x_hi, y_hi);
 171   jcc(Assembler::less, low);
 172   jcc(Assembler::greater, high);
 173   // x_hi is the return register
 174   xorl(x_hi, x_hi);
 175   cmpl(x_lo, y_lo);
 176   jcc(Assembler::below, low);
 177   jcc(Assembler::equal, done);
 178 
 179   bind(high);
 180   xorl(x_hi, x_hi);
 181   increment(x_hi);
 182   jmp(done);
 183 
 184   bind(low);
 185   xorl(x_hi, x_hi);
 186   decrementl(x_hi);
 187 
 188   bind(done);
 189 }
 190 
 191 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 192     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 193 }
 194 
 195 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 196   // leal(dst, as_Address(adr));
 197   // see note in movl as to why we must use a move
 198   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 199 }
 200 
 201 void MacroAssembler::leave() {
 202   mov(rsp, rbp);
 203   pop(rbp);
 204 }
 205 
 206 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 207   // Multiplication of two Java long values stored on the stack
 208   // as illustrated below. Result is in rdx:rax.
 209   //
 210   // rsp ---> [  ??  ] \               \
 211   //            ....    | y_rsp_offset  |
 212   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 213   //          [ y_hi ]                  | (in bytes)
 214   //            ....                    |
 215   //          [ x_lo ]                 /
 216   //          [ x_hi ]
 217   //            ....
 218   //
 219   // Basic idea: lo(result) = lo(x_lo * y_lo)
 220   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 221   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 222   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 223   Label quick;
 224   // load x_hi, y_hi and check if quick
 225   // multiplication is possible
 226   movl(rbx, x_hi);
 227   movl(rcx, y_hi);
 228   movl(rax, rbx);
 229   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 230   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 231   // do full multiplication
 232   // 1st step
 233   mull(y_lo);                                    // x_hi * y_lo
 234   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 235   // 2nd step
 236   movl(rax, x_lo);
 237   mull(rcx);                                     // x_lo * y_hi
 238   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 239   // 3rd step
 240   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 241   movl(rax, x_lo);
 242   mull(y_lo);                                    // x_lo * y_lo
 243   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 244 }
 245 
 246 void MacroAssembler::lneg(Register hi, Register lo) {
 247   negl(lo);
 248   adcl(hi, 0);
 249   negl(hi);
 250 }
 251 
 252 void MacroAssembler::lshl(Register hi, Register lo) {
 253   // Java shift left long support (semantics as described in JVM spec., p.305)
 254   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 255   // shift value is in rcx !
 256   assert(hi != rcx, "must not use rcx");
 257   assert(lo != rcx, "must not use rcx");
 258   const Register s = rcx;                        // shift count
 259   const int      n = BitsPerWord;
 260   Label L;
 261   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 262   cmpl(s, n);                                    // if (s < n)
 263   jcc(Assembler::less, L);                       // else (s >= n)
 264   movl(hi, lo);                                  // x := x << n
 265   xorl(lo, lo);
 266   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 267   bind(L);                                       // s (mod n) < n
 268   shldl(hi, lo);                                 // x := x << s
 269   shll(lo);
 270 }
 271 
 272 
 273 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 274   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 275   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 276   assert(hi != rcx, "must not use rcx");
 277   assert(lo != rcx, "must not use rcx");
 278   const Register s = rcx;                        // shift count
 279   const int      n = BitsPerWord;
 280   Label L;
 281   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 282   cmpl(s, n);                                    // if (s < n)
 283   jcc(Assembler::less, L);                       // else (s >= n)
 284   movl(lo, hi);                                  // x := x >> n
 285   if (sign_extension) sarl(hi, 31);
 286   else                xorl(hi, hi);
 287   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 288   bind(L);                                       // s (mod n) < n
 289   shrdl(lo, hi);                                 // x := x >> s
 290   if (sign_extension) sarl(hi);
 291   else                shrl(hi);
 292 }
 293 
 294 void MacroAssembler::movoop(Register dst, jobject obj) {
 295   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 296 }
 297 
 298 void MacroAssembler::movoop(Address dst, jobject obj) {
 299   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 300 }
 301 
 302 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 303   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 304 }
 305 
 306 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 307   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 308 }
 309 
 310 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 311   // scratch register is not used,
 312   // it is defined to match parameters of 64-bit version of this method.
 313   if (src.is_lval()) {
 314     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 315   } else {
 316     movl(dst, as_Address(src));
 317   }
 318 }
 319 
 320 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 321   movl(as_Address(dst), src);
 322 }
 323 
 324 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 325   movl(dst, as_Address(src));
 326 }
 327 
 328 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 329 void MacroAssembler::movptr(Address dst, intptr_t src) {
 330   movl(dst, src);
 331 }
 332 
 333 
 334 void MacroAssembler::pop_callee_saved_registers() {
 335   pop(rcx);
 336   pop(rdx);
 337   pop(rdi);
 338   pop(rsi);
 339 }
 340 
 341 void MacroAssembler::pop_fTOS() {
 342   fld_d(Address(rsp, 0));
 343   addl(rsp, 2 * wordSize);
 344 }
 345 
 346 void MacroAssembler::push_callee_saved_registers() {
 347   push(rsi);
 348   push(rdi);
 349   push(rdx);
 350   push(rcx);
 351 }
 352 
 353 void MacroAssembler::push_fTOS() {
 354   subl(rsp, 2 * wordSize);
 355   fstp_d(Address(rsp, 0));
 356 }
 357 
 358 
 359 void MacroAssembler::pushoop(jobject obj) {
 360   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 361 }
 362 
 363 void MacroAssembler::pushklass(Metadata* obj) {
 364   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 365 }
 366 
 367 void MacroAssembler::pushptr(AddressLiteral src) {
 368   if (src.is_lval()) {
 369     push_literal32((int32_t)src.target(), src.rspec());
 370   } else {
 371     pushl(as_Address(src));
 372   }
 373 }
 374 
 375 void MacroAssembler::set_word_if_not_zero(Register dst) {
 376   xorl(dst, dst);
 377   set_byte_if_not_zero(dst);
 378 }
 379 
 380 static void pass_arg0(MacroAssembler* masm, Register arg) {
 381   masm->push(arg);
 382 }
 383 
 384 static void pass_arg1(MacroAssembler* masm, Register arg) {
 385   masm->push(arg);
 386 }
 387 
 388 static void pass_arg2(MacroAssembler* masm, Register arg) {
 389   masm->push(arg);
 390 }
 391 
 392 static void pass_arg3(MacroAssembler* masm, Register arg) {
 393   masm->push(arg);
 394 }
 395 
 396 #ifndef PRODUCT
 397 extern "C" void findpc(intptr_t x);
 398 #endif
 399 
 400 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 401   // In order to get locks to work, we need to fake a in_VM state
 402   JavaThread* thread = JavaThread::current();
 403   JavaThreadState saved_state = thread->thread_state();
 404   thread->set_thread_state(_thread_in_vm);
 405   if (ShowMessageBoxOnError) {
 406     JavaThread* thread = JavaThread::current();
 407     JavaThreadState saved_state = thread->thread_state();
 408     thread->set_thread_state(_thread_in_vm);
 409     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 410       ttyLocker ttyl;
 411       BytecodeCounter::print();
 412     }
 413     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 414     // This is the value of eip which points to where verify_oop will return.
 415     if (os::message_box(msg, "Execution stopped, print registers?")) {
 416       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 417       BREAKPOINT;
 418     }
 419   } else {
 420     ttyLocker ttyl;
 421     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 422   }
 423   // Don't assert holding the ttyLock
 424     assert(false, "DEBUG MESSAGE: %s", msg);
 425   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 426 }
 427 
 428 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 429   ttyLocker ttyl;
 430   FlagSetting fs(Debugging, true);
 431   tty->print_cr("eip = 0x%08x", eip);
 432 #ifndef PRODUCT
 433   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 434     tty->cr();
 435     findpc(eip);
 436     tty->cr();
 437   }
 438 #endif
 439 #define PRINT_REG(rax) \
 440   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 441   PRINT_REG(rax);
 442   PRINT_REG(rbx);
 443   PRINT_REG(rcx);
 444   PRINT_REG(rdx);
 445   PRINT_REG(rdi);
 446   PRINT_REG(rsi);
 447   PRINT_REG(rbp);
 448   PRINT_REG(rsp);
 449 #undef PRINT_REG
 450   // Print some words near top of staack.
 451   int* dump_sp = (int*) rsp;
 452   for (int col1 = 0; col1 < 8; col1++) {
 453     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 454     os::print_location(tty, *dump_sp++);
 455   }
 456   for (int row = 0; row < 16; row++) {
 457     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 458     for (int col = 0; col < 8; col++) {
 459       tty->print(" 0x%08x", *dump_sp++);
 460     }
 461     tty->cr();
 462   }
 463   // Print some instructions around pc:
 464   Disassembler::decode((address)eip-64, (address)eip);
 465   tty->print_cr("--------");
 466   Disassembler::decode((address)eip, (address)eip+32);
 467 }
 468 
 469 void MacroAssembler::stop(const char* msg) {
 470   ExternalAddress message((address)msg);
 471   // push address of message
 472   pushptr(message.addr());
 473   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 474   pusha();                                            // push registers
 475   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 476   hlt();
 477 }
 478 
 479 void MacroAssembler::warn(const char* msg) {
 480   push_CPU_state();
 481 
 482   ExternalAddress message((address) msg);
 483   // push address of message
 484   pushptr(message.addr());
 485 
 486   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 487   addl(rsp, wordSize);       // discard argument
 488   pop_CPU_state();
 489 }
 490 
 491 void MacroAssembler::print_state() {
 492   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 493   pusha();                                            // push registers
 494 
 495   push_CPU_state();
 496   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 497   pop_CPU_state();
 498 
 499   popa();
 500   addl(rsp, wordSize);
 501 }
 502 
 503 #else // _LP64
 504 
 505 // 64 bit versions
 506 
 507 Address MacroAssembler::as_Address(AddressLiteral adr) {
 508   // amd64 always does this as a pc-rel
 509   // we can be absolute or disp based on the instruction type
 510   // jmp/call are displacements others are absolute
 511   assert(!adr.is_lval(), "must be rval");
 512   assert(reachable(adr), "must be");
 513   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 514 
 515 }
 516 
 517 Address MacroAssembler::as_Address(ArrayAddress adr) {
 518   AddressLiteral base = adr.base();
 519   lea(rscratch1, base);
 520   Address index = adr.index();
 521   assert(index._disp == 0, "must not have disp"); // maybe it can?
 522   Address array(rscratch1, index._index, index._scale, index._disp);
 523   return array;
 524 }
 525 
 526 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 527   Label L, E;
 528 
 529 #ifdef _WIN64
 530   // Windows always allocates space for it's register args
 531   assert(num_args <= 4, "only register arguments supported");
 532   subq(rsp,  frame::arg_reg_save_area_bytes);
 533 #endif
 534 
 535   // Align stack if necessary
 536   testl(rsp, 15);
 537   jcc(Assembler::zero, L);
 538 
 539   subq(rsp, 8);
 540   {
 541     call(RuntimeAddress(entry_point));
 542   }
 543   addq(rsp, 8);
 544   jmp(E);
 545 
 546   bind(L);
 547   {
 548     call(RuntimeAddress(entry_point));
 549   }
 550 
 551   bind(E);
 552 
 553 #ifdef _WIN64
 554   // restore stack pointer
 555   addq(rsp, frame::arg_reg_save_area_bytes);
 556 #endif
 557 
 558 }
 559 
 560 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 561   assert(!src2.is_lval(), "should use cmpptr");
 562 
 563   if (reachable(src2)) {
 564     cmpq(src1, as_Address(src2));
 565   } else {
 566     lea(rscratch1, src2);
 567     Assembler::cmpq(src1, Address(rscratch1, 0));
 568   }
 569 }
 570 
 571 int MacroAssembler::corrected_idivq(Register reg) {
 572   // Full implementation of Java ldiv and lrem; checks for special
 573   // case as described in JVM spec., p.243 & p.271.  The function
 574   // returns the (pc) offset of the idivl instruction - may be needed
 575   // for implicit exceptions.
 576   //
 577   //         normal case                           special case
 578   //
 579   // input : rax: dividend                         min_long
 580   //         reg: divisor   (may not be eax/edx)   -1
 581   //
 582   // output: rax: quotient  (= rax idiv reg)       min_long
 583   //         rdx: remainder (= rax irem reg)       0
 584   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 585   static const int64_t min_long = 0x8000000000000000;
 586   Label normal_case, special_case;
 587 
 588   // check for special case
 589   cmp64(rax, ExternalAddress((address) &min_long));
 590   jcc(Assembler::notEqual, normal_case);
 591   xorl(rdx, rdx); // prepare rdx for possible special case (where
 592                   // remainder = 0)
 593   cmpq(reg, -1);
 594   jcc(Assembler::equal, special_case);
 595 
 596   // handle normal case
 597   bind(normal_case);
 598   cdqq();
 599   int idivq_offset = offset();
 600   idivq(reg);
 601 
 602   // normal and special case exit
 603   bind(special_case);
 604 
 605   return idivq_offset;
 606 }
 607 
 608 void MacroAssembler::decrementq(Register reg, int value) {
 609   if (value == min_jint) { subq(reg, value); return; }
 610   if (value <  0) { incrementq(reg, -value); return; }
 611   if (value == 0) {                        ; return; }
 612   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 613   /* else */      { subq(reg, value)       ; return; }
 614 }
 615 
 616 void MacroAssembler::decrementq(Address dst, int value) {
 617   if (value == min_jint) { subq(dst, value); return; }
 618   if (value <  0) { incrementq(dst, -value); return; }
 619   if (value == 0) {                        ; return; }
 620   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 621   /* else */      { subq(dst, value)       ; return; }
 622 }
 623 
 624 void MacroAssembler::incrementq(AddressLiteral dst) {
 625   if (reachable(dst)) {
 626     incrementq(as_Address(dst));
 627   } else {
 628     lea(rscratch1, dst);
 629     incrementq(Address(rscratch1, 0));
 630   }
 631 }
 632 
 633 void MacroAssembler::incrementq(Register reg, int value) {
 634   if (value == min_jint) { addq(reg, value); return; }
 635   if (value <  0) { decrementq(reg, -value); return; }
 636   if (value == 0) {                        ; return; }
 637   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 638   /* else */      { addq(reg, value)       ; return; }
 639 }
 640 
 641 void MacroAssembler::incrementq(Address dst, int value) {
 642   if (value == min_jint) { addq(dst, value); return; }
 643   if (value <  0) { decrementq(dst, -value); return; }
 644   if (value == 0) {                        ; return; }
 645   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 646   /* else */      { addq(dst, value)       ; return; }
 647 }
 648 
 649 // 32bit can do a case table jump in one instruction but we no longer allow the base
 650 // to be installed in the Address class
 651 void MacroAssembler::jump(ArrayAddress entry) {
 652   lea(rscratch1, entry.base());
 653   Address dispatch = entry.index();
 654   assert(dispatch._base == noreg, "must be");
 655   dispatch._base = rscratch1;
 656   jmp(dispatch);
 657 }
 658 
 659 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 660   ShouldNotReachHere(); // 64bit doesn't use two regs
 661   cmpq(x_lo, y_lo);
 662 }
 663 
 664 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 665     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 666 }
 667 
 668 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 669   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 670   movptr(dst, rscratch1);
 671 }
 672 
 673 void MacroAssembler::leave() {
 674   // %%% is this really better? Why not on 32bit too?
 675   emit_int8((unsigned char)0xC9); // LEAVE
 676 }
 677 
 678 void MacroAssembler::lneg(Register hi, Register lo) {
 679   ShouldNotReachHere(); // 64bit doesn't use two regs
 680   negq(lo);
 681 }
 682 
 683 void MacroAssembler::movoop(Register dst, jobject obj) {
 684   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 685 }
 686 
 687 void MacroAssembler::movoop(Address dst, jobject obj) {
 688   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 689   movq(dst, rscratch1);
 690 }
 691 
 692 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 693   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 694 }
 695 
 696 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 697   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 698   movq(dst, rscratch1);
 699 }
 700 
 701 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 702   if (src.is_lval()) {
 703     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 704   } else {
 705     if (reachable(src)) {
 706       movq(dst, as_Address(src));
 707     } else {
 708       lea(scratch, src);
 709       movq(dst, Address(scratch, 0));
 710     }
 711   }
 712 }
 713 
 714 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 715   movq(as_Address(dst), src);
 716 }
 717 
 718 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 719   movq(dst, as_Address(src));
 720 }
 721 
 722 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 723 void MacroAssembler::movptr(Address dst, intptr_t src) {
 724   mov64(rscratch1, src);
 725   movq(dst, rscratch1);
 726 }
 727 
 728 // These are mostly for initializing NULL
 729 void MacroAssembler::movptr(Address dst, int32_t src) {
 730   movslq(dst, src);
 731 }
 732 
 733 void MacroAssembler::movptr(Register dst, int32_t src) {
 734   mov64(dst, (intptr_t)src);
 735 }
 736 
 737 void MacroAssembler::pushoop(jobject obj) {
 738   movoop(rscratch1, obj);
 739   push(rscratch1);
 740 }
 741 
 742 void MacroAssembler::pushklass(Metadata* obj) {
 743   mov_metadata(rscratch1, obj);
 744   push(rscratch1);
 745 }
 746 
 747 void MacroAssembler::pushptr(AddressLiteral src) {
 748   lea(rscratch1, src);
 749   if (src.is_lval()) {
 750     push(rscratch1);
 751   } else {
 752     pushq(Address(rscratch1, 0));
 753   }
 754 }
 755 
 756 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 757   // we must set sp to zero to clear frame
 758   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 759   // must clear fp, so that compiled frames are not confused; it is
 760   // possible that we need it only for debugging
 761   if (clear_fp) {
 762     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 763   }
 764 
 765   // Always clear the pc because it could have been set by make_walkable()
 766   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 767   vzeroupper();
 768 }
 769 
 770 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 771                                          Register last_java_fp,
 772                                          address  last_java_pc) {
 773   vzeroupper();
 774   // determine last_java_sp register
 775   if (!last_java_sp->is_valid()) {
 776     last_java_sp = rsp;
 777   }
 778 
 779   // last_java_fp is optional
 780   if (last_java_fp->is_valid()) {
 781     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 782            last_java_fp);
 783   }
 784 
 785   // last_java_pc is optional
 786   if (last_java_pc != NULL) {
 787     Address java_pc(r15_thread,
 788                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 789     lea(rscratch1, InternalAddress(last_java_pc));
 790     movptr(java_pc, rscratch1);
 791   }
 792 
 793   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 794 }
 795 
 796 static void pass_arg0(MacroAssembler* masm, Register arg) {
 797   if (c_rarg0 != arg ) {
 798     masm->mov(c_rarg0, arg);
 799   }
 800 }
 801 
 802 static void pass_arg1(MacroAssembler* masm, Register arg) {
 803   if (c_rarg1 != arg ) {
 804     masm->mov(c_rarg1, arg);
 805   }
 806 }
 807 
 808 static void pass_arg2(MacroAssembler* masm, Register arg) {
 809   if (c_rarg2 != arg ) {
 810     masm->mov(c_rarg2, arg);
 811   }
 812 }
 813 
 814 static void pass_arg3(MacroAssembler* masm, Register arg) {
 815   if (c_rarg3 != arg ) {
 816     masm->mov(c_rarg3, arg);
 817   }
 818 }
 819 
 820 void MacroAssembler::stop(const char* msg) {
 821   address rip = pc();
 822   pusha(); // get regs on stack
 823   lea(c_rarg0, ExternalAddress((address) msg));
 824   lea(c_rarg1, InternalAddress(rip));
 825   movq(c_rarg2, rsp); // pass pointer to regs array
 826   andq(rsp, -16); // align stack as required by ABI
 827   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 828   hlt();
 829 }
 830 
 831 void MacroAssembler::warn(const char* msg) {
 832   push(rbp);
 833   movq(rbp, rsp);
 834   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 835   push_CPU_state();   // keeps alignment at 16 bytes
 836   lea(c_rarg0, ExternalAddress((address) msg));
 837   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 838   pop_CPU_state();
 839   mov(rsp, rbp);
 840   pop(rbp);
 841 }
 842 
 843 void MacroAssembler::print_state() {
 844   address rip = pc();
 845   pusha();            // get regs on stack
 846   push(rbp);
 847   movq(rbp, rsp);
 848   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 849   push_CPU_state();   // keeps alignment at 16 bytes
 850 
 851   lea(c_rarg0, InternalAddress(rip));
 852   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 853   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 854 
 855   pop_CPU_state();
 856   mov(rsp, rbp);
 857   pop(rbp);
 858   popa();
 859 }
 860 
 861 #ifndef PRODUCT
 862 extern "C" void findpc(intptr_t x);
 863 #endif
 864 
 865 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 866   // In order to get locks to work, we need to fake a in_VM state
 867   if (ShowMessageBoxOnError) {
 868     JavaThread* thread = JavaThread::current();
 869     JavaThreadState saved_state = thread->thread_state();
 870     thread->set_thread_state(_thread_in_vm);
 871 #ifndef PRODUCT
 872     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 873       ttyLocker ttyl;
 874       BytecodeCounter::print();
 875     }
 876 #endif
 877     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 878     // XXX correct this offset for amd64
 879     // This is the value of eip which points to where verify_oop will return.
 880     if (os::message_box(msg, "Execution stopped, print registers?")) {
 881       print_state64(pc, regs);
 882       BREAKPOINT;
 883       assert(false, "start up GDB");
 884     }
 885     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 886   } else {
 887     ttyLocker ttyl;
 888     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 889                     msg);
 890     assert(false, "DEBUG MESSAGE: %s", msg);
 891   }
 892 }
 893 
 894 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 895   ttyLocker ttyl;
 896   FlagSetting fs(Debugging, true);
 897   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
 898 #ifndef PRODUCT
 899   tty->cr();
 900   findpc(pc);
 901   tty->cr();
 902 #endif
 903 #define PRINT_REG(rax, value) \
 904   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 905   PRINT_REG(rax, regs[15]);
 906   PRINT_REG(rbx, regs[12]);
 907   PRINT_REG(rcx, regs[14]);
 908   PRINT_REG(rdx, regs[13]);
 909   PRINT_REG(rdi, regs[8]);
 910   PRINT_REG(rsi, regs[9]);
 911   PRINT_REG(rbp, regs[10]);
 912   PRINT_REG(rsp, regs[11]);
 913   PRINT_REG(r8 , regs[7]);
 914   PRINT_REG(r9 , regs[6]);
 915   PRINT_REG(r10, regs[5]);
 916   PRINT_REG(r11, regs[4]);
 917   PRINT_REG(r12, regs[3]);
 918   PRINT_REG(r13, regs[2]);
 919   PRINT_REG(r14, regs[1]);
 920   PRINT_REG(r15, regs[0]);
 921 #undef PRINT_REG
 922   // Print some words near top of staack.
 923   int64_t* rsp = (int64_t*) regs[11];
 924   int64_t* dump_sp = rsp;
 925   for (int col1 = 0; col1 < 8; col1++) {
 926     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 927     os::print_location(tty, *dump_sp++);
 928   }
 929   for (int row = 0; row < 25; row++) {
 930     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 931     for (int col = 0; col < 4; col++) {
 932       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
 933     }
 934     tty->cr();
 935   }
 936   // Print some instructions around pc:
 937   Disassembler::decode((address)pc-64, (address)pc);
 938   tty->print_cr("--------");
 939   Disassembler::decode((address)pc, (address)pc+32);
 940 }
 941 
 942 #endif // _LP64
 943 
 944 // Now versions that are common to 32/64 bit
 945 
 946 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 947   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 948 }
 949 
 950 void MacroAssembler::addptr(Register dst, Register src) {
 951   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 952 }
 953 
 954 void MacroAssembler::addptr(Address dst, Register src) {
 955   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 956 }
 957 
 958 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 959   if (reachable(src)) {
 960     Assembler::addsd(dst, as_Address(src));
 961   } else {
 962     lea(rscratch1, src);
 963     Assembler::addsd(dst, Address(rscratch1, 0));
 964   }
 965 }
 966 
 967 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 968   if (reachable(src)) {
 969     addss(dst, as_Address(src));
 970   } else {
 971     lea(rscratch1, src);
 972     addss(dst, Address(rscratch1, 0));
 973   }
 974 }
 975 
 976 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 977   if (reachable(src)) {
 978     Assembler::addpd(dst, as_Address(src));
 979   } else {
 980     lea(rscratch1, src);
 981     Assembler::addpd(dst, Address(rscratch1, 0));
 982   }
 983 }
 984 
 985 void MacroAssembler::align(int modulus) {
 986   align(modulus, offset());
 987 }
 988 
 989 void MacroAssembler::align(int modulus, int target) {
 990   if (target % modulus != 0) {
 991     nop(modulus - (target % modulus));
 992   }
 993 }
 994 
 995 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 996   // Used in sign-masking with aligned address.
 997   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 998   if (reachable(src)) {
 999     Assembler::andpd(dst, as_Address(src));
1000   } else {
1001     lea(rscratch1, src);
1002     Assembler::andpd(dst, Address(rscratch1, 0));
1003   }
1004 }
1005 
1006 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1007   // Used in sign-masking with aligned address.
1008   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1009   if (reachable(src)) {
1010     Assembler::andps(dst, as_Address(src));
1011   } else {
1012     lea(rscratch1, src);
1013     Assembler::andps(dst, Address(rscratch1, 0));
1014   }
1015 }
1016 
1017 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1018   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1019 }
1020 
1021 void MacroAssembler::atomic_incl(Address counter_addr) {
1022   if (os::is_MP())
1023     lock();
1024   incrementl(counter_addr);
1025 }
1026 
1027 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1028   if (reachable(counter_addr)) {
1029     atomic_incl(as_Address(counter_addr));
1030   } else {
1031     lea(scr, counter_addr);
1032     atomic_incl(Address(scr, 0));
1033   }
1034 }
1035 
1036 #ifdef _LP64
1037 void MacroAssembler::atomic_incq(Address counter_addr) {
1038   if (os::is_MP())
1039     lock();
1040   incrementq(counter_addr);
1041 }
1042 
1043 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1044   if (reachable(counter_addr)) {
1045     atomic_incq(as_Address(counter_addr));
1046   } else {
1047     lea(scr, counter_addr);
1048     atomic_incq(Address(scr, 0));
1049   }
1050 }
1051 #endif
1052 
1053 // Writes to stack successive pages until offset reached to check for
1054 // stack overflow + shadow pages.  This clobbers tmp.
1055 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1056   movptr(tmp, rsp);
1057   // Bang stack for total size given plus shadow page size.
1058   // Bang one page at a time because large size can bang beyond yellow and
1059   // red zones.
1060   Label loop;
1061   bind(loop);
1062   movl(Address(tmp, (-os::vm_page_size())), size );
1063   subptr(tmp, os::vm_page_size());
1064   subl(size, os::vm_page_size());
1065   jcc(Assembler::greater, loop);
1066 
1067   // Bang down shadow pages too.
1068   // At this point, (tmp-0) is the last address touched, so don't
1069   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1070   // was post-decremented.)  Skip this address by starting at i=1, and
1071   // touch a few more pages below.  N.B.  It is important to touch all
1072   // the way down including all pages in the shadow zone.
1073   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1074     // this could be any sized move but this is can be a debugging crumb
1075     // so the bigger the better.
1076     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1077   }
1078 }
1079 
1080 void MacroAssembler::reserved_stack_check() {
1081     // testing if reserved zone needs to be enabled
1082     Label no_reserved_zone_enabling;
1083     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1084     NOT_LP64(get_thread(rsi);)
1085 
1086     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1087     jcc(Assembler::below, no_reserved_zone_enabling);
1088 
1089     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1090     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1091     should_not_reach_here();
1092 
1093     bind(no_reserved_zone_enabling);
1094 }
1095 
1096 int MacroAssembler::biased_locking_enter(Register lock_reg,
1097                                          Register obj_reg,
1098                                          Register swap_reg,
1099                                          Register tmp_reg,
1100                                          bool swap_reg_contains_mark,
1101                                          Label& done,
1102                                          Label* slow_case,
1103                                          BiasedLockingCounters* counters) {
1104   assert(UseBiasedLocking, "why call this otherwise?");
1105   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1106   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1107   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1108   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1109   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1110   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1111 
1112   if (PrintBiasedLockingStatistics && counters == NULL) {
1113     counters = BiasedLocking::counters();
1114   }
1115   // Biased locking
1116   // See whether the lock is currently biased toward our thread and
1117   // whether the epoch is still valid
1118   // Note that the runtime guarantees sufficient alignment of JavaThread
1119   // pointers to allow age to be placed into low bits
1120   // First check to see whether biasing is even enabled for this object
1121   Label cas_label;
1122   int null_check_offset = -1;
1123   if (!swap_reg_contains_mark) {
1124     null_check_offset = offset();
1125     movptr(swap_reg, mark_addr);
1126   }
1127   movptr(tmp_reg, swap_reg);
1128   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1129   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1130   jcc(Assembler::notEqual, cas_label);
1131   // The bias pattern is present in the object's header. Need to check
1132   // whether the bias owner and the epoch are both still current.
1133 #ifndef _LP64
1134   // Note that because there is no current thread register on x86_32 we
1135   // need to store off the mark word we read out of the object to
1136   // avoid reloading it and needing to recheck invariants below. This
1137   // store is unfortunate but it makes the overall code shorter and
1138   // simpler.
1139   movptr(saved_mark_addr, swap_reg);
1140 #endif
1141   if (swap_reg_contains_mark) {
1142     null_check_offset = offset();
1143   }
1144   load_prototype_header(tmp_reg, obj_reg);
1145 #ifdef _LP64
1146   orptr(tmp_reg, r15_thread);
1147   xorptr(tmp_reg, swap_reg);
1148   Register header_reg = tmp_reg;
1149 #else
1150   xorptr(tmp_reg, swap_reg);
1151   get_thread(swap_reg);
1152   xorptr(swap_reg, tmp_reg);
1153   Register header_reg = swap_reg;
1154 #endif
1155   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1156   if (counters != NULL) {
1157     cond_inc32(Assembler::zero,
1158                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1159   }
1160   jcc(Assembler::equal, done);
1161 
1162   Label try_revoke_bias;
1163   Label try_rebias;
1164 
1165   // At this point we know that the header has the bias pattern and
1166   // that we are not the bias owner in the current epoch. We need to
1167   // figure out more details about the state of the header in order to
1168   // know what operations can be legally performed on the object's
1169   // header.
1170 
1171   // If the low three bits in the xor result aren't clear, that means
1172   // the prototype header is no longer biased and we have to revoke
1173   // the bias on this object.
1174   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1175   jccb(Assembler::notZero, try_revoke_bias);
1176 
1177   // Biasing is still enabled for this data type. See whether the
1178   // epoch of the current bias is still valid, meaning that the epoch
1179   // bits of the mark word are equal to the epoch bits of the
1180   // prototype header. (Note that the prototype header's epoch bits
1181   // only change at a safepoint.) If not, attempt to rebias the object
1182   // toward the current thread. Note that we must be absolutely sure
1183   // that the current epoch is invalid in order to do this because
1184   // otherwise the manipulations it performs on the mark word are
1185   // illegal.
1186   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1187   jccb(Assembler::notZero, try_rebias);
1188 
1189   // The epoch of the current bias is still valid but we know nothing
1190   // about the owner; it might be set or it might be clear. Try to
1191   // acquire the bias of the object using an atomic operation. If this
1192   // fails we will go in to the runtime to revoke the object's bias.
1193   // Note that we first construct the presumed unbiased header so we
1194   // don't accidentally blow away another thread's valid bias.
1195   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1196   andptr(swap_reg,
1197          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1198 #ifdef _LP64
1199   movptr(tmp_reg, swap_reg);
1200   orptr(tmp_reg, r15_thread);
1201 #else
1202   get_thread(tmp_reg);
1203   orptr(tmp_reg, swap_reg);
1204 #endif
1205   if (os::is_MP()) {
1206     lock();
1207   }
1208   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1209   // If the biasing toward our thread failed, this means that
1210   // another thread succeeded in biasing it toward itself and we
1211   // need to revoke that bias. The revocation will occur in the
1212   // interpreter runtime in the slow case.
1213   if (counters != NULL) {
1214     cond_inc32(Assembler::zero,
1215                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1216   }
1217   if (slow_case != NULL) {
1218     jcc(Assembler::notZero, *slow_case);
1219   }
1220   jmp(done);
1221 
1222   bind(try_rebias);
1223   // At this point we know the epoch has expired, meaning that the
1224   // current "bias owner", if any, is actually invalid. Under these
1225   // circumstances _only_, we are allowed to use the current header's
1226   // value as the comparison value when doing the cas to acquire the
1227   // bias in the current epoch. In other words, we allow transfer of
1228   // the bias from one thread to another directly in this situation.
1229   //
1230   // FIXME: due to a lack of registers we currently blow away the age
1231   // bits in this situation. Should attempt to preserve them.
1232   load_prototype_header(tmp_reg, obj_reg);
1233 #ifdef _LP64
1234   orptr(tmp_reg, r15_thread);
1235 #else
1236   get_thread(swap_reg);
1237   orptr(tmp_reg, swap_reg);
1238   movptr(swap_reg, saved_mark_addr);
1239 #endif
1240   if (os::is_MP()) {
1241     lock();
1242   }
1243   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1244   // If the biasing toward our thread failed, then another thread
1245   // succeeded in biasing it toward itself and we need to revoke that
1246   // bias. The revocation will occur in the runtime in the slow case.
1247   if (counters != NULL) {
1248     cond_inc32(Assembler::zero,
1249                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1250   }
1251   if (slow_case != NULL) {
1252     jcc(Assembler::notZero, *slow_case);
1253   }
1254   jmp(done);
1255 
1256   bind(try_revoke_bias);
1257   // The prototype mark in the klass doesn't have the bias bit set any
1258   // more, indicating that objects of this data type are not supposed
1259   // to be biased any more. We are going to try to reset the mark of
1260   // this object to the prototype value and fall through to the
1261   // CAS-based locking scheme. Note that if our CAS fails, it means
1262   // that another thread raced us for the privilege of revoking the
1263   // bias of this particular object, so it's okay to continue in the
1264   // normal locking code.
1265   //
1266   // FIXME: due to a lack of registers we currently blow away the age
1267   // bits in this situation. Should attempt to preserve them.
1268   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1269   load_prototype_header(tmp_reg, obj_reg);
1270   if (os::is_MP()) {
1271     lock();
1272   }
1273   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1274   // Fall through to the normal CAS-based lock, because no matter what
1275   // the result of the above CAS, some thread must have succeeded in
1276   // removing the bias bit from the object's header.
1277   if (counters != NULL) {
1278     cond_inc32(Assembler::zero,
1279                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1280   }
1281 
1282   bind(cas_label);
1283 
1284   return null_check_offset;
1285 }
1286 
1287 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1288   assert(UseBiasedLocking, "why call this otherwise?");
1289 
1290   // Check for biased locking unlock case, which is a no-op
1291   // Note: we do not have to check the thread ID for two reasons.
1292   // First, the interpreter checks for IllegalMonitorStateException at
1293   // a higher level. Second, if the bias was revoked while we held the
1294   // lock, the object could not be rebiased toward another thread, so
1295   // the bias bit would be clear.
1296   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1297   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1298   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1299   jcc(Assembler::equal, done);
1300 }
1301 
1302 #ifdef COMPILER2
1303 
1304 #if INCLUDE_RTM_OPT
1305 
1306 // Update rtm_counters based on abort status
1307 // input: abort_status
1308 //        rtm_counters (RTMLockingCounters*)
1309 // flags are killed
1310 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1311 
1312   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1313   if (PrintPreciseRTMLockingStatistics) {
1314     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1315       Label check_abort;
1316       testl(abort_status, (1<<i));
1317       jccb(Assembler::equal, check_abort);
1318       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1319       bind(check_abort);
1320     }
1321   }
1322 }
1323 
1324 // Branch if (random & (count-1) != 0), count is 2^n
1325 // tmp, scr and flags are killed
1326 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1327   assert(tmp == rax, "");
1328   assert(scr == rdx, "");
1329   rdtsc(); // modifies EDX:EAX
1330   andptr(tmp, count-1);
1331   jccb(Assembler::notZero, brLabel);
1332 }
1333 
1334 // Perform abort ratio calculation, set no_rtm bit if high ratio
1335 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1336 // tmpReg, rtm_counters_Reg and flags are killed
1337 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1338                                                  Register rtm_counters_Reg,
1339                                                  RTMLockingCounters* rtm_counters,
1340                                                  Metadata* method_data) {
1341   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1342 
1343   if (RTMLockingCalculationDelay > 0) {
1344     // Delay calculation
1345     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1346     testptr(tmpReg, tmpReg);
1347     jccb(Assembler::equal, L_done);
1348   }
1349   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1350   //   Aborted transactions = abort_count * 100
1351   //   All transactions = total_count *  RTMTotalCountIncrRate
1352   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1353 
1354   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1355   cmpptr(tmpReg, RTMAbortThreshold);
1356   jccb(Assembler::below, L_check_always_rtm2);
1357   imulptr(tmpReg, tmpReg, 100);
1358 
1359   Register scrReg = rtm_counters_Reg;
1360   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1361   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1362   imulptr(scrReg, scrReg, RTMAbortRatio);
1363   cmpptr(tmpReg, scrReg);
1364   jccb(Assembler::below, L_check_always_rtm1);
1365   if (method_data != NULL) {
1366     // set rtm_state to "no rtm" in MDO
1367     mov_metadata(tmpReg, method_data);
1368     if (os::is_MP()) {
1369       lock();
1370     }
1371     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1372   }
1373   jmpb(L_done);
1374   bind(L_check_always_rtm1);
1375   // Reload RTMLockingCounters* address
1376   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1377   bind(L_check_always_rtm2);
1378   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1379   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1380   jccb(Assembler::below, L_done);
1381   if (method_data != NULL) {
1382     // set rtm_state to "always rtm" in MDO
1383     mov_metadata(tmpReg, method_data);
1384     if (os::is_MP()) {
1385       lock();
1386     }
1387     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1388   }
1389   bind(L_done);
1390 }
1391 
1392 // Update counters and perform abort ratio calculation
1393 // input:  abort_status_Reg
1394 // rtm_counters_Reg, flags are killed
1395 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1396                                    Register rtm_counters_Reg,
1397                                    RTMLockingCounters* rtm_counters,
1398                                    Metadata* method_data,
1399                                    bool profile_rtm) {
1400 
1401   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1402   // update rtm counters based on rax value at abort
1403   // reads abort_status_Reg, updates flags
1404   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1405   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1406   if (profile_rtm) {
1407     // Save abort status because abort_status_Reg is used by following code.
1408     if (RTMRetryCount > 0) {
1409       push(abort_status_Reg);
1410     }
1411     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1412     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1413     // restore abort status
1414     if (RTMRetryCount > 0) {
1415       pop(abort_status_Reg);
1416     }
1417   }
1418 }
1419 
1420 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1421 // inputs: retry_count_Reg
1422 //       : abort_status_Reg
1423 // output: retry_count_Reg decremented by 1
1424 // flags are killed
1425 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1426   Label doneRetry;
1427   assert(abort_status_Reg == rax, "");
1428   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1429   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1430   // if reason is in 0x6 and retry count != 0 then retry
1431   andptr(abort_status_Reg, 0x6);
1432   jccb(Assembler::zero, doneRetry);
1433   testl(retry_count_Reg, retry_count_Reg);
1434   jccb(Assembler::zero, doneRetry);
1435   pause();
1436   decrementl(retry_count_Reg);
1437   jmp(retryLabel);
1438   bind(doneRetry);
1439 }
1440 
1441 // Spin and retry if lock is busy,
1442 // inputs: box_Reg (monitor address)
1443 //       : retry_count_Reg
1444 // output: retry_count_Reg decremented by 1
1445 //       : clear z flag if retry count exceeded
1446 // tmp_Reg, scr_Reg, flags are killed
1447 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1448                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1449   Label SpinLoop, SpinExit, doneRetry;
1450   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1451 
1452   testl(retry_count_Reg, retry_count_Reg);
1453   jccb(Assembler::zero, doneRetry);
1454   decrementl(retry_count_Reg);
1455   movptr(scr_Reg, RTMSpinLoopCount);
1456 
1457   bind(SpinLoop);
1458   pause();
1459   decrementl(scr_Reg);
1460   jccb(Assembler::lessEqual, SpinExit);
1461   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1462   testptr(tmp_Reg, tmp_Reg);
1463   jccb(Assembler::notZero, SpinLoop);
1464 
1465   bind(SpinExit);
1466   jmp(retryLabel);
1467   bind(doneRetry);
1468   incrementl(retry_count_Reg); // clear z flag
1469 }
1470 
1471 // Use RTM for normal stack locks
1472 // Input: objReg (object to lock)
1473 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1474                                        Register retry_on_abort_count_Reg,
1475                                        RTMLockingCounters* stack_rtm_counters,
1476                                        Metadata* method_data, bool profile_rtm,
1477                                        Label& DONE_LABEL, Label& IsInflated) {
1478   assert(UseRTMForStackLocks, "why call this otherwise?");
1479   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1480   assert(tmpReg == rax, "");
1481   assert(scrReg == rdx, "");
1482   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1483 
1484   if (RTMRetryCount > 0) {
1485     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1486     bind(L_rtm_retry);
1487   }
1488   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1489   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1490   jcc(Assembler::notZero, IsInflated);
1491 
1492   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1493     Label L_noincrement;
1494     if (RTMTotalCountIncrRate > 1) {
1495       // tmpReg, scrReg and flags are killed
1496       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1497     }
1498     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1499     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1500     bind(L_noincrement);
1501   }
1502   xbegin(L_on_abort);
1503   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1504   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1505   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1506   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1507 
1508   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1509   if (UseRTMXendForLockBusy) {
1510     xend();
1511     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1512     jmp(L_decrement_retry);
1513   }
1514   else {
1515     xabort(0);
1516   }
1517   bind(L_on_abort);
1518   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1519     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1520   }
1521   bind(L_decrement_retry);
1522   if (RTMRetryCount > 0) {
1523     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1524     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1525   }
1526 }
1527 
1528 // Use RTM for inflating locks
1529 // inputs: objReg (object to lock)
1530 //         boxReg (on-stack box address (displaced header location) - KILLED)
1531 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1532 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1533                                           Register scrReg, Register retry_on_busy_count_Reg,
1534                                           Register retry_on_abort_count_Reg,
1535                                           RTMLockingCounters* rtm_counters,
1536                                           Metadata* method_data, bool profile_rtm,
1537                                           Label& DONE_LABEL) {
1538   assert(UseRTMLocking, "why call this otherwise?");
1539   assert(tmpReg == rax, "");
1540   assert(scrReg == rdx, "");
1541   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1542   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1543 
1544   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1545   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1546   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1547 
1548   if (RTMRetryCount > 0) {
1549     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1550     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1551     bind(L_rtm_retry);
1552   }
1553   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1554     Label L_noincrement;
1555     if (RTMTotalCountIncrRate > 1) {
1556       // tmpReg, scrReg and flags are killed
1557       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1558     }
1559     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1560     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1561     bind(L_noincrement);
1562   }
1563   xbegin(L_on_abort);
1564   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1565   movptr(tmpReg, Address(tmpReg, owner_offset));
1566   testptr(tmpReg, tmpReg);
1567   jcc(Assembler::zero, DONE_LABEL);
1568   if (UseRTMXendForLockBusy) {
1569     xend();
1570     jmp(L_decrement_retry);
1571   }
1572   else {
1573     xabort(0);
1574   }
1575   bind(L_on_abort);
1576   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1577   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1578     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1579   }
1580   if (RTMRetryCount > 0) {
1581     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1582     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1583   }
1584 
1585   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1586   testptr(tmpReg, tmpReg) ;
1587   jccb(Assembler::notZero, L_decrement_retry) ;
1588 
1589   // Appears unlocked - try to swing _owner from null to non-null.
1590   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1591 #ifdef _LP64
1592   Register threadReg = r15_thread;
1593 #else
1594   get_thread(scrReg);
1595   Register threadReg = scrReg;
1596 #endif
1597   if (os::is_MP()) {
1598     lock();
1599   }
1600   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1601 
1602   if (RTMRetryCount > 0) {
1603     // success done else retry
1604     jccb(Assembler::equal, DONE_LABEL) ;
1605     bind(L_decrement_retry);
1606     // Spin and retry if lock is busy.
1607     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1608   }
1609   else {
1610     bind(L_decrement_retry);
1611   }
1612 }
1613 
1614 #endif //  INCLUDE_RTM_OPT
1615 
1616 // Fast_Lock and Fast_Unlock used by C2
1617 
1618 // Because the transitions from emitted code to the runtime
1619 // monitorenter/exit helper stubs are so slow it's critical that
1620 // we inline both the stack-locking fast-path and the inflated fast path.
1621 //
1622 // See also: cmpFastLock and cmpFastUnlock.
1623 //
1624 // What follows is a specialized inline transliteration of the code
1625 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1626 // another option would be to emit TrySlowEnter and TrySlowExit methods
1627 // at startup-time.  These methods would accept arguments as
1628 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1629 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1630 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1631 // In practice, however, the # of lock sites is bounded and is usually small.
1632 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1633 // if the processor uses simple bimodal branch predictors keyed by EIP
1634 // Since the helper routines would be called from multiple synchronization
1635 // sites.
1636 //
1637 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1638 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1639 // to those specialized methods.  That'd give us a mostly platform-independent
1640 // implementation that the JITs could optimize and inline at their pleasure.
1641 // Done correctly, the only time we'd need to cross to native could would be
1642 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1643 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1644 // (b) explicit barriers or fence operations.
1645 //
1646 // TODO:
1647 //
1648 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1649 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1650 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1651 //    the lock operators would typically be faster than reifying Self.
1652 //
1653 // *  Ideally I'd define the primitives as:
1654 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1655 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1656 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1657 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1658 //    Furthermore the register assignments are overconstrained, possibly resulting in
1659 //    sub-optimal code near the synchronization site.
1660 //
1661 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1662 //    Alternately, use a better sp-proximity test.
1663 //
1664 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1665 //    Either one is sufficient to uniquely identify a thread.
1666 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1667 //
1668 // *  Intrinsify notify() and notifyAll() for the common cases where the
1669 //    object is locked by the calling thread but the waitlist is empty.
1670 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1671 //
1672 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1673 //    But beware of excessive branch density on AMD Opterons.
1674 //
1675 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1676 //    or failure of the fast-path.  If the fast-path fails then we pass
1677 //    control to the slow-path, typically in C.  In Fast_Lock and
1678 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1679 //    will emit a conditional branch immediately after the node.
1680 //    So we have branches to branches and lots of ICC.ZF games.
1681 //    Instead, it might be better to have C2 pass a "FailureLabel"
1682 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1683 //    will drop through the node.  ICC.ZF is undefined at exit.
1684 //    In the case of failure, the node will branch directly to the
1685 //    FailureLabel
1686 
1687 
1688 // obj: object to lock
1689 // box: on-stack box address (displaced header location) - KILLED
1690 // rax,: tmp -- KILLED
1691 // scr: tmp -- KILLED
1692 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1693                                Register scrReg, Register cx1Reg, Register cx2Reg,
1694                                BiasedLockingCounters* counters,
1695                                RTMLockingCounters* rtm_counters,
1696                                RTMLockingCounters* stack_rtm_counters,
1697                                Metadata* method_data,
1698                                bool use_rtm, bool profile_rtm) {
1699   // Ensure the register assignments are disjoint
1700   assert(tmpReg == rax, "");
1701 
1702   if (use_rtm) {
1703     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1704   } else {
1705     assert(cx1Reg == noreg, "");
1706     assert(cx2Reg == noreg, "");
1707     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1708   }
1709 
1710   if (counters != NULL) {
1711     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1712   }
1713   if (EmitSync & 1) {
1714       // set box->dhw = markOopDesc::unused_mark()
1715       // Force all sync thru slow-path: slow_enter() and slow_exit()
1716       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1717       cmpptr (rsp, (int32_t)NULL_WORD);
1718   } else {
1719     // Possible cases that we'll encounter in fast_lock
1720     // ------------------------------------------------
1721     // * Inflated
1722     //    -- unlocked
1723     //    -- Locked
1724     //       = by self
1725     //       = by other
1726     // * biased
1727     //    -- by Self
1728     //    -- by other
1729     // * neutral
1730     // * stack-locked
1731     //    -- by self
1732     //       = sp-proximity test hits
1733     //       = sp-proximity test generates false-negative
1734     //    -- by other
1735     //
1736 
1737     Label IsInflated, DONE_LABEL;
1738 
1739     // it's stack-locked, biased or neutral
1740     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1741     // order to reduce the number of conditional branches in the most common cases.
1742     // Beware -- there's a subtle invariant that fetch of the markword
1743     // at [FETCH], below, will never observe a biased encoding (*101b).
1744     // If this invariant is not held we risk exclusion (safety) failure.
1745     if (UseBiasedLocking && !UseOptoBiasInlining) {
1746       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1747     }
1748 
1749 #if INCLUDE_RTM_OPT
1750     if (UseRTMForStackLocks && use_rtm) {
1751       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1752                         stack_rtm_counters, method_data, profile_rtm,
1753                         DONE_LABEL, IsInflated);
1754     }
1755 #endif // INCLUDE_RTM_OPT
1756 
1757     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1758     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1759     jccb(Assembler::notZero, IsInflated);
1760 
1761     // Attempt stack-locking ...
1762     orptr (tmpReg, markOopDesc::unlocked_value);
1763     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1764     if (os::is_MP()) {
1765       lock();
1766     }
1767     cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1768     if (counters != NULL) {
1769       cond_inc32(Assembler::equal,
1770                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1771     }
1772     jcc(Assembler::equal, DONE_LABEL);           // Success
1773 
1774     // Recursive locking.
1775     // The object is stack-locked: markword contains stack pointer to BasicLock.
1776     // Locked by current thread if difference with current SP is less than one page.
1777     subptr(tmpReg, rsp);
1778     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1779     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1780     movptr(Address(boxReg, 0), tmpReg);
1781     if (counters != NULL) {
1782       cond_inc32(Assembler::equal,
1783                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1784     }
1785     jmp(DONE_LABEL);
1786 
1787     bind(IsInflated);
1788     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1789 
1790 #if INCLUDE_RTM_OPT
1791     // Use the same RTM locking code in 32- and 64-bit VM.
1792     if (use_rtm) {
1793       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1794                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1795     } else {
1796 #endif // INCLUDE_RTM_OPT
1797 
1798 #ifndef _LP64
1799     // The object is inflated.
1800 
1801     // boxReg refers to the on-stack BasicLock in the current frame.
1802     // We'd like to write:
1803     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1804     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1805     // additional latency as we have another ST in the store buffer that must drain.
1806 
1807     if (EmitSync & 8192) {
1808        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1809        get_thread (scrReg);
1810        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1811        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1812        if (os::is_MP()) {
1813          lock();
1814        }
1815        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1816     } else
1817     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1818        // register juggle because we need tmpReg for cmpxchgptr below
1819        movptr(scrReg, boxReg);
1820        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1821 
1822        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1823        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1824           // prefetchw [eax + Offset(_owner)-2]
1825           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1826        }
1827 
1828        if ((EmitSync & 64) == 0) {
1829          // Optimistic form: consider XORL tmpReg,tmpReg
1830          movptr(tmpReg, NULL_WORD);
1831        } else {
1832          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1833          // Test-And-CAS instead of CAS
1834          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1835          testptr(tmpReg, tmpReg);                   // Locked ?
1836          jccb  (Assembler::notZero, DONE_LABEL);
1837        }
1838 
1839        // Appears unlocked - try to swing _owner from null to non-null.
1840        // Ideally, I'd manifest "Self" with get_thread and then attempt
1841        // to CAS the register containing Self into m->Owner.
1842        // But we don't have enough registers, so instead we can either try to CAS
1843        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1844        // we later store "Self" into m->Owner.  Transiently storing a stack address
1845        // (rsp or the address of the box) into  m->owner is harmless.
1846        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1847        if (os::is_MP()) {
1848          lock();
1849        }
1850        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1851        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1852        // If we weren't able to swing _owner from NULL to the BasicLock
1853        // then take the slow path.
1854        jccb  (Assembler::notZero, DONE_LABEL);
1855        // update _owner from BasicLock to thread
1856        get_thread (scrReg);                    // beware: clobbers ICCs
1857        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1858        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1859 
1860        // If the CAS fails we can either retry or pass control to the slow-path.
1861        // We use the latter tactic.
1862        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1863        // If the CAS was successful ...
1864        //   Self has acquired the lock
1865        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1866        // Intentional fall-through into DONE_LABEL ...
1867     } else {
1868        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1869        movptr(boxReg, tmpReg);
1870 
1871        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1872        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1873           // prefetchw [eax + Offset(_owner)-2]
1874           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1875        }
1876 
1877        if ((EmitSync & 64) == 0) {
1878          // Optimistic form
1879          xorptr  (tmpReg, tmpReg);
1880        } else {
1881          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1882          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1883          testptr(tmpReg, tmpReg);                   // Locked ?
1884          jccb  (Assembler::notZero, DONE_LABEL);
1885        }
1886 
1887        // Appears unlocked - try to swing _owner from null to non-null.
1888        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1889        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1890        get_thread (scrReg);
1891        if (os::is_MP()) {
1892          lock();
1893        }
1894        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1895 
1896        // If the CAS fails we can either retry or pass control to the slow-path.
1897        // We use the latter tactic.
1898        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1899        // If the CAS was successful ...
1900        //   Self has acquired the lock
1901        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1902        // Intentional fall-through into DONE_LABEL ...
1903     }
1904 #else // _LP64
1905     // It's inflated
1906     movq(scrReg, tmpReg);
1907     xorq(tmpReg, tmpReg);
1908 
1909     if (os::is_MP()) {
1910       lock();
1911     }
1912     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1913     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1914     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1915     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1916     // Intentional fall-through into DONE_LABEL ...
1917     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1918 #endif // _LP64
1919 #if INCLUDE_RTM_OPT
1920     } // use_rtm()
1921 #endif
1922     // DONE_LABEL is a hot target - we'd really like to place it at the
1923     // start of cache line by padding with NOPs.
1924     // See the AMD and Intel software optimization manuals for the
1925     // most efficient "long" NOP encodings.
1926     // Unfortunately none of our alignment mechanisms suffice.
1927     bind(DONE_LABEL);
1928 
1929     // At DONE_LABEL the icc ZFlag is set as follows ...
1930     // Fast_Unlock uses the same protocol.
1931     // ZFlag == 1 -> Success
1932     // ZFlag == 0 -> Failure - force control through the slow-path
1933   }
1934 }
1935 
1936 // obj: object to unlock
1937 // box: box address (displaced header location), killed.  Must be EAX.
1938 // tmp: killed, cannot be obj nor box.
1939 //
1940 // Some commentary on balanced locking:
1941 //
1942 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1943 // Methods that don't have provably balanced locking are forced to run in the
1944 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1945 // The interpreter provides two properties:
1946 // I1:  At return-time the interpreter automatically and quietly unlocks any
1947 //      objects acquired the current activation (frame).  Recall that the
1948 //      interpreter maintains an on-stack list of locks currently held by
1949 //      a frame.
1950 // I2:  If a method attempts to unlock an object that is not held by the
1951 //      the frame the interpreter throws IMSX.
1952 //
1953 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1954 // B() doesn't have provably balanced locking so it runs in the interpreter.
1955 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1956 // is still locked by A().
1957 //
1958 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1959 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1960 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1961 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1962 // Arguably given that the spec legislates the JNI case as undefined our implementation
1963 // could reasonably *avoid* checking owner in Fast_Unlock().
1964 // In the interest of performance we elide m->Owner==Self check in unlock.
1965 // A perfectly viable alternative is to elide the owner check except when
1966 // Xcheck:jni is enabled.
1967 
1968 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1969   assert(boxReg == rax, "");
1970   assert_different_registers(objReg, boxReg, tmpReg);
1971 
1972   if (EmitSync & 4) {
1973     // Disable - inhibit all inlining.  Force control through the slow-path
1974     cmpptr (rsp, 0);
1975   } else {
1976     Label DONE_LABEL, Stacked, CheckSucc;
1977 
1978     // Critically, the biased locking test must have precedence over
1979     // and appear before the (box->dhw == 0) recursive stack-lock test.
1980     if (UseBiasedLocking && !UseOptoBiasInlining) {
1981        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1982     }
1983 
1984 #if INCLUDE_RTM_OPT
1985     if (UseRTMForStackLocks && use_rtm) {
1986       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1987       Label L_regular_unlock;
1988       movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));           // fetch markword
1989       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1990       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1991       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1992       xend();                                       // otherwise end...
1993       jmp(DONE_LABEL);                              // ... and we're done
1994       bind(L_regular_unlock);
1995     }
1996 #endif
1997 
1998     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1999     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
2000     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));             // Examine the object's markword
2001     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2002     jccb  (Assembler::zero, Stacked);
2003 
2004     // It's inflated.
2005 #if INCLUDE_RTM_OPT
2006     if (use_rtm) {
2007       Label L_regular_inflated_unlock;
2008       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2009       movptr(boxReg, Address(tmpReg, owner_offset));
2010       testptr(boxReg, boxReg);
2011       jccb(Assembler::notZero, L_regular_inflated_unlock);
2012       xend();
2013       jmpb(DONE_LABEL);
2014       bind(L_regular_inflated_unlock);
2015     }
2016 #endif
2017 
2018     // Despite our balanced locking property we still check that m->_owner == Self
2019     // as java routines or native JNI code called by this thread might
2020     // have released the lock.
2021     // Refer to the comments in synchronizer.cpp for how we might encode extra
2022     // state in _succ so we can avoid fetching EntryList|cxq.
2023     //
2024     // I'd like to add more cases in fast_lock() and fast_unlock() --
2025     // such as recursive enter and exit -- but we have to be wary of
2026     // I$ bloat, T$ effects and BP$ effects.
2027     //
2028     // If there's no contention try a 1-0 exit.  That is, exit without
2029     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2030     // we detect and recover from the race that the 1-0 exit admits.
2031     //
2032     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2033     // before it STs null into _owner, releasing the lock.  Updates
2034     // to data protected by the critical section must be visible before
2035     // we drop the lock (and thus before any other thread could acquire
2036     // the lock and observe the fields protected by the lock).
2037     // IA32's memory-model is SPO, so STs are ordered with respect to
2038     // each other and there's no need for an explicit barrier (fence).
2039     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2040 #ifndef _LP64
2041     get_thread (boxReg);
2042     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2043       // prefetchw [ebx + Offset(_owner)-2]
2044       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2045     }
2046 
2047     // Note that we could employ various encoding schemes to reduce
2048     // the number of loads below (currently 4) to just 2 or 3.
2049     // Refer to the comments in synchronizer.cpp.
2050     // In practice the chain of fetches doesn't seem to impact performance, however.
2051     xorptr(boxReg, boxReg);
2052     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2053        // Attempt to reduce branch density - AMD's branch predictor.
2054        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2055        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2056        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2057        jccb  (Assembler::notZero, DONE_LABEL);
2058        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2059        jmpb  (DONE_LABEL);
2060     } else {
2061        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2062        jccb  (Assembler::notZero, DONE_LABEL);
2063        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2064        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2065        jccb  (Assembler::notZero, CheckSucc);
2066        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2067        jmpb  (DONE_LABEL);
2068     }
2069 
2070     // The Following code fragment (EmitSync & 65536) improves the performance of
2071     // contended applications and contended synchronization microbenchmarks.
2072     // Unfortunately the emission of the code - even though not executed - causes regressions
2073     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2074     // with an equal number of never-executed NOPs results in the same regression.
2075     // We leave it off by default.
2076 
2077     if ((EmitSync & 65536) != 0) {
2078        Label LSuccess, LGoSlowPath ;
2079 
2080        bind  (CheckSucc);
2081 
2082        // Optional pre-test ... it's safe to elide this
2083        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2084        jccb(Assembler::zero, LGoSlowPath);
2085 
2086        // We have a classic Dekker-style idiom:
2087        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2088        // There are a number of ways to implement the barrier:
2089        // (1) lock:andl &m->_owner, 0
2090        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2091        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2092        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2093        // (2) If supported, an explicit MFENCE is appealing.
2094        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2095        //     particularly if the write-buffer is full as might be the case if
2096        //     if stores closely precede the fence or fence-equivalent instruction.
2097        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2098        //     as the situation has changed with Nehalem and Shanghai.
2099        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2100        //     The $lines underlying the top-of-stack should be in M-state.
2101        //     The locked add instruction is serializing, of course.
2102        // (4) Use xchg, which is serializing
2103        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2104        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2105        //     The integer condition codes will tell us if succ was 0.
2106        //     Since _succ and _owner should reside in the same $line and
2107        //     we just stored into _owner, it's likely that the $line
2108        //     remains in M-state for the lock:orl.
2109        //
2110        // We currently use (3), although it's likely that switching to (2)
2111        // is correct for the future.
2112 
2113        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2114        if (os::is_MP()) {
2115          lock(); addptr(Address(rsp, 0), 0);
2116        }
2117        // Ratify _succ remains non-null
2118        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2119        jccb  (Assembler::notZero, LSuccess);
2120 
2121        xorptr(boxReg, boxReg);                  // box is really EAX
2122        if (os::is_MP()) { lock(); }
2123        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2124        // There's no successor so we tried to regrab the lock with the
2125        // placeholder value. If that didn't work, then another thread
2126        // grabbed the lock so we're done (and exit was a success).
2127        jccb  (Assembler::notEqual, LSuccess);
2128        // Since we're low on registers we installed rsp as a placeholding in _owner.
2129        // Now install Self over rsp.  This is safe as we're transitioning from
2130        // non-null to non=null
2131        get_thread (boxReg);
2132        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2133        // Intentional fall-through into LGoSlowPath ...
2134 
2135        bind  (LGoSlowPath);
2136        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2137        jmpb  (DONE_LABEL);
2138 
2139        bind  (LSuccess);
2140        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2141        jmpb  (DONE_LABEL);
2142     }
2143 
2144     bind (Stacked);
2145     // It's not inflated and it's not recursively stack-locked and it's not biased.
2146     // It must be stack-locked.
2147     // Try to reset the header to displaced header.
2148     // The "box" value on the stack is stable, so we can reload
2149     // and be assured we observe the same value as above.
2150     movptr(tmpReg, Address(boxReg, 0));
2151     if (os::is_MP()) {
2152       lock();
2153     }
2154     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2155     // Intention fall-thru into DONE_LABEL
2156 
2157     // DONE_LABEL is a hot target - we'd really like to place it at the
2158     // start of cache line by padding with NOPs.
2159     // See the AMD and Intel software optimization manuals for the
2160     // most efficient "long" NOP encodings.
2161     // Unfortunately none of our alignment mechanisms suffice.
2162     if ((EmitSync & 65536) == 0) {
2163        bind (CheckSucc);
2164     }
2165 #else // _LP64
2166     // It's inflated
2167     if (EmitSync & 1024) {
2168       // Emit code to check that _owner == Self
2169       // We could fold the _owner test into subsequent code more efficiently
2170       // than using a stand-alone check, but since _owner checking is off by
2171       // default we don't bother. We also might consider predicating the
2172       // _owner==Self check on Xcheck:jni or running on a debug build.
2173       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2174       xorptr(boxReg, r15_thread);
2175     } else {
2176       xorptr(boxReg, boxReg);
2177     }
2178     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2179     jccb  (Assembler::notZero, DONE_LABEL);
2180     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2181     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2182     jccb  (Assembler::notZero, CheckSucc);
2183     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2184     jmpb  (DONE_LABEL);
2185 
2186     if ((EmitSync & 65536) == 0) {
2187       // Try to avoid passing control into the slow_path ...
2188       Label LSuccess, LGoSlowPath ;
2189       bind  (CheckSucc);
2190 
2191       // The following optional optimization can be elided if necessary
2192       // Effectively: if (succ == null) goto SlowPath
2193       // The code reduces the window for a race, however,
2194       // and thus benefits performance.
2195       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2196       jccb  (Assembler::zero, LGoSlowPath);
2197 
2198       xorptr(boxReg, boxReg);
2199       if ((EmitSync & 16) && os::is_MP()) {
2200         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2201       } else {
2202         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2203         if (os::is_MP()) {
2204           // Memory barrier/fence
2205           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2206           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2207           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2208           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2209           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2210           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2211           lock(); addl(Address(rsp, 0), 0);
2212         }
2213       }
2214       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2215       jccb  (Assembler::notZero, LSuccess);
2216 
2217       // Rare inopportune interleaving - race.
2218       // The successor vanished in the small window above.
2219       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2220       // We need to ensure progress and succession.
2221       // Try to reacquire the lock.
2222       // If that fails then the new owner is responsible for succession and this
2223       // thread needs to take no further action and can exit via the fast path (success).
2224       // If the re-acquire succeeds then pass control into the slow path.
2225       // As implemented, this latter mode is horrible because we generated more
2226       // coherence traffic on the lock *and* artifically extended the critical section
2227       // length while by virtue of passing control into the slow path.
2228 
2229       // box is really RAX -- the following CMPXCHG depends on that binding
2230       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2231       if (os::is_MP()) { lock(); }
2232       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2233       // There's no successor so we tried to regrab the lock.
2234       // If that didn't work, then another thread grabbed the
2235       // lock so we're done (and exit was a success).
2236       jccb  (Assembler::notEqual, LSuccess);
2237       // Intentional fall-through into slow-path
2238 
2239       bind  (LGoSlowPath);
2240       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2241       jmpb  (DONE_LABEL);
2242 
2243       bind  (LSuccess);
2244       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2245       jmpb  (DONE_LABEL);
2246     }
2247 
2248     bind  (Stacked);
2249     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2250     if (os::is_MP()) { lock(); }
2251     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2252 
2253     if (EmitSync & 65536) {
2254        bind (CheckSucc);
2255     }
2256 #endif
2257     bind(DONE_LABEL);
2258   }
2259 }
2260 #endif // COMPILER2
2261 
2262 void MacroAssembler::c2bool(Register x) {
2263   // implements x == 0 ? 0 : 1
2264   // note: must only look at least-significant byte of x
2265   //       since C-style booleans are stored in one byte
2266   //       only! (was bug)
2267   andl(x, 0xFF);
2268   setb(Assembler::notZero, x);
2269 }
2270 
2271 // Wouldn't need if AddressLiteral version had new name
2272 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2273   Assembler::call(L, rtype);
2274 }
2275 
2276 void MacroAssembler::call(Register entry) {
2277   Assembler::call(entry);
2278 }
2279 
2280 void MacroAssembler::call(AddressLiteral entry) {
2281   if (reachable(entry)) {
2282     Assembler::call_literal(entry.target(), entry.rspec());
2283   } else {
2284     lea(rscratch1, entry);
2285     Assembler::call(rscratch1);
2286   }
2287 }
2288 
2289 void MacroAssembler::ic_call(address entry, jint method_index) {
2290   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2291   movptr(rax, (intptr_t)Universe::non_oop_word());
2292   call(AddressLiteral(entry, rh));
2293 }
2294 
2295 // Implementation of call_VM versions
2296 
2297 void MacroAssembler::call_VM(Register oop_result,
2298                              address entry_point,
2299                              bool check_exceptions) {
2300   Label C, E;
2301   call(C, relocInfo::none);
2302   jmp(E);
2303 
2304   bind(C);
2305   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2306   ret(0);
2307 
2308   bind(E);
2309 }
2310 
2311 void MacroAssembler::call_VM(Register oop_result,
2312                              address entry_point,
2313                              Register arg_1,
2314                              bool check_exceptions) {
2315   Label C, E;
2316   call(C, relocInfo::none);
2317   jmp(E);
2318 
2319   bind(C);
2320   pass_arg1(this, arg_1);
2321   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2322   ret(0);
2323 
2324   bind(E);
2325 }
2326 
2327 void MacroAssembler::call_VM(Register oop_result,
2328                              address entry_point,
2329                              Register arg_1,
2330                              Register arg_2,
2331                              bool check_exceptions) {
2332   Label C, E;
2333   call(C, relocInfo::none);
2334   jmp(E);
2335 
2336   bind(C);
2337 
2338   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2339 
2340   pass_arg2(this, arg_2);
2341   pass_arg1(this, arg_1);
2342   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2343   ret(0);
2344 
2345   bind(E);
2346 }
2347 
2348 void MacroAssembler::call_VM(Register oop_result,
2349                              address entry_point,
2350                              Register arg_1,
2351                              Register arg_2,
2352                              Register arg_3,
2353                              bool check_exceptions) {
2354   Label C, E;
2355   call(C, relocInfo::none);
2356   jmp(E);
2357 
2358   bind(C);
2359 
2360   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2361   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2362   pass_arg3(this, arg_3);
2363 
2364   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2365   pass_arg2(this, arg_2);
2366 
2367   pass_arg1(this, arg_1);
2368   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2369   ret(0);
2370 
2371   bind(E);
2372 }
2373 
2374 void MacroAssembler::call_VM(Register oop_result,
2375                              Register last_java_sp,
2376                              address entry_point,
2377                              int number_of_arguments,
2378                              bool check_exceptions) {
2379   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2380   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2381 }
2382 
2383 void MacroAssembler::call_VM(Register oop_result,
2384                              Register last_java_sp,
2385                              address entry_point,
2386                              Register arg_1,
2387                              bool check_exceptions) {
2388   pass_arg1(this, arg_1);
2389   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2390 }
2391 
2392 void MacroAssembler::call_VM(Register oop_result,
2393                              Register last_java_sp,
2394                              address entry_point,
2395                              Register arg_1,
2396                              Register arg_2,
2397                              bool check_exceptions) {
2398 
2399   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2400   pass_arg2(this, arg_2);
2401   pass_arg1(this, arg_1);
2402   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2403 }
2404 
2405 void MacroAssembler::call_VM(Register oop_result,
2406                              Register last_java_sp,
2407                              address entry_point,
2408                              Register arg_1,
2409                              Register arg_2,
2410                              Register arg_3,
2411                              bool check_exceptions) {
2412   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2413   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2414   pass_arg3(this, arg_3);
2415   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2416   pass_arg2(this, arg_2);
2417   pass_arg1(this, arg_1);
2418   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2419 }
2420 
2421 void MacroAssembler::super_call_VM(Register oop_result,
2422                                    Register last_java_sp,
2423                                    address entry_point,
2424                                    int number_of_arguments,
2425                                    bool check_exceptions) {
2426   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2427   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2428 }
2429 
2430 void MacroAssembler::super_call_VM(Register oop_result,
2431                                    Register last_java_sp,
2432                                    address entry_point,
2433                                    Register arg_1,
2434                                    bool check_exceptions) {
2435   pass_arg1(this, arg_1);
2436   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2437 }
2438 
2439 void MacroAssembler::super_call_VM(Register oop_result,
2440                                    Register last_java_sp,
2441                                    address entry_point,
2442                                    Register arg_1,
2443                                    Register arg_2,
2444                                    bool check_exceptions) {
2445 
2446   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2447   pass_arg2(this, arg_2);
2448   pass_arg1(this, arg_1);
2449   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2450 }
2451 
2452 void MacroAssembler::super_call_VM(Register oop_result,
2453                                    Register last_java_sp,
2454                                    address entry_point,
2455                                    Register arg_1,
2456                                    Register arg_2,
2457                                    Register arg_3,
2458                                    bool check_exceptions) {
2459   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2460   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2461   pass_arg3(this, arg_3);
2462   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2463   pass_arg2(this, arg_2);
2464   pass_arg1(this, arg_1);
2465   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2466 }
2467 
2468 void MacroAssembler::call_VM_base(Register oop_result,
2469                                   Register java_thread,
2470                                   Register last_java_sp,
2471                                   address  entry_point,
2472                                   int      number_of_arguments,
2473                                   bool     check_exceptions) {
2474   // determine java_thread register
2475   if (!java_thread->is_valid()) {
2476 #ifdef _LP64
2477     java_thread = r15_thread;
2478 #else
2479     java_thread = rdi;
2480     get_thread(java_thread);
2481 #endif // LP64
2482   }
2483   // determine last_java_sp register
2484   if (!last_java_sp->is_valid()) {
2485     last_java_sp = rsp;
2486   }
2487   // debugging support
2488   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2489   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2490 #ifdef ASSERT
2491   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2492   // r12 is the heapbase.
2493   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2494 #endif // ASSERT
2495 
2496   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2497   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2498 
2499   // push java thread (becomes first argument of C function)
2500 
2501   NOT_LP64(push(java_thread); number_of_arguments++);
2502   LP64_ONLY(mov(c_rarg0, r15_thread));
2503 
2504   // set last Java frame before call
2505   assert(last_java_sp != rbp, "can't use ebp/rbp");
2506 
2507   // Only interpreter should have to set fp
2508   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2509 
2510   // do the call, remove parameters
2511   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2512 
2513   // restore the thread (cannot use the pushed argument since arguments
2514   // may be overwritten by C code generated by an optimizing compiler);
2515   // however can use the register value directly if it is callee saved.
2516   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2517     // rdi & rsi (also r15) are callee saved -> nothing to do
2518 #ifdef ASSERT
2519     guarantee(java_thread != rax, "change this code");
2520     push(rax);
2521     { Label L;
2522       get_thread(rax);
2523       cmpptr(java_thread, rax);
2524       jcc(Assembler::equal, L);
2525       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2526       bind(L);
2527     }
2528     pop(rax);
2529 #endif
2530   } else {
2531     get_thread(java_thread);
2532   }
2533   // reset last Java frame
2534   // Only interpreter should have to clear fp
2535   reset_last_Java_frame(java_thread, true);
2536 
2537    // C++ interp handles this in the interpreter
2538   check_and_handle_popframe(java_thread);
2539   check_and_handle_earlyret(java_thread);
2540 
2541   if (check_exceptions) {
2542     // check for pending exceptions (java_thread is set upon return)
2543     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2544 #ifndef _LP64
2545     jump_cc(Assembler::notEqual,
2546             RuntimeAddress(StubRoutines::forward_exception_entry()));
2547 #else
2548     // This used to conditionally jump to forward_exception however it is
2549     // possible if we relocate that the branch will not reach. So we must jump
2550     // around so we can always reach
2551 
2552     Label ok;
2553     jcc(Assembler::equal, ok);
2554     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2555     bind(ok);
2556 #endif // LP64
2557   }
2558 
2559   // get oop result if there is one and reset the value in the thread
2560   if (oop_result->is_valid()) {
2561     get_vm_result(oop_result, java_thread);
2562   }
2563 }
2564 
2565 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2566 
2567   // Calculate the value for last_Java_sp
2568   // somewhat subtle. call_VM does an intermediate call
2569   // which places a return address on the stack just under the
2570   // stack pointer as the user finsihed with it. This allows
2571   // use to retrieve last_Java_pc from last_Java_sp[-1].
2572   // On 32bit we then have to push additional args on the stack to accomplish
2573   // the actual requested call. On 64bit call_VM only can use register args
2574   // so the only extra space is the return address that call_VM created.
2575   // This hopefully explains the calculations here.
2576 
2577 #ifdef _LP64
2578   // We've pushed one address, correct last_Java_sp
2579   lea(rax, Address(rsp, wordSize));
2580 #else
2581   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2582 #endif // LP64
2583 
2584   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2585 
2586 }
2587 
2588 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2589 void MacroAssembler::call_VM_leaf0(address entry_point) {
2590   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2591 }
2592 
2593 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2594   call_VM_leaf_base(entry_point, number_of_arguments);
2595 }
2596 
2597 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2598   pass_arg0(this, arg_0);
2599   call_VM_leaf(entry_point, 1);
2600 }
2601 
2602 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2603 
2604   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2605   pass_arg1(this, arg_1);
2606   pass_arg0(this, arg_0);
2607   call_VM_leaf(entry_point, 2);
2608 }
2609 
2610 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2611   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2612   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2613   pass_arg2(this, arg_2);
2614   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2615   pass_arg1(this, arg_1);
2616   pass_arg0(this, arg_0);
2617   call_VM_leaf(entry_point, 3);
2618 }
2619 
2620 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2621   pass_arg0(this, arg_0);
2622   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2623 }
2624 
2625 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2626 
2627   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2628   pass_arg1(this, arg_1);
2629   pass_arg0(this, arg_0);
2630   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2631 }
2632 
2633 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2634   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2635   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2636   pass_arg2(this, arg_2);
2637   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2638   pass_arg1(this, arg_1);
2639   pass_arg0(this, arg_0);
2640   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2641 }
2642 
2643 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2644   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2645   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2646   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2647   pass_arg3(this, arg_3);
2648   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2649   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2650   pass_arg2(this, arg_2);
2651   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2652   pass_arg1(this, arg_1);
2653   pass_arg0(this, arg_0);
2654   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2655 }
2656 
2657 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2658   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2659   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2660   verify_oop(oop_result, "broken oop in call_VM_base");
2661 }
2662 
2663 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2664   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2665   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2666 }
2667 
2668 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2669 }
2670 
2671 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2672 }
2673 
2674 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2675   if (reachable(src1)) {
2676     cmpl(as_Address(src1), imm);
2677   } else {
2678     lea(rscratch1, src1);
2679     cmpl(Address(rscratch1, 0), imm);
2680   }
2681 }
2682 
2683 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2684   assert(!src2.is_lval(), "use cmpptr");
2685   if (reachable(src2)) {
2686     cmpl(src1, as_Address(src2));
2687   } else {
2688     lea(rscratch1, src2);
2689     cmpl(src1, Address(rscratch1, 0));
2690   }
2691 }
2692 
2693 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2694   Assembler::cmpl(src1, imm);
2695 }
2696 
2697 void MacroAssembler::cmp32(Register src1, Address src2) {
2698   Assembler::cmpl(src1, src2);
2699 }
2700 
2701 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2702   ucomisd(opr1, opr2);
2703 
2704   Label L;
2705   if (unordered_is_less) {
2706     movl(dst, -1);
2707     jcc(Assembler::parity, L);
2708     jcc(Assembler::below , L);
2709     movl(dst, 0);
2710     jcc(Assembler::equal , L);
2711     increment(dst);
2712   } else { // unordered is greater
2713     movl(dst, 1);
2714     jcc(Assembler::parity, L);
2715     jcc(Assembler::above , L);
2716     movl(dst, 0);
2717     jcc(Assembler::equal , L);
2718     decrementl(dst);
2719   }
2720   bind(L);
2721 }
2722 
2723 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2724   ucomiss(opr1, opr2);
2725 
2726   Label L;
2727   if (unordered_is_less) {
2728     movl(dst, -1);
2729     jcc(Assembler::parity, L);
2730     jcc(Assembler::below , L);
2731     movl(dst, 0);
2732     jcc(Assembler::equal , L);
2733     increment(dst);
2734   } else { // unordered is greater
2735     movl(dst, 1);
2736     jcc(Assembler::parity, L);
2737     jcc(Assembler::above , L);
2738     movl(dst, 0);
2739     jcc(Assembler::equal , L);
2740     decrementl(dst);
2741   }
2742   bind(L);
2743 }
2744 
2745 
2746 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2747   if (reachable(src1)) {
2748     cmpb(as_Address(src1), imm);
2749   } else {
2750     lea(rscratch1, src1);
2751     cmpb(Address(rscratch1, 0), imm);
2752   }
2753 }
2754 
2755 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2756 #ifdef _LP64
2757   if (src2.is_lval()) {
2758     movptr(rscratch1, src2);
2759     Assembler::cmpq(src1, rscratch1);
2760   } else if (reachable(src2)) {
2761     cmpq(src1, as_Address(src2));
2762   } else {
2763     lea(rscratch1, src2);
2764     Assembler::cmpq(src1, Address(rscratch1, 0));
2765   }
2766 #else
2767   if (src2.is_lval()) {
2768     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2769   } else {
2770     cmpl(src1, as_Address(src2));
2771   }
2772 #endif // _LP64
2773 }
2774 
2775 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2776   assert(src2.is_lval(), "not a mem-mem compare");
2777 #ifdef _LP64
2778   // moves src2's literal address
2779   movptr(rscratch1, src2);
2780   Assembler::cmpq(src1, rscratch1);
2781 #else
2782   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2783 #endif // _LP64
2784 }
2785 
2786 void MacroAssembler::cmpoop(Register src1, Register src2) {
2787   cmpptr(src1, src2);
2788 }
2789 
2790 void MacroAssembler::cmpoop(Register src1, Address src2) {
2791   cmpptr(src1, src2);
2792 }
2793 
2794 #ifdef _LP64
2795 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2796   movoop(rscratch1, src2);
2797   cmpptr(src1, rscratch1);
2798 }
2799 #endif
2800 
2801 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2802   if (reachable(adr)) {
2803     if (os::is_MP())
2804       lock();
2805     cmpxchgptr(reg, as_Address(adr));
2806   } else {
2807     lea(rscratch1, adr);
2808     if (os::is_MP())
2809       lock();
2810     cmpxchgptr(reg, Address(rscratch1, 0));
2811   }
2812 }
2813 
2814 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2815   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2816 }
2817 
2818 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2819   if (reachable(src)) {
2820     Assembler::comisd(dst, as_Address(src));
2821   } else {
2822     lea(rscratch1, src);
2823     Assembler::comisd(dst, Address(rscratch1, 0));
2824   }
2825 }
2826 
2827 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2828   if (reachable(src)) {
2829     Assembler::comiss(dst, as_Address(src));
2830   } else {
2831     lea(rscratch1, src);
2832     Assembler::comiss(dst, Address(rscratch1, 0));
2833   }
2834 }
2835 
2836 
2837 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2838   Condition negated_cond = negate_condition(cond);
2839   Label L;
2840   jcc(negated_cond, L);
2841   pushf(); // Preserve flags
2842   atomic_incl(counter_addr);
2843   popf();
2844   bind(L);
2845 }
2846 
2847 int MacroAssembler::corrected_idivl(Register reg) {
2848   // Full implementation of Java idiv and irem; checks for
2849   // special case as described in JVM spec., p.243 & p.271.
2850   // The function returns the (pc) offset of the idivl
2851   // instruction - may be needed for implicit exceptions.
2852   //
2853   //         normal case                           special case
2854   //
2855   // input : rax,: dividend                         min_int
2856   //         reg: divisor   (may not be rax,/rdx)   -1
2857   //
2858   // output: rax,: quotient  (= rax, idiv reg)       min_int
2859   //         rdx: remainder (= rax, irem reg)       0
2860   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2861   const int min_int = 0x80000000;
2862   Label normal_case, special_case;
2863 
2864   // check for special case
2865   cmpl(rax, min_int);
2866   jcc(Assembler::notEqual, normal_case);
2867   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2868   cmpl(reg, -1);
2869   jcc(Assembler::equal, special_case);
2870 
2871   // handle normal case
2872   bind(normal_case);
2873   cdql();
2874   int idivl_offset = offset();
2875   idivl(reg);
2876 
2877   // normal and special case exit
2878   bind(special_case);
2879 
2880   return idivl_offset;
2881 }
2882 
2883 
2884 
2885 void MacroAssembler::decrementl(Register reg, int value) {
2886   if (value == min_jint) {subl(reg, value) ; return; }
2887   if (value <  0) { incrementl(reg, -value); return; }
2888   if (value == 0) {                        ; return; }
2889   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2890   /* else */      { subl(reg, value)       ; return; }
2891 }
2892 
2893 void MacroAssembler::decrementl(Address dst, int value) {
2894   if (value == min_jint) {subl(dst, value) ; return; }
2895   if (value <  0) { incrementl(dst, -value); return; }
2896   if (value == 0) {                        ; return; }
2897   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2898   /* else */      { subl(dst, value)       ; return; }
2899 }
2900 
2901 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2902   assert (shift_value > 0, "illegal shift value");
2903   Label _is_positive;
2904   testl (reg, reg);
2905   jcc (Assembler::positive, _is_positive);
2906   int offset = (1 << shift_value) - 1 ;
2907 
2908   if (offset == 1) {
2909     incrementl(reg);
2910   } else {
2911     addl(reg, offset);
2912   }
2913 
2914   bind (_is_positive);
2915   sarl(reg, shift_value);
2916 }
2917 
2918 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2919   if (reachable(src)) {
2920     Assembler::divsd(dst, as_Address(src));
2921   } else {
2922     lea(rscratch1, src);
2923     Assembler::divsd(dst, Address(rscratch1, 0));
2924   }
2925 }
2926 
2927 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2928   if (reachable(src)) {
2929     Assembler::divss(dst, as_Address(src));
2930   } else {
2931     lea(rscratch1, src);
2932     Assembler::divss(dst, Address(rscratch1, 0));
2933   }
2934 }
2935 
2936 // !defined(COMPILER2) is because of stupid core builds
2937 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2938 void MacroAssembler::empty_FPU_stack() {
2939   if (VM_Version::supports_mmx()) {
2940     emms();
2941   } else {
2942     for (int i = 8; i-- > 0; ) ffree(i);
2943   }
2944 }
2945 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2946 
2947 
2948 // Defines obj, preserves var_size_in_bytes
2949 void MacroAssembler::eden_allocate(Register obj,
2950                                    Register var_size_in_bytes,
2951                                    int con_size_in_bytes,
2952                                    Register t1,
2953                                    Label& slow_case) {
2954   assert(obj == rax, "obj must be in rax, for cmpxchg");
2955   assert_different_registers(obj, var_size_in_bytes, t1);
2956   if (!Universe::heap()->supports_inline_contig_alloc()) {
2957     jmp(slow_case);
2958   } else {
2959     Register end = t1;
2960     Label retry;
2961     bind(retry);
2962     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2963     movptr(obj, heap_top);
2964     if (var_size_in_bytes == noreg) {
2965       lea(end, Address(obj, con_size_in_bytes));
2966     } else {
2967       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2968     }
2969     // if end < obj then we wrapped around => object too long => slow case
2970     cmpptr(end, obj);
2971     jcc(Assembler::below, slow_case);
2972     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2973     jcc(Assembler::above, slow_case);
2974     // Compare obj with the top addr, and if still equal, store the new top addr in
2975     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2976     // it otherwise. Use lock prefix for atomicity on MPs.
2977     locked_cmpxchgptr(end, heap_top);
2978     jcc(Assembler::notEqual, retry);
2979   }
2980 }
2981 
2982 void MacroAssembler::enter() {
2983   push(rbp);
2984   mov(rbp, rsp);
2985 }
2986 
2987 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2988 void MacroAssembler::fat_nop() {
2989   if (UseAddressNop) {
2990     addr_nop_5();
2991   } else {
2992     emit_int8(0x26); // es:
2993     emit_int8(0x2e); // cs:
2994     emit_int8(0x64); // fs:
2995     emit_int8(0x65); // gs:
2996     emit_int8((unsigned char)0x90);
2997   }
2998 }
2999 
3000 void MacroAssembler::fcmp(Register tmp) {
3001   fcmp(tmp, 1, true, true);
3002 }
3003 
3004 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
3005   assert(!pop_right || pop_left, "usage error");
3006   if (VM_Version::supports_cmov()) {
3007     assert(tmp == noreg, "unneeded temp");
3008     if (pop_left) {
3009       fucomip(index);
3010     } else {
3011       fucomi(index);
3012     }
3013     if (pop_right) {
3014       fpop();
3015     }
3016   } else {
3017     assert(tmp != noreg, "need temp");
3018     if (pop_left) {
3019       if (pop_right) {
3020         fcompp();
3021       } else {
3022         fcomp(index);
3023       }
3024     } else {
3025       fcom(index);
3026     }
3027     // convert FPU condition into eflags condition via rax,
3028     save_rax(tmp);
3029     fwait(); fnstsw_ax();
3030     sahf();
3031     restore_rax(tmp);
3032   }
3033   // condition codes set as follows:
3034   //
3035   // CF (corresponds to C0) if x < y
3036   // PF (corresponds to C2) if unordered
3037   // ZF (corresponds to C3) if x = y
3038 }
3039 
3040 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3041   fcmp2int(dst, unordered_is_less, 1, true, true);
3042 }
3043 
3044 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3045   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3046   Label L;
3047   if (unordered_is_less) {
3048     movl(dst, -1);
3049     jcc(Assembler::parity, L);
3050     jcc(Assembler::below , L);
3051     movl(dst, 0);
3052     jcc(Assembler::equal , L);
3053     increment(dst);
3054   } else { // unordered is greater
3055     movl(dst, 1);
3056     jcc(Assembler::parity, L);
3057     jcc(Assembler::above , L);
3058     movl(dst, 0);
3059     jcc(Assembler::equal , L);
3060     decrementl(dst);
3061   }
3062   bind(L);
3063 }
3064 
3065 void MacroAssembler::fld_d(AddressLiteral src) {
3066   fld_d(as_Address(src));
3067 }
3068 
3069 void MacroAssembler::fld_s(AddressLiteral src) {
3070   fld_s(as_Address(src));
3071 }
3072 
3073 void MacroAssembler::fld_x(AddressLiteral src) {
3074   Assembler::fld_x(as_Address(src));
3075 }
3076 
3077 void MacroAssembler::fldcw(AddressLiteral src) {
3078   Assembler::fldcw(as_Address(src));
3079 }
3080 
3081 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3082   if (reachable(src)) {
3083     Assembler::mulpd(dst, as_Address(src));
3084   } else {
3085     lea(rscratch1, src);
3086     Assembler::mulpd(dst, Address(rscratch1, 0));
3087   }
3088 }
3089 
3090 void MacroAssembler::increase_precision() {
3091   subptr(rsp, BytesPerWord);
3092   fnstcw(Address(rsp, 0));
3093   movl(rax, Address(rsp, 0));
3094   orl(rax, 0x300);
3095   push(rax);
3096   fldcw(Address(rsp, 0));
3097   pop(rax);
3098 }
3099 
3100 void MacroAssembler::restore_precision() {
3101   fldcw(Address(rsp, 0));
3102   addptr(rsp, BytesPerWord);
3103 }
3104 
3105 void MacroAssembler::fpop() {
3106   ffree();
3107   fincstp();
3108 }
3109 
3110 void MacroAssembler::load_float(Address src) {
3111   if (UseSSE >= 1) {
3112     movflt(xmm0, src);
3113   } else {
3114     LP64_ONLY(ShouldNotReachHere());
3115     NOT_LP64(fld_s(src));
3116   }
3117 }
3118 
3119 void MacroAssembler::store_float(Address dst) {
3120   if (UseSSE >= 1) {
3121     movflt(dst, xmm0);
3122   } else {
3123     LP64_ONLY(ShouldNotReachHere());
3124     NOT_LP64(fstp_s(dst));
3125   }
3126 }
3127 
3128 void MacroAssembler::load_double(Address src) {
3129   if (UseSSE >= 2) {
3130     movdbl(xmm0, src);
3131   } else {
3132     LP64_ONLY(ShouldNotReachHere());
3133     NOT_LP64(fld_d(src));
3134   }
3135 }
3136 
3137 void MacroAssembler::store_double(Address dst) {
3138   if (UseSSE >= 2) {
3139     movdbl(dst, xmm0);
3140   } else {
3141     LP64_ONLY(ShouldNotReachHere());
3142     NOT_LP64(fstp_d(dst));
3143   }
3144 }
3145 
3146 void MacroAssembler::fremr(Register tmp) {
3147   save_rax(tmp);
3148   { Label L;
3149     bind(L);
3150     fprem();
3151     fwait(); fnstsw_ax();
3152 #ifdef _LP64
3153     testl(rax, 0x400);
3154     jcc(Assembler::notEqual, L);
3155 #else
3156     sahf();
3157     jcc(Assembler::parity, L);
3158 #endif // _LP64
3159   }
3160   restore_rax(tmp);
3161   // Result is in ST0.
3162   // Note: fxch & fpop to get rid of ST1
3163   // (otherwise FPU stack could overflow eventually)
3164   fxch(1);
3165   fpop();
3166 }
3167 
3168 // dst = c = a * b + c
3169 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3170   Assembler::vfmadd231sd(c, a, b);
3171   if (dst != c) {
3172     movdbl(dst, c);
3173   }
3174 }
3175 
3176 // dst = c = a * b + c
3177 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3178   Assembler::vfmadd231ss(c, a, b);
3179   if (dst != c) {
3180     movflt(dst, c);
3181   }
3182 }
3183 
3184 // dst = c = a * b + c
3185 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3186   Assembler::vfmadd231pd(c, a, b, vector_len);
3187   if (dst != c) {
3188     vmovdqu(dst, c);
3189   }
3190 }
3191 
3192 // dst = c = a * b + c
3193 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3194   Assembler::vfmadd231ps(c, a, b, vector_len);
3195   if (dst != c) {
3196     vmovdqu(dst, c);
3197   }
3198 }
3199 
3200 // dst = c = a * b + c
3201 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3202   Assembler::vfmadd231pd(c, a, b, vector_len);
3203   if (dst != c) {
3204     vmovdqu(dst, c);
3205   }
3206 }
3207 
3208 // dst = c = a * b + c
3209 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3210   Assembler::vfmadd231ps(c, a, b, vector_len);
3211   if (dst != c) {
3212     vmovdqu(dst, c);
3213   }
3214 }
3215 
3216 void MacroAssembler::incrementl(AddressLiteral dst) {
3217   if (reachable(dst)) {
3218     incrementl(as_Address(dst));
3219   } else {
3220     lea(rscratch1, dst);
3221     incrementl(Address(rscratch1, 0));
3222   }
3223 }
3224 
3225 void MacroAssembler::incrementl(ArrayAddress dst) {
3226   incrementl(as_Address(dst));
3227 }
3228 
3229 void MacroAssembler::incrementl(Register reg, int value) {
3230   if (value == min_jint) {addl(reg, value) ; return; }
3231   if (value <  0) { decrementl(reg, -value); return; }
3232   if (value == 0) {                        ; return; }
3233   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3234   /* else */      { addl(reg, value)       ; return; }
3235 }
3236 
3237 void MacroAssembler::incrementl(Address dst, int value) {
3238   if (value == min_jint) {addl(dst, value) ; return; }
3239   if (value <  0) { decrementl(dst, -value); return; }
3240   if (value == 0) {                        ; return; }
3241   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3242   /* else */      { addl(dst, value)       ; return; }
3243 }
3244 
3245 void MacroAssembler::jump(AddressLiteral dst) {
3246   if (reachable(dst)) {
3247     jmp_literal(dst.target(), dst.rspec());
3248   } else {
3249     lea(rscratch1, dst);
3250     jmp(rscratch1);
3251   }
3252 }
3253 
3254 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3255   if (reachable(dst)) {
3256     InstructionMark im(this);
3257     relocate(dst.reloc());
3258     const int short_size = 2;
3259     const int long_size = 6;
3260     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3261     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3262       // 0111 tttn #8-bit disp
3263       emit_int8(0x70 | cc);
3264       emit_int8((offs - short_size) & 0xFF);
3265     } else {
3266       // 0000 1111 1000 tttn #32-bit disp
3267       emit_int8(0x0F);
3268       emit_int8((unsigned char)(0x80 | cc));
3269       emit_int32(offs - long_size);
3270     }
3271   } else {
3272 #ifdef ASSERT
3273     warning("reversing conditional branch");
3274 #endif /* ASSERT */
3275     Label skip;
3276     jccb(reverse[cc], skip);
3277     lea(rscratch1, dst);
3278     Assembler::jmp(rscratch1);
3279     bind(skip);
3280   }
3281 }
3282 
3283 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3284   if (reachable(src)) {
3285     Assembler::ldmxcsr(as_Address(src));
3286   } else {
3287     lea(rscratch1, src);
3288     Assembler::ldmxcsr(Address(rscratch1, 0));
3289   }
3290 }
3291 
3292 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3293   int off;
3294   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3295     off = offset();
3296     movsbl(dst, src); // movsxb
3297   } else {
3298     off = load_unsigned_byte(dst, src);
3299     shll(dst, 24);
3300     sarl(dst, 24);
3301   }
3302   return off;
3303 }
3304 
3305 // Note: load_signed_short used to be called load_signed_word.
3306 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3307 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3308 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3309 int MacroAssembler::load_signed_short(Register dst, Address src) {
3310   int off;
3311   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3312     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3313     // version but this is what 64bit has always done. This seems to imply
3314     // that users are only using 32bits worth.
3315     off = offset();
3316     movswl(dst, src); // movsxw
3317   } else {
3318     off = load_unsigned_short(dst, src);
3319     shll(dst, 16);
3320     sarl(dst, 16);
3321   }
3322   return off;
3323 }
3324 
3325 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3326   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3327   // and "3.9 Partial Register Penalties", p. 22).
3328   int off;
3329   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3330     off = offset();
3331     movzbl(dst, src); // movzxb
3332   } else {
3333     xorl(dst, dst);
3334     off = offset();
3335     movb(dst, src);
3336   }
3337   return off;
3338 }
3339 
3340 // Note: load_unsigned_short used to be called load_unsigned_word.
3341 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3342   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3343   // and "3.9 Partial Register Penalties", p. 22).
3344   int off;
3345   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3346     off = offset();
3347     movzwl(dst, src); // movzxw
3348   } else {
3349     xorl(dst, dst);
3350     off = offset();
3351     movw(dst, src);
3352   }
3353   return off;
3354 }
3355 
3356 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3357   switch (size_in_bytes) {
3358 #ifndef _LP64
3359   case  8:
3360     assert(dst2 != noreg, "second dest register required");
3361     movl(dst,  src);
3362     movl(dst2, src.plus_disp(BytesPerInt));
3363     break;
3364 #else
3365   case  8:  movq(dst, src); break;
3366 #endif
3367   case  4:  movl(dst, src); break;
3368   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3369   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3370   default:  ShouldNotReachHere();
3371   }
3372 }
3373 
3374 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3375   switch (size_in_bytes) {
3376 #ifndef _LP64
3377   case  8:
3378     assert(src2 != noreg, "second source register required");
3379     movl(dst,                        src);
3380     movl(dst.plus_disp(BytesPerInt), src2);
3381     break;
3382 #else
3383   case  8:  movq(dst, src); break;
3384 #endif
3385   case  4:  movl(dst, src); break;
3386   case  2:  movw(dst, src); break;
3387   case  1:  movb(dst, src); break;
3388   default:  ShouldNotReachHere();
3389   }
3390 }
3391 
3392 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3393   if (reachable(dst)) {
3394     movl(as_Address(dst), src);
3395   } else {
3396     lea(rscratch1, dst);
3397     movl(Address(rscratch1, 0), src);
3398   }
3399 }
3400 
3401 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3402   if (reachable(src)) {
3403     movl(dst, as_Address(src));
3404   } else {
3405     lea(rscratch1, src);
3406     movl(dst, Address(rscratch1, 0));
3407   }
3408 }
3409 
3410 // C++ bool manipulation
3411 
3412 void MacroAssembler::movbool(Register dst, Address src) {
3413   if(sizeof(bool) == 1)
3414     movb(dst, src);
3415   else if(sizeof(bool) == 2)
3416     movw(dst, src);
3417   else if(sizeof(bool) == 4)
3418     movl(dst, src);
3419   else
3420     // unsupported
3421     ShouldNotReachHere();
3422 }
3423 
3424 void MacroAssembler::movbool(Address dst, bool boolconst) {
3425   if(sizeof(bool) == 1)
3426     movb(dst, (int) boolconst);
3427   else if(sizeof(bool) == 2)
3428     movw(dst, (int) boolconst);
3429   else if(sizeof(bool) == 4)
3430     movl(dst, (int) boolconst);
3431   else
3432     // unsupported
3433     ShouldNotReachHere();
3434 }
3435 
3436 void MacroAssembler::movbool(Address dst, Register src) {
3437   if(sizeof(bool) == 1)
3438     movb(dst, src);
3439   else if(sizeof(bool) == 2)
3440     movw(dst, src);
3441   else if(sizeof(bool) == 4)
3442     movl(dst, src);
3443   else
3444     // unsupported
3445     ShouldNotReachHere();
3446 }
3447 
3448 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3449   movb(as_Address(dst), src);
3450 }
3451 
3452 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3453   if (reachable(src)) {
3454     movdl(dst, as_Address(src));
3455   } else {
3456     lea(rscratch1, src);
3457     movdl(dst, Address(rscratch1, 0));
3458   }
3459 }
3460 
3461 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3462   if (reachable(src)) {
3463     movq(dst, as_Address(src));
3464   } else {
3465     lea(rscratch1, src);
3466     movq(dst, Address(rscratch1, 0));
3467   }
3468 }
3469 
3470 void MacroAssembler::setvectmask(Register dst, Register src) {
3471   Assembler::movl(dst, 1);
3472   Assembler::shlxl(dst, dst, src);
3473   Assembler::decl(dst);
3474   Assembler::kmovdl(k1, dst);
3475   Assembler::movl(dst, src);
3476 }
3477 
3478 void MacroAssembler::restorevectmask() {
3479   Assembler::knotwl(k1, k0);
3480 }
3481 
3482 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3483   if (reachable(src)) {
3484     if (UseXmmLoadAndClearUpper) {
3485       movsd (dst, as_Address(src));
3486     } else {
3487       movlpd(dst, as_Address(src));
3488     }
3489   } else {
3490     lea(rscratch1, src);
3491     if (UseXmmLoadAndClearUpper) {
3492       movsd (dst, Address(rscratch1, 0));
3493     } else {
3494       movlpd(dst, Address(rscratch1, 0));
3495     }
3496   }
3497 }
3498 
3499 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3500   if (reachable(src)) {
3501     movss(dst, as_Address(src));
3502   } else {
3503     lea(rscratch1, src);
3504     movss(dst, Address(rscratch1, 0));
3505   }
3506 }
3507 
3508 void MacroAssembler::movptr(Register dst, Register src) {
3509   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3510 }
3511 
3512 void MacroAssembler::movptr(Register dst, Address src) {
3513   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3514 }
3515 
3516 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3517 void MacroAssembler::movptr(Register dst, intptr_t src) {
3518   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3519 }
3520 
3521 void MacroAssembler::movptr(Address dst, Register src) {
3522   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3523 }
3524 
3525 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3526   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3527     Assembler::vextractf32x4(dst, src, 0);
3528   } else {
3529     Assembler::movdqu(dst, src);
3530   }
3531 }
3532 
3533 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3534   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3535     Assembler::vinsertf32x4(dst, dst, src, 0);
3536   } else {
3537     Assembler::movdqu(dst, src);
3538   }
3539 }
3540 
3541 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3542   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3543     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3544   } else {
3545     Assembler::movdqu(dst, src);
3546   }
3547 }
3548 
3549 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3550   if (reachable(src)) {
3551     movdqu(dst, as_Address(src));
3552   } else {
3553     lea(scratchReg, src);
3554     movdqu(dst, Address(scratchReg, 0));
3555   }
3556 }
3557 
3558 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3559   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3560     vextractf64x4_low(dst, src);
3561   } else {
3562     Assembler::vmovdqu(dst, src);
3563   }
3564 }
3565 
3566 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3567   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3568     vinsertf64x4_low(dst, src);
3569   } else {
3570     Assembler::vmovdqu(dst, src);
3571   }
3572 }
3573 
3574 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3575   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3576     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3577   }
3578   else {
3579     Assembler::vmovdqu(dst, src);
3580   }
3581 }
3582 
3583 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3584   if (reachable(src)) {
3585     vmovdqu(dst, as_Address(src));
3586   }
3587   else {
3588     lea(rscratch1, src);
3589     vmovdqu(dst, Address(rscratch1, 0));
3590   }
3591 }
3592 
3593 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3594   if (reachable(src)) {
3595     Assembler::movdqa(dst, as_Address(src));
3596   } else {
3597     lea(rscratch1, src);
3598     Assembler::movdqa(dst, Address(rscratch1, 0));
3599   }
3600 }
3601 
3602 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3603   if (reachable(src)) {
3604     Assembler::movsd(dst, as_Address(src));
3605   } else {
3606     lea(rscratch1, src);
3607     Assembler::movsd(dst, Address(rscratch1, 0));
3608   }
3609 }
3610 
3611 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3612   if (reachable(src)) {
3613     Assembler::movss(dst, as_Address(src));
3614   } else {
3615     lea(rscratch1, src);
3616     Assembler::movss(dst, Address(rscratch1, 0));
3617   }
3618 }
3619 
3620 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3621   if (reachable(src)) {
3622     Assembler::mulsd(dst, as_Address(src));
3623   } else {
3624     lea(rscratch1, src);
3625     Assembler::mulsd(dst, Address(rscratch1, 0));
3626   }
3627 }
3628 
3629 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3630   if (reachable(src)) {
3631     Assembler::mulss(dst, as_Address(src));
3632   } else {
3633     lea(rscratch1, src);
3634     Assembler::mulss(dst, Address(rscratch1, 0));
3635   }
3636 }
3637 
3638 void MacroAssembler::null_check(Register reg, int offset) {
3639   if (needs_explicit_null_check(offset)) {
3640     // provoke OS NULL exception if reg = NULL by
3641     // accessing M[reg] w/o changing any (non-CC) registers
3642     // NOTE: cmpl is plenty here to provoke a segv
3643     cmpptr(rax, Address(reg, 0));
3644     // Note: should probably use testl(rax, Address(reg, 0));
3645     //       may be shorter code (however, this version of
3646     //       testl needs to be implemented first)
3647   } else {
3648     // nothing to do, (later) access of M[reg + offset]
3649     // will provoke OS NULL exception if reg = NULL
3650   }
3651 }
3652 
3653 void MacroAssembler::os_breakpoint() {
3654   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3655   // (e.g., MSVC can't call ps() otherwise)
3656   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3657 }
3658 
3659 void MacroAssembler::unimplemented(const char* what) {
3660   char* b = new char[1024];
3661   jio_snprintf(b, 1024, "unimplemented: %s", what);
3662   stop(b);
3663 }
3664 
3665 #ifdef _LP64
3666 #define XSTATE_BV 0x200
3667 #endif
3668 
3669 void MacroAssembler::pop_CPU_state() {
3670   pop_FPU_state();
3671   pop_IU_state();
3672 }
3673 
3674 void MacroAssembler::pop_FPU_state() {
3675 #ifndef _LP64
3676   frstor(Address(rsp, 0));
3677 #else
3678   fxrstor(Address(rsp, 0));
3679 #endif
3680   addptr(rsp, FPUStateSizeInWords * wordSize);
3681 }
3682 
3683 void MacroAssembler::pop_IU_state() {
3684   popa();
3685   LP64_ONLY(addq(rsp, 8));
3686   popf();
3687 }
3688 
3689 // Save Integer and Float state
3690 // Warning: Stack must be 16 byte aligned (64bit)
3691 void MacroAssembler::push_CPU_state() {
3692   push_IU_state();
3693   push_FPU_state();
3694 }
3695 
3696 void MacroAssembler::push_FPU_state() {
3697   subptr(rsp, FPUStateSizeInWords * wordSize);
3698 #ifndef _LP64
3699   fnsave(Address(rsp, 0));
3700   fwait();
3701 #else
3702   fxsave(Address(rsp, 0));
3703 #endif // LP64
3704 }
3705 
3706 void MacroAssembler::push_IU_state() {
3707   // Push flags first because pusha kills them
3708   pushf();
3709   // Make sure rsp stays 16-byte aligned
3710   LP64_ONLY(subq(rsp, 8));
3711   pusha();
3712 }
3713 
3714 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3715   if (!java_thread->is_valid()) {
3716     java_thread = rdi;
3717     get_thread(java_thread);
3718   }
3719   // we must set sp to zero to clear frame
3720   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3721   if (clear_fp) {
3722     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3723   }
3724 
3725   // Always clear the pc because it could have been set by make_walkable()
3726   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3727 
3728   vzeroupper();
3729 }
3730 
3731 void MacroAssembler::restore_rax(Register tmp) {
3732   if (tmp == noreg) pop(rax);
3733   else if (tmp != rax) mov(rax, tmp);
3734 }
3735 
3736 void MacroAssembler::round_to(Register reg, int modulus) {
3737   addptr(reg, modulus - 1);
3738   andptr(reg, -modulus);
3739 }
3740 
3741 void MacroAssembler::save_rax(Register tmp) {
3742   if (tmp == noreg) push(rax);
3743   else if (tmp != rax) mov(tmp, rax);
3744 }
3745 
3746 // Write serialization page so VM thread can do a pseudo remote membar.
3747 // We use the current thread pointer to calculate a thread specific
3748 // offset to write to within the page. This minimizes bus traffic
3749 // due to cache line collision.
3750 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3751   movl(tmp, thread);
3752   shrl(tmp, os::get_serialize_page_shift_count());
3753   andl(tmp, (os::vm_page_size() - sizeof(int)));
3754 
3755   Address index(noreg, tmp, Address::times_1);
3756   ExternalAddress page(os::get_memory_serialize_page());
3757 
3758   // Size of store must match masking code above
3759   movl(as_Address(ArrayAddress(page, index)), tmp);
3760 }
3761 
3762 // Calls to C land
3763 //
3764 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3765 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3766 // has to be reset to 0. This is required to allow proper stack traversal.
3767 void MacroAssembler::set_last_Java_frame(Register java_thread,
3768                                          Register last_java_sp,
3769                                          Register last_java_fp,
3770                                          address  last_java_pc) {
3771   vzeroupper();
3772   // determine java_thread register
3773   if (!java_thread->is_valid()) {
3774     java_thread = rdi;
3775     get_thread(java_thread);
3776   }
3777   // determine last_java_sp register
3778   if (!last_java_sp->is_valid()) {
3779     last_java_sp = rsp;
3780   }
3781 
3782   // last_java_fp is optional
3783 
3784   if (last_java_fp->is_valid()) {
3785     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3786   }
3787 
3788   // last_java_pc is optional
3789 
3790   if (last_java_pc != NULL) {
3791     lea(Address(java_thread,
3792                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3793         InternalAddress(last_java_pc));
3794 
3795   }
3796   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3797 }
3798 
3799 void MacroAssembler::shlptr(Register dst, int imm8) {
3800   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3801 }
3802 
3803 void MacroAssembler::shrptr(Register dst, int imm8) {
3804   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3805 }
3806 
3807 void MacroAssembler::sign_extend_byte(Register reg) {
3808   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3809     movsbl(reg, reg); // movsxb
3810   } else {
3811     shll(reg, 24);
3812     sarl(reg, 24);
3813   }
3814 }
3815 
3816 void MacroAssembler::sign_extend_short(Register reg) {
3817   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3818     movswl(reg, reg); // movsxw
3819   } else {
3820     shll(reg, 16);
3821     sarl(reg, 16);
3822   }
3823 }
3824 
3825 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3826   assert(reachable(src), "Address should be reachable");
3827   testl(dst, as_Address(src));
3828 }
3829 
3830 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3831   int dst_enc = dst->encoding();
3832   int src_enc = src->encoding();
3833   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3834     Assembler::pcmpeqb(dst, src);
3835   } else if ((dst_enc < 16) && (src_enc < 16)) {
3836     Assembler::pcmpeqb(dst, src);
3837   } else if (src_enc < 16) {
3838     subptr(rsp, 64);
3839     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3840     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3841     Assembler::pcmpeqb(xmm0, src);
3842     movdqu(dst, xmm0);
3843     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3844     addptr(rsp, 64);
3845   } else if (dst_enc < 16) {
3846     subptr(rsp, 64);
3847     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3848     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3849     Assembler::pcmpeqb(dst, xmm0);
3850     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3851     addptr(rsp, 64);
3852   } else {
3853     subptr(rsp, 64);
3854     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3855     subptr(rsp, 64);
3856     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3857     movdqu(xmm0, src);
3858     movdqu(xmm1, dst);
3859     Assembler::pcmpeqb(xmm1, xmm0);
3860     movdqu(dst, xmm1);
3861     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3862     addptr(rsp, 64);
3863     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3864     addptr(rsp, 64);
3865   }
3866 }
3867 
3868 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3869   int dst_enc = dst->encoding();
3870   int src_enc = src->encoding();
3871   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3872     Assembler::pcmpeqw(dst, src);
3873   } else if ((dst_enc < 16) && (src_enc < 16)) {
3874     Assembler::pcmpeqw(dst, src);
3875   } else if (src_enc < 16) {
3876     subptr(rsp, 64);
3877     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3878     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3879     Assembler::pcmpeqw(xmm0, src);
3880     movdqu(dst, xmm0);
3881     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3882     addptr(rsp, 64);
3883   } else if (dst_enc < 16) {
3884     subptr(rsp, 64);
3885     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3886     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3887     Assembler::pcmpeqw(dst, xmm0);
3888     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3889     addptr(rsp, 64);
3890   } else {
3891     subptr(rsp, 64);
3892     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3893     subptr(rsp, 64);
3894     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3895     movdqu(xmm0, src);
3896     movdqu(xmm1, dst);
3897     Assembler::pcmpeqw(xmm1, xmm0);
3898     movdqu(dst, xmm1);
3899     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3900     addptr(rsp, 64);
3901     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3902     addptr(rsp, 64);
3903   }
3904 }
3905 
3906 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3907   int dst_enc = dst->encoding();
3908   if (dst_enc < 16) {
3909     Assembler::pcmpestri(dst, src, imm8);
3910   } else {
3911     subptr(rsp, 64);
3912     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3913     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3914     Assembler::pcmpestri(xmm0, src, imm8);
3915     movdqu(dst, xmm0);
3916     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3917     addptr(rsp, 64);
3918   }
3919 }
3920 
3921 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3922   int dst_enc = dst->encoding();
3923   int src_enc = src->encoding();
3924   if ((dst_enc < 16) && (src_enc < 16)) {
3925     Assembler::pcmpestri(dst, src, imm8);
3926   } else if (src_enc < 16) {
3927     subptr(rsp, 64);
3928     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3929     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3930     Assembler::pcmpestri(xmm0, src, imm8);
3931     movdqu(dst, xmm0);
3932     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3933     addptr(rsp, 64);
3934   } else if (dst_enc < 16) {
3935     subptr(rsp, 64);
3936     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3937     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3938     Assembler::pcmpestri(dst, xmm0, imm8);
3939     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3940     addptr(rsp, 64);
3941   } else {
3942     subptr(rsp, 64);
3943     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3944     subptr(rsp, 64);
3945     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3946     movdqu(xmm0, src);
3947     movdqu(xmm1, dst);
3948     Assembler::pcmpestri(xmm1, xmm0, imm8);
3949     movdqu(dst, xmm1);
3950     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3951     addptr(rsp, 64);
3952     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3953     addptr(rsp, 64);
3954   }
3955 }
3956 
3957 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3958   int dst_enc = dst->encoding();
3959   int src_enc = src->encoding();
3960   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3961     Assembler::pmovzxbw(dst, src);
3962   } else if ((dst_enc < 16) && (src_enc < 16)) {
3963     Assembler::pmovzxbw(dst, src);
3964   } else if (src_enc < 16) {
3965     subptr(rsp, 64);
3966     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3967     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3968     Assembler::pmovzxbw(xmm0, src);
3969     movdqu(dst, xmm0);
3970     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3971     addptr(rsp, 64);
3972   } else if (dst_enc < 16) {
3973     subptr(rsp, 64);
3974     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3975     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3976     Assembler::pmovzxbw(dst, xmm0);
3977     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3978     addptr(rsp, 64);
3979   } else {
3980     subptr(rsp, 64);
3981     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3982     subptr(rsp, 64);
3983     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3984     movdqu(xmm0, src);
3985     movdqu(xmm1, dst);
3986     Assembler::pmovzxbw(xmm1, xmm0);
3987     movdqu(dst, xmm1);
3988     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3989     addptr(rsp, 64);
3990     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3991     addptr(rsp, 64);
3992   }
3993 }
3994 
3995 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3996   int dst_enc = dst->encoding();
3997   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3998     Assembler::pmovzxbw(dst, src);
3999   } else if (dst_enc < 16) {
4000     Assembler::pmovzxbw(dst, src);
4001   } else {
4002     subptr(rsp, 64);
4003     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4004     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4005     Assembler::pmovzxbw(xmm0, src);
4006     movdqu(dst, xmm0);
4007     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4008     addptr(rsp, 64);
4009   }
4010 }
4011 
4012 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
4013   int src_enc = src->encoding();
4014   if (src_enc < 16) {
4015     Assembler::pmovmskb(dst, src);
4016   } else {
4017     subptr(rsp, 64);
4018     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4019     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4020     Assembler::pmovmskb(dst, xmm0);
4021     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4022     addptr(rsp, 64);
4023   }
4024 }
4025 
4026 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
4027   int dst_enc = dst->encoding();
4028   int src_enc = src->encoding();
4029   if ((dst_enc < 16) && (src_enc < 16)) {
4030     Assembler::ptest(dst, src);
4031   } else if (src_enc < 16) {
4032     subptr(rsp, 64);
4033     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4034     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4035     Assembler::ptest(xmm0, src);
4036     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4037     addptr(rsp, 64);
4038   } else if (dst_enc < 16) {
4039     subptr(rsp, 64);
4040     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4041     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4042     Assembler::ptest(dst, xmm0);
4043     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4044     addptr(rsp, 64);
4045   } else {
4046     subptr(rsp, 64);
4047     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4048     subptr(rsp, 64);
4049     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4050     movdqu(xmm0, src);
4051     movdqu(xmm1, dst);
4052     Assembler::ptest(xmm1, xmm0);
4053     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4054     addptr(rsp, 64);
4055     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4056     addptr(rsp, 64);
4057   }
4058 }
4059 
4060 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
4061   if (reachable(src)) {
4062     Assembler::sqrtsd(dst, as_Address(src));
4063   } else {
4064     lea(rscratch1, src);
4065     Assembler::sqrtsd(dst, Address(rscratch1, 0));
4066   }
4067 }
4068 
4069 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
4070   if (reachable(src)) {
4071     Assembler::sqrtss(dst, as_Address(src));
4072   } else {
4073     lea(rscratch1, src);
4074     Assembler::sqrtss(dst, Address(rscratch1, 0));
4075   }
4076 }
4077 
4078 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
4079   if (reachable(src)) {
4080     Assembler::subsd(dst, as_Address(src));
4081   } else {
4082     lea(rscratch1, src);
4083     Assembler::subsd(dst, Address(rscratch1, 0));
4084   }
4085 }
4086 
4087 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4088   if (reachable(src)) {
4089     Assembler::subss(dst, as_Address(src));
4090   } else {
4091     lea(rscratch1, src);
4092     Assembler::subss(dst, Address(rscratch1, 0));
4093   }
4094 }
4095 
4096 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4097   if (reachable(src)) {
4098     Assembler::ucomisd(dst, as_Address(src));
4099   } else {
4100     lea(rscratch1, src);
4101     Assembler::ucomisd(dst, Address(rscratch1, 0));
4102   }
4103 }
4104 
4105 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4106   if (reachable(src)) {
4107     Assembler::ucomiss(dst, as_Address(src));
4108   } else {
4109     lea(rscratch1, src);
4110     Assembler::ucomiss(dst, Address(rscratch1, 0));
4111   }
4112 }
4113 
4114 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4115   // Used in sign-bit flipping with aligned address.
4116   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4117   if (reachable(src)) {
4118     Assembler::xorpd(dst, as_Address(src));
4119   } else {
4120     lea(rscratch1, src);
4121     Assembler::xorpd(dst, Address(rscratch1, 0));
4122   }
4123 }
4124 
4125 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4126   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4127     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4128   }
4129   else {
4130     Assembler::xorpd(dst, src);
4131   }
4132 }
4133 
4134 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4135   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4136     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4137   } else {
4138     Assembler::xorps(dst, src);
4139   }
4140 }
4141 
4142 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4143   // Used in sign-bit flipping with aligned address.
4144   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4145   if (reachable(src)) {
4146     Assembler::xorps(dst, as_Address(src));
4147   } else {
4148     lea(rscratch1, src);
4149     Assembler::xorps(dst, Address(rscratch1, 0));
4150   }
4151 }
4152 
4153 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4154   // Used in sign-bit flipping with aligned address.
4155   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4156   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4157   if (reachable(src)) {
4158     Assembler::pshufb(dst, as_Address(src));
4159   } else {
4160     lea(rscratch1, src);
4161     Assembler::pshufb(dst, Address(rscratch1, 0));
4162   }
4163 }
4164 
4165 // AVX 3-operands instructions
4166 
4167 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4168   if (reachable(src)) {
4169     vaddsd(dst, nds, as_Address(src));
4170   } else {
4171     lea(rscratch1, src);
4172     vaddsd(dst, nds, Address(rscratch1, 0));
4173   }
4174 }
4175 
4176 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4177   if (reachable(src)) {
4178     vaddss(dst, nds, as_Address(src));
4179   } else {
4180     lea(rscratch1, src);
4181     vaddss(dst, nds, Address(rscratch1, 0));
4182   }
4183 }
4184 
4185 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4186   int dst_enc = dst->encoding();
4187   int nds_enc = nds->encoding();
4188   int src_enc = src->encoding();
4189   if ((dst_enc < 16) && (nds_enc < 16)) {
4190     vandps(dst, nds, negate_field, vector_len);
4191   } else if ((src_enc < 16) && (dst_enc < 16)) {
4192     evmovdqul(src, nds, Assembler::AVX_512bit);
4193     vandps(dst, src, negate_field, vector_len);
4194   } else if (src_enc < 16) {
4195     evmovdqul(src, nds, Assembler::AVX_512bit);
4196     vandps(src, src, negate_field, vector_len);
4197     evmovdqul(dst, src, Assembler::AVX_512bit);
4198   } else if (dst_enc < 16) {
4199     evmovdqul(src, xmm0, Assembler::AVX_512bit);
4200     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4201     vandps(dst, xmm0, negate_field, vector_len);
4202     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4203   } else {
4204     if (src_enc != dst_enc) {
4205       evmovdqul(src, xmm0, Assembler::AVX_512bit);
4206       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4207       vandps(xmm0, xmm0, negate_field, vector_len);
4208       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4209       evmovdqul(xmm0, src, Assembler::AVX_512bit);
4210     } else {
4211       subptr(rsp, 64);
4212       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4213       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4214       vandps(xmm0, xmm0, negate_field, vector_len);
4215       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4216       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4217       addptr(rsp, 64);
4218     }
4219   }
4220 }
4221 
4222 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4223   int dst_enc = dst->encoding();
4224   int nds_enc = nds->encoding();
4225   int src_enc = src->encoding();
4226   if ((dst_enc < 16) && (nds_enc < 16)) {
4227     vandpd(dst, nds, negate_field, vector_len);
4228   } else if ((src_enc < 16) && (dst_enc < 16)) {
4229     evmovdqul(src, nds, Assembler::AVX_512bit);
4230     vandpd(dst, src, negate_field, vector_len);
4231   } else if (src_enc < 16) {
4232     evmovdqul(src, nds, Assembler::AVX_512bit);
4233     vandpd(src, src, negate_field, vector_len);
4234     evmovdqul(dst, src, Assembler::AVX_512bit);
4235   } else if (dst_enc < 16) {
4236     evmovdqul(src, xmm0, Assembler::AVX_512bit);
4237     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4238     vandpd(dst, xmm0, negate_field, vector_len);
4239     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4240   } else {
4241     if (src_enc != dst_enc) {
4242       evmovdqul(src, xmm0, Assembler::AVX_512bit);
4243       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4244       vandpd(xmm0, xmm0, negate_field, vector_len);
4245       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4246       evmovdqul(xmm0, src, Assembler::AVX_512bit);
4247     } else {
4248       subptr(rsp, 64);
4249       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4250       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4251       vandpd(xmm0, xmm0, negate_field, vector_len);
4252       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4253       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4254       addptr(rsp, 64);
4255     }
4256   }
4257 }
4258 
4259 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4260   int dst_enc = dst->encoding();
4261   int nds_enc = nds->encoding();
4262   int src_enc = src->encoding();
4263   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4264     Assembler::vpaddb(dst, nds, src, vector_len);
4265   } else if ((dst_enc < 16) && (src_enc < 16)) {
4266     Assembler::vpaddb(dst, dst, src, vector_len);
4267   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4268     // use nds as scratch for src
4269     evmovdqul(nds, src, Assembler::AVX_512bit);
4270     Assembler::vpaddb(dst, dst, nds, vector_len);
4271   } else if ((src_enc < 16) && (nds_enc < 16)) {
4272     // use nds as scratch for dst
4273     evmovdqul(nds, dst, Assembler::AVX_512bit);
4274     Assembler::vpaddb(nds, nds, src, vector_len);
4275     evmovdqul(dst, nds, Assembler::AVX_512bit);
4276   } else if (dst_enc < 16) {
4277     // use nds as scatch for xmm0 to hold src
4278     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4279     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4280     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4281     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4282   } else {
4283     // worse case scenario, all regs are in the upper bank
4284     subptr(rsp, 64);
4285     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4286     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4287     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4288     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4289     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4290     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4291     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4292     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4293     addptr(rsp, 64);
4294   }
4295 }
4296 
4297 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4298   int dst_enc = dst->encoding();
4299   int nds_enc = nds->encoding();
4300   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4301     Assembler::vpaddb(dst, nds, src, vector_len);
4302   } else if (dst_enc < 16) {
4303     Assembler::vpaddb(dst, dst, src, vector_len);
4304   } else if (nds_enc < 16) {
4305     // implies dst_enc in upper bank with src as scratch
4306     evmovdqul(nds, dst, Assembler::AVX_512bit);
4307     Assembler::vpaddb(nds, nds, src, vector_len);
4308     evmovdqul(dst, nds, Assembler::AVX_512bit);
4309   } else {
4310     // worse case scenario, all regs in upper bank
4311     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4312     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4313     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4314     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4315   }
4316 }
4317 
4318 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4319   int dst_enc = dst->encoding();
4320   int nds_enc = nds->encoding();
4321   int src_enc = src->encoding();
4322   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4323     Assembler::vpaddw(dst, nds, src, vector_len);
4324   } else if ((dst_enc < 16) && (src_enc < 16)) {
4325     Assembler::vpaddw(dst, dst, src, vector_len);
4326   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4327     // use nds as scratch for src
4328     evmovdqul(nds, src, Assembler::AVX_512bit);
4329     Assembler::vpaddw(dst, dst, nds, vector_len);
4330   } else if ((src_enc < 16) && (nds_enc < 16)) {
4331     // use nds as scratch for dst
4332     evmovdqul(nds, dst, Assembler::AVX_512bit);
4333     Assembler::vpaddw(nds, nds, src, vector_len);
4334     evmovdqul(dst, nds, Assembler::AVX_512bit);
4335   } else if (dst_enc < 16) {
4336     // use nds as scatch for xmm0 to hold src
4337     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4338     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4339     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4340     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4341   } else {
4342     // worse case scenario, all regs are in the upper bank
4343     subptr(rsp, 64);
4344     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4345     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4346     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4347     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4348     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4349     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4350     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4351     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4352     addptr(rsp, 64);
4353   }
4354 }
4355 
4356 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4357   int dst_enc = dst->encoding();
4358   int nds_enc = nds->encoding();
4359   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4360     Assembler::vpaddw(dst, nds, src, vector_len);
4361   } else if (dst_enc < 16) {
4362     Assembler::vpaddw(dst, dst, src, vector_len);
4363   } else if (nds_enc < 16) {
4364     // implies dst_enc in upper bank with src as scratch
4365     evmovdqul(nds, dst, Assembler::AVX_512bit);
4366     Assembler::vpaddw(nds, nds, src, vector_len);
4367     evmovdqul(dst, nds, Assembler::AVX_512bit);
4368   } else {
4369     // worse case scenario, all regs in upper bank
4370     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4371     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4372     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4373     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4374   }
4375 }
4376 
4377 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4378   if (reachable(src)) {
4379     Assembler::vpand(dst, nds, as_Address(src), vector_len);
4380   } else {
4381     lea(rscratch1, src);
4382     Assembler::vpand(dst, nds, Address(rscratch1, 0), vector_len);
4383   }
4384 }
4385 
4386 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4387   int dst_enc = dst->encoding();
4388   int src_enc = src->encoding();
4389   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4390     Assembler::vpbroadcastw(dst, src);
4391   } else if ((dst_enc < 16) && (src_enc < 16)) {
4392     Assembler::vpbroadcastw(dst, src);
4393   } else if (src_enc < 16) {
4394     subptr(rsp, 64);
4395     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4396     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4397     Assembler::vpbroadcastw(xmm0, src);
4398     movdqu(dst, xmm0);
4399     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4400     addptr(rsp, 64);
4401   } else if (dst_enc < 16) {
4402     subptr(rsp, 64);
4403     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4404     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4405     Assembler::vpbroadcastw(dst, xmm0);
4406     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4407     addptr(rsp, 64);
4408   } else {
4409     subptr(rsp, 64);
4410     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4411     subptr(rsp, 64);
4412     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4413     movdqu(xmm0, src);
4414     movdqu(xmm1, dst);
4415     Assembler::vpbroadcastw(xmm1, xmm0);
4416     movdqu(dst, xmm1);
4417     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4418     addptr(rsp, 64);
4419     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4420     addptr(rsp, 64);
4421   }
4422 }
4423 
4424 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4425   int dst_enc = dst->encoding();
4426   int nds_enc = nds->encoding();
4427   int src_enc = src->encoding();
4428   assert(dst_enc == nds_enc, "");
4429   if ((dst_enc < 16) && (src_enc < 16)) {
4430     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4431   } else if (src_enc < 16) {
4432     subptr(rsp, 64);
4433     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4434     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4435     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4436     movdqu(dst, xmm0);
4437     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4438     addptr(rsp, 64);
4439   } else if (dst_enc < 16) {
4440     subptr(rsp, 64);
4441     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4442     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4443     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4444     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4445     addptr(rsp, 64);
4446   } else {
4447     subptr(rsp, 64);
4448     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4449     subptr(rsp, 64);
4450     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4451     movdqu(xmm0, src);
4452     movdqu(xmm1, dst);
4453     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4454     movdqu(dst, xmm1);
4455     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4456     addptr(rsp, 64);
4457     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4458     addptr(rsp, 64);
4459   }
4460 }
4461 
4462 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4463   int dst_enc = dst->encoding();
4464   int nds_enc = nds->encoding();
4465   int src_enc = src->encoding();
4466   assert(dst_enc == nds_enc, "");
4467   if ((dst_enc < 16) && (src_enc < 16)) {
4468     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4469   } else if (src_enc < 16) {
4470     subptr(rsp, 64);
4471     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4472     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4473     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4474     movdqu(dst, xmm0);
4475     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4476     addptr(rsp, 64);
4477   } else if (dst_enc < 16) {
4478     subptr(rsp, 64);
4479     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4480     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4481     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4482     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4483     addptr(rsp, 64);
4484   } else {
4485     subptr(rsp, 64);
4486     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4487     subptr(rsp, 64);
4488     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4489     movdqu(xmm0, src);
4490     movdqu(xmm1, dst);
4491     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4492     movdqu(dst, xmm1);
4493     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4494     addptr(rsp, 64);
4495     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4496     addptr(rsp, 64);
4497   }
4498 }
4499 
4500 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4501   int dst_enc = dst->encoding();
4502   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4503     Assembler::vpmovzxbw(dst, src, vector_len);
4504   } else if (dst_enc < 16) {
4505     Assembler::vpmovzxbw(dst, src, vector_len);
4506   } else {
4507     subptr(rsp, 64);
4508     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4509     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4510     Assembler::vpmovzxbw(xmm0, src, vector_len);
4511     movdqu(dst, xmm0);
4512     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4513     addptr(rsp, 64);
4514   }
4515 }
4516 
4517 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4518   int src_enc = src->encoding();
4519   if (src_enc < 16) {
4520     Assembler::vpmovmskb(dst, src);
4521   } else {
4522     subptr(rsp, 64);
4523     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4524     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4525     Assembler::vpmovmskb(dst, xmm0);
4526     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4527     addptr(rsp, 64);
4528   }
4529 }
4530 
4531 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4532   int dst_enc = dst->encoding();
4533   int nds_enc = nds->encoding();
4534   int src_enc = src->encoding();
4535   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4536     Assembler::vpmullw(dst, nds, src, vector_len);
4537   } else if ((dst_enc < 16) && (src_enc < 16)) {
4538     Assembler::vpmullw(dst, dst, src, vector_len);
4539   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4540     // use nds as scratch for src
4541     evmovdqul(nds, src, Assembler::AVX_512bit);
4542     Assembler::vpmullw(dst, dst, nds, vector_len);
4543   } else if ((src_enc < 16) && (nds_enc < 16)) {
4544     // use nds as scratch for dst
4545     evmovdqul(nds, dst, Assembler::AVX_512bit);
4546     Assembler::vpmullw(nds, nds, src, vector_len);
4547     evmovdqul(dst, nds, Assembler::AVX_512bit);
4548   } else if (dst_enc < 16) {
4549     // use nds as scatch for xmm0 to hold src
4550     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4551     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4552     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4553     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4554   } else {
4555     // worse case scenario, all regs are in the upper bank
4556     subptr(rsp, 64);
4557     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4558     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4559     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4560     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4561     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4562     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4563     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4564     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4565     addptr(rsp, 64);
4566   }
4567 }
4568 
4569 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4570   int dst_enc = dst->encoding();
4571   int nds_enc = nds->encoding();
4572   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4573     Assembler::vpmullw(dst, nds, src, vector_len);
4574   } else if (dst_enc < 16) {
4575     Assembler::vpmullw(dst, dst, src, vector_len);
4576   } else if (nds_enc < 16) {
4577     // implies dst_enc in upper bank with src as scratch
4578     evmovdqul(nds, dst, Assembler::AVX_512bit);
4579     Assembler::vpmullw(nds, nds, src, vector_len);
4580     evmovdqul(dst, nds, Assembler::AVX_512bit);
4581   } else {
4582     // worse case scenario, all regs in upper bank
4583     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4584     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4585     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4586     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4587   }
4588 }
4589 
4590 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4591   int dst_enc = dst->encoding();
4592   int nds_enc = nds->encoding();
4593   int src_enc = src->encoding();
4594   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4595     Assembler::vpsubb(dst, nds, src, vector_len);
4596   } else if ((dst_enc < 16) && (src_enc < 16)) {
4597     Assembler::vpsubb(dst, dst, src, vector_len);
4598   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4599     // use nds as scratch for src
4600     evmovdqul(nds, src, Assembler::AVX_512bit);
4601     Assembler::vpsubb(dst, dst, nds, vector_len);
4602   } else if ((src_enc < 16) && (nds_enc < 16)) {
4603     // use nds as scratch for dst
4604     evmovdqul(nds, dst, Assembler::AVX_512bit);
4605     Assembler::vpsubb(nds, nds, src, vector_len);
4606     evmovdqul(dst, nds, Assembler::AVX_512bit);
4607   } else if (dst_enc < 16) {
4608     // use nds as scatch for xmm0 to hold src
4609     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4610     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4611     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4612     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4613   } else {
4614     // worse case scenario, all regs are in the upper bank
4615     subptr(rsp, 64);
4616     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4617     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4618     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4619     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4620     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4621     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4622     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4623     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4624     addptr(rsp, 64);
4625   }
4626 }
4627 
4628 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4629   int dst_enc = dst->encoding();
4630   int nds_enc = nds->encoding();
4631   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4632     Assembler::vpsubb(dst, nds, src, vector_len);
4633   } else if (dst_enc < 16) {
4634     Assembler::vpsubb(dst, dst, src, vector_len);
4635   } else if (nds_enc < 16) {
4636     // implies dst_enc in upper bank with src as scratch
4637     evmovdqul(nds, dst, Assembler::AVX_512bit);
4638     Assembler::vpsubb(nds, nds, src, vector_len);
4639     evmovdqul(dst, nds, Assembler::AVX_512bit);
4640   } else {
4641     // worse case scenario, all regs in upper bank
4642     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4643     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4644     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4645     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4646   }
4647 }
4648 
4649 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4650   int dst_enc = dst->encoding();
4651   int nds_enc = nds->encoding();
4652   int src_enc = src->encoding();
4653   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4654     Assembler::vpsubw(dst, nds, src, vector_len);
4655   } else if ((dst_enc < 16) && (src_enc < 16)) {
4656     Assembler::vpsubw(dst, dst, src, vector_len);
4657   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4658     // use nds as scratch for src
4659     evmovdqul(nds, src, Assembler::AVX_512bit);
4660     Assembler::vpsubw(dst, dst, nds, vector_len);
4661   } else if ((src_enc < 16) && (nds_enc < 16)) {
4662     // use nds as scratch for dst
4663     evmovdqul(nds, dst, Assembler::AVX_512bit);
4664     Assembler::vpsubw(nds, nds, src, vector_len);
4665     evmovdqul(dst, nds, Assembler::AVX_512bit);
4666   } else if (dst_enc < 16) {
4667     // use nds as scatch for xmm0 to hold src
4668     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4669     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4670     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4671     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4672   } else {
4673     // worse case scenario, all regs are in the upper bank
4674     subptr(rsp, 64);
4675     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4676     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4677     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4678     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4679     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4680     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4681     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4682     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4683     addptr(rsp, 64);
4684   }
4685 }
4686 
4687 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4688   int dst_enc = dst->encoding();
4689   int nds_enc = nds->encoding();
4690   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4691     Assembler::vpsubw(dst, nds, src, vector_len);
4692   } else if (dst_enc < 16) {
4693     Assembler::vpsubw(dst, dst, src, vector_len);
4694   } else if (nds_enc < 16) {
4695     // implies dst_enc in upper bank with src as scratch
4696     evmovdqul(nds, dst, Assembler::AVX_512bit);
4697     Assembler::vpsubw(nds, nds, src, vector_len);
4698     evmovdqul(dst, nds, Assembler::AVX_512bit);
4699   } else {
4700     // worse case scenario, all regs in upper bank
4701     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4702     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4703     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4704     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4705   }
4706 }
4707 
4708 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4709   int dst_enc = dst->encoding();
4710   int nds_enc = nds->encoding();
4711   int shift_enc = shift->encoding();
4712   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4713     Assembler::vpsraw(dst, nds, shift, vector_len);
4714   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4715     Assembler::vpsraw(dst, dst, shift, vector_len);
4716   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4717     // use nds_enc as scratch with shift
4718     evmovdqul(nds, shift, Assembler::AVX_512bit);
4719     Assembler::vpsraw(dst, dst, nds, vector_len);
4720   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4721     // use nds as scratch with dst
4722     evmovdqul(nds, dst, Assembler::AVX_512bit);
4723     Assembler::vpsraw(nds, nds, shift, vector_len);
4724     evmovdqul(dst, nds, Assembler::AVX_512bit);
4725   } else if (dst_enc < 16) {
4726     // use nds to save a copy of xmm0 and hold shift
4727     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4728     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4729     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4730     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4731   } else if (nds_enc < 16) {
4732     // use nds as dest as temps
4733     evmovdqul(nds, dst, Assembler::AVX_512bit);
4734     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4735     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4736     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4737     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4738     evmovdqul(dst, nds, Assembler::AVX_512bit);
4739   } else {
4740     // worse case scenario, all regs are in the upper bank
4741     subptr(rsp, 64);
4742     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4743     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4744     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4745     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4746     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4747     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4748     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4749     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4750     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4751     addptr(rsp, 64);
4752   }
4753 }
4754 
4755 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4756   int dst_enc = dst->encoding();
4757   int nds_enc = nds->encoding();
4758   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4759     Assembler::vpsraw(dst, nds, shift, vector_len);
4760   } else if (dst_enc < 16) {
4761     Assembler::vpsraw(dst, dst, shift, vector_len);
4762   } else if (nds_enc < 16) {
4763     // use nds as scratch
4764     evmovdqul(nds, dst, Assembler::AVX_512bit);
4765     Assembler::vpsraw(nds, nds, shift, vector_len);
4766     evmovdqul(dst, nds, Assembler::AVX_512bit);
4767   } else {
4768     // use nds as scratch for xmm0
4769     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4770     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4771     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4772     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4773   }
4774 }
4775 
4776 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4777   int dst_enc = dst->encoding();
4778   int nds_enc = nds->encoding();
4779   int shift_enc = shift->encoding();
4780   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4781     Assembler::vpsrlw(dst, nds, shift, vector_len);
4782   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4783     Assembler::vpsrlw(dst, dst, shift, vector_len);
4784   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4785     // use nds_enc as scratch with shift
4786     evmovdqul(nds, shift, Assembler::AVX_512bit);
4787     Assembler::vpsrlw(dst, dst, nds, vector_len);
4788   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4789     // use nds as scratch with dst
4790     evmovdqul(nds, dst, Assembler::AVX_512bit);
4791     Assembler::vpsrlw(nds, nds, shift, vector_len);
4792     evmovdqul(dst, nds, Assembler::AVX_512bit);
4793   } else if (dst_enc < 16) {
4794     // use nds to save a copy of xmm0 and hold shift
4795     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4796     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4797     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4798     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4799   } else if (nds_enc < 16) {
4800     // use nds as dest as temps
4801     evmovdqul(nds, dst, Assembler::AVX_512bit);
4802     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4803     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4804     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4805     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4806     evmovdqul(dst, nds, Assembler::AVX_512bit);
4807   } else {
4808     // worse case scenario, all regs are in the upper bank
4809     subptr(rsp, 64);
4810     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4811     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4812     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4813     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4814     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4815     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4816     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4817     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4818     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4819     addptr(rsp, 64);
4820   }
4821 }
4822 
4823 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4824   int dst_enc = dst->encoding();
4825   int nds_enc = nds->encoding();
4826   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4827     Assembler::vpsrlw(dst, nds, shift, vector_len);
4828   } else if (dst_enc < 16) {
4829     Assembler::vpsrlw(dst, dst, shift, vector_len);
4830   } else if (nds_enc < 16) {
4831     // use nds as scratch
4832     evmovdqul(nds, dst, Assembler::AVX_512bit);
4833     Assembler::vpsrlw(nds, nds, shift, vector_len);
4834     evmovdqul(dst, nds, Assembler::AVX_512bit);
4835   } else {
4836     // use nds as scratch for xmm0
4837     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4838     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4839     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4840     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4841   }
4842 }
4843 
4844 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4845   int dst_enc = dst->encoding();
4846   int nds_enc = nds->encoding();
4847   int shift_enc = shift->encoding();
4848   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4849     Assembler::vpsllw(dst, nds, shift, vector_len);
4850   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4851     Assembler::vpsllw(dst, dst, shift, vector_len);
4852   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4853     // use nds_enc as scratch with shift
4854     evmovdqul(nds, shift, Assembler::AVX_512bit);
4855     Assembler::vpsllw(dst, dst, nds, vector_len);
4856   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4857     // use nds as scratch with dst
4858     evmovdqul(nds, dst, Assembler::AVX_512bit);
4859     Assembler::vpsllw(nds, nds, shift, vector_len);
4860     evmovdqul(dst, nds, Assembler::AVX_512bit);
4861   } else if (dst_enc < 16) {
4862     // use nds to save a copy of xmm0 and hold shift
4863     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4864     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4865     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4866     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4867   } else if (nds_enc < 16) {
4868     // use nds as dest as temps
4869     evmovdqul(nds, dst, Assembler::AVX_512bit);
4870     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4871     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4872     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4873     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4874     evmovdqul(dst, nds, Assembler::AVX_512bit);
4875   } else {
4876     // worse case scenario, all regs are in the upper bank
4877     subptr(rsp, 64);
4878     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4879     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4880     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4881     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4882     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4883     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4884     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4885     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4886     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4887     addptr(rsp, 64);
4888   }
4889 }
4890 
4891 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4892   int dst_enc = dst->encoding();
4893   int nds_enc = nds->encoding();
4894   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4895     Assembler::vpsllw(dst, nds, shift, vector_len);
4896   } else if (dst_enc < 16) {
4897     Assembler::vpsllw(dst, dst, shift, vector_len);
4898   } else if (nds_enc < 16) {
4899     // use nds as scratch
4900     evmovdqul(nds, dst, Assembler::AVX_512bit);
4901     Assembler::vpsllw(nds, nds, shift, vector_len);
4902     evmovdqul(dst, nds, Assembler::AVX_512bit);
4903   } else {
4904     // use nds as scratch for xmm0
4905     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4906     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4907     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4908     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4909   }
4910 }
4911 
4912 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4913   int dst_enc = dst->encoding();
4914   int src_enc = src->encoding();
4915   if ((dst_enc < 16) && (src_enc < 16)) {
4916     Assembler::vptest(dst, src);
4917   } else if (src_enc < 16) {
4918     subptr(rsp, 64);
4919     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4920     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4921     Assembler::vptest(xmm0, src);
4922     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4923     addptr(rsp, 64);
4924   } else if (dst_enc < 16) {
4925     subptr(rsp, 64);
4926     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4927     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4928     Assembler::vptest(dst, xmm0);
4929     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4930     addptr(rsp, 64);
4931   } else {
4932     subptr(rsp, 64);
4933     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4934     subptr(rsp, 64);
4935     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4936     movdqu(xmm0, src);
4937     movdqu(xmm1, dst);
4938     Assembler::vptest(xmm1, xmm0);
4939     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4940     addptr(rsp, 64);
4941     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4942     addptr(rsp, 64);
4943   }
4944 }
4945 
4946 // This instruction exists within macros, ergo we cannot control its input
4947 // when emitted through those patterns.
4948 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4949   if (VM_Version::supports_avx512nobw()) {
4950     int dst_enc = dst->encoding();
4951     int src_enc = src->encoding();
4952     if (dst_enc == src_enc) {
4953       if (dst_enc < 16) {
4954         Assembler::punpcklbw(dst, src);
4955       } else {
4956         subptr(rsp, 64);
4957         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4958         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4959         Assembler::punpcklbw(xmm0, xmm0);
4960         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4961         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4962         addptr(rsp, 64);
4963       }
4964     } else {
4965       if ((src_enc < 16) && (dst_enc < 16)) {
4966         Assembler::punpcklbw(dst, src);
4967       } else if (src_enc < 16) {
4968         subptr(rsp, 64);
4969         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4970         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4971         Assembler::punpcklbw(xmm0, src);
4972         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4973         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4974         addptr(rsp, 64);
4975       } else if (dst_enc < 16) {
4976         subptr(rsp, 64);
4977         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4978         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4979         Assembler::punpcklbw(dst, xmm0);
4980         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4981         addptr(rsp, 64);
4982       } else {
4983         subptr(rsp, 64);
4984         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4985         subptr(rsp, 64);
4986         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4987         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4988         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4989         Assembler::punpcklbw(xmm0, xmm1);
4990         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4991         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4992         addptr(rsp, 64);
4993         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4994         addptr(rsp, 64);
4995       }
4996     }
4997   } else {
4998     Assembler::punpcklbw(dst, src);
4999   }
5000 }
5001 
5002 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
5003   if (VM_Version::supports_avx512vl()) {
5004     Assembler::pshufd(dst, src, mode);
5005   } else {
5006     int dst_enc = dst->encoding();
5007     if (dst_enc < 16) {
5008       Assembler::pshufd(dst, src, mode);
5009     } else {
5010       subptr(rsp, 64);
5011       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5012       Assembler::pshufd(xmm0, src, mode);
5013       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5014       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5015       addptr(rsp, 64);
5016     }
5017   }
5018 }
5019 
5020 // This instruction exists within macros, ergo we cannot control its input
5021 // when emitted through those patterns.
5022 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
5023   if (VM_Version::supports_avx512nobw()) {
5024     int dst_enc = dst->encoding();
5025     int src_enc = src->encoding();
5026     if (dst_enc == src_enc) {
5027       if (dst_enc < 16) {
5028         Assembler::pshuflw(dst, src, mode);
5029       } else {
5030         subptr(rsp, 64);
5031         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5032         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5033         Assembler::pshuflw(xmm0, xmm0, mode);
5034         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5035         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5036         addptr(rsp, 64);
5037       }
5038     } else {
5039       if ((src_enc < 16) && (dst_enc < 16)) {
5040         Assembler::pshuflw(dst, src, mode);
5041       } else if (src_enc < 16) {
5042         subptr(rsp, 64);
5043         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5044         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5045         Assembler::pshuflw(xmm0, src, mode);
5046         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5047         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5048         addptr(rsp, 64);
5049       } else if (dst_enc < 16) {
5050         subptr(rsp, 64);
5051         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5052         evmovdqul(xmm0, src, Assembler::AVX_512bit);
5053         Assembler::pshuflw(dst, xmm0, mode);
5054         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5055         addptr(rsp, 64);
5056       } else {
5057         subptr(rsp, 64);
5058         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5059         subptr(rsp, 64);
5060         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
5061         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5062         evmovdqul(xmm1, src, Assembler::AVX_512bit);
5063         Assembler::pshuflw(xmm0, xmm1, mode);
5064         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5065         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
5066         addptr(rsp, 64);
5067         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5068         addptr(rsp, 64);
5069       }
5070     }
5071   } else {
5072     Assembler::pshuflw(dst, src, mode);
5073   }
5074 }
5075 
5076 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5077   if (reachable(src)) {
5078     vandpd(dst, nds, as_Address(src), vector_len);
5079   } else {
5080     lea(rscratch1, src);
5081     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
5082   }
5083 }
5084 
5085 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5086   if (reachable(src)) {
5087     vandps(dst, nds, as_Address(src), vector_len);
5088   } else {
5089     lea(rscratch1, src);
5090     vandps(dst, nds, Address(rscratch1, 0), vector_len);
5091   }
5092 }
5093 
5094 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5095   if (reachable(src)) {
5096     vdivsd(dst, nds, as_Address(src));
5097   } else {
5098     lea(rscratch1, src);
5099     vdivsd(dst, nds, Address(rscratch1, 0));
5100   }
5101 }
5102 
5103 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5104   if (reachable(src)) {
5105     vdivss(dst, nds, as_Address(src));
5106   } else {
5107     lea(rscratch1, src);
5108     vdivss(dst, nds, Address(rscratch1, 0));
5109   }
5110 }
5111 
5112 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5113   if (reachable(src)) {
5114     vmulsd(dst, nds, as_Address(src));
5115   } else {
5116     lea(rscratch1, src);
5117     vmulsd(dst, nds, Address(rscratch1, 0));
5118   }
5119 }
5120 
5121 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5122   if (reachable(src)) {
5123     vmulss(dst, nds, as_Address(src));
5124   } else {
5125     lea(rscratch1, src);
5126     vmulss(dst, nds, Address(rscratch1, 0));
5127   }
5128 }
5129 
5130 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5131   if (reachable(src)) {
5132     vsubsd(dst, nds, as_Address(src));
5133   } else {
5134     lea(rscratch1, src);
5135     vsubsd(dst, nds, Address(rscratch1, 0));
5136   }
5137 }
5138 
5139 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5140   if (reachable(src)) {
5141     vsubss(dst, nds, as_Address(src));
5142   } else {
5143     lea(rscratch1, src);
5144     vsubss(dst, nds, Address(rscratch1, 0));
5145   }
5146 }
5147 
5148 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5149   int nds_enc = nds->encoding();
5150   int dst_enc = dst->encoding();
5151   bool dst_upper_bank = (dst_enc > 15);
5152   bool nds_upper_bank = (nds_enc > 15);
5153   if (VM_Version::supports_avx512novl() &&
5154       (nds_upper_bank || dst_upper_bank)) {
5155     if (dst_upper_bank) {
5156       subptr(rsp, 64);
5157       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5158       movflt(xmm0, nds);
5159       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5160       movflt(dst, xmm0);
5161       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5162       addptr(rsp, 64);
5163     } else {
5164       movflt(dst, nds);
5165       vxorps(dst, dst, src, Assembler::AVX_128bit);
5166     }
5167   } else {
5168     vxorps(dst, nds, src, Assembler::AVX_128bit);
5169   }
5170 }
5171 
5172 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5173   int nds_enc = nds->encoding();
5174   int dst_enc = dst->encoding();
5175   bool dst_upper_bank = (dst_enc > 15);
5176   bool nds_upper_bank = (nds_enc > 15);
5177   if (VM_Version::supports_avx512novl() &&
5178       (nds_upper_bank || dst_upper_bank)) {
5179     if (dst_upper_bank) {
5180       subptr(rsp, 64);
5181       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5182       movdbl(xmm0, nds);
5183       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5184       movdbl(dst, xmm0);
5185       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5186       addptr(rsp, 64);
5187     } else {
5188       movdbl(dst, nds);
5189       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5190     }
5191   } else {
5192     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5193   }
5194 }
5195 
5196 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5197   if (reachable(src)) {
5198     vxorpd(dst, nds, as_Address(src), vector_len);
5199   } else {
5200     lea(rscratch1, src);
5201     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5202   }
5203 }
5204 
5205 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5206   if (reachable(src)) {
5207     vxorps(dst, nds, as_Address(src), vector_len);
5208   } else {
5209     lea(rscratch1, src);
5210     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5211   }
5212 }
5213 
5214 
5215 void MacroAssembler::resolve_jobject(Register value,
5216                                      Register thread,
5217                                      Register tmp) {
5218   assert_different_registers(value, thread, tmp);
5219   Label done, not_weak;
5220   testptr(value, value);
5221   jcc(Assembler::zero, done);                // Use NULL as-is.
5222   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
5223   jcc(Assembler::zero, not_weak);
5224   // Resolve jweak.
5225   movptr(value, Address(value, -JNIHandles::weak_tag_value));
5226   verify_oop(value);
5227 #if INCLUDE_ALL_GCS
5228   if (UseG1GC) {
5229     g1_write_barrier_pre(noreg /* obj */,
5230                          value /* pre_val */,
5231                          thread /* thread */,
5232                          tmp /* tmp */,
5233                          true /* tosca_live */,
5234                          true /* expand_call */);
5235   }
5236 #endif // INCLUDE_ALL_GCS
5237   jmp(done);
5238   bind(not_weak);
5239   // Resolve (untagged) jobject.
5240   movptr(value, Address(value, 0));
5241   verify_oop(value);
5242   bind(done);
5243 }
5244 
5245 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
5246   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
5247   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
5248   // The inverted mask is sign-extended
5249   andptr(possibly_jweak, inverted_jweak_mask);
5250 }
5251 
5252 //////////////////////////////////////////////////////////////////////////////////
5253 #if INCLUDE_ALL_GCS
5254 
5255 void MacroAssembler::g1_write_barrier_pre(Register obj,
5256                                           Register pre_val,
5257                                           Register thread,
5258                                           Register tmp,
5259                                           bool tosca_live,
5260                                           bool expand_call) {
5261 
5262   // If expand_call is true then we expand the call_VM_leaf macro
5263   // directly to skip generating the check by
5264   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
5265 
5266 #ifdef _LP64
5267   assert(thread == r15_thread, "must be");
5268 #endif // _LP64
5269 
5270   Label done;
5271   Label runtime;
5272 
5273   assert(pre_val != noreg, "check this code");
5274 
5275   if (obj != noreg) {
5276     assert_different_registers(obj, pre_val, tmp);
5277     assert(pre_val != rax, "check this code");
5278   }
5279 
5280   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5281                                        SATBMarkQueue::byte_offset_of_active()));
5282   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5283                                        SATBMarkQueue::byte_offset_of_index()));
5284   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5285                                        SATBMarkQueue::byte_offset_of_buf()));
5286 
5287 
5288   // Is marking active?
5289   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
5290     cmpl(in_progress, 0);
5291   } else {
5292     assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
5293     cmpb(in_progress, 0);
5294   }
5295   jcc(Assembler::equal, done);
5296 
5297   // Do we need to load the previous value?
5298   if (obj != noreg) {
5299     load_heap_oop(pre_val, Address(obj, 0));
5300   }
5301 
5302   // Is the previous value null?
5303   cmpptr(pre_val, (int32_t) NULL_WORD);
5304   jcc(Assembler::equal, done);
5305 
5306   // Can we store original value in the thread's buffer?
5307   // Is index == 0?
5308   // (The index field is typed as size_t.)
5309 
5310   movptr(tmp, index);                   // tmp := *index_adr
5311   cmpptr(tmp, 0);                       // tmp == 0?
5312   jcc(Assembler::equal, runtime);       // If yes, goto runtime
5313 
5314   subptr(tmp, wordSize);                // tmp := tmp - wordSize
5315   movptr(index, tmp);                   // *index_adr := tmp
5316   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
5317 
5318   // Record the previous value
5319   movptr(Address(tmp, 0), pre_val);
5320   jmp(done);
5321 
5322   bind(runtime);
5323   // save the live input values
5324   if(tosca_live) push(rax);
5325 
5326   if (obj != noreg && obj != rax)
5327     push(obj);
5328 
5329   if (pre_val != rax)
5330     push(pre_val);
5331 
5332   // Calling the runtime using the regular call_VM_leaf mechanism generates
5333   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
5334   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
5335   //
5336   // If we care generating the pre-barrier without a frame (e.g. in the
5337   // intrinsified Reference.get() routine) then ebp might be pointing to
5338   // the caller frame and so this check will most likely fail at runtime.
5339   //
5340   // Expanding the call directly bypasses the generation of the check.
5341   // So when we do not have have a full interpreter frame on the stack
5342   // expand_call should be passed true.
5343 
5344   NOT_LP64( push(thread); )
5345 
5346   if (expand_call) {
5347     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
5348     pass_arg1(this, thread);
5349     pass_arg0(this, pre_val);
5350     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
5351   } else {
5352     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
5353   }
5354 
5355   NOT_LP64( pop(thread); )
5356 
5357   // save the live input values
5358   if (pre_val != rax)
5359     pop(pre_val);
5360 
5361   if (obj != noreg && obj != rax)
5362     pop(obj);
5363 
5364   if(tosca_live) pop(rax);
5365 
5366   bind(done);
5367 }
5368 
5369 void MacroAssembler::g1_write_barrier_post(Register store_addr,
5370                                            Register new_val,
5371                                            Register thread,
5372                                            Register tmp,
5373                                            Register tmp2) {
5374 #ifdef _LP64
5375   assert(thread == r15_thread, "must be");
5376 #endif // _LP64
5377 
5378   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5379                                        DirtyCardQueue::byte_offset_of_index()));
5380   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5381                                        DirtyCardQueue::byte_offset_of_buf()));
5382 
5383   CardTableModRefBS* ct =
5384     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
5385   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5386 
5387   Label done;
5388   Label runtime;
5389 
5390   // Does store cross heap regions?
5391 
5392   movptr(tmp, store_addr);
5393   xorptr(tmp, new_val);
5394   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
5395   jcc(Assembler::equal, done);
5396 
5397   // crosses regions, storing NULL?
5398 
5399   cmpptr(new_val, (int32_t) NULL_WORD);
5400   jcc(Assembler::equal, done);
5401 
5402   // storing region crossing non-NULL, is card already dirty?
5403 
5404   const Register card_addr = tmp;
5405   const Register cardtable = tmp2;
5406 
5407   movptr(card_addr, store_addr);
5408   shrptr(card_addr, CardTableModRefBS::card_shift);
5409   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
5410   // a valid address and therefore is not properly handled by the relocation code.
5411   movptr(cardtable, (intptr_t)ct->byte_map_base);
5412   addptr(card_addr, cardtable);
5413 
5414   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
5415   jcc(Assembler::equal, done);
5416 
5417   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
5418   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5419   jcc(Assembler::equal, done);
5420 
5421 
5422   // storing a region crossing, non-NULL oop, card is clean.
5423   // dirty card and log.
5424 
5425   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5426 
5427   cmpl(queue_index, 0);
5428   jcc(Assembler::equal, runtime);
5429   subl(queue_index, wordSize);
5430   movptr(tmp2, buffer);
5431 #ifdef _LP64
5432   movslq(rscratch1, queue_index);
5433   addq(tmp2, rscratch1);
5434   movq(Address(tmp2, 0), card_addr);
5435 #else
5436   addl(tmp2, queue_index);
5437   movl(Address(tmp2, 0), card_addr);
5438 #endif
5439   jmp(done);
5440 
5441   bind(runtime);
5442   // save the live input values
5443   push(store_addr);
5444   push(new_val);
5445 #ifdef _LP64
5446   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
5447 #else
5448   push(thread);
5449   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
5450   pop(thread);
5451 #endif
5452   pop(new_val);
5453   pop(store_addr);
5454 
5455   bind(done);
5456 }
5457 
5458 #endif // INCLUDE_ALL_GCS
5459 //////////////////////////////////////////////////////////////////////////////////
5460 
5461 
5462 void MacroAssembler::store_check(Register obj, Address dst) {
5463   store_check(obj);
5464 }
5465 
5466 void MacroAssembler::store_check(Register obj) {
5467   // Does a store check for the oop in register obj. The content of
5468   // register obj is destroyed afterwards.
5469   BarrierSet* bs = Universe::heap()->barrier_set();
5470   assert(bs->kind() == BarrierSet::CardTableForRS ||
5471          bs->kind() == BarrierSet::CardTableExtension,
5472          "Wrong barrier set kind");
5473 
5474   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
5475   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5476 
5477   shrptr(obj, CardTableModRefBS::card_shift);
5478 
5479   Address card_addr;
5480 
5481   // The calculation for byte_map_base is as follows:
5482   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
5483   // So this essentially converts an address to a displacement and it will
5484   // never need to be relocated. On 64bit however the value may be too
5485   // large for a 32bit displacement.
5486   intptr_t disp = (intptr_t) ct->byte_map_base;
5487   if (is_simm32(disp)) {
5488     card_addr = Address(noreg, obj, Address::times_1, disp);
5489   } else {
5490     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
5491     // displacement and done in a single instruction given favorable mapping and a
5492     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
5493     // entry and that entry is not properly handled by the relocation code.
5494     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
5495     Address index(noreg, obj, Address::times_1);
5496     card_addr = as_Address(ArrayAddress(cardtable, index));
5497   }
5498 
5499   int dirty = CardTableModRefBS::dirty_card_val();
5500   if (UseCondCardMark) {
5501     Label L_already_dirty;
5502     if (UseConcMarkSweepGC) {
5503       membar(Assembler::StoreLoad);
5504     }
5505     cmpb(card_addr, dirty);
5506     jcc(Assembler::equal, L_already_dirty);
5507     movb(card_addr, dirty);
5508     bind(L_already_dirty);
5509   } else {
5510     movb(card_addr, dirty);
5511   }
5512 }
5513 
5514 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5515   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5516 }
5517 
5518 // Force generation of a 4 byte immediate value even if it fits into 8bit
5519 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5520   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5521 }
5522 
5523 void MacroAssembler::subptr(Register dst, Register src) {
5524   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5525 }
5526 
5527 // C++ bool manipulation
5528 void MacroAssembler::testbool(Register dst) {
5529   if(sizeof(bool) == 1)
5530     testb(dst, 0xff);
5531   else if(sizeof(bool) == 2) {
5532     // testw implementation needed for two byte bools
5533     ShouldNotReachHere();
5534   } else if(sizeof(bool) == 4)
5535     testl(dst, dst);
5536   else
5537     // unsupported
5538     ShouldNotReachHere();
5539 }
5540 
5541 void MacroAssembler::testptr(Register dst, Register src) {
5542   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5543 }
5544 
5545 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5546 void MacroAssembler::tlab_allocate(Register obj,
5547                                    Register var_size_in_bytes,
5548                                    int con_size_in_bytes,
5549                                    Register t1,
5550                                    Register t2,
5551                                    Label& slow_case) {
5552   assert_different_registers(obj, t1, t2);
5553   assert_different_registers(obj, var_size_in_bytes, t1);
5554   Register end = t2;
5555   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
5556 
5557   verify_tlab();
5558 
5559   NOT_LP64(get_thread(thread));
5560 
5561   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
5562   if (var_size_in_bytes == noreg) {
5563     lea(end, Address(obj, con_size_in_bytes));
5564   } else {
5565     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
5566   }
5567   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
5568   jcc(Assembler::above, slow_case);
5569 
5570   // update the tlab top pointer
5571   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
5572 
5573   // recover var_size_in_bytes if necessary
5574   if (var_size_in_bytes == end) {
5575     subptr(var_size_in_bytes, obj);
5576   }
5577   verify_tlab();
5578 }
5579 
5580 // Preserves rbx, and rdx.
5581 Register MacroAssembler::tlab_refill(Label& retry,
5582                                      Label& try_eden,
5583                                      Label& slow_case) {
5584   Register top = rax;
5585   Register t1  = rcx; // object size
5586   Register t2  = rsi;
5587   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
5588   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
5589   Label do_refill, discard_tlab;
5590 
5591   if (!Universe::heap()->supports_inline_contig_alloc()) {
5592     // No allocation in the shared eden.
5593     jmp(slow_case);
5594   }
5595 
5596   NOT_LP64(get_thread(thread_reg));
5597 
5598   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5599   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5600 
5601   // calculate amount of free space
5602   subptr(t1, top);
5603   shrptr(t1, LogHeapWordSize);
5604 
5605   // Retain tlab and allocate object in shared space if
5606   // the amount free in the tlab is too large to discard.
5607   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
5608   jcc(Assembler::lessEqual, discard_tlab);
5609 
5610   // Retain
5611   // %%% yuck as movptr...
5612   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
5613   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
5614   if (TLABStats) {
5615     // increment number of slow_allocations
5616     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
5617   }
5618   jmp(try_eden);
5619 
5620   bind(discard_tlab);
5621   if (TLABStats) {
5622     // increment number of refills
5623     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
5624     // accumulate wastage -- t1 is amount free in tlab
5625     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
5626   }
5627 
5628   // if tlab is currently allocated (top or end != null) then
5629   // fill [top, end + alignment_reserve) with array object
5630   testptr(top, top);
5631   jcc(Assembler::zero, do_refill);
5632 
5633   // set up the mark word
5634   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
5635   // set the length to the remaining space
5636   subptr(t1, typeArrayOopDesc::header_size(T_INT));
5637   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
5638   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
5639   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
5640   // set klass to intArrayKlass
5641   // dubious reloc why not an oop reloc?
5642   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
5643   // store klass last.  concurrent gcs assumes klass length is valid if
5644   // klass field is not null.
5645   store_klass(top, t1);
5646 
5647   movptr(t1, top);
5648   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5649   incr_allocated_bytes(thread_reg, t1, 0);
5650 
5651   // refill the tlab with an eden allocation
5652   bind(do_refill);
5653   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5654   shlptr(t1, LogHeapWordSize);
5655   // allocate new tlab, address returned in top
5656   eden_allocate(top, t1, 0, t2, slow_case);
5657 
5658   // Check that t1 was preserved in eden_allocate.
5659 #ifdef ASSERT
5660   if (UseTLAB) {
5661     Label ok;
5662     Register tsize = rsi;
5663     assert_different_registers(tsize, thread_reg, t1);
5664     push(tsize);
5665     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5666     shlptr(tsize, LogHeapWordSize);
5667     cmpptr(t1, tsize);
5668     jcc(Assembler::equal, ok);
5669     STOP("assert(t1 != tlab size)");
5670     should_not_reach_here();
5671 
5672     bind(ok);
5673     pop(tsize);
5674   }
5675 #endif
5676   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
5677   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
5678   addptr(top, t1);
5679   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
5680   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
5681 
5682   if (ZeroTLAB) {
5683     // This is a fast TLAB refill, therefore the GC is not notified of it.
5684     // So compiled code must fill the new TLAB with zeroes.
5685     movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5686     zero_memory(top, t1, 0, t2);
5687   }
5688 
5689   verify_tlab();
5690   jmp(retry);
5691 
5692   return thread_reg; // for use by caller
5693 }
5694 
5695 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5696 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5697   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5698   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5699   Label done;
5700 
5701   testptr(length_in_bytes, length_in_bytes);
5702   jcc(Assembler::zero, done);
5703 
5704   // initialize topmost word, divide index by 2, check if odd and test if zero
5705   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5706 #ifdef ASSERT
5707   {
5708     Label L;
5709     testptr(length_in_bytes, BytesPerWord - 1);
5710     jcc(Assembler::zero, L);
5711     stop("length must be a multiple of BytesPerWord");
5712     bind(L);
5713   }
5714 #endif
5715   Register index = length_in_bytes;
5716   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5717   if (UseIncDec) {
5718     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5719   } else {
5720     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5721     shrptr(index, 1);
5722   }
5723 #ifndef _LP64
5724   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5725   {
5726     Label even;
5727     // note: if index was a multiple of 8, then it cannot
5728     //       be 0 now otherwise it must have been 0 before
5729     //       => if it is even, we don't need to check for 0 again
5730     jcc(Assembler::carryClear, even);
5731     // clear topmost word (no jump would be needed if conditional assignment worked here)
5732     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5733     // index could be 0 now, must check again
5734     jcc(Assembler::zero, done);
5735     bind(even);
5736   }
5737 #endif // !_LP64
5738   // initialize remaining object fields: index is a multiple of 2 now
5739   {
5740     Label loop;
5741     bind(loop);
5742     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5743     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5744     decrement(index);
5745     jcc(Assembler::notZero, loop);
5746   }
5747 
5748   bind(done);
5749 }
5750 
5751 void MacroAssembler::incr_allocated_bytes(Register thread,
5752                                           Register var_size_in_bytes,
5753                                           int con_size_in_bytes,
5754                                           Register t1) {
5755   if (!thread->is_valid()) {
5756 #ifdef _LP64
5757     thread = r15_thread;
5758 #else
5759     assert(t1->is_valid(), "need temp reg");
5760     thread = t1;
5761     get_thread(thread);
5762 #endif
5763   }
5764 
5765 #ifdef _LP64
5766   if (var_size_in_bytes->is_valid()) {
5767     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5768   } else {
5769     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5770   }
5771 #else
5772   if (var_size_in_bytes->is_valid()) {
5773     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5774   } else {
5775     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5776   }
5777   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
5778 #endif
5779 }
5780 
5781 // Look up the method for a megamorphic invokeinterface call.
5782 // The target method is determined by <intf_klass, itable_index>.
5783 // The receiver klass is in recv_klass.
5784 // On success, the result will be in method_result, and execution falls through.
5785 // On failure, execution transfers to the given label.
5786 void MacroAssembler::lookup_interface_method(Register recv_klass,
5787                                              Register intf_klass,
5788                                              RegisterOrConstant itable_index,
5789                                              Register method_result,
5790                                              Register scan_temp,
5791                                              Label& L_no_such_interface) {
5792   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
5793   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5794          "caller must use same register for non-constant itable index as for method");
5795 
5796   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5797   int vtable_base = in_bytes(Klass::vtable_start_offset());
5798   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5799   int scan_step   = itableOffsetEntry::size() * wordSize;
5800   int vte_size    = vtableEntry::size_in_bytes();
5801   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5802   assert(vte_size == wordSize, "else adjust times_vte_scale");
5803 
5804   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
5805 
5806   // %%% Could store the aligned, prescaled offset in the klassoop.
5807   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5808 
5809   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5810   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5811   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5812 
5813   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5814   //   if (scan->interface() == intf) {
5815   //     result = (klass + scan->offset() + itable_index);
5816   //   }
5817   // }
5818   Label search, found_method;
5819 
5820   for (int peel = 1; peel >= 0; peel--) {
5821     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5822     cmpptr(intf_klass, method_result);
5823 
5824     if (peel) {
5825       jccb(Assembler::equal, found_method);
5826     } else {
5827       jccb(Assembler::notEqual, search);
5828       // (invert the test to fall through to found_method...)
5829     }
5830 
5831     if (!peel)  break;
5832 
5833     bind(search);
5834 
5835     // Check that the previous entry is non-null.  A null entry means that
5836     // the receiver class doesn't implement the interface, and wasn't the
5837     // same as when the caller was compiled.
5838     testptr(method_result, method_result);
5839     jcc(Assembler::zero, L_no_such_interface);
5840     addptr(scan_temp, scan_step);
5841   }
5842 
5843   bind(found_method);
5844 
5845   // Got a hit.
5846   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5847   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5848 }
5849 
5850 
5851 // virtual method calling
5852 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5853                                            RegisterOrConstant vtable_index,
5854                                            Register method_result) {
5855   const int base = in_bytes(Klass::vtable_start_offset());
5856   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5857   Address vtable_entry_addr(recv_klass,
5858                             vtable_index, Address::times_ptr,
5859                             base + vtableEntry::method_offset_in_bytes());
5860   movptr(method_result, vtable_entry_addr);
5861 }
5862 
5863 
5864 void MacroAssembler::check_klass_subtype(Register sub_klass,
5865                            Register super_klass,
5866                            Register temp_reg,
5867                            Label& L_success) {
5868   Label L_failure;
5869   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5870   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5871   bind(L_failure);
5872 }
5873 
5874 
5875 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5876                                                    Register super_klass,
5877                                                    Register temp_reg,
5878                                                    Label* L_success,
5879                                                    Label* L_failure,
5880                                                    Label* L_slow_path,
5881                                         RegisterOrConstant super_check_offset) {
5882   assert_different_registers(sub_klass, super_klass, temp_reg);
5883   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5884   if (super_check_offset.is_register()) {
5885     assert_different_registers(sub_klass, super_klass,
5886                                super_check_offset.as_register());
5887   } else if (must_load_sco) {
5888     assert(temp_reg != noreg, "supply either a temp or a register offset");
5889   }
5890 
5891   Label L_fallthrough;
5892   int label_nulls = 0;
5893   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5894   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5895   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5896   assert(label_nulls <= 1, "at most one NULL in the batch");
5897 
5898   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5899   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5900   Address super_check_offset_addr(super_klass, sco_offset);
5901 
5902   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5903   // range of a jccb.  If this routine grows larger, reconsider at
5904   // least some of these.
5905 #define local_jcc(assembler_cond, label)                                \
5906   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5907   else                             jcc( assembler_cond, label) /*omit semi*/
5908 
5909   // Hacked jmp, which may only be used just before L_fallthrough.
5910 #define final_jmp(label)                                                \
5911   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5912   else                            jmp(label)                /*omit semi*/
5913 
5914   // If the pointers are equal, we are done (e.g., String[] elements).
5915   // This self-check enables sharing of secondary supertype arrays among
5916   // non-primary types such as array-of-interface.  Otherwise, each such
5917   // type would need its own customized SSA.
5918   // We move this check to the front of the fast path because many
5919   // type checks are in fact trivially successful in this manner,
5920   // so we get a nicely predicted branch right at the start of the check.
5921   cmpptr(sub_klass, super_klass);
5922   local_jcc(Assembler::equal, *L_success);
5923 
5924   // Check the supertype display:
5925   if (must_load_sco) {
5926     // Positive movl does right thing on LP64.
5927     movl(temp_reg, super_check_offset_addr);
5928     super_check_offset = RegisterOrConstant(temp_reg);
5929   }
5930   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5931   cmpptr(super_klass, super_check_addr); // load displayed supertype
5932 
5933   // This check has worked decisively for primary supers.
5934   // Secondary supers are sought in the super_cache ('super_cache_addr').
5935   // (Secondary supers are interfaces and very deeply nested subtypes.)
5936   // This works in the same check above because of a tricky aliasing
5937   // between the super_cache and the primary super display elements.
5938   // (The 'super_check_addr' can address either, as the case requires.)
5939   // Note that the cache is updated below if it does not help us find
5940   // what we need immediately.
5941   // So if it was a primary super, we can just fail immediately.
5942   // Otherwise, it's the slow path for us (no success at this point).
5943 
5944   if (super_check_offset.is_register()) {
5945     local_jcc(Assembler::equal, *L_success);
5946     cmpl(super_check_offset.as_register(), sc_offset);
5947     if (L_failure == &L_fallthrough) {
5948       local_jcc(Assembler::equal, *L_slow_path);
5949     } else {
5950       local_jcc(Assembler::notEqual, *L_failure);
5951       final_jmp(*L_slow_path);
5952     }
5953   } else if (super_check_offset.as_constant() == sc_offset) {
5954     // Need a slow path; fast failure is impossible.
5955     if (L_slow_path == &L_fallthrough) {
5956       local_jcc(Assembler::equal, *L_success);
5957     } else {
5958       local_jcc(Assembler::notEqual, *L_slow_path);
5959       final_jmp(*L_success);
5960     }
5961   } else {
5962     // No slow path; it's a fast decision.
5963     if (L_failure == &L_fallthrough) {
5964       local_jcc(Assembler::equal, *L_success);
5965     } else {
5966       local_jcc(Assembler::notEqual, *L_failure);
5967       final_jmp(*L_success);
5968     }
5969   }
5970 
5971   bind(L_fallthrough);
5972 
5973 #undef local_jcc
5974 #undef final_jmp
5975 }
5976 
5977 
5978 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5979                                                    Register super_klass,
5980                                                    Register temp_reg,
5981                                                    Register temp2_reg,
5982                                                    Label* L_success,
5983                                                    Label* L_failure,
5984                                                    bool set_cond_codes) {
5985   assert_different_registers(sub_klass, super_klass, temp_reg);
5986   if (temp2_reg != noreg)
5987     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5988 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5989 
5990   Label L_fallthrough;
5991   int label_nulls = 0;
5992   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5993   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5994   assert(label_nulls <= 1, "at most one NULL in the batch");
5995 
5996   // a couple of useful fields in sub_klass:
5997   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5998   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5999   Address secondary_supers_addr(sub_klass, ss_offset);
6000   Address super_cache_addr(     sub_klass, sc_offset);
6001 
6002   // Do a linear scan of the secondary super-klass chain.
6003   // This code is rarely used, so simplicity is a virtue here.
6004   // The repne_scan instruction uses fixed registers, which we must spill.
6005   // Don't worry too much about pre-existing connections with the input regs.
6006 
6007   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
6008   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
6009 
6010   // Get super_klass value into rax (even if it was in rdi or rcx).
6011   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
6012   if (super_klass != rax || UseCompressedOops) {
6013     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
6014     mov(rax, super_klass);
6015   }
6016   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
6017   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
6018 
6019 #ifndef PRODUCT
6020   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
6021   ExternalAddress pst_counter_addr((address) pst_counter);
6022   NOT_LP64(  incrementl(pst_counter_addr) );
6023   LP64_ONLY( lea(rcx, pst_counter_addr) );
6024   LP64_ONLY( incrementl(Address(rcx, 0)) );
6025 #endif //PRODUCT
6026 
6027   // We will consult the secondary-super array.
6028   movptr(rdi, secondary_supers_addr);
6029   // Load the array length.  (Positive movl does right thing on LP64.)
6030   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
6031   // Skip to start of data.
6032   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
6033 
6034   // Scan RCX words at [RDI] for an occurrence of RAX.
6035   // Set NZ/Z based on last compare.
6036   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
6037   // not change flags (only scas instruction which is repeated sets flags).
6038   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
6039 
6040     testptr(rax,rax); // Set Z = 0
6041     repne_scan();
6042 
6043   // Unspill the temp. registers:
6044   if (pushed_rdi)  pop(rdi);
6045   if (pushed_rcx)  pop(rcx);
6046   if (pushed_rax)  pop(rax);
6047 
6048   if (set_cond_codes) {
6049     // Special hack for the AD files:  rdi is guaranteed non-zero.
6050     assert(!pushed_rdi, "rdi must be left non-NULL");
6051     // Also, the condition codes are properly set Z/NZ on succeed/failure.
6052   }
6053 
6054   if (L_failure == &L_fallthrough)
6055         jccb(Assembler::notEqual, *L_failure);
6056   else  jcc(Assembler::notEqual, *L_failure);
6057 
6058   // Success.  Cache the super we found and proceed in triumph.
6059   movptr(super_cache_addr, super_klass);
6060 
6061   if (L_success != &L_fallthrough) {
6062     jmp(*L_success);
6063   }
6064 
6065 #undef IS_A_TEMP
6066 
6067   bind(L_fallthrough);
6068 }
6069 
6070 
6071 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
6072   if (VM_Version::supports_cmov()) {
6073     cmovl(cc, dst, src);
6074   } else {
6075     Label L;
6076     jccb(negate_condition(cc), L);
6077     movl(dst, src);
6078     bind(L);
6079   }
6080 }
6081 
6082 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
6083   if (VM_Version::supports_cmov()) {
6084     cmovl(cc, dst, src);
6085   } else {
6086     Label L;
6087     jccb(negate_condition(cc), L);
6088     movl(dst, src);
6089     bind(L);
6090   }
6091 }
6092 
6093 void MacroAssembler::verify_oop(Register reg, const char* s) {
6094   if (!VerifyOops) return;
6095 
6096   // Pass register number to verify_oop_subroutine
6097   const char* b = NULL;
6098   {
6099     ResourceMark rm;
6100     stringStream ss;
6101     ss.print("verify_oop: %s: %s", reg->name(), s);
6102     b = code_string(ss.as_string());
6103   }
6104   BLOCK_COMMENT("verify_oop {");
6105 #ifdef _LP64
6106   push(rscratch1);                    // save r10, trashed by movptr()
6107 #endif
6108   push(rax);                          // save rax,
6109   push(reg);                          // pass register argument
6110   ExternalAddress buffer((address) b);
6111   // avoid using pushptr, as it modifies scratch registers
6112   // and our contract is not to modify anything
6113   movptr(rax, buffer.addr());
6114   push(rax);
6115   // call indirectly to solve generation ordering problem
6116   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6117   call(rax);
6118   // Caller pops the arguments (oop, message) and restores rax, r10
6119   BLOCK_COMMENT("} verify_oop");
6120 }
6121 
6122 
6123 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
6124                                                       Register tmp,
6125                                                       int offset) {
6126   intptr_t value = *delayed_value_addr;
6127   if (value != 0)
6128     return RegisterOrConstant(value + offset);
6129 
6130   // load indirectly to solve generation ordering problem
6131   movptr(tmp, ExternalAddress((address) delayed_value_addr));
6132 
6133 #ifdef ASSERT
6134   { Label L;
6135     testptr(tmp, tmp);
6136     if (WizardMode) {
6137       const char* buf = NULL;
6138       {
6139         ResourceMark rm;
6140         stringStream ss;
6141         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
6142         buf = code_string(ss.as_string());
6143       }
6144       jcc(Assembler::notZero, L);
6145       STOP(buf);
6146     } else {
6147       jccb(Assembler::notZero, L);
6148       hlt();
6149     }
6150     bind(L);
6151   }
6152 #endif
6153 
6154   if (offset != 0)
6155     addptr(tmp, offset);
6156 
6157   return RegisterOrConstant(tmp);
6158 }
6159 
6160 
6161 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
6162                                          int extra_slot_offset) {
6163   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
6164   int stackElementSize = Interpreter::stackElementSize;
6165   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
6166 #ifdef ASSERT
6167   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
6168   assert(offset1 - offset == stackElementSize, "correct arithmetic");
6169 #endif
6170   Register             scale_reg    = noreg;
6171   Address::ScaleFactor scale_factor = Address::no_scale;
6172   if (arg_slot.is_constant()) {
6173     offset += arg_slot.as_constant() * stackElementSize;
6174   } else {
6175     scale_reg    = arg_slot.as_register();
6176     scale_factor = Address::times(stackElementSize);
6177   }
6178   offset += wordSize;           // return PC is on stack
6179   return Address(rsp, scale_reg, scale_factor, offset);
6180 }
6181 
6182 
6183 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
6184   if (!VerifyOops) return;
6185 
6186   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
6187   // Pass register number to verify_oop_subroutine
6188   const char* b = NULL;
6189   {
6190     ResourceMark rm;
6191     stringStream ss;
6192     ss.print("verify_oop_addr: %s", s);
6193     b = code_string(ss.as_string());
6194   }
6195 #ifdef _LP64
6196   push(rscratch1);                    // save r10, trashed by movptr()
6197 #endif
6198   push(rax);                          // save rax,
6199   // addr may contain rsp so we will have to adjust it based on the push
6200   // we just did (and on 64 bit we do two pushes)
6201   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
6202   // stores rax into addr which is backwards of what was intended.
6203   if (addr.uses(rsp)) {
6204     lea(rax, addr);
6205     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
6206   } else {
6207     pushptr(addr);
6208   }
6209 
6210   ExternalAddress buffer((address) b);
6211   // pass msg argument
6212   // avoid using pushptr, as it modifies scratch registers
6213   // and our contract is not to modify anything
6214   movptr(rax, buffer.addr());
6215   push(rax);
6216 
6217   // call indirectly to solve generation ordering problem
6218   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6219   call(rax);
6220   // Caller pops the arguments (addr, message) and restores rax, r10.
6221 }
6222 
6223 void MacroAssembler::verify_tlab() {
6224 #ifdef ASSERT
6225   if (UseTLAB && VerifyOops) {
6226     Label next, ok;
6227     Register t1 = rsi;
6228     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
6229 
6230     push(t1);
6231     NOT_LP64(push(thread_reg));
6232     NOT_LP64(get_thread(thread_reg));
6233 
6234     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6235     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
6236     jcc(Assembler::aboveEqual, next);
6237     STOP("assert(top >= start)");
6238     should_not_reach_here();
6239 
6240     bind(next);
6241     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
6242     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6243     jcc(Assembler::aboveEqual, ok);
6244     STOP("assert(top <= end)");
6245     should_not_reach_here();
6246 
6247     bind(ok);
6248     NOT_LP64(pop(thread_reg));
6249     pop(t1);
6250   }
6251 #endif
6252 }
6253 
6254 class ControlWord {
6255  public:
6256   int32_t _value;
6257 
6258   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
6259   int  precision_control() const       { return  (_value >>  8) & 3      ; }
6260   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6261   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6262   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6263   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6264   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6265   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6266 
6267   void print() const {
6268     // rounding control
6269     const char* rc;
6270     switch (rounding_control()) {
6271       case 0: rc = "round near"; break;
6272       case 1: rc = "round down"; break;
6273       case 2: rc = "round up  "; break;
6274       case 3: rc = "chop      "; break;
6275     };
6276     // precision control
6277     const char* pc;
6278     switch (precision_control()) {
6279       case 0: pc = "24 bits "; break;
6280       case 1: pc = "reserved"; break;
6281       case 2: pc = "53 bits "; break;
6282       case 3: pc = "64 bits "; break;
6283     };
6284     // flags
6285     char f[9];
6286     f[0] = ' ';
6287     f[1] = ' ';
6288     f[2] = (precision   ()) ? 'P' : 'p';
6289     f[3] = (underflow   ()) ? 'U' : 'u';
6290     f[4] = (overflow    ()) ? 'O' : 'o';
6291     f[5] = (zero_divide ()) ? 'Z' : 'z';
6292     f[6] = (denormalized()) ? 'D' : 'd';
6293     f[7] = (invalid     ()) ? 'I' : 'i';
6294     f[8] = '\x0';
6295     // output
6296     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
6297   }
6298 
6299 };
6300 
6301 class StatusWord {
6302  public:
6303   int32_t _value;
6304 
6305   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
6306   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
6307   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
6308   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
6309   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
6310   int  top() const                     { return  (_value >> 11) & 7      ; }
6311   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
6312   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
6313   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6314   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6315   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6316   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6317   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6318   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6319 
6320   void print() const {
6321     // condition codes
6322     char c[5];
6323     c[0] = (C3()) ? '3' : '-';
6324     c[1] = (C2()) ? '2' : '-';
6325     c[2] = (C1()) ? '1' : '-';
6326     c[3] = (C0()) ? '0' : '-';
6327     c[4] = '\x0';
6328     // flags
6329     char f[9];
6330     f[0] = (error_status()) ? 'E' : '-';
6331     f[1] = (stack_fault ()) ? 'S' : '-';
6332     f[2] = (precision   ()) ? 'P' : '-';
6333     f[3] = (underflow   ()) ? 'U' : '-';
6334     f[4] = (overflow    ()) ? 'O' : '-';
6335     f[5] = (zero_divide ()) ? 'Z' : '-';
6336     f[6] = (denormalized()) ? 'D' : '-';
6337     f[7] = (invalid     ()) ? 'I' : '-';
6338     f[8] = '\x0';
6339     // output
6340     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
6341   }
6342 
6343 };
6344 
6345 class TagWord {
6346  public:
6347   int32_t _value;
6348 
6349   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
6350 
6351   void print() const {
6352     printf("%04x", _value & 0xFFFF);
6353   }
6354 
6355 };
6356 
6357 class FPU_Register {
6358  public:
6359   int32_t _m0;
6360   int32_t _m1;
6361   int16_t _ex;
6362 
6363   bool is_indefinite() const           {
6364     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
6365   }
6366 
6367   void print() const {
6368     char  sign = (_ex < 0) ? '-' : '+';
6369     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
6370     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
6371   };
6372 
6373 };
6374 
6375 class FPU_State {
6376  public:
6377   enum {
6378     register_size       = 10,
6379     number_of_registers =  8,
6380     register_mask       =  7
6381   };
6382 
6383   ControlWord  _control_word;
6384   StatusWord   _status_word;
6385   TagWord      _tag_word;
6386   int32_t      _error_offset;
6387   int32_t      _error_selector;
6388   int32_t      _data_offset;
6389   int32_t      _data_selector;
6390   int8_t       _register[register_size * number_of_registers];
6391 
6392   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
6393   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
6394 
6395   const char* tag_as_string(int tag) const {
6396     switch (tag) {
6397       case 0: return "valid";
6398       case 1: return "zero";
6399       case 2: return "special";
6400       case 3: return "empty";
6401     }
6402     ShouldNotReachHere();
6403     return NULL;
6404   }
6405 
6406   void print() const {
6407     // print computation registers
6408     { int t = _status_word.top();
6409       for (int i = 0; i < number_of_registers; i++) {
6410         int j = (i - t) & register_mask;
6411         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
6412         st(j)->print();
6413         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
6414       }
6415     }
6416     printf("\n");
6417     // print control registers
6418     printf("ctrl = "); _control_word.print(); printf("\n");
6419     printf("stat = "); _status_word .print(); printf("\n");
6420     printf("tags = "); _tag_word    .print(); printf("\n");
6421   }
6422 
6423 };
6424 
6425 class Flag_Register {
6426  public:
6427   int32_t _value;
6428 
6429   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
6430   bool direction() const               { return ((_value >> 10) & 1) != 0; }
6431   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
6432   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
6433   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
6434   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
6435   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
6436 
6437   void print() const {
6438     // flags
6439     char f[8];
6440     f[0] = (overflow       ()) ? 'O' : '-';
6441     f[1] = (direction      ()) ? 'D' : '-';
6442     f[2] = (sign           ()) ? 'S' : '-';
6443     f[3] = (zero           ()) ? 'Z' : '-';
6444     f[4] = (auxiliary_carry()) ? 'A' : '-';
6445     f[5] = (parity         ()) ? 'P' : '-';
6446     f[6] = (carry          ()) ? 'C' : '-';
6447     f[7] = '\x0';
6448     // output
6449     printf("%08x  flags = %s", _value, f);
6450   }
6451 
6452 };
6453 
6454 class IU_Register {
6455  public:
6456   int32_t _value;
6457 
6458   void print() const {
6459     printf("%08x  %11d", _value, _value);
6460   }
6461 
6462 };
6463 
6464 class IU_State {
6465  public:
6466   Flag_Register _eflags;
6467   IU_Register   _rdi;
6468   IU_Register   _rsi;
6469   IU_Register   _rbp;
6470   IU_Register   _rsp;
6471   IU_Register   _rbx;
6472   IU_Register   _rdx;
6473   IU_Register   _rcx;
6474   IU_Register   _rax;
6475 
6476   void print() const {
6477     // computation registers
6478     printf("rax,  = "); _rax.print(); printf("\n");
6479     printf("rbx,  = "); _rbx.print(); printf("\n");
6480     printf("rcx  = "); _rcx.print(); printf("\n");
6481     printf("rdx  = "); _rdx.print(); printf("\n");
6482     printf("rdi  = "); _rdi.print(); printf("\n");
6483     printf("rsi  = "); _rsi.print(); printf("\n");
6484     printf("rbp,  = "); _rbp.print(); printf("\n");
6485     printf("rsp  = "); _rsp.print(); printf("\n");
6486     printf("\n");
6487     // control registers
6488     printf("flgs = "); _eflags.print(); printf("\n");
6489   }
6490 };
6491 
6492 
6493 class CPU_State {
6494  public:
6495   FPU_State _fpu_state;
6496   IU_State  _iu_state;
6497 
6498   void print() const {
6499     printf("--------------------------------------------------\n");
6500     _iu_state .print();
6501     printf("\n");
6502     _fpu_state.print();
6503     printf("--------------------------------------------------\n");
6504   }
6505 
6506 };
6507 
6508 
6509 static void _print_CPU_state(CPU_State* state) {
6510   state->print();
6511 };
6512 
6513 
6514 void MacroAssembler::print_CPU_state() {
6515   push_CPU_state();
6516   push(rsp);                // pass CPU state
6517   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6518   addptr(rsp, wordSize);       // discard argument
6519   pop_CPU_state();
6520 }
6521 
6522 
6523 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6524   static int counter = 0;
6525   FPU_State* fs = &state->_fpu_state;
6526   counter++;
6527   // For leaf calls, only verify that the top few elements remain empty.
6528   // We only need 1 empty at the top for C2 code.
6529   if( stack_depth < 0 ) {
6530     if( fs->tag_for_st(7) != 3 ) {
6531       printf("FPR7 not empty\n");
6532       state->print();
6533       assert(false, "error");
6534       return false;
6535     }
6536     return true;                // All other stack states do not matter
6537   }
6538 
6539   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6540          "bad FPU control word");
6541 
6542   // compute stack depth
6543   int i = 0;
6544   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6545   int d = i;
6546   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6547   // verify findings
6548   if (i != FPU_State::number_of_registers) {
6549     // stack not contiguous
6550     printf("%s: stack not contiguous at ST%d\n", s, i);
6551     state->print();
6552     assert(false, "error");
6553     return false;
6554   }
6555   // check if computed stack depth corresponds to expected stack depth
6556   if (stack_depth < 0) {
6557     // expected stack depth is -stack_depth or less
6558     if (d > -stack_depth) {
6559       // too many elements on the stack
6560       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6561       state->print();
6562       assert(false, "error");
6563       return false;
6564     }
6565   } else {
6566     // expected stack depth is stack_depth
6567     if (d != stack_depth) {
6568       // wrong stack depth
6569       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6570       state->print();
6571       assert(false, "error");
6572       return false;
6573     }
6574   }
6575   // everything is cool
6576   return true;
6577 }
6578 
6579 
6580 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6581   if (!VerifyFPU) return;
6582   push_CPU_state();
6583   push(rsp);                // pass CPU state
6584   ExternalAddress msg((address) s);
6585   // pass message string s
6586   pushptr(msg.addr());
6587   push(stack_depth);        // pass stack depth
6588   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6589   addptr(rsp, 3 * wordSize);   // discard arguments
6590   // check for error
6591   { Label L;
6592     testl(rax, rax);
6593     jcc(Assembler::notZero, L);
6594     int3();                  // break if error condition
6595     bind(L);
6596   }
6597   pop_CPU_state();
6598 }
6599 
6600 void MacroAssembler::restore_cpu_control_state_after_jni() {
6601   // Either restore the MXCSR register after returning from the JNI Call
6602   // or verify that it wasn't changed (with -Xcheck:jni flag).
6603   if (VM_Version::supports_sse()) {
6604     if (RestoreMXCSROnJNICalls) {
6605       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6606     } else if (CheckJNICalls) {
6607       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6608     }
6609   }
6610   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6611   vzeroupper();
6612   // Reset k1 to 0xffff.
6613   if (VM_Version::supports_evex()) {
6614     push(rcx);
6615     movl(rcx, 0xffff);
6616     kmovwl(k1, rcx);
6617     pop(rcx);
6618   }
6619 
6620 #ifndef _LP64
6621   // Either restore the x87 floating pointer control word after returning
6622   // from the JNI call or verify that it wasn't changed.
6623   if (CheckJNICalls) {
6624     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6625   }
6626 #endif // _LP64
6627 }
6628 
6629 // ((OopHandle)result).resolve();
6630 void MacroAssembler::resolve_oop_handle(Register result) {
6631   // OopHandle::resolve is an indirection.
6632   movptr(result, Address(result, 0));
6633 }
6634 
6635 void MacroAssembler::load_mirror(Register mirror, Register method) {
6636   // get mirror
6637   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
6638   movptr(mirror, Address(method, Method::const_offset()));
6639   movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
6640   movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
6641   movptr(mirror, Address(mirror, mirror_offset));
6642   resolve_oop_handle(mirror);
6643 }
6644 
6645 void MacroAssembler::load_klass(Register dst, Register src) {
6646 #ifdef _LP64
6647   if (UseCompressedClassPointers) {
6648     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6649     decode_klass_not_null(dst);
6650   } else
6651 #endif
6652     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6653 }
6654 
6655 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6656   load_klass(dst, src);
6657   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6658 }
6659 
6660 void MacroAssembler::store_klass(Register dst, Register src) {
6661 #ifdef _LP64
6662   if (UseCompressedClassPointers) {
6663     encode_klass_not_null(src);
6664     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6665   } else
6666 #endif
6667     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6668 }
6669 
6670 void MacroAssembler::load_heap_oop(Register dst, Address src) {
6671 #ifdef _LP64
6672   // FIXME: Must change all places where we try to load the klass.
6673   if (UseCompressedOops) {
6674     movl(dst, src);
6675     decode_heap_oop(dst);
6676   } else
6677 #endif
6678     movptr(dst, src);
6679 }
6680 
6681 // Doesn't do verfication, generates fixed size code
6682 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
6683 #ifdef _LP64
6684   if (UseCompressedOops) {
6685     movl(dst, src);
6686     decode_heap_oop_not_null(dst);
6687   } else
6688 #endif
6689     movptr(dst, src);
6690 }
6691 
6692 void MacroAssembler::store_heap_oop(Address dst, Register src) {
6693 #ifdef _LP64
6694   if (UseCompressedOops) {
6695     assert(!dst.uses(src), "not enough registers");
6696     encode_heap_oop(src);
6697     movl(dst, src);
6698   } else
6699 #endif
6700     movptr(dst, src);
6701 }
6702 
6703 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
6704   assert_different_registers(src1, tmp);
6705 #ifdef _LP64
6706   if (UseCompressedOops) {
6707     bool did_push = false;
6708     if (tmp == noreg) {
6709       tmp = rax;
6710       push(tmp);
6711       did_push = true;
6712       assert(!src2.uses(rsp), "can't push");
6713     }
6714     load_heap_oop(tmp, src2);
6715     cmpptr(src1, tmp);
6716     if (did_push)  pop(tmp);
6717   } else
6718 #endif
6719     cmpptr(src1, src2);
6720 }
6721 
6722 // Used for storing NULLs.
6723 void MacroAssembler::store_heap_oop_null(Address dst) {
6724 #ifdef _LP64
6725   if (UseCompressedOops) {
6726     movl(dst, (int32_t)NULL_WORD);
6727   } else {
6728     movslq(dst, (int32_t)NULL_WORD);
6729   }
6730 #else
6731   movl(dst, (int32_t)NULL_WORD);
6732 #endif
6733 }
6734 
6735 #ifdef _LP64
6736 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6737   if (UseCompressedClassPointers) {
6738     // Store to klass gap in destination
6739     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6740   }
6741 }
6742 
6743 #ifdef ASSERT
6744 void MacroAssembler::verify_heapbase(const char* msg) {
6745   assert (UseCompressedOops, "should be compressed");
6746   assert (Universe::heap() != NULL, "java heap should be initialized");
6747   if (CheckCompressedOops) {
6748     Label ok;
6749     push(rscratch1); // cmpptr trashes rscratch1
6750     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6751     jcc(Assembler::equal, ok);
6752     STOP(msg);
6753     bind(ok);
6754     pop(rscratch1);
6755   }
6756 }
6757 #endif
6758 
6759 // Algorithm must match oop.inline.hpp encode_heap_oop.
6760 void MacroAssembler::encode_heap_oop(Register r) {
6761 #ifdef ASSERT
6762   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6763 #endif
6764   verify_oop(r, "broken oop in encode_heap_oop");
6765   if (Universe::narrow_oop_base() == NULL) {
6766     if (Universe::narrow_oop_shift() != 0) {
6767       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6768       shrq(r, LogMinObjAlignmentInBytes);
6769     }
6770     return;
6771   }
6772   testq(r, r);
6773   cmovq(Assembler::equal, r, r12_heapbase);
6774   subq(r, r12_heapbase);
6775   shrq(r, LogMinObjAlignmentInBytes);
6776 }
6777 
6778 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6779 #ifdef ASSERT
6780   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6781   if (CheckCompressedOops) {
6782     Label ok;
6783     testq(r, r);
6784     jcc(Assembler::notEqual, ok);
6785     STOP("null oop passed to encode_heap_oop_not_null");
6786     bind(ok);
6787   }
6788 #endif
6789   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6790   if (Universe::narrow_oop_base() != NULL) {
6791     subq(r, r12_heapbase);
6792   }
6793   if (Universe::narrow_oop_shift() != 0) {
6794     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6795     shrq(r, LogMinObjAlignmentInBytes);
6796   }
6797 }
6798 
6799 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6800 #ifdef ASSERT
6801   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6802   if (CheckCompressedOops) {
6803     Label ok;
6804     testq(src, src);
6805     jcc(Assembler::notEqual, ok);
6806     STOP("null oop passed to encode_heap_oop_not_null2");
6807     bind(ok);
6808   }
6809 #endif
6810   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6811   if (dst != src) {
6812     movq(dst, src);
6813   }
6814   if (Universe::narrow_oop_base() != NULL) {
6815     subq(dst, r12_heapbase);
6816   }
6817   if (Universe::narrow_oop_shift() != 0) {
6818     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6819     shrq(dst, LogMinObjAlignmentInBytes);
6820   }
6821 }
6822 
6823 void  MacroAssembler::decode_heap_oop(Register r) {
6824 #ifdef ASSERT
6825   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6826 #endif
6827   if (Universe::narrow_oop_base() == NULL) {
6828     if (Universe::narrow_oop_shift() != 0) {
6829       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6830       shlq(r, LogMinObjAlignmentInBytes);
6831     }
6832   } else {
6833     Label done;
6834     shlq(r, LogMinObjAlignmentInBytes);
6835     jccb(Assembler::equal, done);
6836     addq(r, r12_heapbase);
6837     bind(done);
6838   }
6839   verify_oop(r, "broken oop in decode_heap_oop");
6840 }
6841 
6842 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6843   // Note: it will change flags
6844   assert (UseCompressedOops, "should only be used for compressed headers");
6845   assert (Universe::heap() != NULL, "java heap should be initialized");
6846   // Cannot assert, unverified entry point counts instructions (see .ad file)
6847   // vtableStubs also counts instructions in pd_code_size_limit.
6848   // Also do not verify_oop as this is called by verify_oop.
6849   if (Universe::narrow_oop_shift() != 0) {
6850     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6851     shlq(r, LogMinObjAlignmentInBytes);
6852     if (Universe::narrow_oop_base() != NULL) {
6853       addq(r, r12_heapbase);
6854     }
6855   } else {
6856     assert (Universe::narrow_oop_base() == NULL, "sanity");
6857   }
6858 }
6859 
6860 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6861   // Note: it will change flags
6862   assert (UseCompressedOops, "should only be used for compressed headers");
6863   assert (Universe::heap() != NULL, "java heap should be initialized");
6864   // Cannot assert, unverified entry point counts instructions (see .ad file)
6865   // vtableStubs also counts instructions in pd_code_size_limit.
6866   // Also do not verify_oop as this is called by verify_oop.
6867   if (Universe::narrow_oop_shift() != 0) {
6868     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6869     if (LogMinObjAlignmentInBytes == Address::times_8) {
6870       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6871     } else {
6872       if (dst != src) {
6873         movq(dst, src);
6874       }
6875       shlq(dst, LogMinObjAlignmentInBytes);
6876       if (Universe::narrow_oop_base() != NULL) {
6877         addq(dst, r12_heapbase);
6878       }
6879     }
6880   } else {
6881     assert (Universe::narrow_oop_base() == NULL, "sanity");
6882     if (dst != src) {
6883       movq(dst, src);
6884     }
6885   }
6886 }
6887 
6888 void MacroAssembler::encode_klass_not_null(Register r) {
6889   if (Universe::narrow_klass_base() != NULL) {
6890     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6891     assert(r != r12_heapbase, "Encoding a klass in r12");
6892     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6893     subq(r, r12_heapbase);
6894   }
6895   if (Universe::narrow_klass_shift() != 0) {
6896     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6897     shrq(r, LogKlassAlignmentInBytes);
6898   }
6899   if (Universe::narrow_klass_base() != NULL) {
6900     reinit_heapbase();
6901   }
6902 }
6903 
6904 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6905   if (dst == src) {
6906     encode_klass_not_null(src);
6907   } else {
6908     if (Universe::narrow_klass_base() != NULL) {
6909       mov64(dst, (int64_t)Universe::narrow_klass_base());
6910       negq(dst);
6911       addq(dst, src);
6912     } else {
6913       movptr(dst, src);
6914     }
6915     if (Universe::narrow_klass_shift() != 0) {
6916       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6917       shrq(dst, LogKlassAlignmentInBytes);
6918     }
6919   }
6920 }
6921 
6922 // Function instr_size_for_decode_klass_not_null() counts the instructions
6923 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6924 // when (Universe::heap() != NULL).  Hence, if the instructions they
6925 // generate change, then this method needs to be updated.
6926 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6927   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6928   if (Universe::narrow_klass_base() != NULL) {
6929     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6930     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6931   } else {
6932     // longest load decode klass function, mov64, leaq
6933     return 16;
6934   }
6935 }
6936 
6937 // !!! If the instructions that get generated here change then function
6938 // instr_size_for_decode_klass_not_null() needs to get updated.
6939 void  MacroAssembler::decode_klass_not_null(Register r) {
6940   // Note: it will change flags
6941   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6942   assert(r != r12_heapbase, "Decoding a klass in r12");
6943   // Cannot assert, unverified entry point counts instructions (see .ad file)
6944   // vtableStubs also counts instructions in pd_code_size_limit.
6945   // Also do not verify_oop as this is called by verify_oop.
6946   if (Universe::narrow_klass_shift() != 0) {
6947     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6948     shlq(r, LogKlassAlignmentInBytes);
6949   }
6950   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6951   if (Universe::narrow_klass_base() != NULL) {
6952     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6953     addq(r, r12_heapbase);
6954     reinit_heapbase();
6955   }
6956 }
6957 
6958 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6959   // Note: it will change flags
6960   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6961   if (dst == src) {
6962     decode_klass_not_null(dst);
6963   } else {
6964     // Cannot assert, unverified entry point counts instructions (see .ad file)
6965     // vtableStubs also counts instructions in pd_code_size_limit.
6966     // Also do not verify_oop as this is called by verify_oop.
6967     mov64(dst, (int64_t)Universe::narrow_klass_base());
6968     if (Universe::narrow_klass_shift() != 0) {
6969       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6970       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6971       leaq(dst, Address(dst, src, Address::times_8, 0));
6972     } else {
6973       addq(dst, src);
6974     }
6975   }
6976 }
6977 
6978 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6979   assert (UseCompressedOops, "should only be used for compressed headers");
6980   assert (Universe::heap() != NULL, "java heap should be initialized");
6981   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6982   int oop_index = oop_recorder()->find_index(obj);
6983   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6984   mov_narrow_oop(dst, oop_index, rspec);
6985 }
6986 
6987 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6988   assert (UseCompressedOops, "should only be used for compressed headers");
6989   assert (Universe::heap() != NULL, "java heap should be initialized");
6990   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6991   int oop_index = oop_recorder()->find_index(obj);
6992   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6993   mov_narrow_oop(dst, oop_index, rspec);
6994 }
6995 
6996 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6997   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6998   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6999   int klass_index = oop_recorder()->find_index(k);
7000   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7001   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
7002 }
7003 
7004 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
7005   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7006   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7007   int klass_index = oop_recorder()->find_index(k);
7008   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7009   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
7010 }
7011 
7012 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
7013   assert (UseCompressedOops, "should only be used for compressed headers");
7014   assert (Universe::heap() != NULL, "java heap should be initialized");
7015   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7016   int oop_index = oop_recorder()->find_index(obj);
7017   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7018   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
7019 }
7020 
7021 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
7022   assert (UseCompressedOops, "should only be used for compressed headers");
7023   assert (Universe::heap() != NULL, "java heap should be initialized");
7024   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7025   int oop_index = oop_recorder()->find_index(obj);
7026   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7027   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
7028 }
7029 
7030 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
7031   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7032   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7033   int klass_index = oop_recorder()->find_index(k);
7034   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7035   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
7036 }
7037 
7038 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
7039   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7040   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7041   int klass_index = oop_recorder()->find_index(k);
7042   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7043   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
7044 }
7045 
7046 void MacroAssembler::reinit_heapbase() {
7047   if (UseCompressedOops || UseCompressedClassPointers) {
7048     if (Universe::heap() != NULL) {
7049       if (Universe::narrow_oop_base() == NULL) {
7050         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
7051       } else {
7052         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
7053       }
7054     } else {
7055       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
7056     }
7057   }
7058 }
7059 
7060 #endif // _LP64
7061 
7062 // C2 compiled method's prolog code.
7063 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
7064 
7065   // WARNING: Initial instruction MUST be 5 bytes or longer so that
7066   // NativeJump::patch_verified_entry will be able to patch out the entry
7067   // code safely. The push to verify stack depth is ok at 5 bytes,
7068   // the frame allocation can be either 3 or 6 bytes. So if we don't do
7069   // stack bang then we must use the 6 byte frame allocation even if
7070   // we have no frame. :-(
7071   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
7072 
7073   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
7074   // Remove word for return addr
7075   framesize -= wordSize;
7076   stack_bang_size -= wordSize;
7077 
7078   // Calls to C2R adapters often do not accept exceptional returns.
7079   // We require that their callers must bang for them.  But be careful, because
7080   // some VM calls (such as call site linkage) can use several kilobytes of
7081   // stack.  But the stack safety zone should account for that.
7082   // See bugs 4446381, 4468289, 4497237.
7083   if (stack_bang_size > 0) {
7084     generate_stack_overflow_check(stack_bang_size);
7085 
7086     // We always push rbp, so that on return to interpreter rbp, will be
7087     // restored correctly and we can correct the stack.
7088     push(rbp);
7089     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7090     if (PreserveFramePointer) {
7091       mov(rbp, rsp);
7092     }
7093     // Remove word for ebp
7094     framesize -= wordSize;
7095 
7096     // Create frame
7097     if (framesize) {
7098       subptr(rsp, framesize);
7099     }
7100   } else {
7101     // Create frame (force generation of a 4 byte immediate value)
7102     subptr_imm32(rsp, framesize);
7103 
7104     // Save RBP register now.
7105     framesize -= wordSize;
7106     movptr(Address(rsp, framesize), rbp);
7107     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7108     if (PreserveFramePointer) {
7109       movptr(rbp, rsp);
7110       if (framesize > 0) {
7111         addptr(rbp, framesize);
7112       }
7113     }
7114   }
7115 
7116   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
7117     framesize -= wordSize;
7118     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
7119   }
7120 
7121 #ifndef _LP64
7122   // If method sets FPU control word do it now
7123   if (fp_mode_24b) {
7124     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
7125   }
7126   if (UseSSE >= 2 && VerifyFPU) {
7127     verify_FPU(0, "FPU stack must be clean on entry");
7128   }
7129 #endif
7130 
7131 #ifdef ASSERT
7132   if (VerifyStackAtCalls) {
7133     Label L;
7134     push(rax);
7135     mov(rax, rsp);
7136     andptr(rax, StackAlignmentInBytes-1);
7137     cmpptr(rax, StackAlignmentInBytes-wordSize);
7138     pop(rax);
7139     jcc(Assembler::equal, L);
7140     STOP("Stack is not properly aligned!");
7141     bind(L);
7142   }
7143 #endif
7144 
7145 }
7146 
7147 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, bool is_large) {
7148   // cnt - number of qwords (8-byte words).
7149   // base - start address, qword aligned.
7150   // is_large - if optimizers know cnt is larger than InitArrayShortSize
7151   assert(base==rdi, "base register must be edi for rep stos");
7152   assert(tmp==rax,   "tmp register must be eax for rep stos");
7153   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
7154   assert(InitArrayShortSize % BytesPerLong == 0,
7155     "InitArrayShortSize should be the multiple of BytesPerLong");
7156 
7157   Label DONE;
7158 
7159   xorptr(tmp, tmp);
7160 
7161   if (!is_large) {
7162     Label LOOP, LONG;
7163     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
7164     jccb(Assembler::greater, LONG);
7165 
7166     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7167 
7168     decrement(cnt);
7169     jccb(Assembler::negative, DONE); // Zero length
7170 
7171     // Use individual pointer-sized stores for small counts:
7172     BIND(LOOP);
7173     movptr(Address(base, cnt, Address::times_ptr), tmp);
7174     decrement(cnt);
7175     jccb(Assembler::greaterEqual, LOOP);
7176     jmpb(DONE);
7177 
7178     BIND(LONG);
7179   }
7180 
7181   // Use longer rep-prefixed ops for non-small counts:
7182   if (UseFastStosb) {
7183     shlptr(cnt, 3); // convert to number of bytes
7184     rep_stosb();
7185   } else {
7186     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7187     rep_stos();
7188   }
7189 
7190   BIND(DONE);
7191 }
7192 
7193 #ifdef COMPILER2
7194 
7195 // IndexOf for constant substrings with size >= 8 chars
7196 // which don't need to be loaded through stack.
7197 void MacroAssembler::string_indexofC8(Register str1, Register str2,
7198                                       Register cnt1, Register cnt2,
7199                                       int int_cnt2,  Register result,
7200                                       XMMRegister vec, Register tmp,
7201                                       int ae) {
7202   ShortBranchVerifier sbv(this);
7203   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7204   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7205 
7206   // This method uses the pcmpestri instruction with bound registers
7207   //   inputs:
7208   //     xmm - substring
7209   //     rax - substring length (elements count)
7210   //     mem - scanned string
7211   //     rdx - string length (elements count)
7212   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7213   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7214   //   outputs:
7215   //     rcx - matched index in string
7216   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7217   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7218   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7219   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7220   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7221 
7222   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
7223         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
7224         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
7225 
7226   // Note, inline_string_indexOf() generates checks:
7227   // if (substr.count > string.count) return -1;
7228   // if (substr.count == 0) return 0;
7229   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
7230 
7231   // Load substring.
7232   if (ae == StrIntrinsicNode::UL) {
7233     pmovzxbw(vec, Address(str2, 0));
7234   } else {
7235     movdqu(vec, Address(str2, 0));
7236   }
7237   movl(cnt2, int_cnt2);
7238   movptr(result, str1); // string addr
7239 
7240   if (int_cnt2 > stride) {
7241     jmpb(SCAN_TO_SUBSTR);
7242 
7243     // Reload substr for rescan, this code
7244     // is executed only for large substrings (> 8 chars)
7245     bind(RELOAD_SUBSTR);
7246     if (ae == StrIntrinsicNode::UL) {
7247       pmovzxbw(vec, Address(str2, 0));
7248     } else {
7249       movdqu(vec, Address(str2, 0));
7250     }
7251     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
7252 
7253     bind(RELOAD_STR);
7254     // We came here after the beginning of the substring was
7255     // matched but the rest of it was not so we need to search
7256     // again. Start from the next element after the previous match.
7257 
7258     // cnt2 is number of substring reminding elements and
7259     // cnt1 is number of string reminding elements when cmp failed.
7260     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
7261     subl(cnt1, cnt2);
7262     addl(cnt1, int_cnt2);
7263     movl(cnt2, int_cnt2); // Now restore cnt2
7264 
7265     decrementl(cnt1);     // Shift to next element
7266     cmpl(cnt1, cnt2);
7267     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7268 
7269     addptr(result, (1<<scale1));
7270 
7271   } // (int_cnt2 > 8)
7272 
7273   // Scan string for start of substr in 16-byte vectors
7274   bind(SCAN_TO_SUBSTR);
7275   pcmpestri(vec, Address(result, 0), mode);
7276   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7277   subl(cnt1, stride);
7278   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7279   cmpl(cnt1, cnt2);
7280   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7281   addptr(result, 16);
7282   jmpb(SCAN_TO_SUBSTR);
7283 
7284   // Found a potential substr
7285   bind(FOUND_CANDIDATE);
7286   // Matched whole vector if first element matched (tmp(rcx) == 0).
7287   if (int_cnt2 == stride) {
7288     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
7289   } else { // int_cnt2 > 8
7290     jccb(Assembler::overflow, FOUND_SUBSTR);
7291   }
7292   // After pcmpestri tmp(rcx) contains matched element index
7293   // Compute start addr of substr
7294   lea(result, Address(result, tmp, scale1));
7295 
7296   // Make sure string is still long enough
7297   subl(cnt1, tmp);
7298   cmpl(cnt1, cnt2);
7299   if (int_cnt2 == stride) {
7300     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7301   } else { // int_cnt2 > 8
7302     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
7303   }
7304   // Left less then substring.
7305 
7306   bind(RET_NOT_FOUND);
7307   movl(result, -1);
7308   jmp(EXIT);
7309 
7310   if (int_cnt2 > stride) {
7311     // This code is optimized for the case when whole substring
7312     // is matched if its head is matched.
7313     bind(MATCH_SUBSTR_HEAD);
7314     pcmpestri(vec, Address(result, 0), mode);
7315     // Reload only string if does not match
7316     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
7317 
7318     Label CONT_SCAN_SUBSTR;
7319     // Compare the rest of substring (> 8 chars).
7320     bind(FOUND_SUBSTR);
7321     // First 8 chars are already matched.
7322     negptr(cnt2);
7323     addptr(cnt2, stride);
7324 
7325     bind(SCAN_SUBSTR);
7326     subl(cnt1, stride);
7327     cmpl(cnt2, -stride); // Do not read beyond substring
7328     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
7329     // Back-up strings to avoid reading beyond substring:
7330     // cnt1 = cnt1 - cnt2 + 8
7331     addl(cnt1, cnt2); // cnt2 is negative
7332     addl(cnt1, stride);
7333     movl(cnt2, stride); negptr(cnt2);
7334     bind(CONT_SCAN_SUBSTR);
7335     if (int_cnt2 < (int)G) {
7336       int tail_off1 = int_cnt2<<scale1;
7337       int tail_off2 = int_cnt2<<scale2;
7338       if (ae == StrIntrinsicNode::UL) {
7339         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
7340       } else {
7341         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
7342       }
7343       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
7344     } else {
7345       // calculate index in register to avoid integer overflow (int_cnt2*2)
7346       movl(tmp, int_cnt2);
7347       addptr(tmp, cnt2);
7348       if (ae == StrIntrinsicNode::UL) {
7349         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
7350       } else {
7351         movdqu(vec, Address(str2, tmp, scale2, 0));
7352       }
7353       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
7354     }
7355     // Need to reload strings pointers if not matched whole vector
7356     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7357     addptr(cnt2, stride);
7358     jcc(Assembler::negative, SCAN_SUBSTR);
7359     // Fall through if found full substring
7360 
7361   } // (int_cnt2 > 8)
7362 
7363   bind(RET_FOUND);
7364   // Found result if we matched full small substring.
7365   // Compute substr offset
7366   subptr(result, str1);
7367   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7368     shrl(result, 1); // index
7369   }
7370   bind(EXIT);
7371 
7372 } // string_indexofC8
7373 
7374 // Small strings are loaded through stack if they cross page boundary.
7375 void MacroAssembler::string_indexof(Register str1, Register str2,
7376                                     Register cnt1, Register cnt2,
7377                                     int int_cnt2,  Register result,
7378                                     XMMRegister vec, Register tmp,
7379                                     int ae) {
7380   ShortBranchVerifier sbv(this);
7381   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7382   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7383 
7384   //
7385   // int_cnt2 is length of small (< 8 chars) constant substring
7386   // or (-1) for non constant substring in which case its length
7387   // is in cnt2 register.
7388   //
7389   // Note, inline_string_indexOf() generates checks:
7390   // if (substr.count > string.count) return -1;
7391   // if (substr.count == 0) return 0;
7392   //
7393   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7394   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
7395   // This method uses the pcmpestri instruction with bound registers
7396   //   inputs:
7397   //     xmm - substring
7398   //     rax - substring length (elements count)
7399   //     mem - scanned string
7400   //     rdx - string length (elements count)
7401   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7402   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7403   //   outputs:
7404   //     rcx - matched index in string
7405   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7406   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7407   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7408   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7409 
7410   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
7411         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
7412         FOUND_CANDIDATE;
7413 
7414   { //========================================================
7415     // We don't know where these strings are located
7416     // and we can't read beyond them. Load them through stack.
7417     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
7418 
7419     movptr(tmp, rsp); // save old SP
7420 
7421     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
7422       if (int_cnt2 == (1>>scale2)) { // One byte
7423         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
7424         load_unsigned_byte(result, Address(str2, 0));
7425         movdl(vec, result); // move 32 bits
7426       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
7427         // Not enough header space in 32-bit VM: 12+3 = 15.
7428         movl(result, Address(str2, -1));
7429         shrl(result, 8);
7430         movdl(vec, result); // move 32 bits
7431       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
7432         load_unsigned_short(result, Address(str2, 0));
7433         movdl(vec, result); // move 32 bits
7434       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
7435         movdl(vec, Address(str2, 0)); // move 32 bits
7436       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
7437         movq(vec, Address(str2, 0));  // move 64 bits
7438       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
7439         // Array header size is 12 bytes in 32-bit VM
7440         // + 6 bytes for 3 chars == 18 bytes,
7441         // enough space to load vec and shift.
7442         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
7443         if (ae == StrIntrinsicNode::UL) {
7444           int tail_off = int_cnt2-8;
7445           pmovzxbw(vec, Address(str2, tail_off));
7446           psrldq(vec, -2*tail_off);
7447         }
7448         else {
7449           int tail_off = int_cnt2*(1<<scale2);
7450           movdqu(vec, Address(str2, tail_off-16));
7451           psrldq(vec, 16-tail_off);
7452         }
7453       }
7454     } else { // not constant substring
7455       cmpl(cnt2, stride);
7456       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
7457 
7458       // We can read beyond string if srt+16 does not cross page boundary
7459       // since heaps are aligned and mapped by pages.
7460       assert(os::vm_page_size() < (int)G, "default page should be small");
7461       movl(result, str2); // We need only low 32 bits
7462       andl(result, (os::vm_page_size()-1));
7463       cmpl(result, (os::vm_page_size()-16));
7464       jccb(Assembler::belowEqual, CHECK_STR);
7465 
7466       // Move small strings to stack to allow load 16 bytes into vec.
7467       subptr(rsp, 16);
7468       int stk_offset = wordSize-(1<<scale2);
7469       push(cnt2);
7470 
7471       bind(COPY_SUBSTR);
7472       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7473         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7474         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7475       } else if (ae == StrIntrinsicNode::UU) {
7476         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7477         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7478       }
7479       decrement(cnt2);
7480       jccb(Assembler::notZero, COPY_SUBSTR);
7481 
7482       pop(cnt2);
7483       movptr(str2, rsp);  // New substring address
7484     } // non constant
7485 
7486     bind(CHECK_STR);
7487     cmpl(cnt1, stride);
7488     jccb(Assembler::aboveEqual, BIG_STRINGS);
7489 
7490     // Check cross page boundary.
7491     movl(result, str1); // We need only low 32 bits
7492     andl(result, (os::vm_page_size()-1));
7493     cmpl(result, (os::vm_page_size()-16));
7494     jccb(Assembler::belowEqual, BIG_STRINGS);
7495 
7496     subptr(rsp, 16);
7497     int stk_offset = -(1<<scale1);
7498     if (int_cnt2 < 0) { // not constant
7499       push(cnt2);
7500       stk_offset += wordSize;
7501     }
7502     movl(cnt2, cnt1);
7503 
7504     bind(COPY_STR);
7505     if (ae == StrIntrinsicNode::LL) {
7506       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7507       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7508     } else {
7509       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7510       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7511     }
7512     decrement(cnt2);
7513     jccb(Assembler::notZero, COPY_STR);
7514 
7515     if (int_cnt2 < 0) { // not constant
7516       pop(cnt2);
7517     }
7518     movptr(str1, rsp);  // New string address
7519 
7520     bind(BIG_STRINGS);
7521     // Load substring.
7522     if (int_cnt2 < 0) { // -1
7523       if (ae == StrIntrinsicNode::UL) {
7524         pmovzxbw(vec, Address(str2, 0));
7525       } else {
7526         movdqu(vec, Address(str2, 0));
7527       }
7528       push(cnt2);       // substr count
7529       push(str2);       // substr addr
7530       push(str1);       // string addr
7531     } else {
7532       // Small (< 8 chars) constant substrings are loaded already.
7533       movl(cnt2, int_cnt2);
7534     }
7535     push(tmp);  // original SP
7536 
7537   } // Finished loading
7538 
7539   //========================================================
7540   // Start search
7541   //
7542 
7543   movptr(result, str1); // string addr
7544 
7545   if (int_cnt2  < 0) {  // Only for non constant substring
7546     jmpb(SCAN_TO_SUBSTR);
7547 
7548     // SP saved at sp+0
7549     // String saved at sp+1*wordSize
7550     // Substr saved at sp+2*wordSize
7551     // Substr count saved at sp+3*wordSize
7552 
7553     // Reload substr for rescan, this code
7554     // is executed only for large substrings (> 8 chars)
7555     bind(RELOAD_SUBSTR);
7556     movptr(str2, Address(rsp, 2*wordSize));
7557     movl(cnt2, Address(rsp, 3*wordSize));
7558     if (ae == StrIntrinsicNode::UL) {
7559       pmovzxbw(vec, Address(str2, 0));
7560     } else {
7561       movdqu(vec, Address(str2, 0));
7562     }
7563     // We came here after the beginning of the substring was
7564     // matched but the rest of it was not so we need to search
7565     // again. Start from the next element after the previous match.
7566     subptr(str1, result); // Restore counter
7567     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7568       shrl(str1, 1);
7569     }
7570     addl(cnt1, str1);
7571     decrementl(cnt1);   // Shift to next element
7572     cmpl(cnt1, cnt2);
7573     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7574 
7575     addptr(result, (1<<scale1));
7576   } // non constant
7577 
7578   // Scan string for start of substr in 16-byte vectors
7579   bind(SCAN_TO_SUBSTR);
7580   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7581   pcmpestri(vec, Address(result, 0), mode);
7582   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7583   subl(cnt1, stride);
7584   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7585   cmpl(cnt1, cnt2);
7586   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7587   addptr(result, 16);
7588 
7589   bind(ADJUST_STR);
7590   cmpl(cnt1, stride); // Do not read beyond string
7591   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7592   // Back-up string to avoid reading beyond string.
7593   lea(result, Address(result, cnt1, scale1, -16));
7594   movl(cnt1, stride);
7595   jmpb(SCAN_TO_SUBSTR);
7596 
7597   // Found a potential substr
7598   bind(FOUND_CANDIDATE);
7599   // After pcmpestri tmp(rcx) contains matched element index
7600 
7601   // Make sure string is still long enough
7602   subl(cnt1, tmp);
7603   cmpl(cnt1, cnt2);
7604   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7605   // Left less then substring.
7606 
7607   bind(RET_NOT_FOUND);
7608   movl(result, -1);
7609   jmpb(CLEANUP);
7610 
7611   bind(FOUND_SUBSTR);
7612   // Compute start addr of substr
7613   lea(result, Address(result, tmp, scale1));
7614   if (int_cnt2 > 0) { // Constant substring
7615     // Repeat search for small substring (< 8 chars)
7616     // from new point without reloading substring.
7617     // Have to check that we don't read beyond string.
7618     cmpl(tmp, stride-int_cnt2);
7619     jccb(Assembler::greater, ADJUST_STR);
7620     // Fall through if matched whole substring.
7621   } else { // non constant
7622     assert(int_cnt2 == -1, "should be != 0");
7623 
7624     addl(tmp, cnt2);
7625     // Found result if we matched whole substring.
7626     cmpl(tmp, stride);
7627     jccb(Assembler::lessEqual, RET_FOUND);
7628 
7629     // Repeat search for small substring (<= 8 chars)
7630     // from new point 'str1' without reloading substring.
7631     cmpl(cnt2, stride);
7632     // Have to check that we don't read beyond string.
7633     jccb(Assembler::lessEqual, ADJUST_STR);
7634 
7635     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7636     // Compare the rest of substring (> 8 chars).
7637     movptr(str1, result);
7638 
7639     cmpl(tmp, cnt2);
7640     // First 8 chars are already matched.
7641     jccb(Assembler::equal, CHECK_NEXT);
7642 
7643     bind(SCAN_SUBSTR);
7644     pcmpestri(vec, Address(str1, 0), mode);
7645     // Need to reload strings pointers if not matched whole vector
7646     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7647 
7648     bind(CHECK_NEXT);
7649     subl(cnt2, stride);
7650     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7651     addptr(str1, 16);
7652     if (ae == StrIntrinsicNode::UL) {
7653       addptr(str2, 8);
7654     } else {
7655       addptr(str2, 16);
7656     }
7657     subl(cnt1, stride);
7658     cmpl(cnt2, stride); // Do not read beyond substring
7659     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7660     // Back-up strings to avoid reading beyond substring.
7661 
7662     if (ae == StrIntrinsicNode::UL) {
7663       lea(str2, Address(str2, cnt2, scale2, -8));
7664       lea(str1, Address(str1, cnt2, scale1, -16));
7665     } else {
7666       lea(str2, Address(str2, cnt2, scale2, -16));
7667       lea(str1, Address(str1, cnt2, scale1, -16));
7668     }
7669     subl(cnt1, cnt2);
7670     movl(cnt2, stride);
7671     addl(cnt1, stride);
7672     bind(CONT_SCAN_SUBSTR);
7673     if (ae == StrIntrinsicNode::UL) {
7674       pmovzxbw(vec, Address(str2, 0));
7675     } else {
7676       movdqu(vec, Address(str2, 0));
7677     }
7678     jmp(SCAN_SUBSTR);
7679 
7680     bind(RET_FOUND_LONG);
7681     movptr(str1, Address(rsp, wordSize));
7682   } // non constant
7683 
7684   bind(RET_FOUND);
7685   // Compute substr offset
7686   subptr(result, str1);
7687   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7688     shrl(result, 1); // index
7689   }
7690   bind(CLEANUP);
7691   pop(rsp); // restore SP
7692 
7693 } // string_indexof
7694 
7695 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7696                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7697   ShortBranchVerifier sbv(this);
7698   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7699 
7700   int stride = 8;
7701 
7702   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7703         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7704         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7705         FOUND_SEQ_CHAR, DONE_LABEL;
7706 
7707   movptr(result, str1);
7708   if (UseAVX >= 2) {
7709     cmpl(cnt1, stride);
7710     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7711     cmpl(cnt1, 2*stride);
7712     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
7713     movdl(vec1, ch);
7714     vpbroadcastw(vec1, vec1);
7715     vpxor(vec2, vec2);
7716     movl(tmp, cnt1);
7717     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7718     andl(cnt1,0x0000000F);  //tail count (in chars)
7719 
7720     bind(SCAN_TO_16_CHAR_LOOP);
7721     vmovdqu(vec3, Address(result, 0));
7722     vpcmpeqw(vec3, vec3, vec1, 1);
7723     vptest(vec2, vec3);
7724     jcc(Assembler::carryClear, FOUND_CHAR);
7725     addptr(result, 32);
7726     subl(tmp, 2*stride);
7727     jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7728     jmp(SCAN_TO_8_CHAR);
7729     bind(SCAN_TO_8_CHAR_INIT);
7730     movdl(vec1, ch);
7731     pshuflw(vec1, vec1, 0x00);
7732     pshufd(vec1, vec1, 0);
7733     pxor(vec2, vec2);
7734   }
7735   bind(SCAN_TO_8_CHAR);
7736   cmpl(cnt1, stride);
7737   if (UseAVX >= 2) {
7738     jcc(Assembler::less, SCAN_TO_CHAR);
7739   } else {
7740     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7741     movdl(vec1, ch);
7742     pshuflw(vec1, vec1, 0x00);
7743     pshufd(vec1, vec1, 0);
7744     pxor(vec2, vec2);
7745   }
7746   movl(tmp, cnt1);
7747   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7748   andl(cnt1,0x00000007);  //tail count (in chars)
7749 
7750   bind(SCAN_TO_8_CHAR_LOOP);
7751   movdqu(vec3, Address(result, 0));
7752   pcmpeqw(vec3, vec1);
7753   ptest(vec2, vec3);
7754   jcc(Assembler::carryClear, FOUND_CHAR);
7755   addptr(result, 16);
7756   subl(tmp, stride);
7757   jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7758   bind(SCAN_TO_CHAR);
7759   testl(cnt1, cnt1);
7760   jcc(Assembler::zero, RET_NOT_FOUND);
7761   bind(SCAN_TO_CHAR_LOOP);
7762   load_unsigned_short(tmp, Address(result, 0));
7763   cmpl(ch, tmp);
7764   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7765   addptr(result, 2);
7766   subl(cnt1, 1);
7767   jccb(Assembler::zero, RET_NOT_FOUND);
7768   jmp(SCAN_TO_CHAR_LOOP);
7769 
7770   bind(RET_NOT_FOUND);
7771   movl(result, -1);
7772   jmpb(DONE_LABEL);
7773 
7774   bind(FOUND_CHAR);
7775   if (UseAVX >= 2) {
7776     vpmovmskb(tmp, vec3);
7777   } else {
7778     pmovmskb(tmp, vec3);
7779   }
7780   bsfl(ch, tmp);
7781   addl(result, ch);
7782 
7783   bind(FOUND_SEQ_CHAR);
7784   subptr(result, str1);
7785   shrl(result, 1);
7786 
7787   bind(DONE_LABEL);
7788 } // string_indexof_char
7789 
7790 // helper function for string_compare
7791 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7792                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7793                                         Address::ScaleFactor scale2, Register index, int ae) {
7794   if (ae == StrIntrinsicNode::LL) {
7795     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7796     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7797   } else if (ae == StrIntrinsicNode::UU) {
7798     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7799     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7800   } else {
7801     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7802     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7803   }
7804 }
7805 
7806 // Compare strings, used for char[] and byte[].
7807 void MacroAssembler::string_compare(Register str1, Register str2,
7808                                     Register cnt1, Register cnt2, Register result,
7809                                     XMMRegister vec1, int ae) {
7810   ShortBranchVerifier sbv(this);
7811   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7812   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7813   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7814   int stride2x2 = 0x40;
7815   Address::ScaleFactor scale = Address::no_scale;
7816   Address::ScaleFactor scale1 = Address::no_scale;
7817   Address::ScaleFactor scale2 = Address::no_scale;
7818 
7819   if (ae != StrIntrinsicNode::LL) {
7820     stride2x2 = 0x20;
7821   }
7822 
7823   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7824     shrl(cnt2, 1);
7825   }
7826   // Compute the minimum of the string lengths and the
7827   // difference of the string lengths (stack).
7828   // Do the conditional move stuff
7829   movl(result, cnt1);
7830   subl(cnt1, cnt2);
7831   push(cnt1);
7832   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7833 
7834   // Is the minimum length zero?
7835   testl(cnt2, cnt2);
7836   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7837   if (ae == StrIntrinsicNode::LL) {
7838     // Load first bytes
7839     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7840     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7841   } else if (ae == StrIntrinsicNode::UU) {
7842     // Load first characters
7843     load_unsigned_short(result, Address(str1, 0));
7844     load_unsigned_short(cnt1, Address(str2, 0));
7845   } else {
7846     load_unsigned_byte(result, Address(str1, 0));
7847     load_unsigned_short(cnt1, Address(str2, 0));
7848   }
7849   subl(result, cnt1);
7850   jcc(Assembler::notZero,  POP_LABEL);
7851 
7852   if (ae == StrIntrinsicNode::UU) {
7853     // Divide length by 2 to get number of chars
7854     shrl(cnt2, 1);
7855   }
7856   cmpl(cnt2, 1);
7857   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7858 
7859   // Check if the strings start at the same location and setup scale and stride
7860   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7861     cmpptr(str1, str2);
7862     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7863     if (ae == StrIntrinsicNode::LL) {
7864       scale = Address::times_1;
7865       stride = 16;
7866     } else {
7867       scale = Address::times_2;
7868       stride = 8;
7869     }
7870   } else {
7871     scale1 = Address::times_1;
7872     scale2 = Address::times_2;
7873     // scale not used
7874     stride = 8;
7875   }
7876 
7877   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7878     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7879     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7880     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7881     Label COMPARE_TAIL_LONG;
7882     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7883 
7884     int pcmpmask = 0x19;
7885     if (ae == StrIntrinsicNode::LL) {
7886       pcmpmask &= ~0x01;
7887     }
7888 
7889     // Setup to compare 16-chars (32-bytes) vectors,
7890     // start from first character again because it has aligned address.
7891     if (ae == StrIntrinsicNode::LL) {
7892       stride2 = 32;
7893     } else {
7894       stride2 = 16;
7895     }
7896     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7897       adr_stride = stride << scale;
7898     } else {
7899       adr_stride1 = 8;  //stride << scale1;
7900       adr_stride2 = 16; //stride << scale2;
7901     }
7902 
7903     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7904     // rax and rdx are used by pcmpestri as elements counters
7905     movl(result, cnt2);
7906     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7907     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7908 
7909     // fast path : compare first 2 8-char vectors.
7910     bind(COMPARE_16_CHARS);
7911     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7912       movdqu(vec1, Address(str1, 0));
7913     } else {
7914       pmovzxbw(vec1, Address(str1, 0));
7915     }
7916     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7917     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7918 
7919     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7920       movdqu(vec1, Address(str1, adr_stride));
7921       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7922     } else {
7923       pmovzxbw(vec1, Address(str1, adr_stride1));
7924       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7925     }
7926     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7927     addl(cnt1, stride);
7928 
7929     // Compare the characters at index in cnt1
7930     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7931     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7932     subl(result, cnt2);
7933     jmp(POP_LABEL);
7934 
7935     // Setup the registers to start vector comparison loop
7936     bind(COMPARE_WIDE_VECTORS);
7937     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7938       lea(str1, Address(str1, result, scale));
7939       lea(str2, Address(str2, result, scale));
7940     } else {
7941       lea(str1, Address(str1, result, scale1));
7942       lea(str2, Address(str2, result, scale2));
7943     }
7944     subl(result, stride2);
7945     subl(cnt2, stride2);
7946     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
7947     negptr(result);
7948 
7949     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
7950     bind(COMPARE_WIDE_VECTORS_LOOP);
7951 
7952 #ifdef _LP64
7953     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7954       cmpl(cnt2, stride2x2);
7955       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7956       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
7957       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
7958 
7959       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7960       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7961         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
7962         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7963       } else {
7964         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
7965         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7966       }
7967       kortestql(k7, k7);
7968       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
7969       addptr(result, stride2x2);  // update since we already compared at this addr
7970       subl(cnt2, stride2x2);      // and sub the size too
7971       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7972 
7973       vpxor(vec1, vec1);
7974       jmpb(COMPARE_WIDE_TAIL);
7975     }//if (VM_Version::supports_avx512vlbw())
7976 #endif // _LP64
7977 
7978 
7979     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7980     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7981       vmovdqu(vec1, Address(str1, result, scale));
7982       vpxor(vec1, Address(str2, result, scale));
7983     } else {
7984       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
7985       vpxor(vec1, Address(str2, result, scale2));
7986     }
7987     vptest(vec1, vec1);
7988     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
7989     addptr(result, stride2);
7990     subl(cnt2, stride2);
7991     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
7992     // clean upper bits of YMM registers
7993     vpxor(vec1, vec1);
7994 
7995     // compare wide vectors tail
7996     bind(COMPARE_WIDE_TAIL);
7997     testptr(result, result);
7998     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7999 
8000     movl(result, stride2);
8001     movl(cnt2, result);
8002     negptr(result);
8003     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8004 
8005     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
8006     bind(VECTOR_NOT_EQUAL);
8007     // clean upper bits of YMM registers
8008     vpxor(vec1, vec1);
8009     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8010       lea(str1, Address(str1, result, scale));
8011       lea(str2, Address(str2, result, scale));
8012     } else {
8013       lea(str1, Address(str1, result, scale1));
8014       lea(str2, Address(str2, result, scale2));
8015     }
8016     jmp(COMPARE_16_CHARS);
8017 
8018     // Compare tail chars, length between 1 to 15 chars
8019     bind(COMPARE_TAIL_LONG);
8020     movl(cnt2, result);
8021     cmpl(cnt2, stride);
8022     jcc(Assembler::less, COMPARE_SMALL_STR);
8023 
8024     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8025       movdqu(vec1, Address(str1, 0));
8026     } else {
8027       pmovzxbw(vec1, Address(str1, 0));
8028     }
8029     pcmpestri(vec1, Address(str2, 0), pcmpmask);
8030     jcc(Assembler::below, COMPARE_INDEX_CHAR);
8031     subptr(cnt2, stride);
8032     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
8033     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8034       lea(str1, Address(str1, result, scale));
8035       lea(str2, Address(str2, result, scale));
8036     } else {
8037       lea(str1, Address(str1, result, scale1));
8038       lea(str2, Address(str2, result, scale2));
8039     }
8040     negptr(cnt2);
8041     jmpb(WHILE_HEAD_LABEL);
8042 
8043     bind(COMPARE_SMALL_STR);
8044   } else if (UseSSE42Intrinsics) {
8045     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
8046     int pcmpmask = 0x19;
8047     // Setup to compare 8-char (16-byte) vectors,
8048     // start from first character again because it has aligned address.
8049     movl(result, cnt2);
8050     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
8051     if (ae == StrIntrinsicNode::LL) {
8052       pcmpmask &= ~0x01;
8053     }
8054     jcc(Assembler::zero, COMPARE_TAIL);
8055     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8056       lea(str1, Address(str1, result, scale));
8057       lea(str2, Address(str2, result, scale));
8058     } else {
8059       lea(str1, Address(str1, result, scale1));
8060       lea(str2, Address(str2, result, scale2));
8061     }
8062     negptr(result);
8063 
8064     // pcmpestri
8065     //   inputs:
8066     //     vec1- substring
8067     //     rax - negative string length (elements count)
8068     //     mem - scanned string
8069     //     rdx - string length (elements count)
8070     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
8071     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
8072     //   outputs:
8073     //     rcx - first mismatched element index
8074     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
8075 
8076     bind(COMPARE_WIDE_VECTORS);
8077     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8078       movdqu(vec1, Address(str1, result, scale));
8079       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8080     } else {
8081       pmovzxbw(vec1, Address(str1, result, scale1));
8082       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8083     }
8084     // After pcmpestri cnt1(rcx) contains mismatched element index
8085 
8086     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
8087     addptr(result, stride);
8088     subptr(cnt2, stride);
8089     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
8090 
8091     // compare wide vectors tail
8092     testptr(result, result);
8093     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
8094 
8095     movl(cnt2, stride);
8096     movl(result, stride);
8097     negptr(result);
8098     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8099       movdqu(vec1, Address(str1, result, scale));
8100       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8101     } else {
8102       pmovzxbw(vec1, Address(str1, result, scale1));
8103       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8104     }
8105     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
8106 
8107     // Mismatched characters in the vectors
8108     bind(VECTOR_NOT_EQUAL);
8109     addptr(cnt1, result);
8110     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
8111     subl(result, cnt2);
8112     jmpb(POP_LABEL);
8113 
8114     bind(COMPARE_TAIL); // limit is zero
8115     movl(cnt2, result);
8116     // Fallthru to tail compare
8117   }
8118   // Shift str2 and str1 to the end of the arrays, negate min
8119   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8120     lea(str1, Address(str1, cnt2, scale));
8121     lea(str2, Address(str2, cnt2, scale));
8122   } else {
8123     lea(str1, Address(str1, cnt2, scale1));
8124     lea(str2, Address(str2, cnt2, scale2));
8125   }
8126   decrementl(cnt2);  // first character was compared already
8127   negptr(cnt2);
8128 
8129   // Compare the rest of the elements
8130   bind(WHILE_HEAD_LABEL);
8131   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
8132   subl(result, cnt1);
8133   jccb(Assembler::notZero, POP_LABEL);
8134   increment(cnt2);
8135   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
8136 
8137   // Strings are equal up to min length.  Return the length difference.
8138   bind(LENGTH_DIFF_LABEL);
8139   pop(result);
8140   if (ae == StrIntrinsicNode::UU) {
8141     // Divide diff by 2 to get number of chars
8142     sarl(result, 1);
8143   }
8144   jmpb(DONE_LABEL);
8145 
8146 #ifdef _LP64
8147   if (VM_Version::supports_avx512vlbw()) {
8148 
8149     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
8150 
8151     kmovql(cnt1, k7);
8152     notq(cnt1);
8153     bsfq(cnt2, cnt1);
8154     if (ae != StrIntrinsicNode::LL) {
8155       // Divide diff by 2 to get number of chars
8156       sarl(cnt2, 1);
8157     }
8158     addq(result, cnt2);
8159     if (ae == StrIntrinsicNode::LL) {
8160       load_unsigned_byte(cnt1, Address(str2, result));
8161       load_unsigned_byte(result, Address(str1, result));
8162     } else if (ae == StrIntrinsicNode::UU) {
8163       load_unsigned_short(cnt1, Address(str2, result, scale));
8164       load_unsigned_short(result, Address(str1, result, scale));
8165     } else {
8166       load_unsigned_short(cnt1, Address(str2, result, scale2));
8167       load_unsigned_byte(result, Address(str1, result, scale1));
8168     }
8169     subl(result, cnt1);
8170     jmpb(POP_LABEL);
8171   }//if (VM_Version::supports_avx512vlbw())
8172 #endif // _LP64
8173 
8174   // Discard the stored length difference
8175   bind(POP_LABEL);
8176   pop(cnt1);
8177 
8178   // That's it
8179   bind(DONE_LABEL);
8180   if(ae == StrIntrinsicNode::UL) {
8181     negl(result);
8182   }
8183 
8184 }
8185 
8186 // Search for Non-ASCII character (Negative byte value) in a byte array,
8187 // return true if it has any and false otherwise.
8188 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
8189 //   @HotSpotIntrinsicCandidate
8190 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
8191 //     for (int i = off; i < off + len; i++) {
8192 //       if (ba[i] < 0) {
8193 //         return true;
8194 //       }
8195 //     }
8196 //     return false;
8197 //   }
8198 void MacroAssembler::has_negatives(Register ary1, Register len,
8199   Register result, Register tmp1,
8200   XMMRegister vec1, XMMRegister vec2) {
8201   // rsi: byte array
8202   // rcx: len
8203   // rax: result
8204   ShortBranchVerifier sbv(this);
8205   assert_different_registers(ary1, len, result, tmp1);
8206   assert_different_registers(vec1, vec2);
8207   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
8208 
8209   // len == 0
8210   testl(len, len);
8211   jcc(Assembler::zero, FALSE_LABEL);
8212 
8213   if ((UseAVX > 2) && // AVX512
8214     VM_Version::supports_avx512vlbw() &&
8215     VM_Version::supports_bmi2()) {
8216 
8217     set_vector_masking();  // opening of the stub context for programming mask registers
8218 
8219     Label test_64_loop, test_tail;
8220     Register tmp3_aliased = len;
8221 
8222     movl(tmp1, len);
8223     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
8224 
8225     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
8226     andl(len, ~(64 - 1));    // vector count (in chars)
8227     jccb(Assembler::zero, test_tail);
8228 
8229     lea(ary1, Address(ary1, len, Address::times_1));
8230     negptr(len);
8231 
8232     bind(test_64_loop);
8233     // Check whether our 64 elements of size byte contain negatives
8234     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
8235     kortestql(k2, k2);
8236     jcc(Assembler::notZero, TRUE_LABEL);
8237 
8238     addptr(len, 64);
8239     jccb(Assembler::notZero, test_64_loop);
8240 
8241 
8242     bind(test_tail);
8243     // bail out when there is nothing to be done
8244     testl(tmp1, -1);
8245     jcc(Assembler::zero, FALSE_LABEL);
8246 
8247     // Save k1
8248     kmovql(k3, k1);
8249 
8250     // ~(~0 << len) applied up to two times (for 32-bit scenario)
8251 #ifdef _LP64
8252     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
8253     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
8254     notq(tmp3_aliased);
8255     kmovql(k1, tmp3_aliased);
8256 #else
8257     Label k_init;
8258     jmp(k_init);
8259 
8260     // We could not read 64-bits from a general purpose register thus we move
8261     // data required to compose 64 1's to the instruction stream
8262     // We emit 64 byte wide series of elements from 0..63 which later on would
8263     // be used as a compare targets with tail count contained in tmp1 register.
8264     // Result would be a k1 register having tmp1 consecutive number or 1
8265     // counting from least significant bit.
8266     address tmp = pc();
8267     emit_int64(0x0706050403020100);
8268     emit_int64(0x0F0E0D0C0B0A0908);
8269     emit_int64(0x1716151413121110);
8270     emit_int64(0x1F1E1D1C1B1A1918);
8271     emit_int64(0x2726252423222120);
8272     emit_int64(0x2F2E2D2C2B2A2928);
8273     emit_int64(0x3736353433323130);
8274     emit_int64(0x3F3E3D3C3B3A3938);
8275 
8276     bind(k_init);
8277     lea(len, InternalAddress(tmp));
8278     // create mask to test for negative byte inside a vector
8279     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
8280     evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
8281 
8282 #endif
8283     evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
8284     ktestq(k2, k1);
8285     // Restore k1
8286     kmovql(k1, k3);
8287     jcc(Assembler::notZero, TRUE_LABEL);
8288 
8289     jmp(FALSE_LABEL);
8290 
8291     clear_vector_masking();   // closing of the stub context for programming mask registers
8292   } else {
8293     movl(result, len); // copy
8294 
8295     if (UseAVX == 2 && UseSSE >= 2) {
8296       // With AVX2, use 32-byte vector compare
8297       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8298 
8299       // Compare 32-byte vectors
8300       andl(result, 0x0000001f);  //   tail count (in bytes)
8301       andl(len, 0xffffffe0);   // vector count (in bytes)
8302       jccb(Assembler::zero, COMPARE_TAIL);
8303 
8304       lea(ary1, Address(ary1, len, Address::times_1));
8305       negptr(len);
8306 
8307       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
8308       movdl(vec2, tmp1);
8309       vpbroadcastd(vec2, vec2);
8310 
8311       bind(COMPARE_WIDE_VECTORS);
8312       vmovdqu(vec1, Address(ary1, len, Address::times_1));
8313       vptest(vec1, vec2);
8314       jccb(Assembler::notZero, TRUE_LABEL);
8315       addptr(len, 32);
8316       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8317 
8318       testl(result, result);
8319       jccb(Assembler::zero, FALSE_LABEL);
8320 
8321       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8322       vptest(vec1, vec2);
8323       jccb(Assembler::notZero, TRUE_LABEL);
8324       jmpb(FALSE_LABEL);
8325 
8326       bind(COMPARE_TAIL); // len is zero
8327       movl(len, result);
8328       // Fallthru to tail compare
8329     } else if (UseSSE42Intrinsics) {
8330       // With SSE4.2, use double quad vector compare
8331       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8332 
8333       // Compare 16-byte vectors
8334       andl(result, 0x0000000f);  //   tail count (in bytes)
8335       andl(len, 0xfffffff0);   // vector count (in bytes)
8336       jccb(Assembler::zero, COMPARE_TAIL);
8337 
8338       lea(ary1, Address(ary1, len, Address::times_1));
8339       negptr(len);
8340 
8341       movl(tmp1, 0x80808080);
8342       movdl(vec2, tmp1);
8343       pshufd(vec2, vec2, 0);
8344 
8345       bind(COMPARE_WIDE_VECTORS);
8346       movdqu(vec1, Address(ary1, len, Address::times_1));
8347       ptest(vec1, vec2);
8348       jccb(Assembler::notZero, TRUE_LABEL);
8349       addptr(len, 16);
8350       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8351 
8352       testl(result, result);
8353       jccb(Assembler::zero, FALSE_LABEL);
8354 
8355       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8356       ptest(vec1, vec2);
8357       jccb(Assembler::notZero, TRUE_LABEL);
8358       jmpb(FALSE_LABEL);
8359 
8360       bind(COMPARE_TAIL); // len is zero
8361       movl(len, result);
8362       // Fallthru to tail compare
8363     }
8364   }
8365   // Compare 4-byte vectors
8366   andl(len, 0xfffffffc); // vector count (in bytes)
8367   jccb(Assembler::zero, COMPARE_CHAR);
8368 
8369   lea(ary1, Address(ary1, len, Address::times_1));
8370   negptr(len);
8371 
8372   bind(COMPARE_VECTORS);
8373   movl(tmp1, Address(ary1, len, Address::times_1));
8374   andl(tmp1, 0x80808080);
8375   jccb(Assembler::notZero, TRUE_LABEL);
8376   addptr(len, 4);
8377   jcc(Assembler::notZero, COMPARE_VECTORS);
8378 
8379   // Compare trailing char (final 2 bytes), if any
8380   bind(COMPARE_CHAR);
8381   testl(result, 0x2);   // tail  char
8382   jccb(Assembler::zero, COMPARE_BYTE);
8383   load_unsigned_short(tmp1, Address(ary1, 0));
8384   andl(tmp1, 0x00008080);
8385   jccb(Assembler::notZero, TRUE_LABEL);
8386   subptr(result, 2);
8387   lea(ary1, Address(ary1, 2));
8388 
8389   bind(COMPARE_BYTE);
8390   testl(result, 0x1);   // tail  byte
8391   jccb(Assembler::zero, FALSE_LABEL);
8392   load_unsigned_byte(tmp1, Address(ary1, 0));
8393   andl(tmp1, 0x00000080);
8394   jccb(Assembler::notEqual, TRUE_LABEL);
8395   jmpb(FALSE_LABEL);
8396 
8397   bind(TRUE_LABEL);
8398   movl(result, 1);   // return true
8399   jmpb(DONE);
8400 
8401   bind(FALSE_LABEL);
8402   xorl(result, result); // return false
8403 
8404   // That's it
8405   bind(DONE);
8406   if (UseAVX >= 2 && UseSSE >= 2) {
8407     // clean upper bits of YMM registers
8408     vpxor(vec1, vec1);
8409     vpxor(vec2, vec2);
8410   }
8411 }
8412 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
8413 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8414                                    Register limit, Register result, Register chr,
8415                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
8416   ShortBranchVerifier sbv(this);
8417   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
8418 
8419   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8420   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
8421 
8422   if (is_array_equ) {
8423     // Check the input args
8424     cmpoop(ary1, ary2);
8425     jcc(Assembler::equal, TRUE_LABEL);
8426 
8427     // Need additional checks for arrays_equals.
8428     testptr(ary1, ary1);
8429     jcc(Assembler::zero, FALSE_LABEL);
8430     testptr(ary2, ary2);
8431     jcc(Assembler::zero, FALSE_LABEL);
8432 
8433     // Check the lengths
8434     movl(limit, Address(ary1, length_offset));
8435     cmpl(limit, Address(ary2, length_offset));
8436     jcc(Assembler::notEqual, FALSE_LABEL);
8437   }
8438 
8439   // count == 0
8440   testl(limit, limit);
8441   jcc(Assembler::zero, TRUE_LABEL);
8442 
8443   if (is_array_equ) {
8444     // Load array address
8445     lea(ary1, Address(ary1, base_offset));
8446     lea(ary2, Address(ary2, base_offset));
8447   }
8448 
8449   if (is_array_equ && is_char) {
8450     // arrays_equals when used for char[].
8451     shll(limit, 1);      // byte count != 0
8452   }
8453   movl(result, limit); // copy
8454 
8455   if (UseAVX >= 2) {
8456     // With AVX2, use 32-byte vector compare
8457     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8458 
8459     // Compare 32-byte vectors
8460     andl(result, 0x0000001f);  //   tail count (in bytes)
8461     andl(limit, 0xffffffe0);   // vector count (in bytes)
8462     jcc(Assembler::zero, COMPARE_TAIL);
8463 
8464     lea(ary1, Address(ary1, limit, Address::times_1));
8465     lea(ary2, Address(ary2, limit, Address::times_1));
8466     negptr(limit);
8467 
8468     bind(COMPARE_WIDE_VECTORS);
8469 
8470 #ifdef _LP64
8471     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8472       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8473 
8474       cmpl(limit, -64);
8475       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8476 
8477       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8478 
8479       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8480       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8481       kortestql(k7, k7);
8482       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8483       addptr(limit, 64);  // update since we already compared at this addr
8484       cmpl(limit, -64);
8485       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8486 
8487       // At this point we may still need to compare -limit+result bytes.
8488       // We could execute the next two instruction and just continue via non-wide path:
8489       //  cmpl(limit, 0);
8490       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8491       // But since we stopped at the points ary{1,2}+limit which are
8492       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8493       // (|limit| <= 32 and result < 32),
8494       // we may just compare the last 64 bytes.
8495       //
8496       addptr(result, -64);   // it is safe, bc we just came from this area
8497       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8498       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8499       kortestql(k7, k7);
8500       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8501 
8502       jmp(TRUE_LABEL);
8503 
8504       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8505 
8506     }//if (VM_Version::supports_avx512vlbw())
8507 #endif //_LP64
8508 
8509     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8510     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8511     vpxor(vec1, vec2);
8512 
8513     vptest(vec1, vec1);
8514     jcc(Assembler::notZero, FALSE_LABEL);
8515     addptr(limit, 32);
8516     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8517 
8518     testl(result, result);
8519     jcc(Assembler::zero, TRUE_LABEL);
8520 
8521     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8522     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8523     vpxor(vec1, vec2);
8524 
8525     vptest(vec1, vec1);
8526     jccb(Assembler::notZero, FALSE_LABEL);
8527     jmpb(TRUE_LABEL);
8528 
8529     bind(COMPARE_TAIL); // limit is zero
8530     movl(limit, result);
8531     // Fallthru to tail compare
8532   } else if (UseSSE42Intrinsics) {
8533     // With SSE4.2, use double quad vector compare
8534     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8535 
8536     // Compare 16-byte vectors
8537     andl(result, 0x0000000f);  //   tail count (in bytes)
8538     andl(limit, 0xfffffff0);   // vector count (in bytes)
8539     jcc(Assembler::zero, COMPARE_TAIL);
8540 
8541     lea(ary1, Address(ary1, limit, Address::times_1));
8542     lea(ary2, Address(ary2, limit, Address::times_1));
8543     negptr(limit);
8544 
8545     bind(COMPARE_WIDE_VECTORS);
8546     movdqu(vec1, Address(ary1, limit, Address::times_1));
8547     movdqu(vec2, Address(ary2, limit, Address::times_1));
8548     pxor(vec1, vec2);
8549 
8550     ptest(vec1, vec1);
8551     jcc(Assembler::notZero, FALSE_LABEL);
8552     addptr(limit, 16);
8553     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8554 
8555     testl(result, result);
8556     jcc(Assembler::zero, TRUE_LABEL);
8557 
8558     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8559     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8560     pxor(vec1, vec2);
8561 
8562     ptest(vec1, vec1);
8563     jccb(Assembler::notZero, FALSE_LABEL);
8564     jmpb(TRUE_LABEL);
8565 
8566     bind(COMPARE_TAIL); // limit is zero
8567     movl(limit, result);
8568     // Fallthru to tail compare
8569   }
8570 
8571   // Compare 4-byte vectors
8572   andl(limit, 0xfffffffc); // vector count (in bytes)
8573   jccb(Assembler::zero, COMPARE_CHAR);
8574 
8575   lea(ary1, Address(ary1, limit, Address::times_1));
8576   lea(ary2, Address(ary2, limit, Address::times_1));
8577   negptr(limit);
8578 
8579   bind(COMPARE_VECTORS);
8580   movl(chr, Address(ary1, limit, Address::times_1));
8581   cmpl(chr, Address(ary2, limit, Address::times_1));
8582   jccb(Assembler::notEqual, FALSE_LABEL);
8583   addptr(limit, 4);
8584   jcc(Assembler::notZero, COMPARE_VECTORS);
8585 
8586   // Compare trailing char (final 2 bytes), if any
8587   bind(COMPARE_CHAR);
8588   testl(result, 0x2);   // tail  char
8589   jccb(Assembler::zero, COMPARE_BYTE);
8590   load_unsigned_short(chr, Address(ary1, 0));
8591   load_unsigned_short(limit, Address(ary2, 0));
8592   cmpl(chr, limit);
8593   jccb(Assembler::notEqual, FALSE_LABEL);
8594 
8595   if (is_array_equ && is_char) {
8596     bind(COMPARE_BYTE);
8597   } else {
8598     lea(ary1, Address(ary1, 2));
8599     lea(ary2, Address(ary2, 2));
8600 
8601     bind(COMPARE_BYTE);
8602     testl(result, 0x1);   // tail  byte
8603     jccb(Assembler::zero, TRUE_LABEL);
8604     load_unsigned_byte(chr, Address(ary1, 0));
8605     load_unsigned_byte(limit, Address(ary2, 0));
8606     cmpl(chr, limit);
8607     jccb(Assembler::notEqual, FALSE_LABEL);
8608   }
8609   bind(TRUE_LABEL);
8610   movl(result, 1);   // return true
8611   jmpb(DONE);
8612 
8613   bind(FALSE_LABEL);
8614   xorl(result, result); // return false
8615 
8616   // That's it
8617   bind(DONE);
8618   if (UseAVX >= 2) {
8619     // clean upper bits of YMM registers
8620     vpxor(vec1, vec1);
8621     vpxor(vec2, vec2);
8622   }
8623 }
8624 
8625 #endif
8626 
8627 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8628                                    Register to, Register value, Register count,
8629                                    Register rtmp, XMMRegister xtmp) {
8630   ShortBranchVerifier sbv(this);
8631   assert_different_registers(to, value, count, rtmp);
8632   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8633   Label L_fill_2_bytes, L_fill_4_bytes;
8634 
8635   int shift = -1;
8636   switch (t) {
8637     case T_BYTE:
8638       shift = 2;
8639       break;
8640     case T_SHORT:
8641       shift = 1;
8642       break;
8643     case T_INT:
8644       shift = 0;
8645       break;
8646     default: ShouldNotReachHere();
8647   }
8648 
8649   if (t == T_BYTE) {
8650     andl(value, 0xff);
8651     movl(rtmp, value);
8652     shll(rtmp, 8);
8653     orl(value, rtmp);
8654   }
8655   if (t == T_SHORT) {
8656     andl(value, 0xffff);
8657   }
8658   if (t == T_BYTE || t == T_SHORT) {
8659     movl(rtmp, value);
8660     shll(rtmp, 16);
8661     orl(value, rtmp);
8662   }
8663 
8664   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8665   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8666   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8667     // align source address at 4 bytes address boundary
8668     if (t == T_BYTE) {
8669       // One byte misalignment happens only for byte arrays
8670       testptr(to, 1);
8671       jccb(Assembler::zero, L_skip_align1);
8672       movb(Address(to, 0), value);
8673       increment(to);
8674       decrement(count);
8675       BIND(L_skip_align1);
8676     }
8677     // Two bytes misalignment happens only for byte and short (char) arrays
8678     testptr(to, 2);
8679     jccb(Assembler::zero, L_skip_align2);
8680     movw(Address(to, 0), value);
8681     addptr(to, 2);
8682     subl(count, 1<<(shift-1));
8683     BIND(L_skip_align2);
8684   }
8685   if (UseSSE < 2) {
8686     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8687     // Fill 32-byte chunks
8688     subl(count, 8 << shift);
8689     jcc(Assembler::less, L_check_fill_8_bytes);
8690     align(16);
8691 
8692     BIND(L_fill_32_bytes_loop);
8693 
8694     for (int i = 0; i < 32; i += 4) {
8695       movl(Address(to, i), value);
8696     }
8697 
8698     addptr(to, 32);
8699     subl(count, 8 << shift);
8700     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8701     BIND(L_check_fill_8_bytes);
8702     addl(count, 8 << shift);
8703     jccb(Assembler::zero, L_exit);
8704     jmpb(L_fill_8_bytes);
8705 
8706     //
8707     // length is too short, just fill qwords
8708     //
8709     BIND(L_fill_8_bytes_loop);
8710     movl(Address(to, 0), value);
8711     movl(Address(to, 4), value);
8712     addptr(to, 8);
8713     BIND(L_fill_8_bytes);
8714     subl(count, 1 << (shift + 1));
8715     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8716     // fall through to fill 4 bytes
8717   } else {
8718     Label L_fill_32_bytes;
8719     if (!UseUnalignedLoadStores) {
8720       // align to 8 bytes, we know we are 4 byte aligned to start
8721       testptr(to, 4);
8722       jccb(Assembler::zero, L_fill_32_bytes);
8723       movl(Address(to, 0), value);
8724       addptr(to, 4);
8725       subl(count, 1<<shift);
8726     }
8727     BIND(L_fill_32_bytes);
8728     {
8729       assert( UseSSE >= 2, "supported cpu only" );
8730       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8731       if (UseAVX > 2) {
8732         movl(rtmp, 0xffff);
8733         kmovwl(k1, rtmp);
8734       }
8735       movdl(xtmp, value);
8736       if (UseAVX > 2 && UseUnalignedLoadStores) {
8737         // Fill 64-byte chunks
8738         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8739         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8740 
8741         subl(count, 16 << shift);
8742         jcc(Assembler::less, L_check_fill_32_bytes);
8743         align(16);
8744 
8745         BIND(L_fill_64_bytes_loop);
8746         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8747         addptr(to, 64);
8748         subl(count, 16 << shift);
8749         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8750 
8751         BIND(L_check_fill_32_bytes);
8752         addl(count, 8 << shift);
8753         jccb(Assembler::less, L_check_fill_8_bytes);
8754         vmovdqu(Address(to, 0), xtmp);
8755         addptr(to, 32);
8756         subl(count, 8 << shift);
8757 
8758         BIND(L_check_fill_8_bytes);
8759       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8760         // Fill 64-byte chunks
8761         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8762         vpbroadcastd(xtmp, xtmp);
8763 
8764         subl(count, 16 << shift);
8765         jcc(Assembler::less, L_check_fill_32_bytes);
8766         align(16);
8767 
8768         BIND(L_fill_64_bytes_loop);
8769         vmovdqu(Address(to, 0), xtmp);
8770         vmovdqu(Address(to, 32), xtmp);
8771         addptr(to, 64);
8772         subl(count, 16 << shift);
8773         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8774 
8775         BIND(L_check_fill_32_bytes);
8776         addl(count, 8 << shift);
8777         jccb(Assembler::less, L_check_fill_8_bytes);
8778         vmovdqu(Address(to, 0), xtmp);
8779         addptr(to, 32);
8780         subl(count, 8 << shift);
8781 
8782         BIND(L_check_fill_8_bytes);
8783         // clean upper bits of YMM registers
8784         movdl(xtmp, value);
8785         pshufd(xtmp, xtmp, 0);
8786       } else {
8787         // Fill 32-byte chunks
8788         pshufd(xtmp, xtmp, 0);
8789 
8790         subl(count, 8 << shift);
8791         jcc(Assembler::less, L_check_fill_8_bytes);
8792         align(16);
8793 
8794         BIND(L_fill_32_bytes_loop);
8795 
8796         if (UseUnalignedLoadStores) {
8797           movdqu(Address(to, 0), xtmp);
8798           movdqu(Address(to, 16), xtmp);
8799         } else {
8800           movq(Address(to, 0), xtmp);
8801           movq(Address(to, 8), xtmp);
8802           movq(Address(to, 16), xtmp);
8803           movq(Address(to, 24), xtmp);
8804         }
8805 
8806         addptr(to, 32);
8807         subl(count, 8 << shift);
8808         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8809 
8810         BIND(L_check_fill_8_bytes);
8811       }
8812       addl(count, 8 << shift);
8813       jccb(Assembler::zero, L_exit);
8814       jmpb(L_fill_8_bytes);
8815 
8816       //
8817       // length is too short, just fill qwords
8818       //
8819       BIND(L_fill_8_bytes_loop);
8820       movq(Address(to, 0), xtmp);
8821       addptr(to, 8);
8822       BIND(L_fill_8_bytes);
8823       subl(count, 1 << (shift + 1));
8824       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8825     }
8826   }
8827   // fill trailing 4 bytes
8828   BIND(L_fill_4_bytes);
8829   testl(count, 1<<shift);
8830   jccb(Assembler::zero, L_fill_2_bytes);
8831   movl(Address(to, 0), value);
8832   if (t == T_BYTE || t == T_SHORT) {
8833     addptr(to, 4);
8834     BIND(L_fill_2_bytes);
8835     // fill trailing 2 bytes
8836     testl(count, 1<<(shift-1));
8837     jccb(Assembler::zero, L_fill_byte);
8838     movw(Address(to, 0), value);
8839     if (t == T_BYTE) {
8840       addptr(to, 2);
8841       BIND(L_fill_byte);
8842       // fill trailing byte
8843       testl(count, 1);
8844       jccb(Assembler::zero, L_exit);
8845       movb(Address(to, 0), value);
8846     } else {
8847       BIND(L_fill_byte);
8848     }
8849   } else {
8850     BIND(L_fill_2_bytes);
8851   }
8852   BIND(L_exit);
8853 }
8854 
8855 // encode char[] to byte[] in ISO_8859_1
8856    //@HotSpotIntrinsicCandidate
8857    //private static int implEncodeISOArray(byte[] sa, int sp,
8858    //byte[] da, int dp, int len) {
8859    //  int i = 0;
8860    //  for (; i < len; i++) {
8861    //    char c = StringUTF16.getChar(sa, sp++);
8862    //    if (c > '\u00FF')
8863    //      break;
8864    //    da[dp++] = (byte)c;
8865    //  }
8866    //  return i;
8867    //}
8868 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8869   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8870   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8871   Register tmp5, Register result) {
8872 
8873   // rsi: src
8874   // rdi: dst
8875   // rdx: len
8876   // rcx: tmp5
8877   // rax: result
8878   ShortBranchVerifier sbv(this);
8879   assert_different_registers(src, dst, len, tmp5, result);
8880   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8881 
8882   // set result
8883   xorl(result, result);
8884   // check for zero length
8885   testl(len, len);
8886   jcc(Assembler::zero, L_done);
8887 
8888   movl(result, len);
8889 
8890   // Setup pointers
8891   lea(src, Address(src, len, Address::times_2)); // char[]
8892   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8893   negptr(len);
8894 
8895   if (UseSSE42Intrinsics || UseAVX >= 2) {
8896     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8897     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8898 
8899     if (UseAVX >= 2) {
8900       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8901       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8902       movdl(tmp1Reg, tmp5);
8903       vpbroadcastd(tmp1Reg, tmp1Reg);
8904       jmp(L_chars_32_check);
8905 
8906       bind(L_copy_32_chars);
8907       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8908       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8909       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8910       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8911       jccb(Assembler::notZero, L_copy_32_chars_exit);
8912       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8913       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8914       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8915 
8916       bind(L_chars_32_check);
8917       addptr(len, 32);
8918       jcc(Assembler::lessEqual, L_copy_32_chars);
8919 
8920       bind(L_copy_32_chars_exit);
8921       subptr(len, 16);
8922       jccb(Assembler::greater, L_copy_16_chars_exit);
8923 
8924     } else if (UseSSE42Intrinsics) {
8925       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8926       movdl(tmp1Reg, tmp5);
8927       pshufd(tmp1Reg, tmp1Reg, 0);
8928       jmpb(L_chars_16_check);
8929     }
8930 
8931     bind(L_copy_16_chars);
8932     if (UseAVX >= 2) {
8933       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
8934       vptest(tmp2Reg, tmp1Reg);
8935       jcc(Assembler::notZero, L_copy_16_chars_exit);
8936       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
8937       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
8938     } else {
8939       if (UseAVX > 0) {
8940         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8941         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8942         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
8943       } else {
8944         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8945         por(tmp2Reg, tmp3Reg);
8946         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8947         por(tmp2Reg, tmp4Reg);
8948       }
8949       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8950       jccb(Assembler::notZero, L_copy_16_chars_exit);
8951       packuswb(tmp3Reg, tmp4Reg);
8952     }
8953     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
8954 
8955     bind(L_chars_16_check);
8956     addptr(len, 16);
8957     jcc(Assembler::lessEqual, L_copy_16_chars);
8958 
8959     bind(L_copy_16_chars_exit);
8960     if (UseAVX >= 2) {
8961       // clean upper bits of YMM registers
8962       vpxor(tmp2Reg, tmp2Reg);
8963       vpxor(tmp3Reg, tmp3Reg);
8964       vpxor(tmp4Reg, tmp4Reg);
8965       movdl(tmp1Reg, tmp5);
8966       pshufd(tmp1Reg, tmp1Reg, 0);
8967     }
8968     subptr(len, 8);
8969     jccb(Assembler::greater, L_copy_8_chars_exit);
8970 
8971     bind(L_copy_8_chars);
8972     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
8973     ptest(tmp3Reg, tmp1Reg);
8974     jccb(Assembler::notZero, L_copy_8_chars_exit);
8975     packuswb(tmp3Reg, tmp1Reg);
8976     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
8977     addptr(len, 8);
8978     jccb(Assembler::lessEqual, L_copy_8_chars);
8979 
8980     bind(L_copy_8_chars_exit);
8981     subptr(len, 8);
8982     jccb(Assembler::zero, L_done);
8983   }
8984 
8985   bind(L_copy_1_char);
8986   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
8987   testl(tmp5, 0xff00);      // check if Unicode char
8988   jccb(Assembler::notZero, L_copy_1_char_exit);
8989   movb(Address(dst, len, Address::times_1, 0), tmp5);
8990   addptr(len, 1);
8991   jccb(Assembler::less, L_copy_1_char);
8992 
8993   bind(L_copy_1_char_exit);
8994   addptr(result, len); // len is negative count of not processed elements
8995 
8996   bind(L_done);
8997 }
8998 
8999 #ifdef _LP64
9000 /**
9001  * Helper for multiply_to_len().
9002  */
9003 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
9004   addq(dest_lo, src1);
9005   adcq(dest_hi, 0);
9006   addq(dest_lo, src2);
9007   adcq(dest_hi, 0);
9008 }
9009 
9010 /**
9011  * Multiply 64 bit by 64 bit first loop.
9012  */
9013 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
9014                                            Register y, Register y_idx, Register z,
9015                                            Register carry, Register product,
9016                                            Register idx, Register kdx) {
9017   //
9018   //  jlong carry, x[], y[], z[];
9019   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
9020   //    huge_128 product = y[idx] * x[xstart] + carry;
9021   //    z[kdx] = (jlong)product;
9022   //    carry  = (jlong)(product >>> 64);
9023   //  }
9024   //  z[xstart] = carry;
9025   //
9026 
9027   Label L_first_loop, L_first_loop_exit;
9028   Label L_one_x, L_one_y, L_multiply;
9029 
9030   decrementl(xstart);
9031   jcc(Assembler::negative, L_one_x);
9032 
9033   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9034   rorq(x_xstart, 32); // convert big-endian to little-endian
9035 
9036   bind(L_first_loop);
9037   decrementl(idx);
9038   jcc(Assembler::negative, L_first_loop_exit);
9039   decrementl(idx);
9040   jcc(Assembler::negative, L_one_y);
9041   movq(y_idx, Address(y, idx, Address::times_4,  0));
9042   rorq(y_idx, 32); // convert big-endian to little-endian
9043   bind(L_multiply);
9044   movq(product, x_xstart);
9045   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
9046   addq(product, carry);
9047   adcq(rdx, 0);
9048   subl(kdx, 2);
9049   movl(Address(z, kdx, Address::times_4,  4), product);
9050   shrq(product, 32);
9051   movl(Address(z, kdx, Address::times_4,  0), product);
9052   movq(carry, rdx);
9053   jmp(L_first_loop);
9054 
9055   bind(L_one_y);
9056   movl(y_idx, Address(y,  0));
9057   jmp(L_multiply);
9058 
9059   bind(L_one_x);
9060   movl(x_xstart, Address(x,  0));
9061   jmp(L_first_loop);
9062 
9063   bind(L_first_loop_exit);
9064 }
9065 
9066 /**
9067  * Multiply 64 bit by 64 bit and add 128 bit.
9068  */
9069 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
9070                                             Register yz_idx, Register idx,
9071                                             Register carry, Register product, int offset) {
9072   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
9073   //     z[kdx] = (jlong)product;
9074 
9075   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
9076   rorq(yz_idx, 32); // convert big-endian to little-endian
9077   movq(product, x_xstart);
9078   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
9079   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
9080   rorq(yz_idx, 32); // convert big-endian to little-endian
9081 
9082   add2_with_carry(rdx, product, carry, yz_idx);
9083 
9084   movl(Address(z, idx, Address::times_4,  offset+4), product);
9085   shrq(product, 32);
9086   movl(Address(z, idx, Address::times_4,  offset), product);
9087 
9088 }
9089 
9090 /**
9091  * Multiply 128 bit by 128 bit. Unrolled inner loop.
9092  */
9093 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
9094                                              Register yz_idx, Register idx, Register jdx,
9095                                              Register carry, Register product,
9096                                              Register carry2) {
9097   //   jlong carry, x[], y[], z[];
9098   //   int kdx = ystart+1;
9099   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9100   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
9101   //     z[kdx+idx+1] = (jlong)product;
9102   //     jlong carry2  = (jlong)(product >>> 64);
9103   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
9104   //     z[kdx+idx] = (jlong)product;
9105   //     carry  = (jlong)(product >>> 64);
9106   //   }
9107   //   idx += 2;
9108   //   if (idx > 0) {
9109   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
9110   //     z[kdx+idx] = (jlong)product;
9111   //     carry  = (jlong)(product >>> 64);
9112   //   }
9113   //
9114 
9115   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9116 
9117   movl(jdx, idx);
9118   andl(jdx, 0xFFFFFFFC);
9119   shrl(jdx, 2);
9120 
9121   bind(L_third_loop);
9122   subl(jdx, 1);
9123   jcc(Assembler::negative, L_third_loop_exit);
9124   subl(idx, 4);
9125 
9126   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
9127   movq(carry2, rdx);
9128 
9129   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
9130   movq(carry, rdx);
9131   jmp(L_third_loop);
9132 
9133   bind (L_third_loop_exit);
9134 
9135   andl (idx, 0x3);
9136   jcc(Assembler::zero, L_post_third_loop_done);
9137 
9138   Label L_check_1;
9139   subl(idx, 2);
9140   jcc(Assembler::negative, L_check_1);
9141 
9142   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
9143   movq(carry, rdx);
9144 
9145   bind (L_check_1);
9146   addl (idx, 0x2);
9147   andl (idx, 0x1);
9148   subl(idx, 1);
9149   jcc(Assembler::negative, L_post_third_loop_done);
9150 
9151   movl(yz_idx, Address(y, idx, Address::times_4,  0));
9152   movq(product, x_xstart);
9153   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
9154   movl(yz_idx, Address(z, idx, Address::times_4,  0));
9155 
9156   add2_with_carry(rdx, product, yz_idx, carry);
9157 
9158   movl(Address(z, idx, Address::times_4,  0), product);
9159   shrq(product, 32);
9160 
9161   shlq(rdx, 32);
9162   orq(product, rdx);
9163   movq(carry, product);
9164 
9165   bind(L_post_third_loop_done);
9166 }
9167 
9168 /**
9169  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
9170  *
9171  */
9172 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
9173                                                   Register carry, Register carry2,
9174                                                   Register idx, Register jdx,
9175                                                   Register yz_idx1, Register yz_idx2,
9176                                                   Register tmp, Register tmp3, Register tmp4) {
9177   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
9178 
9179   //   jlong carry, x[], y[], z[];
9180   //   int kdx = ystart+1;
9181   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9182   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
9183   //     jlong carry2  = (jlong)(tmp3 >>> 64);
9184   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
9185   //     carry  = (jlong)(tmp4 >>> 64);
9186   //     z[kdx+idx+1] = (jlong)tmp3;
9187   //     z[kdx+idx] = (jlong)tmp4;
9188   //   }
9189   //   idx += 2;
9190   //   if (idx > 0) {
9191   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
9192   //     z[kdx+idx] = (jlong)yz_idx1;
9193   //     carry  = (jlong)(yz_idx1 >>> 64);
9194   //   }
9195   //
9196 
9197   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9198 
9199   movl(jdx, idx);
9200   andl(jdx, 0xFFFFFFFC);
9201   shrl(jdx, 2);
9202 
9203   bind(L_third_loop);
9204   subl(jdx, 1);
9205   jcc(Assembler::negative, L_third_loop_exit);
9206   subl(idx, 4);
9207 
9208   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
9209   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
9210   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
9211   rorxq(yz_idx2, yz_idx2, 32);
9212 
9213   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
9214   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
9215 
9216   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
9217   rorxq(yz_idx1, yz_idx1, 32);
9218   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9219   rorxq(yz_idx2, yz_idx2, 32);
9220 
9221   if (VM_Version::supports_adx()) {
9222     adcxq(tmp3, carry);
9223     adoxq(tmp3, yz_idx1);
9224 
9225     adcxq(tmp4, tmp);
9226     adoxq(tmp4, yz_idx2);
9227 
9228     movl(carry, 0); // does not affect flags
9229     adcxq(carry2, carry);
9230     adoxq(carry2, carry);
9231   } else {
9232     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
9233     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
9234   }
9235   movq(carry, carry2);
9236 
9237   movl(Address(z, idx, Address::times_4, 12), tmp3);
9238   shrq(tmp3, 32);
9239   movl(Address(z, idx, Address::times_4,  8), tmp3);
9240 
9241   movl(Address(z, idx, Address::times_4,  4), tmp4);
9242   shrq(tmp4, 32);
9243   movl(Address(z, idx, Address::times_4,  0), tmp4);
9244 
9245   jmp(L_third_loop);
9246 
9247   bind (L_third_loop_exit);
9248 
9249   andl (idx, 0x3);
9250   jcc(Assembler::zero, L_post_third_loop_done);
9251 
9252   Label L_check_1;
9253   subl(idx, 2);
9254   jcc(Assembler::negative, L_check_1);
9255 
9256   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
9257   rorxq(yz_idx1, yz_idx1, 32);
9258   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
9259   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9260   rorxq(yz_idx2, yz_idx2, 32);
9261 
9262   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
9263 
9264   movl(Address(z, idx, Address::times_4,  4), tmp3);
9265   shrq(tmp3, 32);
9266   movl(Address(z, idx, Address::times_4,  0), tmp3);
9267   movq(carry, tmp4);
9268 
9269   bind (L_check_1);
9270   addl (idx, 0x2);
9271   andl (idx, 0x1);
9272   subl(idx, 1);
9273   jcc(Assembler::negative, L_post_third_loop_done);
9274   movl(tmp4, Address(y, idx, Address::times_4,  0));
9275   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
9276   movl(tmp4, Address(z, idx, Address::times_4,  0));
9277 
9278   add2_with_carry(carry2, tmp3, tmp4, carry);
9279 
9280   movl(Address(z, idx, Address::times_4,  0), tmp3);
9281   shrq(tmp3, 32);
9282 
9283   shlq(carry2, 32);
9284   orq(tmp3, carry2);
9285   movq(carry, tmp3);
9286 
9287   bind(L_post_third_loop_done);
9288 }
9289 
9290 /**
9291  * Code for BigInteger::multiplyToLen() instrinsic.
9292  *
9293  * rdi: x
9294  * rax: xlen
9295  * rsi: y
9296  * rcx: ylen
9297  * r8:  z
9298  * r11: zlen
9299  * r12: tmp1
9300  * r13: tmp2
9301  * r14: tmp3
9302  * r15: tmp4
9303  * rbx: tmp5
9304  *
9305  */
9306 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
9307                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
9308   ShortBranchVerifier sbv(this);
9309   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
9310 
9311   push(tmp1);
9312   push(tmp2);
9313   push(tmp3);
9314   push(tmp4);
9315   push(tmp5);
9316 
9317   push(xlen);
9318   push(zlen);
9319 
9320   const Register idx = tmp1;
9321   const Register kdx = tmp2;
9322   const Register xstart = tmp3;
9323 
9324   const Register y_idx = tmp4;
9325   const Register carry = tmp5;
9326   const Register product  = xlen;
9327   const Register x_xstart = zlen;  // reuse register
9328 
9329   // First Loop.
9330   //
9331   //  final static long LONG_MASK = 0xffffffffL;
9332   //  int xstart = xlen - 1;
9333   //  int ystart = ylen - 1;
9334   //  long carry = 0;
9335   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
9336   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
9337   //    z[kdx] = (int)product;
9338   //    carry = product >>> 32;
9339   //  }
9340   //  z[xstart] = (int)carry;
9341   //
9342 
9343   movl(idx, ylen);      // idx = ylen;
9344   movl(kdx, zlen);      // kdx = xlen+ylen;
9345   xorq(carry, carry);   // carry = 0;
9346 
9347   Label L_done;
9348 
9349   movl(xstart, xlen);
9350   decrementl(xstart);
9351   jcc(Assembler::negative, L_done);
9352 
9353   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
9354 
9355   Label L_second_loop;
9356   testl(kdx, kdx);
9357   jcc(Assembler::zero, L_second_loop);
9358 
9359   Label L_carry;
9360   subl(kdx, 1);
9361   jcc(Assembler::zero, L_carry);
9362 
9363   movl(Address(z, kdx, Address::times_4,  0), carry);
9364   shrq(carry, 32);
9365   subl(kdx, 1);
9366 
9367   bind(L_carry);
9368   movl(Address(z, kdx, Address::times_4,  0), carry);
9369 
9370   // Second and third (nested) loops.
9371   //
9372   // for (int i = xstart-1; i >= 0; i--) { // Second loop
9373   //   carry = 0;
9374   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
9375   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
9376   //                    (z[k] & LONG_MASK) + carry;
9377   //     z[k] = (int)product;
9378   //     carry = product >>> 32;
9379   //   }
9380   //   z[i] = (int)carry;
9381   // }
9382   //
9383   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
9384 
9385   const Register jdx = tmp1;
9386 
9387   bind(L_second_loop);
9388   xorl(carry, carry);    // carry = 0;
9389   movl(jdx, ylen);       // j = ystart+1
9390 
9391   subl(xstart, 1);       // i = xstart-1;
9392   jcc(Assembler::negative, L_done);
9393 
9394   push (z);
9395 
9396   Label L_last_x;
9397   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
9398   subl(xstart, 1);       // i = xstart-1;
9399   jcc(Assembler::negative, L_last_x);
9400 
9401   if (UseBMI2Instructions) {
9402     movq(rdx,  Address(x, xstart, Address::times_4,  0));
9403     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
9404   } else {
9405     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9406     rorq(x_xstart, 32);  // convert big-endian to little-endian
9407   }
9408 
9409   Label L_third_loop_prologue;
9410   bind(L_third_loop_prologue);
9411 
9412   push (x);
9413   push (xstart);
9414   push (ylen);
9415 
9416 
9417   if (UseBMI2Instructions) {
9418     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
9419   } else { // !UseBMI2Instructions
9420     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
9421   }
9422 
9423   pop(ylen);
9424   pop(xlen);
9425   pop(x);
9426   pop(z);
9427 
9428   movl(tmp3, xlen);
9429   addl(tmp3, 1);
9430   movl(Address(z, tmp3, Address::times_4,  0), carry);
9431   subl(tmp3, 1);
9432   jccb(Assembler::negative, L_done);
9433 
9434   shrq(carry, 32);
9435   movl(Address(z, tmp3, Address::times_4,  0), carry);
9436   jmp(L_second_loop);
9437 
9438   // Next infrequent code is moved outside loops.
9439   bind(L_last_x);
9440   if (UseBMI2Instructions) {
9441     movl(rdx, Address(x,  0));
9442   } else {
9443     movl(x_xstart, Address(x,  0));
9444   }
9445   jmp(L_third_loop_prologue);
9446 
9447   bind(L_done);
9448 
9449   pop(zlen);
9450   pop(xlen);
9451 
9452   pop(tmp5);
9453   pop(tmp4);
9454   pop(tmp3);
9455   pop(tmp2);
9456   pop(tmp1);
9457 }
9458 
9459 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
9460   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
9461   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
9462   Label VECTOR64_LOOP, VECTOR64_TAIL, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
9463   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
9464   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
9465   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9466   Label SAME_TILL_END, DONE;
9467   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9468 
9469   //scale is in rcx in both Win64 and Unix
9470   ShortBranchVerifier sbv(this);
9471 
9472   shlq(length);
9473   xorq(result, result);
9474 
9475   if ((UseAVX > 2) &&
9476       VM_Version::supports_avx512vlbw()) {
9477     set_vector_masking();  // opening of the stub context for programming mask registers
9478     cmpq(length, 64);
9479     jcc(Assembler::less, VECTOR32_TAIL);
9480     movq(tmp1, length);
9481     andq(tmp1, 0x3F);      // tail count
9482     andq(length, ~(0x3F)); //vector count
9483 
9484     bind(VECTOR64_LOOP);
9485     // AVX512 code to compare 64 byte vectors.
9486     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
9487     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
9488     kortestql(k7, k7);
9489     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
9490     addq(result, 64);
9491     subq(length, 64);
9492     jccb(Assembler::notZero, VECTOR64_LOOP);
9493 
9494     //bind(VECTOR64_TAIL);
9495     testq(tmp1, tmp1);
9496     jcc(Assembler::zero, SAME_TILL_END);
9497 
9498     bind(VECTOR64_TAIL);
9499     // AVX512 code to compare upto 63 byte vectors.
9500     // Save k1
9501     kmovql(k3, k1);
9502     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
9503     shlxq(tmp2, tmp2, tmp1);
9504     notq(tmp2);
9505     kmovql(k1, tmp2);
9506 
9507     evmovdqub(rymm0, k1, Address(obja, result), Assembler::AVX_512bit);
9508     evpcmpeqb(k7, k1, rymm0, Address(objb, result), Assembler::AVX_512bit);
9509 
9510     ktestql(k7, k1);
9511     // Restore k1
9512     kmovql(k1, k3);
9513     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
9514 
9515     bind(VECTOR64_NOT_EQUAL);
9516     kmovql(tmp1, k7);
9517     notq(tmp1);
9518     tzcntq(tmp1, tmp1);
9519     addq(result, tmp1);
9520     shrq(result);
9521     jmp(DONE);
9522     bind(VECTOR32_TAIL);
9523     clear_vector_masking();   // closing of the stub context for programming mask registers
9524   }
9525 
9526   cmpq(length, 8);
9527   jcc(Assembler::equal, VECTOR8_LOOP);
9528   jcc(Assembler::less, VECTOR4_TAIL);
9529 
9530   if (UseAVX >= 2) {
9531 
9532     cmpq(length, 16);
9533     jcc(Assembler::equal, VECTOR16_LOOP);
9534     jcc(Assembler::less, VECTOR8_LOOP);
9535 
9536     cmpq(length, 32);
9537     jccb(Assembler::less, VECTOR16_TAIL);
9538 
9539     subq(length, 32);
9540     bind(VECTOR32_LOOP);
9541     vmovdqu(rymm0, Address(obja, result));
9542     vmovdqu(rymm1, Address(objb, result));
9543     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9544     vptest(rymm2, rymm2);
9545     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9546     addq(result, 32);
9547     subq(length, 32);
9548     jccb(Assembler::greaterEqual, VECTOR32_LOOP);
9549     addq(length, 32);
9550     jcc(Assembler::equal, SAME_TILL_END);
9551     //falling through if less than 32 bytes left //close the branch here.
9552 
9553     bind(VECTOR16_TAIL);
9554     cmpq(length, 16);
9555     jccb(Assembler::less, VECTOR8_TAIL);
9556     bind(VECTOR16_LOOP);
9557     movdqu(rymm0, Address(obja, result));
9558     movdqu(rymm1, Address(objb, result));
9559     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9560     ptest(rymm2, rymm2);
9561     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9562     addq(result, 16);
9563     subq(length, 16);
9564     jcc(Assembler::equal, SAME_TILL_END);
9565     //falling through if less than 16 bytes left
9566   } else {//regular intrinsics
9567 
9568     cmpq(length, 16);
9569     jccb(Assembler::less, VECTOR8_TAIL);
9570 
9571     subq(length, 16);
9572     bind(VECTOR16_LOOP);
9573     movdqu(rymm0, Address(obja, result));
9574     movdqu(rymm1, Address(objb, result));
9575     pxor(rymm0, rymm1);
9576     ptest(rymm0, rymm0);
9577     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9578     addq(result, 16);
9579     subq(length, 16);
9580     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9581     addq(length, 16);
9582     jcc(Assembler::equal, SAME_TILL_END);
9583     //falling through if less than 16 bytes left
9584   }
9585 
9586   bind(VECTOR8_TAIL);
9587   cmpq(length, 8);
9588   jccb(Assembler::less, VECTOR4_TAIL);
9589   bind(VECTOR8_LOOP);
9590   movq(tmp1, Address(obja, result));
9591   movq(tmp2, Address(objb, result));
9592   xorq(tmp1, tmp2);
9593   testq(tmp1, tmp1);
9594   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9595   addq(result, 8);
9596   subq(length, 8);
9597   jcc(Assembler::equal, SAME_TILL_END);
9598   //falling through if less than 8 bytes left
9599 
9600   bind(VECTOR4_TAIL);
9601   cmpq(length, 4);
9602   jccb(Assembler::less, BYTES_TAIL);
9603   bind(VECTOR4_LOOP);
9604   movl(tmp1, Address(obja, result));
9605   xorl(tmp1, Address(objb, result));
9606   testl(tmp1, tmp1);
9607   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9608   addq(result, 4);
9609   subq(length, 4);
9610   jcc(Assembler::equal, SAME_TILL_END);
9611   //falling through if less than 4 bytes left
9612 
9613   bind(BYTES_TAIL);
9614   bind(BYTES_LOOP);
9615   load_unsigned_byte(tmp1, Address(obja, result));
9616   load_unsigned_byte(tmp2, Address(objb, result));
9617   xorl(tmp1, tmp2);
9618   testl(tmp1, tmp1);
9619   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9620   decq(length);
9621   jccb(Assembler::zero, SAME_TILL_END);
9622   incq(result);
9623   load_unsigned_byte(tmp1, Address(obja, result));
9624   load_unsigned_byte(tmp2, Address(objb, result));
9625   xorl(tmp1, tmp2);
9626   testl(tmp1, tmp1);
9627   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9628   decq(length);
9629   jccb(Assembler::zero, SAME_TILL_END);
9630   incq(result);
9631   load_unsigned_byte(tmp1, Address(obja, result));
9632   load_unsigned_byte(tmp2, Address(objb, result));
9633   xorl(tmp1, tmp2);
9634   testl(tmp1, tmp1);
9635   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9636   jmpb(SAME_TILL_END);
9637 
9638   if (UseAVX >= 2) {
9639     bind(VECTOR32_NOT_EQUAL);
9640     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9641     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9642     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9643     vpmovmskb(tmp1, rymm0);
9644     bsfq(tmp1, tmp1);
9645     addq(result, tmp1);
9646     shrq(result);
9647     jmpb(DONE);
9648   }
9649 
9650   bind(VECTOR16_NOT_EQUAL);
9651   if (UseAVX >= 2) {
9652     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9653     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9654     pxor(rymm0, rymm2);
9655   } else {
9656     pcmpeqb(rymm2, rymm2);
9657     pxor(rymm0, rymm1);
9658     pcmpeqb(rymm0, rymm1);
9659     pxor(rymm0, rymm2);
9660   }
9661   pmovmskb(tmp1, rymm0);
9662   bsfq(tmp1, tmp1);
9663   addq(result, tmp1);
9664   shrq(result);
9665   jmpb(DONE);
9666 
9667   bind(VECTOR8_NOT_EQUAL);
9668   bind(VECTOR4_NOT_EQUAL);
9669   bsfq(tmp1, tmp1);
9670   shrq(tmp1, 3);
9671   addq(result, tmp1);
9672   bind(BYTES_NOT_EQUAL);
9673   shrq(result);
9674   jmpb(DONE);
9675 
9676   bind(SAME_TILL_END);
9677   mov64(result, -1);
9678 
9679   bind(DONE);
9680 }
9681 
9682 //Helper functions for square_to_len()
9683 
9684 /**
9685  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9686  * Preserves x and z and modifies rest of the registers.
9687  */
9688 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9689   // Perform square and right shift by 1
9690   // Handle odd xlen case first, then for even xlen do the following
9691   // jlong carry = 0;
9692   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9693   //     huge_128 product = x[j:j+1] * x[j:j+1];
9694   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9695   //     z[i+2:i+3] = (jlong)(product >>> 1);
9696   //     carry = (jlong)product;
9697   // }
9698 
9699   xorq(tmp5, tmp5);     // carry
9700   xorq(rdxReg, rdxReg);
9701   xorl(tmp1, tmp1);     // index for x
9702   xorl(tmp4, tmp4);     // index for z
9703 
9704   Label L_first_loop, L_first_loop_exit;
9705 
9706   testl(xlen, 1);
9707   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9708 
9709   // Square and right shift by 1 the odd element using 32 bit multiply
9710   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9711   imulq(raxReg, raxReg);
9712   shrq(raxReg, 1);
9713   adcq(tmp5, 0);
9714   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9715   incrementl(tmp1);
9716   addl(tmp4, 2);
9717 
9718   // Square and  right shift by 1 the rest using 64 bit multiply
9719   bind(L_first_loop);
9720   cmpptr(tmp1, xlen);
9721   jccb(Assembler::equal, L_first_loop_exit);
9722 
9723   // Square
9724   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9725   rorq(raxReg, 32);    // convert big-endian to little-endian
9726   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9727 
9728   // Right shift by 1 and save carry
9729   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9730   rcrq(rdxReg, 1);
9731   rcrq(raxReg, 1);
9732   adcq(tmp5, 0);
9733 
9734   // Store result in z
9735   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9736   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9737 
9738   // Update indices for x and z
9739   addl(tmp1, 2);
9740   addl(tmp4, 4);
9741   jmp(L_first_loop);
9742 
9743   bind(L_first_loop_exit);
9744 }
9745 
9746 
9747 /**
9748  * Perform the following multiply add operation using BMI2 instructions
9749  * carry:sum = sum + op1*op2 + carry
9750  * op2 should be in rdx
9751  * op2 is preserved, all other registers are modified
9752  */
9753 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9754   // assert op2 is rdx
9755   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9756   addq(sum, carry);
9757   adcq(tmp2, 0);
9758   addq(sum, op1);
9759   adcq(tmp2, 0);
9760   movq(carry, tmp2);
9761 }
9762 
9763 /**
9764  * Perform the following multiply add operation:
9765  * carry:sum = sum + op1*op2 + carry
9766  * Preserves op1, op2 and modifies rest of registers
9767  */
9768 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9769   // rdx:rax = op1 * op2
9770   movq(raxReg, op2);
9771   mulq(op1);
9772 
9773   //  rdx:rax = sum + carry + rdx:rax
9774   addq(sum, carry);
9775   adcq(rdxReg, 0);
9776   addq(sum, raxReg);
9777   adcq(rdxReg, 0);
9778 
9779   // carry:sum = rdx:sum
9780   movq(carry, rdxReg);
9781 }
9782 
9783 /**
9784  * Add 64 bit long carry into z[] with carry propogation.
9785  * Preserves z and carry register values and modifies rest of registers.
9786  *
9787  */
9788 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9789   Label L_fourth_loop, L_fourth_loop_exit;
9790 
9791   movl(tmp1, 1);
9792   subl(zlen, 2);
9793   addq(Address(z, zlen, Address::times_4, 0), carry);
9794 
9795   bind(L_fourth_loop);
9796   jccb(Assembler::carryClear, L_fourth_loop_exit);
9797   subl(zlen, 2);
9798   jccb(Assembler::negative, L_fourth_loop_exit);
9799   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9800   jmp(L_fourth_loop);
9801   bind(L_fourth_loop_exit);
9802 }
9803 
9804 /**
9805  * Shift z[] left by 1 bit.
9806  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9807  *
9808  */
9809 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9810 
9811   Label L_fifth_loop, L_fifth_loop_exit;
9812 
9813   // Fifth loop
9814   // Perform primitiveLeftShift(z, zlen, 1)
9815 
9816   const Register prev_carry = tmp1;
9817   const Register new_carry = tmp4;
9818   const Register value = tmp2;
9819   const Register zidx = tmp3;
9820 
9821   // int zidx, carry;
9822   // long value;
9823   // carry = 0;
9824   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9825   //    (carry:value)  = (z[i] << 1) | carry ;
9826   //    z[i] = value;
9827   // }
9828 
9829   movl(zidx, zlen);
9830   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9831 
9832   bind(L_fifth_loop);
9833   decl(zidx);  // Use decl to preserve carry flag
9834   decl(zidx);
9835   jccb(Assembler::negative, L_fifth_loop_exit);
9836 
9837   if (UseBMI2Instructions) {
9838      movq(value, Address(z, zidx, Address::times_4, 0));
9839      rclq(value, 1);
9840      rorxq(value, value, 32);
9841      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9842   }
9843   else {
9844     // clear new_carry
9845     xorl(new_carry, new_carry);
9846 
9847     // Shift z[i] by 1, or in previous carry and save new carry
9848     movq(value, Address(z, zidx, Address::times_4, 0));
9849     shlq(value, 1);
9850     adcl(new_carry, 0);
9851 
9852     orq(value, prev_carry);
9853     rorq(value, 0x20);
9854     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9855 
9856     // Set previous carry = new carry
9857     movl(prev_carry, new_carry);
9858   }
9859   jmp(L_fifth_loop);
9860 
9861   bind(L_fifth_loop_exit);
9862 }
9863 
9864 
9865 /**
9866  * Code for BigInteger::squareToLen() intrinsic
9867  *
9868  * rdi: x
9869  * rsi: len
9870  * r8:  z
9871  * rcx: zlen
9872  * r12: tmp1
9873  * r13: tmp2
9874  * r14: tmp3
9875  * r15: tmp4
9876  * rbx: tmp5
9877  *
9878  */
9879 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9880 
9881   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9882   push(tmp1);
9883   push(tmp2);
9884   push(tmp3);
9885   push(tmp4);
9886   push(tmp5);
9887 
9888   // First loop
9889   // Store the squares, right shifted one bit (i.e., divided by 2).
9890   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9891 
9892   // Add in off-diagonal sums.
9893   //
9894   // Second, third (nested) and fourth loops.
9895   // zlen +=2;
9896   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9897   //    carry = 0;
9898   //    long op2 = x[xidx:xidx+1];
9899   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9900   //       k -= 2;
9901   //       long op1 = x[j:j+1];
9902   //       long sum = z[k:k+1];
9903   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9904   //       z[k:k+1] = sum;
9905   //    }
9906   //    add_one_64(z, k, carry, tmp_regs);
9907   // }
9908 
9909   const Register carry = tmp5;
9910   const Register sum = tmp3;
9911   const Register op1 = tmp4;
9912   Register op2 = tmp2;
9913 
9914   push(zlen);
9915   push(len);
9916   addl(zlen,2);
9917   bind(L_second_loop);
9918   xorq(carry, carry);
9919   subl(zlen, 4);
9920   subl(len, 2);
9921   push(zlen);
9922   push(len);
9923   cmpl(len, 0);
9924   jccb(Assembler::lessEqual, L_second_loop_exit);
9925 
9926   // Multiply an array by one 64 bit long.
9927   if (UseBMI2Instructions) {
9928     op2 = rdxReg;
9929     movq(op2, Address(x, len, Address::times_4,  0));
9930     rorxq(op2, op2, 32);
9931   }
9932   else {
9933     movq(op2, Address(x, len, Address::times_4,  0));
9934     rorq(op2, 32);
9935   }
9936 
9937   bind(L_third_loop);
9938   decrementl(len);
9939   jccb(Assembler::negative, L_third_loop_exit);
9940   decrementl(len);
9941   jccb(Assembler::negative, L_last_x);
9942 
9943   movq(op1, Address(x, len, Address::times_4,  0));
9944   rorq(op1, 32);
9945 
9946   bind(L_multiply);
9947   subl(zlen, 2);
9948   movq(sum, Address(z, zlen, Address::times_4,  0));
9949 
9950   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9951   if (UseBMI2Instructions) {
9952     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9953   }
9954   else {
9955     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9956   }
9957 
9958   movq(Address(z, zlen, Address::times_4, 0), sum);
9959 
9960   jmp(L_third_loop);
9961   bind(L_third_loop_exit);
9962 
9963   // Fourth loop
9964   // Add 64 bit long carry into z with carry propogation.
9965   // Uses offsetted zlen.
9966   add_one_64(z, zlen, carry, tmp1);
9967 
9968   pop(len);
9969   pop(zlen);
9970   jmp(L_second_loop);
9971 
9972   // Next infrequent code is moved outside loops.
9973   bind(L_last_x);
9974   movl(op1, Address(x, 0));
9975   jmp(L_multiply);
9976 
9977   bind(L_second_loop_exit);
9978   pop(len);
9979   pop(zlen);
9980   pop(len);
9981   pop(zlen);
9982 
9983   // Fifth loop
9984   // Shift z left 1 bit.
9985   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
9986 
9987   // z[zlen-1] |= x[len-1] & 1;
9988   movl(tmp3, Address(x, len, Address::times_4, -4));
9989   andl(tmp3, 1);
9990   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
9991 
9992   pop(tmp5);
9993   pop(tmp4);
9994   pop(tmp3);
9995   pop(tmp2);
9996   pop(tmp1);
9997 }
9998 
9999 /**
10000  * Helper function for mul_add()
10001  * Multiply the in[] by int k and add to out[] starting at offset offs using
10002  * 128 bit by 32 bit multiply and return the carry in tmp5.
10003  * Only quad int aligned length of in[] is operated on in this function.
10004  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
10005  * This function preserves out, in and k registers.
10006  * len and offset point to the appropriate index in "in" & "out" correspondingly
10007  * tmp5 has the carry.
10008  * other registers are temporary and are modified.
10009  *
10010  */
10011 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
10012   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
10013   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
10014 
10015   Label L_first_loop, L_first_loop_exit;
10016 
10017   movl(tmp1, len);
10018   shrl(tmp1, 2);
10019 
10020   bind(L_first_loop);
10021   subl(tmp1, 1);
10022   jccb(Assembler::negative, L_first_loop_exit);
10023 
10024   subl(len, 4);
10025   subl(offset, 4);
10026 
10027   Register op2 = tmp2;
10028   const Register sum = tmp3;
10029   const Register op1 = tmp4;
10030   const Register carry = tmp5;
10031 
10032   if (UseBMI2Instructions) {
10033     op2 = rdxReg;
10034   }
10035 
10036   movq(op1, Address(in, len, Address::times_4,  8));
10037   rorq(op1, 32);
10038   movq(sum, Address(out, offset, Address::times_4,  8));
10039   rorq(sum, 32);
10040   if (UseBMI2Instructions) {
10041     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10042   }
10043   else {
10044     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10045   }
10046   // Store back in big endian from little endian
10047   rorq(sum, 0x20);
10048   movq(Address(out, offset, Address::times_4,  8), sum);
10049 
10050   movq(op1, Address(in, len, Address::times_4,  0));
10051   rorq(op1, 32);
10052   movq(sum, Address(out, offset, Address::times_4,  0));
10053   rorq(sum, 32);
10054   if (UseBMI2Instructions) {
10055     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10056   }
10057   else {
10058     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10059   }
10060   // Store back in big endian from little endian
10061   rorq(sum, 0x20);
10062   movq(Address(out, offset, Address::times_4,  0), sum);
10063 
10064   jmp(L_first_loop);
10065   bind(L_first_loop_exit);
10066 }
10067 
10068 /**
10069  * Code for BigInteger::mulAdd() intrinsic
10070  *
10071  * rdi: out
10072  * rsi: in
10073  * r11: offs (out.length - offset)
10074  * rcx: len
10075  * r8:  k
10076  * r12: tmp1
10077  * r13: tmp2
10078  * r14: tmp3
10079  * r15: tmp4
10080  * rbx: tmp5
10081  * Multiply the in[] by word k and add to out[], return the carry in rax
10082  */
10083 void MacroAssembler::mul_add(Register out, Register in, Register offs,
10084    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
10085    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
10086 
10087   Label L_carry, L_last_in, L_done;
10088 
10089 // carry = 0;
10090 // for (int j=len-1; j >= 0; j--) {
10091 //    long product = (in[j] & LONG_MASK) * kLong +
10092 //                   (out[offs] & LONG_MASK) + carry;
10093 //    out[offs--] = (int)product;
10094 //    carry = product >>> 32;
10095 // }
10096 //
10097   push(tmp1);
10098   push(tmp2);
10099   push(tmp3);
10100   push(tmp4);
10101   push(tmp5);
10102 
10103   Register op2 = tmp2;
10104   const Register sum = tmp3;
10105   const Register op1 = tmp4;
10106   const Register carry =  tmp5;
10107 
10108   if (UseBMI2Instructions) {
10109     op2 = rdxReg;
10110     movl(op2, k);
10111   }
10112   else {
10113     movl(op2, k);
10114   }
10115 
10116   xorq(carry, carry);
10117 
10118   //First loop
10119 
10120   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
10121   //The carry is in tmp5
10122   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
10123 
10124   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
10125   decrementl(len);
10126   jccb(Assembler::negative, L_carry);
10127   decrementl(len);
10128   jccb(Assembler::negative, L_last_in);
10129 
10130   movq(op1, Address(in, len, Address::times_4,  0));
10131   rorq(op1, 32);
10132 
10133   subl(offs, 2);
10134   movq(sum, Address(out, offs, Address::times_4,  0));
10135   rorq(sum, 32);
10136 
10137   if (UseBMI2Instructions) {
10138     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10139   }
10140   else {
10141     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10142   }
10143 
10144   // Store back in big endian from little endian
10145   rorq(sum, 0x20);
10146   movq(Address(out, offs, Address::times_4,  0), sum);
10147 
10148   testl(len, len);
10149   jccb(Assembler::zero, L_carry);
10150 
10151   //Multiply the last in[] entry, if any
10152   bind(L_last_in);
10153   movl(op1, Address(in, 0));
10154   movl(sum, Address(out, offs, Address::times_4,  -4));
10155 
10156   movl(raxReg, k);
10157   mull(op1); //tmp4 * eax -> edx:eax
10158   addl(sum, carry);
10159   adcl(rdxReg, 0);
10160   addl(sum, raxReg);
10161   adcl(rdxReg, 0);
10162   movl(carry, rdxReg);
10163 
10164   movl(Address(out, offs, Address::times_4,  -4), sum);
10165 
10166   bind(L_carry);
10167   //return tmp5/carry as carry in rax
10168   movl(rax, carry);
10169 
10170   bind(L_done);
10171   pop(tmp5);
10172   pop(tmp4);
10173   pop(tmp3);
10174   pop(tmp2);
10175   pop(tmp1);
10176 }
10177 #endif
10178 
10179 /**
10180  * Emits code to update CRC-32 with a byte value according to constants in table
10181  *
10182  * @param [in,out]crc   Register containing the crc.
10183  * @param [in]val       Register containing the byte to fold into the CRC.
10184  * @param [in]table     Register containing the table of crc constants.
10185  *
10186  * uint32_t crc;
10187  * val = crc_table[(val ^ crc) & 0xFF];
10188  * crc = val ^ (crc >> 8);
10189  *
10190  */
10191 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
10192   xorl(val, crc);
10193   andl(val, 0xFF);
10194   shrl(crc, 8); // unsigned shift
10195   xorl(crc, Address(table, val, Address::times_4, 0));
10196 }
10197 
10198 /**
10199  * Fold 128-bit data chunk
10200  */
10201 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
10202   if (UseAVX > 0) {
10203     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
10204     vpclmulldq(xcrc, xK, xcrc); // [63:0]
10205     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
10206     pxor(xcrc, xtmp);
10207   } else {
10208     movdqa(xtmp, xcrc);
10209     pclmulhdq(xtmp, xK);   // [123:64]
10210     pclmulldq(xcrc, xK);   // [63:0]
10211     pxor(xcrc, xtmp);
10212     movdqu(xtmp, Address(buf, offset));
10213     pxor(xcrc, xtmp);
10214   }
10215 }
10216 
10217 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
10218   if (UseAVX > 0) {
10219     vpclmulhdq(xtmp, xK, xcrc);
10220     vpclmulldq(xcrc, xK, xcrc);
10221     pxor(xcrc, xbuf);
10222     pxor(xcrc, xtmp);
10223   } else {
10224     movdqa(xtmp, xcrc);
10225     pclmulhdq(xtmp, xK);
10226     pclmulldq(xcrc, xK);
10227     pxor(xcrc, xbuf);
10228     pxor(xcrc, xtmp);
10229   }
10230 }
10231 
10232 /**
10233  * 8-bit folds to compute 32-bit CRC
10234  *
10235  * uint64_t xcrc;
10236  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
10237  */
10238 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
10239   movdl(tmp, xcrc);
10240   andl(tmp, 0xFF);
10241   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
10242   psrldq(xcrc, 1); // unsigned shift one byte
10243   pxor(xcrc, xtmp);
10244 }
10245 
10246 /**
10247  * uint32_t crc;
10248  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
10249  */
10250 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
10251   movl(tmp, crc);
10252   andl(tmp, 0xFF);
10253   shrl(crc, 8);
10254   xorl(crc, Address(table, tmp, Address::times_4, 0));
10255 }
10256 
10257 /**
10258  * @param crc   register containing existing CRC (32-bit)
10259  * @param buf   register pointing to input byte buffer (byte*)
10260  * @param len   register containing number of bytes
10261  * @param table register that will contain address of CRC table
10262  * @param tmp   scratch register
10263  */
10264 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
10265   assert_different_registers(crc, buf, len, table, tmp, rax);
10266 
10267   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
10268   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
10269 
10270   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
10271   // context for the registers used, where all instructions below are using 128-bit mode
10272   // On EVEX without VL and BW, these instructions will all be AVX.
10273   if (VM_Version::supports_avx512vlbw()) {
10274     movl(tmp, 0xffff);
10275     kmovwl(k1, tmp);
10276   }
10277 
10278   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
10279   notl(crc); // ~crc
10280   cmpl(len, 16);
10281   jcc(Assembler::less, L_tail);
10282 
10283   // Align buffer to 16 bytes
10284   movl(tmp, buf);
10285   andl(tmp, 0xF);
10286   jccb(Assembler::zero, L_aligned);
10287   subl(tmp,  16);
10288   addl(len, tmp);
10289 
10290   align(4);
10291   BIND(L_align_loop);
10292   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10293   update_byte_crc32(crc, rax, table);
10294   increment(buf);
10295   incrementl(tmp);
10296   jccb(Assembler::less, L_align_loop);
10297 
10298   BIND(L_aligned);
10299   movl(tmp, len); // save
10300   shrl(len, 4);
10301   jcc(Assembler::zero, L_tail_restore);
10302 
10303   // Fold crc into first bytes of vector
10304   movdqa(xmm1, Address(buf, 0));
10305   movdl(rax, xmm1);
10306   xorl(crc, rax);
10307   if (VM_Version::supports_sse4_1()) {
10308     pinsrd(xmm1, crc, 0);
10309   } else {
10310     pinsrw(xmm1, crc, 0);
10311     shrl(crc, 16);
10312     pinsrw(xmm1, crc, 1);
10313   }
10314   addptr(buf, 16);
10315   subl(len, 4); // len > 0
10316   jcc(Assembler::less, L_fold_tail);
10317 
10318   movdqa(xmm2, Address(buf,  0));
10319   movdqa(xmm3, Address(buf, 16));
10320   movdqa(xmm4, Address(buf, 32));
10321   addptr(buf, 48);
10322   subl(len, 3);
10323   jcc(Assembler::lessEqual, L_fold_512b);
10324 
10325   // Fold total 512 bits of polynomial on each iteration,
10326   // 128 bits per each of 4 parallel streams.
10327   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
10328 
10329   align(32);
10330   BIND(L_fold_512b_loop);
10331   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10332   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
10333   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
10334   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
10335   addptr(buf, 64);
10336   subl(len, 4);
10337   jcc(Assembler::greater, L_fold_512b_loop);
10338 
10339   // Fold 512 bits to 128 bits.
10340   BIND(L_fold_512b);
10341   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10342   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
10343   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
10344   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
10345 
10346   // Fold the rest of 128 bits data chunks
10347   BIND(L_fold_tail);
10348   addl(len, 3);
10349   jccb(Assembler::lessEqual, L_fold_128b);
10350   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10351 
10352   BIND(L_fold_tail_loop);
10353   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10354   addptr(buf, 16);
10355   decrementl(len);
10356   jccb(Assembler::greater, L_fold_tail_loop);
10357 
10358   // Fold 128 bits in xmm1 down into 32 bits in crc register.
10359   BIND(L_fold_128b);
10360   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
10361   if (UseAVX > 0) {
10362     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
10363     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
10364     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
10365   } else {
10366     movdqa(xmm2, xmm0);
10367     pclmulqdq(xmm2, xmm1, 0x1);
10368     movdqa(xmm3, xmm0);
10369     pand(xmm3, xmm2);
10370     pclmulqdq(xmm0, xmm3, 0x1);
10371   }
10372   psrldq(xmm1, 8);
10373   psrldq(xmm2, 4);
10374   pxor(xmm0, xmm1);
10375   pxor(xmm0, xmm2);
10376 
10377   // 8 8-bit folds to compute 32-bit CRC.
10378   for (int j = 0; j < 4; j++) {
10379     fold_8bit_crc32(xmm0, table, xmm1, rax);
10380   }
10381   movdl(crc, xmm0); // mov 32 bits to general register
10382   for (int j = 0; j < 4; j++) {
10383     fold_8bit_crc32(crc, table, rax);
10384   }
10385 
10386   BIND(L_tail_restore);
10387   movl(len, tmp); // restore
10388   BIND(L_tail);
10389   andl(len, 0xf);
10390   jccb(Assembler::zero, L_exit);
10391 
10392   // Fold the rest of bytes
10393   align(4);
10394   BIND(L_tail_loop);
10395   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10396   update_byte_crc32(crc, rax, table);
10397   increment(buf);
10398   decrementl(len);
10399   jccb(Assembler::greater, L_tail_loop);
10400 
10401   BIND(L_exit);
10402   notl(crc); // ~c
10403 }
10404 
10405 #ifdef _LP64
10406 // S. Gueron / Information Processing Letters 112 (2012) 184
10407 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
10408 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
10409 // Output: the 64-bit carry-less product of B * CONST
10410 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
10411                                      Register tmp1, Register tmp2, Register tmp3) {
10412   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10413   if (n > 0) {
10414     addq(tmp3, n * 256 * 8);
10415   }
10416   //    Q1 = TABLEExt[n][B & 0xFF];
10417   movl(tmp1, in);
10418   andl(tmp1, 0x000000FF);
10419   shll(tmp1, 3);
10420   addq(tmp1, tmp3);
10421   movq(tmp1, Address(tmp1, 0));
10422 
10423   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10424   movl(tmp2, in);
10425   shrl(tmp2, 8);
10426   andl(tmp2, 0x000000FF);
10427   shll(tmp2, 3);
10428   addq(tmp2, tmp3);
10429   movq(tmp2, Address(tmp2, 0));
10430 
10431   shlq(tmp2, 8);
10432   xorq(tmp1, tmp2);
10433 
10434   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10435   movl(tmp2, in);
10436   shrl(tmp2, 16);
10437   andl(tmp2, 0x000000FF);
10438   shll(tmp2, 3);
10439   addq(tmp2, tmp3);
10440   movq(tmp2, Address(tmp2, 0));
10441 
10442   shlq(tmp2, 16);
10443   xorq(tmp1, tmp2);
10444 
10445   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10446   shrl(in, 24);
10447   andl(in, 0x000000FF);
10448   shll(in, 3);
10449   addq(in, tmp3);
10450   movq(in, Address(in, 0));
10451 
10452   shlq(in, 24);
10453   xorq(in, tmp1);
10454   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10455 }
10456 
10457 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10458                                       Register in_out,
10459                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10460                                       XMMRegister w_xtmp2,
10461                                       Register tmp1,
10462                                       Register n_tmp2, Register n_tmp3) {
10463   if (is_pclmulqdq_supported) {
10464     movdl(w_xtmp1, in_out); // modified blindly
10465 
10466     movl(tmp1, const_or_pre_comp_const_index);
10467     movdl(w_xtmp2, tmp1);
10468     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10469 
10470     movdq(in_out, w_xtmp1);
10471   } else {
10472     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10473   }
10474 }
10475 
10476 // Recombination Alternative 2: No bit-reflections
10477 // T1 = (CRC_A * U1) << 1
10478 // T2 = (CRC_B * U2) << 1
10479 // C1 = T1 >> 32
10480 // C2 = T2 >> 32
10481 // T1 = T1 & 0xFFFFFFFF
10482 // T2 = T2 & 0xFFFFFFFF
10483 // T1 = CRC32(0, T1)
10484 // T2 = CRC32(0, T2)
10485 // C1 = C1 ^ T1
10486 // C2 = C2 ^ T2
10487 // CRC = C1 ^ C2 ^ CRC_C
10488 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10489                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10490                                      Register tmp1, Register tmp2,
10491                                      Register n_tmp3) {
10492   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10493   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10494   shlq(in_out, 1);
10495   movl(tmp1, in_out);
10496   shrq(in_out, 32);
10497   xorl(tmp2, tmp2);
10498   crc32(tmp2, tmp1, 4);
10499   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10500   shlq(in1, 1);
10501   movl(tmp1, in1);
10502   shrq(in1, 32);
10503   xorl(tmp2, tmp2);
10504   crc32(tmp2, tmp1, 4);
10505   xorl(in1, tmp2);
10506   xorl(in_out, in1);
10507   xorl(in_out, in2);
10508 }
10509 
10510 // Set N to predefined value
10511 // Subtract from a lenght of a buffer
10512 // execute in a loop:
10513 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10514 // for i = 1 to N do
10515 //  CRC_A = CRC32(CRC_A, A[i])
10516 //  CRC_B = CRC32(CRC_B, B[i])
10517 //  CRC_C = CRC32(CRC_C, C[i])
10518 // end for
10519 // Recombine
10520 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10521                                        Register in_out1, Register in_out2, Register in_out3,
10522                                        Register tmp1, Register tmp2, Register tmp3,
10523                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10524                                        Register tmp4, Register tmp5,
10525                                        Register n_tmp6) {
10526   Label L_processPartitions;
10527   Label L_processPartition;
10528   Label L_exit;
10529 
10530   bind(L_processPartitions);
10531   cmpl(in_out1, 3 * size);
10532   jcc(Assembler::less, L_exit);
10533     xorl(tmp1, tmp1);
10534     xorl(tmp2, tmp2);
10535     movq(tmp3, in_out2);
10536     addq(tmp3, size);
10537 
10538     bind(L_processPartition);
10539       crc32(in_out3, Address(in_out2, 0), 8);
10540       crc32(tmp1, Address(in_out2, size), 8);
10541       crc32(tmp2, Address(in_out2, size * 2), 8);
10542       addq(in_out2, 8);
10543       cmpq(in_out2, tmp3);
10544       jcc(Assembler::less, L_processPartition);
10545     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10546             w_xtmp1, w_xtmp2, w_xtmp3,
10547             tmp4, tmp5,
10548             n_tmp6);
10549     addq(in_out2, 2 * size);
10550     subl(in_out1, 3 * size);
10551     jmp(L_processPartitions);
10552 
10553   bind(L_exit);
10554 }
10555 #else
10556 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10557                                      Register tmp1, Register tmp2, Register tmp3,
10558                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10559   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10560   if (n > 0) {
10561     addl(tmp3, n * 256 * 8);
10562   }
10563   //    Q1 = TABLEExt[n][B & 0xFF];
10564   movl(tmp1, in_out);
10565   andl(tmp1, 0x000000FF);
10566   shll(tmp1, 3);
10567   addl(tmp1, tmp3);
10568   movq(xtmp1, Address(tmp1, 0));
10569 
10570   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10571   movl(tmp2, in_out);
10572   shrl(tmp2, 8);
10573   andl(tmp2, 0x000000FF);
10574   shll(tmp2, 3);
10575   addl(tmp2, tmp3);
10576   movq(xtmp2, Address(tmp2, 0));
10577 
10578   psllq(xtmp2, 8);
10579   pxor(xtmp1, xtmp2);
10580 
10581   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10582   movl(tmp2, in_out);
10583   shrl(tmp2, 16);
10584   andl(tmp2, 0x000000FF);
10585   shll(tmp2, 3);
10586   addl(tmp2, tmp3);
10587   movq(xtmp2, Address(tmp2, 0));
10588 
10589   psllq(xtmp2, 16);
10590   pxor(xtmp1, xtmp2);
10591 
10592   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10593   shrl(in_out, 24);
10594   andl(in_out, 0x000000FF);
10595   shll(in_out, 3);
10596   addl(in_out, tmp3);
10597   movq(xtmp2, Address(in_out, 0));
10598 
10599   psllq(xtmp2, 24);
10600   pxor(xtmp1, xtmp2); // Result in CXMM
10601   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10602 }
10603 
10604 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10605                                       Register in_out,
10606                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10607                                       XMMRegister w_xtmp2,
10608                                       Register tmp1,
10609                                       Register n_tmp2, Register n_tmp3) {
10610   if (is_pclmulqdq_supported) {
10611     movdl(w_xtmp1, in_out);
10612 
10613     movl(tmp1, const_or_pre_comp_const_index);
10614     movdl(w_xtmp2, tmp1);
10615     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10616     // Keep result in XMM since GPR is 32 bit in length
10617   } else {
10618     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10619   }
10620 }
10621 
10622 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10623                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10624                                      Register tmp1, Register tmp2,
10625                                      Register n_tmp3) {
10626   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10627   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10628 
10629   psllq(w_xtmp1, 1);
10630   movdl(tmp1, w_xtmp1);
10631   psrlq(w_xtmp1, 32);
10632   movdl(in_out, w_xtmp1);
10633 
10634   xorl(tmp2, tmp2);
10635   crc32(tmp2, tmp1, 4);
10636   xorl(in_out, tmp2);
10637 
10638   psllq(w_xtmp2, 1);
10639   movdl(tmp1, w_xtmp2);
10640   psrlq(w_xtmp2, 32);
10641   movdl(in1, w_xtmp2);
10642 
10643   xorl(tmp2, tmp2);
10644   crc32(tmp2, tmp1, 4);
10645   xorl(in1, tmp2);
10646   xorl(in_out, in1);
10647   xorl(in_out, in2);
10648 }
10649 
10650 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10651                                        Register in_out1, Register in_out2, Register in_out3,
10652                                        Register tmp1, Register tmp2, Register tmp3,
10653                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10654                                        Register tmp4, Register tmp5,
10655                                        Register n_tmp6) {
10656   Label L_processPartitions;
10657   Label L_processPartition;
10658   Label L_exit;
10659 
10660   bind(L_processPartitions);
10661   cmpl(in_out1, 3 * size);
10662   jcc(Assembler::less, L_exit);
10663     xorl(tmp1, tmp1);
10664     xorl(tmp2, tmp2);
10665     movl(tmp3, in_out2);
10666     addl(tmp3, size);
10667 
10668     bind(L_processPartition);
10669       crc32(in_out3, Address(in_out2, 0), 4);
10670       crc32(tmp1, Address(in_out2, size), 4);
10671       crc32(tmp2, Address(in_out2, size*2), 4);
10672       crc32(in_out3, Address(in_out2, 0+4), 4);
10673       crc32(tmp1, Address(in_out2, size+4), 4);
10674       crc32(tmp2, Address(in_out2, size*2+4), 4);
10675       addl(in_out2, 8);
10676       cmpl(in_out2, tmp3);
10677       jcc(Assembler::less, L_processPartition);
10678 
10679         push(tmp3);
10680         push(in_out1);
10681         push(in_out2);
10682         tmp4 = tmp3;
10683         tmp5 = in_out1;
10684         n_tmp6 = in_out2;
10685 
10686       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10687             w_xtmp1, w_xtmp2, w_xtmp3,
10688             tmp4, tmp5,
10689             n_tmp6);
10690 
10691         pop(in_out2);
10692         pop(in_out1);
10693         pop(tmp3);
10694 
10695     addl(in_out2, 2 * size);
10696     subl(in_out1, 3 * size);
10697     jmp(L_processPartitions);
10698 
10699   bind(L_exit);
10700 }
10701 #endif //LP64
10702 
10703 #ifdef _LP64
10704 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10705 // Input: A buffer I of L bytes.
10706 // Output: the CRC32C value of the buffer.
10707 // Notations:
10708 // Write L = 24N + r, with N = floor (L/24).
10709 // r = L mod 24 (0 <= r < 24).
10710 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10711 // N quadwords, and R consists of r bytes.
10712 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10713 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10714 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10715 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10716 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10717                                           Register tmp1, Register tmp2, Register tmp3,
10718                                           Register tmp4, Register tmp5, Register tmp6,
10719                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10720                                           bool is_pclmulqdq_supported) {
10721   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10722   Label L_wordByWord;
10723   Label L_byteByByteProlog;
10724   Label L_byteByByte;
10725   Label L_exit;
10726 
10727   if (is_pclmulqdq_supported ) {
10728     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10729     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10730 
10731     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10732     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10733 
10734     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10735     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10736     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10737   } else {
10738     const_or_pre_comp_const_index[0] = 1;
10739     const_or_pre_comp_const_index[1] = 0;
10740 
10741     const_or_pre_comp_const_index[2] = 3;
10742     const_or_pre_comp_const_index[3] = 2;
10743 
10744     const_or_pre_comp_const_index[4] = 5;
10745     const_or_pre_comp_const_index[5] = 4;
10746    }
10747   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10748                     in2, in1, in_out,
10749                     tmp1, tmp2, tmp3,
10750                     w_xtmp1, w_xtmp2, w_xtmp3,
10751                     tmp4, tmp5,
10752                     tmp6);
10753   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10754                     in2, in1, in_out,
10755                     tmp1, tmp2, tmp3,
10756                     w_xtmp1, w_xtmp2, w_xtmp3,
10757                     tmp4, tmp5,
10758                     tmp6);
10759   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10760                     in2, in1, in_out,
10761                     tmp1, tmp2, tmp3,
10762                     w_xtmp1, w_xtmp2, w_xtmp3,
10763                     tmp4, tmp5,
10764                     tmp6);
10765   movl(tmp1, in2);
10766   andl(tmp1, 0x00000007);
10767   negl(tmp1);
10768   addl(tmp1, in2);
10769   addq(tmp1, in1);
10770 
10771   BIND(L_wordByWord);
10772   cmpq(in1, tmp1);
10773   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10774     crc32(in_out, Address(in1, 0), 4);
10775     addq(in1, 4);
10776     jmp(L_wordByWord);
10777 
10778   BIND(L_byteByByteProlog);
10779   andl(in2, 0x00000007);
10780   movl(tmp2, 1);
10781 
10782   BIND(L_byteByByte);
10783   cmpl(tmp2, in2);
10784   jccb(Assembler::greater, L_exit);
10785     crc32(in_out, Address(in1, 0), 1);
10786     incq(in1);
10787     incl(tmp2);
10788     jmp(L_byteByByte);
10789 
10790   BIND(L_exit);
10791 }
10792 #else
10793 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10794                                           Register tmp1, Register  tmp2, Register tmp3,
10795                                           Register tmp4, Register  tmp5, Register tmp6,
10796                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10797                                           bool is_pclmulqdq_supported) {
10798   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10799   Label L_wordByWord;
10800   Label L_byteByByteProlog;
10801   Label L_byteByByte;
10802   Label L_exit;
10803 
10804   if (is_pclmulqdq_supported) {
10805     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10806     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10807 
10808     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10809     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10810 
10811     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10812     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10813   } else {
10814     const_or_pre_comp_const_index[0] = 1;
10815     const_or_pre_comp_const_index[1] = 0;
10816 
10817     const_or_pre_comp_const_index[2] = 3;
10818     const_or_pre_comp_const_index[3] = 2;
10819 
10820     const_or_pre_comp_const_index[4] = 5;
10821     const_or_pre_comp_const_index[5] = 4;
10822   }
10823   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10824                     in2, in1, in_out,
10825                     tmp1, tmp2, tmp3,
10826                     w_xtmp1, w_xtmp2, w_xtmp3,
10827                     tmp4, tmp5,
10828                     tmp6);
10829   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10830                     in2, in1, in_out,
10831                     tmp1, tmp2, tmp3,
10832                     w_xtmp1, w_xtmp2, w_xtmp3,
10833                     tmp4, tmp5,
10834                     tmp6);
10835   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10836                     in2, in1, in_out,
10837                     tmp1, tmp2, tmp3,
10838                     w_xtmp1, w_xtmp2, w_xtmp3,
10839                     tmp4, tmp5,
10840                     tmp6);
10841   movl(tmp1, in2);
10842   andl(tmp1, 0x00000007);
10843   negl(tmp1);
10844   addl(tmp1, in2);
10845   addl(tmp1, in1);
10846 
10847   BIND(L_wordByWord);
10848   cmpl(in1, tmp1);
10849   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10850     crc32(in_out, Address(in1,0), 4);
10851     addl(in1, 4);
10852     jmp(L_wordByWord);
10853 
10854   BIND(L_byteByByteProlog);
10855   andl(in2, 0x00000007);
10856   movl(tmp2, 1);
10857 
10858   BIND(L_byteByByte);
10859   cmpl(tmp2, in2);
10860   jccb(Assembler::greater, L_exit);
10861     movb(tmp1, Address(in1, 0));
10862     crc32(in_out, tmp1, 1);
10863     incl(in1);
10864     incl(tmp2);
10865     jmp(L_byteByByte);
10866 
10867   BIND(L_exit);
10868 }
10869 #endif // LP64
10870 #undef BIND
10871 #undef BLOCK_COMMENT
10872 
10873 // Compress char[] array to byte[].
10874 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
10875 //   @HotSpotIntrinsicCandidate
10876 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
10877 //     for (int i = 0; i < len; i++) {
10878 //       int c = src[srcOff++];
10879 //       if (c >>> 8 != 0) {
10880 //         return 0;
10881 //       }
10882 //       dst[dstOff++] = (byte)c;
10883 //     }
10884 //     return len;
10885 //   }
10886 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10887   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10888   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10889   Register tmp5, Register result) {
10890   Label copy_chars_loop, return_length, return_zero, done, below_threshold;
10891 
10892   // rsi: src
10893   // rdi: dst
10894   // rdx: len
10895   // rcx: tmp5
10896   // rax: result
10897 
10898   // rsi holds start addr of source char[] to be compressed
10899   // rdi holds start addr of destination byte[]
10900   // rdx holds length
10901 
10902   assert(len != result, "");
10903 
10904   // save length for return
10905   push(len);
10906 
10907   if ((UseAVX > 2) && // AVX512
10908     VM_Version::supports_avx512vlbw() &&
10909     VM_Version::supports_bmi2()) {
10910 
10911     set_vector_masking();  // opening of the stub context for programming mask registers
10912 
10913     Label copy_32_loop, copy_loop_tail, restore_k1_return_zero;
10914 
10915     // alignement
10916     Label post_alignement;
10917 
10918     // if length of the string is less than 16, handle it in an old fashioned
10919     // way
10920     testl(len, -32);
10921     jcc(Assembler::zero, below_threshold);
10922 
10923     // First check whether a character is compressable ( <= 0xFF).
10924     // Create mask to test for Unicode chars inside zmm vector
10925     movl(result, 0x00FF);
10926     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
10927 
10928     // Save k1
10929     kmovql(k3, k1);
10930 
10931     testl(len, -64);
10932     jcc(Assembler::zero, post_alignement);
10933 
10934     movl(tmp5, dst);
10935     andl(tmp5, (32 - 1));
10936     negl(tmp5);
10937     andl(tmp5, (32 - 1));
10938 
10939     // bail out when there is nothing to be done
10940     testl(tmp5, 0xFFFFFFFF);
10941     jcc(Assembler::zero, post_alignement);
10942 
10943     // ~(~0 << len), where len is the # of remaining elements to process
10944     movl(result, 0xFFFFFFFF);
10945     shlxl(result, result, tmp5);
10946     notl(result);
10947     kmovdl(k1, result);
10948 
10949     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10950     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10951     ktestd(k2, k1);
10952     jcc(Assembler::carryClear, restore_k1_return_zero);
10953 
10954     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10955 
10956     addptr(src, tmp5);
10957     addptr(src, tmp5);
10958     addptr(dst, tmp5);
10959     subl(len, tmp5);
10960 
10961     bind(post_alignement);
10962     // end of alignement
10963 
10964     movl(tmp5, len);
10965     andl(tmp5, (32 - 1));    // tail count (in chars)
10966     andl(len, ~(32 - 1));    // vector count (in chars)
10967     jcc(Assembler::zero, copy_loop_tail);
10968 
10969     lea(src, Address(src, len, Address::times_2));
10970     lea(dst, Address(dst, len, Address::times_1));
10971     negptr(len);
10972 
10973     bind(copy_32_loop);
10974     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
10975     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10976     kortestdl(k2, k2);
10977     jcc(Assembler::carryClear, restore_k1_return_zero);
10978 
10979     // All elements in current processed chunk are valid candidates for
10980     // compression. Write a truncated byte elements to the memory.
10981     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
10982     addptr(len, 32);
10983     jcc(Assembler::notZero, copy_32_loop);
10984 
10985     bind(copy_loop_tail);
10986     // bail out when there is nothing to be done
10987     testl(tmp5, 0xFFFFFFFF);
10988     // Restore k1
10989     kmovql(k1, k3);
10990     jcc(Assembler::zero, return_length);
10991 
10992     movl(len, tmp5);
10993 
10994     // ~(~0 << len), where len is the # of remaining elements to process
10995     movl(result, 0xFFFFFFFF);
10996     shlxl(result, result, len);
10997     notl(result);
10998 
10999     kmovdl(k1, result);
11000 
11001     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
11002     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
11003     ktestd(k2, k1);
11004     jcc(Assembler::carryClear, restore_k1_return_zero);
11005 
11006     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
11007     // Restore k1
11008     kmovql(k1, k3);
11009     jmp(return_length);
11010 
11011     bind(restore_k1_return_zero);
11012     // Restore k1
11013     kmovql(k1, k3);
11014     jmp(return_zero);
11015 
11016     clear_vector_masking();   // closing of the stub context for programming mask registers
11017   }
11018   if (UseSSE42Intrinsics) {
11019     Label copy_32_loop, copy_16, copy_tail;
11020 
11021     bind(below_threshold);
11022 
11023     movl(result, len);
11024 
11025     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
11026 
11027     // vectored compression
11028     andl(len, 0xfffffff0);    // vector count (in chars)
11029     andl(result, 0x0000000f);    // tail count (in chars)
11030     testl(len, len);
11031     jccb(Assembler::zero, copy_16);
11032 
11033     // compress 16 chars per iter
11034     movdl(tmp1Reg, tmp5);
11035     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
11036     pxor(tmp4Reg, tmp4Reg);
11037 
11038     lea(src, Address(src, len, Address::times_2));
11039     lea(dst, Address(dst, len, Address::times_1));
11040     negptr(len);
11041 
11042     bind(copy_32_loop);
11043     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
11044     por(tmp4Reg, tmp2Reg);
11045     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
11046     por(tmp4Reg, tmp3Reg);
11047     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
11048     jcc(Assembler::notZero, return_zero);
11049     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
11050     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
11051     addptr(len, 16);
11052     jcc(Assembler::notZero, copy_32_loop);
11053 
11054     // compress next vector of 8 chars (if any)
11055     bind(copy_16);
11056     movl(len, result);
11057     andl(len, 0xfffffff8);    // vector count (in chars)
11058     andl(result, 0x00000007);    // tail count (in chars)
11059     testl(len, len);
11060     jccb(Assembler::zero, copy_tail);
11061 
11062     movdl(tmp1Reg, tmp5);
11063     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
11064     pxor(tmp3Reg, tmp3Reg);
11065 
11066     movdqu(tmp2Reg, Address(src, 0));
11067     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
11068     jccb(Assembler::notZero, return_zero);
11069     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
11070     movq(Address(dst, 0), tmp2Reg);
11071     addptr(src, 16);
11072     addptr(dst, 8);
11073 
11074     bind(copy_tail);
11075     movl(len, result);
11076   }
11077   // compress 1 char per iter
11078   testl(len, len);
11079   jccb(Assembler::zero, return_length);
11080   lea(src, Address(src, len, Address::times_2));
11081   lea(dst, Address(dst, len, Address::times_1));
11082   negptr(len);
11083 
11084   bind(copy_chars_loop);
11085   load_unsigned_short(result, Address(src, len, Address::times_2));
11086   testl(result, 0xff00);      // check if Unicode char
11087   jccb(Assembler::notZero, return_zero);
11088   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
11089   increment(len);
11090   jcc(Assembler::notZero, copy_chars_loop);
11091 
11092   // if compression succeeded, return length
11093   bind(return_length);
11094   pop(result);
11095   jmpb(done);
11096 
11097   // if compression failed, return 0
11098   bind(return_zero);
11099   xorl(result, result);
11100   addptr(rsp, wordSize);
11101 
11102   bind(done);
11103 }
11104 
11105 // Inflate byte[] array to char[].
11106 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
11107 //   @HotSpotIntrinsicCandidate
11108 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
11109 //     for (int i = 0; i < len; i++) {
11110 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
11111 //     }
11112 //   }
11113 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
11114   XMMRegister tmp1, Register tmp2) {
11115   Label copy_chars_loop, done, below_threshold;
11116   // rsi: src
11117   // rdi: dst
11118   // rdx: len
11119   // rcx: tmp2
11120 
11121   // rsi holds start addr of source byte[] to be inflated
11122   // rdi holds start addr of destination char[]
11123   // rdx holds length
11124   assert_different_registers(src, dst, len, tmp2);
11125 
11126   if ((UseAVX > 2) && // AVX512
11127     VM_Version::supports_avx512vlbw() &&
11128     VM_Version::supports_bmi2()) {
11129 
11130     set_vector_masking();  // opening of the stub context for programming mask registers
11131 
11132     Label copy_32_loop, copy_tail;
11133     Register tmp3_aliased = len;
11134 
11135     // if length of the string is less than 16, handle it in an old fashioned
11136     // way
11137     testl(len, -16);
11138     jcc(Assembler::zero, below_threshold);
11139 
11140     // In order to use only one arithmetic operation for the main loop we use
11141     // this pre-calculation
11142     movl(tmp2, len);
11143     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
11144     andl(len, -32);     // vector count
11145     jccb(Assembler::zero, copy_tail);
11146 
11147     lea(src, Address(src, len, Address::times_1));
11148     lea(dst, Address(dst, len, Address::times_2));
11149     negptr(len);
11150 
11151 
11152     // inflate 32 chars per iter
11153     bind(copy_32_loop);
11154     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
11155     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
11156     addptr(len, 32);
11157     jcc(Assembler::notZero, copy_32_loop);
11158 
11159     bind(copy_tail);
11160     // bail out when there is nothing to be done
11161     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
11162     jcc(Assembler::zero, done);
11163 
11164     // Save k1
11165     kmovql(k2, k1);
11166 
11167     // ~(~0 << length), where length is the # of remaining elements to process
11168     movl(tmp3_aliased, -1);
11169     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
11170     notl(tmp3_aliased);
11171     kmovdl(k1, tmp3_aliased);
11172     evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
11173     evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
11174 
11175     // Restore k1
11176     kmovql(k1, k2);
11177     jmp(done);
11178 
11179     clear_vector_masking();   // closing of the stub context for programming mask registers
11180   }
11181   if (UseSSE42Intrinsics) {
11182     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
11183 
11184     movl(tmp2, len);
11185 
11186     if (UseAVX > 1) {
11187       andl(tmp2, (16 - 1));
11188       andl(len, -16);
11189       jccb(Assembler::zero, copy_new_tail);
11190     } else {
11191       andl(tmp2, 0x00000007);   // tail count (in chars)
11192       andl(len, 0xfffffff8);    // vector count (in chars)
11193       jccb(Assembler::zero, copy_tail);
11194     }
11195 
11196     // vectored inflation
11197     lea(src, Address(src, len, Address::times_1));
11198     lea(dst, Address(dst, len, Address::times_2));
11199     negptr(len);
11200 
11201     if (UseAVX > 1) {
11202       bind(copy_16_loop);
11203       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
11204       vmovdqu(Address(dst, len, Address::times_2), tmp1);
11205       addptr(len, 16);
11206       jcc(Assembler::notZero, copy_16_loop);
11207 
11208       bind(below_threshold);
11209       bind(copy_new_tail);
11210       if ((UseAVX > 2) &&
11211         VM_Version::supports_avx512vlbw() &&
11212         VM_Version::supports_bmi2()) {
11213         movl(tmp2, len);
11214       } else {
11215         movl(len, tmp2);
11216       }
11217       andl(tmp2, 0x00000007);
11218       andl(len, 0xFFFFFFF8);
11219       jccb(Assembler::zero, copy_tail);
11220 
11221       pmovzxbw(tmp1, Address(src, 0));
11222       movdqu(Address(dst, 0), tmp1);
11223       addptr(src, 8);
11224       addptr(dst, 2 * 8);
11225 
11226       jmp(copy_tail, true);
11227     }
11228 
11229     // inflate 8 chars per iter
11230     bind(copy_8_loop);
11231     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
11232     movdqu(Address(dst, len, Address::times_2), tmp1);
11233     addptr(len, 8);
11234     jcc(Assembler::notZero, copy_8_loop);
11235 
11236     bind(copy_tail);
11237     movl(len, tmp2);
11238 
11239     cmpl(len, 4);
11240     jccb(Assembler::less, copy_bytes);
11241 
11242     movdl(tmp1, Address(src, 0));  // load 4 byte chars
11243     pmovzxbw(tmp1, tmp1);
11244     movq(Address(dst, 0), tmp1);
11245     subptr(len, 4);
11246     addptr(src, 4);
11247     addptr(dst, 8);
11248 
11249     bind(copy_bytes);
11250   }
11251   testl(len, len);
11252   jccb(Assembler::zero, done);
11253   lea(src, Address(src, len, Address::times_1));
11254   lea(dst, Address(dst, len, Address::times_2));
11255   negptr(len);
11256 
11257   // inflate 1 char per iter
11258   bind(copy_chars_loop);
11259   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
11260   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
11261   increment(len);
11262   jcc(Assembler::notZero, copy_chars_loop);
11263 
11264   bind(done);
11265 }
11266 
11267 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
11268   switch (cond) {
11269     // Note some conditions are synonyms for others
11270     case Assembler::zero:         return Assembler::notZero;
11271     case Assembler::notZero:      return Assembler::zero;
11272     case Assembler::less:         return Assembler::greaterEqual;
11273     case Assembler::lessEqual:    return Assembler::greater;
11274     case Assembler::greater:      return Assembler::lessEqual;
11275     case Assembler::greaterEqual: return Assembler::less;
11276     case Assembler::below:        return Assembler::aboveEqual;
11277     case Assembler::belowEqual:   return Assembler::above;
11278     case Assembler::above:        return Assembler::belowEqual;
11279     case Assembler::aboveEqual:   return Assembler::below;
11280     case Assembler::overflow:     return Assembler::noOverflow;
11281     case Assembler::noOverflow:   return Assembler::overflow;
11282     case Assembler::negative:     return Assembler::positive;
11283     case Assembler::positive:     return Assembler::negative;
11284     case Assembler::parity:       return Assembler::noParity;
11285     case Assembler::noParity:     return Assembler::parity;
11286   }
11287   ShouldNotReachHere(); return Assembler::overflow;
11288 }
11289 
11290 SkipIfEqual::SkipIfEqual(
11291     MacroAssembler* masm, const bool* flag_addr, bool value) {
11292   _masm = masm;
11293   _masm->cmp8(ExternalAddress((address)flag_addr), value);
11294   _masm->jcc(Assembler::equal, _label);
11295 }
11296 
11297 SkipIfEqual::~SkipIfEqual() {
11298   _masm->bind(_label);
11299 }
11300 
11301 // 32-bit Windows has its own fast-path implementation
11302 // of get_thread
11303 #if !defined(WIN32) || defined(_LP64)
11304 
11305 // This is simply a call to Thread::current()
11306 void MacroAssembler::get_thread(Register thread) {
11307   if (thread != rax) {
11308     push(rax);
11309   }
11310   LP64_ONLY(push(rdi);)
11311   LP64_ONLY(push(rsi);)
11312   push(rdx);
11313   push(rcx);
11314 #ifdef _LP64
11315   push(r8);
11316   push(r9);
11317   push(r10);
11318   push(r11);
11319 #endif
11320 
11321   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
11322 
11323 #ifdef _LP64
11324   pop(r11);
11325   pop(r10);
11326   pop(r9);
11327   pop(r8);
11328 #endif
11329   pop(rcx);
11330   pop(rdx);
11331   LP64_ONLY(pop(rsi);)
11332   LP64_ONLY(pop(rdi);)
11333   if (thread != rax) {
11334     mov(thread, rax);
11335     pop(rax);
11336   }
11337 }
11338 
11339 #endif