1 /*
   2  * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "compiler/compileLog.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/convertnode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/matcher.hpp"
  35 #include "opto/memnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/opcodes.hpp"
  38 #include "opto/opaquenode.hpp"
  39 #include "opto/superword.hpp"
  40 #include "opto/vectornode.hpp"
  41 #include "opto/movenode.hpp"
  42 
  43 //
  44 //                  S U P E R W O R D   T R A N S F O R M
  45 //=============================================================================
  46 
  47 //------------------------------SuperWord---------------------------
  48 SuperWord::SuperWord(PhaseIdealLoop* phase) :
  49   _phase(phase),
  50   _arena(phase->C->comp_arena()),
  51   _igvn(phase->_igvn),
  52   _packset(arena(), 8,  0, NULL),         // packs for the current block
  53   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
  54   _block(arena(), 8,  0, NULL),           // nodes in current block
  55   _post_block(arena(), 8, 0, NULL),       // nodes common to current block which are marked as post loop vectorizable
  56   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
  57   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
  58   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
  59   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
  60   _clone_map(phase->C->clone_map()),      // map of nodes created in cloning
  61   _cmovev_kit(_arena, this),              // map to facilitate CMoveV creation
  62   _align_to_ref(NULL),                    // memory reference to align vectors to
  63   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
  64   _dg(_arena),                            // dependence graph
  65   _visited(arena()),                      // visited node set
  66   _post_visited(arena()),                 // post visited node set
  67   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
  68   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
  69   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
  70   _lpt(NULL),                             // loop tree node
  71   _lp(NULL),                              // LoopNode
  72   _bb(NULL),                              // basic block
  73   _iv(NULL),                              // induction var
  74   _race_possible(false),                  // cases where SDMU is true
  75   _early_return(true),                    // analysis evaluations routine
  76   _do_vector_loop(phase->C->do_vector_loop()),  // whether to do vectorization/simd style
  77   _do_reserve_copy(DoReserveCopyInSuperWord),
  78   _num_work_vecs(0),                      // amount of vector work we have
  79   _num_reductions(0),                     // amount of reduction work we have
  80   _ii_first(-1),                          // first loop generation index - only if do_vector_loop()
  81   _ii_last(-1),                           // last loop generation index - only if do_vector_loop()
  82   _ii_order(arena(), 8, 0, 0)
  83 {
  84 #ifndef PRODUCT
  85   _vector_loop_debug = 0;
  86   if (_phase->C->method() != NULL) {
  87     _vector_loop_debug = phase->C->directive()->VectorizeDebugOption;
  88   }
  89 
  90 #endif
  91 }
  92 
  93 //------------------------------transform_loop---------------------------
  94 void SuperWord::transform_loop(IdealLoopTree* lpt, bool do_optimization) {
  95   assert(UseSuperWord, "should be");
  96   // Do vectors exist on this architecture?
  97   if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
  98 
  99   assert(lpt->_head->is_CountedLoop(), "must be");
 100   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
 101 
 102   if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
 103 
 104   bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
 105   if (post_loop_allowed) {
 106     if (cl->is_reduction_loop()) return; // no predication mapping
 107     Node *limit = cl->limit();
 108     if (limit->is_Con()) return; // non constant limits only
 109     // Now check the limit for expressions we do not handle
 110     if (limit->is_Add()) {
 111       Node *in2 = limit->in(2);
 112       if (in2->is_Con()) {
 113         int val = in2->get_int();
 114         // should not try to program these cases
 115         if (val < 0) return;
 116       }
 117     }
 118   }
 119 
 120   // skip any loop that has not been assigned max unroll by analysis
 121   if (do_optimization) {
 122     if (SuperWordLoopUnrollAnalysis && cl->slp_max_unroll() == 0) return;
 123   }
 124 
 125   // Check for no control flow in body (other than exit)
 126   Node *cl_exit = cl->loopexit();
 127   if (cl->is_main_loop() && (cl_exit->in(0) != lpt->_head)) {
 128     #ifndef PRODUCT
 129       if (TraceSuperWord) {
 130         tty->print_cr("SuperWord::transform_loop: loop too complicated, cl_exit->in(0) != lpt->_head");
 131         tty->print("cl_exit %d", cl_exit->_idx); cl_exit->dump();
 132         tty->print("cl_exit->in(0) %d", cl_exit->in(0)->_idx); cl_exit->in(0)->dump();
 133         tty->print("lpt->_head %d", lpt->_head->_idx); lpt->_head->dump();
 134         lpt->dump_head();
 135       }
 136     #endif
 137     return;
 138   }
 139 
 140   // Make sure the are no extra control users of the loop backedge
 141   if (cl->back_control()->outcnt() != 1) {
 142     return;
 143   }
 144 
 145   // Skip any loops already optimized by slp
 146   if (cl->is_vectorized_loop()) return;
 147 
 148   if (cl->do_unroll_only()) return;
 149 
 150   if (cl->is_main_loop()) {
 151     // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
 152     CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
 153     if (pre_end == NULL) return;
 154     Node *pre_opaq1 = pre_end->limit();
 155     if (pre_opaq1->Opcode() != Op_Opaque1) return;
 156   }
 157 
 158   init(); // initialize data structures
 159 
 160   set_lpt(lpt);
 161   set_lp(cl);
 162 
 163   // For now, define one block which is the entire loop body
 164   set_bb(cl);
 165 
 166   if (do_optimization) {
 167     assert(_packset.length() == 0, "packset must be empty");
 168     SLP_extract();
 169     if (PostLoopMultiversioning && Matcher::has_predicated_vectors()) {
 170       if (cl->is_vectorized_loop() && cl->is_main_loop() && !cl->is_reduction_loop()) {
 171         IdealLoopTree *lpt_next = lpt->_next;
 172         CountedLoopNode *cl_next = lpt_next->_head->as_CountedLoop();
 173         _phase->has_range_checks(lpt_next);
 174         if (cl_next->is_post_loop() && !cl_next->range_checks_present()) {
 175           if (!cl_next->is_vectorized_loop()) {
 176             int slp_max_unroll_factor = cl->slp_max_unroll();
 177             cl_next->set_slp_max_unroll(slp_max_unroll_factor);
 178           }
 179         }
 180       }
 181     }
 182   }
 183 }
 184 
 185 //------------------------------early unrolling analysis------------------------------
 186 void SuperWord::unrolling_analysis(int &local_loop_unroll_factor) {
 187   bool is_slp = true;
 188   ResourceMark rm;
 189   size_t ignored_size = lpt()->_body.size();
 190   int *ignored_loop_nodes = NEW_RESOURCE_ARRAY(int, ignored_size);
 191   Node_Stack nstack((int)ignored_size);
 192   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
 193   Node *cl_exit = cl->loopexit_or_null();
 194   int rpo_idx = _post_block.length();
 195 
 196   assert(rpo_idx == 0, "post loop block is empty");
 197 
 198   // First clear the entries
 199   for (uint i = 0; i < lpt()->_body.size(); i++) {
 200     ignored_loop_nodes[i] = -1;
 201   }
 202 
 203   int max_vector = Matcher::max_vector_size(T_BYTE);
 204   bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
 205 
 206   // Process the loop, some/all of the stack entries will not be in order, ergo
 207   // need to preprocess the ignored initial state before we process the loop
 208   for (uint i = 0; i < lpt()->_body.size(); i++) {
 209     Node* n = lpt()->_body.at(i);
 210     if (n == cl->incr() ||
 211       n->is_reduction() ||
 212       n->is_AddP() ||
 213       n->is_Cmp() ||
 214       n->is_IfTrue() ||
 215       n->is_CountedLoop() ||
 216       (n == cl_exit)) {
 217       ignored_loop_nodes[i] = n->_idx;
 218       continue;
 219     }
 220 
 221     if (n->is_If()) {
 222       IfNode *iff = n->as_If();
 223       if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) {
 224         if (lpt()->is_loop_exit(iff)) {
 225           ignored_loop_nodes[i] = n->_idx;
 226           continue;
 227         }
 228       }
 229     }
 230 
 231     if (n->is_Phi() && (n->bottom_type() == Type::MEMORY)) {
 232       Node* n_tail = n->in(LoopNode::LoopBackControl);
 233       if (n_tail != n->in(LoopNode::EntryControl)) {
 234         if (!n_tail->is_Mem()) {
 235           is_slp = false;
 236           break;
 237         }
 238       }
 239     }
 240 
 241     // This must happen after check of phi/if
 242     if (n->is_Phi() || n->is_If()) {
 243       ignored_loop_nodes[i] = n->_idx;
 244       continue;
 245     }
 246 
 247     if (n->is_LoadStore() || n->is_MergeMem() ||
 248       (n->is_Proj() && !n->as_Proj()->is_CFG())) {
 249       is_slp = false;
 250       break;
 251     }
 252 
 253     // Ignore nodes with non-primitive type.
 254     BasicType bt;
 255     if (n->is_Mem()) {
 256       bt = n->as_Mem()->memory_type();
 257     } else {
 258       bt = n->bottom_type()->basic_type();
 259     }
 260     if (is_java_primitive(bt) == false) {
 261       ignored_loop_nodes[i] = n->_idx;
 262       continue;
 263     }
 264 
 265     if (n->is_Mem()) {
 266       MemNode* current = n->as_Mem();
 267       Node* adr = n->in(MemNode::Address);
 268       Node* n_ctrl = _phase->get_ctrl(adr);
 269 
 270       // save a queue of post process nodes
 271       if (n_ctrl != NULL && lpt()->is_member(_phase->get_loop(n_ctrl))) {
 272         // Process the memory expression
 273         int stack_idx = 0;
 274         bool have_side_effects = true;
 275         if (adr->is_AddP() == false) {
 276           nstack.push(adr, stack_idx++);
 277         } else {
 278           // Mark the components of the memory operation in nstack
 279           SWPointer p1(current, this, &nstack, true);
 280           have_side_effects = p1.node_stack()->is_nonempty();
 281         }
 282 
 283         // Process the pointer stack
 284         while (have_side_effects) {
 285           Node* pointer_node = nstack.node();
 286           for (uint j = 0; j < lpt()->_body.size(); j++) {
 287             Node* cur_node = lpt()->_body.at(j);
 288             if (cur_node == pointer_node) {
 289               ignored_loop_nodes[j] = cur_node->_idx;
 290               break;
 291             }
 292           }
 293           nstack.pop();
 294           have_side_effects = nstack.is_nonempty();
 295         }
 296       }
 297     }
 298   }
 299 
 300   if (is_slp) {
 301     // Now we try to find the maximum supported consistent vector which the machine
 302     // description can use
 303     bool small_basic_type = false;
 304     bool flag_small_bt = false;
 305     for (uint i = 0; i < lpt()->_body.size(); i++) {
 306       if (ignored_loop_nodes[i] != -1) continue;
 307 
 308       BasicType bt;
 309       Node* n = lpt()->_body.at(i);
 310       if (n->is_Mem()) {
 311         bt = n->as_Mem()->memory_type();
 312       } else {
 313         bt = n->bottom_type()->basic_type();
 314       }
 315 
 316       if (post_loop_allowed) {
 317         if (!small_basic_type) {
 318           switch (bt) {
 319           case T_CHAR:
 320           case T_BYTE:
 321           case T_SHORT:
 322             small_basic_type = true;
 323             break;
 324 
 325           case T_LONG:
 326             // TODO: Remove when support completed for mask context with LONG.
 327             //       Support needs to be augmented for logical qword operations, currently we map to dword
 328             //       buckets for vectors on logicals as these were legacy.
 329             small_basic_type = true;
 330             break;
 331 
 332           default:
 333             break;
 334           }
 335         }
 336       }
 337 
 338       if (is_java_primitive(bt) == false) continue;
 339 
 340          int cur_max_vector = Matcher::max_vector_size(bt);
 341 
 342       // If a max vector exists which is not larger than _local_loop_unroll_factor
 343       // stop looking, we already have the max vector to map to.
 344       if (cur_max_vector < local_loop_unroll_factor) {
 345         is_slp = false;
 346         if (TraceSuperWordLoopUnrollAnalysis) {
 347           tty->print_cr("slp analysis fails: unroll limit greater than max vector\n");
 348         }
 349         break;
 350       }
 351 
 352       // Map the maximal common vector
 353       if (VectorNode::implemented(n->Opcode(), cur_max_vector, bt)) {
 354         if (cur_max_vector < max_vector && !flag_small_bt) {
 355           max_vector = cur_max_vector;
 356         } else if (cur_max_vector > max_vector && UseSubwordForMaxVector) {
 357           // Analyse subword in the loop to set maximum vector size to take advantage of full vector width for subword types.
 358           // Here we analyze if narrowing is likely to happen and if it is we set vector size more aggressively.
 359           // We check for possibility of narrowing by looking through chain operations using subword types.
 360           if (is_subword_type(bt)) {
 361             uint start, end;
 362             VectorNode::vector_operands(n, &start, &end);
 363 
 364             for (uint j = start; j < end; j++) {
 365               Node* in = n->in(j);
 366               // Don't propagate through a memory
 367               if (!in->is_Mem() && in_bb(in) && in->bottom_type()->basic_type() == T_INT) {
 368                 bool same_type = true;
 369                 for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
 370                   Node *use = in->fast_out(k);
 371                   if (!in_bb(use) && use->bottom_type()->basic_type() != bt) {
 372                     same_type = false;
 373                     break;
 374                   }
 375                 }
 376                 if (same_type) {
 377                   max_vector = cur_max_vector;
 378                   flag_small_bt = true;
 379                   cl->mark_subword_loop();
 380                 }
 381               }
 382             }
 383           }
 384         }
 385         // We only process post loops on predicated targets where we want to
 386         // mask map the loop to a single iteration
 387         if (post_loop_allowed) {
 388           _post_block.at_put_grow(rpo_idx++, n);
 389         }
 390       }
 391     }
 392     if (is_slp) {
 393       local_loop_unroll_factor = max_vector;
 394       cl->mark_passed_slp();
 395     }
 396     cl->mark_was_slp();
 397     if (cl->is_main_loop()) {
 398       cl->set_slp_max_unroll(local_loop_unroll_factor);
 399     } else if (post_loop_allowed) {
 400       if (!small_basic_type) {
 401         // avoid replication context for small basic types in programmable masked loops
 402         cl->set_slp_max_unroll(local_loop_unroll_factor);
 403       }
 404     }
 405   }
 406 }
 407 
 408 //------------------------------SLP_extract---------------------------
 409 // Extract the superword level parallelism
 410 //
 411 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
 412 //    this list from first to last, all definitions are visited before their uses.
 413 //
 414 // 2) A point-to-point dependence graph is constructed between memory references.
 415 //    This simplies the upcoming "independence" checker.
 416 //
 417 // 3) The maximum depth in the node graph from the beginning of the block
 418 //    to each node is computed.  This is used to prune the graph search
 419 //    in the independence checker.
 420 //
 421 // 4) For integer types, the necessary bit width is propagated backwards
 422 //    from stores to allow packed operations on byte, char, and short
 423 //    integers.  This reverses the promotion to type "int" that javac
 424 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
 425 //
 426 // 5) One of the memory references is picked to be an aligned vector reference.
 427 //    The pre-loop trip count is adjusted to align this reference in the
 428 //    unrolled body.
 429 //
 430 // 6) The initial set of pack pairs is seeded with memory references.
 431 //
 432 // 7) The set of pack pairs is extended by following use->def and def->use links.
 433 //
 434 // 8) The pairs are combined into vector sized packs.
 435 //
 436 // 9) Reorder the memory slices to co-locate members of the memory packs.
 437 //
 438 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
 439 //    inserting scalar promotion, vector creation from multiple scalars, and
 440 //    extraction of scalar values from vectors.
 441 //
 442 void SuperWord::SLP_extract() {
 443 
 444 #ifndef PRODUCT
 445   if (_do_vector_loop && TraceSuperWord) {
 446     tty->print("SuperWord::SLP_extract\n");
 447     tty->print("input loop\n");
 448     _lpt->dump_head();
 449     _lpt->dump();
 450     for (uint i = 0; i < _lpt->_body.size(); i++) {
 451       _lpt->_body.at(i)->dump();
 452     }
 453   }
 454 #endif
 455   // Ready the block
 456   if (!construct_bb()) {
 457     return; // Exit if no interesting nodes or complex graph.
 458   }
 459 
 460   // build    _dg, _disjoint_ptrs
 461   dependence_graph();
 462 
 463   // compute function depth(Node*)
 464   compute_max_depth();
 465 
 466   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
 467   bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
 468   if (cl->is_main_loop()) {
 469     if (_do_vector_loop) {
 470       if (mark_generations() != -1) {
 471         hoist_loads_in_graph(); // this only rebuild the graph; all basic structs need rebuild explicitly
 472 
 473         if (!construct_bb()) {
 474           return; // Exit if no interesting nodes or complex graph.
 475         }
 476         dependence_graph();
 477         compute_max_depth();
 478       }
 479 
 480 #ifndef PRODUCT
 481       if (TraceSuperWord) {
 482         tty->print_cr("\nSuperWord::_do_vector_loop: graph after hoist_loads_in_graph");
 483         _lpt->dump_head();
 484         for (int j = 0; j < _block.length(); j++) {
 485           Node* n = _block.at(j);
 486           int d = depth(n);
 487           for (int i = 0; i < d; i++) tty->print("%s", "  ");
 488           tty->print("%d :", d);
 489           n->dump();
 490         }
 491       }
 492 #endif
 493     }
 494 
 495     compute_vector_element_type();
 496 
 497     // Attempt vectorization
 498 
 499     find_adjacent_refs();
 500 
 501     extend_packlist();
 502 
 503     if (_do_vector_loop) {
 504       if (_packset.length() == 0) {
 505         if (TraceSuperWord) {
 506           tty->print_cr("\nSuperWord::_do_vector_loop DFA could not build packset, now trying to build anyway");
 507         }
 508         pack_parallel();
 509       }
 510     }
 511 
 512     combine_packs();
 513 
 514     construct_my_pack_map();
 515     if (UseVectorCmov) {
 516       merge_packs_to_cmovd();
 517     }
 518 
 519     filter_packs();
 520 
 521     schedule();
 522   } else if (post_loop_allowed) {
 523     int saved_mapped_unroll_factor = cl->slp_max_unroll();
 524     if (saved_mapped_unroll_factor) {
 525       int vector_mapped_unroll_factor = saved_mapped_unroll_factor;
 526 
 527       // now reset the slp_unroll_factor so that we can check the analysis mapped
 528       // what the vector loop was mapped to
 529       cl->set_slp_max_unroll(0);
 530 
 531       // do the analysis on the post loop
 532       unrolling_analysis(vector_mapped_unroll_factor);
 533 
 534       // if our analyzed loop is a canonical fit, start processing it
 535       if (vector_mapped_unroll_factor == saved_mapped_unroll_factor) {
 536         // now add the vector nodes to packsets
 537         for (int i = 0; i < _post_block.length(); i++) {
 538           Node* n = _post_block.at(i);
 539           Node_List* singleton = new Node_List();
 540           singleton->push(n);
 541           _packset.append(singleton);
 542           set_my_pack(n, singleton);
 543         }
 544 
 545         // map base types for vector usage
 546         compute_vector_element_type();
 547       } else {
 548         return;
 549       }
 550     } else {
 551       // for some reason we could not map the slp analysis state of the vectorized loop
 552       return;
 553     }
 554   }
 555 
 556   output();
 557 }
 558 
 559 //------------------------------find_adjacent_refs---------------------------
 560 // Find the adjacent memory references and create pack pairs for them.
 561 // This is the initial set of packs that will then be extended by
 562 // following use->def and def->use links.  The align positions are
 563 // assigned relative to the reference "align_to_ref"
 564 void SuperWord::find_adjacent_refs() {
 565   // Get list of memory operations
 566   Node_List memops;
 567   for (int i = 0; i < _block.length(); i++) {
 568     Node* n = _block.at(i);
 569     if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
 570         is_java_primitive(n->as_Mem()->memory_type())) {
 571       int align = memory_alignment(n->as_Mem(), 0);
 572       if (align != bottom_align) {
 573         memops.push(n);
 574       }
 575     }
 576   }
 577 
 578   Node_List align_to_refs;
 579   int best_iv_adjustment = 0;
 580   MemNode* best_align_to_mem_ref = NULL;
 581 
 582   while (memops.size() != 0) {
 583     // Find a memory reference to align to.
 584     MemNode* mem_ref = find_align_to_ref(memops);
 585     if (mem_ref == NULL) break;
 586     align_to_refs.push(mem_ref);
 587     int iv_adjustment = get_iv_adjustment(mem_ref);
 588 
 589     if (best_align_to_mem_ref == NULL) {
 590       // Set memory reference which is the best from all memory operations
 591       // to be used for alignment. The pre-loop trip count is modified to align
 592       // this reference to a vector-aligned address.
 593       best_align_to_mem_ref = mem_ref;
 594       best_iv_adjustment = iv_adjustment;
 595       NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
 596     }
 597 
 598     SWPointer align_to_ref_p(mem_ref, this, NULL, false);
 599     // Set alignment relative to "align_to_ref" for all related memory operations.
 600     for (int i = memops.size() - 1; i >= 0; i--) {
 601       MemNode* s = memops.at(i)->as_Mem();
 602       if (isomorphic(s, mem_ref) &&
 603            (!_do_vector_loop || same_origin_idx(s, mem_ref))) {
 604         SWPointer p2(s, this, NULL, false);
 605         if (p2.comparable(align_to_ref_p)) {
 606           int align = memory_alignment(s, iv_adjustment);
 607           set_alignment(s, align);
 608         }
 609       }
 610     }
 611 
 612     // Create initial pack pairs of memory operations for which
 613     // alignment is set and vectors will be aligned.
 614     bool create_pack = true;
 615     if (memory_alignment(mem_ref, best_iv_adjustment) == 0 || _do_vector_loop) {
 616       if (!Matcher::misaligned_vectors_ok()) {
 617         int vw = vector_width(mem_ref);
 618         int vw_best = vector_width(best_align_to_mem_ref);
 619         if (vw > vw_best) {
 620           // Do not vectorize a memory access with more elements per vector
 621           // if unaligned memory access is not allowed because number of
 622           // iterations in pre-loop will be not enough to align it.
 623           create_pack = false;
 624         } else {
 625           SWPointer p2(best_align_to_mem_ref, this, NULL, false);
 626           if (align_to_ref_p.invar() != p2.invar()) {
 627             // Do not vectorize memory accesses with different invariants
 628             // if unaligned memory accesses are not allowed.
 629             create_pack = false;
 630           }
 631         }
 632       }
 633     } else {
 634       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
 635         // Can't allow vectorization of unaligned memory accesses with the
 636         // same type since it could be overlapped accesses to the same array.
 637         create_pack = false;
 638       } else {
 639         // Allow independent (different type) unaligned memory operations
 640         // if HW supports them.
 641         if (!Matcher::misaligned_vectors_ok()) {
 642           create_pack = false;
 643         } else {
 644           // Check if packs of the same memory type but
 645           // with a different alignment were created before.
 646           for (uint i = 0; i < align_to_refs.size(); i++) {
 647             MemNode* mr = align_to_refs.at(i)->as_Mem();
 648             if (mr == mem_ref) {
 649               // Skip when we are looking at same memory operation.
 650               continue;
 651             }
 652             if (same_velt_type(mr, mem_ref) &&
 653                 memory_alignment(mr, iv_adjustment) != 0)
 654               create_pack = false;
 655           }
 656         }
 657       }
 658     }
 659     if (create_pack) {
 660       for (uint i = 0; i < memops.size(); i++) {
 661         Node* s1 = memops.at(i);
 662         int align = alignment(s1);
 663         if (align == top_align) continue;
 664         for (uint j = 0; j < memops.size(); j++) {
 665           Node* s2 = memops.at(j);
 666           if (alignment(s2) == top_align) continue;
 667           if (s1 != s2 && are_adjacent_refs(s1, s2)) {
 668             if (stmts_can_pack(s1, s2, align)) {
 669               Node_List* pair = new Node_List();
 670               pair->push(s1);
 671               pair->push(s2);
 672               if (!_do_vector_loop || same_origin_idx(s1, s2)) {
 673                 _packset.append(pair);
 674               }
 675             }
 676           }
 677         }
 678       }
 679     } else { // Don't create unaligned pack
 680       // First, remove remaining memory ops of the same type from the list.
 681       for (int i = memops.size() - 1; i >= 0; i--) {
 682         MemNode* s = memops.at(i)->as_Mem();
 683         if (same_velt_type(s, mem_ref)) {
 684           memops.remove(i);
 685         }
 686       }
 687 
 688       // Second, remove already constructed packs of the same type.
 689       for (int i = _packset.length() - 1; i >= 0; i--) {
 690         Node_List* p = _packset.at(i);
 691         MemNode* s = p->at(0)->as_Mem();
 692         if (same_velt_type(s, mem_ref)) {
 693           remove_pack_at(i);
 694         }
 695       }
 696 
 697       // If needed find the best memory reference for loop alignment again.
 698       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
 699         // Put memory ops from remaining packs back on memops list for
 700         // the best alignment search.
 701         uint orig_msize = memops.size();
 702         for (int i = 0; i < _packset.length(); i++) {
 703           Node_List* p = _packset.at(i);
 704           MemNode* s = p->at(0)->as_Mem();
 705           assert(!same_velt_type(s, mem_ref), "sanity");
 706           memops.push(s);
 707         }
 708         best_align_to_mem_ref = find_align_to_ref(memops);
 709         if (best_align_to_mem_ref == NULL) {
 710           if (TraceSuperWord) {
 711             tty->print_cr("SuperWord::find_adjacent_refs(): best_align_to_mem_ref == NULL");
 712           }
 713           break;
 714         }
 715         best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
 716         NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
 717         // Restore list.
 718         while (memops.size() > orig_msize)
 719           (void)memops.pop();
 720       }
 721     } // unaligned memory accesses
 722 
 723     // Remove used mem nodes.
 724     for (int i = memops.size() - 1; i >= 0; i--) {
 725       MemNode* m = memops.at(i)->as_Mem();
 726       if (alignment(m) != top_align) {
 727         memops.remove(i);
 728       }
 729     }
 730 
 731   } // while (memops.size() != 0
 732   set_align_to_ref(best_align_to_mem_ref);
 733 
 734   if (TraceSuperWord) {
 735     tty->print_cr("\nAfter find_adjacent_refs");
 736     print_packset();
 737   }
 738 }
 739 
 740 #ifndef PRODUCT
 741 void SuperWord::find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment) {
 742   if (is_trace_adjacent()) {
 743     tty->print("SuperWord::find_adjacent_refs best_align_to_mem_ref = %d, best_iv_adjustment = %d",
 744        best_align_to_mem_ref->_idx, best_iv_adjustment);
 745        best_align_to_mem_ref->dump();
 746   }
 747 }
 748 #endif
 749 
 750 //------------------------------find_align_to_ref---------------------------
 751 // Find a memory reference to align the loop induction variable to.
 752 // Looks first at stores then at loads, looking for a memory reference
 753 // with the largest number of references similar to it.
 754 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
 755   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
 756 
 757   // Count number of comparable memory ops
 758   for (uint i = 0; i < memops.size(); i++) {
 759     MemNode* s1 = memops.at(i)->as_Mem();
 760     SWPointer p1(s1, this, NULL, false);
 761     // Discard if pre loop can't align this reference
 762     if (!ref_is_alignable(p1)) {
 763       *cmp_ct.adr_at(i) = 0;
 764       continue;
 765     }
 766     for (uint j = i+1; j < memops.size(); j++) {
 767       MemNode* s2 = memops.at(j)->as_Mem();
 768       if (isomorphic(s1, s2)) {
 769         SWPointer p2(s2, this, NULL, false);
 770         if (p1.comparable(p2)) {
 771           (*cmp_ct.adr_at(i))++;
 772           (*cmp_ct.adr_at(j))++;
 773         }
 774       }
 775     }
 776   }
 777 
 778   // Find Store (or Load) with the greatest number of "comparable" references,
 779   // biggest vector size, smallest data size and smallest iv offset.
 780   int max_ct        = 0;
 781   int max_vw        = 0;
 782   int max_idx       = -1;
 783   int min_size      = max_jint;
 784   int min_iv_offset = max_jint;
 785   for (uint j = 0; j < memops.size(); j++) {
 786     MemNode* s = memops.at(j)->as_Mem();
 787     if (s->is_Store()) {
 788       int vw = vector_width_in_bytes(s);
 789       assert(vw > 1, "sanity");
 790       SWPointer p(s, this, NULL, false);
 791       if ( cmp_ct.at(j) >  max_ct ||
 792           (cmp_ct.at(j) == max_ct &&
 793             ( vw >  max_vw ||
 794              (vw == max_vw &&
 795               ( data_size(s) <  min_size ||
 796                (data_size(s) == min_size &&
 797                 p.offset_in_bytes() < min_iv_offset)))))) {
 798         max_ct = cmp_ct.at(j);
 799         max_vw = vw;
 800         max_idx = j;
 801         min_size = data_size(s);
 802         min_iv_offset = p.offset_in_bytes();
 803       }
 804     }
 805   }
 806   // If no stores, look at loads
 807   if (max_ct == 0) {
 808     for (uint j = 0; j < memops.size(); j++) {
 809       MemNode* s = memops.at(j)->as_Mem();
 810       if (s->is_Load()) {
 811         int vw = vector_width_in_bytes(s);
 812         assert(vw > 1, "sanity");
 813         SWPointer p(s, this, NULL, false);
 814         if ( cmp_ct.at(j) >  max_ct ||
 815             (cmp_ct.at(j) == max_ct &&
 816               ( vw >  max_vw ||
 817                (vw == max_vw &&
 818                 ( data_size(s) <  min_size ||
 819                  (data_size(s) == min_size &&
 820                   p.offset_in_bytes() < min_iv_offset)))))) {
 821           max_ct = cmp_ct.at(j);
 822           max_vw = vw;
 823           max_idx = j;
 824           min_size = data_size(s);
 825           min_iv_offset = p.offset_in_bytes();
 826         }
 827       }
 828     }
 829   }
 830 
 831 #ifdef ASSERT
 832   if (TraceSuperWord && Verbose) {
 833     tty->print_cr("\nVector memops after find_align_to_ref");
 834     for (uint i = 0; i < memops.size(); i++) {
 835       MemNode* s = memops.at(i)->as_Mem();
 836       s->dump();
 837     }
 838   }
 839 #endif
 840 
 841   if (max_ct > 0) {
 842 #ifdef ASSERT
 843     if (TraceSuperWord) {
 844       tty->print("\nVector align to node: ");
 845       memops.at(max_idx)->as_Mem()->dump();
 846     }
 847 #endif
 848     return memops.at(max_idx)->as_Mem();
 849   }
 850   return NULL;
 851 }
 852 
 853 //------------------span_works_for_memory_size-----------------------------
 854 static bool span_works_for_memory_size(MemNode* mem, int span, int mem_size, int offset) {
 855   bool span_matches_memory = false;
 856   if ((mem_size == type2aelembytes(T_BYTE) || mem_size == type2aelembytes(T_SHORT))
 857     && ABS(span) == type2aelembytes(T_INT)) {
 858     // There is a mismatch on span size compared to memory.
 859     for (DUIterator_Fast jmax, j = mem->fast_outs(jmax); j < jmax; j++) {
 860       Node* use = mem->fast_out(j);
 861       if (!VectorNode::is_type_transition_to_int(use)) {
 862         return false;
 863       }
 864     }
 865     // If all uses transition to integer, it means that we can successfully align even on mismatch.
 866     return true;
 867   }
 868   else {
 869     span_matches_memory = ABS(span) == mem_size;
 870   }
 871   return span_matches_memory && (ABS(offset) % mem_size) == 0;
 872 }
 873 
 874 //------------------------------ref_is_alignable---------------------------
 875 // Can the preloop align the reference to position zero in the vector?
 876 bool SuperWord::ref_is_alignable(SWPointer& p) {
 877   if (!p.has_iv()) {
 878     return true;   // no induction variable
 879   }
 880   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
 881   assert(pre_end != NULL, "we must have a correct pre-loop");
 882   assert(pre_end->stride_is_con(), "pre loop stride is constant");
 883   int preloop_stride = pre_end->stride_con();
 884 
 885   int span = preloop_stride * p.scale_in_bytes();
 886   int mem_size = p.memory_size();
 887   int offset   = p.offset_in_bytes();
 888   // Stride one accesses are alignable if offset is aligned to memory operation size.
 889   // Offset can be unaligned when UseUnalignedAccesses is used.
 890   if (span_works_for_memory_size(p.mem(), span, mem_size, offset)) {
 891     return true;
 892   }
 893   // If the initial offset from start of the object is computable,
 894   // check if the pre-loop can align the final offset accordingly.
 895   //
 896   // In other words: Can we find an i such that the offset
 897   // after i pre-loop iterations is aligned to vw?
 898   //   (init_offset + pre_loop) % vw == 0              (1)
 899   // where
 900   //   pre_loop = i * span
 901   // is the number of bytes added to the offset by i pre-loop iterations.
 902   //
 903   // For this to hold we need pre_loop to increase init_offset by
 904   //   pre_loop = vw - (init_offset % vw)
 905   //
 906   // This is only possible if pre_loop is divisible by span because each
 907   // pre-loop iteration increases the initial offset by 'span' bytes:
 908   //   (vw - (init_offset % vw)) % span == 0
 909   //
 910   int vw = vector_width_in_bytes(p.mem());
 911   assert(vw > 1, "sanity");
 912   Node* init_nd = pre_end->init_trip();
 913   if (init_nd->is_Con() && p.invar() == NULL) {
 914     int init = init_nd->bottom_type()->is_int()->get_con();
 915     int init_offset = init * p.scale_in_bytes() + offset;
 916     if (init_offset < 0) { // negative offset from object start?
 917       return false;        // may happen in dead loop
 918     }
 919     if (vw % span == 0) {
 920       // If vm is a multiple of span, we use formula (1).
 921       if (span > 0) {
 922         return (vw - (init_offset % vw)) % span == 0;
 923       } else {
 924         assert(span < 0, "nonzero stride * scale");
 925         return (init_offset % vw) % -span == 0;
 926       }
 927     } else if (span % vw == 0) {
 928       // If span is a multiple of vw, we can simplify formula (1) to:
 929       //   (init_offset + i * span) % vw == 0
 930       //     =>
 931       //   (init_offset % vw) + ((i * span) % vw) == 0
 932       //     =>
 933       //   init_offset % vw == 0
 934       //
 935       // Because we add a multiple of vw to the initial offset, the final
 936       // offset is a multiple of vw if and only if init_offset is a multiple.
 937       //
 938       return (init_offset % vw) == 0;
 939     }
 940   }
 941   return false;
 942 }
 943 //---------------------------get_vw_bytes_special------------------------
 944 int SuperWord::get_vw_bytes_special(MemNode* s) {
 945   // Get the vector width in bytes.
 946   int vw = vector_width_in_bytes(s);
 947 
 948   // Check for special case where there is an MulAddS2I usage where short vectors are going to need combined.
 949   BasicType btype = velt_basic_type(s);
 950   if (type2aelembytes(btype) == 2) {
 951     bool should_combine_adjacent = true;
 952     for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
 953       Node* user = s->fast_out(i);
 954       if (!VectorNode::is_muladds2i(user)) {
 955         should_combine_adjacent = false;
 956       }
 957     }
 958     if (should_combine_adjacent) {
 959       vw = MIN2(Matcher::max_vector_size(btype)*type2aelembytes(btype), vw * 2);
 960     }
 961   }
 962 
 963   return vw;
 964 }
 965 
 966 //---------------------------get_iv_adjustment---------------------------
 967 // Calculate loop's iv adjustment for this memory ops.
 968 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
 969   SWPointer align_to_ref_p(mem_ref, this, NULL, false);
 970   int offset = align_to_ref_p.offset_in_bytes();
 971   int scale  = align_to_ref_p.scale_in_bytes();
 972   int elt_size = align_to_ref_p.memory_size();
 973   int vw       = get_vw_bytes_special(mem_ref);
 974   assert(vw > 1, "sanity");
 975   int iv_adjustment;
 976   if (scale != 0) {
 977     int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
 978     // At least one iteration is executed in pre-loop by default. As result
 979     // several iterations are needed to align memory operations in main-loop even
 980     // if offset is 0.
 981     int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
 982     assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
 983            "(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size);
 984     iv_adjustment = iv_adjustment_in_bytes/elt_size;
 985   } else {
 986     // This memory op is not dependent on iv (scale == 0)
 987     iv_adjustment = 0;
 988   }
 989 
 990 #ifndef PRODUCT
 991   if (TraceSuperWord) {
 992     tty->print("SuperWord::get_iv_adjustment: n = %d, noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d: ",
 993       mem_ref->_idx, offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
 994     mem_ref->dump();
 995   }
 996 #endif
 997   return iv_adjustment;
 998 }
 999 
1000 //---------------------------dependence_graph---------------------------
1001 // Construct dependency graph.
1002 // Add dependence edges to load/store nodes for memory dependence
1003 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
1004 void SuperWord::dependence_graph() {
1005   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
1006   // First, assign a dependence node to each memory node
1007   for (int i = 0; i < _block.length(); i++ ) {
1008     Node *n = _block.at(i);
1009     if (n->is_Mem() || (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
1010       _dg.make_node(n);
1011     }
1012   }
1013 
1014   // For each memory slice, create the dependences
1015   for (int i = 0; i < _mem_slice_head.length(); i++) {
1016     Node* n      = _mem_slice_head.at(i);
1017     Node* n_tail = _mem_slice_tail.at(i);
1018 
1019     // Get slice in predecessor order (last is first)
1020     if (cl->is_main_loop()) {
1021       mem_slice_preds(n_tail, n, _nlist);
1022     }
1023 
1024 #ifndef PRODUCT
1025     if(TraceSuperWord && Verbose) {
1026       tty->print_cr("SuperWord::dependence_graph: built a new mem slice");
1027       for (int j = _nlist.length() - 1; j >= 0 ; j--) {
1028         _nlist.at(j)->dump();
1029       }
1030     }
1031 #endif
1032     // Make the slice dependent on the root
1033     DepMem* slice = _dg.dep(n);
1034     _dg.make_edge(_dg.root(), slice);
1035 
1036     // Create a sink for the slice
1037     DepMem* slice_sink = _dg.make_node(NULL);
1038     _dg.make_edge(slice_sink, _dg.tail());
1039 
1040     // Now visit each pair of memory ops, creating the edges
1041     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
1042       Node* s1 = _nlist.at(j);
1043 
1044       // If no dependency yet, use slice
1045       if (_dg.dep(s1)->in_cnt() == 0) {
1046         _dg.make_edge(slice, s1);
1047       }
1048       SWPointer p1(s1->as_Mem(), this, NULL, false);
1049       bool sink_dependent = true;
1050       for (int k = j - 1; k >= 0; k--) {
1051         Node* s2 = _nlist.at(k);
1052         if (s1->is_Load() && s2->is_Load())
1053           continue;
1054         SWPointer p2(s2->as_Mem(), this, NULL, false);
1055 
1056         int cmp = p1.cmp(p2);
1057         if (SuperWordRTDepCheck &&
1058             p1.base() != p2.base() && p1.valid() && p2.valid()) {
1059           // Create a runtime check to disambiguate
1060           OrderedPair pp(p1.base(), p2.base());
1061           _disjoint_ptrs.append_if_missing(pp);
1062         } else if (!SWPointer::not_equal(cmp)) {
1063           // Possibly same address
1064           _dg.make_edge(s1, s2);
1065           sink_dependent = false;
1066         }
1067       }
1068       if (sink_dependent) {
1069         _dg.make_edge(s1, slice_sink);
1070       }
1071     }
1072 
1073     if (TraceSuperWord) {
1074       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
1075       for (int q = 0; q < _nlist.length(); q++) {
1076         _dg.print(_nlist.at(q));
1077       }
1078       tty->cr();
1079     }
1080 
1081     _nlist.clear();
1082   }
1083 
1084   if (TraceSuperWord) {
1085     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
1086     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
1087       _disjoint_ptrs.at(r).print();
1088       tty->cr();
1089     }
1090     tty->cr();
1091   }
1092 
1093 }
1094 
1095 //---------------------------mem_slice_preds---------------------------
1096 // Return a memory slice (node list) in predecessor order starting at "start"
1097 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
1098   assert(preds.length() == 0, "start empty");
1099   Node* n = start;
1100   Node* prev = NULL;
1101   while (true) {
1102     NOT_PRODUCT( if(is_trace_mem_slice()) tty->print_cr("SuperWord::mem_slice_preds: n %d", n->_idx);)
1103     assert(in_bb(n), "must be in block");
1104     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1105       Node* out = n->fast_out(i);
1106       if (out->is_Load()) {
1107         if (in_bb(out)) {
1108           preds.push(out);
1109           if (TraceSuperWord && Verbose) {
1110             tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", out->_idx);
1111           }
1112         }
1113       } else {
1114         // FIXME
1115         if (out->is_MergeMem() && !in_bb(out)) {
1116           // Either unrolling is causing a memory edge not to disappear,
1117           // or need to run igvn.optimize() again before SLP
1118         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
1119           // Ditto.  Not sure what else to check further.
1120         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
1121           // StoreCM has an input edge used as a precedence edge.
1122           // Maybe an issue when oop stores are vectorized.
1123         } else {
1124           assert(out == prev || prev == NULL, "no branches off of store slice");
1125         }
1126       }//else
1127     }//for
1128     if (n == stop) break;
1129     preds.push(n);
1130     if (TraceSuperWord && Verbose) {
1131       tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", n->_idx);
1132     }
1133     prev = n;
1134     assert(n->is_Mem(), "unexpected node %s", n->Name());
1135     n = n->in(MemNode::Memory);
1136   }
1137 }
1138 
1139 //------------------------------stmts_can_pack---------------------------
1140 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
1141 // s1 aligned at "align"
1142 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
1143 
1144   // Do not use superword for non-primitives
1145   BasicType bt1 = velt_basic_type(s1);
1146   BasicType bt2 = velt_basic_type(s2);
1147   if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
1148     return false;
1149   if (Matcher::max_vector_size(bt1) < 2) {
1150     return false; // No vectors for this type
1151   }
1152 
1153   if (isomorphic(s1, s2)) {
1154     if ((independent(s1, s2) && have_similar_inputs(s1, s2)) || reduction(s1, s2)) {
1155       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
1156         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
1157           int s1_align = alignment(s1);
1158           int s2_align = alignment(s2);
1159           if (s1_align == top_align || s1_align == align) {
1160             if (s2_align == top_align || s2_align == align + data_size(s1)) {
1161               return true;
1162             }
1163           }
1164         }
1165       }
1166     }
1167   }
1168   return false;
1169 }
1170 
1171 //------------------------------exists_at---------------------------
1172 // Does s exist in a pack at position pos?
1173 bool SuperWord::exists_at(Node* s, uint pos) {
1174   for (int i = 0; i < _packset.length(); i++) {
1175     Node_List* p = _packset.at(i);
1176     if (p->at(pos) == s) {
1177       return true;
1178     }
1179   }
1180   return false;
1181 }
1182 
1183 //------------------------------are_adjacent_refs---------------------------
1184 // Is s1 immediately before s2 in memory?
1185 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
1186   if (!s1->is_Mem() || !s2->is_Mem()) return false;
1187   if (!in_bb(s1)    || !in_bb(s2))    return false;
1188 
1189   // Do not use superword for non-primitives
1190   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
1191       !is_java_primitive(s2->as_Mem()->memory_type())) {
1192     return false;
1193   }
1194 
1195   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
1196   // only pack memops that are in the same alias set until that's fixed.
1197   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
1198       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
1199     return false;
1200   SWPointer p1(s1->as_Mem(), this, NULL, false);
1201   SWPointer p2(s2->as_Mem(), this, NULL, false);
1202   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
1203   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
1204   return diff == data_size(s1);
1205 }
1206 
1207 //------------------------------isomorphic---------------------------
1208 // Are s1 and s2 similar?
1209 bool SuperWord::isomorphic(Node* s1, Node* s2) {
1210   if (s1->Opcode() != s2->Opcode()) return false;
1211   if (s1->req() != s2->req()) return false;
1212   if (!same_velt_type(s1, s2)) return false;
1213   Node* s1_ctrl = s1->in(0);
1214   Node* s2_ctrl = s2->in(0);
1215   // If the control nodes are equivalent, no further checks are required to test for isomorphism.
1216   if (s1_ctrl == s2_ctrl) {
1217     return true;
1218   } else {
1219     bool s1_ctrl_inv = ((s1_ctrl == NULL) ? true : lpt()->is_invariant(s1_ctrl));
1220     bool s2_ctrl_inv = ((s2_ctrl == NULL) ? true : lpt()->is_invariant(s2_ctrl));
1221     // If the control nodes are not invariant for the loop, fail isomorphism test.
1222     if (!s1_ctrl_inv || !s2_ctrl_inv) {
1223       return false;
1224     }
1225     if (s1_ctrl->is_Proj()) {
1226       s1_ctrl = s1_ctrl->in(0);
1227       assert(lpt()->is_invariant(s1_ctrl), "must be invariant");
1228     }
1229     if (s2_ctrl->is_Proj()) {
1230       s2_ctrl = s2_ctrl->in(0);
1231       assert(lpt()->is_invariant(s2_ctrl), "must be invariant");
1232     }
1233     if (!s1_ctrl->is_RangeCheck() || !s2_ctrl->is_RangeCheck()) {
1234       return false;
1235     }
1236     // Control nodes are invariant. However, we have no way of checking whether they resolve
1237     // in an equivalent manner. But, we know that invariant range checks are guaranteed to
1238     // throw before the loop (if they would have thrown). Thus, the loop would not have been reached.
1239     // Therefore, if the control nodes for both are range checks, we accept them to be isomorphic.
1240     for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1241       Node* t1 = s1->fast_out(i);
1242       for (DUIterator_Fast imax, i = s2->fast_outs(imax); i < imax; i++) {
1243         Node* t2 = s2->fast_out(i);
1244         if (VectorNode::is_muladds2i(t1) && VectorNode::is_muladds2i(t2)) {
1245           return true;
1246         }
1247       }
1248     }
1249   }
1250   return false;
1251 }
1252 
1253 //------------------------------independent---------------------------
1254 // Is there no data path from s1 to s2 or s2 to s1?
1255 bool SuperWord::independent(Node* s1, Node* s2) {
1256   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
1257   int d1 = depth(s1);
1258   int d2 = depth(s2);
1259   if (d1 == d2) return s1 != s2;
1260   Node* deep    = d1 > d2 ? s1 : s2;
1261   Node* shallow = d1 > d2 ? s2 : s1;
1262 
1263   visited_clear();
1264 
1265   return independent_path(shallow, deep);
1266 }
1267 
1268 //--------------------------have_similar_inputs-----------------------
1269 // For a node pair (s1, s2) which is isomorphic and independent,
1270 // do s1 and s2 have similar input edges?
1271 bool SuperWord::have_similar_inputs(Node* s1, Node* s2) {
1272   // assert(isomorphic(s1, s2) == true, "check isomorphic");
1273   // assert(independent(s1, s2) == true, "check independent");
1274   if (s1->req() > 1 && !s1->is_Store() && !s1->is_Load()) {
1275     for (uint i = 1; i < s1->req(); i++) {
1276       if (s1->in(i)->Opcode() != s2->in(i)->Opcode()) return false;
1277     }
1278   }
1279   return true;
1280 }
1281 
1282 //------------------------------reduction---------------------------
1283 // Is there a data path between s1 and s2 and the nodes reductions?
1284 bool SuperWord::reduction(Node* s1, Node* s2) {
1285   bool retValue = false;
1286   int d1 = depth(s1);
1287   int d2 = depth(s2);
1288   if (d1 + 1 == d2) {
1289     if (s1->is_reduction() && s2->is_reduction()) {
1290       // This is an ordered set, so s1 should define s2
1291       for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1292         Node* t1 = s1->fast_out(i);
1293         if (t1 == s2) {
1294           // both nodes are reductions and connected
1295           retValue = true;
1296         }
1297       }
1298     }
1299   }
1300 
1301   return retValue;
1302 }
1303 
1304 //------------------------------independent_path------------------------------
1305 // Helper for independent
1306 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
1307   if (dp >= 1000) return false; // stop deep recursion
1308   visited_set(deep);
1309   int shal_depth = depth(shallow);
1310   assert(shal_depth <= depth(deep), "must be");
1311   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
1312     Node* pred = preds.current();
1313     if (in_bb(pred) && !visited_test(pred)) {
1314       if (shallow == pred) {
1315         return false;
1316       }
1317       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
1318         return false;
1319       }
1320     }
1321   }
1322   return true;
1323 }
1324 
1325 //------------------------------set_alignment---------------------------
1326 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
1327   set_alignment(s1, align);
1328   if (align == top_align || align == bottom_align) {
1329     set_alignment(s2, align);
1330   } else {
1331     set_alignment(s2, align + data_size(s1));
1332   }
1333 }
1334 
1335 //------------------------------data_size---------------------------
1336 int SuperWord::data_size(Node* s) {
1337   Node* use = NULL; //test if the node is a candidate for CMoveV optimization, then return the size of CMov
1338   if (UseVectorCmov) {
1339     use = _cmovev_kit.is_Bool_candidate(s);
1340     if (use != NULL) {
1341       return data_size(use);
1342     }
1343     use = _cmovev_kit.is_CmpD_candidate(s);
1344     if (use != NULL) {
1345       return data_size(use);
1346     }
1347   }
1348 
1349   int bsize = type2aelembytes(velt_basic_type(s));
1350   assert(bsize != 0, "valid size");
1351   return bsize;
1352 }
1353 
1354 //------------------------------extend_packlist---------------------------
1355 // Extend packset by following use->def and def->use links from pack members.
1356 void SuperWord::extend_packlist() {
1357   bool changed;
1358   do {
1359     packset_sort(_packset.length());
1360     changed = false;
1361     for (int i = 0; i < _packset.length(); i++) {
1362       Node_List* p = _packset.at(i);
1363       changed |= follow_use_defs(p);
1364       changed |= follow_def_uses(p);
1365     }
1366   } while (changed);
1367 
1368   if (_race_possible) {
1369     for (int i = 0; i < _packset.length(); i++) {
1370       Node_List* p = _packset.at(i);
1371       order_def_uses(p);
1372     }
1373   }
1374 
1375   if (TraceSuperWord) {
1376     tty->print_cr("\nAfter extend_packlist");
1377     print_packset();
1378   }
1379 }
1380 
1381 //------------------------------follow_use_defs---------------------------
1382 // Extend the packset by visiting operand definitions of nodes in pack p
1383 bool SuperWord::follow_use_defs(Node_List* p) {
1384   assert(p->size() == 2, "just checking");
1385   Node* s1 = p->at(0);
1386   Node* s2 = p->at(1);
1387   assert(s1->req() == s2->req(), "just checking");
1388   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1389 
1390   if (s1->is_Load()) return false;
1391 
1392   int align = alignment(s1);
1393   NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: s1 %d, align %d", s1->_idx, align);)
1394   bool changed = false;
1395   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
1396   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
1397   for (int j = start; j < end; j++) {
1398     Node* t1 = s1->in(j);
1399     Node* t2 = s2->in(j);
1400     if (!in_bb(t1) || !in_bb(t2))
1401       continue;
1402     if (stmts_can_pack(t1, t2, align)) {
1403       if (est_savings(t1, t2) >= 0) {
1404         Node_List* pair = new Node_List();
1405         pair->push(t1);
1406         pair->push(t2);
1407         _packset.append(pair);
1408         NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: set_alignment(%d, %d, %d)", t1->_idx, t2->_idx, align);)
1409         set_alignment(t1, t2, align);
1410         changed = true;
1411       }
1412     }
1413   }
1414   return changed;
1415 }
1416 
1417 //------------------------------follow_def_uses---------------------------
1418 // Extend the packset by visiting uses of nodes in pack p
1419 bool SuperWord::follow_def_uses(Node_List* p) {
1420   bool changed = false;
1421   Node* s1 = p->at(0);
1422   Node* s2 = p->at(1);
1423   assert(p->size() == 2, "just checking");
1424   assert(s1->req() == s2->req(), "just checking");
1425   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1426 
1427   if (s1->is_Store()) return false;
1428 
1429   int align = alignment(s1);
1430   NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: s1 %d, align %d", s1->_idx, align);)
1431   int savings = -1;
1432   int num_s1_uses = 0;
1433   Node* u1 = NULL;
1434   Node* u2 = NULL;
1435   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1436     Node* t1 = s1->fast_out(i);
1437     num_s1_uses++;
1438     if (!in_bb(t1)) continue;
1439     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
1440       Node* t2 = s2->fast_out(j);
1441       if (!in_bb(t2)) continue;
1442       if (t2->Opcode() == Op_AddI && t2 == _lp->as_CountedLoop()->incr()) continue; // don't mess with the iv
1443       if (!opnd_positions_match(s1, t1, s2, t2))
1444         continue;
1445       if (stmts_can_pack(t1, t2, align)) {
1446         int my_savings = est_savings(t1, t2);
1447         if (my_savings > savings) {
1448           savings = my_savings;
1449           u1 = t1;
1450           u2 = t2;
1451         }
1452       }
1453     }
1454   }
1455   if (num_s1_uses > 1) {
1456     _race_possible = true;
1457   }
1458   if (savings >= 0) {
1459     Node_List* pair = new Node_List();
1460     pair->push(u1);
1461     pair->push(u2);
1462     _packset.append(pair);
1463     NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: set_alignment(%d, %d, %d)", u1->_idx, u2->_idx, align);)
1464     set_alignment(u1, u2, align);
1465     changed = true;
1466   }
1467   return changed;
1468 }
1469 
1470 //------------------------------order_def_uses---------------------------
1471 // For extended packsets, ordinally arrange uses packset by major component
1472 void SuperWord::order_def_uses(Node_List* p) {
1473   Node* s1 = p->at(0);
1474 
1475   if (s1->is_Store()) return;
1476 
1477   // reductions are always managed beforehand
1478   if (s1->is_reduction()) return;
1479 
1480   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1481     Node* t1 = s1->fast_out(i);
1482 
1483     // Only allow operand swap on commuting operations
1484     if (!t1->is_Add() && !t1->is_Mul()) {
1485       break;
1486     }
1487 
1488     // Now find t1's packset
1489     Node_List* p2 = NULL;
1490     for (int j = 0; j < _packset.length(); j++) {
1491       p2 = _packset.at(j);
1492       Node* first = p2->at(0);
1493       if (t1 == first) {
1494         break;
1495       }
1496       p2 = NULL;
1497     }
1498     // Arrange all sub components by the major component
1499     if (p2 != NULL) {
1500       for (uint j = 1; j < p->size(); j++) {
1501         Node* d1 = p->at(j);
1502         Node* u1 = p2->at(j);
1503         opnd_positions_match(s1, t1, d1, u1);
1504       }
1505     }
1506   }
1507 }
1508 
1509 //---------------------------opnd_positions_match-------------------------
1510 // Is the use of d1 in u1 at the same operand position as d2 in u2?
1511 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
1512   // check reductions to see if they are marshalled to represent the reduction
1513   // operator in a specified opnd
1514   if (u1->is_reduction() && u2->is_reduction()) {
1515     // ensure reductions have phis and reduction definitions feeding the 1st operand
1516     Node* first = u1->in(2);
1517     if (first->is_Phi() || first->is_reduction()) {
1518       u1->swap_edges(1, 2);
1519     }
1520     // ensure reductions have phis and reduction definitions feeding the 1st operand
1521     first = u2->in(2);
1522     if (first->is_Phi() || first->is_reduction()) {
1523       u2->swap_edges(1, 2);
1524     }
1525     return true;
1526   }
1527 
1528   uint ct = u1->req();
1529   if (ct != u2->req()) return false;
1530   uint i1 = 0;
1531   uint i2 = 0;
1532   do {
1533     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
1534     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
1535     if (i1 != i2) {
1536       if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
1537         // Further analysis relies on operands position matching.
1538         u2->swap_edges(i1, i2);
1539       } else {
1540         return false;
1541       }
1542     }
1543   } while (i1 < ct);
1544   return true;
1545 }
1546 
1547 //------------------------------est_savings---------------------------
1548 // Estimate the savings from executing s1 and s2 as a pack
1549 int SuperWord::est_savings(Node* s1, Node* s2) {
1550   int save_in = 2 - 1; // 2 operations per instruction in packed form
1551 
1552   // inputs
1553   for (uint i = 1; i < s1->req(); i++) {
1554     Node* x1 = s1->in(i);
1555     Node* x2 = s2->in(i);
1556     if (x1 != x2) {
1557       if (are_adjacent_refs(x1, x2)) {
1558         save_in += adjacent_profit(x1, x2);
1559       } else if (!in_packset(x1, x2)) {
1560         save_in -= pack_cost(2);
1561       } else {
1562         save_in += unpack_cost(2);
1563       }
1564     }
1565   }
1566 
1567   // uses of result
1568   uint ct = 0;
1569   int save_use = 0;
1570   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1571     Node* s1_use = s1->fast_out(i);
1572     for (int j = 0; j < _packset.length(); j++) {
1573       Node_List* p = _packset.at(j);
1574       if (p->at(0) == s1_use) {
1575         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
1576           Node* s2_use = s2->fast_out(k);
1577           if (p->at(p->size()-1) == s2_use) {
1578             ct++;
1579             if (are_adjacent_refs(s1_use, s2_use)) {
1580               save_use += adjacent_profit(s1_use, s2_use);
1581             }
1582           }
1583         }
1584       }
1585     }
1586   }
1587 
1588   if (ct < s1->outcnt()) save_use += unpack_cost(1);
1589   if (ct < s2->outcnt()) save_use += unpack_cost(1);
1590 
1591   return MAX2(save_in, save_use);
1592 }
1593 
1594 //------------------------------costs---------------------------
1595 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
1596 int SuperWord::pack_cost(int ct)   { return ct; }
1597 int SuperWord::unpack_cost(int ct) { return ct; }
1598 
1599 //------------------------------combine_packs---------------------------
1600 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
1601 void SuperWord::combine_packs() {
1602   bool changed = true;
1603   // Combine packs regardless max vector size.
1604   while (changed) {
1605     changed = false;
1606     for (int i = 0; i < _packset.length(); i++) {
1607       Node_List* p1 = _packset.at(i);
1608       if (p1 == NULL) continue;
1609       // Because of sorting we can start at i + 1
1610       for (int j = i + 1; j < _packset.length(); j++) {
1611         Node_List* p2 = _packset.at(j);
1612         if (p2 == NULL) continue;
1613         if (i == j) continue;
1614         if (p1->at(p1->size()-1) == p2->at(0)) {
1615           for (uint k = 1; k < p2->size(); k++) {
1616             p1->push(p2->at(k));
1617           }
1618           _packset.at_put(j, NULL);
1619           changed = true;
1620         }
1621       }
1622     }
1623   }
1624 
1625   // Split packs which have size greater then max vector size.
1626   for (int i = 0; i < _packset.length(); i++) {
1627     Node_List* p1 = _packset.at(i);
1628     if (p1 != NULL) {
1629       BasicType bt = velt_basic_type(p1->at(0));
1630       uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
1631       assert(is_power_of_2(max_vlen), "sanity");
1632       uint psize = p1->size();
1633       if (!is_power_of_2(psize)) {
1634         // Skip pack which can't be vector.
1635         // case1: for(...) { a[i] = i; }    elements values are different (i+x)
1636         // case2: for(...) { a[i] = b[i+1]; }  can't align both, load and store
1637         _packset.at_put(i, NULL);
1638         continue;
1639       }
1640       if (psize > max_vlen) {
1641         Node_List* pack = new Node_List();
1642         for (uint j = 0; j < psize; j++) {
1643           pack->push(p1->at(j));
1644           if (pack->size() >= max_vlen) {
1645             assert(is_power_of_2(pack->size()), "sanity");
1646             _packset.append(pack);
1647             pack = new Node_List();
1648           }
1649         }
1650         _packset.at_put(i, NULL);
1651       }
1652     }
1653   }
1654 
1655   // Compress list.
1656   for (int i = _packset.length() - 1; i >= 0; i--) {
1657     Node_List* p1 = _packset.at(i);
1658     if (p1 == NULL) {
1659       _packset.remove_at(i);
1660     }
1661   }
1662 
1663   if (TraceSuperWord) {
1664     tty->print_cr("\nAfter combine_packs");
1665     print_packset();
1666   }
1667 }
1668 
1669 //-----------------------------construct_my_pack_map--------------------------
1670 // Construct the map from nodes to packs.  Only valid after the
1671 // point where a node is only in one pack (after combine_packs).
1672 void SuperWord::construct_my_pack_map() {
1673   Node_List* rslt = NULL;
1674   for (int i = 0; i < _packset.length(); i++) {
1675     Node_List* p = _packset.at(i);
1676     for (uint j = 0; j < p->size(); j++) {
1677       Node* s = p->at(j);
1678       assert(my_pack(s) == NULL, "only in one pack");
1679       set_my_pack(s, p);
1680     }
1681   }
1682 }
1683 
1684 //------------------------------filter_packs---------------------------
1685 // Remove packs that are not implemented or not profitable.
1686 void SuperWord::filter_packs() {
1687   // Remove packs that are not implemented
1688   for (int i = _packset.length() - 1; i >= 0; i--) {
1689     Node_List* pk = _packset.at(i);
1690     bool impl = implemented(pk);
1691     if (!impl) {
1692 #ifndef PRODUCT
1693       if (TraceSuperWord && Verbose) {
1694         tty->print_cr("Unimplemented");
1695         pk->at(0)->dump();
1696       }
1697 #endif
1698       remove_pack_at(i);
1699     }
1700     Node *n = pk->at(0);
1701     if (n->is_reduction()) {
1702       _num_reductions++;
1703     } else {
1704       _num_work_vecs++;
1705     }
1706   }
1707 
1708   // Remove packs that are not profitable
1709   bool changed;
1710   do {
1711     changed = false;
1712     for (int i = _packset.length() - 1; i >= 0; i--) {
1713       Node_List* pk = _packset.at(i);
1714       bool prof = profitable(pk);
1715       if (!prof) {
1716 #ifndef PRODUCT
1717         if (TraceSuperWord && Verbose) {
1718           tty->print_cr("Unprofitable");
1719           pk->at(0)->dump();
1720         }
1721 #endif
1722         remove_pack_at(i);
1723         changed = true;
1724       }
1725     }
1726   } while (changed);
1727 
1728 #ifndef PRODUCT
1729   if (TraceSuperWord) {
1730     tty->print_cr("\nAfter filter_packs");
1731     print_packset();
1732     tty->cr();
1733   }
1734 #endif
1735 }
1736 
1737 //------------------------------merge_packs_to_cmovd---------------------------
1738 // Merge CMoveD into new vector-nodes
1739 // We want to catch this pattern and subsume CmpD and Bool into CMoveD
1740 //
1741 //                   SubD             ConD
1742 //                  /  |               /
1743 //                 /   |           /   /
1744 //                /    |       /      /
1745 //               /     |   /         /
1746 //              /      /            /
1747 //             /    /  |           /
1748 //            v /      |          /
1749 //         CmpD        |         /
1750 //          |          |        /
1751 //          v          |       /
1752 //         Bool        |      /
1753 //           \         |     /
1754 //             \       |    /
1755 //               \     |   /
1756 //                 \   |  /
1757 //                   \ v /
1758 //                   CMoveD
1759 //
1760 
1761 void SuperWord::merge_packs_to_cmovd() {
1762   for (int i = _packset.length() - 1; i >= 0; i--) {
1763     _cmovev_kit.make_cmovevd_pack(_packset.at(i));
1764   }
1765   #ifndef PRODUCT
1766     if (TraceSuperWord) {
1767       tty->print_cr("\nSuperWord::merge_packs_to_cmovd(): After merge");
1768       print_packset();
1769       tty->cr();
1770     }
1771   #endif
1772 }
1773 
1774 Node* CMoveKit::is_Bool_candidate(Node* def) const {
1775   Node* use = NULL;
1776   if (!def->is_Bool() || def->in(0) != NULL || def->outcnt() != 1) {
1777     return NULL;
1778   }
1779   for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1780     use = def->fast_out(j);
1781     if (!_sw->same_generation(def, use) || !use->is_CMove()) {
1782       return NULL;
1783     }
1784   }
1785   return use;
1786 }
1787 
1788 Node* CMoveKit::is_CmpD_candidate(Node* def) const {
1789   Node* use = NULL;
1790   if (!def->is_Cmp() || def->in(0) != NULL || def->outcnt() != 1) {
1791     return NULL;
1792   }
1793   for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1794     use = def->fast_out(j);
1795     if (!_sw->same_generation(def, use) || (use = is_Bool_candidate(use)) == NULL || !_sw->same_generation(def, use)) {
1796       return NULL;
1797     }
1798   }
1799   return use;
1800 }
1801 
1802 Node_List* CMoveKit::make_cmovevd_pack(Node_List* cmovd_pk) {
1803   Node *cmovd = cmovd_pk->at(0);
1804   if (!cmovd->is_CMove()) {
1805     return NULL;
1806   }
1807   if (cmovd->Opcode() != Op_CMoveF && cmovd->Opcode() != Op_CMoveD) {
1808     return NULL;
1809   }
1810   if (pack(cmovd) != NULL) { // already in the cmov pack
1811     return NULL;
1812   }
1813   if (cmovd->in(0) != NULL) {
1814     NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CMoveD %d has control flow, escaping...", cmovd->_idx); cmovd->dump();})
1815     return NULL;
1816   }
1817 
1818   Node* bol = cmovd->as_CMove()->in(CMoveNode::Condition);
1819   if (!bol->is_Bool()
1820       || bol->outcnt() != 1
1821       || !_sw->same_generation(bol, cmovd)
1822       || bol->in(0) != NULL  // BoolNode has control flow!!
1823       || _sw->my_pack(bol) == NULL) {
1824       NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: Bool %d does not fit CMoveD %d for building vector, escaping...", bol->_idx, cmovd->_idx); bol->dump();})
1825       return NULL;
1826   }
1827   Node_List* bool_pk = _sw->my_pack(bol);
1828   if (bool_pk->size() != cmovd_pk->size() ) {
1829     return NULL;
1830   }
1831 
1832   Node* cmpd = bol->in(1);
1833   if (!cmpd->is_Cmp()
1834       || cmpd->outcnt() != 1
1835       || !_sw->same_generation(cmpd, cmovd)
1836       || cmpd->in(0) != NULL  // CmpDNode has control flow!!
1837       || _sw->my_pack(cmpd) == NULL) {
1838       NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CmpD %d does not fit CMoveD %d for building vector, escaping...", cmpd->_idx, cmovd->_idx); cmpd->dump();})
1839       return NULL;
1840   }
1841   Node_List* cmpd_pk = _sw->my_pack(cmpd);
1842   if (cmpd_pk->size() != cmovd_pk->size() ) {
1843     return NULL;
1844   }
1845 
1846   if (!test_cmpd_pack(cmpd_pk, cmovd_pk)) {
1847     NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: cmpd pack for CmpD %d failed vectorization test", cmpd->_idx); cmpd->dump();})
1848     return NULL;
1849   }
1850 
1851   Node_List* new_cmpd_pk = new Node_List();
1852   uint sz = cmovd_pk->size() - 1;
1853   for (uint i = 0; i <= sz; ++i) {
1854     Node* cmov = cmovd_pk->at(i);
1855     Node* bol  = bool_pk->at(i);
1856     Node* cmp  = cmpd_pk->at(i);
1857 
1858     new_cmpd_pk->insert(i, cmov);
1859 
1860     map(cmov, new_cmpd_pk);
1861     map(bol, new_cmpd_pk);
1862     map(cmp, new_cmpd_pk);
1863 
1864     _sw->set_my_pack(cmov, new_cmpd_pk); // and keep old packs for cmp and bool
1865   }
1866   _sw->_packset.remove(cmovd_pk);
1867   _sw->_packset.remove(bool_pk);
1868   _sw->_packset.remove(cmpd_pk);
1869   _sw->_packset.append(new_cmpd_pk);
1870   NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print_cr("CMoveKit::make_cmovevd_pack: added syntactic CMoveD pack"); _sw->print_pack(new_cmpd_pk);})
1871   return new_cmpd_pk;
1872 }
1873 
1874 bool CMoveKit::test_cmpd_pack(Node_List* cmpd_pk, Node_List* cmovd_pk) {
1875   Node* cmpd0 = cmpd_pk->at(0);
1876   assert(cmpd0->is_Cmp(), "CMoveKit::test_cmpd_pack: should be CmpDNode");
1877   assert(cmovd_pk->at(0)->is_CMove(), "CMoveKit::test_cmpd_pack: should be CMoveD");
1878   assert(cmpd_pk->size() == cmovd_pk->size(), "CMoveKit::test_cmpd_pack: should be same size");
1879   Node* in1 = cmpd0->in(1);
1880   Node* in2 = cmpd0->in(2);
1881   Node_List* in1_pk = _sw->my_pack(in1);
1882   Node_List* in2_pk = _sw->my_pack(in2);
1883 
1884   if (  (in1_pk != NULL && in1_pk->size() != cmpd_pk->size())
1885      || (in2_pk != NULL && in2_pk->size() != cmpd_pk->size()) ) {
1886     return false;
1887   }
1888 
1889   // test if "all" in1 are in the same pack or the same node
1890   if (in1_pk == NULL) {
1891     for (uint j = 1; j < cmpd_pk->size(); j++) {
1892       if (cmpd_pk->at(j)->in(1) != in1) {
1893         return false;
1894       }
1895     }//for: in1_pk is not pack but all CmpD nodes in the pack have the same in(1)
1896   }
1897   // test if "all" in2 are in the same pack or the same node
1898   if (in2_pk == NULL) {
1899     for (uint j = 1; j < cmpd_pk->size(); j++) {
1900       if (cmpd_pk->at(j)->in(2) != in2) {
1901         return false;
1902       }
1903     }//for: in2_pk is not pack but all CmpD nodes in the pack have the same in(2)
1904   }
1905   //now check if cmpd_pk may be subsumed in vector built for cmovd_pk
1906   int cmovd_ind1, cmovd_ind2;
1907   if (cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
1908    && cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
1909       cmovd_ind1 = CMoveNode::IfFalse;
1910       cmovd_ind2 = CMoveNode::IfTrue;
1911   } else if (cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
1912           && cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
1913       cmovd_ind2 = CMoveNode::IfFalse;
1914       cmovd_ind1 = CMoveNode::IfTrue;
1915   }
1916   else {
1917     return false;
1918   }
1919 
1920   for (uint j = 1; j < cmpd_pk->size(); j++) {
1921     if (cmpd_pk->at(j)->in(1) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind1)
1922         || cmpd_pk->at(j)->in(2) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind2)) {
1923         return false;
1924     }//if
1925   }
1926   NOT_PRODUCT(if(_sw->is_trace_cmov()) { tty->print("CMoveKit::test_cmpd_pack: cmpd pack for 1st CmpD %d is OK for vectorization: ", cmpd0->_idx); cmpd0->dump(); })
1927   return true;
1928 }
1929 
1930 //------------------------------implemented---------------------------
1931 // Can code be generated for pack p?
1932 bool SuperWord::implemented(Node_List* p) {
1933   bool retValue = false;
1934   Node* p0 = p->at(0);
1935   if (p0 != NULL) {
1936     int opc = p0->Opcode();
1937     uint size = p->size();
1938     if (p0->is_reduction()) {
1939       const Type *arith_type = p0->bottom_type();
1940       // Length 2 reductions of INT/LONG do not offer performance benefits
1941       if (((arith_type->basic_type() == T_INT) || (arith_type->basic_type() == T_LONG)) && (size == 2)) {
1942         retValue = false;
1943       } else {
1944         retValue = ReductionNode::implemented(opc, size, arith_type->basic_type());
1945       }
1946     } else {
1947       retValue = VectorNode::implemented(opc, size, velt_basic_type(p0));
1948     }
1949     if (!retValue) {
1950       if (is_cmov_pack(p)) {
1951         NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::implemented: found cmpd pack"); print_pack(p);})
1952         return true;
1953       }
1954     }
1955   }
1956   return retValue;
1957 }
1958 
1959 bool SuperWord::is_cmov_pack(Node_List* p) {
1960   return _cmovev_kit.pack(p->at(0)) != NULL;
1961 }
1962 //------------------------------same_inputs--------------------------
1963 // For pack p, are all idx operands the same?
1964 bool SuperWord::same_inputs(Node_List* p, int idx) {
1965   Node* p0 = p->at(0);
1966   uint vlen = p->size();
1967   Node* p0_def = p0->in(idx);
1968   for (uint i = 1; i < vlen; i++) {
1969     Node* pi = p->at(i);
1970     Node* pi_def = pi->in(idx);
1971     if (p0_def != pi_def) {
1972       return false;
1973     }
1974   }
1975   return true;
1976 }
1977 
1978 //------------------------------profitable---------------------------
1979 // For pack p, are all operands and all uses (with in the block) vector?
1980 bool SuperWord::profitable(Node_List* p) {
1981   Node* p0 = p->at(0);
1982   uint start, end;
1983   VectorNode::vector_operands(p0, &start, &end);
1984 
1985   // Return false if some inputs are not vectors or vectors with different
1986   // size or alignment.
1987   // Also, for now, return false if not scalar promotion case when inputs are
1988   // the same. Later, implement PackNode and allow differing, non-vector inputs
1989   // (maybe just the ones from outside the block.)
1990   for (uint i = start; i < end; i++) {
1991     if (!is_vector_use(p0, i)) {
1992       return false;
1993     }
1994   }
1995   // Check if reductions are connected
1996   if (p0->is_reduction()) {
1997     Node* second_in = p0->in(2);
1998     Node_List* second_pk = my_pack(second_in);
1999     if ((second_pk == NULL) || (_num_work_vecs == _num_reductions)) {
2000       // Remove reduction flag if no parent pack or if not enough work
2001       // to cover reduction expansion overhead
2002       p0->remove_flag(Node::Flag_is_reduction);
2003       return false;
2004     } else if (second_pk->size() != p->size()) {
2005       return false;
2006     }
2007   }
2008   if (VectorNode::is_shift(p0)) {
2009     // For now, return false if shift count is vector or not scalar promotion
2010     // case (different shift counts) because it is not supported yet.
2011     Node* cnt = p0->in(2);
2012     Node_List* cnt_pk = my_pack(cnt);
2013     if (cnt_pk != NULL)
2014       return false;
2015     if (!same_inputs(p, 2))
2016       return false;
2017   }
2018   if (!p0->is_Store()) {
2019     // For now, return false if not all uses are vector.
2020     // Later, implement ExtractNode and allow non-vector uses (maybe
2021     // just the ones outside the block.)
2022     for (uint i = 0; i < p->size(); i++) {
2023       Node* def = p->at(i);
2024       if (is_cmov_pack_internal_node(p, def)) {
2025         continue;
2026       }
2027       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
2028         Node* use = def->fast_out(j);
2029         for (uint k = 0; k < use->req(); k++) {
2030           Node* n = use->in(k);
2031           if (def == n) {
2032             // reductions should only have a Phi use at the the loop
2033             // head and out of loop uses
2034             if (def->is_reduction() &&
2035                 ((use->is_Phi() && use->in(0) == _lpt->_head) ||
2036                  !_lpt->is_member(_phase->get_loop(_phase->ctrl_or_self(use))))) {
2037               assert(i == p->size()-1, "must be last element of the pack");
2038               continue;
2039             }
2040             if (!is_vector_use(use, k)) {
2041               return false;
2042             }
2043           }
2044         }
2045       }
2046     }
2047   }
2048   return true;
2049 }
2050 
2051 //------------------------------schedule---------------------------
2052 // Adjust the memory graph for the packed operations
2053 void SuperWord::schedule() {
2054 
2055   // Co-locate in the memory graph the members of each memory pack
2056   for (int i = 0; i < _packset.length(); i++) {
2057     co_locate_pack(_packset.at(i));
2058   }
2059 }
2060 
2061 //-------------------------------remove_and_insert-------------------
2062 // Remove "current" from its current position in the memory graph and insert
2063 // it after the appropriate insertion point (lip or uip).
2064 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
2065                                   Node *uip, Unique_Node_List &sched_before) {
2066   Node* my_mem = current->in(MemNode::Memory);
2067   bool sched_up = sched_before.member(current);
2068 
2069   // remove current_store from its current position in the memmory graph
2070   for (DUIterator i = current->outs(); current->has_out(i); i++) {
2071     Node* use = current->out(i);
2072     if (use->is_Mem()) {
2073       assert(use->in(MemNode::Memory) == current, "must be");
2074       if (use == prev) { // connect prev to my_mem
2075           _igvn.replace_input_of(use, MemNode::Memory, my_mem);
2076           --i; //deleted this edge; rescan position
2077       } else if (sched_before.member(use)) {
2078         if (!sched_up) { // Will be moved together with current
2079           _igvn.replace_input_of(use, MemNode::Memory, uip);
2080           --i; //deleted this edge; rescan position
2081         }
2082       } else {
2083         if (sched_up) { // Will be moved together with current
2084           _igvn.replace_input_of(use, MemNode::Memory, lip);
2085           --i; //deleted this edge; rescan position
2086         }
2087       }
2088     }
2089   }
2090 
2091   Node *insert_pt =  sched_up ?  uip : lip;
2092 
2093   // all uses of insert_pt's memory state should use current's instead
2094   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
2095     Node* use = insert_pt->out(i);
2096     if (use->is_Mem()) {
2097       assert(use->in(MemNode::Memory) == insert_pt, "must be");
2098       _igvn.replace_input_of(use, MemNode::Memory, current);
2099       --i; //deleted this edge; rescan position
2100     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
2101       uint pos; //lip (lower insert point) must be the last one in the memory slice
2102       for (pos=1; pos < use->req(); pos++) {
2103         if (use->in(pos) == insert_pt) break;
2104       }
2105       _igvn.replace_input_of(use, pos, current);
2106       --i;
2107     }
2108   }
2109 
2110   //connect current to insert_pt
2111   _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
2112 }
2113 
2114 //------------------------------co_locate_pack----------------------------------
2115 // To schedule a store pack, we need to move any sandwiched memory ops either before
2116 // or after the pack, based upon dependence information:
2117 // (1) If any store in the pack depends on the sandwiched memory op, the
2118 //     sandwiched memory op must be scheduled BEFORE the pack;
2119 // (2) If a sandwiched memory op depends on any store in the pack, the
2120 //     sandwiched memory op must be scheduled AFTER the pack;
2121 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
2122 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
2123 //     scheduled before the pack, memB must also be scheduled before the pack;
2124 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
2125 //     schedule this store AFTER the pack
2126 // (5) We know there is no dependence cycle, so there in no other case;
2127 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
2128 //
2129 // To schedule a load pack, we use the memory state of either the first or the last load in
2130 // the pack, based on the dependence constraint.
2131 void SuperWord::co_locate_pack(Node_List* pk) {
2132   if (pk->at(0)->is_Store()) {
2133     MemNode* first     = executed_first(pk)->as_Mem();
2134     MemNode* last      = executed_last(pk)->as_Mem();
2135     Unique_Node_List schedule_before_pack;
2136     Unique_Node_List memops;
2137 
2138     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
2139     MemNode* previous  = last;
2140     while (true) {
2141       assert(in_bb(current), "stay in block");
2142       memops.push(previous);
2143       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2144         Node* use = current->out(i);
2145         if (use->is_Mem() && use != previous)
2146           memops.push(use);
2147       }
2148       if (current == first) break;
2149       previous = current;
2150       current  = current->in(MemNode::Memory)->as_Mem();
2151     }
2152 
2153     // determine which memory operations should be scheduled before the pack
2154     for (uint i = 1; i < memops.size(); i++) {
2155       Node *s1 = memops.at(i);
2156       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
2157         for (uint j = 0; j< i; j++) {
2158           Node *s2 = memops.at(j);
2159           if (!independent(s1, s2)) {
2160             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
2161               schedule_before_pack.push(s1); // s1 must be scheduled before
2162               Node_List* mem_pk = my_pack(s1);
2163               if (mem_pk != NULL) {
2164                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
2165                   Node* s = mem_pk->at(ii);  // follow partner
2166                   if (memops.member(s) && !schedule_before_pack.member(s))
2167                     schedule_before_pack.push(s);
2168                 }
2169               }
2170               break;
2171             }
2172           }
2173         }
2174       }
2175     }
2176 
2177     Node*    upper_insert_pt = first->in(MemNode::Memory);
2178     // Following code moves loads connected to upper_insert_pt below aliased stores.
2179     // Collect such loads here and reconnect them back to upper_insert_pt later.
2180     memops.clear();
2181     for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
2182       Node* use = upper_insert_pt->out(i);
2183       if (use->is_Mem() && !use->is_Store()) {
2184         memops.push(use);
2185       }
2186     }
2187 
2188     MemNode* lower_insert_pt = last;
2189     previous                 = last; //previous store in pk
2190     current                  = last->in(MemNode::Memory)->as_Mem();
2191 
2192     // start scheduling from "last" to "first"
2193     while (true) {
2194       assert(in_bb(current), "stay in block");
2195       assert(in_pack(previous, pk), "previous stays in pack");
2196       Node* my_mem = current->in(MemNode::Memory);
2197 
2198       if (in_pack(current, pk)) {
2199         // Forward users of my memory state (except "previous) to my input memory state
2200         for (DUIterator i = current->outs(); current->has_out(i); i++) {
2201           Node* use = current->out(i);
2202           if (use->is_Mem() && use != previous) {
2203             assert(use->in(MemNode::Memory) == current, "must be");
2204             if (schedule_before_pack.member(use)) {
2205               _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
2206             } else {
2207               _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
2208             }
2209             --i; // deleted this edge; rescan position
2210           }
2211         }
2212         previous = current;
2213       } else { // !in_pack(current, pk) ==> a sandwiched store
2214         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
2215       }
2216 
2217       if (current == first) break;
2218       current = my_mem->as_Mem();
2219     } // end while
2220 
2221     // Reconnect loads back to upper_insert_pt.
2222     for (uint i = 0; i < memops.size(); i++) {
2223       Node *ld = memops.at(i);
2224       if (ld->in(MemNode::Memory) != upper_insert_pt) {
2225         _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
2226       }
2227     }
2228   } else if (pk->at(0)->is_Load()) { //load
2229     // all loads in the pack should have the same memory state. By default,
2230     // we use the memory state of the last load. However, if any load could
2231     // not be moved down due to the dependence constraint, we use the memory
2232     // state of the first load.
2233     Node* first_mem = pk->at(0)->in(MemNode::Memory);
2234     Node* last_mem = first_mem;
2235     for (uint i = 1; i < pk->size(); i++) {
2236       Node* ld = pk->at(i);
2237       Node* mem = ld->in(MemNode::Memory);
2238       assert(in_bb(first_mem) || in_bb(mem) || mem == first_mem, "2 different memory state from outside the loop?");
2239       if (in_bb(mem)) {
2240         if (in_bb(first_mem) && bb_idx(mem) < bb_idx(first_mem)) {
2241           first_mem = mem;
2242         }
2243         if (!in_bb(last_mem) || bb_idx(mem) > bb_idx(last_mem)) {
2244           last_mem = mem;
2245         }
2246       }
2247     }
2248     bool schedule_last = true;
2249     for (uint i = 0; i < pk->size(); i++) {
2250       Node* ld = pk->at(i);
2251       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
2252            current=current->in(MemNode::Memory)) {
2253         assert(current != first_mem, "corrupted memory graph");
2254         if(current->is_Mem() && !independent(current, ld)){
2255           schedule_last = false; // a later store depends on this load
2256           break;
2257         }
2258       }
2259     }
2260 
2261     Node* mem_input = schedule_last ? last_mem : first_mem;
2262     _igvn.hash_delete(mem_input);
2263     // Give each load the same memory state
2264     for (uint i = 0; i < pk->size(); i++) {
2265       LoadNode* ld = pk->at(i)->as_Load();
2266       _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
2267     }
2268   }
2269 }
2270 
2271 #ifndef PRODUCT
2272 void SuperWord::print_loop(bool whole) {
2273   Node_Stack stack(_arena, _phase->C->unique() >> 2);
2274   Node_List rpo_list;
2275   VectorSet visited(_arena);
2276   visited.set(lpt()->_head->_idx);
2277   _phase->rpo(lpt()->_head, stack, visited, rpo_list);
2278   _phase->dump(lpt(), rpo_list.size(), rpo_list );
2279   if(whole) {
2280     tty->print_cr("\n Whole loop tree");
2281     _phase->dump();
2282     tty->print_cr(" End of whole loop tree\n");
2283   }
2284 }
2285 #endif
2286 
2287 //------------------------------output---------------------------
2288 // Convert packs into vector node operations
2289 void SuperWord::output() {
2290   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
2291   Compile* C = _phase->C;
2292   if (_packset.length() == 0) {
2293     if (cl->is_main_loop()) {
2294       // Instigate more unrolling for optimization when vectorization fails.
2295       C->set_major_progress();
2296       cl->set_notpassed_slp();
2297       cl->mark_do_unroll_only();
2298     }
2299     return;
2300   }
2301 
2302 #ifndef PRODUCT
2303   if (TraceLoopOpts) {
2304     tty->print("SuperWord::output    ");
2305     lpt()->dump_head();
2306   }
2307 #endif
2308 
2309   if (cl->is_main_loop()) {
2310     // MUST ENSURE main loop's initial value is properly aligned:
2311     //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
2312 
2313     align_initial_loop_index(align_to_ref());
2314 
2315     // Insert extract (unpack) operations for scalar uses
2316     for (int i = 0; i < _packset.length(); i++) {
2317       insert_extracts(_packset.at(i));
2318     }
2319   }
2320 
2321   uint max_vlen_in_bytes = 0;
2322   uint max_vlen = 0;
2323   bool can_process_post_loop = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
2324 
2325   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop before create_reserve_version_of_loop"); print_loop(true);})
2326 
2327   CountedLoopReserveKit make_reversable(_phase, _lpt, do_reserve_copy());
2328 
2329   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop after create_reserve_version_of_loop"); print_loop(true);})
2330 
2331   if (do_reserve_copy() && !make_reversable.has_reserved()) {
2332     NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: loop was not reserved correctly, exiting SuperWord");})
2333     return;
2334   }
2335 
2336   for (int i = 0; i < _block.length(); i++) {
2337     Node* n = _block.at(i);
2338     Node_List* p = my_pack(n);
2339     if (p && n == executed_last(p)) {
2340       uint vlen = p->size();
2341       uint vlen_in_bytes = 0;
2342       Node* vn = NULL;
2343       Node* low_adr = p->at(0);
2344       Node* first   = executed_first(p);
2345       if (can_process_post_loop) {
2346         // override vlen with the main loops vector length
2347         vlen = cl->slp_max_unroll();
2348       }
2349       NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d executed first, %d executed last in pack", first->_idx, n->_idx); print_pack(p);})
2350       int   opc = n->Opcode();
2351       if (n->is_Load()) {
2352         Node* ctl = n->in(MemNode::Control);
2353         Node* mem = first->in(MemNode::Memory);
2354         SWPointer p1(n->as_Mem(), this, NULL, false);
2355         // Identify the memory dependency for the new loadVector node by
2356         // walking up through memory chain.
2357         // This is done to give flexibility to the new loadVector node so that
2358         // it can move above independent storeVector nodes.
2359         while (mem->is_StoreVector()) {
2360           SWPointer p2(mem->as_Mem(), this, NULL, false);
2361           int cmp = p1.cmp(p2);
2362           if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
2363             mem = mem->in(MemNode::Memory);
2364           } else {
2365             break; // dependent memory
2366           }
2367         }
2368         Node* adr = low_adr->in(MemNode::Address);
2369         const TypePtr* atyp = n->adr_type();
2370         vn = LoadVectorNode::make(opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p));
2371         vlen_in_bytes = vn->as_LoadVector()->memory_size();
2372       } else if (n->is_Store()) {
2373         // Promote value to be stored to vector
2374         Node* val = vector_opd(p, MemNode::ValueIn);
2375         if (val == NULL) {
2376           if (do_reserve_copy()) {
2377             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: val should not be NULL, exiting SuperWord");})
2378             return; //and reverse to backup IG
2379           }
2380           ShouldNotReachHere();
2381         }
2382 
2383         Node* ctl = n->in(MemNode::Control);
2384         Node* mem = first->in(MemNode::Memory);
2385         Node* adr = low_adr->in(MemNode::Address);
2386         const TypePtr* atyp = n->adr_type();
2387         vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen);
2388         vlen_in_bytes = vn->as_StoreVector()->memory_size();
2389       } else if (VectorNode::is_muladds2i(n)) {
2390         assert(n->req() == 5u, "MulAddS2I should have 4 operands.");
2391         Node* in1 = vector_opd(p, 1);
2392         Node* in2 = vector_opd(p, 2);
2393         vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
2394         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2395       } else if (n->req() == 3 && !is_cmov_pack(p)) {
2396         // Promote operands to vector
2397         Node* in1 = NULL;
2398         bool node_isa_reduction = n->is_reduction();
2399         if (node_isa_reduction) {
2400           // the input to the first reduction operation is retained
2401           in1 = low_adr->in(1);
2402         } else {
2403           in1 = vector_opd(p, 1);
2404           if (in1 == NULL) {
2405             if (do_reserve_copy()) {
2406               NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in1 should not be NULL, exiting SuperWord");})
2407               return; //and reverse to backup IG
2408             }
2409             ShouldNotReachHere();
2410           }
2411         }
2412         Node* in2 = vector_opd(p, 2);
2413         if (in2 == NULL) {
2414           if (do_reserve_copy()) {
2415             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in2 should not be NULL, exiting SuperWord");})
2416             return; //and reverse to backup IG
2417           }
2418           ShouldNotReachHere();
2419         }
2420         if (VectorNode::is_invariant_vector(in1) && (node_isa_reduction == false) && (n->is_Add() || n->is_Mul())) {
2421           // Move invariant vector input into second position to avoid register spilling.
2422           Node* tmp = in1;
2423           in1 = in2;
2424           in2 = tmp;
2425         }
2426         if (node_isa_reduction) {
2427           const Type *arith_type = n->bottom_type();
2428           vn = ReductionNode::make(opc, NULL, in1, in2, arith_type->basic_type());
2429           if (in2->is_Load()) {
2430             vlen_in_bytes = in2->as_LoadVector()->memory_size();
2431           } else {
2432             vlen_in_bytes = in2->as_Vector()->length_in_bytes();
2433           }
2434         } else {
2435           vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
2436           vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2437         }
2438       } else if (opc == Op_SqrtF || opc == Op_SqrtD ||
2439                  opc == Op_AbsF || opc == Op_AbsD ||
2440                  opc == Op_NegF || opc == Op_NegD ||
2441                  opc == Op_PopCountI) {
2442         assert(n->req() == 2, "only one input expected");
2443         Node* in = vector_opd(p, 1);
2444         vn = VectorNode::make(opc, in, NULL, vlen, velt_basic_type(n));
2445         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2446       } else if (is_cmov_pack(p)) {
2447         if (can_process_post_loop) {
2448           // do not refactor of flow in post loop context
2449           return;
2450         }
2451         if (!n->is_CMove()) {
2452           continue;
2453         }
2454         // place here CMoveVDNode
2455         NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: print before CMove vectorization"); print_loop(false);})
2456         Node* bol = n->in(CMoveNode::Condition);
2457         if (!bol->is_Bool() && bol->Opcode() == Op_ExtractI && bol->req() > 1 ) {
2458           NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d is not Bool node, trying its in(1) node %d", bol->_idx, bol->in(1)->_idx); bol->dump(); bol->in(1)->dump();})
2459           bol = bol->in(1); //may be ExtractNode
2460         }
2461 
2462         assert(bol->is_Bool(), "should be BoolNode - too late to bail out!");
2463         if (!bol->is_Bool()) {
2464           if (do_reserve_copy()) {
2465             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: expected %d bool node, exiting SuperWord", bol->_idx); bol->dump();})
2466             return; //and reverse to backup IG
2467           }
2468           ShouldNotReachHere();
2469         }
2470 
2471         int cond = (int)bol->as_Bool()->_test._test;
2472         Node* in_cc  = _igvn.intcon(cond);
2473         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created intcon in_cc node %d", in_cc->_idx); in_cc->dump();})
2474         Node* cc = bol->clone();
2475         cc->set_req(1, in_cc);
2476         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created bool cc node %d", cc->_idx); cc->dump();})
2477 
2478         Node* src1 = vector_opd(p, 2); //2=CMoveNode::IfFalse
2479         if (src1 == NULL) {
2480           if (do_reserve_copy()) {
2481             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src1 should not be NULL, exiting SuperWord");})
2482             return; //and reverse to backup IG
2483           }
2484           ShouldNotReachHere();
2485         }
2486         Node* src2 = vector_opd(p, 3); //3=CMoveNode::IfTrue
2487         if (src2 == NULL) {
2488           if (do_reserve_copy()) {
2489             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src2 should not be NULL, exiting SuperWord");})
2490             return; //and reverse to backup IG
2491           }
2492           ShouldNotReachHere();
2493         }
2494         BasicType bt = velt_basic_type(n);
2495         const TypeVect* vt = TypeVect::make(bt, vlen);
2496         assert(bt == T_FLOAT || bt == T_DOUBLE, "Only vectorization for FP cmovs is supported");
2497         if (bt == T_FLOAT) {
2498           vn = new CMoveVFNode(cc, src1, src2, vt);
2499         } else {
2500           assert(bt == T_DOUBLE, "Expected double");
2501           vn = new CMoveVDNode(cc, src1, src2, vt);
2502         }
2503         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created new CMove node %d: ", vn->_idx); vn->dump();})
2504       } else if (opc == Op_FmaD || opc == Op_FmaF) {
2505         // Promote operands to vector
2506         Node* in1 = vector_opd(p, 1);
2507         Node* in2 = vector_opd(p, 2);
2508         Node* in3 = vector_opd(p, 3);
2509         vn = VectorNode::make(opc, in1, in2, in3, vlen, velt_basic_type(n));
2510         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2511       } else {
2512         if (do_reserve_copy()) {
2513           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: ShouldNotReachHere, exiting SuperWord");})
2514           return; //and reverse to backup IG
2515         }
2516         ShouldNotReachHere();
2517       }
2518 
2519       assert(vn != NULL, "sanity");
2520       if (vn == NULL) {
2521         if (do_reserve_copy()){
2522           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: got NULL node, cannot proceed, exiting SuperWord");})
2523           return; //and reverse to backup IG
2524         }
2525         ShouldNotReachHere();
2526       }
2527 
2528       _block.at_put(i, vn);
2529       _igvn.register_new_node_with_optimizer(vn);
2530       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
2531       for (uint j = 0; j < p->size(); j++) {
2532         Node* pm = p->at(j);
2533         _igvn.replace_node(pm, vn);
2534       }
2535       _igvn._worklist.push(vn);
2536 
2537       if (can_process_post_loop) {
2538         // first check if the vector size if the maximum vector which we can use on the machine,
2539         // other vector size have reduced values for predicated data mapping.
2540         if (vlen_in_bytes != (uint)MaxVectorSize) {
2541           return;
2542         }
2543       }
2544 
2545       if (vlen_in_bytes >= max_vlen_in_bytes && vlen > max_vlen) {
2546         max_vlen = vlen;
2547         max_vlen_in_bytes = vlen_in_bytes;
2548       }
2549 #ifdef ASSERT
2550       if (TraceNewVectors) {
2551         tty->print("new Vector node: ");
2552         vn->dump();
2553       }
2554 #endif
2555     }
2556   }//for (int i = 0; i < _block.length(); i++)
2557 
2558   if (max_vlen_in_bytes > C->max_vector_size()) {
2559     C->set_max_vector_size(max_vlen_in_bytes);
2560   }
2561   if (max_vlen_in_bytes > 0) {
2562     cl->mark_loop_vectorized();
2563   }
2564 
2565   if (SuperWordLoopUnrollAnalysis) {
2566     if (cl->has_passed_slp()) {
2567       uint slp_max_unroll_factor = cl->slp_max_unroll();
2568       if (slp_max_unroll_factor == max_vlen) {
2569         if (TraceSuperWordLoopUnrollAnalysis) {
2570           tty->print_cr("vector loop(unroll=%d, len=%d)\n", max_vlen, max_vlen_in_bytes*BitsPerByte);
2571         }
2572 
2573         // For atomic unrolled loops which are vector mapped, instigate more unrolling
2574         cl->set_notpassed_slp();
2575         if (cl->is_main_loop()) {
2576           // if vector resources are limited, do not allow additional unrolling, also
2577           // do not unroll more on pure vector loops which were not reduced so that we can
2578           // program the post loop to single iteration execution.
2579           if (FLOATPRESSURE > 8) {
2580             C->set_major_progress();
2581             cl->mark_do_unroll_only();
2582           }
2583         }
2584 
2585         if (do_reserve_copy()) {
2586           if (can_process_post_loop) {
2587             // Now create the difference of trip and limit and use it as our mask index.
2588             // Note: We limited the unroll of the vectorized loop so that
2589             //       only vlen-1 size iterations can remain to be mask programmed.
2590             Node *incr = cl->incr();
2591             SubINode *index = new SubINode(cl->limit(), cl->init_trip());
2592             _igvn.register_new_node_with_optimizer(index);
2593             SetVectMaskINode  *mask = new SetVectMaskINode(_phase->get_ctrl(cl->init_trip()), index);
2594             _igvn.register_new_node_with_optimizer(mask);
2595             // make this a single iteration loop
2596             AddINode *new_incr = new AddINode(incr->in(1), mask);
2597             _igvn.register_new_node_with_optimizer(new_incr);
2598             _phase->set_ctrl(new_incr, _phase->get_ctrl(incr));
2599             _igvn.replace_node(incr, new_incr);
2600             cl->mark_is_multiversioned();
2601             cl->loopexit()->add_flag(Node::Flag_has_vector_mask_set);
2602           }
2603         }
2604       }
2605     }
2606   }
2607 
2608   if (do_reserve_copy()) {
2609     make_reversable.use_new();
2610   }
2611   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("\n Final loop after SuperWord"); print_loop(true);})
2612   return;
2613 }
2614 
2615 //------------------------------vector_opd---------------------------
2616 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
2617 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
2618   Node* p0 = p->at(0);
2619   uint vlen = p->size();
2620   Node* opd = p0->in(opd_idx);
2621   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
2622 
2623   if (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()) {
2624     // override vlen with the main loops vector length
2625     vlen = cl->slp_max_unroll();
2626   }
2627 
2628   if (same_inputs(p, opd_idx)) {
2629     if (opd->is_Vector() || opd->is_LoadVector()) {
2630       assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
2631       if (opd_idx == 2 && VectorNode::is_shift(p0)) {
2632         NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("shift's count can't be vector");})
2633         return NULL;
2634       }
2635       return opd; // input is matching vector
2636     }
2637     if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
2638       Compile* C = _phase->C;
2639       Node* cnt = opd;
2640       // Vector instructions do not mask shift count, do it here.
2641       juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2642       const TypeInt* t = opd->find_int_type();
2643       if (t != NULL && t->is_con()) {
2644         juint shift = t->get_con();
2645         if (shift > mask) { // Unsigned cmp
2646           cnt = ConNode::make(TypeInt::make(shift & mask));
2647         }
2648       } else {
2649         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2650           cnt = ConNode::make(TypeInt::make(mask));
2651           _igvn.register_new_node_with_optimizer(cnt);
2652           cnt = new AndINode(opd, cnt);
2653           _igvn.register_new_node_with_optimizer(cnt);
2654           _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
2655         }
2656         assert(opd->bottom_type()->isa_int(), "int type only");
2657         if (!opd->bottom_type()->isa_int()) {
2658           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should be int type only");})
2659           return NULL;
2660         }
2661         // Move non constant shift count into vector register.
2662         cnt = VectorNode::shift_count(p0, cnt, vlen, velt_basic_type(p0));
2663       }
2664       if (cnt != opd) {
2665         _igvn.register_new_node_with_optimizer(cnt);
2666         _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
2667       }
2668       return cnt;
2669     }
2670     assert(!opd->is_StoreVector(), "such vector is not expected here");
2671     if (opd->is_StoreVector()) {
2672       NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("StoreVector is not expected here");})
2673       return NULL;
2674     }
2675     // Convert scalar input to vector with the same number of elements as
2676     // p0's vector. Use p0's type because size of operand's container in
2677     // vector should match p0's size regardless operand's size.
2678     const Type* p0_t = velt_type(p0);
2679     VectorNode* vn = VectorNode::scalar2vector(opd, vlen, p0_t);
2680 
2681     _igvn.register_new_node_with_optimizer(vn);
2682     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
2683 #ifdef ASSERT
2684     if (TraceNewVectors) {
2685       tty->print("new Vector node: ");
2686       vn->dump();
2687     }
2688 #endif
2689     return vn;
2690   }
2691 
2692   // Insert pack operation
2693   BasicType bt = velt_basic_type(p0);
2694   PackNode* pk = PackNode::make(opd, vlen, bt);
2695   DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
2696 
2697   for (uint i = 1; i < vlen; i++) {
2698     Node* pi = p->at(i);
2699     Node* in = pi->in(opd_idx);
2700     assert(my_pack(in) == NULL, "Should already have been unpacked");
2701     if (my_pack(in) != NULL) {
2702       NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should already have been unpacked");})
2703       return NULL;
2704     }
2705     assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
2706     pk->add_opd(in);
2707     if (VectorNode::is_muladds2i(pi)) {
2708       Node* in2 = pi->in(opd_idx + 2);
2709       assert(my_pack(in2) == NULL, "Should already have been unpacked");
2710       if (my_pack(in2) != NULL) {
2711         NOT_PRODUCT(if (is_trace_loop_reverse() || TraceLoopOpts) { tty->print_cr("Should already have been unpacked"); })
2712           return NULL;
2713       }
2714       assert(opd_bt == in2->bottom_type()->basic_type(), "all same type");
2715       pk->add_opd(in2);
2716     }
2717   }
2718   _igvn.register_new_node_with_optimizer(pk);
2719   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
2720 #ifdef ASSERT
2721   if (TraceNewVectors) {
2722     tty->print("new Vector node: ");
2723     pk->dump();
2724   }
2725 #endif
2726   return pk;
2727 }
2728 
2729 //------------------------------insert_extracts---------------------------
2730 // If a use of pack p is not a vector use, then replace the
2731 // use with an extract operation.
2732 void SuperWord::insert_extracts(Node_List* p) {
2733   if (p->at(0)->is_Store()) return;
2734   assert(_n_idx_list.is_empty(), "empty (node,index) list");
2735 
2736   // Inspect each use of each pack member.  For each use that is
2737   // not a vector use, replace the use with an extract operation.
2738 
2739   for (uint i = 0; i < p->size(); i++) {
2740     Node* def = p->at(i);
2741     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
2742       Node* use = def->fast_out(j);
2743       for (uint k = 0; k < use->req(); k++) {
2744         Node* n = use->in(k);
2745         if (def == n) {
2746           Node_List* u_pk = my_pack(use);
2747           if ((u_pk == NULL || !is_cmov_pack(u_pk) || use->is_CMove()) && !is_vector_use(use, k)) {
2748               _n_idx_list.push(use, k);
2749           }
2750         }
2751       }
2752     }
2753   }
2754 
2755   while (_n_idx_list.is_nonempty()) {
2756     Node* use = _n_idx_list.node();
2757     int   idx = _n_idx_list.index();
2758     _n_idx_list.pop();
2759     Node* def = use->in(idx);
2760 
2761     if (def->is_reduction()) continue;
2762 
2763     // Insert extract operation
2764     _igvn.hash_delete(def);
2765     int def_pos = alignment(def) / data_size(def);
2766 
2767     Node* ex = ExtractNode::make(def, def_pos, velt_basic_type(def));
2768     _igvn.register_new_node_with_optimizer(ex);
2769     _phase->set_ctrl(ex, _phase->get_ctrl(def));
2770     _igvn.replace_input_of(use, idx, ex);
2771     _igvn._worklist.push(def);
2772 
2773     bb_insert_after(ex, bb_idx(def));
2774     set_velt_type(ex, velt_type(def));
2775   }
2776 }
2777 
2778 //------------------------------is_vector_use---------------------------
2779 // Is use->in(u_idx) a vector use?
2780 bool SuperWord::is_vector_use(Node* use, int u_idx) {
2781   Node_List* u_pk = my_pack(use);
2782   if (u_pk == NULL) return false;
2783   if (use->is_reduction()) return true;
2784   Node* def = use->in(u_idx);
2785   Node_List* d_pk = my_pack(def);
2786   if (d_pk == NULL) {
2787     // check for scalar promotion
2788     Node* n = u_pk->at(0)->in(u_idx);
2789     for (uint i = 1; i < u_pk->size(); i++) {
2790       if (u_pk->at(i)->in(u_idx) != n) return false;
2791     }
2792     return true;
2793   }
2794   if (VectorNode::is_muladds2i(use)) {
2795     // MulAddS2I takes shorts and produces ints - hence the special checks
2796     // on alignment and size.
2797     if (u_pk->size() * 2 != d_pk->size()) {
2798       return false;
2799     }
2800     for (uint i = 0; i < MIN2(d_pk->size(), u_pk->size()); i++) {
2801       Node* ui = u_pk->at(i);
2802       Node* di = d_pk->at(i);
2803       if (alignment(ui) != alignment(di) * 2) {
2804         return false;
2805       }
2806     }
2807     return true;
2808   }
2809   if (u_pk->size() != d_pk->size())
2810     return false;
2811   for (uint i = 0; i < u_pk->size(); i++) {
2812     Node* ui = u_pk->at(i);
2813     Node* di = d_pk->at(i);
2814     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
2815       return false;
2816   }
2817   return true;
2818 }
2819 
2820 //------------------------------construct_bb---------------------------
2821 // Construct reverse postorder list of block members
2822 bool SuperWord::construct_bb() {
2823   Node* entry = bb();
2824 
2825   assert(_stk.length() == 0,            "stk is empty");
2826   assert(_block.length() == 0,          "block is empty");
2827   assert(_data_entry.length() == 0,     "data_entry is empty");
2828   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
2829   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
2830 
2831   // Find non-control nodes with no inputs from within block,
2832   // create a temporary map from node _idx to bb_idx for use
2833   // by the visited and post_visited sets,
2834   // and count number of nodes in block.
2835   int bb_ct = 0;
2836   for (uint i = 0; i < lpt()->_body.size(); i++) {
2837     Node *n = lpt()->_body.at(i);
2838     set_bb_idx(n, i); // Create a temporary map
2839     if (in_bb(n)) {
2840       if (n->is_LoadStore() || n->is_MergeMem() ||
2841           (n->is_Proj() && !n->as_Proj()->is_CFG())) {
2842         // Bailout if the loop has LoadStore, MergeMem or data Proj
2843         // nodes. Superword optimization does not work with them.
2844         return false;
2845       }
2846       bb_ct++;
2847       if (!n->is_CFG()) {
2848         bool found = false;
2849         for (uint j = 0; j < n->req(); j++) {
2850           Node* def = n->in(j);
2851           if (def && in_bb(def)) {
2852             found = true;
2853             break;
2854           }
2855         }
2856         if (!found) {
2857           assert(n != entry, "can't be entry");
2858           _data_entry.push(n);
2859         }
2860       }
2861     }
2862   }
2863 
2864   // Find memory slices (head and tail)
2865   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
2866     Node *n = lp()->fast_out(i);
2867     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
2868       Node* n_tail  = n->in(LoopNode::LoopBackControl);
2869       if (n_tail != n->in(LoopNode::EntryControl)) {
2870         if (!n_tail->is_Mem()) {
2871           assert(n_tail->is_Mem(), "unexpected node for memory slice: %s", n_tail->Name());
2872           return false; // Bailout
2873         }
2874         _mem_slice_head.push(n);
2875         _mem_slice_tail.push(n_tail);
2876       }
2877     }
2878   }
2879 
2880   // Create an RPO list of nodes in block
2881 
2882   visited_clear();
2883   post_visited_clear();
2884 
2885   // Push all non-control nodes with no inputs from within block, then control entry
2886   for (int j = 0; j < _data_entry.length(); j++) {
2887     Node* n = _data_entry.at(j);
2888     visited_set(n);
2889     _stk.push(n);
2890   }
2891   visited_set(entry);
2892   _stk.push(entry);
2893 
2894   // Do a depth first walk over out edges
2895   int rpo_idx = bb_ct - 1;
2896   int size;
2897   int reduction_uses = 0;
2898   while ((size = _stk.length()) > 0) {
2899     Node* n = _stk.top(); // Leave node on stack
2900     if (!visited_test_set(n)) {
2901       // forward arc in graph
2902     } else if (!post_visited_test(n)) {
2903       // cross or back arc
2904       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2905         Node *use = n->fast_out(i);
2906         if (in_bb(use) && !visited_test(use) &&
2907             // Don't go around backedge
2908             (!use->is_Phi() || n == entry)) {
2909           if (use->is_reduction()) {
2910             // First see if we can map the reduction on the given system we are on, then
2911             // make a data entry operation for each reduction we see.
2912             BasicType bt = use->bottom_type()->basic_type();
2913             if (ReductionNode::implemented(use->Opcode(), Matcher::min_vector_size(bt), bt)) {
2914               reduction_uses++;
2915             }
2916           }
2917           _stk.push(use);
2918         }
2919       }
2920       if (_stk.length() == size) {
2921         // There were no additional uses, post visit node now
2922         _stk.pop(); // Remove node from stack
2923         assert(rpo_idx >= 0, "");
2924         _block.at_put_grow(rpo_idx, n);
2925         rpo_idx--;
2926         post_visited_set(n);
2927         assert(rpo_idx >= 0 || _stk.is_empty(), "");
2928       }
2929     } else {
2930       _stk.pop(); // Remove post-visited node from stack
2931     }
2932   }//while
2933 
2934   int ii_current = -1;
2935   unsigned int load_idx = (unsigned int)-1;
2936   _ii_order.clear();
2937   // Create real map of block indices for nodes
2938   for (int j = 0; j < _block.length(); j++) {
2939     Node* n = _block.at(j);
2940     set_bb_idx(n, j);
2941     if (_do_vector_loop && n->is_Load()) {
2942       if (ii_current == -1) {
2943         ii_current = _clone_map.gen(n->_idx);
2944         _ii_order.push(ii_current);
2945         load_idx = _clone_map.idx(n->_idx);
2946       } else if (_clone_map.idx(n->_idx) == load_idx && _clone_map.gen(n->_idx) != ii_current) {
2947         ii_current = _clone_map.gen(n->_idx);
2948         _ii_order.push(ii_current);
2949       }
2950     }
2951   }//for
2952 
2953   // Ensure extra info is allocated.
2954   initialize_bb();
2955 
2956 #ifndef PRODUCT
2957   if (_vector_loop_debug && _ii_order.length() > 0) {
2958     tty->print("SuperWord::construct_bb: List of generations: ");
2959     for (int jj = 0; jj < _ii_order.length(); ++jj) {
2960       tty->print("  %d:%d", jj, _ii_order.at(jj));
2961     }
2962     tty->print_cr(" ");
2963   }
2964   if (TraceSuperWord) {
2965     print_bb();
2966     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
2967     for (int m = 0; m < _data_entry.length(); m++) {
2968       tty->print("%3d ", m);
2969       _data_entry.at(m)->dump();
2970     }
2971     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
2972     for (int m = 0; m < _mem_slice_head.length(); m++) {
2973       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
2974       tty->print("    ");    _mem_slice_tail.at(m)->dump();
2975     }
2976   }
2977 #endif
2978   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
2979   return (_mem_slice_head.length() > 0) || (reduction_uses > 0) || (_data_entry.length() > 0);
2980 }
2981 
2982 //------------------------------initialize_bb---------------------------
2983 // Initialize per node info
2984 void SuperWord::initialize_bb() {
2985   Node* last = _block.at(_block.length() - 1);
2986   grow_node_info(bb_idx(last));
2987 }
2988 
2989 //------------------------------bb_insert_after---------------------------
2990 // Insert n into block after pos
2991 void SuperWord::bb_insert_after(Node* n, int pos) {
2992   int n_pos = pos + 1;
2993   // Make room
2994   for (int i = _block.length() - 1; i >= n_pos; i--) {
2995     _block.at_put_grow(i+1, _block.at(i));
2996   }
2997   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
2998     _node_info.at_put_grow(j+1, _node_info.at(j));
2999   }
3000   // Set value
3001   _block.at_put_grow(n_pos, n);
3002   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
3003   // Adjust map from node->_idx to _block index
3004   for (int i = n_pos; i < _block.length(); i++) {
3005     set_bb_idx(_block.at(i), i);
3006   }
3007 }
3008 
3009 //------------------------------compute_max_depth---------------------------
3010 // Compute max depth for expressions from beginning of block
3011 // Use to prune search paths during test for independence.
3012 void SuperWord::compute_max_depth() {
3013   int ct = 0;
3014   bool again;
3015   do {
3016     again = false;
3017     for (int i = 0; i < _block.length(); i++) {
3018       Node* n = _block.at(i);
3019       if (!n->is_Phi()) {
3020         int d_orig = depth(n);
3021         int d_in   = 0;
3022         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
3023           Node* pred = preds.current();
3024           if (in_bb(pred)) {
3025             d_in = MAX2(d_in, depth(pred));
3026           }
3027         }
3028         if (d_in + 1 != d_orig) {
3029           set_depth(n, d_in + 1);
3030           again = true;
3031         }
3032       }
3033     }
3034     ct++;
3035   } while (again);
3036 
3037   if (TraceSuperWord && Verbose) {
3038     tty->print_cr("compute_max_depth iterated: %d times", ct);
3039   }
3040 }
3041 
3042 //-------------------------compute_vector_element_type-----------------------
3043 // Compute necessary vector element type for expressions
3044 // This propagates backwards a narrower integer type when the
3045 // upper bits of the value are not needed.
3046 // Example:  char a,b,c;  a = b + c;
3047 // Normally the type of the add is integer, but for packed character
3048 // operations the type of the add needs to be char.
3049 void SuperWord::compute_vector_element_type() {
3050   if (TraceSuperWord && Verbose) {
3051     tty->print_cr("\ncompute_velt_type:");
3052   }
3053 
3054   // Initial type
3055   for (int i = 0; i < _block.length(); i++) {
3056     Node* n = _block.at(i);
3057     set_velt_type(n, container_type(n));
3058   }
3059 
3060   // Propagate integer narrowed type backwards through operations
3061   // that don't depend on higher order bits
3062   for (int i = _block.length() - 1; i >= 0; i--) {
3063     Node* n = _block.at(i);
3064     // Only integer types need be examined
3065     const Type* vtn = velt_type(n);
3066     if (vtn->basic_type() == T_INT) {
3067       uint start, end;
3068       VectorNode::vector_operands(n, &start, &end);
3069 
3070       for (uint j = start; j < end; j++) {
3071         Node* in  = n->in(j);
3072         // Don't propagate through a memory
3073         if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
3074             data_size(n) < data_size(in)) {
3075           bool same_type = true;
3076           for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
3077             Node *use = in->fast_out(k);
3078             if (!in_bb(use) || !same_velt_type(use, n)) {
3079               same_type = false;
3080               break;
3081             }
3082           }
3083           if (same_type) {
3084             // For right shifts of small integer types (bool, byte, char, short)
3085             // we need precise information about sign-ness. Only Load nodes have
3086             // this information because Store nodes are the same for signed and
3087             // unsigned values. And any arithmetic operation after a load may
3088             // expand a value to signed Int so such right shifts can't be used
3089             // because vector elements do not have upper bits of Int.
3090             const Type* vt = vtn;
3091             if (VectorNode::is_shift(in)) {
3092               Node* load = in->in(1);
3093               if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
3094                 vt = velt_type(load);
3095               } else if (in->Opcode() != Op_LShiftI) {
3096                 // Widen type to Int to avoid creation of right shift vector
3097                 // (align + data_size(s1) check in stmts_can_pack() will fail).
3098                 // Note, left shifts work regardless type.
3099                 vt = TypeInt::INT;
3100               }
3101             }
3102             set_velt_type(in, vt);
3103           }
3104         }
3105       }
3106     }
3107   }
3108 #ifndef PRODUCT
3109   if (TraceSuperWord && Verbose) {
3110     for (int i = 0; i < _block.length(); i++) {
3111       Node* n = _block.at(i);
3112       velt_type(n)->dump();
3113       tty->print("\t");
3114       n->dump();
3115     }
3116   }
3117 #endif
3118 }
3119 
3120 //------------------------------memory_alignment---------------------------
3121 // Alignment within a vector memory reference
3122 int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
3123   #ifndef PRODUCT
3124     if(TraceSuperWord && Verbose) {
3125       tty->print("SuperWord::memory_alignment within a vector memory reference for %d:  ", s->_idx); s->dump();
3126     }
3127   #endif
3128   NOT_PRODUCT(SWPointer::Tracer::Depth ddd(0);)
3129   SWPointer p(s, this, NULL, false);
3130   if (!p.valid()) {
3131     NOT_PRODUCT(if(is_trace_alignment()) tty->print("SWPointer::memory_alignment: SWPointer p invalid, return bottom_align");)
3132     return bottom_align;
3133   }
3134   int vw = get_vw_bytes_special(s);
3135   if (vw < 2) {
3136     NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SWPointer::memory_alignment: vector_width_in_bytes < 2, return bottom_align");)
3137     return bottom_align; // No vectors for this type
3138   }
3139   int offset  = p.offset_in_bytes();
3140   offset     += iv_adjust*p.memory_size();
3141   int off_rem = offset % vw;
3142   int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
3143   if (TraceSuperWord && Verbose) {
3144     tty->print_cr("SWPointer::memory_alignment: off_rem = %d, off_mod = %d", off_rem, off_mod);
3145   }
3146   return off_mod;
3147 }
3148 
3149 //---------------------------container_type---------------------------
3150 // Smallest type containing range of values
3151 const Type* SuperWord::container_type(Node* n) {
3152   if (n->is_Mem()) {
3153     BasicType bt = n->as_Mem()->memory_type();
3154     if (n->is_Store() && (bt == T_CHAR)) {
3155       // Use T_SHORT type instead of T_CHAR for stored values because any
3156       // preceding arithmetic operation extends values to signed Int.
3157       bt = T_SHORT;
3158     }
3159     if (n->Opcode() == Op_LoadUB) {
3160       // Adjust type for unsigned byte loads, it is important for right shifts.
3161       // T_BOOLEAN is used because there is no basic type representing type
3162       // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
3163       // size (one byte) and sign is important.
3164       bt = T_BOOLEAN;
3165     }
3166     return Type::get_const_basic_type(bt);
3167   }
3168   const Type* t = _igvn.type(n);
3169   if (t->basic_type() == T_INT) {
3170     // A narrow type of arithmetic operations will be determined by
3171     // propagating the type of memory operations.
3172     return TypeInt::INT;
3173   }
3174   return t;
3175 }
3176 
3177 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
3178   const Type* vt1 = velt_type(n1);
3179   const Type* vt2 = velt_type(n2);
3180   if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
3181     // Compare vectors element sizes for integer types.
3182     return data_size(n1) == data_size(n2);
3183   }
3184   return vt1 == vt2;
3185 }
3186 
3187 //------------------------------in_packset---------------------------
3188 // Are s1 and s2 in a pack pair and ordered as s1,s2?
3189 bool SuperWord::in_packset(Node* s1, Node* s2) {
3190   for (int i = 0; i < _packset.length(); i++) {
3191     Node_List* p = _packset.at(i);
3192     assert(p->size() == 2, "must be");
3193     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
3194       return true;
3195     }
3196   }
3197   return false;
3198 }
3199 
3200 //------------------------------in_pack---------------------------
3201 // Is s in pack p?
3202 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
3203   for (uint i = 0; i < p->size(); i++) {
3204     if (p->at(i) == s) {
3205       return p;
3206     }
3207   }
3208   return NULL;
3209 }
3210 
3211 //------------------------------remove_pack_at---------------------------
3212 // Remove the pack at position pos in the packset
3213 void SuperWord::remove_pack_at(int pos) {
3214   Node_List* p = _packset.at(pos);
3215   for (uint i = 0; i < p->size(); i++) {
3216     Node* s = p->at(i);
3217     set_my_pack(s, NULL);
3218   }
3219   _packset.remove_at(pos);
3220 }
3221 
3222 void SuperWord::packset_sort(int n) {
3223   // simple bubble sort so that we capitalize with O(n) when its already sorted
3224   while (n != 0) {
3225     bool swapped = false;
3226     for (int i = 1; i < n; i++) {
3227       Node_List* q_low = _packset.at(i-1);
3228       Node_List* q_i = _packset.at(i);
3229 
3230       // only swap when we find something to swap
3231       if (alignment(q_low->at(0)) > alignment(q_i->at(0))) {
3232         Node_List* t = q_i;
3233         *(_packset.adr_at(i)) = q_low;
3234         *(_packset.adr_at(i-1)) = q_i;
3235         swapped = true;
3236       }
3237     }
3238     if (swapped == false) break;
3239     n--;
3240   }
3241 }
3242 
3243 //------------------------------executed_first---------------------------
3244 // Return the node executed first in pack p.  Uses the RPO block list
3245 // to determine order.
3246 Node* SuperWord::executed_first(Node_List* p) {
3247   Node* n = p->at(0);
3248   int n_rpo = bb_idx(n);
3249   for (uint i = 1; i < p->size(); i++) {
3250     Node* s = p->at(i);
3251     int s_rpo = bb_idx(s);
3252     if (s_rpo < n_rpo) {
3253       n = s;
3254       n_rpo = s_rpo;
3255     }
3256   }
3257   return n;
3258 }
3259 
3260 //------------------------------executed_last---------------------------
3261 // Return the node executed last in pack p.
3262 Node* SuperWord::executed_last(Node_List* p) {
3263   Node* n = p->at(0);
3264   int n_rpo = bb_idx(n);
3265   for (uint i = 1; i < p->size(); i++) {
3266     Node* s = p->at(i);
3267     int s_rpo = bb_idx(s);
3268     if (s_rpo > n_rpo) {
3269       n = s;
3270       n_rpo = s_rpo;
3271     }
3272   }
3273   return n;
3274 }
3275 
3276 LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) {
3277   LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest;
3278   for (uint i = 0; i < p->size(); i++) {
3279     Node* n = p->at(i);
3280     assert(n->is_Load(), "only meaningful for loads");
3281     if (!n->depends_only_on_test()) {
3282       dep = LoadNode::Pinned;
3283     }
3284   }
3285   return dep;
3286 }
3287 
3288 
3289 //----------------------------align_initial_loop_index---------------------------
3290 // Adjust pre-loop limit so that in main loop, a load/store reference
3291 // to align_to_ref will be a position zero in the vector.
3292 //   (iv + k) mod vector_align == 0
3293 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
3294   CountedLoopNode *main_head = lp()->as_CountedLoop();
3295   assert(main_head->is_main_loop(), "");
3296   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
3297   assert(pre_end != NULL, "we must have a correct pre-loop");
3298   Node *pre_opaq1 = pre_end->limit();
3299   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
3300   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
3301   Node *lim0 = pre_opaq->in(1);
3302 
3303   // Where we put new limit calculations
3304   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
3305 
3306   // Ensure the original loop limit is available from the
3307   // pre-loop Opaque1 node.
3308   Node *orig_limit = pre_opaq->original_loop_limit();
3309   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
3310 
3311   SWPointer align_to_ref_p(align_to_ref, this, NULL, false);
3312   assert(align_to_ref_p.valid(), "sanity");
3313 
3314   // Given:
3315   //     lim0 == original pre loop limit
3316   //     V == v_align (power of 2)
3317   //     invar == extra invariant piece of the address expression
3318   //     e == offset [ +/- invar ]
3319   //
3320   // When reassociating expressions involving '%' the basic rules are:
3321   //     (a - b) % k == 0   =>  a % k == b % k
3322   // and:
3323   //     (a + b) % k == 0   =>  a % k == (k - b) % k
3324   //
3325   // For stride > 0 && scale > 0,
3326   //   Derive the new pre-loop limit "lim" such that the two constraints:
3327   //     (1) lim = lim0 + N           (where N is some positive integer < V)
3328   //     (2) (e + lim) % V == 0
3329   //   are true.
3330   //
3331   //   Substituting (1) into (2),
3332   //     (e + lim0 + N) % V == 0
3333   //   solve for N:
3334   //     N = (V - (e + lim0)) % V
3335   //   substitute back into (1), so that new limit
3336   //     lim = lim0 + (V - (e + lim0)) % V
3337   //
3338   // For stride > 0 && scale < 0
3339   //   Constraints:
3340   //     lim = lim0 + N
3341   //     (e - lim) % V == 0
3342   //   Solving for lim:
3343   //     (e - lim0 - N) % V == 0
3344   //     N = (e - lim0) % V
3345   //     lim = lim0 + (e - lim0) % V
3346   //
3347   // For stride < 0 && scale > 0
3348   //   Constraints:
3349   //     lim = lim0 - N
3350   //     (e + lim) % V == 0
3351   //   Solving for lim:
3352   //     (e + lim0 - N) % V == 0
3353   //     N = (e + lim0) % V
3354   //     lim = lim0 - (e + lim0) % V
3355   //
3356   // For stride < 0 && scale < 0
3357   //   Constraints:
3358   //     lim = lim0 - N
3359   //     (e - lim) % V == 0
3360   //   Solving for lim:
3361   //     (e - lim0 + N) % V == 0
3362   //     N = (V - (e - lim0)) % V
3363   //     lim = lim0 - (V - (e - lim0)) % V
3364 
3365   int vw = vector_width_in_bytes(align_to_ref);
3366   int stride   = iv_stride();
3367   int scale    = align_to_ref_p.scale_in_bytes();
3368   int elt_size = align_to_ref_p.memory_size();
3369   int v_align  = vw / elt_size;
3370   assert(v_align > 1, "sanity");
3371   int offset   = align_to_ref_p.offset_in_bytes() / elt_size;
3372   Node *offsn  = _igvn.intcon(offset);
3373 
3374   Node *e = offsn;
3375   if (align_to_ref_p.invar() != NULL) {
3376     // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
3377     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
3378     Node* invar = align_to_ref_p.invar();
3379     if (_igvn.type(invar)->isa_long()) {
3380       // Computations are done % (vector width/element size) so it's
3381       // safe to simply convert invar to an int and loose the upper 32
3382       // bit half.
3383       invar = new ConvL2INode(invar);
3384       _igvn.register_new_node_with_optimizer(invar);
3385     }
3386     Node* aref = new URShiftINode(invar, log2_elt);
3387     _igvn.register_new_node_with_optimizer(aref);
3388     _phase->set_ctrl(aref, pre_ctrl);
3389     if (align_to_ref_p.negate_invar()) {
3390       e = new SubINode(e, aref);
3391     } else {
3392       e = new AddINode(e, aref);
3393     }
3394     _igvn.register_new_node_with_optimizer(e);
3395     _phase->set_ctrl(e, pre_ctrl);
3396   }
3397   if (vw > ObjectAlignmentInBytes) {
3398     // incorporate base e +/- base && Mask >>> log2(elt)
3399     Node* xbase = new CastP2XNode(NULL, align_to_ref_p.base());
3400     _igvn.register_new_node_with_optimizer(xbase);
3401 #ifdef _LP64
3402     xbase  = new ConvL2INode(xbase);
3403     _igvn.register_new_node_with_optimizer(xbase);
3404 #endif
3405     Node* mask = _igvn.intcon(vw-1);
3406     Node* masked_xbase  = new AndINode(xbase, mask);
3407     _igvn.register_new_node_with_optimizer(masked_xbase);
3408     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
3409     Node* bref     = new URShiftINode(masked_xbase, log2_elt);
3410     _igvn.register_new_node_with_optimizer(bref);
3411     _phase->set_ctrl(bref, pre_ctrl);
3412     e = new AddINode(e, bref);
3413     _igvn.register_new_node_with_optimizer(e);
3414     _phase->set_ctrl(e, pre_ctrl);
3415   }
3416 
3417   // compute e +/- lim0
3418   if (scale < 0) {
3419     e = new SubINode(e, lim0);
3420   } else {
3421     e = new AddINode(e, lim0);
3422   }
3423   _igvn.register_new_node_with_optimizer(e);
3424   _phase->set_ctrl(e, pre_ctrl);
3425 
3426   if (stride * scale > 0) {
3427     // compute V - (e +/- lim0)
3428     Node* va  = _igvn.intcon(v_align);
3429     e = new SubINode(va, e);
3430     _igvn.register_new_node_with_optimizer(e);
3431     _phase->set_ctrl(e, pre_ctrl);
3432   }
3433   // compute N = (exp) % V
3434   Node* va_msk = _igvn.intcon(v_align - 1);
3435   Node* N = new AndINode(e, va_msk);
3436   _igvn.register_new_node_with_optimizer(N);
3437   _phase->set_ctrl(N, pre_ctrl);
3438 
3439   //   substitute back into (1), so that new limit
3440   //     lim = lim0 + N
3441   Node* lim;
3442   if (stride < 0) {
3443     lim = new SubINode(lim0, N);
3444   } else {
3445     lim = new AddINode(lim0, N);
3446   }
3447   _igvn.register_new_node_with_optimizer(lim);
3448   _phase->set_ctrl(lim, pre_ctrl);
3449   Node* constrained =
3450     (stride > 0) ? (Node*) new MinINode(lim, orig_limit)
3451                  : (Node*) new MaxINode(lim, orig_limit);
3452   _igvn.register_new_node_with_optimizer(constrained);
3453   _phase->set_ctrl(constrained, pre_ctrl);
3454   _igvn.replace_input_of(pre_opaq, 1, constrained);
3455 }
3456 
3457 //----------------------------get_pre_loop_end---------------------------
3458 // Find pre loop end from main loop.  Returns null if none.
3459 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode* cl) {
3460   // The loop cannot be optimized if the graph shape at
3461   // the loop entry is inappropriate.
3462   if (!PhaseIdealLoop::is_canonical_loop_entry(cl)) {
3463     return NULL;
3464   }
3465 
3466   Node* p_f = cl->skip_predicates()->in(0)->in(0);
3467   if (!p_f->is_IfFalse()) return NULL;
3468   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
3469   CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
3470   CountedLoopNode* loop_node = pre_end->loopnode();
3471   if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL;
3472   return pre_end;
3473 }
3474 
3475 //------------------------------init---------------------------
3476 void SuperWord::init() {
3477   _dg.init();
3478   _packset.clear();
3479   _disjoint_ptrs.clear();
3480   _block.clear();
3481   _post_block.clear();
3482   _data_entry.clear();
3483   _mem_slice_head.clear();
3484   _mem_slice_tail.clear();
3485   _iteration_first.clear();
3486   _iteration_last.clear();
3487   _node_info.clear();
3488   _align_to_ref = NULL;
3489   _lpt = NULL;
3490   _lp = NULL;
3491   _bb = NULL;
3492   _iv = NULL;
3493   _race_possible = 0;
3494   _early_return = false;
3495   _num_work_vecs = 0;
3496   _num_reductions = 0;
3497 }
3498 
3499 //------------------------------restart---------------------------
3500 void SuperWord::restart() {
3501   _dg.init();
3502   _packset.clear();
3503   _disjoint_ptrs.clear();
3504   _block.clear();
3505   _post_block.clear();
3506   _data_entry.clear();
3507   _mem_slice_head.clear();
3508   _mem_slice_tail.clear();
3509   _node_info.clear();
3510 }
3511 
3512 //------------------------------print_packset---------------------------
3513 void SuperWord::print_packset() {
3514 #ifndef PRODUCT
3515   tty->print_cr("packset");
3516   for (int i = 0; i < _packset.length(); i++) {
3517     tty->print_cr("Pack: %d", i);
3518     Node_List* p = _packset.at(i);
3519     print_pack(p);
3520   }
3521 #endif
3522 }
3523 
3524 //------------------------------print_pack---------------------------
3525 void SuperWord::print_pack(Node_List* p) {
3526   for (uint i = 0; i < p->size(); i++) {
3527     print_stmt(p->at(i));
3528   }
3529 }
3530 
3531 //------------------------------print_bb---------------------------
3532 void SuperWord::print_bb() {
3533 #ifndef PRODUCT
3534   tty->print_cr("\nBlock");
3535   for (int i = 0; i < _block.length(); i++) {
3536     Node* n = _block.at(i);
3537     tty->print("%d ", i);
3538     if (n) {
3539       n->dump();
3540     }
3541   }
3542 #endif
3543 }
3544 
3545 //------------------------------print_stmt---------------------------
3546 void SuperWord::print_stmt(Node* s) {
3547 #ifndef PRODUCT
3548   tty->print(" align: %d \t", alignment(s));
3549   s->dump();
3550 #endif
3551 }
3552 
3553 //------------------------------blank---------------------------
3554 char* SuperWord::blank(uint depth) {
3555   static char blanks[101];
3556   assert(depth < 101, "too deep");
3557   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
3558   blanks[depth] = '\0';
3559   return blanks;
3560 }
3561 
3562 
3563 //==============================SWPointer===========================
3564 #ifndef PRODUCT
3565 int SWPointer::Tracer::_depth = 0;
3566 #endif
3567 //----------------------------SWPointer------------------------
3568 SWPointer::SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only) :
3569   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
3570   _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
3571   _nstack(nstack), _analyze_only(analyze_only),
3572   _stack_idx(0)
3573 #ifndef PRODUCT
3574   , _tracer(slp)
3575 #endif
3576 {
3577   NOT_PRODUCT(_tracer.ctor_1(mem);)
3578 
3579   Node* adr = mem->in(MemNode::Address);
3580   if (!adr->is_AddP()) {
3581     assert(!valid(), "too complex");
3582     return;
3583   }
3584   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
3585   Node* base = adr->in(AddPNode::Base);
3586   // The base address should be loop invariant
3587   if (!invariant(base)) {
3588     assert(!valid(), "base address is loop variant");
3589     return;
3590   }
3591   //unsafe reference could not be aligned appropriately without runtime checking
3592   if (base == NULL || base->bottom_type() == Type::TOP) {
3593     assert(!valid(), "unsafe access");
3594     return;
3595   }
3596 
3597   NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.store_depth();)
3598   NOT_PRODUCT(_tracer.ctor_2(adr);)
3599 
3600   int i;
3601   for (i = 0; i < 3; i++) {
3602     NOT_PRODUCT(_tracer.ctor_3(adr, i);)
3603 
3604     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
3605       assert(!valid(), "too complex");
3606       return;
3607     }
3608     adr = adr->in(AddPNode::Address);
3609     NOT_PRODUCT(_tracer.ctor_4(adr, i);)
3610 
3611     if (base == adr || !adr->is_AddP()) {
3612       NOT_PRODUCT(_tracer.ctor_5(adr, base, i);)
3613       break; // stop looking at addp's
3614     }
3615   }
3616   NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.restore_depth();)
3617   NOT_PRODUCT(_tracer.ctor_6(mem);)
3618 
3619   _base = base;
3620   _adr  = adr;
3621   assert(valid(), "Usable");
3622 }
3623 
3624 // Following is used to create a temporary object during
3625 // the pattern match of an address expression.
3626 SWPointer::SWPointer(SWPointer* p) :
3627   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
3628   _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
3629   _nstack(p->_nstack), _analyze_only(p->_analyze_only),
3630   _stack_idx(p->_stack_idx)
3631   #ifndef PRODUCT
3632   , _tracer(p->_slp)
3633   #endif
3634 {}
3635 
3636 
3637 bool SWPointer::invariant(Node* n) {
3638   NOT_PRODUCT(Tracer::Depth dd;)
3639   Node *n_c = phase()->get_ctrl(n);
3640   NOT_PRODUCT(_tracer.invariant_1(n, n_c);)
3641   return !lpt()->is_member(phase()->get_loop(n_c));
3642 }
3643 //------------------------scaled_iv_plus_offset--------------------
3644 // Match: k*iv + offset
3645 // where: k is a constant that maybe zero, and
3646 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
3647 bool SWPointer::scaled_iv_plus_offset(Node* n) {
3648   NOT_PRODUCT(Tracer::Depth ddd;)
3649   NOT_PRODUCT(_tracer.scaled_iv_plus_offset_1(n);)
3650 
3651   if (scaled_iv(n)) {
3652     NOT_PRODUCT(_tracer.scaled_iv_plus_offset_2(n);)
3653     return true;
3654   }
3655 
3656   if (offset_plus_k(n)) {
3657     NOT_PRODUCT(_tracer.scaled_iv_plus_offset_3(n);)
3658     return true;
3659   }
3660 
3661   int opc = n->Opcode();
3662   if (opc == Op_AddI) {
3663     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
3664       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_4(n);)
3665       return true;
3666     }
3667     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
3668       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_5(n);)
3669       return true;
3670     }
3671   } else if (opc == Op_SubI) {
3672     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
3673       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_6(n);)
3674       return true;
3675     }
3676     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
3677       _scale *= -1;
3678       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_7(n);)
3679       return true;
3680     }
3681   }
3682 
3683   NOT_PRODUCT(_tracer.scaled_iv_plus_offset_8(n);)
3684   return false;
3685 }
3686 
3687 //----------------------------scaled_iv------------------------
3688 // Match: k*iv where k is a constant that's not zero
3689 bool SWPointer::scaled_iv(Node* n) {
3690   NOT_PRODUCT(Tracer::Depth ddd;)
3691   NOT_PRODUCT(_tracer.scaled_iv_1(n);)
3692 
3693   if (_scale != 0) { // already found a scale
3694     NOT_PRODUCT(_tracer.scaled_iv_2(n, _scale);)
3695     return false;
3696   }
3697 
3698   if (n == iv()) {
3699     _scale = 1;
3700     NOT_PRODUCT(_tracer.scaled_iv_3(n, _scale);)
3701     return true;
3702   }
3703   if (_analyze_only && (invariant(n) == false)) {
3704     _nstack->push(n, _stack_idx++);
3705   }
3706 
3707   int opc = n->Opcode();
3708   if (opc == Op_MulI) {
3709     if (n->in(1) == iv() && n->in(2)->is_Con()) {
3710       _scale = n->in(2)->get_int();
3711       NOT_PRODUCT(_tracer.scaled_iv_4(n, _scale);)
3712       return true;
3713     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
3714       _scale = n->in(1)->get_int();
3715       NOT_PRODUCT(_tracer.scaled_iv_5(n, _scale);)
3716       return true;
3717     }
3718   } else if (opc == Op_LShiftI) {
3719     if (n->in(1) == iv() && n->in(2)->is_Con()) {
3720       _scale = 1 << n->in(2)->get_int();
3721       NOT_PRODUCT(_tracer.scaled_iv_6(n, _scale);)
3722       return true;
3723     }
3724   } else if (opc == Op_ConvI2L) {
3725     if (n->in(1)->Opcode() == Op_CastII &&
3726         n->in(1)->as_CastII()->has_range_check()) {
3727       // Skip range check dependent CastII nodes
3728       n = n->in(1);
3729     }
3730     if (scaled_iv_plus_offset(n->in(1))) {
3731       NOT_PRODUCT(_tracer.scaled_iv_7(n);)
3732       return true;
3733     }
3734   } else if (opc == Op_LShiftL) {
3735     if (!has_iv() && _invar == NULL) {
3736       // Need to preserve the current _offset value, so
3737       // create a temporary object for this expression subtree.
3738       // Hacky, so should re-engineer the address pattern match.
3739       NOT_PRODUCT(Tracer::Depth dddd;)
3740       SWPointer tmp(this);
3741       NOT_PRODUCT(_tracer.scaled_iv_8(n, &tmp);)
3742 
3743       if (tmp.scaled_iv_plus_offset(n->in(1))) {
3744         if (tmp._invar == NULL || _slp->do_vector_loop()) {
3745           int mult = 1 << n->in(2)->get_int();
3746           _scale   = tmp._scale  * mult;
3747           _offset += tmp._offset * mult;
3748           NOT_PRODUCT(_tracer.scaled_iv_9(n, _scale, _offset, mult);)
3749           return true;
3750         }
3751       }
3752     }
3753   }
3754   NOT_PRODUCT(_tracer.scaled_iv_10(n);)
3755   return false;
3756 }
3757 
3758 //----------------------------offset_plus_k------------------------
3759 // Match: offset is (k [+/- invariant])
3760 // where k maybe zero and invariant is optional, but not both.
3761 bool SWPointer::offset_plus_k(Node* n, bool negate) {
3762   NOT_PRODUCT(Tracer::Depth ddd;)
3763   NOT_PRODUCT(_tracer.offset_plus_k_1(n);)
3764 
3765   int opc = n->Opcode();
3766   if (opc == Op_ConI) {
3767     _offset += negate ? -(n->get_int()) : n->get_int();
3768     NOT_PRODUCT(_tracer.offset_plus_k_2(n, _offset);)
3769     return true;
3770   } else if (opc == Op_ConL) {
3771     // Okay if value fits into an int
3772     const TypeLong* t = n->find_long_type();
3773     if (t->higher_equal(TypeLong::INT)) {
3774       jlong loff = n->get_long();
3775       jint  off  = (jint)loff;
3776       _offset += negate ? -off : loff;
3777       NOT_PRODUCT(_tracer.offset_plus_k_3(n, _offset);)
3778       return true;
3779     }
3780     NOT_PRODUCT(_tracer.offset_plus_k_4(n);)
3781     return false;
3782   }
3783   if (_invar != NULL) { // already has an invariant
3784     NOT_PRODUCT(_tracer.offset_plus_k_5(n, _invar);)
3785     return false;
3786   }
3787 
3788   if (_analyze_only && (invariant(n) == false)) {
3789     _nstack->push(n, _stack_idx++);
3790   }
3791   if (opc == Op_AddI) {
3792     if (n->in(2)->is_Con() && invariant(n->in(1))) {
3793       _negate_invar = negate;
3794       _invar = n->in(1);
3795       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3796       NOT_PRODUCT(_tracer.offset_plus_k_6(n, _invar, _negate_invar, _offset);)
3797       return true;
3798     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3799       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3800       _negate_invar = negate;
3801       _invar = n->in(2);
3802       NOT_PRODUCT(_tracer.offset_plus_k_7(n, _invar, _negate_invar, _offset);)
3803       return true;
3804     }
3805   }
3806   if (opc == Op_SubI) {
3807     if (n->in(2)->is_Con() && invariant(n->in(1))) {
3808       _negate_invar = negate;
3809       _invar = n->in(1);
3810       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3811       NOT_PRODUCT(_tracer.offset_plus_k_8(n, _invar, _negate_invar, _offset);)
3812       return true;
3813     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3814       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3815       _negate_invar = !negate;
3816       _invar = n->in(2);
3817       NOT_PRODUCT(_tracer.offset_plus_k_9(n, _invar, _negate_invar, _offset);)
3818       return true;
3819     }
3820   }
3821   if (invariant(n)) {
3822     if (opc == Op_ConvI2L) {
3823       n = n->in(1);
3824       if (n->Opcode() == Op_CastII &&
3825           n->as_CastII()->has_range_check()) {
3826         // Skip range check dependent CastII nodes
3827         assert(invariant(n), "sanity");
3828         n = n->in(1);
3829       }
3830     }
3831     _negate_invar = negate;
3832     _invar = n;
3833     NOT_PRODUCT(_tracer.offset_plus_k_10(n, _invar, _negate_invar, _offset);)
3834     return true;
3835   }
3836 
3837   NOT_PRODUCT(_tracer.offset_plus_k_11(n);)
3838   return false;
3839 }
3840 
3841 //----------------------------print------------------------
3842 void SWPointer::print() {
3843 #ifndef PRODUCT
3844   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
3845              _base != NULL ? _base->_idx : 0,
3846              _adr  != NULL ? _adr->_idx  : 0,
3847              _scale, _offset,
3848              _negate_invar?'-':'+',
3849              _invar != NULL ? _invar->_idx : 0);
3850 #endif
3851 }
3852 
3853 //----------------------------tracing------------------------
3854 #ifndef PRODUCT
3855 void SWPointer::Tracer::print_depth() {
3856   for (int ii = 0; ii<_depth; ++ii) tty->print("  ");
3857 }
3858 
3859 void SWPointer::Tracer::ctor_1 (Node* mem) {
3860   if(_slp->is_trace_alignment()) {
3861     print_depth(); tty->print(" %d SWPointer::SWPointer: start alignment analysis", mem->_idx); mem->dump();
3862   }
3863 }
3864 
3865 void SWPointer::Tracer::ctor_2(Node* adr) {
3866   if(_slp->is_trace_alignment()) {
3867     //store_depth();
3868     inc_depth();
3869     print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: ", adr->_idx); adr->dump();
3870     inc_depth();
3871     print_depth(); tty->print(" %d (base) SWPointer::SWPointer: ", adr->in(AddPNode::Base)->_idx); adr->in(AddPNode::Base)->dump();
3872   }
3873 }
3874 
3875 void SWPointer::Tracer::ctor_3(Node* adr, int i) {
3876   if(_slp->is_trace_alignment()) {
3877     inc_depth();
3878     Node* offset = adr->in(AddPNode::Offset);
3879     print_depth(); tty->print(" %d (offset) SWPointer::SWPointer: i = %d: ", offset->_idx, i); offset->dump();
3880   }
3881 }
3882 
3883 void SWPointer::Tracer::ctor_4(Node* adr, int i) {
3884   if(_slp->is_trace_alignment()) {
3885     inc_depth();
3886     print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: i = %d: ", adr->_idx, i); adr->dump();
3887   }
3888 }
3889 
3890 void SWPointer::Tracer::ctor_5(Node* adr, Node* base, int i) {
3891   if(_slp->is_trace_alignment()) {
3892     inc_depth();
3893     if (base == adr) {
3894       print_depth(); tty->print_cr("  \\ %d (adr) == %d (base) SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, base->_idx, i);
3895     } else if (!adr->is_AddP()) {
3896       print_depth(); tty->print_cr("  \\ %d (adr) is NOT Addp SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, i);
3897     }
3898   }
3899 }
3900 
3901 void SWPointer::Tracer::ctor_6(Node* mem) {
3902   if(_slp->is_trace_alignment()) {
3903     //restore_depth();
3904     print_depth(); tty->print_cr(" %d (adr) SWPointer::SWPointer: stop analysis", mem->_idx);
3905   }
3906 }
3907 
3908 void SWPointer::Tracer::invariant_1(Node *n, Node *n_c) {
3909   if (_slp->do_vector_loop() && _slp->is_debug() && _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)) != (int)_slp->in_bb(n)) {
3910     int is_member =  _slp->_lpt->is_member(_slp->_phase->get_loop(n_c));
3911     int in_bb     =  _slp->in_bb(n);
3912     print_depth(); tty->print("  \\ ");  tty->print_cr(" %d SWPointer::invariant  conditions differ: n_c %d", n->_idx, n_c->_idx);
3913     print_depth(); tty->print("  \\ ");  tty->print_cr("is_member %d, in_bb %d", is_member, in_bb);
3914     print_depth(); tty->print("  \\ ");  n->dump();
3915     print_depth(); tty->print("  \\ ");  n_c->dump();
3916   }
3917 }
3918 
3919 void SWPointer::Tracer::scaled_iv_plus_offset_1(Node* n) {
3920   if(_slp->is_trace_alignment()) {
3921     print_depth(); tty->print(" %d SWPointer::scaled_iv_plus_offset testing node: ", n->_idx);
3922     n->dump();
3923   }
3924 }
3925 
3926 void SWPointer::Tracer::scaled_iv_plus_offset_2(Node* n) {
3927   if(_slp->is_trace_alignment()) {
3928     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
3929   }
3930 }
3931 
3932 void SWPointer::Tracer::scaled_iv_plus_offset_3(Node* n) {
3933   if(_slp->is_trace_alignment()) {
3934     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
3935   }
3936 }
3937 
3938 void SWPointer::Tracer::scaled_iv_plus_offset_4(Node* n) {
3939   if(_slp->is_trace_alignment()) {
3940     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
3941     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
3942     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
3943   }
3944 }
3945 
3946 void SWPointer::Tracer::scaled_iv_plus_offset_5(Node* n) {
3947   if(_slp->is_trace_alignment()) {
3948     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
3949     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
3950     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
3951   }
3952 }
3953 
3954 void SWPointer::Tracer::scaled_iv_plus_offset_6(Node* n) {
3955   if(_slp->is_trace_alignment()) {
3956     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
3957     print_depth(); tty->print("  \\  %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
3958     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
3959   }
3960 }
3961 
3962 void SWPointer::Tracer::scaled_iv_plus_offset_7(Node* n) {
3963   if(_slp->is_trace_alignment()) {
3964     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
3965     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
3966     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
3967   }
3968 }
3969 
3970 void SWPointer::Tracer::scaled_iv_plus_offset_8(Node* n) {
3971   if(_slp->is_trace_alignment()) {
3972     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: FAILED", n->_idx);
3973   }
3974 }
3975 
3976 void SWPointer::Tracer::scaled_iv_1(Node* n) {
3977   if(_slp->is_trace_alignment()) {
3978     print_depth(); tty->print(" %d SWPointer::scaled_iv: testing node: ", n->_idx); n->dump();
3979   }
3980 }
3981 
3982 void SWPointer::Tracer::scaled_iv_2(Node* n, int scale) {
3983   if(_slp->is_trace_alignment()) {
3984     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED since another _scale has been detected before", n->_idx);
3985     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: _scale (%d) != 0", scale);
3986   }
3987 }
3988 
3989 void SWPointer::Tracer::scaled_iv_3(Node* n, int scale) {
3990   if(_slp->is_trace_alignment()) {
3991     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: is iv, setting _scale = %d", n->_idx, scale);
3992   }
3993 }
3994 
3995 void SWPointer::Tracer::scaled_iv_4(Node* n, int scale) {
3996   if(_slp->is_trace_alignment()) {
3997     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
3998     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
3999     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4000   }
4001 }
4002 
4003 void SWPointer::Tracer::scaled_iv_5(Node* n, int scale) {
4004   if(_slp->is_trace_alignment()) {
4005     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
4006     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is iv: ", n->in(2)->_idx); n->in(2)->dump();
4007     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
4008   }
4009 }
4010 
4011 void SWPointer::Tracer::scaled_iv_6(Node* n, int scale) {
4012   if(_slp->is_trace_alignment()) {
4013     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftI PASSED, setting _scale = %d", n->_idx, scale);
4014     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
4015     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4016   }
4017 }
4018 
4019 void SWPointer::Tracer::scaled_iv_7(Node* n) {
4020   if(_slp->is_trace_alignment()) {
4021     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_ConvI2L PASSED", n->_idx);
4022     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset: ", n->in(1)->_idx);
4023     inc_depth(); inc_depth();
4024     print_depth(); n->in(1)->dump();
4025     dec_depth(); dec_depth();
4026   }
4027 }
4028 
4029 void SWPointer::Tracer::scaled_iv_8(Node* n, SWPointer* tmp) {
4030   if(_slp->is_trace_alignment()) {
4031     print_depth(); tty->print(" %d SWPointer::scaled_iv: Op_LShiftL, creating tmp SWPointer: ", n->_idx); tmp->print();
4032   }
4033 }
4034 
4035 void SWPointer::Tracer::scaled_iv_9(Node* n, int scale, int _offset, int mult) {
4036   if(_slp->is_trace_alignment()) {
4037     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftL PASSED, setting _scale = %d, _offset = %d", n->_idx, scale, _offset);
4038     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset, in(2) %d used to get mult = %d: _scale = %d, _offset = %d",
4039     n->in(1)->_idx, n->in(2)->_idx, mult, scale, _offset);
4040     inc_depth(); inc_depth();
4041     print_depth(); n->in(1)->dump();
4042     print_depth(); n->in(2)->dump();
4043     dec_depth(); dec_depth();
4044   }
4045 }
4046 
4047 void SWPointer::Tracer::scaled_iv_10(Node* n) {
4048   if(_slp->is_trace_alignment()) {
4049     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED", n->_idx);
4050   }
4051 }
4052 
4053 void SWPointer::Tracer::offset_plus_k_1(Node* n) {
4054   if(_slp->is_trace_alignment()) {
4055     print_depth(); tty->print(" %d SWPointer::offset_plus_k: testing node: ", n->_idx); n->dump();
4056   }
4057 }
4058 
4059 void SWPointer::Tracer::offset_plus_k_2(Node* n, int _offset) {
4060   if(_slp->is_trace_alignment()) {
4061     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConI PASSED, setting _offset = %d", n->_idx, _offset);
4062   }
4063 }
4064 
4065 void SWPointer::Tracer::offset_plus_k_3(Node* n, int _offset) {
4066   if(_slp->is_trace_alignment()) {
4067     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConL PASSED, setting _offset = %d", n->_idx, _offset);
4068   }
4069 }
4070 
4071 void SWPointer::Tracer::offset_plus_k_4(Node* n) {
4072   if(_slp->is_trace_alignment()) {
4073     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
4074     print_depth(); tty->print_cr("  \\ " JLONG_FORMAT " SWPointer::offset_plus_k: Op_ConL FAILED, k is too big", n->get_long());
4075   }
4076 }
4077 
4078 void SWPointer::Tracer::offset_plus_k_5(Node* n, Node* _invar) {
4079   if(_slp->is_trace_alignment()) {
4080     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED since another invariant has been detected before", n->_idx);
4081     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: _invar != NULL: ", _invar->_idx); _invar->dump();
4082   }
4083 }
4084 
4085 void SWPointer::Tracer::offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4086   if(_slp->is_trace_alignment()) {
4087     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
4088     n->_idx, _negate_invar, _invar->_idx, _offset);
4089     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4090     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
4091   }
4092 }
4093 
4094 void SWPointer::Tracer::offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4095   if(_slp->is_trace_alignment()) {
4096     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
4097     n->_idx, _negate_invar, _invar->_idx, _offset);
4098     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
4099     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
4100   }
4101 }
4102 
4103 void SWPointer::Tracer::offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4104   if(_slp->is_trace_alignment()) {
4105     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI is PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
4106     n->_idx, _negate_invar, _invar->_idx, _offset);
4107     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4108     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
4109   }
4110 }
4111 
4112 void SWPointer::Tracer::offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4113   if(_slp->is_trace_alignment()) {
4114     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
4115     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
4116     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
4117   }
4118 }
4119 
4120 void SWPointer::Tracer::offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4121   if(_slp->is_trace_alignment()) {
4122     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
4123     print_depth(); tty->print_cr("  \\ %d SWPointer::offset_plus_k: is invariant", n->_idx);
4124   }
4125 }
4126 
4127 void SWPointer::Tracer::offset_plus_k_11(Node* n) {
4128   if(_slp->is_trace_alignment()) {
4129     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
4130   }
4131 }
4132 
4133 #endif
4134 // ========================= OrderedPair =====================
4135 
4136 const OrderedPair OrderedPair::initial;
4137 
4138 // ========================= SWNodeInfo =====================
4139 
4140 const SWNodeInfo SWNodeInfo::initial;
4141 
4142 
4143 // ============================ DepGraph ===========================
4144 
4145 //------------------------------make_node---------------------------
4146 // Make a new dependence graph node for an ideal node.
4147 DepMem* DepGraph::make_node(Node* node) {
4148   DepMem* m = new (_arena) DepMem(node);
4149   if (node != NULL) {
4150     assert(_map.at_grow(node->_idx) == NULL, "one init only");
4151     _map.at_put_grow(node->_idx, m);
4152   }
4153   return m;
4154 }
4155 
4156 //------------------------------make_edge---------------------------
4157 // Make a new dependence graph edge from dpred -> dsucc
4158 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
4159   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
4160   dpred->set_out_head(e);
4161   dsucc->set_in_head(e);
4162   return e;
4163 }
4164 
4165 // ========================== DepMem ========================
4166 
4167 //------------------------------in_cnt---------------------------
4168 int DepMem::in_cnt() {
4169   int ct = 0;
4170   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
4171   return ct;
4172 }
4173 
4174 //------------------------------out_cnt---------------------------
4175 int DepMem::out_cnt() {
4176   int ct = 0;
4177   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
4178   return ct;
4179 }
4180 
4181 //------------------------------print-----------------------------
4182 void DepMem::print() {
4183 #ifndef PRODUCT
4184   tty->print("  DepNode %d (", _node->_idx);
4185   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
4186     Node* pred = p->pred()->node();
4187     tty->print(" %d", pred != NULL ? pred->_idx : 0);
4188   }
4189   tty->print(") [");
4190   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
4191     Node* succ = s->succ()->node();
4192     tty->print(" %d", succ != NULL ? succ->_idx : 0);
4193   }
4194   tty->print_cr(" ]");
4195 #endif
4196 }
4197 
4198 // =========================== DepEdge =========================
4199 
4200 //------------------------------DepPreds---------------------------
4201 void DepEdge::print() {
4202 #ifndef PRODUCT
4203   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
4204 #endif
4205 }
4206 
4207 // =========================== DepPreds =========================
4208 // Iterator over predecessor edges in the dependence graph.
4209 
4210 //------------------------------DepPreds---------------------------
4211 DepPreds::DepPreds(Node* n, DepGraph& dg) {
4212   _n = n;
4213   _done = false;
4214   if (_n->is_Store() || _n->is_Load()) {
4215     _next_idx = MemNode::Address;
4216     _end_idx  = n->req();
4217     _dep_next = dg.dep(_n)->in_head();
4218   } else if (_n->is_Mem()) {
4219     _next_idx = 0;
4220     _end_idx  = 0;
4221     _dep_next = dg.dep(_n)->in_head();
4222   } else {
4223     _next_idx = 1;
4224     _end_idx  = _n->req();
4225     _dep_next = NULL;
4226   }
4227   next();
4228 }
4229 
4230 //------------------------------next---------------------------
4231 void DepPreds::next() {
4232   if (_dep_next != NULL) {
4233     _current  = _dep_next->pred()->node();
4234     _dep_next = _dep_next->next_in();
4235   } else if (_next_idx < _end_idx) {
4236     _current  = _n->in(_next_idx++);
4237   } else {
4238     _done = true;
4239   }
4240 }
4241 
4242 // =========================== DepSuccs =========================
4243 // Iterator over successor edges in the dependence graph.
4244 
4245 //------------------------------DepSuccs---------------------------
4246 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
4247   _n = n;
4248   _done = false;
4249   if (_n->is_Load()) {
4250     _next_idx = 0;
4251     _end_idx  = _n->outcnt();
4252     _dep_next = dg.dep(_n)->out_head();
4253   } else if (_n->is_Mem() || (_n->is_Phi() && _n->bottom_type() == Type::MEMORY)) {
4254     _next_idx = 0;
4255     _end_idx  = 0;
4256     _dep_next = dg.dep(_n)->out_head();
4257   } else {
4258     _next_idx = 0;
4259     _end_idx  = _n->outcnt();
4260     _dep_next = NULL;
4261   }
4262   next();
4263 }
4264 
4265 //-------------------------------next---------------------------
4266 void DepSuccs::next() {
4267   if (_dep_next != NULL) {
4268     _current  = _dep_next->succ()->node();
4269     _dep_next = _dep_next->next_out();
4270   } else if (_next_idx < _end_idx) {
4271     _current  = _n->raw_out(_next_idx++);
4272   } else {
4273     _done = true;
4274   }
4275 }
4276 
4277 //
4278 // --------------------------------- vectorization/simd -----------------------------------
4279 //
4280 bool SuperWord::same_origin_idx(Node* a, Node* b) const {
4281   return a != NULL && b != NULL && _clone_map.same_idx(a->_idx, b->_idx);
4282 }
4283 bool SuperWord::same_generation(Node* a, Node* b) const {
4284   return a != NULL && b != NULL && _clone_map.same_gen(a->_idx, b->_idx);
4285 }
4286 
4287 Node*  SuperWord::find_phi_for_mem_dep(LoadNode* ld) {
4288   assert(in_bb(ld), "must be in block");
4289   if (_clone_map.gen(ld->_idx) == _ii_first) {
4290 #ifndef PRODUCT
4291     if (_vector_loop_debug) {
4292       tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(ld->_idx)=%d",
4293         _clone_map.gen(ld->_idx));
4294     }
4295 #endif
4296     return NULL; //we think that any ld in the first gen being vectorizable
4297   }
4298 
4299   Node* mem = ld->in(MemNode::Memory);
4300   if (mem->outcnt() <= 1) {
4301     // we don't want to remove the only edge from mem node to load
4302 #ifndef PRODUCT
4303     if (_vector_loop_debug) {
4304       tty->print_cr("SuperWord::find_phi_for_mem_dep input node %d to load %d has no other outputs and edge mem->load cannot be removed",
4305         mem->_idx, ld->_idx);
4306       ld->dump();
4307       mem->dump();
4308     }
4309 #endif
4310     return NULL;
4311   }
4312   if (!in_bb(mem) || same_generation(mem, ld)) {
4313 #ifndef PRODUCT
4314     if (_vector_loop_debug) {
4315       tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(mem->_idx)=%d",
4316         _clone_map.gen(mem->_idx));
4317     }
4318 #endif
4319     return NULL; // does not depend on loop volatile node or depends on the same generation
4320   }
4321 
4322   //otherwise first node should depend on mem-phi
4323   Node* first = first_node(ld);
4324   assert(first->is_Load(), "must be Load");
4325   Node* phi = first->as_Load()->in(MemNode::Memory);
4326   if (!phi->is_Phi() || phi->bottom_type() != Type::MEMORY) {
4327 #ifndef PRODUCT
4328     if (_vector_loop_debug) {
4329       tty->print_cr("SuperWord::find_phi_for_mem_dep load is not vectorizable node, since it's `first` does not take input from mem phi");
4330       ld->dump();
4331       first->dump();
4332     }
4333 #endif
4334     return NULL;
4335   }
4336 
4337   Node* tail = 0;
4338   for (int m = 0; m < _mem_slice_head.length(); m++) {
4339     if (_mem_slice_head.at(m) == phi) {
4340       tail = _mem_slice_tail.at(m);
4341     }
4342   }
4343   if (tail == 0) { //test that found phi is in the list  _mem_slice_head
4344 #ifndef PRODUCT
4345     if (_vector_loop_debug) {
4346       tty->print_cr("SuperWord::find_phi_for_mem_dep load %d is not vectorizable node, its phi %d is not _mem_slice_head",
4347         ld->_idx, phi->_idx);
4348       ld->dump();
4349       phi->dump();
4350     }
4351 #endif
4352     return NULL;
4353   }
4354 
4355   // now all conditions are met
4356   return phi;
4357 }
4358 
4359 Node* SuperWord::first_node(Node* nd) {
4360   for (int ii = 0; ii < _iteration_first.length(); ii++) {
4361     Node* nnn = _iteration_first.at(ii);
4362     if (same_origin_idx(nnn, nd)) {
4363 #ifndef PRODUCT
4364       if (_vector_loop_debug) {
4365         tty->print_cr("SuperWord::first_node: %d is the first iteration node for %d (_clone_map.idx(nnn->_idx) = %d)",
4366           nnn->_idx, nd->_idx, _clone_map.idx(nnn->_idx));
4367       }
4368 #endif
4369       return nnn;
4370     }
4371   }
4372 
4373 #ifndef PRODUCT
4374   if (_vector_loop_debug) {
4375     tty->print_cr("SuperWord::first_node: did not find first iteration node for %d (_clone_map.idx(nd->_idx)=%d)",
4376       nd->_idx, _clone_map.idx(nd->_idx));
4377   }
4378 #endif
4379   return 0;
4380 }
4381 
4382 Node* SuperWord::last_node(Node* nd) {
4383   for (int ii = 0; ii < _iteration_last.length(); ii++) {
4384     Node* nnn = _iteration_last.at(ii);
4385     if (same_origin_idx(nnn, nd)) {
4386 #ifndef PRODUCT
4387       if (_vector_loop_debug) {
4388         tty->print_cr("SuperWord::last_node _clone_map.idx(nnn->_idx)=%d, _clone_map.idx(nd->_idx)=%d",
4389           _clone_map.idx(nnn->_idx), _clone_map.idx(nd->_idx));
4390       }
4391 #endif
4392       return nnn;
4393     }
4394   }
4395   return 0;
4396 }
4397 
4398 int SuperWord::mark_generations() {
4399   Node *ii_err = NULL, *tail_err = NULL;
4400   for (int i = 0; i < _mem_slice_head.length(); i++) {
4401     Node* phi  = _mem_slice_head.at(i);
4402     assert(phi->is_Phi(), "must be phi");
4403 
4404     Node* tail = _mem_slice_tail.at(i);
4405     if (_ii_last == -1) {
4406       tail_err = tail;
4407       _ii_last = _clone_map.gen(tail->_idx);
4408     }
4409     else if (_ii_last != _clone_map.gen(tail->_idx)) {
4410 #ifndef PRODUCT
4411       if (TraceSuperWord && Verbose) {
4412         tty->print_cr("SuperWord::mark_generations _ii_last error - found different generations in two tail nodes ");
4413         tail->dump();
4414         tail_err->dump();
4415       }
4416 #endif
4417       return -1;
4418     }
4419 
4420     // find first iteration in the loop
4421     for (DUIterator_Fast imax, i = phi->fast_outs(imax); i < imax; i++) {
4422       Node* ii = phi->fast_out(i);
4423       if (in_bb(ii) && ii->is_Store()) { // we speculate that normally Stores of one and one only generation have deps from mem phi
4424         if (_ii_first == -1) {
4425           ii_err = ii;
4426           _ii_first = _clone_map.gen(ii->_idx);
4427         } else if (_ii_first != _clone_map.gen(ii->_idx)) {
4428 #ifndef PRODUCT
4429           if (TraceSuperWord && Verbose) {
4430             tty->print_cr("SuperWord::mark_generations: _ii_first was found before and not equal to one in this node (%d)", _ii_first);
4431             ii->dump();
4432             if (ii_err!= 0) {
4433               ii_err->dump();
4434             }
4435           }
4436 #endif
4437           return -1; // this phi has Stores from different generations of unroll and cannot be simd/vectorized
4438         }
4439       }
4440     }//for (DUIterator_Fast imax,
4441   }//for (int i...
4442 
4443   if (_ii_first == -1 || _ii_last == -1) {
4444     if (TraceSuperWord && Verbose) {
4445       tty->print_cr("SuperWord::mark_generations unknown error, something vent wrong");
4446     }
4447     return -1; // something vent wrong
4448   }
4449   // collect nodes in the first and last generations
4450   assert(_iteration_first.length() == 0, "_iteration_first must be empty");
4451   assert(_iteration_last.length() == 0, "_iteration_last must be empty");
4452   for (int j = 0; j < _block.length(); j++) {
4453     Node* n = _block.at(j);
4454     node_idx_t gen = _clone_map.gen(n->_idx);
4455     if ((signed)gen == _ii_first) {
4456       _iteration_first.push(n);
4457     } else if ((signed)gen == _ii_last) {
4458       _iteration_last.push(n);
4459     }
4460   }
4461 
4462   // building order of iterations
4463   if (_ii_order.length() == 0 && ii_err != 0) {
4464     assert(in_bb(ii_err) && ii_err->is_Store(), "should be Store in bb");
4465     Node* nd = ii_err;
4466     while(_clone_map.gen(nd->_idx) != _ii_last) {
4467       _ii_order.push(_clone_map.gen(nd->_idx));
4468       bool found = false;
4469       for (DUIterator_Fast imax, i = nd->fast_outs(imax); i < imax; i++) {
4470         Node* use = nd->fast_out(i);
4471         if (same_origin_idx(use, nd) && use->as_Store()->in(MemNode::Memory) == nd) {
4472           found = true;
4473           nd = use;
4474           break;
4475         }
4476       }//for
4477 
4478       if (found == false) {
4479         if (TraceSuperWord && Verbose) {
4480           tty->print_cr("SuperWord::mark_generations: Cannot build order of iterations - no dependent Store for %d", nd->_idx);
4481         }
4482         _ii_order.clear();
4483         return -1;
4484       }
4485     } //while
4486     _ii_order.push(_clone_map.gen(nd->_idx));
4487   }
4488 
4489 #ifndef PRODUCT
4490   if (_vector_loop_debug) {
4491     tty->print_cr("SuperWord::mark_generations");
4492     tty->print_cr("First generation (%d) nodes:", _ii_first);
4493     for (int ii = 0; ii < _iteration_first.length(); ii++)  _iteration_first.at(ii)->dump();
4494     tty->print_cr("Last generation (%d) nodes:", _ii_last);
4495     for (int ii = 0; ii < _iteration_last.length(); ii++)  _iteration_last.at(ii)->dump();
4496     tty->print_cr(" ");
4497 
4498     tty->print("SuperWord::List of generations: ");
4499     for (int jj = 0; jj < _ii_order.length(); ++jj) {
4500       tty->print("%d:%d ", jj, _ii_order.at(jj));
4501     }
4502     tty->print_cr(" ");
4503   }
4504 #endif
4505 
4506   return _ii_first;
4507 }
4508 
4509 bool SuperWord::fix_commutative_inputs(Node* gold, Node* fix) {
4510   assert(gold->is_Add() && fix->is_Add() || gold->is_Mul() && fix->is_Mul(), "should be only Add or Mul nodes");
4511   assert(same_origin_idx(gold, fix), "should be clones of the same node");
4512   Node* gin1 = gold->in(1);
4513   Node* gin2 = gold->in(2);
4514   Node* fin1 = fix->in(1);
4515   Node* fin2 = fix->in(2);
4516   bool swapped = false;
4517 
4518   if (in_bb(gin1) && in_bb(gin2) && in_bb(fin1) && in_bb(fin1)) {
4519     if (same_origin_idx(gin1, fin1) &&
4520         same_origin_idx(gin2, fin2)) {
4521       return true; // nothing to fix
4522     }
4523     if (same_origin_idx(gin1, fin2) &&
4524         same_origin_idx(gin2, fin1)) {
4525       fix->swap_edges(1, 2);
4526       swapped = true;
4527     }
4528   }
4529   // at least one input comes from outside of bb
4530   if (gin1->_idx == fin1->_idx)  {
4531     return true; // nothing to fix
4532   }
4533   if (!swapped && (gin1->_idx == fin2->_idx || gin2->_idx == fin1->_idx))  { //swapping is expensive, check condition first
4534     fix->swap_edges(1, 2);
4535     swapped = true;
4536   }
4537 
4538   if (swapped) {
4539 #ifndef PRODUCT
4540     if (_vector_loop_debug) {
4541       tty->print_cr("SuperWord::fix_commutative_inputs: fixed node %d", fix->_idx);
4542     }
4543 #endif
4544     return true;
4545   }
4546 
4547   if (TraceSuperWord && Verbose) {
4548     tty->print_cr("SuperWord::fix_commutative_inputs: cannot fix node %d", fix->_idx);
4549   }
4550 
4551   return false;
4552 }
4553 
4554 bool SuperWord::pack_parallel() {
4555 #ifndef PRODUCT
4556   if (_vector_loop_debug) {
4557     tty->print_cr("SuperWord::pack_parallel: START");
4558   }
4559 #endif
4560 
4561   _packset.clear();
4562 
4563   for (int ii = 0; ii < _iteration_first.length(); ii++) {
4564     Node* nd = _iteration_first.at(ii);
4565     if (in_bb(nd) && (nd->is_Load() || nd->is_Store() || nd->is_Add() || nd->is_Mul())) {
4566       Node_List* pk = new Node_List();
4567       pk->push(nd);
4568       for (int gen = 1; gen < _ii_order.length(); ++gen) {
4569         for (int kk = 0; kk < _block.length(); kk++) {
4570           Node* clone = _block.at(kk);
4571           if (same_origin_idx(clone, nd) &&
4572               _clone_map.gen(clone->_idx) == _ii_order.at(gen)) {
4573             if (nd->is_Add() || nd->is_Mul()) {
4574               fix_commutative_inputs(nd, clone);
4575             }
4576             pk->push(clone);
4577             if (pk->size() == 4) {
4578               _packset.append(pk);
4579 #ifndef PRODUCT
4580               if (_vector_loop_debug) {
4581                 tty->print_cr("SuperWord::pack_parallel: added pack ");
4582                 pk->dump();
4583               }
4584 #endif
4585               if (_clone_map.gen(clone->_idx) != _ii_last) {
4586                 pk = new Node_List();
4587               }
4588             }
4589             break;
4590           }
4591         }
4592       }//for
4593     }//if
4594   }//for
4595 
4596 #ifndef PRODUCT
4597   if (_vector_loop_debug) {
4598     tty->print_cr("SuperWord::pack_parallel: END");
4599   }
4600 #endif
4601 
4602   return true;
4603 }
4604 
4605 bool SuperWord::hoist_loads_in_graph() {
4606   GrowableArray<Node*> loads;
4607 
4608 #ifndef PRODUCT
4609   if (_vector_loop_debug) {
4610     tty->print_cr("SuperWord::hoist_loads_in_graph: total number _mem_slice_head.length() = %d", _mem_slice_head.length());
4611   }
4612 #endif
4613 
4614   for (int i = 0; i < _mem_slice_head.length(); i++) {
4615     Node* n = _mem_slice_head.at(i);
4616     if ( !in_bb(n) || !n->is_Phi() || n->bottom_type() != Type::MEMORY) {
4617       if (TraceSuperWord && Verbose) {
4618         tty->print_cr("SuperWord::hoist_loads_in_graph: skipping unexpected node n=%d", n->_idx);
4619       }
4620       continue;
4621     }
4622 
4623 #ifndef PRODUCT
4624     if (_vector_loop_debug) {
4625       tty->print_cr("SuperWord::hoist_loads_in_graph: processing phi %d  = _mem_slice_head.at(%d);", n->_idx, i);
4626     }
4627 #endif
4628 
4629     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4630       Node* ld = n->fast_out(i);
4631       if (ld->is_Load() && ld->as_Load()->in(MemNode::Memory) == n && in_bb(ld)) {
4632         for (int i = 0; i < _block.length(); i++) {
4633           Node* ld2 = _block.at(i);
4634           if (ld2->is_Load() && same_origin_idx(ld, ld2) &&
4635               !same_generation(ld, ld2)) { // <= do not collect the first generation ld
4636 #ifndef PRODUCT
4637             if (_vector_loop_debug) {
4638               tty->print_cr("SuperWord::hoist_loads_in_graph: will try to hoist load ld2->_idx=%d, cloned from %d (ld->_idx=%d)",
4639                 ld2->_idx, _clone_map.idx(ld->_idx), ld->_idx);
4640             }
4641 #endif
4642             // could not do on-the-fly, since iterator is immutable
4643             loads.push(ld2);
4644           }
4645         }// for
4646       }//if
4647     }//for (DUIterator_Fast imax,
4648   }//for (int i = 0; i
4649 
4650   for (int i = 0; i < loads.length(); i++) {
4651     LoadNode* ld = loads.at(i)->as_Load();
4652     Node* phi = find_phi_for_mem_dep(ld);
4653     if (phi != NULL) {
4654 #ifndef PRODUCT
4655       if (_vector_loop_debug) {
4656         tty->print_cr("SuperWord::hoist_loads_in_graph replacing MemNode::Memory(%d) edge in %d with one from %d",
4657           MemNode::Memory, ld->_idx, phi->_idx);
4658       }
4659 #endif
4660       _igvn.replace_input_of(ld, MemNode::Memory, phi);
4661     }
4662   }//for
4663 
4664   restart(); // invalidate all basic structures, since we rebuilt the graph
4665 
4666   if (TraceSuperWord && Verbose) {
4667     tty->print_cr("\nSuperWord::hoist_loads_in_graph() the graph was rebuilt, all structures invalidated and need rebuild");
4668   }
4669 
4670   return true;
4671 }