1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/access.hpp"
  37 #include "oops/klass.inline.hpp"
  38 #include "prims/methodHandles.hpp"
  39 #include "runtime/biasedLocking.hpp"
  40 #include "runtime/interfaceSupport.inline.hpp"
  41 #include "runtime/objectMonitor.hpp"
  42 #include "runtime/os.hpp"
  43 #include "runtime/safepoint.hpp"
  44 #include "runtime/safepointMechanism.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/thread.hpp"
  48 #include "utilities/macros.hpp"
  49 #include "crc32c.h"
  50 #ifdef COMPILER2
  51 #include "opto/intrinsicnode.hpp"
  52 #endif
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) /* nothing */
  56 #define STOP(error) stop(error)
  57 #else
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define STOP(error) block_comment(error); stop(error)
  60 #endif
  61 
  62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 #ifdef ASSERT
  65 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  66 #endif
  67 
  68 static Assembler::Condition reverse[] = {
  69     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  70     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  71     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  72     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  73     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  74     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  75     Assembler::above          /* belowEqual    = 0x6 */ ,
  76     Assembler::belowEqual     /* above         = 0x7 */ ,
  77     Assembler::positive       /* negative      = 0x8 */ ,
  78     Assembler::negative       /* positive      = 0x9 */ ,
  79     Assembler::noParity       /* parity        = 0xa */ ,
  80     Assembler::parity         /* noParity      = 0xb */ ,
  81     Assembler::greaterEqual   /* less          = 0xc */ ,
  82     Assembler::less           /* greaterEqual  = 0xd */ ,
  83     Assembler::greater        /* lessEqual     = 0xe */ ,
  84     Assembler::lessEqual      /* greater       = 0xf, */
  85 
  86 };
  87 
  88 
  89 // Implementation of MacroAssembler
  90 
  91 // First all the versions that have distinct versions depending on 32/64 bit
  92 // Unless the difference is trivial (1 line or so).
  93 
  94 #ifndef _LP64
  95 
  96 // 32bit versions
  97 
  98 Address MacroAssembler::as_Address(AddressLiteral adr) {
  99   return Address(adr.target(), adr.rspec());
 100 }
 101 
 102 Address MacroAssembler::as_Address(ArrayAddress adr) {
 103   return Address::make_array(adr);
 104 }
 105 
 106 void MacroAssembler::call_VM_leaf_base(address entry_point,
 107                                        int number_of_arguments) {
 108   call(RuntimeAddress(entry_point));
 109   increment(rsp, number_of_arguments * wordSize);
 110 }
 111 
 112 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 117   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 125   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 126 }
 127 
 128 void MacroAssembler::extend_sign(Register hi, Register lo) {
 129   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 130   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 131     cdql();
 132   } else {
 133     movl(hi, lo);
 134     sarl(hi, 31);
 135   }
 136 }
 137 
 138 void MacroAssembler::jC2(Register tmp, Label& L) {
 139   // set parity bit if FPU flag C2 is set (via rax)
 140   save_rax(tmp);
 141   fwait(); fnstsw_ax();
 142   sahf();
 143   restore_rax(tmp);
 144   // branch
 145   jcc(Assembler::parity, L);
 146 }
 147 
 148 void MacroAssembler::jnC2(Register tmp, Label& L) {
 149   // set parity bit if FPU flag C2 is set (via rax)
 150   save_rax(tmp);
 151   fwait(); fnstsw_ax();
 152   sahf();
 153   restore_rax(tmp);
 154   // branch
 155   jcc(Assembler::noParity, L);
 156 }
 157 
 158 // 32bit can do a case table jump in one instruction but we no longer allow the base
 159 // to be installed in the Address class
 160 void MacroAssembler::jump(ArrayAddress entry) {
 161   jmp(as_Address(entry));
 162 }
 163 
 164 // Note: y_lo will be destroyed
 165 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 166   // Long compare for Java (semantics as described in JVM spec.)
 167   Label high, low, done;
 168 
 169   cmpl(x_hi, y_hi);
 170   jcc(Assembler::less, low);
 171   jcc(Assembler::greater, high);
 172   // x_hi is the return register
 173   xorl(x_hi, x_hi);
 174   cmpl(x_lo, y_lo);
 175   jcc(Assembler::below, low);
 176   jcc(Assembler::equal, done);
 177 
 178   bind(high);
 179   xorl(x_hi, x_hi);
 180   increment(x_hi);
 181   jmp(done);
 182 
 183   bind(low);
 184   xorl(x_hi, x_hi);
 185   decrementl(x_hi);
 186 
 187   bind(done);
 188 }
 189 
 190 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 191     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 192 }
 193 
 194 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 195   // leal(dst, as_Address(adr));
 196   // see note in movl as to why we must use a move
 197   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 198 }
 199 
 200 void MacroAssembler::leave() {
 201   mov(rsp, rbp);
 202   pop(rbp);
 203 }
 204 
 205 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 206   // Multiplication of two Java long values stored on the stack
 207   // as illustrated below. Result is in rdx:rax.
 208   //
 209   // rsp ---> [  ??  ] \               \
 210   //            ....    | y_rsp_offset  |
 211   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 212   //          [ y_hi ]                  | (in bytes)
 213   //            ....                    |
 214   //          [ x_lo ]                 /
 215   //          [ x_hi ]
 216   //            ....
 217   //
 218   // Basic idea: lo(result) = lo(x_lo * y_lo)
 219   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 220   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 221   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 222   Label quick;
 223   // load x_hi, y_hi and check if quick
 224   // multiplication is possible
 225   movl(rbx, x_hi);
 226   movl(rcx, y_hi);
 227   movl(rax, rbx);
 228   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 229   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 230   // do full multiplication
 231   // 1st step
 232   mull(y_lo);                                    // x_hi * y_lo
 233   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 234   // 2nd step
 235   movl(rax, x_lo);
 236   mull(rcx);                                     // x_lo * y_hi
 237   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 238   // 3rd step
 239   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 240   movl(rax, x_lo);
 241   mull(y_lo);                                    // x_lo * y_lo
 242   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 243 }
 244 
 245 void MacroAssembler::lneg(Register hi, Register lo) {
 246   negl(lo);
 247   adcl(hi, 0);
 248   negl(hi);
 249 }
 250 
 251 void MacroAssembler::lshl(Register hi, Register lo) {
 252   // Java shift left long support (semantics as described in JVM spec., p.305)
 253   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 254   // shift value is in rcx !
 255   assert(hi != rcx, "must not use rcx");
 256   assert(lo != rcx, "must not use rcx");
 257   const Register s = rcx;                        // shift count
 258   const int      n = BitsPerWord;
 259   Label L;
 260   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 261   cmpl(s, n);                                    // if (s < n)
 262   jcc(Assembler::less, L);                       // else (s >= n)
 263   movl(hi, lo);                                  // x := x << n
 264   xorl(lo, lo);
 265   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 266   bind(L);                                       // s (mod n) < n
 267   shldl(hi, lo);                                 // x := x << s
 268   shll(lo);
 269 }
 270 
 271 
 272 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 273   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 274   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 275   assert(hi != rcx, "must not use rcx");
 276   assert(lo != rcx, "must not use rcx");
 277   const Register s = rcx;                        // shift count
 278   const int      n = BitsPerWord;
 279   Label L;
 280   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 281   cmpl(s, n);                                    // if (s < n)
 282   jcc(Assembler::less, L);                       // else (s >= n)
 283   movl(lo, hi);                                  // x := x >> n
 284   if (sign_extension) sarl(hi, 31);
 285   else                xorl(hi, hi);
 286   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 287   bind(L);                                       // s (mod n) < n
 288   shrdl(lo, hi);                                 // x := x >> s
 289   if (sign_extension) sarl(hi);
 290   else                shrl(hi);
 291 }
 292 
 293 void MacroAssembler::movoop(Register dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::movoop(Address dst, jobject obj) {
 298   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 306   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 310   // scratch register is not used,
 311   // it is defined to match parameters of 64-bit version of this method.
 312   if (src.is_lval()) {
 313     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 314   } else {
 315     movl(dst, as_Address(src));
 316   }
 317 }
 318 
 319 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 320   movl(as_Address(dst), src);
 321 }
 322 
 323 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 324   movl(dst, as_Address(src));
 325 }
 326 
 327 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 328 void MacroAssembler::movptr(Address dst, intptr_t src) {
 329   movl(dst, src);
 330 }
 331 
 332 
 333 void MacroAssembler::pop_callee_saved_registers() {
 334   pop(rcx);
 335   pop(rdx);
 336   pop(rdi);
 337   pop(rsi);
 338 }
 339 
 340 void MacroAssembler::pop_fTOS() {
 341   fld_d(Address(rsp, 0));
 342   addl(rsp, 2 * wordSize);
 343 }
 344 
 345 void MacroAssembler::push_callee_saved_registers() {
 346   push(rsi);
 347   push(rdi);
 348   push(rdx);
 349   push(rcx);
 350 }
 351 
 352 void MacroAssembler::push_fTOS() {
 353   subl(rsp, 2 * wordSize);
 354   fstp_d(Address(rsp, 0));
 355 }
 356 
 357 
 358 void MacroAssembler::pushoop(jobject obj) {
 359   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushklass(Metadata* obj) {
 363   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 364 }
 365 
 366 void MacroAssembler::pushptr(AddressLiteral src) {
 367   if (src.is_lval()) {
 368     push_literal32((int32_t)src.target(), src.rspec());
 369   } else {
 370     pushl(as_Address(src));
 371   }
 372 }
 373 
 374 void MacroAssembler::set_word_if_not_zero(Register dst) {
 375   xorl(dst, dst);
 376   set_byte_if_not_zero(dst);
 377 }
 378 
 379 static void pass_arg0(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg1(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg2(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 static void pass_arg3(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 #ifndef PRODUCT
 396 extern "C" void findpc(intptr_t x);
 397 #endif
 398 
 399 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 400   // In order to get locks to work, we need to fake a in_VM state
 401   JavaThread* thread = JavaThread::current();
 402   JavaThreadState saved_state = thread->thread_state();
 403   thread->set_thread_state(_thread_in_vm);
 404   if (ShowMessageBoxOnError) {
 405     JavaThread* thread = JavaThread::current();
 406     JavaThreadState saved_state = thread->thread_state();
 407     thread->set_thread_state(_thread_in_vm);
 408     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 409       ttyLocker ttyl;
 410       BytecodeCounter::print();
 411     }
 412     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 413     // This is the value of eip which points to where verify_oop will return.
 414     if (os::message_box(msg, "Execution stopped, print registers?")) {
 415       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 416       BREAKPOINT;
 417     }
 418   } else {
 419     ttyLocker ttyl;
 420     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 421   }
 422   // Don't assert holding the ttyLock
 423     assert(false, "DEBUG MESSAGE: %s", msg);
 424   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 425 }
 426 
 427 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 428   ttyLocker ttyl;
 429   FlagSetting fs(Debugging, true);
 430   tty->print_cr("eip = 0x%08x", eip);
 431 #ifndef PRODUCT
 432   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 433     tty->cr();
 434     findpc(eip);
 435     tty->cr();
 436   }
 437 #endif
 438 #define PRINT_REG(rax) \
 439   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 440   PRINT_REG(rax);
 441   PRINT_REG(rbx);
 442   PRINT_REG(rcx);
 443   PRINT_REG(rdx);
 444   PRINT_REG(rdi);
 445   PRINT_REG(rsi);
 446   PRINT_REG(rbp);
 447   PRINT_REG(rsp);
 448 #undef PRINT_REG
 449   // Print some words near top of staack.
 450   int* dump_sp = (int*) rsp;
 451   for (int col1 = 0; col1 < 8; col1++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     os::print_location(tty, *dump_sp++);
 454   }
 455   for (int row = 0; row < 16; row++) {
 456     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 457     for (int col = 0; col < 8; col++) {
 458       tty->print(" 0x%08x", *dump_sp++);
 459     }
 460     tty->cr();
 461   }
 462   // Print some instructions around pc:
 463   Disassembler::decode((address)eip-64, (address)eip);
 464   tty->print_cr("--------");
 465   Disassembler::decode((address)eip, (address)eip+32);
 466 }
 467 
 468 void MacroAssembler::stop(const char* msg) {
 469   ExternalAddress message((address)msg);
 470   // push address of message
 471   pushptr(message.addr());
 472   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 473   pusha();                                            // push registers
 474   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 475   hlt();
 476 }
 477 
 478 void MacroAssembler::warn(const char* msg) {
 479   push_CPU_state();
 480 
 481   ExternalAddress message((address) msg);
 482   // push address of message
 483   pushptr(message.addr());
 484 
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 486   addl(rsp, wordSize);       // discard argument
 487   pop_CPU_state();
 488 }
 489 
 490 void MacroAssembler::print_state() {
 491   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 492   pusha();                                            // push registers
 493 
 494   push_CPU_state();
 495   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 496   pop_CPU_state();
 497 
 498   popa();
 499   addl(rsp, wordSize);
 500 }
 501 
 502 #else // _LP64
 503 
 504 // 64 bit versions
 505 
 506 Address MacroAssembler::as_Address(AddressLiteral adr) {
 507   // amd64 always does this as a pc-rel
 508   // we can be absolute or disp based on the instruction type
 509   // jmp/call are displacements others are absolute
 510   assert(!adr.is_lval(), "must be rval");
 511   assert(reachable(adr), "must be");
 512   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 513 
 514 }
 515 
 516 Address MacroAssembler::as_Address(ArrayAddress adr) {
 517   AddressLiteral base = adr.base();
 518   lea(rscratch1, base);
 519   Address index = adr.index();
 520   assert(index._disp == 0, "must not have disp"); // maybe it can?
 521   Address array(rscratch1, index._index, index._scale, index._disp);
 522   return array;
 523 }
 524 
 525 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 526   Label L, E;
 527 
 528 #ifdef _WIN64
 529   // Windows always allocates space for it's register args
 530   assert(num_args <= 4, "only register arguments supported");
 531   subq(rsp,  frame::arg_reg_save_area_bytes);
 532 #endif
 533 
 534   // Align stack if necessary
 535   testl(rsp, 15);
 536   jcc(Assembler::zero, L);
 537 
 538   subq(rsp, 8);
 539   {
 540     call(RuntimeAddress(entry_point));
 541   }
 542   addq(rsp, 8);
 543   jmp(E);
 544 
 545   bind(L);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549 
 550   bind(E);
 551 
 552 #ifdef _WIN64
 553   // restore stack pointer
 554   addq(rsp, frame::arg_reg_save_area_bytes);
 555 #endif
 556 
 557 }
 558 
 559 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 560   assert(!src2.is_lval(), "should use cmpptr");
 561 
 562   if (reachable(src2)) {
 563     cmpq(src1, as_Address(src2));
 564   } else {
 565     lea(rscratch1, src2);
 566     Assembler::cmpq(src1, Address(rscratch1, 0));
 567   }
 568 }
 569 
 570 int MacroAssembler::corrected_idivq(Register reg) {
 571   // Full implementation of Java ldiv and lrem; checks for special
 572   // case as described in JVM spec., p.243 & p.271.  The function
 573   // returns the (pc) offset of the idivl instruction - may be needed
 574   // for implicit exceptions.
 575   //
 576   //         normal case                           special case
 577   //
 578   // input : rax: dividend                         min_long
 579   //         reg: divisor   (may not be eax/edx)   -1
 580   //
 581   // output: rax: quotient  (= rax idiv reg)       min_long
 582   //         rdx: remainder (= rax irem reg)       0
 583   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 584   static const int64_t min_long = 0x8000000000000000;
 585   Label normal_case, special_case;
 586 
 587   // check for special case
 588   cmp64(rax, ExternalAddress((address) &min_long));
 589   jcc(Assembler::notEqual, normal_case);
 590   xorl(rdx, rdx); // prepare rdx for possible special case (where
 591                   // remainder = 0)
 592   cmpq(reg, -1);
 593   jcc(Assembler::equal, special_case);
 594 
 595   // handle normal case
 596   bind(normal_case);
 597   cdqq();
 598   int idivq_offset = offset();
 599   idivq(reg);
 600 
 601   // normal and special case exit
 602   bind(special_case);
 603 
 604   return idivq_offset;
 605 }
 606 
 607 void MacroAssembler::decrementq(Register reg, int value) {
 608   if (value == min_jint) { subq(reg, value); return; }
 609   if (value <  0) { incrementq(reg, -value); return; }
 610   if (value == 0) {                        ; return; }
 611   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 612   /* else */      { subq(reg, value)       ; return; }
 613 }
 614 
 615 void MacroAssembler::decrementq(Address dst, int value) {
 616   if (value == min_jint) { subq(dst, value); return; }
 617   if (value <  0) { incrementq(dst, -value); return; }
 618   if (value == 0) {                        ; return; }
 619   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 620   /* else */      { subq(dst, value)       ; return; }
 621 }
 622 
 623 void MacroAssembler::incrementq(AddressLiteral dst) {
 624   if (reachable(dst)) {
 625     incrementq(as_Address(dst));
 626   } else {
 627     lea(rscratch1, dst);
 628     incrementq(Address(rscratch1, 0));
 629   }
 630 }
 631 
 632 void MacroAssembler::incrementq(Register reg, int value) {
 633   if (value == min_jint) { addq(reg, value); return; }
 634   if (value <  0) { decrementq(reg, -value); return; }
 635   if (value == 0) {                        ; return; }
 636   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 637   /* else */      { addq(reg, value)       ; return; }
 638 }
 639 
 640 void MacroAssembler::incrementq(Address dst, int value) {
 641   if (value == min_jint) { addq(dst, value); return; }
 642   if (value <  0) { decrementq(dst, -value); return; }
 643   if (value == 0) {                        ; return; }
 644   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 645   /* else */      { addq(dst, value)       ; return; }
 646 }
 647 
 648 // 32bit can do a case table jump in one instruction but we no longer allow the base
 649 // to be installed in the Address class
 650 void MacroAssembler::jump(ArrayAddress entry) {
 651   lea(rscratch1, entry.base());
 652   Address dispatch = entry.index();
 653   assert(dispatch._base == noreg, "must be");
 654   dispatch._base = rscratch1;
 655   jmp(dispatch);
 656 }
 657 
 658 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 659   ShouldNotReachHere(); // 64bit doesn't use two regs
 660   cmpq(x_lo, y_lo);
 661 }
 662 
 663 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 664     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 665 }
 666 
 667 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 668   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 669   movptr(dst, rscratch1);
 670 }
 671 
 672 void MacroAssembler::leave() {
 673   // %%% is this really better? Why not on 32bit too?
 674   emit_int8((unsigned char)0xC9); // LEAVE
 675 }
 676 
 677 void MacroAssembler::lneg(Register hi, Register lo) {
 678   ShouldNotReachHere(); // 64bit doesn't use two regs
 679   negq(lo);
 680 }
 681 
 682 void MacroAssembler::movoop(Register dst, jobject obj) {
 683   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684 }
 685 
 686 void MacroAssembler::movoop(Address dst, jobject obj) {
 687   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 688   movq(dst, rscratch1);
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 692   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693 }
 694 
 695 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 696   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 697   movq(dst, rscratch1);
 698 }
 699 
 700 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 701   if (src.is_lval()) {
 702     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 703   } else {
 704     if (reachable(src)) {
 705       movq(dst, as_Address(src));
 706     } else {
 707       lea(scratch, src);
 708       movq(dst, Address(scratch, 0));
 709     }
 710   }
 711 }
 712 
 713 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 714   movq(as_Address(dst), src);
 715 }
 716 
 717 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 718   movq(dst, as_Address(src));
 719 }
 720 
 721 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 722 void MacroAssembler::movptr(Address dst, intptr_t src) {
 723   mov64(rscratch1, src);
 724   movq(dst, rscratch1);
 725 }
 726 
 727 // These are mostly for initializing NULL
 728 void MacroAssembler::movptr(Address dst, int32_t src) {
 729   movslq(dst, src);
 730 }
 731 
 732 void MacroAssembler::movptr(Register dst, int32_t src) {
 733   mov64(dst, (intptr_t)src);
 734 }
 735 
 736 void MacroAssembler::pushoop(jobject obj) {
 737   movoop(rscratch1, obj);
 738   push(rscratch1);
 739 }
 740 
 741 void MacroAssembler::pushklass(Metadata* obj) {
 742   mov_metadata(rscratch1, obj);
 743   push(rscratch1);
 744 }
 745 
 746 void MacroAssembler::pushptr(AddressLiteral src) {
 747   lea(rscratch1, src);
 748   if (src.is_lval()) {
 749     push(rscratch1);
 750   } else {
 751     pushq(Address(rscratch1, 0));
 752   }
 753 }
 754 
 755 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 756   // we must set sp to zero to clear frame
 757   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 758   // must clear fp, so that compiled frames are not confused; it is
 759   // possible that we need it only for debugging
 760   if (clear_fp) {
 761     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 762   }
 763 
 764   // Always clear the pc because it could have been set by make_walkable()
 765   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 766   vzeroupper();
 767 }
 768 
 769 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 770                                          Register last_java_fp,
 771                                          address  last_java_pc) {
 772   vzeroupper();
 773   // determine last_java_sp register
 774   if (!last_java_sp->is_valid()) {
 775     last_java_sp = rsp;
 776   }
 777 
 778   // last_java_fp is optional
 779   if (last_java_fp->is_valid()) {
 780     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 781            last_java_fp);
 782   }
 783 
 784   // last_java_pc is optional
 785   if (last_java_pc != NULL) {
 786     Address java_pc(r15_thread,
 787                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 788     lea(rscratch1, InternalAddress(last_java_pc));
 789     movptr(java_pc, rscratch1);
 790   }
 791 
 792   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 793 }
 794 
 795 static void pass_arg0(MacroAssembler* masm, Register arg) {
 796   if (c_rarg0 != arg ) {
 797     masm->mov(c_rarg0, arg);
 798   }
 799 }
 800 
 801 static void pass_arg1(MacroAssembler* masm, Register arg) {
 802   if (c_rarg1 != arg ) {
 803     masm->mov(c_rarg1, arg);
 804   }
 805 }
 806 
 807 static void pass_arg2(MacroAssembler* masm, Register arg) {
 808   if (c_rarg2 != arg ) {
 809     masm->mov(c_rarg2, arg);
 810   }
 811 }
 812 
 813 static void pass_arg3(MacroAssembler* masm, Register arg) {
 814   if (c_rarg3 != arg ) {
 815     masm->mov(c_rarg3, arg);
 816   }
 817 }
 818 
 819 void MacroAssembler::stop(const char* msg) {
 820   address rip = pc();
 821   pusha(); // get regs on stack
 822   lea(c_rarg0, ExternalAddress((address) msg));
 823   lea(c_rarg1, InternalAddress(rip));
 824   movq(c_rarg2, rsp); // pass pointer to regs array
 825   andq(rsp, -16); // align stack as required by ABI
 826   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 827   hlt();
 828 }
 829 
 830 void MacroAssembler::warn(const char* msg) {
 831   push(rbp);
 832   movq(rbp, rsp);
 833   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 834   push_CPU_state();   // keeps alignment at 16 bytes
 835   lea(c_rarg0, ExternalAddress((address) msg));
 836   lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
 837   call(rax);
 838   pop_CPU_state();
 839   mov(rsp, rbp);
 840   pop(rbp);
 841 }
 842 
 843 void MacroAssembler::print_state() {
 844   address rip = pc();
 845   pusha();            // get regs on stack
 846   push(rbp);
 847   movq(rbp, rsp);
 848   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 849   push_CPU_state();   // keeps alignment at 16 bytes
 850 
 851   lea(c_rarg0, InternalAddress(rip));
 852   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 853   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 854 
 855   pop_CPU_state();
 856   mov(rsp, rbp);
 857   pop(rbp);
 858   popa();
 859 }
 860 
 861 #ifndef PRODUCT
 862 extern "C" void findpc(intptr_t x);
 863 #endif
 864 
 865 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 866   // In order to get locks to work, we need to fake a in_VM state
 867   if (ShowMessageBoxOnError) {
 868     JavaThread* thread = JavaThread::current();
 869     JavaThreadState saved_state = thread->thread_state();
 870     thread->set_thread_state(_thread_in_vm);
 871 #ifndef PRODUCT
 872     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 873       ttyLocker ttyl;
 874       BytecodeCounter::print();
 875     }
 876 #endif
 877     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 878     // XXX correct this offset for amd64
 879     // This is the value of eip which points to where verify_oop will return.
 880     if (os::message_box(msg, "Execution stopped, print registers?")) {
 881       print_state64(pc, regs);
 882       BREAKPOINT;
 883       assert(false, "start up GDB");
 884     }
 885     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 886   } else {
 887     ttyLocker ttyl;
 888     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 889                     msg);
 890     assert(false, "DEBUG MESSAGE: %s", msg);
 891   }
 892 }
 893 
 894 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 895   ttyLocker ttyl;
 896   FlagSetting fs(Debugging, true);
 897   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
 898 #ifndef PRODUCT
 899   tty->cr();
 900   findpc(pc);
 901   tty->cr();
 902 #endif
 903 #define PRINT_REG(rax, value) \
 904   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 905   PRINT_REG(rax, regs[15]);
 906   PRINT_REG(rbx, regs[12]);
 907   PRINT_REG(rcx, regs[14]);
 908   PRINT_REG(rdx, regs[13]);
 909   PRINT_REG(rdi, regs[8]);
 910   PRINT_REG(rsi, regs[9]);
 911   PRINT_REG(rbp, regs[10]);
 912   PRINT_REG(rsp, regs[11]);
 913   PRINT_REG(r8 , regs[7]);
 914   PRINT_REG(r9 , regs[6]);
 915   PRINT_REG(r10, regs[5]);
 916   PRINT_REG(r11, regs[4]);
 917   PRINT_REG(r12, regs[3]);
 918   PRINT_REG(r13, regs[2]);
 919   PRINT_REG(r14, regs[1]);
 920   PRINT_REG(r15, regs[0]);
 921 #undef PRINT_REG
 922   // Print some words near top of staack.
 923   int64_t* rsp = (int64_t*) regs[11];
 924   int64_t* dump_sp = rsp;
 925   for (int col1 = 0; col1 < 8; col1++) {
 926     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 927     os::print_location(tty, *dump_sp++);
 928   }
 929   for (int row = 0; row < 25; row++) {
 930     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 931     for (int col = 0; col < 4; col++) {
 932       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
 933     }
 934     tty->cr();
 935   }
 936   // Print some instructions around pc:
 937   Disassembler::decode((address)pc-64, (address)pc);
 938   tty->print_cr("--------");
 939   Disassembler::decode((address)pc, (address)pc+32);
 940 }
 941 
 942 #endif // _LP64
 943 
 944 // Now versions that are common to 32/64 bit
 945 
 946 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 947   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 948 }
 949 
 950 void MacroAssembler::addptr(Register dst, Register src) {
 951   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 952 }
 953 
 954 void MacroAssembler::addptr(Address dst, Register src) {
 955   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 956 }
 957 
 958 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 959   if (reachable(src)) {
 960     Assembler::addsd(dst, as_Address(src));
 961   } else {
 962     lea(rscratch1, src);
 963     Assembler::addsd(dst, Address(rscratch1, 0));
 964   }
 965 }
 966 
 967 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 968   if (reachable(src)) {
 969     addss(dst, as_Address(src));
 970   } else {
 971     lea(rscratch1, src);
 972     addss(dst, Address(rscratch1, 0));
 973   }
 974 }
 975 
 976 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 977   if (reachable(src)) {
 978     Assembler::addpd(dst, as_Address(src));
 979   } else {
 980     lea(rscratch1, src);
 981     Assembler::addpd(dst, Address(rscratch1, 0));
 982   }
 983 }
 984 
 985 void MacroAssembler::align(int modulus) {
 986   align(modulus, offset());
 987 }
 988 
 989 void MacroAssembler::align(int modulus, int target) {
 990   if (target % modulus != 0) {
 991     nop(modulus - (target % modulus));
 992   }
 993 }
 994 
 995 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 996   // Used in sign-masking with aligned address.
 997   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 998   if (reachable(src)) {
 999     Assembler::andpd(dst, as_Address(src));
1000   } else {
1001     lea(rscratch1, src);
1002     Assembler::andpd(dst, Address(rscratch1, 0));
1003   }
1004 }
1005 
1006 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1007   // Used in sign-masking with aligned address.
1008   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1009   if (reachable(src)) {
1010     Assembler::andps(dst, as_Address(src));
1011   } else {
1012     lea(rscratch1, src);
1013     Assembler::andps(dst, Address(rscratch1, 0));
1014   }
1015 }
1016 
1017 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1018   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1019 }
1020 
1021 void MacroAssembler::atomic_incl(Address counter_addr) {
1022   if (os::is_MP())
1023     lock();
1024   incrementl(counter_addr);
1025 }
1026 
1027 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1028   if (reachable(counter_addr)) {
1029     atomic_incl(as_Address(counter_addr));
1030   } else {
1031     lea(scr, counter_addr);
1032     atomic_incl(Address(scr, 0));
1033   }
1034 }
1035 
1036 #ifdef _LP64
1037 void MacroAssembler::atomic_incq(Address counter_addr) {
1038   if (os::is_MP())
1039     lock();
1040   incrementq(counter_addr);
1041 }
1042 
1043 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1044   if (reachable(counter_addr)) {
1045     atomic_incq(as_Address(counter_addr));
1046   } else {
1047     lea(scr, counter_addr);
1048     atomic_incq(Address(scr, 0));
1049   }
1050 }
1051 #endif
1052 
1053 // Writes to stack successive pages until offset reached to check for
1054 // stack overflow + shadow pages.  This clobbers tmp.
1055 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1056   movptr(tmp, rsp);
1057   // Bang stack for total size given plus shadow page size.
1058   // Bang one page at a time because large size can bang beyond yellow and
1059   // red zones.
1060   Label loop;
1061   bind(loop);
1062   movl(Address(tmp, (-os::vm_page_size())), size );
1063   subptr(tmp, os::vm_page_size());
1064   subl(size, os::vm_page_size());
1065   jcc(Assembler::greater, loop);
1066 
1067   // Bang down shadow pages too.
1068   // At this point, (tmp-0) is the last address touched, so don't
1069   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1070   // was post-decremented.)  Skip this address by starting at i=1, and
1071   // touch a few more pages below.  N.B.  It is important to touch all
1072   // the way down including all pages in the shadow zone.
1073   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1074     // this could be any sized move but this is can be a debugging crumb
1075     // so the bigger the better.
1076     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1077   }
1078 }
1079 
1080 void MacroAssembler::reserved_stack_check() {
1081     // testing if reserved zone needs to be enabled
1082     Label no_reserved_zone_enabling;
1083     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1084     NOT_LP64(get_thread(rsi);)
1085 
1086     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1087     jcc(Assembler::below, no_reserved_zone_enabling);
1088 
1089     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1090     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1091     should_not_reach_here();
1092 
1093     bind(no_reserved_zone_enabling);
1094 }
1095 
1096 int MacroAssembler::biased_locking_enter(Register lock_reg,
1097                                          Register obj_reg,
1098                                          Register swap_reg,
1099                                          Register tmp_reg,
1100                                          bool swap_reg_contains_mark,
1101                                          Label& done,
1102                                          Label* slow_case,
1103                                          BiasedLockingCounters* counters) {
1104   assert(UseBiasedLocking, "why call this otherwise?");
1105   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1106   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1107   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1108   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1109   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1110   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1111 
1112   if (PrintBiasedLockingStatistics && counters == NULL) {
1113     counters = BiasedLocking::counters();
1114   }
1115   // Biased locking
1116   // See whether the lock is currently biased toward our thread and
1117   // whether the epoch is still valid
1118   // Note that the runtime guarantees sufficient alignment of JavaThread
1119   // pointers to allow age to be placed into low bits
1120   // First check to see whether biasing is even enabled for this object
1121   Label cas_label;
1122   int null_check_offset = -1;
1123   if (!swap_reg_contains_mark) {
1124     null_check_offset = offset();
1125     movptr(swap_reg, mark_addr);
1126   }
1127   movptr(tmp_reg, swap_reg);
1128   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1129   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1130   jcc(Assembler::notEqual, cas_label);
1131   // The bias pattern is present in the object's header. Need to check
1132   // whether the bias owner and the epoch are both still current.
1133 #ifndef _LP64
1134   // Note that because there is no current thread register on x86_32 we
1135   // need to store off the mark word we read out of the object to
1136   // avoid reloading it and needing to recheck invariants below. This
1137   // store is unfortunate but it makes the overall code shorter and
1138   // simpler.
1139   movptr(saved_mark_addr, swap_reg);
1140 #endif
1141   if (swap_reg_contains_mark) {
1142     null_check_offset = offset();
1143   }
1144   load_prototype_header(tmp_reg, obj_reg);
1145 #ifdef _LP64
1146   orptr(tmp_reg, r15_thread);
1147   xorptr(tmp_reg, swap_reg);
1148   Register header_reg = tmp_reg;
1149 #else
1150   xorptr(tmp_reg, swap_reg);
1151   get_thread(swap_reg);
1152   xorptr(swap_reg, tmp_reg);
1153   Register header_reg = swap_reg;
1154 #endif
1155   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1156   if (counters != NULL) {
1157     cond_inc32(Assembler::zero,
1158                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1159   }
1160   jcc(Assembler::equal, done);
1161 
1162   Label try_revoke_bias;
1163   Label try_rebias;
1164 
1165   // At this point we know that the header has the bias pattern and
1166   // that we are not the bias owner in the current epoch. We need to
1167   // figure out more details about the state of the header in order to
1168   // know what operations can be legally performed on the object's
1169   // header.
1170 
1171   // If the low three bits in the xor result aren't clear, that means
1172   // the prototype header is no longer biased and we have to revoke
1173   // the bias on this object.
1174   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1175   jccb(Assembler::notZero, try_revoke_bias);
1176 
1177   // Biasing is still enabled for this data type. See whether the
1178   // epoch of the current bias is still valid, meaning that the epoch
1179   // bits of the mark word are equal to the epoch bits of the
1180   // prototype header. (Note that the prototype header's epoch bits
1181   // only change at a safepoint.) If not, attempt to rebias the object
1182   // toward the current thread. Note that we must be absolutely sure
1183   // that the current epoch is invalid in order to do this because
1184   // otherwise the manipulations it performs on the mark word are
1185   // illegal.
1186   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1187   jccb(Assembler::notZero, try_rebias);
1188 
1189   // The epoch of the current bias is still valid but we know nothing
1190   // about the owner; it might be set or it might be clear. Try to
1191   // acquire the bias of the object using an atomic operation. If this
1192   // fails we will go in to the runtime to revoke the object's bias.
1193   // Note that we first construct the presumed unbiased header so we
1194   // don't accidentally blow away another thread's valid bias.
1195   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1196   andptr(swap_reg,
1197          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1198 #ifdef _LP64
1199   movptr(tmp_reg, swap_reg);
1200   orptr(tmp_reg, r15_thread);
1201 #else
1202   get_thread(tmp_reg);
1203   orptr(tmp_reg, swap_reg);
1204 #endif
1205   if (os::is_MP()) {
1206     lock();
1207   }
1208   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1209   // If the biasing toward our thread failed, this means that
1210   // another thread succeeded in biasing it toward itself and we
1211   // need to revoke that bias. The revocation will occur in the
1212   // interpreter runtime in the slow case.
1213   if (counters != NULL) {
1214     cond_inc32(Assembler::zero,
1215                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1216   }
1217   if (slow_case != NULL) {
1218     jcc(Assembler::notZero, *slow_case);
1219   }
1220   jmp(done);
1221 
1222   bind(try_rebias);
1223   // At this point we know the epoch has expired, meaning that the
1224   // current "bias owner", if any, is actually invalid. Under these
1225   // circumstances _only_, we are allowed to use the current header's
1226   // value as the comparison value when doing the cas to acquire the
1227   // bias in the current epoch. In other words, we allow transfer of
1228   // the bias from one thread to another directly in this situation.
1229   //
1230   // FIXME: due to a lack of registers we currently blow away the age
1231   // bits in this situation. Should attempt to preserve them.
1232   load_prototype_header(tmp_reg, obj_reg);
1233 #ifdef _LP64
1234   orptr(tmp_reg, r15_thread);
1235 #else
1236   get_thread(swap_reg);
1237   orptr(tmp_reg, swap_reg);
1238   movptr(swap_reg, saved_mark_addr);
1239 #endif
1240   if (os::is_MP()) {
1241     lock();
1242   }
1243   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1244   // If the biasing toward our thread failed, then another thread
1245   // succeeded in biasing it toward itself and we need to revoke that
1246   // bias. The revocation will occur in the runtime in the slow case.
1247   if (counters != NULL) {
1248     cond_inc32(Assembler::zero,
1249                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1250   }
1251   if (slow_case != NULL) {
1252     jcc(Assembler::notZero, *slow_case);
1253   }
1254   jmp(done);
1255 
1256   bind(try_revoke_bias);
1257   // The prototype mark in the klass doesn't have the bias bit set any
1258   // more, indicating that objects of this data type are not supposed
1259   // to be biased any more. We are going to try to reset the mark of
1260   // this object to the prototype value and fall through to the
1261   // CAS-based locking scheme. Note that if our CAS fails, it means
1262   // that another thread raced us for the privilege of revoking the
1263   // bias of this particular object, so it's okay to continue in the
1264   // normal locking code.
1265   //
1266   // FIXME: due to a lack of registers we currently blow away the age
1267   // bits in this situation. Should attempt to preserve them.
1268   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1269   load_prototype_header(tmp_reg, obj_reg);
1270   if (os::is_MP()) {
1271     lock();
1272   }
1273   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1274   // Fall through to the normal CAS-based lock, because no matter what
1275   // the result of the above CAS, some thread must have succeeded in
1276   // removing the bias bit from the object's header.
1277   if (counters != NULL) {
1278     cond_inc32(Assembler::zero,
1279                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1280   }
1281 
1282   bind(cas_label);
1283 
1284   return null_check_offset;
1285 }
1286 
1287 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1288   assert(UseBiasedLocking, "why call this otherwise?");
1289 
1290   // Check for biased locking unlock case, which is a no-op
1291   // Note: we do not have to check the thread ID for two reasons.
1292   // First, the interpreter checks for IllegalMonitorStateException at
1293   // a higher level. Second, if the bias was revoked while we held the
1294   // lock, the object could not be rebiased toward another thread, so
1295   // the bias bit would be clear.
1296   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1297   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1298   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1299   jcc(Assembler::equal, done);
1300 }
1301 
1302 #ifdef COMPILER2
1303 
1304 #if INCLUDE_RTM_OPT
1305 
1306 // Update rtm_counters based on abort status
1307 // input: abort_status
1308 //        rtm_counters (RTMLockingCounters*)
1309 // flags are killed
1310 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1311 
1312   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1313   if (PrintPreciseRTMLockingStatistics) {
1314     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1315       Label check_abort;
1316       testl(abort_status, (1<<i));
1317       jccb(Assembler::equal, check_abort);
1318       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1319       bind(check_abort);
1320     }
1321   }
1322 }
1323 
1324 // Branch if (random & (count-1) != 0), count is 2^n
1325 // tmp, scr and flags are killed
1326 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1327   assert(tmp == rax, "");
1328   assert(scr == rdx, "");
1329   rdtsc(); // modifies EDX:EAX
1330   andptr(tmp, count-1);
1331   jccb(Assembler::notZero, brLabel);
1332 }
1333 
1334 // Perform abort ratio calculation, set no_rtm bit if high ratio
1335 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1336 // tmpReg, rtm_counters_Reg and flags are killed
1337 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1338                                                  Register rtm_counters_Reg,
1339                                                  RTMLockingCounters* rtm_counters,
1340                                                  Metadata* method_data) {
1341   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1342 
1343   if (RTMLockingCalculationDelay > 0) {
1344     // Delay calculation
1345     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1346     testptr(tmpReg, tmpReg);
1347     jccb(Assembler::equal, L_done);
1348   }
1349   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1350   //   Aborted transactions = abort_count * 100
1351   //   All transactions = total_count *  RTMTotalCountIncrRate
1352   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1353 
1354   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1355   cmpptr(tmpReg, RTMAbortThreshold);
1356   jccb(Assembler::below, L_check_always_rtm2);
1357   imulptr(tmpReg, tmpReg, 100);
1358 
1359   Register scrReg = rtm_counters_Reg;
1360   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1361   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1362   imulptr(scrReg, scrReg, RTMAbortRatio);
1363   cmpptr(tmpReg, scrReg);
1364   jccb(Assembler::below, L_check_always_rtm1);
1365   if (method_data != NULL) {
1366     // set rtm_state to "no rtm" in MDO
1367     mov_metadata(tmpReg, method_data);
1368     if (os::is_MP()) {
1369       lock();
1370     }
1371     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1372   }
1373   jmpb(L_done);
1374   bind(L_check_always_rtm1);
1375   // Reload RTMLockingCounters* address
1376   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1377   bind(L_check_always_rtm2);
1378   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1379   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1380   jccb(Assembler::below, L_done);
1381   if (method_data != NULL) {
1382     // set rtm_state to "always rtm" in MDO
1383     mov_metadata(tmpReg, method_data);
1384     if (os::is_MP()) {
1385       lock();
1386     }
1387     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1388   }
1389   bind(L_done);
1390 }
1391 
1392 // Update counters and perform abort ratio calculation
1393 // input:  abort_status_Reg
1394 // rtm_counters_Reg, flags are killed
1395 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1396                                    Register rtm_counters_Reg,
1397                                    RTMLockingCounters* rtm_counters,
1398                                    Metadata* method_data,
1399                                    bool profile_rtm) {
1400 
1401   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1402   // update rtm counters based on rax value at abort
1403   // reads abort_status_Reg, updates flags
1404   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1405   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1406   if (profile_rtm) {
1407     // Save abort status because abort_status_Reg is used by following code.
1408     if (RTMRetryCount > 0) {
1409       push(abort_status_Reg);
1410     }
1411     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1412     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1413     // restore abort status
1414     if (RTMRetryCount > 0) {
1415       pop(abort_status_Reg);
1416     }
1417   }
1418 }
1419 
1420 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1421 // inputs: retry_count_Reg
1422 //       : abort_status_Reg
1423 // output: retry_count_Reg decremented by 1
1424 // flags are killed
1425 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1426   Label doneRetry;
1427   assert(abort_status_Reg == rax, "");
1428   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1429   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1430   // if reason is in 0x6 and retry count != 0 then retry
1431   andptr(abort_status_Reg, 0x6);
1432   jccb(Assembler::zero, doneRetry);
1433   testl(retry_count_Reg, retry_count_Reg);
1434   jccb(Assembler::zero, doneRetry);
1435   pause();
1436   decrementl(retry_count_Reg);
1437   jmp(retryLabel);
1438   bind(doneRetry);
1439 }
1440 
1441 // Spin and retry if lock is busy,
1442 // inputs: box_Reg (monitor address)
1443 //       : retry_count_Reg
1444 // output: retry_count_Reg decremented by 1
1445 //       : clear z flag if retry count exceeded
1446 // tmp_Reg, scr_Reg, flags are killed
1447 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1448                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1449   Label SpinLoop, SpinExit, doneRetry;
1450   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1451 
1452   testl(retry_count_Reg, retry_count_Reg);
1453   jccb(Assembler::zero, doneRetry);
1454   decrementl(retry_count_Reg);
1455   movptr(scr_Reg, RTMSpinLoopCount);
1456 
1457   bind(SpinLoop);
1458   pause();
1459   decrementl(scr_Reg);
1460   jccb(Assembler::lessEqual, SpinExit);
1461   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1462   testptr(tmp_Reg, tmp_Reg);
1463   jccb(Assembler::notZero, SpinLoop);
1464 
1465   bind(SpinExit);
1466   jmp(retryLabel);
1467   bind(doneRetry);
1468   incrementl(retry_count_Reg); // clear z flag
1469 }
1470 
1471 // Use RTM for normal stack locks
1472 // Input: objReg (object to lock)
1473 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1474                                        Register retry_on_abort_count_Reg,
1475                                        RTMLockingCounters* stack_rtm_counters,
1476                                        Metadata* method_data, bool profile_rtm,
1477                                        Label& DONE_LABEL, Label& IsInflated) {
1478   assert(UseRTMForStackLocks, "why call this otherwise?");
1479   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1480   assert(tmpReg == rax, "");
1481   assert(scrReg == rdx, "");
1482   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1483 
1484   if (RTMRetryCount > 0) {
1485     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1486     bind(L_rtm_retry);
1487   }
1488   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1489   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1490   jcc(Assembler::notZero, IsInflated);
1491 
1492   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1493     Label L_noincrement;
1494     if (RTMTotalCountIncrRate > 1) {
1495       // tmpReg, scrReg and flags are killed
1496       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1497     }
1498     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1499     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1500     bind(L_noincrement);
1501   }
1502   xbegin(L_on_abort);
1503   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1504   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1505   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1506   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1507 
1508   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1509   if (UseRTMXendForLockBusy) {
1510     xend();
1511     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1512     jmp(L_decrement_retry);
1513   }
1514   else {
1515     xabort(0);
1516   }
1517   bind(L_on_abort);
1518   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1519     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1520   }
1521   bind(L_decrement_retry);
1522   if (RTMRetryCount > 0) {
1523     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1524     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1525   }
1526 }
1527 
1528 // Use RTM for inflating locks
1529 // inputs: objReg (object to lock)
1530 //         boxReg (on-stack box address (displaced header location) - KILLED)
1531 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1532 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1533                                           Register scrReg, Register retry_on_busy_count_Reg,
1534                                           Register retry_on_abort_count_Reg,
1535                                           RTMLockingCounters* rtm_counters,
1536                                           Metadata* method_data, bool profile_rtm,
1537                                           Label& DONE_LABEL) {
1538   assert(UseRTMLocking, "why call this otherwise?");
1539   assert(tmpReg == rax, "");
1540   assert(scrReg == rdx, "");
1541   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1542   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1543 
1544   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1545   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1546   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1547 
1548   if (RTMRetryCount > 0) {
1549     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1550     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1551     bind(L_rtm_retry);
1552   }
1553   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1554     Label L_noincrement;
1555     if (RTMTotalCountIncrRate > 1) {
1556       // tmpReg, scrReg and flags are killed
1557       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1558     }
1559     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1560     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1561     bind(L_noincrement);
1562   }
1563   xbegin(L_on_abort);
1564   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1565   movptr(tmpReg, Address(tmpReg, owner_offset));
1566   testptr(tmpReg, tmpReg);
1567   jcc(Assembler::zero, DONE_LABEL);
1568   if (UseRTMXendForLockBusy) {
1569     xend();
1570     jmp(L_decrement_retry);
1571   }
1572   else {
1573     xabort(0);
1574   }
1575   bind(L_on_abort);
1576   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1577   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1578     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1579   }
1580   if (RTMRetryCount > 0) {
1581     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1582     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1583   }
1584 
1585   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1586   testptr(tmpReg, tmpReg) ;
1587   jccb(Assembler::notZero, L_decrement_retry) ;
1588 
1589   // Appears unlocked - try to swing _owner from null to non-null.
1590   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1591 #ifdef _LP64
1592   Register threadReg = r15_thread;
1593 #else
1594   get_thread(scrReg);
1595   Register threadReg = scrReg;
1596 #endif
1597   if (os::is_MP()) {
1598     lock();
1599   }
1600   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1601 
1602   if (RTMRetryCount > 0) {
1603     // success done else retry
1604     jccb(Assembler::equal, DONE_LABEL) ;
1605     bind(L_decrement_retry);
1606     // Spin and retry if lock is busy.
1607     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1608   }
1609   else {
1610     bind(L_decrement_retry);
1611   }
1612 }
1613 
1614 #endif //  INCLUDE_RTM_OPT
1615 
1616 // Fast_Lock and Fast_Unlock used by C2
1617 
1618 // Because the transitions from emitted code to the runtime
1619 // monitorenter/exit helper stubs are so slow it's critical that
1620 // we inline both the stack-locking fast-path and the inflated fast path.
1621 //
1622 // See also: cmpFastLock and cmpFastUnlock.
1623 //
1624 // What follows is a specialized inline transliteration of the code
1625 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1626 // another option would be to emit TrySlowEnter and TrySlowExit methods
1627 // at startup-time.  These methods would accept arguments as
1628 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1629 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1630 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1631 // In practice, however, the # of lock sites is bounded and is usually small.
1632 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1633 // if the processor uses simple bimodal branch predictors keyed by EIP
1634 // Since the helper routines would be called from multiple synchronization
1635 // sites.
1636 //
1637 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1638 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1639 // to those specialized methods.  That'd give us a mostly platform-independent
1640 // implementation that the JITs could optimize and inline at their pleasure.
1641 // Done correctly, the only time we'd need to cross to native could would be
1642 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1643 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1644 // (b) explicit barriers or fence operations.
1645 //
1646 // TODO:
1647 //
1648 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1649 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1650 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1651 //    the lock operators would typically be faster than reifying Self.
1652 //
1653 // *  Ideally I'd define the primitives as:
1654 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1655 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1656 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1657 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1658 //    Furthermore the register assignments are overconstrained, possibly resulting in
1659 //    sub-optimal code near the synchronization site.
1660 //
1661 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1662 //    Alternately, use a better sp-proximity test.
1663 //
1664 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1665 //    Either one is sufficient to uniquely identify a thread.
1666 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1667 //
1668 // *  Intrinsify notify() and notifyAll() for the common cases where the
1669 //    object is locked by the calling thread but the waitlist is empty.
1670 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1671 //
1672 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1673 //    But beware of excessive branch density on AMD Opterons.
1674 //
1675 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1676 //    or failure of the fast-path.  If the fast-path fails then we pass
1677 //    control to the slow-path, typically in C.  In Fast_Lock and
1678 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1679 //    will emit a conditional branch immediately after the node.
1680 //    So we have branches to branches and lots of ICC.ZF games.
1681 //    Instead, it might be better to have C2 pass a "FailureLabel"
1682 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1683 //    will drop through the node.  ICC.ZF is undefined at exit.
1684 //    In the case of failure, the node will branch directly to the
1685 //    FailureLabel
1686 
1687 
1688 // obj: object to lock
1689 // box: on-stack box address (displaced header location) - KILLED
1690 // rax,: tmp -- KILLED
1691 // scr: tmp -- KILLED
1692 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1693                                Register scrReg, Register cx1Reg, Register cx2Reg,
1694                                BiasedLockingCounters* counters,
1695                                RTMLockingCounters* rtm_counters,
1696                                RTMLockingCounters* stack_rtm_counters,
1697                                Metadata* method_data,
1698                                bool use_rtm, bool profile_rtm) {
1699   // Ensure the register assignments are disjoint
1700   assert(tmpReg == rax, "");
1701 
1702   if (use_rtm) {
1703     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1704   } else {
1705     assert(cx1Reg == noreg, "");
1706     assert(cx2Reg == noreg, "");
1707     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1708   }
1709 
1710   if (counters != NULL) {
1711     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1712   }
1713   if (EmitSync & 1) {
1714       // set box->dhw = markOopDesc::unused_mark()
1715       // Force all sync thru slow-path: slow_enter() and slow_exit()
1716       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1717       cmpptr (rsp, (int32_t)NULL_WORD);
1718   } else {
1719     // Possible cases that we'll encounter in fast_lock
1720     // ------------------------------------------------
1721     // * Inflated
1722     //    -- unlocked
1723     //    -- Locked
1724     //       = by self
1725     //       = by other
1726     // * biased
1727     //    -- by Self
1728     //    -- by other
1729     // * neutral
1730     // * stack-locked
1731     //    -- by self
1732     //       = sp-proximity test hits
1733     //       = sp-proximity test generates false-negative
1734     //    -- by other
1735     //
1736 
1737     Label IsInflated, DONE_LABEL;
1738 
1739     // it's stack-locked, biased or neutral
1740     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1741     // order to reduce the number of conditional branches in the most common cases.
1742     // Beware -- there's a subtle invariant that fetch of the markword
1743     // at [FETCH], below, will never observe a biased encoding (*101b).
1744     // If this invariant is not held we risk exclusion (safety) failure.
1745     if (UseBiasedLocking && !UseOptoBiasInlining) {
1746       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1747     }
1748 
1749 #if INCLUDE_RTM_OPT
1750     if (UseRTMForStackLocks && use_rtm) {
1751       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1752                         stack_rtm_counters, method_data, profile_rtm,
1753                         DONE_LABEL, IsInflated);
1754     }
1755 #endif // INCLUDE_RTM_OPT
1756 
1757     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1758     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1759     jccb(Assembler::notZero, IsInflated);
1760 
1761     // Attempt stack-locking ...
1762     orptr (tmpReg, markOopDesc::unlocked_value);
1763     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1764     if (os::is_MP()) {
1765       lock();
1766     }
1767     cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1768     if (counters != NULL) {
1769       cond_inc32(Assembler::equal,
1770                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1771     }
1772     jcc(Assembler::equal, DONE_LABEL);           // Success
1773 
1774     // Recursive locking.
1775     // The object is stack-locked: markword contains stack pointer to BasicLock.
1776     // Locked by current thread if difference with current SP is less than one page.
1777     subptr(tmpReg, rsp);
1778     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1779     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1780     movptr(Address(boxReg, 0), tmpReg);
1781     if (counters != NULL) {
1782       cond_inc32(Assembler::equal,
1783                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1784     }
1785     jmp(DONE_LABEL);
1786 
1787     bind(IsInflated);
1788     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1789 
1790 #if INCLUDE_RTM_OPT
1791     // Use the same RTM locking code in 32- and 64-bit VM.
1792     if (use_rtm) {
1793       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1794                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1795     } else {
1796 #endif // INCLUDE_RTM_OPT
1797 
1798 #ifndef _LP64
1799     // The object is inflated.
1800 
1801     // boxReg refers to the on-stack BasicLock in the current frame.
1802     // We'd like to write:
1803     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1804     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1805     // additional latency as we have another ST in the store buffer that must drain.
1806 
1807     if (EmitSync & 8192) {
1808        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1809        get_thread (scrReg);
1810        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1811        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1812        if (os::is_MP()) {
1813          lock();
1814        }
1815        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1816     } else
1817     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1818        // register juggle because we need tmpReg for cmpxchgptr below
1819        movptr(scrReg, boxReg);
1820        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1821 
1822        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1823        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1824           // prefetchw [eax + Offset(_owner)-2]
1825           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1826        }
1827 
1828        if ((EmitSync & 64) == 0) {
1829          // Optimistic form: consider XORL tmpReg,tmpReg
1830          movptr(tmpReg, NULL_WORD);
1831        } else {
1832          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1833          // Test-And-CAS instead of CAS
1834          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1835          testptr(tmpReg, tmpReg);                   // Locked ?
1836          jccb  (Assembler::notZero, DONE_LABEL);
1837        }
1838 
1839        // Appears unlocked - try to swing _owner from null to non-null.
1840        // Ideally, I'd manifest "Self" with get_thread and then attempt
1841        // to CAS the register containing Self into m->Owner.
1842        // But we don't have enough registers, so instead we can either try to CAS
1843        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1844        // we later store "Self" into m->Owner.  Transiently storing a stack address
1845        // (rsp or the address of the box) into  m->owner is harmless.
1846        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1847        if (os::is_MP()) {
1848          lock();
1849        }
1850        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1851        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1852        // If we weren't able to swing _owner from NULL to the BasicLock
1853        // then take the slow path.
1854        jccb  (Assembler::notZero, DONE_LABEL);
1855        // update _owner from BasicLock to thread
1856        get_thread (scrReg);                    // beware: clobbers ICCs
1857        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1858        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1859 
1860        // If the CAS fails we can either retry or pass control to the slow-path.
1861        // We use the latter tactic.
1862        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1863        // If the CAS was successful ...
1864        //   Self has acquired the lock
1865        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1866        // Intentional fall-through into DONE_LABEL ...
1867     } else {
1868        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1869        movptr(boxReg, tmpReg);
1870 
1871        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1872        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1873           // prefetchw [eax + Offset(_owner)-2]
1874           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1875        }
1876 
1877        if ((EmitSync & 64) == 0) {
1878          // Optimistic form
1879          xorptr  (tmpReg, tmpReg);
1880        } else {
1881          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1882          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1883          testptr(tmpReg, tmpReg);                   // Locked ?
1884          jccb  (Assembler::notZero, DONE_LABEL);
1885        }
1886 
1887        // Appears unlocked - try to swing _owner from null to non-null.
1888        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1889        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1890        get_thread (scrReg);
1891        if (os::is_MP()) {
1892          lock();
1893        }
1894        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1895 
1896        // If the CAS fails we can either retry or pass control to the slow-path.
1897        // We use the latter tactic.
1898        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1899        // If the CAS was successful ...
1900        //   Self has acquired the lock
1901        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1902        // Intentional fall-through into DONE_LABEL ...
1903     }
1904 #else // _LP64
1905     // It's inflated
1906     movq(scrReg, tmpReg);
1907     xorq(tmpReg, tmpReg);
1908 
1909     if (os::is_MP()) {
1910       lock();
1911     }
1912     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1913     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1914     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1915     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1916     // Intentional fall-through into DONE_LABEL ...
1917     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1918 #endif // _LP64
1919 #if INCLUDE_RTM_OPT
1920     } // use_rtm()
1921 #endif
1922     // DONE_LABEL is a hot target - we'd really like to place it at the
1923     // start of cache line by padding with NOPs.
1924     // See the AMD and Intel software optimization manuals for the
1925     // most efficient "long" NOP encodings.
1926     // Unfortunately none of our alignment mechanisms suffice.
1927     bind(DONE_LABEL);
1928 
1929     // At DONE_LABEL the icc ZFlag is set as follows ...
1930     // Fast_Unlock uses the same protocol.
1931     // ZFlag == 1 -> Success
1932     // ZFlag == 0 -> Failure - force control through the slow-path
1933   }
1934 }
1935 
1936 // obj: object to unlock
1937 // box: box address (displaced header location), killed.  Must be EAX.
1938 // tmp: killed, cannot be obj nor box.
1939 //
1940 // Some commentary on balanced locking:
1941 //
1942 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1943 // Methods that don't have provably balanced locking are forced to run in the
1944 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1945 // The interpreter provides two properties:
1946 // I1:  At return-time the interpreter automatically and quietly unlocks any
1947 //      objects acquired the current activation (frame).  Recall that the
1948 //      interpreter maintains an on-stack list of locks currently held by
1949 //      a frame.
1950 // I2:  If a method attempts to unlock an object that is not held by the
1951 //      the frame the interpreter throws IMSX.
1952 //
1953 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1954 // B() doesn't have provably balanced locking so it runs in the interpreter.
1955 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1956 // is still locked by A().
1957 //
1958 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1959 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1960 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1961 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1962 // Arguably given that the spec legislates the JNI case as undefined our implementation
1963 // could reasonably *avoid* checking owner in Fast_Unlock().
1964 // In the interest of performance we elide m->Owner==Self check in unlock.
1965 // A perfectly viable alternative is to elide the owner check except when
1966 // Xcheck:jni is enabled.
1967 
1968 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1969   assert(boxReg == rax, "");
1970   assert_different_registers(objReg, boxReg, tmpReg);
1971 
1972   if (EmitSync & 4) {
1973     // Disable - inhibit all inlining.  Force control through the slow-path
1974     cmpptr (rsp, 0);
1975   } else {
1976     Label DONE_LABEL, Stacked, CheckSucc;
1977 
1978     // Critically, the biased locking test must have precedence over
1979     // and appear before the (box->dhw == 0) recursive stack-lock test.
1980     if (UseBiasedLocking && !UseOptoBiasInlining) {
1981        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1982     }
1983 
1984 #if INCLUDE_RTM_OPT
1985     if (UseRTMForStackLocks && use_rtm) {
1986       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1987       Label L_regular_unlock;
1988       movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));           // fetch markword
1989       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1990       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1991       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1992       xend();                                       // otherwise end...
1993       jmp(DONE_LABEL);                              // ... and we're done
1994       bind(L_regular_unlock);
1995     }
1996 #endif
1997 
1998     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1999     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
2000     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));             // Examine the object's markword
2001     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2002     jccb  (Assembler::zero, Stacked);
2003 
2004     // It's inflated.
2005 #if INCLUDE_RTM_OPT
2006     if (use_rtm) {
2007       Label L_regular_inflated_unlock;
2008       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2009       movptr(boxReg, Address(tmpReg, owner_offset));
2010       testptr(boxReg, boxReg);
2011       jccb(Assembler::notZero, L_regular_inflated_unlock);
2012       xend();
2013       jmpb(DONE_LABEL);
2014       bind(L_regular_inflated_unlock);
2015     }
2016 #endif
2017 
2018     // Despite our balanced locking property we still check that m->_owner == Self
2019     // as java routines or native JNI code called by this thread might
2020     // have released the lock.
2021     // Refer to the comments in synchronizer.cpp for how we might encode extra
2022     // state in _succ so we can avoid fetching EntryList|cxq.
2023     //
2024     // I'd like to add more cases in fast_lock() and fast_unlock() --
2025     // such as recursive enter and exit -- but we have to be wary of
2026     // I$ bloat, T$ effects and BP$ effects.
2027     //
2028     // If there's no contention try a 1-0 exit.  That is, exit without
2029     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2030     // we detect and recover from the race that the 1-0 exit admits.
2031     //
2032     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2033     // before it STs null into _owner, releasing the lock.  Updates
2034     // to data protected by the critical section must be visible before
2035     // we drop the lock (and thus before any other thread could acquire
2036     // the lock and observe the fields protected by the lock).
2037     // IA32's memory-model is SPO, so STs are ordered with respect to
2038     // each other and there's no need for an explicit barrier (fence).
2039     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2040 #ifndef _LP64
2041     get_thread (boxReg);
2042     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2043       // prefetchw [ebx + Offset(_owner)-2]
2044       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2045     }
2046 
2047     // Note that we could employ various encoding schemes to reduce
2048     // the number of loads below (currently 4) to just 2 or 3.
2049     // Refer to the comments in synchronizer.cpp.
2050     // In practice the chain of fetches doesn't seem to impact performance, however.
2051     xorptr(boxReg, boxReg);
2052     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2053        // Attempt to reduce branch density - AMD's branch predictor.
2054        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2055        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2056        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2057        jccb  (Assembler::notZero, DONE_LABEL);
2058        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2059        jmpb  (DONE_LABEL);
2060     } else {
2061        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2062        jccb  (Assembler::notZero, DONE_LABEL);
2063        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2064        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2065        jccb  (Assembler::notZero, CheckSucc);
2066        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2067        jmpb  (DONE_LABEL);
2068     }
2069 
2070     // The Following code fragment (EmitSync & 65536) improves the performance of
2071     // contended applications and contended synchronization microbenchmarks.
2072     // Unfortunately the emission of the code - even though not executed - causes regressions
2073     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2074     // with an equal number of never-executed NOPs results in the same regression.
2075     // We leave it off by default.
2076 
2077     if ((EmitSync & 65536) != 0) {
2078        Label LSuccess, LGoSlowPath ;
2079 
2080        bind  (CheckSucc);
2081 
2082        // Optional pre-test ... it's safe to elide this
2083        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2084        jccb(Assembler::zero, LGoSlowPath);
2085 
2086        // We have a classic Dekker-style idiom:
2087        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2088        // There are a number of ways to implement the barrier:
2089        // (1) lock:andl &m->_owner, 0
2090        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2091        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2092        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2093        // (2) If supported, an explicit MFENCE is appealing.
2094        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2095        //     particularly if the write-buffer is full as might be the case if
2096        //     if stores closely precede the fence or fence-equivalent instruction.
2097        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2098        //     as the situation has changed with Nehalem and Shanghai.
2099        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2100        //     The $lines underlying the top-of-stack should be in M-state.
2101        //     The locked add instruction is serializing, of course.
2102        // (4) Use xchg, which is serializing
2103        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2104        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2105        //     The integer condition codes will tell us if succ was 0.
2106        //     Since _succ and _owner should reside in the same $line and
2107        //     we just stored into _owner, it's likely that the $line
2108        //     remains in M-state for the lock:orl.
2109        //
2110        // We currently use (3), although it's likely that switching to (2)
2111        // is correct for the future.
2112 
2113        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2114        if (os::is_MP()) {
2115          lock(); addptr(Address(rsp, 0), 0);
2116        }
2117        // Ratify _succ remains non-null
2118        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2119        jccb  (Assembler::notZero, LSuccess);
2120 
2121        xorptr(boxReg, boxReg);                  // box is really EAX
2122        if (os::is_MP()) { lock(); }
2123        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2124        // There's no successor so we tried to regrab the lock with the
2125        // placeholder value. If that didn't work, then another thread
2126        // grabbed the lock so we're done (and exit was a success).
2127        jccb  (Assembler::notEqual, LSuccess);
2128        // Since we're low on registers we installed rsp as a placeholding in _owner.
2129        // Now install Self over rsp.  This is safe as we're transitioning from
2130        // non-null to non=null
2131        get_thread (boxReg);
2132        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2133        // Intentional fall-through into LGoSlowPath ...
2134 
2135        bind  (LGoSlowPath);
2136        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2137        jmpb  (DONE_LABEL);
2138 
2139        bind  (LSuccess);
2140        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2141        jmpb  (DONE_LABEL);
2142     }
2143 
2144     bind (Stacked);
2145     // It's not inflated and it's not recursively stack-locked and it's not biased.
2146     // It must be stack-locked.
2147     // Try to reset the header to displaced header.
2148     // The "box" value on the stack is stable, so we can reload
2149     // and be assured we observe the same value as above.
2150     movptr(tmpReg, Address(boxReg, 0));
2151     if (os::is_MP()) {
2152       lock();
2153     }
2154     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2155     // Intention fall-thru into DONE_LABEL
2156 
2157     // DONE_LABEL is a hot target - we'd really like to place it at the
2158     // start of cache line by padding with NOPs.
2159     // See the AMD and Intel software optimization manuals for the
2160     // most efficient "long" NOP encodings.
2161     // Unfortunately none of our alignment mechanisms suffice.
2162     if ((EmitSync & 65536) == 0) {
2163        bind (CheckSucc);
2164     }
2165 #else // _LP64
2166     // It's inflated
2167     if (EmitSync & 1024) {
2168       // Emit code to check that _owner == Self
2169       // We could fold the _owner test into subsequent code more efficiently
2170       // than using a stand-alone check, but since _owner checking is off by
2171       // default we don't bother. We also might consider predicating the
2172       // _owner==Self check on Xcheck:jni or running on a debug build.
2173       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2174       xorptr(boxReg, r15_thread);
2175     } else {
2176       xorptr(boxReg, boxReg);
2177     }
2178     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2179     jccb  (Assembler::notZero, DONE_LABEL);
2180     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2181     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2182     jccb  (Assembler::notZero, CheckSucc);
2183     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2184     jmpb  (DONE_LABEL);
2185 
2186     if ((EmitSync & 65536) == 0) {
2187       // Try to avoid passing control into the slow_path ...
2188       Label LSuccess, LGoSlowPath ;
2189       bind  (CheckSucc);
2190 
2191       // The following optional optimization can be elided if necessary
2192       // Effectively: if (succ == null) goto SlowPath
2193       // The code reduces the window for a race, however,
2194       // and thus benefits performance.
2195       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2196       jccb  (Assembler::zero, LGoSlowPath);
2197 
2198       xorptr(boxReg, boxReg);
2199       if ((EmitSync & 16) && os::is_MP()) {
2200         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2201       } else {
2202         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2203         if (os::is_MP()) {
2204           // Memory barrier/fence
2205           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2206           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2207           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2208           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2209           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2210           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2211           lock(); addl(Address(rsp, 0), 0);
2212         }
2213       }
2214       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2215       jccb  (Assembler::notZero, LSuccess);
2216 
2217       // Rare inopportune interleaving - race.
2218       // The successor vanished in the small window above.
2219       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2220       // We need to ensure progress and succession.
2221       // Try to reacquire the lock.
2222       // If that fails then the new owner is responsible for succession and this
2223       // thread needs to take no further action and can exit via the fast path (success).
2224       // If the re-acquire succeeds then pass control into the slow path.
2225       // As implemented, this latter mode is horrible because we generated more
2226       // coherence traffic on the lock *and* artifically extended the critical section
2227       // length while by virtue of passing control into the slow path.
2228 
2229       // box is really RAX -- the following CMPXCHG depends on that binding
2230       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2231       if (os::is_MP()) { lock(); }
2232       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2233       // There's no successor so we tried to regrab the lock.
2234       // If that didn't work, then another thread grabbed the
2235       // lock so we're done (and exit was a success).
2236       jccb  (Assembler::notEqual, LSuccess);
2237       // Intentional fall-through into slow-path
2238 
2239       bind  (LGoSlowPath);
2240       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2241       jmpb  (DONE_LABEL);
2242 
2243       bind  (LSuccess);
2244       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2245       jmpb  (DONE_LABEL);
2246     }
2247 
2248     bind  (Stacked);
2249     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2250     if (os::is_MP()) { lock(); }
2251     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2252 
2253     if (EmitSync & 65536) {
2254        bind (CheckSucc);
2255     }
2256 #endif
2257     bind(DONE_LABEL);
2258   }
2259 }
2260 #endif // COMPILER2
2261 
2262 void MacroAssembler::c2bool(Register x) {
2263   // implements x == 0 ? 0 : 1
2264   // note: must only look at least-significant byte of x
2265   //       since C-style booleans are stored in one byte
2266   //       only! (was bug)
2267   andl(x, 0xFF);
2268   setb(Assembler::notZero, x);
2269 }
2270 
2271 // Wouldn't need if AddressLiteral version had new name
2272 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2273   Assembler::call(L, rtype);
2274 }
2275 
2276 void MacroAssembler::call(Register entry) {
2277   Assembler::call(entry);
2278 }
2279 
2280 void MacroAssembler::call(AddressLiteral entry) {
2281   if (reachable(entry)) {
2282     Assembler::call_literal(entry.target(), entry.rspec());
2283   } else {
2284     lea(rscratch1, entry);
2285     Assembler::call(rscratch1);
2286   }
2287 }
2288 
2289 void MacroAssembler::ic_call(address entry, jint method_index) {
2290   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2291   movptr(rax, (intptr_t)Universe::non_oop_word());
2292   call(AddressLiteral(entry, rh));
2293 }
2294 
2295 // Implementation of call_VM versions
2296 
2297 void MacroAssembler::call_VM(Register oop_result,
2298                              address entry_point,
2299                              bool check_exceptions) {
2300   Label C, E;
2301   call(C, relocInfo::none);
2302   jmp(E);
2303 
2304   bind(C);
2305   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2306   ret(0);
2307 
2308   bind(E);
2309 }
2310 
2311 void MacroAssembler::call_VM(Register oop_result,
2312                              address entry_point,
2313                              Register arg_1,
2314                              bool check_exceptions) {
2315   Label C, E;
2316   call(C, relocInfo::none);
2317   jmp(E);
2318 
2319   bind(C);
2320   pass_arg1(this, arg_1);
2321   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2322   ret(0);
2323 
2324   bind(E);
2325 }
2326 
2327 void MacroAssembler::call_VM(Register oop_result,
2328                              address entry_point,
2329                              Register arg_1,
2330                              Register arg_2,
2331                              bool check_exceptions) {
2332   Label C, E;
2333   call(C, relocInfo::none);
2334   jmp(E);
2335 
2336   bind(C);
2337 
2338   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2339 
2340   pass_arg2(this, arg_2);
2341   pass_arg1(this, arg_1);
2342   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2343   ret(0);
2344 
2345   bind(E);
2346 }
2347 
2348 void MacroAssembler::call_VM(Register oop_result,
2349                              address entry_point,
2350                              Register arg_1,
2351                              Register arg_2,
2352                              Register arg_3,
2353                              bool check_exceptions) {
2354   Label C, E;
2355   call(C, relocInfo::none);
2356   jmp(E);
2357 
2358   bind(C);
2359 
2360   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2361   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2362   pass_arg3(this, arg_3);
2363 
2364   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2365   pass_arg2(this, arg_2);
2366 
2367   pass_arg1(this, arg_1);
2368   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2369   ret(0);
2370 
2371   bind(E);
2372 }
2373 
2374 void MacroAssembler::call_VM(Register oop_result,
2375                              Register last_java_sp,
2376                              address entry_point,
2377                              int number_of_arguments,
2378                              bool check_exceptions) {
2379   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2380   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2381 }
2382 
2383 void MacroAssembler::call_VM(Register oop_result,
2384                              Register last_java_sp,
2385                              address entry_point,
2386                              Register arg_1,
2387                              bool check_exceptions) {
2388   pass_arg1(this, arg_1);
2389   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2390 }
2391 
2392 void MacroAssembler::call_VM(Register oop_result,
2393                              Register last_java_sp,
2394                              address entry_point,
2395                              Register arg_1,
2396                              Register arg_2,
2397                              bool check_exceptions) {
2398 
2399   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2400   pass_arg2(this, arg_2);
2401   pass_arg1(this, arg_1);
2402   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2403 }
2404 
2405 void MacroAssembler::call_VM(Register oop_result,
2406                              Register last_java_sp,
2407                              address entry_point,
2408                              Register arg_1,
2409                              Register arg_2,
2410                              Register arg_3,
2411                              bool check_exceptions) {
2412   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2413   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2414   pass_arg3(this, arg_3);
2415   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2416   pass_arg2(this, arg_2);
2417   pass_arg1(this, arg_1);
2418   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2419 }
2420 
2421 void MacroAssembler::super_call_VM(Register oop_result,
2422                                    Register last_java_sp,
2423                                    address entry_point,
2424                                    int number_of_arguments,
2425                                    bool check_exceptions) {
2426   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2427   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2428 }
2429 
2430 void MacroAssembler::super_call_VM(Register oop_result,
2431                                    Register last_java_sp,
2432                                    address entry_point,
2433                                    Register arg_1,
2434                                    bool check_exceptions) {
2435   pass_arg1(this, arg_1);
2436   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2437 }
2438 
2439 void MacroAssembler::super_call_VM(Register oop_result,
2440                                    Register last_java_sp,
2441                                    address entry_point,
2442                                    Register arg_1,
2443                                    Register arg_2,
2444                                    bool check_exceptions) {
2445 
2446   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2447   pass_arg2(this, arg_2);
2448   pass_arg1(this, arg_1);
2449   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2450 }
2451 
2452 void MacroAssembler::super_call_VM(Register oop_result,
2453                                    Register last_java_sp,
2454                                    address entry_point,
2455                                    Register arg_1,
2456                                    Register arg_2,
2457                                    Register arg_3,
2458                                    bool check_exceptions) {
2459   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2460   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2461   pass_arg3(this, arg_3);
2462   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2463   pass_arg2(this, arg_2);
2464   pass_arg1(this, arg_1);
2465   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2466 }
2467 
2468 void MacroAssembler::call_VM_base(Register oop_result,
2469                                   Register java_thread,
2470                                   Register last_java_sp,
2471                                   address  entry_point,
2472                                   int      number_of_arguments,
2473                                   bool     check_exceptions) {
2474   // determine java_thread register
2475   if (!java_thread->is_valid()) {
2476 #ifdef _LP64
2477     java_thread = r15_thread;
2478 #else
2479     java_thread = rdi;
2480     get_thread(java_thread);
2481 #endif // LP64
2482   }
2483   // determine last_java_sp register
2484   if (!last_java_sp->is_valid()) {
2485     last_java_sp = rsp;
2486   }
2487   // debugging support
2488   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2489   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2490 #ifdef ASSERT
2491   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2492   // r12 is the heapbase.
2493   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2494 #endif // ASSERT
2495 
2496   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2497   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2498 
2499   // push java thread (becomes first argument of C function)
2500 
2501   NOT_LP64(push(java_thread); number_of_arguments++);
2502   LP64_ONLY(mov(c_rarg0, r15_thread));
2503 
2504   // set last Java frame before call
2505   assert(last_java_sp != rbp, "can't use ebp/rbp");
2506 
2507   // Only interpreter should have to set fp
2508   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2509 
2510   // do the call, remove parameters
2511   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2512 
2513   // restore the thread (cannot use the pushed argument since arguments
2514   // may be overwritten by C code generated by an optimizing compiler);
2515   // however can use the register value directly if it is callee saved.
2516   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2517     // rdi & rsi (also r15) are callee saved -> nothing to do
2518 #ifdef ASSERT
2519     guarantee(java_thread != rax, "change this code");
2520     push(rax);
2521     { Label L;
2522       get_thread(rax);
2523       cmpptr(java_thread, rax);
2524       jcc(Assembler::equal, L);
2525       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2526       bind(L);
2527     }
2528     pop(rax);
2529 #endif
2530   } else {
2531     get_thread(java_thread);
2532   }
2533   // reset last Java frame
2534   // Only interpreter should have to clear fp
2535   reset_last_Java_frame(java_thread, true);
2536 
2537    // C++ interp handles this in the interpreter
2538   check_and_handle_popframe(java_thread);
2539   check_and_handle_earlyret(java_thread);
2540 
2541   if (check_exceptions) {
2542     // check for pending exceptions (java_thread is set upon return)
2543     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2544 #ifndef _LP64
2545     jump_cc(Assembler::notEqual,
2546             RuntimeAddress(StubRoutines::forward_exception_entry()));
2547 #else
2548     // This used to conditionally jump to forward_exception however it is
2549     // possible if we relocate that the branch will not reach. So we must jump
2550     // around so we can always reach
2551 
2552     Label ok;
2553     jcc(Assembler::equal, ok);
2554     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2555     bind(ok);
2556 #endif // LP64
2557   }
2558 
2559   // get oop result if there is one and reset the value in the thread
2560   if (oop_result->is_valid()) {
2561     get_vm_result(oop_result, java_thread);
2562   }
2563 }
2564 
2565 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2566 
2567   // Calculate the value for last_Java_sp
2568   // somewhat subtle. call_VM does an intermediate call
2569   // which places a return address on the stack just under the
2570   // stack pointer as the user finsihed with it. This allows
2571   // use to retrieve last_Java_pc from last_Java_sp[-1].
2572   // On 32bit we then have to push additional args on the stack to accomplish
2573   // the actual requested call. On 64bit call_VM only can use register args
2574   // so the only extra space is the return address that call_VM created.
2575   // This hopefully explains the calculations here.
2576 
2577 #ifdef _LP64
2578   // We've pushed one address, correct last_Java_sp
2579   lea(rax, Address(rsp, wordSize));
2580 #else
2581   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2582 #endif // LP64
2583 
2584   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2585 
2586 }
2587 
2588 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2589 void MacroAssembler::call_VM_leaf0(address entry_point) {
2590   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2591 }
2592 
2593 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2594   call_VM_leaf_base(entry_point, number_of_arguments);
2595 }
2596 
2597 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2598   pass_arg0(this, arg_0);
2599   call_VM_leaf(entry_point, 1);
2600 }
2601 
2602 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2603 
2604   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2605   pass_arg1(this, arg_1);
2606   pass_arg0(this, arg_0);
2607   call_VM_leaf(entry_point, 2);
2608 }
2609 
2610 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2611   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2612   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2613   pass_arg2(this, arg_2);
2614   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2615   pass_arg1(this, arg_1);
2616   pass_arg0(this, arg_0);
2617   call_VM_leaf(entry_point, 3);
2618 }
2619 
2620 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2621   pass_arg0(this, arg_0);
2622   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2623 }
2624 
2625 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2626 
2627   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2628   pass_arg1(this, arg_1);
2629   pass_arg0(this, arg_0);
2630   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2631 }
2632 
2633 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2634   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2635   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2636   pass_arg2(this, arg_2);
2637   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2638   pass_arg1(this, arg_1);
2639   pass_arg0(this, arg_0);
2640   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2641 }
2642 
2643 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2644   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2645   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2646   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2647   pass_arg3(this, arg_3);
2648   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2649   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2650   pass_arg2(this, arg_2);
2651   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2652   pass_arg1(this, arg_1);
2653   pass_arg0(this, arg_0);
2654   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2655 }
2656 
2657 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2658   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2659   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2660   verify_oop(oop_result, "broken oop in call_VM_base");
2661 }
2662 
2663 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2664   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2665   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2666 }
2667 
2668 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2669 }
2670 
2671 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2672 }
2673 
2674 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2675   if (reachable(src1)) {
2676     cmpl(as_Address(src1), imm);
2677   } else {
2678     lea(rscratch1, src1);
2679     cmpl(Address(rscratch1, 0), imm);
2680   }
2681 }
2682 
2683 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2684   assert(!src2.is_lval(), "use cmpptr");
2685   if (reachable(src2)) {
2686     cmpl(src1, as_Address(src2));
2687   } else {
2688     lea(rscratch1, src2);
2689     cmpl(src1, Address(rscratch1, 0));
2690   }
2691 }
2692 
2693 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2694   Assembler::cmpl(src1, imm);
2695 }
2696 
2697 void MacroAssembler::cmp32(Register src1, Address src2) {
2698   Assembler::cmpl(src1, src2);
2699 }
2700 
2701 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2702   ucomisd(opr1, opr2);
2703 
2704   Label L;
2705   if (unordered_is_less) {
2706     movl(dst, -1);
2707     jcc(Assembler::parity, L);
2708     jcc(Assembler::below , L);
2709     movl(dst, 0);
2710     jcc(Assembler::equal , L);
2711     increment(dst);
2712   } else { // unordered is greater
2713     movl(dst, 1);
2714     jcc(Assembler::parity, L);
2715     jcc(Assembler::above , L);
2716     movl(dst, 0);
2717     jcc(Assembler::equal , L);
2718     decrementl(dst);
2719   }
2720   bind(L);
2721 }
2722 
2723 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2724   ucomiss(opr1, opr2);
2725 
2726   Label L;
2727   if (unordered_is_less) {
2728     movl(dst, -1);
2729     jcc(Assembler::parity, L);
2730     jcc(Assembler::below , L);
2731     movl(dst, 0);
2732     jcc(Assembler::equal , L);
2733     increment(dst);
2734   } else { // unordered is greater
2735     movl(dst, 1);
2736     jcc(Assembler::parity, L);
2737     jcc(Assembler::above , L);
2738     movl(dst, 0);
2739     jcc(Assembler::equal , L);
2740     decrementl(dst);
2741   }
2742   bind(L);
2743 }
2744 
2745 
2746 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2747   if (reachable(src1)) {
2748     cmpb(as_Address(src1), imm);
2749   } else {
2750     lea(rscratch1, src1);
2751     cmpb(Address(rscratch1, 0), imm);
2752   }
2753 }
2754 
2755 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2756 #ifdef _LP64
2757   if (src2.is_lval()) {
2758     movptr(rscratch1, src2);
2759     Assembler::cmpq(src1, rscratch1);
2760   } else if (reachable(src2)) {
2761     cmpq(src1, as_Address(src2));
2762   } else {
2763     lea(rscratch1, src2);
2764     Assembler::cmpq(src1, Address(rscratch1, 0));
2765   }
2766 #else
2767   if (src2.is_lval()) {
2768     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2769   } else {
2770     cmpl(src1, as_Address(src2));
2771   }
2772 #endif // _LP64
2773 }
2774 
2775 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2776   assert(src2.is_lval(), "not a mem-mem compare");
2777 #ifdef _LP64
2778   // moves src2's literal address
2779   movptr(rscratch1, src2);
2780   Assembler::cmpq(src1, rscratch1);
2781 #else
2782   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2783 #endif // _LP64
2784 }
2785 
2786 void MacroAssembler::cmpoop(Register src1, Register src2) {
2787   cmpptr(src1, src2);
2788 }
2789 
2790 void MacroAssembler::cmpoop(Register src1, Address src2) {
2791   cmpptr(src1, src2);
2792 }
2793 
2794 #ifdef _LP64
2795 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2796   movoop(rscratch1, src2);
2797   cmpptr(src1, rscratch1);
2798 }
2799 #endif
2800 
2801 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2802   if (reachable(adr)) {
2803     if (os::is_MP())
2804       lock();
2805     cmpxchgptr(reg, as_Address(adr));
2806   } else {
2807     lea(rscratch1, adr);
2808     if (os::is_MP())
2809       lock();
2810     cmpxchgptr(reg, Address(rscratch1, 0));
2811   }
2812 }
2813 
2814 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2815   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2816 }
2817 
2818 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2819   if (reachable(src)) {
2820     Assembler::comisd(dst, as_Address(src));
2821   } else {
2822     lea(rscratch1, src);
2823     Assembler::comisd(dst, Address(rscratch1, 0));
2824   }
2825 }
2826 
2827 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2828   if (reachable(src)) {
2829     Assembler::comiss(dst, as_Address(src));
2830   } else {
2831     lea(rscratch1, src);
2832     Assembler::comiss(dst, Address(rscratch1, 0));
2833   }
2834 }
2835 
2836 
2837 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2838   Condition negated_cond = negate_condition(cond);
2839   Label L;
2840   jcc(negated_cond, L);
2841   pushf(); // Preserve flags
2842   atomic_incl(counter_addr);
2843   popf();
2844   bind(L);
2845 }
2846 
2847 int MacroAssembler::corrected_idivl(Register reg) {
2848   // Full implementation of Java idiv and irem; checks for
2849   // special case as described in JVM spec., p.243 & p.271.
2850   // The function returns the (pc) offset of the idivl
2851   // instruction - may be needed for implicit exceptions.
2852   //
2853   //         normal case                           special case
2854   //
2855   // input : rax,: dividend                         min_int
2856   //         reg: divisor   (may not be rax,/rdx)   -1
2857   //
2858   // output: rax,: quotient  (= rax, idiv reg)       min_int
2859   //         rdx: remainder (= rax, irem reg)       0
2860   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2861   const int min_int = 0x80000000;
2862   Label normal_case, special_case;
2863 
2864   // check for special case
2865   cmpl(rax, min_int);
2866   jcc(Assembler::notEqual, normal_case);
2867   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2868   cmpl(reg, -1);
2869   jcc(Assembler::equal, special_case);
2870 
2871   // handle normal case
2872   bind(normal_case);
2873   cdql();
2874   int idivl_offset = offset();
2875   idivl(reg);
2876 
2877   // normal and special case exit
2878   bind(special_case);
2879 
2880   return idivl_offset;
2881 }
2882 
2883 
2884 
2885 void MacroAssembler::decrementl(Register reg, int value) {
2886   if (value == min_jint) {subl(reg, value) ; return; }
2887   if (value <  0) { incrementl(reg, -value); return; }
2888   if (value == 0) {                        ; return; }
2889   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2890   /* else */      { subl(reg, value)       ; return; }
2891 }
2892 
2893 void MacroAssembler::decrementl(Address dst, int value) {
2894   if (value == min_jint) {subl(dst, value) ; return; }
2895   if (value <  0) { incrementl(dst, -value); return; }
2896   if (value == 0) {                        ; return; }
2897   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2898   /* else */      { subl(dst, value)       ; return; }
2899 }
2900 
2901 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2902   assert (shift_value > 0, "illegal shift value");
2903   Label _is_positive;
2904   testl (reg, reg);
2905   jcc (Assembler::positive, _is_positive);
2906   int offset = (1 << shift_value) - 1 ;
2907 
2908   if (offset == 1) {
2909     incrementl(reg);
2910   } else {
2911     addl(reg, offset);
2912   }
2913 
2914   bind (_is_positive);
2915   sarl(reg, shift_value);
2916 }
2917 
2918 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2919   if (reachable(src)) {
2920     Assembler::divsd(dst, as_Address(src));
2921   } else {
2922     lea(rscratch1, src);
2923     Assembler::divsd(dst, Address(rscratch1, 0));
2924   }
2925 }
2926 
2927 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2928   if (reachable(src)) {
2929     Assembler::divss(dst, as_Address(src));
2930   } else {
2931     lea(rscratch1, src);
2932     Assembler::divss(dst, Address(rscratch1, 0));
2933   }
2934 }
2935 
2936 // !defined(COMPILER2) is because of stupid core builds
2937 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2938 void MacroAssembler::empty_FPU_stack() {
2939   if (VM_Version::supports_mmx()) {
2940     emms();
2941   } else {
2942     for (int i = 8; i-- > 0; ) ffree(i);
2943   }
2944 }
2945 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2946 
2947 
2948 // Defines obj, preserves var_size_in_bytes
2949 void MacroAssembler::eden_allocate(Register obj,
2950                                    Register var_size_in_bytes,
2951                                    int con_size_in_bytes,
2952                                    Register t1,
2953                                    Label& slow_case) {
2954   assert(obj == rax, "obj must be in rax, for cmpxchg");
2955   assert_different_registers(obj, var_size_in_bytes, t1);
2956   if (!Universe::heap()->supports_inline_contig_alloc()) {
2957     jmp(slow_case);
2958   } else {
2959     Register end = t1;
2960     Label retry;
2961     bind(retry);
2962     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2963     movptr(obj, heap_top);
2964     if (var_size_in_bytes == noreg) {
2965       lea(end, Address(obj, con_size_in_bytes));
2966     } else {
2967       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2968     }
2969     // if end < obj then we wrapped around => object too long => slow case
2970     cmpptr(end, obj);
2971     jcc(Assembler::below, slow_case);
2972     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2973     jcc(Assembler::above, slow_case);
2974     // Compare obj with the top addr, and if still equal, store the new top addr in
2975     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2976     // it otherwise. Use lock prefix for atomicity on MPs.
2977     locked_cmpxchgptr(end, heap_top);
2978     jcc(Assembler::notEqual, retry);
2979   }
2980 }
2981 
2982 void MacroAssembler::enter() {
2983   push(rbp);
2984   mov(rbp, rsp);
2985 }
2986 
2987 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2988 void MacroAssembler::fat_nop() {
2989   if (UseAddressNop) {
2990     addr_nop_5();
2991   } else {
2992     emit_int8(0x26); // es:
2993     emit_int8(0x2e); // cs:
2994     emit_int8(0x64); // fs:
2995     emit_int8(0x65); // gs:
2996     emit_int8((unsigned char)0x90);
2997   }
2998 }
2999 
3000 void MacroAssembler::fcmp(Register tmp) {
3001   fcmp(tmp, 1, true, true);
3002 }
3003 
3004 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
3005   assert(!pop_right || pop_left, "usage error");
3006   if (VM_Version::supports_cmov()) {
3007     assert(tmp == noreg, "unneeded temp");
3008     if (pop_left) {
3009       fucomip(index);
3010     } else {
3011       fucomi(index);
3012     }
3013     if (pop_right) {
3014       fpop();
3015     }
3016   } else {
3017     assert(tmp != noreg, "need temp");
3018     if (pop_left) {
3019       if (pop_right) {
3020         fcompp();
3021       } else {
3022         fcomp(index);
3023       }
3024     } else {
3025       fcom(index);
3026     }
3027     // convert FPU condition into eflags condition via rax,
3028     save_rax(tmp);
3029     fwait(); fnstsw_ax();
3030     sahf();
3031     restore_rax(tmp);
3032   }
3033   // condition codes set as follows:
3034   //
3035   // CF (corresponds to C0) if x < y
3036   // PF (corresponds to C2) if unordered
3037   // ZF (corresponds to C3) if x = y
3038 }
3039 
3040 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3041   fcmp2int(dst, unordered_is_less, 1, true, true);
3042 }
3043 
3044 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3045   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3046   Label L;
3047   if (unordered_is_less) {
3048     movl(dst, -1);
3049     jcc(Assembler::parity, L);
3050     jcc(Assembler::below , L);
3051     movl(dst, 0);
3052     jcc(Assembler::equal , L);
3053     increment(dst);
3054   } else { // unordered is greater
3055     movl(dst, 1);
3056     jcc(Assembler::parity, L);
3057     jcc(Assembler::above , L);
3058     movl(dst, 0);
3059     jcc(Assembler::equal , L);
3060     decrementl(dst);
3061   }
3062   bind(L);
3063 }
3064 
3065 void MacroAssembler::fld_d(AddressLiteral src) {
3066   fld_d(as_Address(src));
3067 }
3068 
3069 void MacroAssembler::fld_s(AddressLiteral src) {
3070   fld_s(as_Address(src));
3071 }
3072 
3073 void MacroAssembler::fld_x(AddressLiteral src) {
3074   Assembler::fld_x(as_Address(src));
3075 }
3076 
3077 void MacroAssembler::fldcw(AddressLiteral src) {
3078   Assembler::fldcw(as_Address(src));
3079 }
3080 
3081 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3082   if (reachable(src)) {
3083     Assembler::mulpd(dst, as_Address(src));
3084   } else {
3085     lea(rscratch1, src);
3086     Assembler::mulpd(dst, Address(rscratch1, 0));
3087   }
3088 }
3089 
3090 void MacroAssembler::increase_precision() {
3091   subptr(rsp, BytesPerWord);
3092   fnstcw(Address(rsp, 0));
3093   movl(rax, Address(rsp, 0));
3094   orl(rax, 0x300);
3095   push(rax);
3096   fldcw(Address(rsp, 0));
3097   pop(rax);
3098 }
3099 
3100 void MacroAssembler::restore_precision() {
3101   fldcw(Address(rsp, 0));
3102   addptr(rsp, BytesPerWord);
3103 }
3104 
3105 void MacroAssembler::fpop() {
3106   ffree();
3107   fincstp();
3108 }
3109 
3110 void MacroAssembler::load_float(Address src) {
3111   if (UseSSE >= 1) {
3112     movflt(xmm0, src);
3113   } else {
3114     LP64_ONLY(ShouldNotReachHere());
3115     NOT_LP64(fld_s(src));
3116   }
3117 }
3118 
3119 void MacroAssembler::store_float(Address dst) {
3120   if (UseSSE >= 1) {
3121     movflt(dst, xmm0);
3122   } else {
3123     LP64_ONLY(ShouldNotReachHere());
3124     NOT_LP64(fstp_s(dst));
3125   }
3126 }
3127 
3128 void MacroAssembler::load_double(Address src) {
3129   if (UseSSE >= 2) {
3130     movdbl(xmm0, src);
3131   } else {
3132     LP64_ONLY(ShouldNotReachHere());
3133     NOT_LP64(fld_d(src));
3134   }
3135 }
3136 
3137 void MacroAssembler::store_double(Address dst) {
3138   if (UseSSE >= 2) {
3139     movdbl(dst, xmm0);
3140   } else {
3141     LP64_ONLY(ShouldNotReachHere());
3142     NOT_LP64(fstp_d(dst));
3143   }
3144 }
3145 
3146 void MacroAssembler::fremr(Register tmp) {
3147   save_rax(tmp);
3148   { Label L;
3149     bind(L);
3150     fprem();
3151     fwait(); fnstsw_ax();
3152 #ifdef _LP64
3153     testl(rax, 0x400);
3154     jcc(Assembler::notEqual, L);
3155 #else
3156     sahf();
3157     jcc(Assembler::parity, L);
3158 #endif // _LP64
3159   }
3160   restore_rax(tmp);
3161   // Result is in ST0.
3162   // Note: fxch & fpop to get rid of ST1
3163   // (otherwise FPU stack could overflow eventually)
3164   fxch(1);
3165   fpop();
3166 }
3167 
3168 // dst = c = a * b + c
3169 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3170   Assembler::vfmadd231sd(c, a, b);
3171   if (dst != c) {
3172     movdbl(dst, c);
3173   }
3174 }
3175 
3176 // dst = c = a * b + c
3177 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3178   Assembler::vfmadd231ss(c, a, b);
3179   if (dst != c) {
3180     movflt(dst, c);
3181   }
3182 }
3183 
3184 // dst = c = a * b + c
3185 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3186   Assembler::vfmadd231pd(c, a, b, vector_len);
3187   if (dst != c) {
3188     vmovdqu(dst, c);
3189   }
3190 }
3191 
3192 // dst = c = a * b + c
3193 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3194   Assembler::vfmadd231ps(c, a, b, vector_len);
3195   if (dst != c) {
3196     vmovdqu(dst, c);
3197   }
3198 }
3199 
3200 // dst = c = a * b + c
3201 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3202   Assembler::vfmadd231pd(c, a, b, vector_len);
3203   if (dst != c) {
3204     vmovdqu(dst, c);
3205   }
3206 }
3207 
3208 // dst = c = a * b + c
3209 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3210   Assembler::vfmadd231ps(c, a, b, vector_len);
3211   if (dst != c) {
3212     vmovdqu(dst, c);
3213   }
3214 }
3215 
3216 void MacroAssembler::incrementl(AddressLiteral dst) {
3217   if (reachable(dst)) {
3218     incrementl(as_Address(dst));
3219   } else {
3220     lea(rscratch1, dst);
3221     incrementl(Address(rscratch1, 0));
3222   }
3223 }
3224 
3225 void MacroAssembler::incrementl(ArrayAddress dst) {
3226   incrementl(as_Address(dst));
3227 }
3228 
3229 void MacroAssembler::incrementl(Register reg, int value) {
3230   if (value == min_jint) {addl(reg, value) ; return; }
3231   if (value <  0) { decrementl(reg, -value); return; }
3232   if (value == 0) {                        ; return; }
3233   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3234   /* else */      { addl(reg, value)       ; return; }
3235 }
3236 
3237 void MacroAssembler::incrementl(Address dst, int value) {
3238   if (value == min_jint) {addl(dst, value) ; return; }
3239   if (value <  0) { decrementl(dst, -value); return; }
3240   if (value == 0) {                        ; return; }
3241   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3242   /* else */      { addl(dst, value)       ; return; }
3243 }
3244 
3245 void MacroAssembler::jump(AddressLiteral dst) {
3246   if (reachable(dst)) {
3247     jmp_literal(dst.target(), dst.rspec());
3248   } else {
3249     lea(rscratch1, dst);
3250     jmp(rscratch1);
3251   }
3252 }
3253 
3254 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3255   if (reachable(dst)) {
3256     InstructionMark im(this);
3257     relocate(dst.reloc());
3258     const int short_size = 2;
3259     const int long_size = 6;
3260     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3261     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3262       // 0111 tttn #8-bit disp
3263       emit_int8(0x70 | cc);
3264       emit_int8((offs - short_size) & 0xFF);
3265     } else {
3266       // 0000 1111 1000 tttn #32-bit disp
3267       emit_int8(0x0F);
3268       emit_int8((unsigned char)(0x80 | cc));
3269       emit_int32(offs - long_size);
3270     }
3271   } else {
3272 #ifdef ASSERT
3273     warning("reversing conditional branch");
3274 #endif /* ASSERT */
3275     Label skip;
3276     jccb(reverse[cc], skip);
3277     lea(rscratch1, dst);
3278     Assembler::jmp(rscratch1);
3279     bind(skip);
3280   }
3281 }
3282 
3283 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3284   if (reachable(src)) {
3285     Assembler::ldmxcsr(as_Address(src));
3286   } else {
3287     lea(rscratch1, src);
3288     Assembler::ldmxcsr(Address(rscratch1, 0));
3289   }
3290 }
3291 
3292 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3293   int off;
3294   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3295     off = offset();
3296     movsbl(dst, src); // movsxb
3297   } else {
3298     off = load_unsigned_byte(dst, src);
3299     shll(dst, 24);
3300     sarl(dst, 24);
3301   }
3302   return off;
3303 }
3304 
3305 // Note: load_signed_short used to be called load_signed_word.
3306 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3307 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3308 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3309 int MacroAssembler::load_signed_short(Register dst, Address src) {
3310   int off;
3311   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3312     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3313     // version but this is what 64bit has always done. This seems to imply
3314     // that users are only using 32bits worth.
3315     off = offset();
3316     movswl(dst, src); // movsxw
3317   } else {
3318     off = load_unsigned_short(dst, src);
3319     shll(dst, 16);
3320     sarl(dst, 16);
3321   }
3322   return off;
3323 }
3324 
3325 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3326   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3327   // and "3.9 Partial Register Penalties", p. 22).
3328   int off;
3329   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3330     off = offset();
3331     movzbl(dst, src); // movzxb
3332   } else {
3333     xorl(dst, dst);
3334     off = offset();
3335     movb(dst, src);
3336   }
3337   return off;
3338 }
3339 
3340 // Note: load_unsigned_short used to be called load_unsigned_word.
3341 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3342   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3343   // and "3.9 Partial Register Penalties", p. 22).
3344   int off;
3345   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3346     off = offset();
3347     movzwl(dst, src); // movzxw
3348   } else {
3349     xorl(dst, dst);
3350     off = offset();
3351     movw(dst, src);
3352   }
3353   return off;
3354 }
3355 
3356 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3357   switch (size_in_bytes) {
3358 #ifndef _LP64
3359   case  8:
3360     assert(dst2 != noreg, "second dest register required");
3361     movl(dst,  src);
3362     movl(dst2, src.plus_disp(BytesPerInt));
3363     break;
3364 #else
3365   case  8:  movq(dst, src); break;
3366 #endif
3367   case  4:  movl(dst, src); break;
3368   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3369   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3370   default:  ShouldNotReachHere();
3371   }
3372 }
3373 
3374 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3375   switch (size_in_bytes) {
3376 #ifndef _LP64
3377   case  8:
3378     assert(src2 != noreg, "second source register required");
3379     movl(dst,                        src);
3380     movl(dst.plus_disp(BytesPerInt), src2);
3381     break;
3382 #else
3383   case  8:  movq(dst, src); break;
3384 #endif
3385   case  4:  movl(dst, src); break;
3386   case  2:  movw(dst, src); break;
3387   case  1:  movb(dst, src); break;
3388   default:  ShouldNotReachHere();
3389   }
3390 }
3391 
3392 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3393   if (reachable(dst)) {
3394     movl(as_Address(dst), src);
3395   } else {
3396     lea(rscratch1, dst);
3397     movl(Address(rscratch1, 0), src);
3398   }
3399 }
3400 
3401 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3402   if (reachable(src)) {
3403     movl(dst, as_Address(src));
3404   } else {
3405     lea(rscratch1, src);
3406     movl(dst, Address(rscratch1, 0));
3407   }
3408 }
3409 
3410 // C++ bool manipulation
3411 
3412 void MacroAssembler::movbool(Register dst, Address src) {
3413   if(sizeof(bool) == 1)
3414     movb(dst, src);
3415   else if(sizeof(bool) == 2)
3416     movw(dst, src);
3417   else if(sizeof(bool) == 4)
3418     movl(dst, src);
3419   else
3420     // unsupported
3421     ShouldNotReachHere();
3422 }
3423 
3424 void MacroAssembler::movbool(Address dst, bool boolconst) {
3425   if(sizeof(bool) == 1)
3426     movb(dst, (int) boolconst);
3427   else if(sizeof(bool) == 2)
3428     movw(dst, (int) boolconst);
3429   else if(sizeof(bool) == 4)
3430     movl(dst, (int) boolconst);
3431   else
3432     // unsupported
3433     ShouldNotReachHere();
3434 }
3435 
3436 void MacroAssembler::movbool(Address dst, Register src) {
3437   if(sizeof(bool) == 1)
3438     movb(dst, src);
3439   else if(sizeof(bool) == 2)
3440     movw(dst, src);
3441   else if(sizeof(bool) == 4)
3442     movl(dst, src);
3443   else
3444     // unsupported
3445     ShouldNotReachHere();
3446 }
3447 
3448 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3449   movb(as_Address(dst), src);
3450 }
3451 
3452 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3453   if (reachable(src)) {
3454     movdl(dst, as_Address(src));
3455   } else {
3456     lea(rscratch1, src);
3457     movdl(dst, Address(rscratch1, 0));
3458   }
3459 }
3460 
3461 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3462   if (reachable(src)) {
3463     movq(dst, as_Address(src));
3464   } else {
3465     lea(rscratch1, src);
3466     movq(dst, Address(rscratch1, 0));
3467   }
3468 }
3469 
3470 void MacroAssembler::setvectmask(Register dst, Register src) {
3471   Assembler::movl(dst, 1);
3472   Assembler::shlxl(dst, dst, src);
3473   Assembler::decl(dst);
3474   Assembler::kmovdl(k1, dst);
3475   Assembler::movl(dst, src);
3476 }
3477 
3478 void MacroAssembler::restorevectmask() {
3479   Assembler::knotwl(k1, k0);
3480 }
3481 
3482 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3483   if (reachable(src)) {
3484     if (UseXmmLoadAndClearUpper) {
3485       movsd (dst, as_Address(src));
3486     } else {
3487       movlpd(dst, as_Address(src));
3488     }
3489   } else {
3490     lea(rscratch1, src);
3491     if (UseXmmLoadAndClearUpper) {
3492       movsd (dst, Address(rscratch1, 0));
3493     } else {
3494       movlpd(dst, Address(rscratch1, 0));
3495     }
3496   }
3497 }
3498 
3499 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3500   if (reachable(src)) {
3501     movss(dst, as_Address(src));
3502   } else {
3503     lea(rscratch1, src);
3504     movss(dst, Address(rscratch1, 0));
3505   }
3506 }
3507 
3508 void MacroAssembler::movptr(Register dst, Register src) {
3509   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3510 }
3511 
3512 void MacroAssembler::movptr(Register dst, Address src) {
3513   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3514 }
3515 
3516 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3517 void MacroAssembler::movptr(Register dst, intptr_t src) {
3518   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3519 }
3520 
3521 void MacroAssembler::movptr(Address dst, Register src) {
3522   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3523 }
3524 
3525 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3526   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3527     Assembler::vextractf32x4(dst, src, 0);
3528   } else {
3529     Assembler::movdqu(dst, src);
3530   }
3531 }
3532 
3533 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3534   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3535     Assembler::vinsertf32x4(dst, dst, src, 0);
3536   } else {
3537     Assembler::movdqu(dst, src);
3538   }
3539 }
3540 
3541 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3542   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3543     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3544   } else {
3545     Assembler::movdqu(dst, src);
3546   }
3547 }
3548 
3549 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3550   if (reachable(src)) {
3551     movdqu(dst, as_Address(src));
3552   } else {
3553     lea(scratchReg, src);
3554     movdqu(dst, Address(scratchReg, 0));
3555   }
3556 }
3557 
3558 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3559   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3560     vextractf64x4_low(dst, src);
3561   } else {
3562     Assembler::vmovdqu(dst, src);
3563   }
3564 }
3565 
3566 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3567   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3568     vinsertf64x4_low(dst, src);
3569   } else {
3570     Assembler::vmovdqu(dst, src);
3571   }
3572 }
3573 
3574 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3575   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3576     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3577   }
3578   else {
3579     Assembler::vmovdqu(dst, src);
3580   }
3581 }
3582 
3583 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3584   if (reachable(src)) {
3585     vmovdqu(dst, as_Address(src));
3586   }
3587   else {
3588     lea(rscratch1, src);
3589     vmovdqu(dst, Address(rscratch1, 0));
3590   }
3591 }
3592 
3593 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
3594   if (reachable(src)) {
3595     Assembler::evmovdquq(dst, as_Address(src), vector_len);
3596   } else {
3597     lea(rscratch, src);
3598     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
3599   }
3600 }
3601 
3602 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3603   if (reachable(src)) {
3604     Assembler::movdqa(dst, as_Address(src));
3605   } else {
3606     lea(rscratch1, src);
3607     Assembler::movdqa(dst, Address(rscratch1, 0));
3608   }
3609 }
3610 
3611 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3612   if (reachable(src)) {
3613     Assembler::movsd(dst, as_Address(src));
3614   } else {
3615     lea(rscratch1, src);
3616     Assembler::movsd(dst, Address(rscratch1, 0));
3617   }
3618 }
3619 
3620 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3621   if (reachable(src)) {
3622     Assembler::movss(dst, as_Address(src));
3623   } else {
3624     lea(rscratch1, src);
3625     Assembler::movss(dst, Address(rscratch1, 0));
3626   }
3627 }
3628 
3629 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3630   if (reachable(src)) {
3631     Assembler::mulsd(dst, as_Address(src));
3632   } else {
3633     lea(rscratch1, src);
3634     Assembler::mulsd(dst, Address(rscratch1, 0));
3635   }
3636 }
3637 
3638 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3639   if (reachable(src)) {
3640     Assembler::mulss(dst, as_Address(src));
3641   } else {
3642     lea(rscratch1, src);
3643     Assembler::mulss(dst, Address(rscratch1, 0));
3644   }
3645 }
3646 
3647 void MacroAssembler::null_check(Register reg, int offset) {
3648   if (needs_explicit_null_check(offset)) {
3649     // provoke OS NULL exception if reg = NULL by
3650     // accessing M[reg] w/o changing any (non-CC) registers
3651     // NOTE: cmpl is plenty here to provoke a segv
3652     cmpptr(rax, Address(reg, 0));
3653     // Note: should probably use testl(rax, Address(reg, 0));
3654     //       may be shorter code (however, this version of
3655     //       testl needs to be implemented first)
3656   } else {
3657     // nothing to do, (later) access of M[reg + offset]
3658     // will provoke OS NULL exception if reg = NULL
3659   }
3660 }
3661 
3662 void MacroAssembler::os_breakpoint() {
3663   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3664   // (e.g., MSVC can't call ps() otherwise)
3665   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3666 }
3667 
3668 void MacroAssembler::unimplemented(const char* what) {
3669   const char* buf = NULL;
3670   {
3671     ResourceMark rm;
3672     stringStream ss;
3673     ss.print("unimplemented: %s", what);
3674     buf = code_string(ss.as_string());
3675   }
3676   stop(buf);
3677 }
3678 
3679 #ifdef _LP64
3680 #define XSTATE_BV 0x200
3681 #endif
3682 
3683 void MacroAssembler::pop_CPU_state() {
3684   pop_FPU_state();
3685   pop_IU_state();
3686 }
3687 
3688 void MacroAssembler::pop_FPU_state() {
3689 #ifndef _LP64
3690   frstor(Address(rsp, 0));
3691 #else
3692   fxrstor(Address(rsp, 0));
3693 #endif
3694   addptr(rsp, FPUStateSizeInWords * wordSize);
3695 }
3696 
3697 void MacroAssembler::pop_IU_state() {
3698   popa();
3699   LP64_ONLY(addq(rsp, 8));
3700   popf();
3701 }
3702 
3703 // Save Integer and Float state
3704 // Warning: Stack must be 16 byte aligned (64bit)
3705 void MacroAssembler::push_CPU_state() {
3706   push_IU_state();
3707   push_FPU_state();
3708 }
3709 
3710 void MacroAssembler::push_FPU_state() {
3711   subptr(rsp, FPUStateSizeInWords * wordSize);
3712 #ifndef _LP64
3713   fnsave(Address(rsp, 0));
3714   fwait();
3715 #else
3716   fxsave(Address(rsp, 0));
3717 #endif // LP64
3718 }
3719 
3720 void MacroAssembler::push_IU_state() {
3721   // Push flags first because pusha kills them
3722   pushf();
3723   // Make sure rsp stays 16-byte aligned
3724   LP64_ONLY(subq(rsp, 8));
3725   pusha();
3726 }
3727 
3728 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3729   if (!java_thread->is_valid()) {
3730     java_thread = rdi;
3731     get_thread(java_thread);
3732   }
3733   // we must set sp to zero to clear frame
3734   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3735   if (clear_fp) {
3736     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3737   }
3738 
3739   // Always clear the pc because it could have been set by make_walkable()
3740   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3741 
3742   vzeroupper();
3743 }
3744 
3745 void MacroAssembler::restore_rax(Register tmp) {
3746   if (tmp == noreg) pop(rax);
3747   else if (tmp != rax) mov(rax, tmp);
3748 }
3749 
3750 void MacroAssembler::round_to(Register reg, int modulus) {
3751   addptr(reg, modulus - 1);
3752   andptr(reg, -modulus);
3753 }
3754 
3755 void MacroAssembler::save_rax(Register tmp) {
3756   if (tmp == noreg) push(rax);
3757   else if (tmp != rax) mov(tmp, rax);
3758 }
3759 
3760 // Write serialization page so VM thread can do a pseudo remote membar.
3761 // We use the current thread pointer to calculate a thread specific
3762 // offset to write to within the page. This minimizes bus traffic
3763 // due to cache line collision.
3764 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3765   movl(tmp, thread);
3766   shrl(tmp, os::get_serialize_page_shift_count());
3767   andl(tmp, (os::vm_page_size() - sizeof(int)));
3768 
3769   Address index(noreg, tmp, Address::times_1);
3770   ExternalAddress page(os::get_memory_serialize_page());
3771 
3772   // Size of store must match masking code above
3773   movl(as_Address(ArrayAddress(page, index)), tmp);
3774 }
3775 
3776 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
3777   if (SafepointMechanism::uses_thread_local_poll()) {
3778 #ifdef _LP64
3779     assert(thread_reg == r15_thread, "should be");
3780 #else
3781     if (thread_reg == noreg) {
3782       thread_reg = temp_reg;
3783       get_thread(thread_reg);
3784     }
3785 #endif
3786     testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
3787     jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
3788   } else {
3789     cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
3790         SafepointSynchronize::_not_synchronized);
3791     jcc(Assembler::notEqual, slow_path);
3792   }
3793 }
3794 
3795 // Calls to C land
3796 //
3797 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3798 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3799 // has to be reset to 0. This is required to allow proper stack traversal.
3800 void MacroAssembler::set_last_Java_frame(Register java_thread,
3801                                          Register last_java_sp,
3802                                          Register last_java_fp,
3803                                          address  last_java_pc) {
3804   vzeroupper();
3805   // determine java_thread register
3806   if (!java_thread->is_valid()) {
3807     java_thread = rdi;
3808     get_thread(java_thread);
3809   }
3810   // determine last_java_sp register
3811   if (!last_java_sp->is_valid()) {
3812     last_java_sp = rsp;
3813   }
3814 
3815   // last_java_fp is optional
3816 
3817   if (last_java_fp->is_valid()) {
3818     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3819   }
3820 
3821   // last_java_pc is optional
3822 
3823   if (last_java_pc != NULL) {
3824     lea(Address(java_thread,
3825                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3826         InternalAddress(last_java_pc));
3827 
3828   }
3829   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3830 }
3831 
3832 void MacroAssembler::shlptr(Register dst, int imm8) {
3833   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3834 }
3835 
3836 void MacroAssembler::shrptr(Register dst, int imm8) {
3837   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3838 }
3839 
3840 void MacroAssembler::sign_extend_byte(Register reg) {
3841   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3842     movsbl(reg, reg); // movsxb
3843   } else {
3844     shll(reg, 24);
3845     sarl(reg, 24);
3846   }
3847 }
3848 
3849 void MacroAssembler::sign_extend_short(Register reg) {
3850   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3851     movswl(reg, reg); // movsxw
3852   } else {
3853     shll(reg, 16);
3854     sarl(reg, 16);
3855   }
3856 }
3857 
3858 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3859   assert(reachable(src), "Address should be reachable");
3860   testl(dst, as_Address(src));
3861 }
3862 
3863 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3864   int dst_enc = dst->encoding();
3865   int src_enc = src->encoding();
3866   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3867     Assembler::pcmpeqb(dst, src);
3868   } else if ((dst_enc < 16) && (src_enc < 16)) {
3869     Assembler::pcmpeqb(dst, src);
3870   } else if (src_enc < 16) {
3871     subptr(rsp, 64);
3872     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3873     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3874     Assembler::pcmpeqb(xmm0, src);
3875     movdqu(dst, xmm0);
3876     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3877     addptr(rsp, 64);
3878   } else if (dst_enc < 16) {
3879     subptr(rsp, 64);
3880     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3881     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3882     Assembler::pcmpeqb(dst, xmm0);
3883     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3884     addptr(rsp, 64);
3885   } else {
3886     subptr(rsp, 64);
3887     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3888     subptr(rsp, 64);
3889     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3890     movdqu(xmm0, src);
3891     movdqu(xmm1, dst);
3892     Assembler::pcmpeqb(xmm1, xmm0);
3893     movdqu(dst, xmm1);
3894     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3895     addptr(rsp, 64);
3896     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3897     addptr(rsp, 64);
3898   }
3899 }
3900 
3901 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3902   int dst_enc = dst->encoding();
3903   int src_enc = src->encoding();
3904   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3905     Assembler::pcmpeqw(dst, src);
3906   } else if ((dst_enc < 16) && (src_enc < 16)) {
3907     Assembler::pcmpeqw(dst, src);
3908   } else if (src_enc < 16) {
3909     subptr(rsp, 64);
3910     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3911     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3912     Assembler::pcmpeqw(xmm0, src);
3913     movdqu(dst, xmm0);
3914     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3915     addptr(rsp, 64);
3916   } else if (dst_enc < 16) {
3917     subptr(rsp, 64);
3918     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3919     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3920     Assembler::pcmpeqw(dst, xmm0);
3921     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3922     addptr(rsp, 64);
3923   } else {
3924     subptr(rsp, 64);
3925     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3926     subptr(rsp, 64);
3927     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3928     movdqu(xmm0, src);
3929     movdqu(xmm1, dst);
3930     Assembler::pcmpeqw(xmm1, xmm0);
3931     movdqu(dst, xmm1);
3932     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3933     addptr(rsp, 64);
3934     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3935     addptr(rsp, 64);
3936   }
3937 }
3938 
3939 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3940   int dst_enc = dst->encoding();
3941   if (dst_enc < 16) {
3942     Assembler::pcmpestri(dst, src, imm8);
3943   } else {
3944     subptr(rsp, 64);
3945     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3946     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3947     Assembler::pcmpestri(xmm0, src, imm8);
3948     movdqu(dst, xmm0);
3949     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3950     addptr(rsp, 64);
3951   }
3952 }
3953 
3954 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3955   int dst_enc = dst->encoding();
3956   int src_enc = src->encoding();
3957   if ((dst_enc < 16) && (src_enc < 16)) {
3958     Assembler::pcmpestri(dst, src, imm8);
3959   } else if (src_enc < 16) {
3960     subptr(rsp, 64);
3961     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3962     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3963     Assembler::pcmpestri(xmm0, src, imm8);
3964     movdqu(dst, xmm0);
3965     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3966     addptr(rsp, 64);
3967   } else if (dst_enc < 16) {
3968     subptr(rsp, 64);
3969     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3970     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3971     Assembler::pcmpestri(dst, xmm0, imm8);
3972     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3973     addptr(rsp, 64);
3974   } else {
3975     subptr(rsp, 64);
3976     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3977     subptr(rsp, 64);
3978     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3979     movdqu(xmm0, src);
3980     movdqu(xmm1, dst);
3981     Assembler::pcmpestri(xmm1, xmm0, imm8);
3982     movdqu(dst, xmm1);
3983     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3984     addptr(rsp, 64);
3985     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3986     addptr(rsp, 64);
3987   }
3988 }
3989 
3990 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3991   int dst_enc = dst->encoding();
3992   int src_enc = src->encoding();
3993   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3994     Assembler::pmovzxbw(dst, src);
3995   } else if ((dst_enc < 16) && (src_enc < 16)) {
3996     Assembler::pmovzxbw(dst, src);
3997   } else if (src_enc < 16) {
3998     subptr(rsp, 64);
3999     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4000     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4001     Assembler::pmovzxbw(xmm0, src);
4002     movdqu(dst, xmm0);
4003     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4004     addptr(rsp, 64);
4005   } else if (dst_enc < 16) {
4006     subptr(rsp, 64);
4007     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4008     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4009     Assembler::pmovzxbw(dst, xmm0);
4010     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4011     addptr(rsp, 64);
4012   } else {
4013     subptr(rsp, 64);
4014     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4015     subptr(rsp, 64);
4016     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4017     movdqu(xmm0, src);
4018     movdqu(xmm1, dst);
4019     Assembler::pmovzxbw(xmm1, xmm0);
4020     movdqu(dst, xmm1);
4021     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4022     addptr(rsp, 64);
4023     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4024     addptr(rsp, 64);
4025   }
4026 }
4027 
4028 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
4029   int dst_enc = dst->encoding();
4030   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4031     Assembler::pmovzxbw(dst, src);
4032   } else if (dst_enc < 16) {
4033     Assembler::pmovzxbw(dst, src);
4034   } else {
4035     subptr(rsp, 64);
4036     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4037     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4038     Assembler::pmovzxbw(xmm0, src);
4039     movdqu(dst, xmm0);
4040     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4041     addptr(rsp, 64);
4042   }
4043 }
4044 
4045 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
4046   int src_enc = src->encoding();
4047   if (src_enc < 16) {
4048     Assembler::pmovmskb(dst, src);
4049   } else {
4050     subptr(rsp, 64);
4051     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4052     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4053     Assembler::pmovmskb(dst, xmm0);
4054     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4055     addptr(rsp, 64);
4056   }
4057 }
4058 
4059 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
4060   int dst_enc = dst->encoding();
4061   int src_enc = src->encoding();
4062   if ((dst_enc < 16) && (src_enc < 16)) {
4063     Assembler::ptest(dst, src);
4064   } else if (src_enc < 16) {
4065     subptr(rsp, 64);
4066     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4067     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4068     Assembler::ptest(xmm0, src);
4069     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4070     addptr(rsp, 64);
4071   } else if (dst_enc < 16) {
4072     subptr(rsp, 64);
4073     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4074     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4075     Assembler::ptest(dst, xmm0);
4076     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4077     addptr(rsp, 64);
4078   } else {
4079     subptr(rsp, 64);
4080     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4081     subptr(rsp, 64);
4082     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4083     movdqu(xmm0, src);
4084     movdqu(xmm1, dst);
4085     Assembler::ptest(xmm1, xmm0);
4086     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4087     addptr(rsp, 64);
4088     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4089     addptr(rsp, 64);
4090   }
4091 }
4092 
4093 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
4094   if (reachable(src)) {
4095     Assembler::sqrtsd(dst, as_Address(src));
4096   } else {
4097     lea(rscratch1, src);
4098     Assembler::sqrtsd(dst, Address(rscratch1, 0));
4099   }
4100 }
4101 
4102 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
4103   if (reachable(src)) {
4104     Assembler::sqrtss(dst, as_Address(src));
4105   } else {
4106     lea(rscratch1, src);
4107     Assembler::sqrtss(dst, Address(rscratch1, 0));
4108   }
4109 }
4110 
4111 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
4112   if (reachable(src)) {
4113     Assembler::subsd(dst, as_Address(src));
4114   } else {
4115     lea(rscratch1, src);
4116     Assembler::subsd(dst, Address(rscratch1, 0));
4117   }
4118 }
4119 
4120 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4121   if (reachable(src)) {
4122     Assembler::subss(dst, as_Address(src));
4123   } else {
4124     lea(rscratch1, src);
4125     Assembler::subss(dst, Address(rscratch1, 0));
4126   }
4127 }
4128 
4129 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4130   if (reachable(src)) {
4131     Assembler::ucomisd(dst, as_Address(src));
4132   } else {
4133     lea(rscratch1, src);
4134     Assembler::ucomisd(dst, Address(rscratch1, 0));
4135   }
4136 }
4137 
4138 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4139   if (reachable(src)) {
4140     Assembler::ucomiss(dst, as_Address(src));
4141   } else {
4142     lea(rscratch1, src);
4143     Assembler::ucomiss(dst, Address(rscratch1, 0));
4144   }
4145 }
4146 
4147 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4148   // Used in sign-bit flipping with aligned address.
4149   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4150   if (reachable(src)) {
4151     Assembler::xorpd(dst, as_Address(src));
4152   } else {
4153     lea(rscratch1, src);
4154     Assembler::xorpd(dst, Address(rscratch1, 0));
4155   }
4156 }
4157 
4158 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4159   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4160     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4161   }
4162   else {
4163     Assembler::xorpd(dst, src);
4164   }
4165 }
4166 
4167 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4168   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4169     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4170   } else {
4171     Assembler::xorps(dst, src);
4172   }
4173 }
4174 
4175 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4176   // Used in sign-bit flipping with aligned address.
4177   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4178   if (reachable(src)) {
4179     Assembler::xorps(dst, as_Address(src));
4180   } else {
4181     lea(rscratch1, src);
4182     Assembler::xorps(dst, Address(rscratch1, 0));
4183   }
4184 }
4185 
4186 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4187   // Used in sign-bit flipping with aligned address.
4188   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4189   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4190   if (reachable(src)) {
4191     Assembler::pshufb(dst, as_Address(src));
4192   } else {
4193     lea(rscratch1, src);
4194     Assembler::pshufb(dst, Address(rscratch1, 0));
4195   }
4196 }
4197 
4198 // AVX 3-operands instructions
4199 
4200 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4201   if (reachable(src)) {
4202     vaddsd(dst, nds, as_Address(src));
4203   } else {
4204     lea(rscratch1, src);
4205     vaddsd(dst, nds, Address(rscratch1, 0));
4206   }
4207 }
4208 
4209 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4210   if (reachable(src)) {
4211     vaddss(dst, nds, as_Address(src));
4212   } else {
4213     lea(rscratch1, src);
4214     vaddss(dst, nds, Address(rscratch1, 0));
4215   }
4216 }
4217 
4218 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4219   int dst_enc = dst->encoding();
4220   int nds_enc = nds->encoding();
4221   int src_enc = src->encoding();
4222   if ((dst_enc < 16) && (nds_enc < 16)) {
4223     vandps(dst, nds, negate_field, vector_len);
4224   } else if ((src_enc < 16) && (dst_enc < 16)) {
4225     evmovdqul(src, nds, Assembler::AVX_512bit);
4226     vandps(dst, src, negate_field, vector_len);
4227   } else if (src_enc < 16) {
4228     evmovdqul(src, nds, Assembler::AVX_512bit);
4229     vandps(src, src, negate_field, vector_len);
4230     evmovdqul(dst, src, Assembler::AVX_512bit);
4231   } else if (dst_enc < 16) {
4232     evmovdqul(src, xmm0, Assembler::AVX_512bit);
4233     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4234     vandps(dst, xmm0, negate_field, vector_len);
4235     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4236   } else {
4237     if (src_enc != dst_enc) {
4238       evmovdqul(src, xmm0, Assembler::AVX_512bit);
4239       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4240       vandps(xmm0, xmm0, negate_field, vector_len);
4241       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4242       evmovdqul(xmm0, src, Assembler::AVX_512bit);
4243     } else {
4244       subptr(rsp, 64);
4245       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4246       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4247       vandps(xmm0, xmm0, negate_field, vector_len);
4248       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4249       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4250       addptr(rsp, 64);
4251     }
4252   }
4253 }
4254 
4255 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4256   int dst_enc = dst->encoding();
4257   int nds_enc = nds->encoding();
4258   int src_enc = src->encoding();
4259   if ((dst_enc < 16) && (nds_enc < 16)) {
4260     vandpd(dst, nds, negate_field, vector_len);
4261   } else if ((src_enc < 16) && (dst_enc < 16)) {
4262     evmovdqul(src, nds, Assembler::AVX_512bit);
4263     vandpd(dst, src, negate_field, vector_len);
4264   } else if (src_enc < 16) {
4265     evmovdqul(src, nds, Assembler::AVX_512bit);
4266     vandpd(src, src, negate_field, vector_len);
4267     evmovdqul(dst, src, Assembler::AVX_512bit);
4268   } else if (dst_enc < 16) {
4269     evmovdqul(src, xmm0, Assembler::AVX_512bit);
4270     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4271     vandpd(dst, xmm0, negate_field, vector_len);
4272     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4273   } else {
4274     if (src_enc != dst_enc) {
4275       evmovdqul(src, xmm0, Assembler::AVX_512bit);
4276       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4277       vandpd(xmm0, xmm0, negate_field, vector_len);
4278       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4279       evmovdqul(xmm0, src, Assembler::AVX_512bit);
4280     } else {
4281       subptr(rsp, 64);
4282       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4283       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4284       vandpd(xmm0, xmm0, negate_field, vector_len);
4285       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4286       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4287       addptr(rsp, 64);
4288     }
4289   }
4290 }
4291 
4292 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4293   int dst_enc = dst->encoding();
4294   int nds_enc = nds->encoding();
4295   int src_enc = src->encoding();
4296   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4297     Assembler::vpaddb(dst, nds, src, vector_len);
4298   } else if ((dst_enc < 16) && (src_enc < 16)) {
4299     Assembler::vpaddb(dst, dst, src, vector_len);
4300   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4301     // use nds as scratch for src
4302     evmovdqul(nds, src, Assembler::AVX_512bit);
4303     Assembler::vpaddb(dst, dst, nds, vector_len);
4304   } else if ((src_enc < 16) && (nds_enc < 16)) {
4305     // use nds as scratch for dst
4306     evmovdqul(nds, dst, Assembler::AVX_512bit);
4307     Assembler::vpaddb(nds, nds, src, vector_len);
4308     evmovdqul(dst, nds, Assembler::AVX_512bit);
4309   } else if (dst_enc < 16) {
4310     // use nds as scatch for xmm0 to hold src
4311     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4312     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4313     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4314     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4315   } else {
4316     // worse case scenario, all regs are in the upper bank
4317     subptr(rsp, 64);
4318     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4319     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4320     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4321     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4322     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4323     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4324     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4325     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4326     addptr(rsp, 64);
4327   }
4328 }
4329 
4330 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4331   int dst_enc = dst->encoding();
4332   int nds_enc = nds->encoding();
4333   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4334     Assembler::vpaddb(dst, nds, src, vector_len);
4335   } else if (dst_enc < 16) {
4336     Assembler::vpaddb(dst, dst, src, vector_len);
4337   } else if (nds_enc < 16) {
4338     // implies dst_enc in upper bank with src as scratch
4339     evmovdqul(nds, dst, Assembler::AVX_512bit);
4340     Assembler::vpaddb(nds, nds, src, vector_len);
4341     evmovdqul(dst, nds, Assembler::AVX_512bit);
4342   } else {
4343     // worse case scenario, all regs in upper bank
4344     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4345     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4346     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4347     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4348   }
4349 }
4350 
4351 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4352   int dst_enc = dst->encoding();
4353   int nds_enc = nds->encoding();
4354   int src_enc = src->encoding();
4355   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4356     Assembler::vpaddw(dst, nds, src, vector_len);
4357   } else if ((dst_enc < 16) && (src_enc < 16)) {
4358     Assembler::vpaddw(dst, dst, src, vector_len);
4359   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4360     // use nds as scratch for src
4361     evmovdqul(nds, src, Assembler::AVX_512bit);
4362     Assembler::vpaddw(dst, dst, nds, vector_len);
4363   } else if ((src_enc < 16) && (nds_enc < 16)) {
4364     // use nds as scratch for dst
4365     evmovdqul(nds, dst, Assembler::AVX_512bit);
4366     Assembler::vpaddw(nds, nds, src, vector_len);
4367     evmovdqul(dst, nds, Assembler::AVX_512bit);
4368   } else if (dst_enc < 16) {
4369     // use nds as scatch for xmm0 to hold src
4370     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4371     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4372     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4373     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4374   } else {
4375     // worse case scenario, all regs are in the upper bank
4376     subptr(rsp, 64);
4377     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4378     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4379     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4380     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4381     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4382     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4383     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4384     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4385     addptr(rsp, 64);
4386   }
4387 }
4388 
4389 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4390   int dst_enc = dst->encoding();
4391   int nds_enc = nds->encoding();
4392   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4393     Assembler::vpaddw(dst, nds, src, vector_len);
4394   } else if (dst_enc < 16) {
4395     Assembler::vpaddw(dst, dst, src, vector_len);
4396   } else if (nds_enc < 16) {
4397     // implies dst_enc in upper bank with src as scratch
4398     evmovdqul(nds, dst, Assembler::AVX_512bit);
4399     Assembler::vpaddw(nds, nds, src, vector_len);
4400     evmovdqul(dst, nds, Assembler::AVX_512bit);
4401   } else {
4402     // worse case scenario, all regs in upper bank
4403     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4404     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4405     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4406     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4407   }
4408 }
4409 
4410 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4411   if (reachable(src)) {
4412     Assembler::vpand(dst, nds, as_Address(src), vector_len);
4413   } else {
4414     lea(rscratch1, src);
4415     Assembler::vpand(dst, nds, Address(rscratch1, 0), vector_len);
4416   }
4417 }
4418 
4419 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4420   int dst_enc = dst->encoding();
4421   int src_enc = src->encoding();
4422   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4423     Assembler::vpbroadcastw(dst, src);
4424   } else if ((dst_enc < 16) && (src_enc < 16)) {
4425     Assembler::vpbroadcastw(dst, src);
4426   } else if (src_enc < 16) {
4427     subptr(rsp, 64);
4428     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4429     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4430     Assembler::vpbroadcastw(xmm0, src);
4431     movdqu(dst, xmm0);
4432     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4433     addptr(rsp, 64);
4434   } else if (dst_enc < 16) {
4435     subptr(rsp, 64);
4436     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4437     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4438     Assembler::vpbroadcastw(dst, xmm0);
4439     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4440     addptr(rsp, 64);
4441   } else {
4442     subptr(rsp, 64);
4443     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4444     subptr(rsp, 64);
4445     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4446     movdqu(xmm0, src);
4447     movdqu(xmm1, dst);
4448     Assembler::vpbroadcastw(xmm1, xmm0);
4449     movdqu(dst, xmm1);
4450     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4451     addptr(rsp, 64);
4452     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4453     addptr(rsp, 64);
4454   }
4455 }
4456 
4457 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4458   int dst_enc = dst->encoding();
4459   int nds_enc = nds->encoding();
4460   int src_enc = src->encoding();
4461   assert(dst_enc == nds_enc, "");
4462   if ((dst_enc < 16) && (src_enc < 16)) {
4463     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4464   } else if (src_enc < 16) {
4465     subptr(rsp, 64);
4466     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4467     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4468     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4469     movdqu(dst, xmm0);
4470     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4471     addptr(rsp, 64);
4472   } else if (dst_enc < 16) {
4473     subptr(rsp, 64);
4474     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4475     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4476     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4477     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4478     addptr(rsp, 64);
4479   } else {
4480     subptr(rsp, 64);
4481     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4482     subptr(rsp, 64);
4483     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4484     movdqu(xmm0, src);
4485     movdqu(xmm1, dst);
4486     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4487     movdqu(dst, xmm1);
4488     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4489     addptr(rsp, 64);
4490     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4491     addptr(rsp, 64);
4492   }
4493 }
4494 
4495 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4496   int dst_enc = dst->encoding();
4497   int nds_enc = nds->encoding();
4498   int src_enc = src->encoding();
4499   assert(dst_enc == nds_enc, "");
4500   if ((dst_enc < 16) && (src_enc < 16)) {
4501     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4502   } else if (src_enc < 16) {
4503     subptr(rsp, 64);
4504     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4505     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4506     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4507     movdqu(dst, xmm0);
4508     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4509     addptr(rsp, 64);
4510   } else if (dst_enc < 16) {
4511     subptr(rsp, 64);
4512     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4513     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4514     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4515     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4516     addptr(rsp, 64);
4517   } else {
4518     subptr(rsp, 64);
4519     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4520     subptr(rsp, 64);
4521     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4522     movdqu(xmm0, src);
4523     movdqu(xmm1, dst);
4524     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4525     movdqu(dst, xmm1);
4526     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4527     addptr(rsp, 64);
4528     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4529     addptr(rsp, 64);
4530   }
4531 }
4532 
4533 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4534   int dst_enc = dst->encoding();
4535   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4536     Assembler::vpmovzxbw(dst, src, vector_len);
4537   } else if (dst_enc < 16) {
4538     Assembler::vpmovzxbw(dst, src, vector_len);
4539   } else {
4540     subptr(rsp, 64);
4541     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4542     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4543     Assembler::vpmovzxbw(xmm0, src, vector_len);
4544     movdqu(dst, xmm0);
4545     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4546     addptr(rsp, 64);
4547   }
4548 }
4549 
4550 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4551   int src_enc = src->encoding();
4552   if (src_enc < 16) {
4553     Assembler::vpmovmskb(dst, src);
4554   } else {
4555     subptr(rsp, 64);
4556     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4557     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4558     Assembler::vpmovmskb(dst, xmm0);
4559     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4560     addptr(rsp, 64);
4561   }
4562 }
4563 
4564 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4565   int dst_enc = dst->encoding();
4566   int nds_enc = nds->encoding();
4567   int src_enc = src->encoding();
4568   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4569     Assembler::vpmullw(dst, nds, src, vector_len);
4570   } else if ((dst_enc < 16) && (src_enc < 16)) {
4571     Assembler::vpmullw(dst, dst, src, vector_len);
4572   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4573     // use nds as scratch for src
4574     evmovdqul(nds, src, Assembler::AVX_512bit);
4575     Assembler::vpmullw(dst, dst, nds, vector_len);
4576   } else if ((src_enc < 16) && (nds_enc < 16)) {
4577     // use nds as scratch for dst
4578     evmovdqul(nds, dst, Assembler::AVX_512bit);
4579     Assembler::vpmullw(nds, nds, src, vector_len);
4580     evmovdqul(dst, nds, Assembler::AVX_512bit);
4581   } else if (dst_enc < 16) {
4582     // use nds as scatch for xmm0 to hold src
4583     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4584     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4585     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4586     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4587   } else {
4588     // worse case scenario, all regs are in the upper bank
4589     subptr(rsp, 64);
4590     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4591     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4592     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4593     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4594     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4595     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4596     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4597     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4598     addptr(rsp, 64);
4599   }
4600 }
4601 
4602 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4603   int dst_enc = dst->encoding();
4604   int nds_enc = nds->encoding();
4605   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4606     Assembler::vpmullw(dst, nds, src, vector_len);
4607   } else if (dst_enc < 16) {
4608     Assembler::vpmullw(dst, dst, src, vector_len);
4609   } else if (nds_enc < 16) {
4610     // implies dst_enc in upper bank with src as scratch
4611     evmovdqul(nds, dst, Assembler::AVX_512bit);
4612     Assembler::vpmullw(nds, nds, src, vector_len);
4613     evmovdqul(dst, nds, Assembler::AVX_512bit);
4614   } else {
4615     // worse case scenario, all regs in upper bank
4616     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4617     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4618     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4619     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4620   }
4621 }
4622 
4623 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4624   int dst_enc = dst->encoding();
4625   int nds_enc = nds->encoding();
4626   int src_enc = src->encoding();
4627   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4628     Assembler::vpsubb(dst, nds, src, vector_len);
4629   } else if ((dst_enc < 16) && (src_enc < 16)) {
4630     Assembler::vpsubb(dst, dst, src, vector_len);
4631   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4632     // use nds as scratch for src
4633     evmovdqul(nds, src, Assembler::AVX_512bit);
4634     Assembler::vpsubb(dst, dst, nds, vector_len);
4635   } else if ((src_enc < 16) && (nds_enc < 16)) {
4636     // use nds as scratch for dst
4637     evmovdqul(nds, dst, Assembler::AVX_512bit);
4638     Assembler::vpsubb(nds, nds, src, vector_len);
4639     evmovdqul(dst, nds, Assembler::AVX_512bit);
4640   } else if (dst_enc < 16) {
4641     // use nds as scatch for xmm0 to hold src
4642     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4643     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4644     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4645     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4646   } else {
4647     // worse case scenario, all regs are in the upper bank
4648     subptr(rsp, 64);
4649     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4650     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4651     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4652     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4653     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4654     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4655     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4656     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4657     addptr(rsp, 64);
4658   }
4659 }
4660 
4661 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4662   int dst_enc = dst->encoding();
4663   int nds_enc = nds->encoding();
4664   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4665     Assembler::vpsubb(dst, nds, src, vector_len);
4666   } else if (dst_enc < 16) {
4667     Assembler::vpsubb(dst, dst, src, vector_len);
4668   } else if (nds_enc < 16) {
4669     // implies dst_enc in upper bank with src as scratch
4670     evmovdqul(nds, dst, Assembler::AVX_512bit);
4671     Assembler::vpsubb(nds, nds, src, vector_len);
4672     evmovdqul(dst, nds, Assembler::AVX_512bit);
4673   } else {
4674     // worse case scenario, all regs in upper bank
4675     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4676     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4677     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4678     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4679   }
4680 }
4681 
4682 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4683   int dst_enc = dst->encoding();
4684   int nds_enc = nds->encoding();
4685   int src_enc = src->encoding();
4686   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4687     Assembler::vpsubw(dst, nds, src, vector_len);
4688   } else if ((dst_enc < 16) && (src_enc < 16)) {
4689     Assembler::vpsubw(dst, dst, src, vector_len);
4690   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4691     // use nds as scratch for src
4692     evmovdqul(nds, src, Assembler::AVX_512bit);
4693     Assembler::vpsubw(dst, dst, nds, vector_len);
4694   } else if ((src_enc < 16) && (nds_enc < 16)) {
4695     // use nds as scratch for dst
4696     evmovdqul(nds, dst, Assembler::AVX_512bit);
4697     Assembler::vpsubw(nds, nds, src, vector_len);
4698     evmovdqul(dst, nds, Assembler::AVX_512bit);
4699   } else if (dst_enc < 16) {
4700     // use nds as scatch for xmm0 to hold src
4701     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4702     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4703     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4704     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4705   } else {
4706     // worse case scenario, all regs are in the upper bank
4707     subptr(rsp, 64);
4708     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4709     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4710     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4711     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4712     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4713     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4714     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4715     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4716     addptr(rsp, 64);
4717   }
4718 }
4719 
4720 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4721   int dst_enc = dst->encoding();
4722   int nds_enc = nds->encoding();
4723   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4724     Assembler::vpsubw(dst, nds, src, vector_len);
4725   } else if (dst_enc < 16) {
4726     Assembler::vpsubw(dst, dst, src, vector_len);
4727   } else if (nds_enc < 16) {
4728     // implies dst_enc in upper bank with src as scratch
4729     evmovdqul(nds, dst, Assembler::AVX_512bit);
4730     Assembler::vpsubw(nds, nds, src, vector_len);
4731     evmovdqul(dst, nds, Assembler::AVX_512bit);
4732   } else {
4733     // worse case scenario, all regs in upper bank
4734     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4735     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4736     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4737     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4738   }
4739 }
4740 
4741 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4742   int dst_enc = dst->encoding();
4743   int nds_enc = nds->encoding();
4744   int shift_enc = shift->encoding();
4745   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4746     Assembler::vpsraw(dst, nds, shift, vector_len);
4747   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4748     Assembler::vpsraw(dst, dst, shift, vector_len);
4749   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4750     // use nds_enc as scratch with shift
4751     evmovdqul(nds, shift, Assembler::AVX_512bit);
4752     Assembler::vpsraw(dst, dst, nds, vector_len);
4753   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4754     // use nds as scratch with dst
4755     evmovdqul(nds, dst, Assembler::AVX_512bit);
4756     Assembler::vpsraw(nds, nds, shift, vector_len);
4757     evmovdqul(dst, nds, Assembler::AVX_512bit);
4758   } else if (dst_enc < 16) {
4759     // use nds to save a copy of xmm0 and hold shift
4760     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4761     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4762     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4763     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4764   } else if (nds_enc < 16) {
4765     // use nds as dest as temps
4766     evmovdqul(nds, dst, Assembler::AVX_512bit);
4767     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4768     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4769     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4770     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4771     evmovdqul(dst, nds, Assembler::AVX_512bit);
4772   } else {
4773     // worse case scenario, all regs are in the upper bank
4774     subptr(rsp, 64);
4775     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4776     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4777     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4778     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4779     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4780     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4781     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4782     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4783     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4784     addptr(rsp, 64);
4785   }
4786 }
4787 
4788 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4789   int dst_enc = dst->encoding();
4790   int nds_enc = nds->encoding();
4791   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4792     Assembler::vpsraw(dst, nds, shift, vector_len);
4793   } else if (dst_enc < 16) {
4794     Assembler::vpsraw(dst, dst, shift, vector_len);
4795   } else if (nds_enc < 16) {
4796     // use nds as scratch
4797     evmovdqul(nds, dst, Assembler::AVX_512bit);
4798     Assembler::vpsraw(nds, nds, shift, vector_len);
4799     evmovdqul(dst, nds, Assembler::AVX_512bit);
4800   } else {
4801     // use nds as scratch for xmm0
4802     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4803     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4804     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4805     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4806   }
4807 }
4808 
4809 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4810   int dst_enc = dst->encoding();
4811   int nds_enc = nds->encoding();
4812   int shift_enc = shift->encoding();
4813   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4814     Assembler::vpsrlw(dst, nds, shift, vector_len);
4815   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4816     Assembler::vpsrlw(dst, dst, shift, vector_len);
4817   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4818     // use nds_enc as scratch with shift
4819     evmovdqul(nds, shift, Assembler::AVX_512bit);
4820     Assembler::vpsrlw(dst, dst, nds, vector_len);
4821   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4822     // use nds as scratch with dst
4823     evmovdqul(nds, dst, Assembler::AVX_512bit);
4824     Assembler::vpsrlw(nds, nds, shift, vector_len);
4825     evmovdqul(dst, nds, Assembler::AVX_512bit);
4826   } else if (dst_enc < 16) {
4827     // use nds to save a copy of xmm0 and hold shift
4828     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4829     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4830     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4831     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4832   } else if (nds_enc < 16) {
4833     // use nds as dest as temps
4834     evmovdqul(nds, dst, Assembler::AVX_512bit);
4835     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4836     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4837     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4838     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4839     evmovdqul(dst, nds, Assembler::AVX_512bit);
4840   } else {
4841     // worse case scenario, all regs are in the upper bank
4842     subptr(rsp, 64);
4843     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4844     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4845     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4846     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4847     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4848     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4849     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4850     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4851     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4852     addptr(rsp, 64);
4853   }
4854 }
4855 
4856 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4857   int dst_enc = dst->encoding();
4858   int nds_enc = nds->encoding();
4859   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4860     Assembler::vpsrlw(dst, nds, shift, vector_len);
4861   } else if (dst_enc < 16) {
4862     Assembler::vpsrlw(dst, dst, shift, vector_len);
4863   } else if (nds_enc < 16) {
4864     // use nds as scratch
4865     evmovdqul(nds, dst, Assembler::AVX_512bit);
4866     Assembler::vpsrlw(nds, nds, shift, vector_len);
4867     evmovdqul(dst, nds, Assembler::AVX_512bit);
4868   } else {
4869     // use nds as scratch for xmm0
4870     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4871     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4872     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4873     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4874   }
4875 }
4876 
4877 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4878   int dst_enc = dst->encoding();
4879   int nds_enc = nds->encoding();
4880   int shift_enc = shift->encoding();
4881   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4882     Assembler::vpsllw(dst, nds, shift, vector_len);
4883   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4884     Assembler::vpsllw(dst, dst, shift, vector_len);
4885   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4886     // use nds_enc as scratch with shift
4887     evmovdqul(nds, shift, Assembler::AVX_512bit);
4888     Assembler::vpsllw(dst, dst, nds, vector_len);
4889   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4890     // use nds as scratch with dst
4891     evmovdqul(nds, dst, Assembler::AVX_512bit);
4892     Assembler::vpsllw(nds, nds, shift, vector_len);
4893     evmovdqul(dst, nds, Assembler::AVX_512bit);
4894   } else if (dst_enc < 16) {
4895     // use nds to save a copy of xmm0 and hold shift
4896     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4897     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4898     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4899     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4900   } else if (nds_enc < 16) {
4901     // use nds as dest as temps
4902     evmovdqul(nds, dst, Assembler::AVX_512bit);
4903     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4904     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4905     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4906     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4907     evmovdqul(dst, nds, Assembler::AVX_512bit);
4908   } else {
4909     // worse case scenario, all regs are in the upper bank
4910     subptr(rsp, 64);
4911     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4912     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4913     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4914     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4915     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4916     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4917     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4918     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4919     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4920     addptr(rsp, 64);
4921   }
4922 }
4923 
4924 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4925   int dst_enc = dst->encoding();
4926   int nds_enc = nds->encoding();
4927   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4928     Assembler::vpsllw(dst, nds, shift, vector_len);
4929   } else if (dst_enc < 16) {
4930     Assembler::vpsllw(dst, dst, shift, vector_len);
4931   } else if (nds_enc < 16) {
4932     // use nds as scratch
4933     evmovdqul(nds, dst, Assembler::AVX_512bit);
4934     Assembler::vpsllw(nds, nds, shift, vector_len);
4935     evmovdqul(dst, nds, Assembler::AVX_512bit);
4936   } else {
4937     // use nds as scratch for xmm0
4938     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4939     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4940     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4941     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4942   }
4943 }
4944 
4945 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4946   int dst_enc = dst->encoding();
4947   int src_enc = src->encoding();
4948   if ((dst_enc < 16) && (src_enc < 16)) {
4949     Assembler::vptest(dst, src);
4950   } else if (src_enc < 16) {
4951     subptr(rsp, 64);
4952     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4953     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4954     Assembler::vptest(xmm0, src);
4955     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4956     addptr(rsp, 64);
4957   } else if (dst_enc < 16) {
4958     subptr(rsp, 64);
4959     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4960     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4961     Assembler::vptest(dst, xmm0);
4962     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4963     addptr(rsp, 64);
4964   } else {
4965     subptr(rsp, 64);
4966     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4967     subptr(rsp, 64);
4968     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4969     movdqu(xmm0, src);
4970     movdqu(xmm1, dst);
4971     Assembler::vptest(xmm1, xmm0);
4972     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4973     addptr(rsp, 64);
4974     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4975     addptr(rsp, 64);
4976   }
4977 }
4978 
4979 // This instruction exists within macros, ergo we cannot control its input
4980 // when emitted through those patterns.
4981 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4982   if (VM_Version::supports_avx512nobw()) {
4983     int dst_enc = dst->encoding();
4984     int src_enc = src->encoding();
4985     if (dst_enc == src_enc) {
4986       if (dst_enc < 16) {
4987         Assembler::punpcklbw(dst, src);
4988       } else {
4989         subptr(rsp, 64);
4990         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4991         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4992         Assembler::punpcklbw(xmm0, xmm0);
4993         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4994         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4995         addptr(rsp, 64);
4996       }
4997     } else {
4998       if ((src_enc < 16) && (dst_enc < 16)) {
4999         Assembler::punpcklbw(dst, src);
5000       } else if (src_enc < 16) {
5001         subptr(rsp, 64);
5002         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5003         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5004         Assembler::punpcklbw(xmm0, src);
5005         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5006         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5007         addptr(rsp, 64);
5008       } else if (dst_enc < 16) {
5009         subptr(rsp, 64);
5010         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5011         evmovdqul(xmm0, src, Assembler::AVX_512bit);
5012         Assembler::punpcklbw(dst, xmm0);
5013         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5014         addptr(rsp, 64);
5015       } else {
5016         subptr(rsp, 64);
5017         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5018         subptr(rsp, 64);
5019         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
5020         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5021         evmovdqul(xmm1, src, Assembler::AVX_512bit);
5022         Assembler::punpcklbw(xmm0, xmm1);
5023         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5024         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
5025         addptr(rsp, 64);
5026         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5027         addptr(rsp, 64);
5028       }
5029     }
5030   } else {
5031     Assembler::punpcklbw(dst, src);
5032   }
5033 }
5034 
5035 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
5036   if (VM_Version::supports_avx512vl()) {
5037     Assembler::pshufd(dst, src, mode);
5038   } else {
5039     int dst_enc = dst->encoding();
5040     if (dst_enc < 16) {
5041       Assembler::pshufd(dst, src, mode);
5042     } else {
5043       subptr(rsp, 64);
5044       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5045       Assembler::pshufd(xmm0, src, mode);
5046       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5047       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5048       addptr(rsp, 64);
5049     }
5050   }
5051 }
5052 
5053 // This instruction exists within macros, ergo we cannot control its input
5054 // when emitted through those patterns.
5055 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
5056   if (VM_Version::supports_avx512nobw()) {
5057     int dst_enc = dst->encoding();
5058     int src_enc = src->encoding();
5059     if (dst_enc == src_enc) {
5060       if (dst_enc < 16) {
5061         Assembler::pshuflw(dst, src, mode);
5062       } else {
5063         subptr(rsp, 64);
5064         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5065         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5066         Assembler::pshuflw(xmm0, xmm0, mode);
5067         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5068         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5069         addptr(rsp, 64);
5070       }
5071     } else {
5072       if ((src_enc < 16) && (dst_enc < 16)) {
5073         Assembler::pshuflw(dst, src, mode);
5074       } else if (src_enc < 16) {
5075         subptr(rsp, 64);
5076         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5077         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5078         Assembler::pshuflw(xmm0, src, mode);
5079         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5080         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5081         addptr(rsp, 64);
5082       } else if (dst_enc < 16) {
5083         subptr(rsp, 64);
5084         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5085         evmovdqul(xmm0, src, Assembler::AVX_512bit);
5086         Assembler::pshuflw(dst, xmm0, mode);
5087         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5088         addptr(rsp, 64);
5089       } else {
5090         subptr(rsp, 64);
5091         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5092         subptr(rsp, 64);
5093         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
5094         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5095         evmovdqul(xmm1, src, Assembler::AVX_512bit);
5096         Assembler::pshuflw(xmm0, xmm1, mode);
5097         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5098         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
5099         addptr(rsp, 64);
5100         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5101         addptr(rsp, 64);
5102       }
5103     }
5104   } else {
5105     Assembler::pshuflw(dst, src, mode);
5106   }
5107 }
5108 
5109 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5110   if (reachable(src)) {
5111     vandpd(dst, nds, as_Address(src), vector_len);
5112   } else {
5113     lea(rscratch1, src);
5114     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
5115   }
5116 }
5117 
5118 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5119   if (reachable(src)) {
5120     vandps(dst, nds, as_Address(src), vector_len);
5121   } else {
5122     lea(rscratch1, src);
5123     vandps(dst, nds, Address(rscratch1, 0), vector_len);
5124   }
5125 }
5126 
5127 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5128   if (reachable(src)) {
5129     vdivsd(dst, nds, as_Address(src));
5130   } else {
5131     lea(rscratch1, src);
5132     vdivsd(dst, nds, Address(rscratch1, 0));
5133   }
5134 }
5135 
5136 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5137   if (reachable(src)) {
5138     vdivss(dst, nds, as_Address(src));
5139   } else {
5140     lea(rscratch1, src);
5141     vdivss(dst, nds, Address(rscratch1, 0));
5142   }
5143 }
5144 
5145 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5146   if (reachable(src)) {
5147     vmulsd(dst, nds, as_Address(src));
5148   } else {
5149     lea(rscratch1, src);
5150     vmulsd(dst, nds, Address(rscratch1, 0));
5151   }
5152 }
5153 
5154 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5155   if (reachable(src)) {
5156     vmulss(dst, nds, as_Address(src));
5157   } else {
5158     lea(rscratch1, src);
5159     vmulss(dst, nds, Address(rscratch1, 0));
5160   }
5161 }
5162 
5163 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5164   if (reachable(src)) {
5165     vsubsd(dst, nds, as_Address(src));
5166   } else {
5167     lea(rscratch1, src);
5168     vsubsd(dst, nds, Address(rscratch1, 0));
5169   }
5170 }
5171 
5172 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5173   if (reachable(src)) {
5174     vsubss(dst, nds, as_Address(src));
5175   } else {
5176     lea(rscratch1, src);
5177     vsubss(dst, nds, Address(rscratch1, 0));
5178   }
5179 }
5180 
5181 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5182   int nds_enc = nds->encoding();
5183   int dst_enc = dst->encoding();
5184   bool dst_upper_bank = (dst_enc > 15);
5185   bool nds_upper_bank = (nds_enc > 15);
5186   if (VM_Version::supports_avx512novl() &&
5187       (nds_upper_bank || dst_upper_bank)) {
5188     if (dst_upper_bank) {
5189       subptr(rsp, 64);
5190       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5191       movflt(xmm0, nds);
5192       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5193       movflt(dst, xmm0);
5194       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5195       addptr(rsp, 64);
5196     } else {
5197       movflt(dst, nds);
5198       vxorps(dst, dst, src, Assembler::AVX_128bit);
5199     }
5200   } else {
5201     vxorps(dst, nds, src, Assembler::AVX_128bit);
5202   }
5203 }
5204 
5205 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5206   int nds_enc = nds->encoding();
5207   int dst_enc = dst->encoding();
5208   bool dst_upper_bank = (dst_enc > 15);
5209   bool nds_upper_bank = (nds_enc > 15);
5210   if (VM_Version::supports_avx512novl() &&
5211       (nds_upper_bank || dst_upper_bank)) {
5212     if (dst_upper_bank) {
5213       subptr(rsp, 64);
5214       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5215       movdbl(xmm0, nds);
5216       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5217       movdbl(dst, xmm0);
5218       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5219       addptr(rsp, 64);
5220     } else {
5221       movdbl(dst, nds);
5222       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5223     }
5224   } else {
5225     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5226   }
5227 }
5228 
5229 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5230   if (reachable(src)) {
5231     vxorpd(dst, nds, as_Address(src), vector_len);
5232   } else {
5233     lea(rscratch1, src);
5234     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5235   }
5236 }
5237 
5238 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5239   if (reachable(src)) {
5240     vxorps(dst, nds, as_Address(src), vector_len);
5241   } else {
5242     lea(rscratch1, src);
5243     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5244   }
5245 }
5246 
5247 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
5248   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
5249   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
5250   // The inverted mask is sign-extended
5251   andptr(possibly_jweak, inverted_jweak_mask);
5252 }
5253 
5254 void MacroAssembler::resolve_jobject(Register value,
5255                                      Register thread,
5256                                      Register tmp) {
5257   assert_different_registers(value, thread, tmp);
5258   Label done, not_weak;
5259   testptr(value, value);
5260   jcc(Assembler::zero, done);                // Use NULL as-is.
5261   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
5262   jcc(Assembler::zero, not_weak);
5263   // Resolve jweak.
5264   access_load_at(T_OBJECT, IN_ROOT | ON_PHANTOM_OOP_REF,
5265                  value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
5266   verify_oop(value);
5267   jmp(done);
5268   bind(not_weak);
5269   // Resolve (untagged) jobject.
5270   access_load_at(T_OBJECT, IN_ROOT | IN_CONCURRENT_ROOT,
5271                  value, Address(value, 0), tmp, thread);
5272   verify_oop(value);
5273   bind(done);
5274 }
5275 
5276 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5277   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5278 }
5279 
5280 // Force generation of a 4 byte immediate value even if it fits into 8bit
5281 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5282   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5283 }
5284 
5285 void MacroAssembler::subptr(Register dst, Register src) {
5286   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5287 }
5288 
5289 // C++ bool manipulation
5290 void MacroAssembler::testbool(Register dst) {
5291   if(sizeof(bool) == 1)
5292     testb(dst, 0xff);
5293   else if(sizeof(bool) == 2) {
5294     // testw implementation needed for two byte bools
5295     ShouldNotReachHere();
5296   } else if(sizeof(bool) == 4)
5297     testl(dst, dst);
5298   else
5299     // unsupported
5300     ShouldNotReachHere();
5301 }
5302 
5303 void MacroAssembler::testptr(Register dst, Register src) {
5304   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5305 }
5306 
5307 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5308 void MacroAssembler::tlab_allocate(Register obj,
5309                                    Register var_size_in_bytes,
5310                                    int con_size_in_bytes,
5311                                    Register t1,
5312                                    Register t2,
5313                                    Label& slow_case) {
5314   assert_different_registers(obj, t1, t2);
5315   assert_different_registers(obj, var_size_in_bytes, t1);
5316   Register end = t2;
5317   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
5318 
5319   verify_tlab();
5320 
5321   NOT_LP64(get_thread(thread));
5322 
5323   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
5324   if (var_size_in_bytes == noreg) {
5325     lea(end, Address(obj, con_size_in_bytes));
5326   } else {
5327     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
5328   }
5329   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
5330   jcc(Assembler::above, slow_case);
5331 
5332   // update the tlab top pointer
5333   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
5334 
5335   // recover var_size_in_bytes if necessary
5336   if (var_size_in_bytes == end) {
5337     subptr(var_size_in_bytes, obj);
5338   }
5339   verify_tlab();
5340 }
5341 
5342 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5343 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5344   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5345   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5346   Label done;
5347 
5348   testptr(length_in_bytes, length_in_bytes);
5349   jcc(Assembler::zero, done);
5350 
5351   // initialize topmost word, divide index by 2, check if odd and test if zero
5352   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5353 #ifdef ASSERT
5354   {
5355     Label L;
5356     testptr(length_in_bytes, BytesPerWord - 1);
5357     jcc(Assembler::zero, L);
5358     stop("length must be a multiple of BytesPerWord");
5359     bind(L);
5360   }
5361 #endif
5362   Register index = length_in_bytes;
5363   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5364   if (UseIncDec) {
5365     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5366   } else {
5367     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5368     shrptr(index, 1);
5369   }
5370 #ifndef _LP64
5371   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5372   {
5373     Label even;
5374     // note: if index was a multiple of 8, then it cannot
5375     //       be 0 now otherwise it must have been 0 before
5376     //       => if it is even, we don't need to check for 0 again
5377     jcc(Assembler::carryClear, even);
5378     // clear topmost word (no jump would be needed if conditional assignment worked here)
5379     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5380     // index could be 0 now, must check again
5381     jcc(Assembler::zero, done);
5382     bind(even);
5383   }
5384 #endif // !_LP64
5385   // initialize remaining object fields: index is a multiple of 2 now
5386   {
5387     Label loop;
5388     bind(loop);
5389     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5390     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5391     decrement(index);
5392     jcc(Assembler::notZero, loop);
5393   }
5394 
5395   bind(done);
5396 }
5397 
5398 void MacroAssembler::incr_allocated_bytes(Register thread,
5399                                           Register var_size_in_bytes,
5400                                           int con_size_in_bytes,
5401                                           Register t1) {
5402   if (!thread->is_valid()) {
5403 #ifdef _LP64
5404     thread = r15_thread;
5405 #else
5406     assert(t1->is_valid(), "need temp reg");
5407     thread = t1;
5408     get_thread(thread);
5409 #endif
5410   }
5411 
5412 #ifdef _LP64
5413   if (var_size_in_bytes->is_valid()) {
5414     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5415   } else {
5416     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5417   }
5418 #else
5419   if (var_size_in_bytes->is_valid()) {
5420     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5421   } else {
5422     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5423   }
5424   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
5425 #endif
5426 }
5427 
5428 // Look up the method for a megamorphic invokeinterface call.
5429 // The target method is determined by <intf_klass, itable_index>.
5430 // The receiver klass is in recv_klass.
5431 // On success, the result will be in method_result, and execution falls through.
5432 // On failure, execution transfers to the given label.
5433 void MacroAssembler::lookup_interface_method(Register recv_klass,
5434                                              Register intf_klass,
5435                                              RegisterOrConstant itable_index,
5436                                              Register method_result,
5437                                              Register scan_temp,
5438                                              Label& L_no_such_interface,
5439                                              bool return_method) {
5440   assert_different_registers(recv_klass, intf_klass, scan_temp);
5441   assert_different_registers(method_result, intf_klass, scan_temp);
5442   assert(recv_klass != method_result || !return_method,
5443          "recv_klass can be destroyed when method isn't needed");
5444 
5445   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5446          "caller must use same register for non-constant itable index as for method");
5447 
5448   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5449   int vtable_base = in_bytes(Klass::vtable_start_offset());
5450   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5451   int scan_step   = itableOffsetEntry::size() * wordSize;
5452   int vte_size    = vtableEntry::size_in_bytes();
5453   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5454   assert(vte_size == wordSize, "else adjust times_vte_scale");
5455 
5456   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
5457 
5458   // %%% Could store the aligned, prescaled offset in the klassoop.
5459   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5460 
5461   if (return_method) {
5462     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5463     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5464     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5465   }
5466 
5467   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5468   //   if (scan->interface() == intf) {
5469   //     result = (klass + scan->offset() + itable_index);
5470   //   }
5471   // }
5472   Label search, found_method;
5473 
5474   for (int peel = 1; peel >= 0; peel--) {
5475     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5476     cmpptr(intf_klass, method_result);
5477 
5478     if (peel) {
5479       jccb(Assembler::equal, found_method);
5480     } else {
5481       jccb(Assembler::notEqual, search);
5482       // (invert the test to fall through to found_method...)
5483     }
5484 
5485     if (!peel)  break;
5486 
5487     bind(search);
5488 
5489     // Check that the previous entry is non-null.  A null entry means that
5490     // the receiver class doesn't implement the interface, and wasn't the
5491     // same as when the caller was compiled.
5492     testptr(method_result, method_result);
5493     jcc(Assembler::zero, L_no_such_interface);
5494     addptr(scan_temp, scan_step);
5495   }
5496 
5497   bind(found_method);
5498 
5499   if (return_method) {
5500     // Got a hit.
5501     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5502     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5503   }
5504 }
5505 
5506 
5507 // virtual method calling
5508 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5509                                            RegisterOrConstant vtable_index,
5510                                            Register method_result) {
5511   const int base = in_bytes(Klass::vtable_start_offset());
5512   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5513   Address vtable_entry_addr(recv_klass,
5514                             vtable_index, Address::times_ptr,
5515                             base + vtableEntry::method_offset_in_bytes());
5516   movptr(method_result, vtable_entry_addr);
5517 }
5518 
5519 
5520 void MacroAssembler::check_klass_subtype(Register sub_klass,
5521                            Register super_klass,
5522                            Register temp_reg,
5523                            Label& L_success) {
5524   Label L_failure;
5525   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5526   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5527   bind(L_failure);
5528 }
5529 
5530 
5531 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5532                                                    Register super_klass,
5533                                                    Register temp_reg,
5534                                                    Label* L_success,
5535                                                    Label* L_failure,
5536                                                    Label* L_slow_path,
5537                                         RegisterOrConstant super_check_offset) {
5538   assert_different_registers(sub_klass, super_klass, temp_reg);
5539   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5540   if (super_check_offset.is_register()) {
5541     assert_different_registers(sub_klass, super_klass,
5542                                super_check_offset.as_register());
5543   } else if (must_load_sco) {
5544     assert(temp_reg != noreg, "supply either a temp or a register offset");
5545   }
5546 
5547   Label L_fallthrough;
5548   int label_nulls = 0;
5549   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5550   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5551   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5552   assert(label_nulls <= 1, "at most one NULL in the batch");
5553 
5554   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5555   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5556   Address super_check_offset_addr(super_klass, sco_offset);
5557 
5558   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5559   // range of a jccb.  If this routine grows larger, reconsider at
5560   // least some of these.
5561 #define local_jcc(assembler_cond, label)                                \
5562   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5563   else                             jcc( assembler_cond, label) /*omit semi*/
5564 
5565   // Hacked jmp, which may only be used just before L_fallthrough.
5566 #define final_jmp(label)                                                \
5567   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5568   else                            jmp(label)                /*omit semi*/
5569 
5570   // If the pointers are equal, we are done (e.g., String[] elements).
5571   // This self-check enables sharing of secondary supertype arrays among
5572   // non-primary types such as array-of-interface.  Otherwise, each such
5573   // type would need its own customized SSA.
5574   // We move this check to the front of the fast path because many
5575   // type checks are in fact trivially successful in this manner,
5576   // so we get a nicely predicted branch right at the start of the check.
5577   cmpptr(sub_klass, super_klass);
5578   local_jcc(Assembler::equal, *L_success);
5579 
5580   // Check the supertype display:
5581   if (must_load_sco) {
5582     // Positive movl does right thing on LP64.
5583     movl(temp_reg, super_check_offset_addr);
5584     super_check_offset = RegisterOrConstant(temp_reg);
5585   }
5586   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5587   cmpptr(super_klass, super_check_addr); // load displayed supertype
5588 
5589   // This check has worked decisively for primary supers.
5590   // Secondary supers are sought in the super_cache ('super_cache_addr').
5591   // (Secondary supers are interfaces and very deeply nested subtypes.)
5592   // This works in the same check above because of a tricky aliasing
5593   // between the super_cache and the primary super display elements.
5594   // (The 'super_check_addr' can address either, as the case requires.)
5595   // Note that the cache is updated below if it does not help us find
5596   // what we need immediately.
5597   // So if it was a primary super, we can just fail immediately.
5598   // Otherwise, it's the slow path for us (no success at this point).
5599 
5600   if (super_check_offset.is_register()) {
5601     local_jcc(Assembler::equal, *L_success);
5602     cmpl(super_check_offset.as_register(), sc_offset);
5603     if (L_failure == &L_fallthrough) {
5604       local_jcc(Assembler::equal, *L_slow_path);
5605     } else {
5606       local_jcc(Assembler::notEqual, *L_failure);
5607       final_jmp(*L_slow_path);
5608     }
5609   } else if (super_check_offset.as_constant() == sc_offset) {
5610     // Need a slow path; fast failure is impossible.
5611     if (L_slow_path == &L_fallthrough) {
5612       local_jcc(Assembler::equal, *L_success);
5613     } else {
5614       local_jcc(Assembler::notEqual, *L_slow_path);
5615       final_jmp(*L_success);
5616     }
5617   } else {
5618     // No slow path; it's a fast decision.
5619     if (L_failure == &L_fallthrough) {
5620       local_jcc(Assembler::equal, *L_success);
5621     } else {
5622       local_jcc(Assembler::notEqual, *L_failure);
5623       final_jmp(*L_success);
5624     }
5625   }
5626 
5627   bind(L_fallthrough);
5628 
5629 #undef local_jcc
5630 #undef final_jmp
5631 }
5632 
5633 
5634 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5635                                                    Register super_klass,
5636                                                    Register temp_reg,
5637                                                    Register temp2_reg,
5638                                                    Label* L_success,
5639                                                    Label* L_failure,
5640                                                    bool set_cond_codes) {
5641   assert_different_registers(sub_klass, super_klass, temp_reg);
5642   if (temp2_reg != noreg)
5643     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5644 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5645 
5646   Label L_fallthrough;
5647   int label_nulls = 0;
5648   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5649   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5650   assert(label_nulls <= 1, "at most one NULL in the batch");
5651 
5652   // a couple of useful fields in sub_klass:
5653   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5654   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5655   Address secondary_supers_addr(sub_klass, ss_offset);
5656   Address super_cache_addr(     sub_klass, sc_offset);
5657 
5658   // Do a linear scan of the secondary super-klass chain.
5659   // This code is rarely used, so simplicity is a virtue here.
5660   // The repne_scan instruction uses fixed registers, which we must spill.
5661   // Don't worry too much about pre-existing connections with the input regs.
5662 
5663   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5664   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5665 
5666   // Get super_klass value into rax (even if it was in rdi or rcx).
5667   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5668   if (super_klass != rax || UseCompressedOops) {
5669     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5670     mov(rax, super_klass);
5671   }
5672   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5673   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5674 
5675 #ifndef PRODUCT
5676   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5677   ExternalAddress pst_counter_addr((address) pst_counter);
5678   NOT_LP64(  incrementl(pst_counter_addr) );
5679   LP64_ONLY( lea(rcx, pst_counter_addr) );
5680   LP64_ONLY( incrementl(Address(rcx, 0)) );
5681 #endif //PRODUCT
5682 
5683   // We will consult the secondary-super array.
5684   movptr(rdi, secondary_supers_addr);
5685   // Load the array length.  (Positive movl does right thing on LP64.)
5686   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5687   // Skip to start of data.
5688   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5689 
5690   // Scan RCX words at [RDI] for an occurrence of RAX.
5691   // Set NZ/Z based on last compare.
5692   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5693   // not change flags (only scas instruction which is repeated sets flags).
5694   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5695 
5696     testptr(rax,rax); // Set Z = 0
5697     repne_scan();
5698 
5699   // Unspill the temp. registers:
5700   if (pushed_rdi)  pop(rdi);
5701   if (pushed_rcx)  pop(rcx);
5702   if (pushed_rax)  pop(rax);
5703 
5704   if (set_cond_codes) {
5705     // Special hack for the AD files:  rdi is guaranteed non-zero.
5706     assert(!pushed_rdi, "rdi must be left non-NULL");
5707     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5708   }
5709 
5710   if (L_failure == &L_fallthrough)
5711         jccb(Assembler::notEqual, *L_failure);
5712   else  jcc(Assembler::notEqual, *L_failure);
5713 
5714   // Success.  Cache the super we found and proceed in triumph.
5715   movptr(super_cache_addr, super_klass);
5716 
5717   if (L_success != &L_fallthrough) {
5718     jmp(*L_success);
5719   }
5720 
5721 #undef IS_A_TEMP
5722 
5723   bind(L_fallthrough);
5724 }
5725 
5726 
5727 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5728   if (VM_Version::supports_cmov()) {
5729     cmovl(cc, dst, src);
5730   } else {
5731     Label L;
5732     jccb(negate_condition(cc), L);
5733     movl(dst, src);
5734     bind(L);
5735   }
5736 }
5737 
5738 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5739   if (VM_Version::supports_cmov()) {
5740     cmovl(cc, dst, src);
5741   } else {
5742     Label L;
5743     jccb(negate_condition(cc), L);
5744     movl(dst, src);
5745     bind(L);
5746   }
5747 }
5748 
5749 void MacroAssembler::verify_oop(Register reg, const char* s) {
5750   if (!VerifyOops) return;
5751 
5752   // Pass register number to verify_oop_subroutine
5753   const char* b = NULL;
5754   {
5755     ResourceMark rm;
5756     stringStream ss;
5757     ss.print("verify_oop: %s: %s", reg->name(), s);
5758     b = code_string(ss.as_string());
5759   }
5760   BLOCK_COMMENT("verify_oop {");
5761 #ifdef _LP64
5762   push(rscratch1);                    // save r10, trashed by movptr()
5763 #endif
5764   push(rax);                          // save rax,
5765   push(reg);                          // pass register argument
5766   ExternalAddress buffer((address) b);
5767   // avoid using pushptr, as it modifies scratch registers
5768   // and our contract is not to modify anything
5769   movptr(rax, buffer.addr());
5770   push(rax);
5771   // call indirectly to solve generation ordering problem
5772   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5773   call(rax);
5774   // Caller pops the arguments (oop, message) and restores rax, r10
5775   BLOCK_COMMENT("} verify_oop");
5776 }
5777 
5778 
5779 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5780                                                       Register tmp,
5781                                                       int offset) {
5782   intptr_t value = *delayed_value_addr;
5783   if (value != 0)
5784     return RegisterOrConstant(value + offset);
5785 
5786   // load indirectly to solve generation ordering problem
5787   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5788 
5789 #ifdef ASSERT
5790   { Label L;
5791     testptr(tmp, tmp);
5792     if (WizardMode) {
5793       const char* buf = NULL;
5794       {
5795         ResourceMark rm;
5796         stringStream ss;
5797         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
5798         buf = code_string(ss.as_string());
5799       }
5800       jcc(Assembler::notZero, L);
5801       STOP(buf);
5802     } else {
5803       jccb(Assembler::notZero, L);
5804       hlt();
5805     }
5806     bind(L);
5807   }
5808 #endif
5809 
5810   if (offset != 0)
5811     addptr(tmp, offset);
5812 
5813   return RegisterOrConstant(tmp);
5814 }
5815 
5816 
5817 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5818                                          int extra_slot_offset) {
5819   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5820   int stackElementSize = Interpreter::stackElementSize;
5821   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5822 #ifdef ASSERT
5823   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5824   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5825 #endif
5826   Register             scale_reg    = noreg;
5827   Address::ScaleFactor scale_factor = Address::no_scale;
5828   if (arg_slot.is_constant()) {
5829     offset += arg_slot.as_constant() * stackElementSize;
5830   } else {
5831     scale_reg    = arg_slot.as_register();
5832     scale_factor = Address::times(stackElementSize);
5833   }
5834   offset += wordSize;           // return PC is on stack
5835   return Address(rsp, scale_reg, scale_factor, offset);
5836 }
5837 
5838 
5839 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5840   if (!VerifyOops) return;
5841 
5842   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5843   // Pass register number to verify_oop_subroutine
5844   const char* b = NULL;
5845   {
5846     ResourceMark rm;
5847     stringStream ss;
5848     ss.print("verify_oop_addr: %s", s);
5849     b = code_string(ss.as_string());
5850   }
5851 #ifdef _LP64
5852   push(rscratch1);                    // save r10, trashed by movptr()
5853 #endif
5854   push(rax);                          // save rax,
5855   // addr may contain rsp so we will have to adjust it based on the push
5856   // we just did (and on 64 bit we do two pushes)
5857   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5858   // stores rax into addr which is backwards of what was intended.
5859   if (addr.uses(rsp)) {
5860     lea(rax, addr);
5861     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5862   } else {
5863     pushptr(addr);
5864   }
5865 
5866   ExternalAddress buffer((address) b);
5867   // pass msg argument
5868   // avoid using pushptr, as it modifies scratch registers
5869   // and our contract is not to modify anything
5870   movptr(rax, buffer.addr());
5871   push(rax);
5872 
5873   // call indirectly to solve generation ordering problem
5874   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5875   call(rax);
5876   // Caller pops the arguments (addr, message) and restores rax, r10.
5877 }
5878 
5879 void MacroAssembler::verify_tlab() {
5880 #ifdef ASSERT
5881   if (UseTLAB && VerifyOops) {
5882     Label next, ok;
5883     Register t1 = rsi;
5884     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5885 
5886     push(t1);
5887     NOT_LP64(push(thread_reg));
5888     NOT_LP64(get_thread(thread_reg));
5889 
5890     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5891     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5892     jcc(Assembler::aboveEqual, next);
5893     STOP("assert(top >= start)");
5894     should_not_reach_here();
5895 
5896     bind(next);
5897     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5898     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5899     jcc(Assembler::aboveEqual, ok);
5900     STOP("assert(top <= end)");
5901     should_not_reach_here();
5902 
5903     bind(ok);
5904     NOT_LP64(pop(thread_reg));
5905     pop(t1);
5906   }
5907 #endif
5908 }
5909 
5910 class ControlWord {
5911  public:
5912   int32_t _value;
5913 
5914   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5915   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5916   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5917   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5918   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5919   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5920   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5921   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5922 
5923   void print() const {
5924     // rounding control
5925     const char* rc;
5926     switch (rounding_control()) {
5927       case 0: rc = "round near"; break;
5928       case 1: rc = "round down"; break;
5929       case 2: rc = "round up  "; break;
5930       case 3: rc = "chop      "; break;
5931     };
5932     // precision control
5933     const char* pc;
5934     switch (precision_control()) {
5935       case 0: pc = "24 bits "; break;
5936       case 1: pc = "reserved"; break;
5937       case 2: pc = "53 bits "; break;
5938       case 3: pc = "64 bits "; break;
5939     };
5940     // flags
5941     char f[9];
5942     f[0] = ' ';
5943     f[1] = ' ';
5944     f[2] = (precision   ()) ? 'P' : 'p';
5945     f[3] = (underflow   ()) ? 'U' : 'u';
5946     f[4] = (overflow    ()) ? 'O' : 'o';
5947     f[5] = (zero_divide ()) ? 'Z' : 'z';
5948     f[6] = (denormalized()) ? 'D' : 'd';
5949     f[7] = (invalid     ()) ? 'I' : 'i';
5950     f[8] = '\x0';
5951     // output
5952     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5953   }
5954 
5955 };
5956 
5957 class StatusWord {
5958  public:
5959   int32_t _value;
5960 
5961   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5962   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5963   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5964   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5965   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5966   int  top() const                     { return  (_value >> 11) & 7      ; }
5967   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5968   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5969   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5970   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5971   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5972   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5973   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5974   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5975 
5976   void print() const {
5977     // condition codes
5978     char c[5];
5979     c[0] = (C3()) ? '3' : '-';
5980     c[1] = (C2()) ? '2' : '-';
5981     c[2] = (C1()) ? '1' : '-';
5982     c[3] = (C0()) ? '0' : '-';
5983     c[4] = '\x0';
5984     // flags
5985     char f[9];
5986     f[0] = (error_status()) ? 'E' : '-';
5987     f[1] = (stack_fault ()) ? 'S' : '-';
5988     f[2] = (precision   ()) ? 'P' : '-';
5989     f[3] = (underflow   ()) ? 'U' : '-';
5990     f[4] = (overflow    ()) ? 'O' : '-';
5991     f[5] = (zero_divide ()) ? 'Z' : '-';
5992     f[6] = (denormalized()) ? 'D' : '-';
5993     f[7] = (invalid     ()) ? 'I' : '-';
5994     f[8] = '\x0';
5995     // output
5996     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5997   }
5998 
5999 };
6000 
6001 class TagWord {
6002  public:
6003   int32_t _value;
6004 
6005   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
6006 
6007   void print() const {
6008     printf("%04x", _value & 0xFFFF);
6009   }
6010 
6011 };
6012 
6013 class FPU_Register {
6014  public:
6015   int32_t _m0;
6016   int32_t _m1;
6017   int16_t _ex;
6018 
6019   bool is_indefinite() const           {
6020     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
6021   }
6022 
6023   void print() const {
6024     char  sign = (_ex < 0) ? '-' : '+';
6025     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
6026     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
6027   };
6028 
6029 };
6030 
6031 class FPU_State {
6032  public:
6033   enum {
6034     register_size       = 10,
6035     number_of_registers =  8,
6036     register_mask       =  7
6037   };
6038 
6039   ControlWord  _control_word;
6040   StatusWord   _status_word;
6041   TagWord      _tag_word;
6042   int32_t      _error_offset;
6043   int32_t      _error_selector;
6044   int32_t      _data_offset;
6045   int32_t      _data_selector;
6046   int8_t       _register[register_size * number_of_registers];
6047 
6048   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
6049   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
6050 
6051   const char* tag_as_string(int tag) const {
6052     switch (tag) {
6053       case 0: return "valid";
6054       case 1: return "zero";
6055       case 2: return "special";
6056       case 3: return "empty";
6057     }
6058     ShouldNotReachHere();
6059     return NULL;
6060   }
6061 
6062   void print() const {
6063     // print computation registers
6064     { int t = _status_word.top();
6065       for (int i = 0; i < number_of_registers; i++) {
6066         int j = (i - t) & register_mask;
6067         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
6068         st(j)->print();
6069         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
6070       }
6071     }
6072     printf("\n");
6073     // print control registers
6074     printf("ctrl = "); _control_word.print(); printf("\n");
6075     printf("stat = "); _status_word .print(); printf("\n");
6076     printf("tags = "); _tag_word    .print(); printf("\n");
6077   }
6078 
6079 };
6080 
6081 class Flag_Register {
6082  public:
6083   int32_t _value;
6084 
6085   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
6086   bool direction() const               { return ((_value >> 10) & 1) != 0; }
6087   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
6088   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
6089   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
6090   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
6091   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
6092 
6093   void print() const {
6094     // flags
6095     char f[8];
6096     f[0] = (overflow       ()) ? 'O' : '-';
6097     f[1] = (direction      ()) ? 'D' : '-';
6098     f[2] = (sign           ()) ? 'S' : '-';
6099     f[3] = (zero           ()) ? 'Z' : '-';
6100     f[4] = (auxiliary_carry()) ? 'A' : '-';
6101     f[5] = (parity         ()) ? 'P' : '-';
6102     f[6] = (carry          ()) ? 'C' : '-';
6103     f[7] = '\x0';
6104     // output
6105     printf("%08x  flags = %s", _value, f);
6106   }
6107 
6108 };
6109 
6110 class IU_Register {
6111  public:
6112   int32_t _value;
6113 
6114   void print() const {
6115     printf("%08x  %11d", _value, _value);
6116   }
6117 
6118 };
6119 
6120 class IU_State {
6121  public:
6122   Flag_Register _eflags;
6123   IU_Register   _rdi;
6124   IU_Register   _rsi;
6125   IU_Register   _rbp;
6126   IU_Register   _rsp;
6127   IU_Register   _rbx;
6128   IU_Register   _rdx;
6129   IU_Register   _rcx;
6130   IU_Register   _rax;
6131 
6132   void print() const {
6133     // computation registers
6134     printf("rax,  = "); _rax.print(); printf("\n");
6135     printf("rbx,  = "); _rbx.print(); printf("\n");
6136     printf("rcx  = "); _rcx.print(); printf("\n");
6137     printf("rdx  = "); _rdx.print(); printf("\n");
6138     printf("rdi  = "); _rdi.print(); printf("\n");
6139     printf("rsi  = "); _rsi.print(); printf("\n");
6140     printf("rbp,  = "); _rbp.print(); printf("\n");
6141     printf("rsp  = "); _rsp.print(); printf("\n");
6142     printf("\n");
6143     // control registers
6144     printf("flgs = "); _eflags.print(); printf("\n");
6145   }
6146 };
6147 
6148 
6149 class CPU_State {
6150  public:
6151   FPU_State _fpu_state;
6152   IU_State  _iu_state;
6153 
6154   void print() const {
6155     printf("--------------------------------------------------\n");
6156     _iu_state .print();
6157     printf("\n");
6158     _fpu_state.print();
6159     printf("--------------------------------------------------\n");
6160   }
6161 
6162 };
6163 
6164 
6165 static void _print_CPU_state(CPU_State* state) {
6166   state->print();
6167 };
6168 
6169 
6170 void MacroAssembler::print_CPU_state() {
6171   push_CPU_state();
6172   push(rsp);                // pass CPU state
6173   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6174   addptr(rsp, wordSize);       // discard argument
6175   pop_CPU_state();
6176 }
6177 
6178 
6179 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6180   static int counter = 0;
6181   FPU_State* fs = &state->_fpu_state;
6182   counter++;
6183   // For leaf calls, only verify that the top few elements remain empty.
6184   // We only need 1 empty at the top for C2 code.
6185   if( stack_depth < 0 ) {
6186     if( fs->tag_for_st(7) != 3 ) {
6187       printf("FPR7 not empty\n");
6188       state->print();
6189       assert(false, "error");
6190       return false;
6191     }
6192     return true;                // All other stack states do not matter
6193   }
6194 
6195   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6196          "bad FPU control word");
6197 
6198   // compute stack depth
6199   int i = 0;
6200   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6201   int d = i;
6202   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6203   // verify findings
6204   if (i != FPU_State::number_of_registers) {
6205     // stack not contiguous
6206     printf("%s: stack not contiguous at ST%d\n", s, i);
6207     state->print();
6208     assert(false, "error");
6209     return false;
6210   }
6211   // check if computed stack depth corresponds to expected stack depth
6212   if (stack_depth < 0) {
6213     // expected stack depth is -stack_depth or less
6214     if (d > -stack_depth) {
6215       // too many elements on the stack
6216       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6217       state->print();
6218       assert(false, "error");
6219       return false;
6220     }
6221   } else {
6222     // expected stack depth is stack_depth
6223     if (d != stack_depth) {
6224       // wrong stack depth
6225       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6226       state->print();
6227       assert(false, "error");
6228       return false;
6229     }
6230   }
6231   // everything is cool
6232   return true;
6233 }
6234 
6235 
6236 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6237   if (!VerifyFPU) return;
6238   push_CPU_state();
6239   push(rsp);                // pass CPU state
6240   ExternalAddress msg((address) s);
6241   // pass message string s
6242   pushptr(msg.addr());
6243   push(stack_depth);        // pass stack depth
6244   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6245   addptr(rsp, 3 * wordSize);   // discard arguments
6246   // check for error
6247   { Label L;
6248     testl(rax, rax);
6249     jcc(Assembler::notZero, L);
6250     int3();                  // break if error condition
6251     bind(L);
6252   }
6253   pop_CPU_state();
6254 }
6255 
6256 void MacroAssembler::restore_cpu_control_state_after_jni() {
6257   // Either restore the MXCSR register after returning from the JNI Call
6258   // or verify that it wasn't changed (with -Xcheck:jni flag).
6259   if (VM_Version::supports_sse()) {
6260     if (RestoreMXCSROnJNICalls) {
6261       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6262     } else if (CheckJNICalls) {
6263       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6264     }
6265   }
6266   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6267   vzeroupper();
6268   // Reset k1 to 0xffff.
6269   if (VM_Version::supports_evex()) {
6270     push(rcx);
6271     movl(rcx, 0xffff);
6272     kmovwl(k1, rcx);
6273     pop(rcx);
6274   }
6275 
6276 #ifndef _LP64
6277   // Either restore the x87 floating pointer control word after returning
6278   // from the JNI call or verify that it wasn't changed.
6279   if (CheckJNICalls) {
6280     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6281   }
6282 #endif // _LP64
6283 }
6284 
6285 // ((OopHandle)result).resolve();
6286 void MacroAssembler::resolve_oop_handle(Register result) {
6287   // OopHandle::resolve is an indirection.
6288   movptr(result, Address(result, 0));
6289 }
6290 
6291 void MacroAssembler::load_mirror(Register mirror, Register method) {
6292   // get mirror
6293   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
6294   movptr(mirror, Address(method, Method::const_offset()));
6295   movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
6296   movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
6297   movptr(mirror, Address(mirror, mirror_offset));
6298   resolve_oop_handle(mirror);
6299 }
6300 
6301 void MacroAssembler::load_klass(Register dst, Register src) {
6302 #ifdef _LP64
6303   if (UseCompressedClassPointers) {
6304     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6305     decode_klass_not_null(dst);
6306   } else
6307 #endif
6308     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6309 }
6310 
6311 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6312   load_klass(dst, src);
6313   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6314 }
6315 
6316 void MacroAssembler::store_klass(Register dst, Register src) {
6317 #ifdef _LP64
6318   if (UseCompressedClassPointers) {
6319     encode_klass_not_null(src);
6320     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6321   } else
6322 #endif
6323     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6324 }
6325 
6326 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
6327                                     Register tmp1, Register thread_tmp) {
6328   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
6329   bool as_raw = (decorators & AS_RAW) != 0;
6330   if (as_raw) {
6331     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
6332   } else {
6333     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
6334   }
6335 }
6336 
6337 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
6338                                      Register tmp1, Register tmp2) {
6339   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
6340   bool as_raw = (decorators & AS_RAW) != 0;
6341   if (as_raw) {
6342     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
6343   } else {
6344     bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
6345   }
6346 }
6347 
6348 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
6349                                    Register thread_tmp, DecoratorSet decorators) {
6350   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
6351 }
6352 
6353 // Doesn't do verfication, generates fixed size code
6354 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
6355                                             Register thread_tmp, DecoratorSet decorators) {
6356   access_load_at(T_OBJECT, IN_HEAP | OOP_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
6357 }
6358 
6359 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
6360                                     Register tmp2, DecoratorSet decorators) {
6361   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
6362 }
6363 
6364 // Used for storing NULLs.
6365 void MacroAssembler::store_heap_oop_null(Address dst) {
6366   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
6367 }
6368 
6369 #ifdef _LP64
6370 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6371   if (UseCompressedClassPointers) {
6372     // Store to klass gap in destination
6373     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6374   }
6375 }
6376 
6377 #ifdef ASSERT
6378 void MacroAssembler::verify_heapbase(const char* msg) {
6379   assert (UseCompressedOops, "should be compressed");
6380   assert (Universe::heap() != NULL, "java heap should be initialized");
6381   if (CheckCompressedOops) {
6382     Label ok;
6383     push(rscratch1); // cmpptr trashes rscratch1
6384     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6385     jcc(Assembler::equal, ok);
6386     STOP(msg);
6387     bind(ok);
6388     pop(rscratch1);
6389   }
6390 }
6391 #endif
6392 
6393 // Algorithm must match oop.inline.hpp encode_heap_oop.
6394 void MacroAssembler::encode_heap_oop(Register r) {
6395 #ifdef ASSERT
6396   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6397 #endif
6398   verify_oop(r, "broken oop in encode_heap_oop");
6399   if (Universe::narrow_oop_base() == NULL) {
6400     if (Universe::narrow_oop_shift() != 0) {
6401       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6402       shrq(r, LogMinObjAlignmentInBytes);
6403     }
6404     return;
6405   }
6406   testq(r, r);
6407   cmovq(Assembler::equal, r, r12_heapbase);
6408   subq(r, r12_heapbase);
6409   shrq(r, LogMinObjAlignmentInBytes);
6410 }
6411 
6412 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6413 #ifdef ASSERT
6414   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6415   if (CheckCompressedOops) {
6416     Label ok;
6417     testq(r, r);
6418     jcc(Assembler::notEqual, ok);
6419     STOP("null oop passed to encode_heap_oop_not_null");
6420     bind(ok);
6421   }
6422 #endif
6423   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6424   if (Universe::narrow_oop_base() != NULL) {
6425     subq(r, r12_heapbase);
6426   }
6427   if (Universe::narrow_oop_shift() != 0) {
6428     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6429     shrq(r, LogMinObjAlignmentInBytes);
6430   }
6431 }
6432 
6433 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6434 #ifdef ASSERT
6435   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6436   if (CheckCompressedOops) {
6437     Label ok;
6438     testq(src, src);
6439     jcc(Assembler::notEqual, ok);
6440     STOP("null oop passed to encode_heap_oop_not_null2");
6441     bind(ok);
6442   }
6443 #endif
6444   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6445   if (dst != src) {
6446     movq(dst, src);
6447   }
6448   if (Universe::narrow_oop_base() != NULL) {
6449     subq(dst, r12_heapbase);
6450   }
6451   if (Universe::narrow_oop_shift() != 0) {
6452     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6453     shrq(dst, LogMinObjAlignmentInBytes);
6454   }
6455 }
6456 
6457 void  MacroAssembler::decode_heap_oop(Register r) {
6458 #ifdef ASSERT
6459   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6460 #endif
6461   if (Universe::narrow_oop_base() == NULL) {
6462     if (Universe::narrow_oop_shift() != 0) {
6463       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6464       shlq(r, LogMinObjAlignmentInBytes);
6465     }
6466   } else {
6467     Label done;
6468     shlq(r, LogMinObjAlignmentInBytes);
6469     jccb(Assembler::equal, done);
6470     addq(r, r12_heapbase);
6471     bind(done);
6472   }
6473   verify_oop(r, "broken oop in decode_heap_oop");
6474 }
6475 
6476 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6477   // Note: it will change flags
6478   assert (UseCompressedOops, "should only be used for compressed headers");
6479   assert (Universe::heap() != NULL, "java heap should be initialized");
6480   // Cannot assert, unverified entry point counts instructions (see .ad file)
6481   // vtableStubs also counts instructions in pd_code_size_limit.
6482   // Also do not verify_oop as this is called by verify_oop.
6483   if (Universe::narrow_oop_shift() != 0) {
6484     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6485     shlq(r, LogMinObjAlignmentInBytes);
6486     if (Universe::narrow_oop_base() != NULL) {
6487       addq(r, r12_heapbase);
6488     }
6489   } else {
6490     assert (Universe::narrow_oop_base() == NULL, "sanity");
6491   }
6492 }
6493 
6494 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6495   // Note: it will change flags
6496   assert (UseCompressedOops, "should only be used for compressed headers");
6497   assert (Universe::heap() != NULL, "java heap should be initialized");
6498   // Cannot assert, unverified entry point counts instructions (see .ad file)
6499   // vtableStubs also counts instructions in pd_code_size_limit.
6500   // Also do not verify_oop as this is called by verify_oop.
6501   if (Universe::narrow_oop_shift() != 0) {
6502     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6503     if (LogMinObjAlignmentInBytes == Address::times_8) {
6504       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6505     } else {
6506       if (dst != src) {
6507         movq(dst, src);
6508       }
6509       shlq(dst, LogMinObjAlignmentInBytes);
6510       if (Universe::narrow_oop_base() != NULL) {
6511         addq(dst, r12_heapbase);
6512       }
6513     }
6514   } else {
6515     assert (Universe::narrow_oop_base() == NULL, "sanity");
6516     if (dst != src) {
6517       movq(dst, src);
6518     }
6519   }
6520 }
6521 
6522 void MacroAssembler::encode_klass_not_null(Register r) {
6523   if (Universe::narrow_klass_base() != NULL) {
6524     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6525     assert(r != r12_heapbase, "Encoding a klass in r12");
6526     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6527     subq(r, r12_heapbase);
6528   }
6529   if (Universe::narrow_klass_shift() != 0) {
6530     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6531     shrq(r, LogKlassAlignmentInBytes);
6532   }
6533   if (Universe::narrow_klass_base() != NULL) {
6534     reinit_heapbase();
6535   }
6536 }
6537 
6538 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6539   if (dst == src) {
6540     encode_klass_not_null(src);
6541   } else {
6542     if (Universe::narrow_klass_base() != NULL) {
6543       mov64(dst, (int64_t)Universe::narrow_klass_base());
6544       negq(dst);
6545       addq(dst, src);
6546     } else {
6547       movptr(dst, src);
6548     }
6549     if (Universe::narrow_klass_shift() != 0) {
6550       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6551       shrq(dst, LogKlassAlignmentInBytes);
6552     }
6553   }
6554 }
6555 
6556 // Function instr_size_for_decode_klass_not_null() counts the instructions
6557 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6558 // when (Universe::heap() != NULL).  Hence, if the instructions they
6559 // generate change, then this method needs to be updated.
6560 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6561   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6562   if (Universe::narrow_klass_base() != NULL) {
6563     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6564     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6565   } else {
6566     // longest load decode klass function, mov64, leaq
6567     return 16;
6568   }
6569 }
6570 
6571 // !!! If the instructions that get generated here change then function
6572 // instr_size_for_decode_klass_not_null() needs to get updated.
6573 void  MacroAssembler::decode_klass_not_null(Register r) {
6574   // Note: it will change flags
6575   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6576   assert(r != r12_heapbase, "Decoding a klass in r12");
6577   // Cannot assert, unverified entry point counts instructions (see .ad file)
6578   // vtableStubs also counts instructions in pd_code_size_limit.
6579   // Also do not verify_oop as this is called by verify_oop.
6580   if (Universe::narrow_klass_shift() != 0) {
6581     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6582     shlq(r, LogKlassAlignmentInBytes);
6583   }
6584   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6585   if (Universe::narrow_klass_base() != NULL) {
6586     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6587     addq(r, r12_heapbase);
6588     reinit_heapbase();
6589   }
6590 }
6591 
6592 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6593   // Note: it will change flags
6594   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6595   if (dst == src) {
6596     decode_klass_not_null(dst);
6597   } else {
6598     // Cannot assert, unverified entry point counts instructions (see .ad file)
6599     // vtableStubs also counts instructions in pd_code_size_limit.
6600     // Also do not verify_oop as this is called by verify_oop.
6601     mov64(dst, (int64_t)Universe::narrow_klass_base());
6602     if (Universe::narrow_klass_shift() != 0) {
6603       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6604       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6605       leaq(dst, Address(dst, src, Address::times_8, 0));
6606     } else {
6607       addq(dst, src);
6608     }
6609   }
6610 }
6611 
6612 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6613   assert (UseCompressedOops, "should only be used for compressed headers");
6614   assert (Universe::heap() != NULL, "java heap should be initialized");
6615   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6616   int oop_index = oop_recorder()->find_index(obj);
6617   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6618   mov_narrow_oop(dst, oop_index, rspec);
6619 }
6620 
6621 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6622   assert (UseCompressedOops, "should only be used for compressed headers");
6623   assert (Universe::heap() != NULL, "java heap should be initialized");
6624   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6625   int oop_index = oop_recorder()->find_index(obj);
6626   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6627   mov_narrow_oop(dst, oop_index, rspec);
6628 }
6629 
6630 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6631   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6632   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6633   int klass_index = oop_recorder()->find_index(k);
6634   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6635   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6636 }
6637 
6638 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6639   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6640   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6641   int klass_index = oop_recorder()->find_index(k);
6642   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6643   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6644 }
6645 
6646 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6647   assert (UseCompressedOops, "should only be used for compressed headers");
6648   assert (Universe::heap() != NULL, "java heap should be initialized");
6649   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6650   int oop_index = oop_recorder()->find_index(obj);
6651   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6652   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6653 }
6654 
6655 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6656   assert (UseCompressedOops, "should only be used for compressed headers");
6657   assert (Universe::heap() != NULL, "java heap should be initialized");
6658   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6659   int oop_index = oop_recorder()->find_index(obj);
6660   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6661   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6662 }
6663 
6664 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6665   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6666   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6667   int klass_index = oop_recorder()->find_index(k);
6668   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6669   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6670 }
6671 
6672 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6673   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6674   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6675   int klass_index = oop_recorder()->find_index(k);
6676   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6677   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6678 }
6679 
6680 void MacroAssembler::reinit_heapbase() {
6681   if (UseCompressedOops || UseCompressedClassPointers) {
6682     if (Universe::heap() != NULL) {
6683       if (Universe::narrow_oop_base() == NULL) {
6684         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6685       } else {
6686         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6687       }
6688     } else {
6689       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6690     }
6691   }
6692 }
6693 
6694 #endif // _LP64
6695 
6696 // C2 compiled method's prolog code.
6697 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6698 
6699   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6700   // NativeJump::patch_verified_entry will be able to patch out the entry
6701   // code safely. The push to verify stack depth is ok at 5 bytes,
6702   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6703   // stack bang then we must use the 6 byte frame allocation even if
6704   // we have no frame. :-(
6705   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6706 
6707   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6708   // Remove word for return addr
6709   framesize -= wordSize;
6710   stack_bang_size -= wordSize;
6711 
6712   // Calls to C2R adapters often do not accept exceptional returns.
6713   // We require that their callers must bang for them.  But be careful, because
6714   // some VM calls (such as call site linkage) can use several kilobytes of
6715   // stack.  But the stack safety zone should account for that.
6716   // See bugs 4446381, 4468289, 4497237.
6717   if (stack_bang_size > 0) {
6718     generate_stack_overflow_check(stack_bang_size);
6719 
6720     // We always push rbp, so that on return to interpreter rbp, will be
6721     // restored correctly and we can correct the stack.
6722     push(rbp);
6723     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6724     if (PreserveFramePointer) {
6725       mov(rbp, rsp);
6726     }
6727     // Remove word for ebp
6728     framesize -= wordSize;
6729 
6730     // Create frame
6731     if (framesize) {
6732       subptr(rsp, framesize);
6733     }
6734   } else {
6735     // Create frame (force generation of a 4 byte immediate value)
6736     subptr_imm32(rsp, framesize);
6737 
6738     // Save RBP register now.
6739     framesize -= wordSize;
6740     movptr(Address(rsp, framesize), rbp);
6741     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6742     if (PreserveFramePointer) {
6743       movptr(rbp, rsp);
6744       if (framesize > 0) {
6745         addptr(rbp, framesize);
6746       }
6747     }
6748   }
6749 
6750   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6751     framesize -= wordSize;
6752     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6753   }
6754 
6755 #ifndef _LP64
6756   // If method sets FPU control word do it now
6757   if (fp_mode_24b) {
6758     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6759   }
6760   if (UseSSE >= 2 && VerifyFPU) {
6761     verify_FPU(0, "FPU stack must be clean on entry");
6762   }
6763 #endif
6764 
6765 #ifdef ASSERT
6766   if (VerifyStackAtCalls) {
6767     Label L;
6768     push(rax);
6769     mov(rax, rsp);
6770     andptr(rax, StackAlignmentInBytes-1);
6771     cmpptr(rax, StackAlignmentInBytes-wordSize);
6772     pop(rax);
6773     jcc(Assembler::equal, L);
6774     STOP("Stack is not properly aligned!");
6775     bind(L);
6776   }
6777 #endif
6778 
6779 }
6780 
6781 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, bool is_large) {
6782   // cnt - number of qwords (8-byte words).
6783   // base - start address, qword aligned.
6784   // is_large - if optimizers know cnt is larger than InitArrayShortSize
6785   assert(base==rdi, "base register must be edi for rep stos");
6786   assert(tmp==rax,   "tmp register must be eax for rep stos");
6787   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6788   assert(InitArrayShortSize % BytesPerLong == 0,
6789     "InitArrayShortSize should be the multiple of BytesPerLong");
6790 
6791   Label DONE;
6792 
6793   xorptr(tmp, tmp);
6794 
6795   if (!is_large) {
6796     Label LOOP, LONG;
6797     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
6798     jccb(Assembler::greater, LONG);
6799 
6800     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
6801 
6802     decrement(cnt);
6803     jccb(Assembler::negative, DONE); // Zero length
6804 
6805     // Use individual pointer-sized stores for small counts:
6806     BIND(LOOP);
6807     movptr(Address(base, cnt, Address::times_ptr), tmp);
6808     decrement(cnt);
6809     jccb(Assembler::greaterEqual, LOOP);
6810     jmpb(DONE);
6811 
6812     BIND(LONG);
6813   }
6814 
6815   // Use longer rep-prefixed ops for non-small counts:
6816   if (UseFastStosb) {
6817     shlptr(cnt, 3); // convert to number of bytes
6818     rep_stosb();
6819   } else {
6820     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
6821     rep_stos();
6822   }
6823 
6824   BIND(DONE);
6825 }
6826 
6827 #ifdef COMPILER2
6828 
6829 // IndexOf for constant substrings with size >= 8 chars
6830 // which don't need to be loaded through stack.
6831 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6832                                       Register cnt1, Register cnt2,
6833                                       int int_cnt2,  Register result,
6834                                       XMMRegister vec, Register tmp,
6835                                       int ae) {
6836   ShortBranchVerifier sbv(this);
6837   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6838   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
6839 
6840   // This method uses the pcmpestri instruction with bound registers
6841   //   inputs:
6842   //     xmm - substring
6843   //     rax - substring length (elements count)
6844   //     mem - scanned string
6845   //     rdx - string length (elements count)
6846   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6847   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
6848   //   outputs:
6849   //     rcx - matched index in string
6850   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6851   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
6852   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
6853   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
6854   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
6855 
6856   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6857         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6858         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6859 
6860   // Note, inline_string_indexOf() generates checks:
6861   // if (substr.count > string.count) return -1;
6862   // if (substr.count == 0) return 0;
6863   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
6864 
6865   // Load substring.
6866   if (ae == StrIntrinsicNode::UL) {
6867     pmovzxbw(vec, Address(str2, 0));
6868   } else {
6869     movdqu(vec, Address(str2, 0));
6870   }
6871   movl(cnt2, int_cnt2);
6872   movptr(result, str1); // string addr
6873 
6874   if (int_cnt2 > stride) {
6875     jmpb(SCAN_TO_SUBSTR);
6876 
6877     // Reload substr for rescan, this code
6878     // is executed only for large substrings (> 8 chars)
6879     bind(RELOAD_SUBSTR);
6880     if (ae == StrIntrinsicNode::UL) {
6881       pmovzxbw(vec, Address(str2, 0));
6882     } else {
6883       movdqu(vec, Address(str2, 0));
6884     }
6885     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6886 
6887     bind(RELOAD_STR);
6888     // We came here after the beginning of the substring was
6889     // matched but the rest of it was not so we need to search
6890     // again. Start from the next element after the previous match.
6891 
6892     // cnt2 is number of substring reminding elements and
6893     // cnt1 is number of string reminding elements when cmp failed.
6894     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6895     subl(cnt1, cnt2);
6896     addl(cnt1, int_cnt2);
6897     movl(cnt2, int_cnt2); // Now restore cnt2
6898 
6899     decrementl(cnt1);     // Shift to next element
6900     cmpl(cnt1, cnt2);
6901     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6902 
6903     addptr(result, (1<<scale1));
6904 
6905   } // (int_cnt2 > 8)
6906 
6907   // Scan string for start of substr in 16-byte vectors
6908   bind(SCAN_TO_SUBSTR);
6909   pcmpestri(vec, Address(result, 0), mode);
6910   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6911   subl(cnt1, stride);
6912   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6913   cmpl(cnt1, cnt2);
6914   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6915   addptr(result, 16);
6916   jmpb(SCAN_TO_SUBSTR);
6917 
6918   // Found a potential substr
6919   bind(FOUND_CANDIDATE);
6920   // Matched whole vector if first element matched (tmp(rcx) == 0).
6921   if (int_cnt2 == stride) {
6922     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6923   } else { // int_cnt2 > 8
6924     jccb(Assembler::overflow, FOUND_SUBSTR);
6925   }
6926   // After pcmpestri tmp(rcx) contains matched element index
6927   // Compute start addr of substr
6928   lea(result, Address(result, tmp, scale1));
6929 
6930   // Make sure string is still long enough
6931   subl(cnt1, tmp);
6932   cmpl(cnt1, cnt2);
6933   if (int_cnt2 == stride) {
6934     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6935   } else { // int_cnt2 > 8
6936     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6937   }
6938   // Left less then substring.
6939 
6940   bind(RET_NOT_FOUND);
6941   movl(result, -1);
6942   jmp(EXIT);
6943 
6944   if (int_cnt2 > stride) {
6945     // This code is optimized for the case when whole substring
6946     // is matched if its head is matched.
6947     bind(MATCH_SUBSTR_HEAD);
6948     pcmpestri(vec, Address(result, 0), mode);
6949     // Reload only string if does not match
6950     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
6951 
6952     Label CONT_SCAN_SUBSTR;
6953     // Compare the rest of substring (> 8 chars).
6954     bind(FOUND_SUBSTR);
6955     // First 8 chars are already matched.
6956     negptr(cnt2);
6957     addptr(cnt2, stride);
6958 
6959     bind(SCAN_SUBSTR);
6960     subl(cnt1, stride);
6961     cmpl(cnt2, -stride); // Do not read beyond substring
6962     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6963     // Back-up strings to avoid reading beyond substring:
6964     // cnt1 = cnt1 - cnt2 + 8
6965     addl(cnt1, cnt2); // cnt2 is negative
6966     addl(cnt1, stride);
6967     movl(cnt2, stride); negptr(cnt2);
6968     bind(CONT_SCAN_SUBSTR);
6969     if (int_cnt2 < (int)G) {
6970       int tail_off1 = int_cnt2<<scale1;
6971       int tail_off2 = int_cnt2<<scale2;
6972       if (ae == StrIntrinsicNode::UL) {
6973         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
6974       } else {
6975         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
6976       }
6977       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
6978     } else {
6979       // calculate index in register to avoid integer overflow (int_cnt2*2)
6980       movl(tmp, int_cnt2);
6981       addptr(tmp, cnt2);
6982       if (ae == StrIntrinsicNode::UL) {
6983         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
6984       } else {
6985         movdqu(vec, Address(str2, tmp, scale2, 0));
6986       }
6987       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
6988     }
6989     // Need to reload strings pointers if not matched whole vector
6990     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6991     addptr(cnt2, stride);
6992     jcc(Assembler::negative, SCAN_SUBSTR);
6993     // Fall through if found full substring
6994 
6995   } // (int_cnt2 > 8)
6996 
6997   bind(RET_FOUND);
6998   // Found result if we matched full small substring.
6999   // Compute substr offset
7000   subptr(result, str1);
7001   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7002     shrl(result, 1); // index
7003   }
7004   bind(EXIT);
7005 
7006 } // string_indexofC8
7007 
7008 // Small strings are loaded through stack if they cross page boundary.
7009 void MacroAssembler::string_indexof(Register str1, Register str2,
7010                                     Register cnt1, Register cnt2,
7011                                     int int_cnt2,  Register result,
7012                                     XMMRegister vec, Register tmp,
7013                                     int ae) {
7014   ShortBranchVerifier sbv(this);
7015   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7016   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7017 
7018   //
7019   // int_cnt2 is length of small (< 8 chars) constant substring
7020   // or (-1) for non constant substring in which case its length
7021   // is in cnt2 register.
7022   //
7023   // Note, inline_string_indexOf() generates checks:
7024   // if (substr.count > string.count) return -1;
7025   // if (substr.count == 0) return 0;
7026   //
7027   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7028   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
7029   // This method uses the pcmpestri instruction with bound registers
7030   //   inputs:
7031   //     xmm - substring
7032   //     rax - substring length (elements count)
7033   //     mem - scanned string
7034   //     rdx - string length (elements count)
7035   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7036   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7037   //   outputs:
7038   //     rcx - matched index in string
7039   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7040   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7041   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7042   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7043 
7044   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
7045         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
7046         FOUND_CANDIDATE;
7047 
7048   { //========================================================
7049     // We don't know where these strings are located
7050     // and we can't read beyond them. Load them through stack.
7051     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
7052 
7053     movptr(tmp, rsp); // save old SP
7054 
7055     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
7056       if (int_cnt2 == (1>>scale2)) { // One byte
7057         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
7058         load_unsigned_byte(result, Address(str2, 0));
7059         movdl(vec, result); // move 32 bits
7060       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
7061         // Not enough header space in 32-bit VM: 12+3 = 15.
7062         movl(result, Address(str2, -1));
7063         shrl(result, 8);
7064         movdl(vec, result); // move 32 bits
7065       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
7066         load_unsigned_short(result, Address(str2, 0));
7067         movdl(vec, result); // move 32 bits
7068       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
7069         movdl(vec, Address(str2, 0)); // move 32 bits
7070       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
7071         movq(vec, Address(str2, 0));  // move 64 bits
7072       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
7073         // Array header size is 12 bytes in 32-bit VM
7074         // + 6 bytes for 3 chars == 18 bytes,
7075         // enough space to load vec and shift.
7076         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
7077         if (ae == StrIntrinsicNode::UL) {
7078           int tail_off = int_cnt2-8;
7079           pmovzxbw(vec, Address(str2, tail_off));
7080           psrldq(vec, -2*tail_off);
7081         }
7082         else {
7083           int tail_off = int_cnt2*(1<<scale2);
7084           movdqu(vec, Address(str2, tail_off-16));
7085           psrldq(vec, 16-tail_off);
7086         }
7087       }
7088     } else { // not constant substring
7089       cmpl(cnt2, stride);
7090       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
7091 
7092       // We can read beyond string if srt+16 does not cross page boundary
7093       // since heaps are aligned and mapped by pages.
7094       assert(os::vm_page_size() < (int)G, "default page should be small");
7095       movl(result, str2); // We need only low 32 bits
7096       andl(result, (os::vm_page_size()-1));
7097       cmpl(result, (os::vm_page_size()-16));
7098       jccb(Assembler::belowEqual, CHECK_STR);
7099 
7100       // Move small strings to stack to allow load 16 bytes into vec.
7101       subptr(rsp, 16);
7102       int stk_offset = wordSize-(1<<scale2);
7103       push(cnt2);
7104 
7105       bind(COPY_SUBSTR);
7106       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7107         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7108         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7109       } else if (ae == StrIntrinsicNode::UU) {
7110         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7111         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7112       }
7113       decrement(cnt2);
7114       jccb(Assembler::notZero, COPY_SUBSTR);
7115 
7116       pop(cnt2);
7117       movptr(str2, rsp);  // New substring address
7118     } // non constant
7119 
7120     bind(CHECK_STR);
7121     cmpl(cnt1, stride);
7122     jccb(Assembler::aboveEqual, BIG_STRINGS);
7123 
7124     // Check cross page boundary.
7125     movl(result, str1); // We need only low 32 bits
7126     andl(result, (os::vm_page_size()-1));
7127     cmpl(result, (os::vm_page_size()-16));
7128     jccb(Assembler::belowEqual, BIG_STRINGS);
7129 
7130     subptr(rsp, 16);
7131     int stk_offset = -(1<<scale1);
7132     if (int_cnt2 < 0) { // not constant
7133       push(cnt2);
7134       stk_offset += wordSize;
7135     }
7136     movl(cnt2, cnt1);
7137 
7138     bind(COPY_STR);
7139     if (ae == StrIntrinsicNode::LL) {
7140       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7141       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7142     } else {
7143       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7144       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7145     }
7146     decrement(cnt2);
7147     jccb(Assembler::notZero, COPY_STR);
7148 
7149     if (int_cnt2 < 0) { // not constant
7150       pop(cnt2);
7151     }
7152     movptr(str1, rsp);  // New string address
7153 
7154     bind(BIG_STRINGS);
7155     // Load substring.
7156     if (int_cnt2 < 0) { // -1
7157       if (ae == StrIntrinsicNode::UL) {
7158         pmovzxbw(vec, Address(str2, 0));
7159       } else {
7160         movdqu(vec, Address(str2, 0));
7161       }
7162       push(cnt2);       // substr count
7163       push(str2);       // substr addr
7164       push(str1);       // string addr
7165     } else {
7166       // Small (< 8 chars) constant substrings are loaded already.
7167       movl(cnt2, int_cnt2);
7168     }
7169     push(tmp);  // original SP
7170 
7171   } // Finished loading
7172 
7173   //========================================================
7174   // Start search
7175   //
7176 
7177   movptr(result, str1); // string addr
7178 
7179   if (int_cnt2  < 0) {  // Only for non constant substring
7180     jmpb(SCAN_TO_SUBSTR);
7181 
7182     // SP saved at sp+0
7183     // String saved at sp+1*wordSize
7184     // Substr saved at sp+2*wordSize
7185     // Substr count saved at sp+3*wordSize
7186 
7187     // Reload substr for rescan, this code
7188     // is executed only for large substrings (> 8 chars)
7189     bind(RELOAD_SUBSTR);
7190     movptr(str2, Address(rsp, 2*wordSize));
7191     movl(cnt2, Address(rsp, 3*wordSize));
7192     if (ae == StrIntrinsicNode::UL) {
7193       pmovzxbw(vec, Address(str2, 0));
7194     } else {
7195       movdqu(vec, Address(str2, 0));
7196     }
7197     // We came here after the beginning of the substring was
7198     // matched but the rest of it was not so we need to search
7199     // again. Start from the next element after the previous match.
7200     subptr(str1, result); // Restore counter
7201     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7202       shrl(str1, 1);
7203     }
7204     addl(cnt1, str1);
7205     decrementl(cnt1);   // Shift to next element
7206     cmpl(cnt1, cnt2);
7207     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7208 
7209     addptr(result, (1<<scale1));
7210   } // non constant
7211 
7212   // Scan string for start of substr in 16-byte vectors
7213   bind(SCAN_TO_SUBSTR);
7214   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7215   pcmpestri(vec, Address(result, 0), mode);
7216   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7217   subl(cnt1, stride);
7218   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7219   cmpl(cnt1, cnt2);
7220   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7221   addptr(result, 16);
7222 
7223   bind(ADJUST_STR);
7224   cmpl(cnt1, stride); // Do not read beyond string
7225   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7226   // Back-up string to avoid reading beyond string.
7227   lea(result, Address(result, cnt1, scale1, -16));
7228   movl(cnt1, stride);
7229   jmpb(SCAN_TO_SUBSTR);
7230 
7231   // Found a potential substr
7232   bind(FOUND_CANDIDATE);
7233   // After pcmpestri tmp(rcx) contains matched element index
7234 
7235   // Make sure string is still long enough
7236   subl(cnt1, tmp);
7237   cmpl(cnt1, cnt2);
7238   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7239   // Left less then substring.
7240 
7241   bind(RET_NOT_FOUND);
7242   movl(result, -1);
7243   jmpb(CLEANUP);
7244 
7245   bind(FOUND_SUBSTR);
7246   // Compute start addr of substr
7247   lea(result, Address(result, tmp, scale1));
7248   if (int_cnt2 > 0) { // Constant substring
7249     // Repeat search for small substring (< 8 chars)
7250     // from new point without reloading substring.
7251     // Have to check that we don't read beyond string.
7252     cmpl(tmp, stride-int_cnt2);
7253     jccb(Assembler::greater, ADJUST_STR);
7254     // Fall through if matched whole substring.
7255   } else { // non constant
7256     assert(int_cnt2 == -1, "should be != 0");
7257 
7258     addl(tmp, cnt2);
7259     // Found result if we matched whole substring.
7260     cmpl(tmp, stride);
7261     jccb(Assembler::lessEqual, RET_FOUND);
7262 
7263     // Repeat search for small substring (<= 8 chars)
7264     // from new point 'str1' without reloading substring.
7265     cmpl(cnt2, stride);
7266     // Have to check that we don't read beyond string.
7267     jccb(Assembler::lessEqual, ADJUST_STR);
7268 
7269     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7270     // Compare the rest of substring (> 8 chars).
7271     movptr(str1, result);
7272 
7273     cmpl(tmp, cnt2);
7274     // First 8 chars are already matched.
7275     jccb(Assembler::equal, CHECK_NEXT);
7276 
7277     bind(SCAN_SUBSTR);
7278     pcmpestri(vec, Address(str1, 0), mode);
7279     // Need to reload strings pointers if not matched whole vector
7280     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7281 
7282     bind(CHECK_NEXT);
7283     subl(cnt2, stride);
7284     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7285     addptr(str1, 16);
7286     if (ae == StrIntrinsicNode::UL) {
7287       addptr(str2, 8);
7288     } else {
7289       addptr(str2, 16);
7290     }
7291     subl(cnt1, stride);
7292     cmpl(cnt2, stride); // Do not read beyond substring
7293     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7294     // Back-up strings to avoid reading beyond substring.
7295 
7296     if (ae == StrIntrinsicNode::UL) {
7297       lea(str2, Address(str2, cnt2, scale2, -8));
7298       lea(str1, Address(str1, cnt2, scale1, -16));
7299     } else {
7300       lea(str2, Address(str2, cnt2, scale2, -16));
7301       lea(str1, Address(str1, cnt2, scale1, -16));
7302     }
7303     subl(cnt1, cnt2);
7304     movl(cnt2, stride);
7305     addl(cnt1, stride);
7306     bind(CONT_SCAN_SUBSTR);
7307     if (ae == StrIntrinsicNode::UL) {
7308       pmovzxbw(vec, Address(str2, 0));
7309     } else {
7310       movdqu(vec, Address(str2, 0));
7311     }
7312     jmp(SCAN_SUBSTR);
7313 
7314     bind(RET_FOUND_LONG);
7315     movptr(str1, Address(rsp, wordSize));
7316   } // non constant
7317 
7318   bind(RET_FOUND);
7319   // Compute substr offset
7320   subptr(result, str1);
7321   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7322     shrl(result, 1); // index
7323   }
7324   bind(CLEANUP);
7325   pop(rsp); // restore SP
7326 
7327 } // string_indexof
7328 
7329 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7330                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7331   ShortBranchVerifier sbv(this);
7332   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7333 
7334   int stride = 8;
7335 
7336   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7337         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7338         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7339         FOUND_SEQ_CHAR, DONE_LABEL;
7340 
7341   movptr(result, str1);
7342   if (UseAVX >= 2) {
7343     cmpl(cnt1, stride);
7344     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7345     cmpl(cnt1, 2*stride);
7346     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
7347     movdl(vec1, ch);
7348     vpbroadcastw(vec1, vec1);
7349     vpxor(vec2, vec2);
7350     movl(tmp, cnt1);
7351     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7352     andl(cnt1,0x0000000F);  //tail count (in chars)
7353 
7354     bind(SCAN_TO_16_CHAR_LOOP);
7355     vmovdqu(vec3, Address(result, 0));
7356     vpcmpeqw(vec3, vec3, vec1, 1);
7357     vptest(vec2, vec3);
7358     jcc(Assembler::carryClear, FOUND_CHAR);
7359     addptr(result, 32);
7360     subl(tmp, 2*stride);
7361     jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7362     jmp(SCAN_TO_8_CHAR);
7363     bind(SCAN_TO_8_CHAR_INIT);
7364     movdl(vec1, ch);
7365     pshuflw(vec1, vec1, 0x00);
7366     pshufd(vec1, vec1, 0);
7367     pxor(vec2, vec2);
7368   }
7369   bind(SCAN_TO_8_CHAR);
7370   cmpl(cnt1, stride);
7371   if (UseAVX >= 2) {
7372     jcc(Assembler::less, SCAN_TO_CHAR);
7373   } else {
7374     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7375     movdl(vec1, ch);
7376     pshuflw(vec1, vec1, 0x00);
7377     pshufd(vec1, vec1, 0);
7378     pxor(vec2, vec2);
7379   }
7380   movl(tmp, cnt1);
7381   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7382   andl(cnt1,0x00000007);  //tail count (in chars)
7383 
7384   bind(SCAN_TO_8_CHAR_LOOP);
7385   movdqu(vec3, Address(result, 0));
7386   pcmpeqw(vec3, vec1);
7387   ptest(vec2, vec3);
7388   jcc(Assembler::carryClear, FOUND_CHAR);
7389   addptr(result, 16);
7390   subl(tmp, stride);
7391   jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7392   bind(SCAN_TO_CHAR);
7393   testl(cnt1, cnt1);
7394   jcc(Assembler::zero, RET_NOT_FOUND);
7395   bind(SCAN_TO_CHAR_LOOP);
7396   load_unsigned_short(tmp, Address(result, 0));
7397   cmpl(ch, tmp);
7398   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7399   addptr(result, 2);
7400   subl(cnt1, 1);
7401   jccb(Assembler::zero, RET_NOT_FOUND);
7402   jmp(SCAN_TO_CHAR_LOOP);
7403 
7404   bind(RET_NOT_FOUND);
7405   movl(result, -1);
7406   jmpb(DONE_LABEL);
7407 
7408   bind(FOUND_CHAR);
7409   if (UseAVX >= 2) {
7410     vpmovmskb(tmp, vec3);
7411   } else {
7412     pmovmskb(tmp, vec3);
7413   }
7414   bsfl(ch, tmp);
7415   addl(result, ch);
7416 
7417   bind(FOUND_SEQ_CHAR);
7418   subptr(result, str1);
7419   shrl(result, 1);
7420 
7421   bind(DONE_LABEL);
7422 } // string_indexof_char
7423 
7424 // helper function for string_compare
7425 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7426                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7427                                         Address::ScaleFactor scale2, Register index, int ae) {
7428   if (ae == StrIntrinsicNode::LL) {
7429     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7430     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7431   } else if (ae == StrIntrinsicNode::UU) {
7432     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7433     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7434   } else {
7435     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7436     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7437   }
7438 }
7439 
7440 // Compare strings, used for char[] and byte[].
7441 void MacroAssembler::string_compare(Register str1, Register str2,
7442                                     Register cnt1, Register cnt2, Register result,
7443                                     XMMRegister vec1, int ae) {
7444   ShortBranchVerifier sbv(this);
7445   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7446   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7447   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7448   int stride2x2 = 0x40;
7449   Address::ScaleFactor scale = Address::no_scale;
7450   Address::ScaleFactor scale1 = Address::no_scale;
7451   Address::ScaleFactor scale2 = Address::no_scale;
7452 
7453   if (ae != StrIntrinsicNode::LL) {
7454     stride2x2 = 0x20;
7455   }
7456 
7457   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7458     shrl(cnt2, 1);
7459   }
7460   // Compute the minimum of the string lengths and the
7461   // difference of the string lengths (stack).
7462   // Do the conditional move stuff
7463   movl(result, cnt1);
7464   subl(cnt1, cnt2);
7465   push(cnt1);
7466   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7467 
7468   // Is the minimum length zero?
7469   testl(cnt2, cnt2);
7470   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7471   if (ae == StrIntrinsicNode::LL) {
7472     // Load first bytes
7473     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7474     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7475   } else if (ae == StrIntrinsicNode::UU) {
7476     // Load first characters
7477     load_unsigned_short(result, Address(str1, 0));
7478     load_unsigned_short(cnt1, Address(str2, 0));
7479   } else {
7480     load_unsigned_byte(result, Address(str1, 0));
7481     load_unsigned_short(cnt1, Address(str2, 0));
7482   }
7483   subl(result, cnt1);
7484   jcc(Assembler::notZero,  POP_LABEL);
7485 
7486   if (ae == StrIntrinsicNode::UU) {
7487     // Divide length by 2 to get number of chars
7488     shrl(cnt2, 1);
7489   }
7490   cmpl(cnt2, 1);
7491   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7492 
7493   // Check if the strings start at the same location and setup scale and stride
7494   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7495     cmpptr(str1, str2);
7496     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7497     if (ae == StrIntrinsicNode::LL) {
7498       scale = Address::times_1;
7499       stride = 16;
7500     } else {
7501       scale = Address::times_2;
7502       stride = 8;
7503     }
7504   } else {
7505     scale1 = Address::times_1;
7506     scale2 = Address::times_2;
7507     // scale not used
7508     stride = 8;
7509   }
7510 
7511   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7512     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7513     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7514     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7515     Label COMPARE_TAIL_LONG;
7516     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7517 
7518     int pcmpmask = 0x19;
7519     if (ae == StrIntrinsicNode::LL) {
7520       pcmpmask &= ~0x01;
7521     }
7522 
7523     // Setup to compare 16-chars (32-bytes) vectors,
7524     // start from first character again because it has aligned address.
7525     if (ae == StrIntrinsicNode::LL) {
7526       stride2 = 32;
7527     } else {
7528       stride2 = 16;
7529     }
7530     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7531       adr_stride = stride << scale;
7532     } else {
7533       adr_stride1 = 8;  //stride << scale1;
7534       adr_stride2 = 16; //stride << scale2;
7535     }
7536 
7537     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7538     // rax and rdx are used by pcmpestri as elements counters
7539     movl(result, cnt2);
7540     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7541     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7542 
7543     // fast path : compare first 2 8-char vectors.
7544     bind(COMPARE_16_CHARS);
7545     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7546       movdqu(vec1, Address(str1, 0));
7547     } else {
7548       pmovzxbw(vec1, Address(str1, 0));
7549     }
7550     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7551     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7552 
7553     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7554       movdqu(vec1, Address(str1, adr_stride));
7555       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7556     } else {
7557       pmovzxbw(vec1, Address(str1, adr_stride1));
7558       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7559     }
7560     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7561     addl(cnt1, stride);
7562 
7563     // Compare the characters at index in cnt1
7564     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7565     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7566     subl(result, cnt2);
7567     jmp(POP_LABEL);
7568 
7569     // Setup the registers to start vector comparison loop
7570     bind(COMPARE_WIDE_VECTORS);
7571     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7572       lea(str1, Address(str1, result, scale));
7573       lea(str2, Address(str2, result, scale));
7574     } else {
7575       lea(str1, Address(str1, result, scale1));
7576       lea(str2, Address(str2, result, scale2));
7577     }
7578     subl(result, stride2);
7579     subl(cnt2, stride2);
7580     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
7581     negptr(result);
7582 
7583     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
7584     bind(COMPARE_WIDE_VECTORS_LOOP);
7585 
7586 #ifdef _LP64
7587     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7588       cmpl(cnt2, stride2x2);
7589       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7590       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
7591       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
7592 
7593       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7594       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7595         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
7596         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7597       } else {
7598         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
7599         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7600       }
7601       kortestql(k7, k7);
7602       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
7603       addptr(result, stride2x2);  // update since we already compared at this addr
7604       subl(cnt2, stride2x2);      // and sub the size too
7605       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7606 
7607       vpxor(vec1, vec1);
7608       jmpb(COMPARE_WIDE_TAIL);
7609     }//if (VM_Version::supports_avx512vlbw())
7610 #endif // _LP64
7611 
7612 
7613     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7614     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7615       vmovdqu(vec1, Address(str1, result, scale));
7616       vpxor(vec1, Address(str2, result, scale));
7617     } else {
7618       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
7619       vpxor(vec1, Address(str2, result, scale2));
7620     }
7621     vptest(vec1, vec1);
7622     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
7623     addptr(result, stride2);
7624     subl(cnt2, stride2);
7625     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
7626     // clean upper bits of YMM registers
7627     vpxor(vec1, vec1);
7628 
7629     // compare wide vectors tail
7630     bind(COMPARE_WIDE_TAIL);
7631     testptr(result, result);
7632     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7633 
7634     movl(result, stride2);
7635     movl(cnt2, result);
7636     negptr(result);
7637     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7638 
7639     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
7640     bind(VECTOR_NOT_EQUAL);
7641     // clean upper bits of YMM registers
7642     vpxor(vec1, vec1);
7643     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7644       lea(str1, Address(str1, result, scale));
7645       lea(str2, Address(str2, result, scale));
7646     } else {
7647       lea(str1, Address(str1, result, scale1));
7648       lea(str2, Address(str2, result, scale2));
7649     }
7650     jmp(COMPARE_16_CHARS);
7651 
7652     // Compare tail chars, length between 1 to 15 chars
7653     bind(COMPARE_TAIL_LONG);
7654     movl(cnt2, result);
7655     cmpl(cnt2, stride);
7656     jcc(Assembler::less, COMPARE_SMALL_STR);
7657 
7658     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7659       movdqu(vec1, Address(str1, 0));
7660     } else {
7661       pmovzxbw(vec1, Address(str1, 0));
7662     }
7663     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7664     jcc(Assembler::below, COMPARE_INDEX_CHAR);
7665     subptr(cnt2, stride);
7666     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7667     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7668       lea(str1, Address(str1, result, scale));
7669       lea(str2, Address(str2, result, scale));
7670     } else {
7671       lea(str1, Address(str1, result, scale1));
7672       lea(str2, Address(str2, result, scale2));
7673     }
7674     negptr(cnt2);
7675     jmpb(WHILE_HEAD_LABEL);
7676 
7677     bind(COMPARE_SMALL_STR);
7678   } else if (UseSSE42Intrinsics) {
7679     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
7680     int pcmpmask = 0x19;
7681     // Setup to compare 8-char (16-byte) vectors,
7682     // start from first character again because it has aligned address.
7683     movl(result, cnt2);
7684     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
7685     if (ae == StrIntrinsicNode::LL) {
7686       pcmpmask &= ~0x01;
7687     }
7688     jcc(Assembler::zero, COMPARE_TAIL);
7689     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7690       lea(str1, Address(str1, result, scale));
7691       lea(str2, Address(str2, result, scale));
7692     } else {
7693       lea(str1, Address(str1, result, scale1));
7694       lea(str2, Address(str2, result, scale2));
7695     }
7696     negptr(result);
7697 
7698     // pcmpestri
7699     //   inputs:
7700     //     vec1- substring
7701     //     rax - negative string length (elements count)
7702     //     mem - scanned string
7703     //     rdx - string length (elements count)
7704     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
7705     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
7706     //   outputs:
7707     //     rcx - first mismatched element index
7708     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7709 
7710     bind(COMPARE_WIDE_VECTORS);
7711     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7712       movdqu(vec1, Address(str1, result, scale));
7713       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7714     } else {
7715       pmovzxbw(vec1, Address(str1, result, scale1));
7716       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7717     }
7718     // After pcmpestri cnt1(rcx) contains mismatched element index
7719 
7720     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
7721     addptr(result, stride);
7722     subptr(cnt2, stride);
7723     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
7724 
7725     // compare wide vectors tail
7726     testptr(result, result);
7727     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7728 
7729     movl(cnt2, stride);
7730     movl(result, stride);
7731     negptr(result);
7732     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7733       movdqu(vec1, Address(str1, result, scale));
7734       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7735     } else {
7736       pmovzxbw(vec1, Address(str1, result, scale1));
7737       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7738     }
7739     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
7740 
7741     // Mismatched characters in the vectors
7742     bind(VECTOR_NOT_EQUAL);
7743     addptr(cnt1, result);
7744     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7745     subl(result, cnt2);
7746     jmpb(POP_LABEL);
7747 
7748     bind(COMPARE_TAIL); // limit is zero
7749     movl(cnt2, result);
7750     // Fallthru to tail compare
7751   }
7752   // Shift str2 and str1 to the end of the arrays, negate min
7753   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7754     lea(str1, Address(str1, cnt2, scale));
7755     lea(str2, Address(str2, cnt2, scale));
7756   } else {
7757     lea(str1, Address(str1, cnt2, scale1));
7758     lea(str2, Address(str2, cnt2, scale2));
7759   }
7760   decrementl(cnt2);  // first character was compared already
7761   negptr(cnt2);
7762 
7763   // Compare the rest of the elements
7764   bind(WHILE_HEAD_LABEL);
7765   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
7766   subl(result, cnt1);
7767   jccb(Assembler::notZero, POP_LABEL);
7768   increment(cnt2);
7769   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
7770 
7771   // Strings are equal up to min length.  Return the length difference.
7772   bind(LENGTH_DIFF_LABEL);
7773   pop(result);
7774   if (ae == StrIntrinsicNode::UU) {
7775     // Divide diff by 2 to get number of chars
7776     sarl(result, 1);
7777   }
7778   jmpb(DONE_LABEL);
7779 
7780 #ifdef _LP64
7781   if (VM_Version::supports_avx512vlbw()) {
7782 
7783     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
7784 
7785     kmovql(cnt1, k7);
7786     notq(cnt1);
7787     bsfq(cnt2, cnt1);
7788     if (ae != StrIntrinsicNode::LL) {
7789       // Divide diff by 2 to get number of chars
7790       sarl(cnt2, 1);
7791     }
7792     addq(result, cnt2);
7793     if (ae == StrIntrinsicNode::LL) {
7794       load_unsigned_byte(cnt1, Address(str2, result));
7795       load_unsigned_byte(result, Address(str1, result));
7796     } else if (ae == StrIntrinsicNode::UU) {
7797       load_unsigned_short(cnt1, Address(str2, result, scale));
7798       load_unsigned_short(result, Address(str1, result, scale));
7799     } else {
7800       load_unsigned_short(cnt1, Address(str2, result, scale2));
7801       load_unsigned_byte(result, Address(str1, result, scale1));
7802     }
7803     subl(result, cnt1);
7804     jmpb(POP_LABEL);
7805   }//if (VM_Version::supports_avx512vlbw())
7806 #endif // _LP64
7807 
7808   // Discard the stored length difference
7809   bind(POP_LABEL);
7810   pop(cnt1);
7811 
7812   // That's it
7813   bind(DONE_LABEL);
7814   if(ae == StrIntrinsicNode::UL) {
7815     negl(result);
7816   }
7817 
7818 }
7819 
7820 // Search for Non-ASCII character (Negative byte value) in a byte array,
7821 // return true if it has any and false otherwise.
7822 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
7823 //   @HotSpotIntrinsicCandidate
7824 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
7825 //     for (int i = off; i < off + len; i++) {
7826 //       if (ba[i] < 0) {
7827 //         return true;
7828 //       }
7829 //     }
7830 //     return false;
7831 //   }
7832 void MacroAssembler::has_negatives(Register ary1, Register len,
7833   Register result, Register tmp1,
7834   XMMRegister vec1, XMMRegister vec2) {
7835   // rsi: byte array
7836   // rcx: len
7837   // rax: result
7838   ShortBranchVerifier sbv(this);
7839   assert_different_registers(ary1, len, result, tmp1);
7840   assert_different_registers(vec1, vec2);
7841   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
7842 
7843   // len == 0
7844   testl(len, len);
7845   jcc(Assembler::zero, FALSE_LABEL);
7846 
7847   if ((UseAVX > 2) && // AVX512
7848     VM_Version::supports_avx512vlbw() &&
7849     VM_Version::supports_bmi2()) {
7850 
7851     set_vector_masking();  // opening of the stub context for programming mask registers
7852 
7853     Label test_64_loop, test_tail;
7854     Register tmp3_aliased = len;
7855 
7856     movl(tmp1, len);
7857     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
7858 
7859     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
7860     andl(len, ~(64 - 1));    // vector count (in chars)
7861     jccb(Assembler::zero, test_tail);
7862 
7863     lea(ary1, Address(ary1, len, Address::times_1));
7864     negptr(len);
7865 
7866     bind(test_64_loop);
7867     // Check whether our 64 elements of size byte contain negatives
7868     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
7869     kortestql(k2, k2);
7870     jcc(Assembler::notZero, TRUE_LABEL);
7871 
7872     addptr(len, 64);
7873     jccb(Assembler::notZero, test_64_loop);
7874 
7875 
7876     bind(test_tail);
7877     // bail out when there is nothing to be done
7878     testl(tmp1, -1);
7879     jcc(Assembler::zero, FALSE_LABEL);
7880 
7881     // Save k1
7882     kmovql(k3, k1);
7883 
7884     // ~(~0 << len) applied up to two times (for 32-bit scenario)
7885 #ifdef _LP64
7886     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
7887     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
7888     notq(tmp3_aliased);
7889     kmovql(k1, tmp3_aliased);
7890 #else
7891     Label k_init;
7892     jmp(k_init);
7893 
7894     // We could not read 64-bits from a general purpose register thus we move
7895     // data required to compose 64 1's to the instruction stream
7896     // We emit 64 byte wide series of elements from 0..63 which later on would
7897     // be used as a compare targets with tail count contained in tmp1 register.
7898     // Result would be a k1 register having tmp1 consecutive number or 1
7899     // counting from least significant bit.
7900     address tmp = pc();
7901     emit_int64(0x0706050403020100);
7902     emit_int64(0x0F0E0D0C0B0A0908);
7903     emit_int64(0x1716151413121110);
7904     emit_int64(0x1F1E1D1C1B1A1918);
7905     emit_int64(0x2726252423222120);
7906     emit_int64(0x2F2E2D2C2B2A2928);
7907     emit_int64(0x3736353433323130);
7908     emit_int64(0x3F3E3D3C3B3A3938);
7909 
7910     bind(k_init);
7911     lea(len, InternalAddress(tmp));
7912     // create mask to test for negative byte inside a vector
7913     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
7914     evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
7915 
7916 #endif
7917     evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
7918     ktestq(k2, k1);
7919     // Restore k1
7920     kmovql(k1, k3);
7921     jcc(Assembler::notZero, TRUE_LABEL);
7922 
7923     jmp(FALSE_LABEL);
7924 
7925     clear_vector_masking();   // closing of the stub context for programming mask registers
7926   } else {
7927     movl(result, len); // copy
7928 
7929     if (UseAVX == 2 && UseSSE >= 2) {
7930       // With AVX2, use 32-byte vector compare
7931       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7932 
7933       // Compare 32-byte vectors
7934       andl(result, 0x0000001f);  //   tail count (in bytes)
7935       andl(len, 0xffffffe0);   // vector count (in bytes)
7936       jccb(Assembler::zero, COMPARE_TAIL);
7937 
7938       lea(ary1, Address(ary1, len, Address::times_1));
7939       negptr(len);
7940 
7941       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
7942       movdl(vec2, tmp1);
7943       vpbroadcastd(vec2, vec2);
7944 
7945       bind(COMPARE_WIDE_VECTORS);
7946       vmovdqu(vec1, Address(ary1, len, Address::times_1));
7947       vptest(vec1, vec2);
7948       jccb(Assembler::notZero, TRUE_LABEL);
7949       addptr(len, 32);
7950       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7951 
7952       testl(result, result);
7953       jccb(Assembler::zero, FALSE_LABEL);
7954 
7955       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
7956       vptest(vec1, vec2);
7957       jccb(Assembler::notZero, TRUE_LABEL);
7958       jmpb(FALSE_LABEL);
7959 
7960       bind(COMPARE_TAIL); // len is zero
7961       movl(len, result);
7962       // Fallthru to tail compare
7963     } else if (UseSSE42Intrinsics) {
7964       // With SSE4.2, use double quad vector compare
7965       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7966 
7967       // Compare 16-byte vectors
7968       andl(result, 0x0000000f);  //   tail count (in bytes)
7969       andl(len, 0xfffffff0);   // vector count (in bytes)
7970       jccb(Assembler::zero, COMPARE_TAIL);
7971 
7972       lea(ary1, Address(ary1, len, Address::times_1));
7973       negptr(len);
7974 
7975       movl(tmp1, 0x80808080);
7976       movdl(vec2, tmp1);
7977       pshufd(vec2, vec2, 0);
7978 
7979       bind(COMPARE_WIDE_VECTORS);
7980       movdqu(vec1, Address(ary1, len, Address::times_1));
7981       ptest(vec1, vec2);
7982       jccb(Assembler::notZero, TRUE_LABEL);
7983       addptr(len, 16);
7984       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7985 
7986       testl(result, result);
7987       jccb(Assembler::zero, FALSE_LABEL);
7988 
7989       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7990       ptest(vec1, vec2);
7991       jccb(Assembler::notZero, TRUE_LABEL);
7992       jmpb(FALSE_LABEL);
7993 
7994       bind(COMPARE_TAIL); // len is zero
7995       movl(len, result);
7996       // Fallthru to tail compare
7997     }
7998   }
7999   // Compare 4-byte vectors
8000   andl(len, 0xfffffffc); // vector count (in bytes)
8001   jccb(Assembler::zero, COMPARE_CHAR);
8002 
8003   lea(ary1, Address(ary1, len, Address::times_1));
8004   negptr(len);
8005 
8006   bind(COMPARE_VECTORS);
8007   movl(tmp1, Address(ary1, len, Address::times_1));
8008   andl(tmp1, 0x80808080);
8009   jccb(Assembler::notZero, TRUE_LABEL);
8010   addptr(len, 4);
8011   jcc(Assembler::notZero, COMPARE_VECTORS);
8012 
8013   // Compare trailing char (final 2 bytes), if any
8014   bind(COMPARE_CHAR);
8015   testl(result, 0x2);   // tail  char
8016   jccb(Assembler::zero, COMPARE_BYTE);
8017   load_unsigned_short(tmp1, Address(ary1, 0));
8018   andl(tmp1, 0x00008080);
8019   jccb(Assembler::notZero, TRUE_LABEL);
8020   subptr(result, 2);
8021   lea(ary1, Address(ary1, 2));
8022 
8023   bind(COMPARE_BYTE);
8024   testl(result, 0x1);   // tail  byte
8025   jccb(Assembler::zero, FALSE_LABEL);
8026   load_unsigned_byte(tmp1, Address(ary1, 0));
8027   andl(tmp1, 0x00000080);
8028   jccb(Assembler::notEqual, TRUE_LABEL);
8029   jmpb(FALSE_LABEL);
8030 
8031   bind(TRUE_LABEL);
8032   movl(result, 1);   // return true
8033   jmpb(DONE);
8034 
8035   bind(FALSE_LABEL);
8036   xorl(result, result); // return false
8037 
8038   // That's it
8039   bind(DONE);
8040   if (UseAVX >= 2 && UseSSE >= 2) {
8041     // clean upper bits of YMM registers
8042     vpxor(vec1, vec1);
8043     vpxor(vec2, vec2);
8044   }
8045 }
8046 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
8047 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8048                                    Register limit, Register result, Register chr,
8049                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
8050   ShortBranchVerifier sbv(this);
8051   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
8052 
8053   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8054   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
8055 
8056   if (is_array_equ) {
8057     // Check the input args
8058     cmpoop(ary1, ary2);
8059     jcc(Assembler::equal, TRUE_LABEL);
8060 
8061     // Need additional checks for arrays_equals.
8062     testptr(ary1, ary1);
8063     jcc(Assembler::zero, FALSE_LABEL);
8064     testptr(ary2, ary2);
8065     jcc(Assembler::zero, FALSE_LABEL);
8066 
8067     // Check the lengths
8068     movl(limit, Address(ary1, length_offset));
8069     cmpl(limit, Address(ary2, length_offset));
8070     jcc(Assembler::notEqual, FALSE_LABEL);
8071   }
8072 
8073   // count == 0
8074   testl(limit, limit);
8075   jcc(Assembler::zero, TRUE_LABEL);
8076 
8077   if (is_array_equ) {
8078     // Load array address
8079     lea(ary1, Address(ary1, base_offset));
8080     lea(ary2, Address(ary2, base_offset));
8081   }
8082 
8083   if (is_array_equ && is_char) {
8084     // arrays_equals when used for char[].
8085     shll(limit, 1);      // byte count != 0
8086   }
8087   movl(result, limit); // copy
8088 
8089   if (UseAVX >= 2) {
8090     // With AVX2, use 32-byte vector compare
8091     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8092 
8093     // Compare 32-byte vectors
8094     andl(result, 0x0000001f);  //   tail count (in bytes)
8095     andl(limit, 0xffffffe0);   // vector count (in bytes)
8096     jcc(Assembler::zero, COMPARE_TAIL);
8097 
8098     lea(ary1, Address(ary1, limit, Address::times_1));
8099     lea(ary2, Address(ary2, limit, Address::times_1));
8100     negptr(limit);
8101 
8102     bind(COMPARE_WIDE_VECTORS);
8103 
8104 #ifdef _LP64
8105     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8106       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8107 
8108       cmpl(limit, -64);
8109       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8110 
8111       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8112 
8113       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8114       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8115       kortestql(k7, k7);
8116       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8117       addptr(limit, 64);  // update since we already compared at this addr
8118       cmpl(limit, -64);
8119       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8120 
8121       // At this point we may still need to compare -limit+result bytes.
8122       // We could execute the next two instruction and just continue via non-wide path:
8123       //  cmpl(limit, 0);
8124       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8125       // But since we stopped at the points ary{1,2}+limit which are
8126       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8127       // (|limit| <= 32 and result < 32),
8128       // we may just compare the last 64 bytes.
8129       //
8130       addptr(result, -64);   // it is safe, bc we just came from this area
8131       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8132       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8133       kortestql(k7, k7);
8134       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8135 
8136       jmp(TRUE_LABEL);
8137 
8138       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8139 
8140     }//if (VM_Version::supports_avx512vlbw())
8141 #endif //_LP64
8142 
8143     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8144     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8145     vpxor(vec1, vec2);
8146 
8147     vptest(vec1, vec1);
8148     jcc(Assembler::notZero, FALSE_LABEL);
8149     addptr(limit, 32);
8150     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8151 
8152     testl(result, result);
8153     jcc(Assembler::zero, TRUE_LABEL);
8154 
8155     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8156     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8157     vpxor(vec1, vec2);
8158 
8159     vptest(vec1, vec1);
8160     jccb(Assembler::notZero, FALSE_LABEL);
8161     jmpb(TRUE_LABEL);
8162 
8163     bind(COMPARE_TAIL); // limit is zero
8164     movl(limit, result);
8165     // Fallthru to tail compare
8166   } else if (UseSSE42Intrinsics) {
8167     // With SSE4.2, use double quad vector compare
8168     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8169 
8170     // Compare 16-byte vectors
8171     andl(result, 0x0000000f);  //   tail count (in bytes)
8172     andl(limit, 0xfffffff0);   // vector count (in bytes)
8173     jcc(Assembler::zero, COMPARE_TAIL);
8174 
8175     lea(ary1, Address(ary1, limit, Address::times_1));
8176     lea(ary2, Address(ary2, limit, Address::times_1));
8177     negptr(limit);
8178 
8179     bind(COMPARE_WIDE_VECTORS);
8180     movdqu(vec1, Address(ary1, limit, Address::times_1));
8181     movdqu(vec2, Address(ary2, limit, Address::times_1));
8182     pxor(vec1, vec2);
8183 
8184     ptest(vec1, vec1);
8185     jcc(Assembler::notZero, FALSE_LABEL);
8186     addptr(limit, 16);
8187     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8188 
8189     testl(result, result);
8190     jcc(Assembler::zero, TRUE_LABEL);
8191 
8192     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8193     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8194     pxor(vec1, vec2);
8195 
8196     ptest(vec1, vec1);
8197     jccb(Assembler::notZero, FALSE_LABEL);
8198     jmpb(TRUE_LABEL);
8199 
8200     bind(COMPARE_TAIL); // limit is zero
8201     movl(limit, result);
8202     // Fallthru to tail compare
8203   }
8204 
8205   // Compare 4-byte vectors
8206   andl(limit, 0xfffffffc); // vector count (in bytes)
8207   jccb(Assembler::zero, COMPARE_CHAR);
8208 
8209   lea(ary1, Address(ary1, limit, Address::times_1));
8210   lea(ary2, Address(ary2, limit, Address::times_1));
8211   negptr(limit);
8212 
8213   bind(COMPARE_VECTORS);
8214   movl(chr, Address(ary1, limit, Address::times_1));
8215   cmpl(chr, Address(ary2, limit, Address::times_1));
8216   jccb(Assembler::notEqual, FALSE_LABEL);
8217   addptr(limit, 4);
8218   jcc(Assembler::notZero, COMPARE_VECTORS);
8219 
8220   // Compare trailing char (final 2 bytes), if any
8221   bind(COMPARE_CHAR);
8222   testl(result, 0x2);   // tail  char
8223   jccb(Assembler::zero, COMPARE_BYTE);
8224   load_unsigned_short(chr, Address(ary1, 0));
8225   load_unsigned_short(limit, Address(ary2, 0));
8226   cmpl(chr, limit);
8227   jccb(Assembler::notEqual, FALSE_LABEL);
8228 
8229   if (is_array_equ && is_char) {
8230     bind(COMPARE_BYTE);
8231   } else {
8232     lea(ary1, Address(ary1, 2));
8233     lea(ary2, Address(ary2, 2));
8234 
8235     bind(COMPARE_BYTE);
8236     testl(result, 0x1);   // tail  byte
8237     jccb(Assembler::zero, TRUE_LABEL);
8238     load_unsigned_byte(chr, Address(ary1, 0));
8239     load_unsigned_byte(limit, Address(ary2, 0));
8240     cmpl(chr, limit);
8241     jccb(Assembler::notEqual, FALSE_LABEL);
8242   }
8243   bind(TRUE_LABEL);
8244   movl(result, 1);   // return true
8245   jmpb(DONE);
8246 
8247   bind(FALSE_LABEL);
8248   xorl(result, result); // return false
8249 
8250   // That's it
8251   bind(DONE);
8252   if (UseAVX >= 2) {
8253     // clean upper bits of YMM registers
8254     vpxor(vec1, vec1);
8255     vpxor(vec2, vec2);
8256   }
8257 }
8258 
8259 #endif
8260 
8261 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8262                                    Register to, Register value, Register count,
8263                                    Register rtmp, XMMRegister xtmp) {
8264   ShortBranchVerifier sbv(this);
8265   assert_different_registers(to, value, count, rtmp);
8266   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8267   Label L_fill_2_bytes, L_fill_4_bytes;
8268 
8269   int shift = -1;
8270   switch (t) {
8271     case T_BYTE:
8272       shift = 2;
8273       break;
8274     case T_SHORT:
8275       shift = 1;
8276       break;
8277     case T_INT:
8278       shift = 0;
8279       break;
8280     default: ShouldNotReachHere();
8281   }
8282 
8283   if (t == T_BYTE) {
8284     andl(value, 0xff);
8285     movl(rtmp, value);
8286     shll(rtmp, 8);
8287     orl(value, rtmp);
8288   }
8289   if (t == T_SHORT) {
8290     andl(value, 0xffff);
8291   }
8292   if (t == T_BYTE || t == T_SHORT) {
8293     movl(rtmp, value);
8294     shll(rtmp, 16);
8295     orl(value, rtmp);
8296   }
8297 
8298   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8299   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8300   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8301     // align source address at 4 bytes address boundary
8302     if (t == T_BYTE) {
8303       // One byte misalignment happens only for byte arrays
8304       testptr(to, 1);
8305       jccb(Assembler::zero, L_skip_align1);
8306       movb(Address(to, 0), value);
8307       increment(to);
8308       decrement(count);
8309       BIND(L_skip_align1);
8310     }
8311     // Two bytes misalignment happens only for byte and short (char) arrays
8312     testptr(to, 2);
8313     jccb(Assembler::zero, L_skip_align2);
8314     movw(Address(to, 0), value);
8315     addptr(to, 2);
8316     subl(count, 1<<(shift-1));
8317     BIND(L_skip_align2);
8318   }
8319   if (UseSSE < 2) {
8320     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8321     // Fill 32-byte chunks
8322     subl(count, 8 << shift);
8323     jcc(Assembler::less, L_check_fill_8_bytes);
8324     align(16);
8325 
8326     BIND(L_fill_32_bytes_loop);
8327 
8328     for (int i = 0; i < 32; i += 4) {
8329       movl(Address(to, i), value);
8330     }
8331 
8332     addptr(to, 32);
8333     subl(count, 8 << shift);
8334     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8335     BIND(L_check_fill_8_bytes);
8336     addl(count, 8 << shift);
8337     jccb(Assembler::zero, L_exit);
8338     jmpb(L_fill_8_bytes);
8339 
8340     //
8341     // length is too short, just fill qwords
8342     //
8343     BIND(L_fill_8_bytes_loop);
8344     movl(Address(to, 0), value);
8345     movl(Address(to, 4), value);
8346     addptr(to, 8);
8347     BIND(L_fill_8_bytes);
8348     subl(count, 1 << (shift + 1));
8349     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8350     // fall through to fill 4 bytes
8351   } else {
8352     Label L_fill_32_bytes;
8353     if (!UseUnalignedLoadStores) {
8354       // align to 8 bytes, we know we are 4 byte aligned to start
8355       testptr(to, 4);
8356       jccb(Assembler::zero, L_fill_32_bytes);
8357       movl(Address(to, 0), value);
8358       addptr(to, 4);
8359       subl(count, 1<<shift);
8360     }
8361     BIND(L_fill_32_bytes);
8362     {
8363       assert( UseSSE >= 2, "supported cpu only" );
8364       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8365       if (UseAVX > 2) {
8366         movl(rtmp, 0xffff);
8367         kmovwl(k1, rtmp);
8368       }
8369       movdl(xtmp, value);
8370       if (UseAVX > 2 && UseUnalignedLoadStores) {
8371         // Fill 64-byte chunks
8372         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8373         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8374 
8375         subl(count, 16 << shift);
8376         jcc(Assembler::less, L_check_fill_32_bytes);
8377         align(16);
8378 
8379         BIND(L_fill_64_bytes_loop);
8380         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8381         addptr(to, 64);
8382         subl(count, 16 << shift);
8383         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8384 
8385         BIND(L_check_fill_32_bytes);
8386         addl(count, 8 << shift);
8387         jccb(Assembler::less, L_check_fill_8_bytes);
8388         vmovdqu(Address(to, 0), xtmp);
8389         addptr(to, 32);
8390         subl(count, 8 << shift);
8391 
8392         BIND(L_check_fill_8_bytes);
8393       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8394         // Fill 64-byte chunks
8395         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8396         vpbroadcastd(xtmp, xtmp);
8397 
8398         subl(count, 16 << shift);
8399         jcc(Assembler::less, L_check_fill_32_bytes);
8400         align(16);
8401 
8402         BIND(L_fill_64_bytes_loop);
8403         vmovdqu(Address(to, 0), xtmp);
8404         vmovdqu(Address(to, 32), xtmp);
8405         addptr(to, 64);
8406         subl(count, 16 << shift);
8407         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8408 
8409         BIND(L_check_fill_32_bytes);
8410         addl(count, 8 << shift);
8411         jccb(Assembler::less, L_check_fill_8_bytes);
8412         vmovdqu(Address(to, 0), xtmp);
8413         addptr(to, 32);
8414         subl(count, 8 << shift);
8415 
8416         BIND(L_check_fill_8_bytes);
8417         // clean upper bits of YMM registers
8418         movdl(xtmp, value);
8419         pshufd(xtmp, xtmp, 0);
8420       } else {
8421         // Fill 32-byte chunks
8422         pshufd(xtmp, xtmp, 0);
8423 
8424         subl(count, 8 << shift);
8425         jcc(Assembler::less, L_check_fill_8_bytes);
8426         align(16);
8427 
8428         BIND(L_fill_32_bytes_loop);
8429 
8430         if (UseUnalignedLoadStores) {
8431           movdqu(Address(to, 0), xtmp);
8432           movdqu(Address(to, 16), xtmp);
8433         } else {
8434           movq(Address(to, 0), xtmp);
8435           movq(Address(to, 8), xtmp);
8436           movq(Address(to, 16), xtmp);
8437           movq(Address(to, 24), xtmp);
8438         }
8439 
8440         addptr(to, 32);
8441         subl(count, 8 << shift);
8442         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8443 
8444         BIND(L_check_fill_8_bytes);
8445       }
8446       addl(count, 8 << shift);
8447       jccb(Assembler::zero, L_exit);
8448       jmpb(L_fill_8_bytes);
8449 
8450       //
8451       // length is too short, just fill qwords
8452       //
8453       BIND(L_fill_8_bytes_loop);
8454       movq(Address(to, 0), xtmp);
8455       addptr(to, 8);
8456       BIND(L_fill_8_bytes);
8457       subl(count, 1 << (shift + 1));
8458       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8459     }
8460   }
8461   // fill trailing 4 bytes
8462   BIND(L_fill_4_bytes);
8463   testl(count, 1<<shift);
8464   jccb(Assembler::zero, L_fill_2_bytes);
8465   movl(Address(to, 0), value);
8466   if (t == T_BYTE || t == T_SHORT) {
8467     addptr(to, 4);
8468     BIND(L_fill_2_bytes);
8469     // fill trailing 2 bytes
8470     testl(count, 1<<(shift-1));
8471     jccb(Assembler::zero, L_fill_byte);
8472     movw(Address(to, 0), value);
8473     if (t == T_BYTE) {
8474       addptr(to, 2);
8475       BIND(L_fill_byte);
8476       // fill trailing byte
8477       testl(count, 1);
8478       jccb(Assembler::zero, L_exit);
8479       movb(Address(to, 0), value);
8480     } else {
8481       BIND(L_fill_byte);
8482     }
8483   } else {
8484     BIND(L_fill_2_bytes);
8485   }
8486   BIND(L_exit);
8487 }
8488 
8489 // encode char[] to byte[] in ISO_8859_1
8490    //@HotSpotIntrinsicCandidate
8491    //private static int implEncodeISOArray(byte[] sa, int sp,
8492    //byte[] da, int dp, int len) {
8493    //  int i = 0;
8494    //  for (; i < len; i++) {
8495    //    char c = StringUTF16.getChar(sa, sp++);
8496    //    if (c > '\u00FF')
8497    //      break;
8498    //    da[dp++] = (byte)c;
8499    //  }
8500    //  return i;
8501    //}
8502 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8503   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8504   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8505   Register tmp5, Register result) {
8506 
8507   // rsi: src
8508   // rdi: dst
8509   // rdx: len
8510   // rcx: tmp5
8511   // rax: result
8512   ShortBranchVerifier sbv(this);
8513   assert_different_registers(src, dst, len, tmp5, result);
8514   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8515 
8516   // set result
8517   xorl(result, result);
8518   // check for zero length
8519   testl(len, len);
8520   jcc(Assembler::zero, L_done);
8521 
8522   movl(result, len);
8523 
8524   // Setup pointers
8525   lea(src, Address(src, len, Address::times_2)); // char[]
8526   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8527   negptr(len);
8528 
8529   if (UseSSE42Intrinsics || UseAVX >= 2) {
8530     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8531     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8532 
8533     if (UseAVX >= 2) {
8534       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8535       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8536       movdl(tmp1Reg, tmp5);
8537       vpbroadcastd(tmp1Reg, tmp1Reg);
8538       jmp(L_chars_32_check);
8539 
8540       bind(L_copy_32_chars);
8541       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8542       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8543       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8544       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8545       jccb(Assembler::notZero, L_copy_32_chars_exit);
8546       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8547       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8548       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8549 
8550       bind(L_chars_32_check);
8551       addptr(len, 32);
8552       jcc(Assembler::lessEqual, L_copy_32_chars);
8553 
8554       bind(L_copy_32_chars_exit);
8555       subptr(len, 16);
8556       jccb(Assembler::greater, L_copy_16_chars_exit);
8557 
8558     } else if (UseSSE42Intrinsics) {
8559       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8560       movdl(tmp1Reg, tmp5);
8561       pshufd(tmp1Reg, tmp1Reg, 0);
8562       jmpb(L_chars_16_check);
8563     }
8564 
8565     bind(L_copy_16_chars);
8566     if (UseAVX >= 2) {
8567       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
8568       vptest(tmp2Reg, tmp1Reg);
8569       jcc(Assembler::notZero, L_copy_16_chars_exit);
8570       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
8571       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
8572     } else {
8573       if (UseAVX > 0) {
8574         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8575         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8576         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
8577       } else {
8578         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8579         por(tmp2Reg, tmp3Reg);
8580         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8581         por(tmp2Reg, tmp4Reg);
8582       }
8583       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8584       jccb(Assembler::notZero, L_copy_16_chars_exit);
8585       packuswb(tmp3Reg, tmp4Reg);
8586     }
8587     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
8588 
8589     bind(L_chars_16_check);
8590     addptr(len, 16);
8591     jcc(Assembler::lessEqual, L_copy_16_chars);
8592 
8593     bind(L_copy_16_chars_exit);
8594     if (UseAVX >= 2) {
8595       // clean upper bits of YMM registers
8596       vpxor(tmp2Reg, tmp2Reg);
8597       vpxor(tmp3Reg, tmp3Reg);
8598       vpxor(tmp4Reg, tmp4Reg);
8599       movdl(tmp1Reg, tmp5);
8600       pshufd(tmp1Reg, tmp1Reg, 0);
8601     }
8602     subptr(len, 8);
8603     jccb(Assembler::greater, L_copy_8_chars_exit);
8604 
8605     bind(L_copy_8_chars);
8606     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
8607     ptest(tmp3Reg, tmp1Reg);
8608     jccb(Assembler::notZero, L_copy_8_chars_exit);
8609     packuswb(tmp3Reg, tmp1Reg);
8610     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
8611     addptr(len, 8);
8612     jccb(Assembler::lessEqual, L_copy_8_chars);
8613 
8614     bind(L_copy_8_chars_exit);
8615     subptr(len, 8);
8616     jccb(Assembler::zero, L_done);
8617   }
8618 
8619   bind(L_copy_1_char);
8620   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
8621   testl(tmp5, 0xff00);      // check if Unicode char
8622   jccb(Assembler::notZero, L_copy_1_char_exit);
8623   movb(Address(dst, len, Address::times_1, 0), tmp5);
8624   addptr(len, 1);
8625   jccb(Assembler::less, L_copy_1_char);
8626 
8627   bind(L_copy_1_char_exit);
8628   addptr(result, len); // len is negative count of not processed elements
8629 
8630   bind(L_done);
8631 }
8632 
8633 #ifdef _LP64
8634 /**
8635  * Helper for multiply_to_len().
8636  */
8637 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
8638   addq(dest_lo, src1);
8639   adcq(dest_hi, 0);
8640   addq(dest_lo, src2);
8641   adcq(dest_hi, 0);
8642 }
8643 
8644 /**
8645  * Multiply 64 bit by 64 bit first loop.
8646  */
8647 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
8648                                            Register y, Register y_idx, Register z,
8649                                            Register carry, Register product,
8650                                            Register idx, Register kdx) {
8651   //
8652   //  jlong carry, x[], y[], z[];
8653   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8654   //    huge_128 product = y[idx] * x[xstart] + carry;
8655   //    z[kdx] = (jlong)product;
8656   //    carry  = (jlong)(product >>> 64);
8657   //  }
8658   //  z[xstart] = carry;
8659   //
8660 
8661   Label L_first_loop, L_first_loop_exit;
8662   Label L_one_x, L_one_y, L_multiply;
8663 
8664   decrementl(xstart);
8665   jcc(Assembler::negative, L_one_x);
8666 
8667   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8668   rorq(x_xstart, 32); // convert big-endian to little-endian
8669 
8670   bind(L_first_loop);
8671   decrementl(idx);
8672   jcc(Assembler::negative, L_first_loop_exit);
8673   decrementl(idx);
8674   jcc(Assembler::negative, L_one_y);
8675   movq(y_idx, Address(y, idx, Address::times_4,  0));
8676   rorq(y_idx, 32); // convert big-endian to little-endian
8677   bind(L_multiply);
8678   movq(product, x_xstart);
8679   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
8680   addq(product, carry);
8681   adcq(rdx, 0);
8682   subl(kdx, 2);
8683   movl(Address(z, kdx, Address::times_4,  4), product);
8684   shrq(product, 32);
8685   movl(Address(z, kdx, Address::times_4,  0), product);
8686   movq(carry, rdx);
8687   jmp(L_first_loop);
8688 
8689   bind(L_one_y);
8690   movl(y_idx, Address(y,  0));
8691   jmp(L_multiply);
8692 
8693   bind(L_one_x);
8694   movl(x_xstart, Address(x,  0));
8695   jmp(L_first_loop);
8696 
8697   bind(L_first_loop_exit);
8698 }
8699 
8700 /**
8701  * Multiply 64 bit by 64 bit and add 128 bit.
8702  */
8703 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
8704                                             Register yz_idx, Register idx,
8705                                             Register carry, Register product, int offset) {
8706   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
8707   //     z[kdx] = (jlong)product;
8708 
8709   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
8710   rorq(yz_idx, 32); // convert big-endian to little-endian
8711   movq(product, x_xstart);
8712   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
8713   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
8714   rorq(yz_idx, 32); // convert big-endian to little-endian
8715 
8716   add2_with_carry(rdx, product, carry, yz_idx);
8717 
8718   movl(Address(z, idx, Address::times_4,  offset+4), product);
8719   shrq(product, 32);
8720   movl(Address(z, idx, Address::times_4,  offset), product);
8721 
8722 }
8723 
8724 /**
8725  * Multiply 128 bit by 128 bit. Unrolled inner loop.
8726  */
8727 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
8728                                              Register yz_idx, Register idx, Register jdx,
8729                                              Register carry, Register product,
8730                                              Register carry2) {
8731   //   jlong carry, x[], y[], z[];
8732   //   int kdx = ystart+1;
8733   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
8734   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
8735   //     z[kdx+idx+1] = (jlong)product;
8736   //     jlong carry2  = (jlong)(product >>> 64);
8737   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
8738   //     z[kdx+idx] = (jlong)product;
8739   //     carry  = (jlong)(product >>> 64);
8740   //   }
8741   //   idx += 2;
8742   //   if (idx > 0) {
8743   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
8744   //     z[kdx+idx] = (jlong)product;
8745   //     carry  = (jlong)(product >>> 64);
8746   //   }
8747   //
8748 
8749   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
8750 
8751   movl(jdx, idx);
8752   andl(jdx, 0xFFFFFFFC);
8753   shrl(jdx, 2);
8754 
8755   bind(L_third_loop);
8756   subl(jdx, 1);
8757   jcc(Assembler::negative, L_third_loop_exit);
8758   subl(idx, 4);
8759 
8760   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
8761   movq(carry2, rdx);
8762 
8763   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
8764   movq(carry, rdx);
8765   jmp(L_third_loop);
8766 
8767   bind (L_third_loop_exit);
8768 
8769   andl (idx, 0x3);
8770   jcc(Assembler::zero, L_post_third_loop_done);
8771 
8772   Label L_check_1;
8773   subl(idx, 2);
8774   jcc(Assembler::negative, L_check_1);
8775 
8776   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
8777   movq(carry, rdx);
8778 
8779   bind (L_check_1);
8780   addl (idx, 0x2);
8781   andl (idx, 0x1);
8782   subl(idx, 1);
8783   jcc(Assembler::negative, L_post_third_loop_done);
8784 
8785   movl(yz_idx, Address(y, idx, Address::times_4,  0));
8786   movq(product, x_xstart);
8787   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
8788   movl(yz_idx, Address(z, idx, Address::times_4,  0));
8789 
8790   add2_with_carry(rdx, product, yz_idx, carry);
8791 
8792   movl(Address(z, idx, Address::times_4,  0), product);
8793   shrq(product, 32);
8794 
8795   shlq(rdx, 32);
8796   orq(product, rdx);
8797   movq(carry, product);
8798 
8799   bind(L_post_third_loop_done);
8800 }
8801 
8802 /**
8803  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
8804  *
8805  */
8806 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
8807                                                   Register carry, Register carry2,
8808                                                   Register idx, Register jdx,
8809                                                   Register yz_idx1, Register yz_idx2,
8810                                                   Register tmp, Register tmp3, Register tmp4) {
8811   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
8812 
8813   //   jlong carry, x[], y[], z[];
8814   //   int kdx = ystart+1;
8815   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
8816   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
8817   //     jlong carry2  = (jlong)(tmp3 >>> 64);
8818   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
8819   //     carry  = (jlong)(tmp4 >>> 64);
8820   //     z[kdx+idx+1] = (jlong)tmp3;
8821   //     z[kdx+idx] = (jlong)tmp4;
8822   //   }
8823   //   idx += 2;
8824   //   if (idx > 0) {
8825   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
8826   //     z[kdx+idx] = (jlong)yz_idx1;
8827   //     carry  = (jlong)(yz_idx1 >>> 64);
8828   //   }
8829   //
8830 
8831   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
8832 
8833   movl(jdx, idx);
8834   andl(jdx, 0xFFFFFFFC);
8835   shrl(jdx, 2);
8836 
8837   bind(L_third_loop);
8838   subl(jdx, 1);
8839   jcc(Assembler::negative, L_third_loop_exit);
8840   subl(idx, 4);
8841 
8842   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
8843   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
8844   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
8845   rorxq(yz_idx2, yz_idx2, 32);
8846 
8847   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
8848   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
8849 
8850   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
8851   rorxq(yz_idx1, yz_idx1, 32);
8852   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
8853   rorxq(yz_idx2, yz_idx2, 32);
8854 
8855   if (VM_Version::supports_adx()) {
8856     adcxq(tmp3, carry);
8857     adoxq(tmp3, yz_idx1);
8858 
8859     adcxq(tmp4, tmp);
8860     adoxq(tmp4, yz_idx2);
8861 
8862     movl(carry, 0); // does not affect flags
8863     adcxq(carry2, carry);
8864     adoxq(carry2, carry);
8865   } else {
8866     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
8867     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
8868   }
8869   movq(carry, carry2);
8870 
8871   movl(Address(z, idx, Address::times_4, 12), tmp3);
8872   shrq(tmp3, 32);
8873   movl(Address(z, idx, Address::times_4,  8), tmp3);
8874 
8875   movl(Address(z, idx, Address::times_4,  4), tmp4);
8876   shrq(tmp4, 32);
8877   movl(Address(z, idx, Address::times_4,  0), tmp4);
8878 
8879   jmp(L_third_loop);
8880 
8881   bind (L_third_loop_exit);
8882 
8883   andl (idx, 0x3);
8884   jcc(Assembler::zero, L_post_third_loop_done);
8885 
8886   Label L_check_1;
8887   subl(idx, 2);
8888   jcc(Assembler::negative, L_check_1);
8889 
8890   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
8891   rorxq(yz_idx1, yz_idx1, 32);
8892   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
8893   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
8894   rorxq(yz_idx2, yz_idx2, 32);
8895 
8896   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
8897 
8898   movl(Address(z, idx, Address::times_4,  4), tmp3);
8899   shrq(tmp3, 32);
8900   movl(Address(z, idx, Address::times_4,  0), tmp3);
8901   movq(carry, tmp4);
8902 
8903   bind (L_check_1);
8904   addl (idx, 0x2);
8905   andl (idx, 0x1);
8906   subl(idx, 1);
8907   jcc(Assembler::negative, L_post_third_loop_done);
8908   movl(tmp4, Address(y, idx, Address::times_4,  0));
8909   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
8910   movl(tmp4, Address(z, idx, Address::times_4,  0));
8911 
8912   add2_with_carry(carry2, tmp3, tmp4, carry);
8913 
8914   movl(Address(z, idx, Address::times_4,  0), tmp3);
8915   shrq(tmp3, 32);
8916 
8917   shlq(carry2, 32);
8918   orq(tmp3, carry2);
8919   movq(carry, tmp3);
8920 
8921   bind(L_post_third_loop_done);
8922 }
8923 
8924 /**
8925  * Code for BigInteger::multiplyToLen() instrinsic.
8926  *
8927  * rdi: x
8928  * rax: xlen
8929  * rsi: y
8930  * rcx: ylen
8931  * r8:  z
8932  * r11: zlen
8933  * r12: tmp1
8934  * r13: tmp2
8935  * r14: tmp3
8936  * r15: tmp4
8937  * rbx: tmp5
8938  *
8939  */
8940 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
8941                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
8942   ShortBranchVerifier sbv(this);
8943   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
8944 
8945   push(tmp1);
8946   push(tmp2);
8947   push(tmp3);
8948   push(tmp4);
8949   push(tmp5);
8950 
8951   push(xlen);
8952   push(zlen);
8953 
8954   const Register idx = tmp1;
8955   const Register kdx = tmp2;
8956   const Register xstart = tmp3;
8957 
8958   const Register y_idx = tmp4;
8959   const Register carry = tmp5;
8960   const Register product  = xlen;
8961   const Register x_xstart = zlen;  // reuse register
8962 
8963   // First Loop.
8964   //
8965   //  final static long LONG_MASK = 0xffffffffL;
8966   //  int xstart = xlen - 1;
8967   //  int ystart = ylen - 1;
8968   //  long carry = 0;
8969   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8970   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
8971   //    z[kdx] = (int)product;
8972   //    carry = product >>> 32;
8973   //  }
8974   //  z[xstart] = (int)carry;
8975   //
8976 
8977   movl(idx, ylen);      // idx = ylen;
8978   movl(kdx, zlen);      // kdx = xlen+ylen;
8979   xorq(carry, carry);   // carry = 0;
8980 
8981   Label L_done;
8982 
8983   movl(xstart, xlen);
8984   decrementl(xstart);
8985   jcc(Assembler::negative, L_done);
8986 
8987   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
8988 
8989   Label L_second_loop;
8990   testl(kdx, kdx);
8991   jcc(Assembler::zero, L_second_loop);
8992 
8993   Label L_carry;
8994   subl(kdx, 1);
8995   jcc(Assembler::zero, L_carry);
8996 
8997   movl(Address(z, kdx, Address::times_4,  0), carry);
8998   shrq(carry, 32);
8999   subl(kdx, 1);
9000 
9001   bind(L_carry);
9002   movl(Address(z, kdx, Address::times_4,  0), carry);
9003 
9004   // Second and third (nested) loops.
9005   //
9006   // for (int i = xstart-1; i >= 0; i--) { // Second loop
9007   //   carry = 0;
9008   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
9009   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
9010   //                    (z[k] & LONG_MASK) + carry;
9011   //     z[k] = (int)product;
9012   //     carry = product >>> 32;
9013   //   }
9014   //   z[i] = (int)carry;
9015   // }
9016   //
9017   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
9018 
9019   const Register jdx = tmp1;
9020 
9021   bind(L_second_loop);
9022   xorl(carry, carry);    // carry = 0;
9023   movl(jdx, ylen);       // j = ystart+1
9024 
9025   subl(xstart, 1);       // i = xstart-1;
9026   jcc(Assembler::negative, L_done);
9027 
9028   push (z);
9029 
9030   Label L_last_x;
9031   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
9032   subl(xstart, 1);       // i = xstart-1;
9033   jcc(Assembler::negative, L_last_x);
9034 
9035   if (UseBMI2Instructions) {
9036     movq(rdx,  Address(x, xstart, Address::times_4,  0));
9037     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
9038   } else {
9039     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9040     rorq(x_xstart, 32);  // convert big-endian to little-endian
9041   }
9042 
9043   Label L_third_loop_prologue;
9044   bind(L_third_loop_prologue);
9045 
9046   push (x);
9047   push (xstart);
9048   push (ylen);
9049 
9050 
9051   if (UseBMI2Instructions) {
9052     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
9053   } else { // !UseBMI2Instructions
9054     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
9055   }
9056 
9057   pop(ylen);
9058   pop(xlen);
9059   pop(x);
9060   pop(z);
9061 
9062   movl(tmp3, xlen);
9063   addl(tmp3, 1);
9064   movl(Address(z, tmp3, Address::times_4,  0), carry);
9065   subl(tmp3, 1);
9066   jccb(Assembler::negative, L_done);
9067 
9068   shrq(carry, 32);
9069   movl(Address(z, tmp3, Address::times_4,  0), carry);
9070   jmp(L_second_loop);
9071 
9072   // Next infrequent code is moved outside loops.
9073   bind(L_last_x);
9074   if (UseBMI2Instructions) {
9075     movl(rdx, Address(x,  0));
9076   } else {
9077     movl(x_xstart, Address(x,  0));
9078   }
9079   jmp(L_third_loop_prologue);
9080 
9081   bind(L_done);
9082 
9083   pop(zlen);
9084   pop(xlen);
9085 
9086   pop(tmp5);
9087   pop(tmp4);
9088   pop(tmp3);
9089   pop(tmp2);
9090   pop(tmp1);
9091 }
9092 
9093 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
9094   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
9095   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
9096   Label VECTOR64_LOOP, VECTOR64_TAIL, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
9097   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
9098   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
9099   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9100   Label SAME_TILL_END, DONE;
9101   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9102 
9103   //scale is in rcx in both Win64 and Unix
9104   ShortBranchVerifier sbv(this);
9105 
9106   shlq(length);
9107   xorq(result, result);
9108 
9109   if ((UseAVX > 2) &&
9110       VM_Version::supports_avx512vlbw()) {
9111     set_vector_masking();  // opening of the stub context for programming mask registers
9112     cmpq(length, 64);
9113     jcc(Assembler::less, VECTOR32_TAIL);
9114     movq(tmp1, length);
9115     andq(tmp1, 0x3F);      // tail count
9116     andq(length, ~(0x3F)); //vector count
9117 
9118     bind(VECTOR64_LOOP);
9119     // AVX512 code to compare 64 byte vectors.
9120     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
9121     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
9122     kortestql(k7, k7);
9123     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
9124     addq(result, 64);
9125     subq(length, 64);
9126     jccb(Assembler::notZero, VECTOR64_LOOP);
9127 
9128     //bind(VECTOR64_TAIL);
9129     testq(tmp1, tmp1);
9130     jcc(Assembler::zero, SAME_TILL_END);
9131 
9132     bind(VECTOR64_TAIL);
9133     // AVX512 code to compare upto 63 byte vectors.
9134     // Save k1
9135     kmovql(k3, k1);
9136     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
9137     shlxq(tmp2, tmp2, tmp1);
9138     notq(tmp2);
9139     kmovql(k1, tmp2);
9140 
9141     evmovdqub(rymm0, k1, Address(obja, result), Assembler::AVX_512bit);
9142     evpcmpeqb(k7, k1, rymm0, Address(objb, result), Assembler::AVX_512bit);
9143 
9144     ktestql(k7, k1);
9145     // Restore k1
9146     kmovql(k1, k3);
9147     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
9148 
9149     bind(VECTOR64_NOT_EQUAL);
9150     kmovql(tmp1, k7);
9151     notq(tmp1);
9152     tzcntq(tmp1, tmp1);
9153     addq(result, tmp1);
9154     shrq(result);
9155     jmp(DONE);
9156     bind(VECTOR32_TAIL);
9157     clear_vector_masking();   // closing of the stub context for programming mask registers
9158   }
9159 
9160   cmpq(length, 8);
9161   jcc(Assembler::equal, VECTOR8_LOOP);
9162   jcc(Assembler::less, VECTOR4_TAIL);
9163 
9164   if (UseAVX >= 2) {
9165 
9166     cmpq(length, 16);
9167     jcc(Assembler::equal, VECTOR16_LOOP);
9168     jcc(Assembler::less, VECTOR8_LOOP);
9169 
9170     cmpq(length, 32);
9171     jccb(Assembler::less, VECTOR16_TAIL);
9172 
9173     subq(length, 32);
9174     bind(VECTOR32_LOOP);
9175     vmovdqu(rymm0, Address(obja, result));
9176     vmovdqu(rymm1, Address(objb, result));
9177     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9178     vptest(rymm2, rymm2);
9179     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9180     addq(result, 32);
9181     subq(length, 32);
9182     jccb(Assembler::greaterEqual, VECTOR32_LOOP);
9183     addq(length, 32);
9184     jcc(Assembler::equal, SAME_TILL_END);
9185     //falling through if less than 32 bytes left //close the branch here.
9186 
9187     bind(VECTOR16_TAIL);
9188     cmpq(length, 16);
9189     jccb(Assembler::less, VECTOR8_TAIL);
9190     bind(VECTOR16_LOOP);
9191     movdqu(rymm0, Address(obja, result));
9192     movdqu(rymm1, Address(objb, result));
9193     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9194     ptest(rymm2, rymm2);
9195     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9196     addq(result, 16);
9197     subq(length, 16);
9198     jcc(Assembler::equal, SAME_TILL_END);
9199     //falling through if less than 16 bytes left
9200   } else {//regular intrinsics
9201 
9202     cmpq(length, 16);
9203     jccb(Assembler::less, VECTOR8_TAIL);
9204 
9205     subq(length, 16);
9206     bind(VECTOR16_LOOP);
9207     movdqu(rymm0, Address(obja, result));
9208     movdqu(rymm1, Address(objb, result));
9209     pxor(rymm0, rymm1);
9210     ptest(rymm0, rymm0);
9211     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9212     addq(result, 16);
9213     subq(length, 16);
9214     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9215     addq(length, 16);
9216     jcc(Assembler::equal, SAME_TILL_END);
9217     //falling through if less than 16 bytes left
9218   }
9219 
9220   bind(VECTOR8_TAIL);
9221   cmpq(length, 8);
9222   jccb(Assembler::less, VECTOR4_TAIL);
9223   bind(VECTOR8_LOOP);
9224   movq(tmp1, Address(obja, result));
9225   movq(tmp2, Address(objb, result));
9226   xorq(tmp1, tmp2);
9227   testq(tmp1, tmp1);
9228   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9229   addq(result, 8);
9230   subq(length, 8);
9231   jcc(Assembler::equal, SAME_TILL_END);
9232   //falling through if less than 8 bytes left
9233 
9234   bind(VECTOR4_TAIL);
9235   cmpq(length, 4);
9236   jccb(Assembler::less, BYTES_TAIL);
9237   bind(VECTOR4_LOOP);
9238   movl(tmp1, Address(obja, result));
9239   xorl(tmp1, Address(objb, result));
9240   testl(tmp1, tmp1);
9241   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9242   addq(result, 4);
9243   subq(length, 4);
9244   jcc(Assembler::equal, SAME_TILL_END);
9245   //falling through if less than 4 bytes left
9246 
9247   bind(BYTES_TAIL);
9248   bind(BYTES_LOOP);
9249   load_unsigned_byte(tmp1, Address(obja, result));
9250   load_unsigned_byte(tmp2, Address(objb, result));
9251   xorl(tmp1, tmp2);
9252   testl(tmp1, tmp1);
9253   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9254   decq(length);
9255   jccb(Assembler::zero, SAME_TILL_END);
9256   incq(result);
9257   load_unsigned_byte(tmp1, Address(obja, result));
9258   load_unsigned_byte(tmp2, Address(objb, result));
9259   xorl(tmp1, tmp2);
9260   testl(tmp1, tmp1);
9261   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9262   decq(length);
9263   jccb(Assembler::zero, SAME_TILL_END);
9264   incq(result);
9265   load_unsigned_byte(tmp1, Address(obja, result));
9266   load_unsigned_byte(tmp2, Address(objb, result));
9267   xorl(tmp1, tmp2);
9268   testl(tmp1, tmp1);
9269   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9270   jmpb(SAME_TILL_END);
9271 
9272   if (UseAVX >= 2) {
9273     bind(VECTOR32_NOT_EQUAL);
9274     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9275     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9276     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9277     vpmovmskb(tmp1, rymm0);
9278     bsfq(tmp1, tmp1);
9279     addq(result, tmp1);
9280     shrq(result);
9281     jmpb(DONE);
9282   }
9283 
9284   bind(VECTOR16_NOT_EQUAL);
9285   if (UseAVX >= 2) {
9286     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9287     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9288     pxor(rymm0, rymm2);
9289   } else {
9290     pcmpeqb(rymm2, rymm2);
9291     pxor(rymm0, rymm1);
9292     pcmpeqb(rymm0, rymm1);
9293     pxor(rymm0, rymm2);
9294   }
9295   pmovmskb(tmp1, rymm0);
9296   bsfq(tmp1, tmp1);
9297   addq(result, tmp1);
9298   shrq(result);
9299   jmpb(DONE);
9300 
9301   bind(VECTOR8_NOT_EQUAL);
9302   bind(VECTOR4_NOT_EQUAL);
9303   bsfq(tmp1, tmp1);
9304   shrq(tmp1, 3);
9305   addq(result, tmp1);
9306   bind(BYTES_NOT_EQUAL);
9307   shrq(result);
9308   jmpb(DONE);
9309 
9310   bind(SAME_TILL_END);
9311   mov64(result, -1);
9312 
9313   bind(DONE);
9314 }
9315 
9316 //Helper functions for square_to_len()
9317 
9318 /**
9319  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9320  * Preserves x and z and modifies rest of the registers.
9321  */
9322 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9323   // Perform square and right shift by 1
9324   // Handle odd xlen case first, then for even xlen do the following
9325   // jlong carry = 0;
9326   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9327   //     huge_128 product = x[j:j+1] * x[j:j+1];
9328   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9329   //     z[i+2:i+3] = (jlong)(product >>> 1);
9330   //     carry = (jlong)product;
9331   // }
9332 
9333   xorq(tmp5, tmp5);     // carry
9334   xorq(rdxReg, rdxReg);
9335   xorl(tmp1, tmp1);     // index for x
9336   xorl(tmp4, tmp4);     // index for z
9337 
9338   Label L_first_loop, L_first_loop_exit;
9339 
9340   testl(xlen, 1);
9341   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9342 
9343   // Square and right shift by 1 the odd element using 32 bit multiply
9344   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9345   imulq(raxReg, raxReg);
9346   shrq(raxReg, 1);
9347   adcq(tmp5, 0);
9348   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9349   incrementl(tmp1);
9350   addl(tmp4, 2);
9351 
9352   // Square and  right shift by 1 the rest using 64 bit multiply
9353   bind(L_first_loop);
9354   cmpptr(tmp1, xlen);
9355   jccb(Assembler::equal, L_first_loop_exit);
9356 
9357   // Square
9358   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9359   rorq(raxReg, 32);    // convert big-endian to little-endian
9360   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9361 
9362   // Right shift by 1 and save carry
9363   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9364   rcrq(rdxReg, 1);
9365   rcrq(raxReg, 1);
9366   adcq(tmp5, 0);
9367 
9368   // Store result in z
9369   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9370   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9371 
9372   // Update indices for x and z
9373   addl(tmp1, 2);
9374   addl(tmp4, 4);
9375   jmp(L_first_loop);
9376 
9377   bind(L_first_loop_exit);
9378 }
9379 
9380 
9381 /**
9382  * Perform the following multiply add operation using BMI2 instructions
9383  * carry:sum = sum + op1*op2 + carry
9384  * op2 should be in rdx
9385  * op2 is preserved, all other registers are modified
9386  */
9387 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9388   // assert op2 is rdx
9389   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9390   addq(sum, carry);
9391   adcq(tmp2, 0);
9392   addq(sum, op1);
9393   adcq(tmp2, 0);
9394   movq(carry, tmp2);
9395 }
9396 
9397 /**
9398  * Perform the following multiply add operation:
9399  * carry:sum = sum + op1*op2 + carry
9400  * Preserves op1, op2 and modifies rest of registers
9401  */
9402 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9403   // rdx:rax = op1 * op2
9404   movq(raxReg, op2);
9405   mulq(op1);
9406 
9407   //  rdx:rax = sum + carry + rdx:rax
9408   addq(sum, carry);
9409   adcq(rdxReg, 0);
9410   addq(sum, raxReg);
9411   adcq(rdxReg, 0);
9412 
9413   // carry:sum = rdx:sum
9414   movq(carry, rdxReg);
9415 }
9416 
9417 /**
9418  * Add 64 bit long carry into z[] with carry propogation.
9419  * Preserves z and carry register values and modifies rest of registers.
9420  *
9421  */
9422 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9423   Label L_fourth_loop, L_fourth_loop_exit;
9424 
9425   movl(tmp1, 1);
9426   subl(zlen, 2);
9427   addq(Address(z, zlen, Address::times_4, 0), carry);
9428 
9429   bind(L_fourth_loop);
9430   jccb(Assembler::carryClear, L_fourth_loop_exit);
9431   subl(zlen, 2);
9432   jccb(Assembler::negative, L_fourth_loop_exit);
9433   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9434   jmp(L_fourth_loop);
9435   bind(L_fourth_loop_exit);
9436 }
9437 
9438 /**
9439  * Shift z[] left by 1 bit.
9440  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9441  *
9442  */
9443 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9444 
9445   Label L_fifth_loop, L_fifth_loop_exit;
9446 
9447   // Fifth loop
9448   // Perform primitiveLeftShift(z, zlen, 1)
9449 
9450   const Register prev_carry = tmp1;
9451   const Register new_carry = tmp4;
9452   const Register value = tmp2;
9453   const Register zidx = tmp3;
9454 
9455   // int zidx, carry;
9456   // long value;
9457   // carry = 0;
9458   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9459   //    (carry:value)  = (z[i] << 1) | carry ;
9460   //    z[i] = value;
9461   // }
9462 
9463   movl(zidx, zlen);
9464   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9465 
9466   bind(L_fifth_loop);
9467   decl(zidx);  // Use decl to preserve carry flag
9468   decl(zidx);
9469   jccb(Assembler::negative, L_fifth_loop_exit);
9470 
9471   if (UseBMI2Instructions) {
9472      movq(value, Address(z, zidx, Address::times_4, 0));
9473      rclq(value, 1);
9474      rorxq(value, value, 32);
9475      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9476   }
9477   else {
9478     // clear new_carry
9479     xorl(new_carry, new_carry);
9480 
9481     // Shift z[i] by 1, or in previous carry and save new carry
9482     movq(value, Address(z, zidx, Address::times_4, 0));
9483     shlq(value, 1);
9484     adcl(new_carry, 0);
9485 
9486     orq(value, prev_carry);
9487     rorq(value, 0x20);
9488     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9489 
9490     // Set previous carry = new carry
9491     movl(prev_carry, new_carry);
9492   }
9493   jmp(L_fifth_loop);
9494 
9495   bind(L_fifth_loop_exit);
9496 }
9497 
9498 
9499 /**
9500  * Code for BigInteger::squareToLen() intrinsic
9501  *
9502  * rdi: x
9503  * rsi: len
9504  * r8:  z
9505  * rcx: zlen
9506  * r12: tmp1
9507  * r13: tmp2
9508  * r14: tmp3
9509  * r15: tmp4
9510  * rbx: tmp5
9511  *
9512  */
9513 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9514 
9515   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9516   push(tmp1);
9517   push(tmp2);
9518   push(tmp3);
9519   push(tmp4);
9520   push(tmp5);
9521 
9522   // First loop
9523   // Store the squares, right shifted one bit (i.e., divided by 2).
9524   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9525 
9526   // Add in off-diagonal sums.
9527   //
9528   // Second, third (nested) and fourth loops.
9529   // zlen +=2;
9530   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9531   //    carry = 0;
9532   //    long op2 = x[xidx:xidx+1];
9533   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9534   //       k -= 2;
9535   //       long op1 = x[j:j+1];
9536   //       long sum = z[k:k+1];
9537   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9538   //       z[k:k+1] = sum;
9539   //    }
9540   //    add_one_64(z, k, carry, tmp_regs);
9541   // }
9542 
9543   const Register carry = tmp5;
9544   const Register sum = tmp3;
9545   const Register op1 = tmp4;
9546   Register op2 = tmp2;
9547 
9548   push(zlen);
9549   push(len);
9550   addl(zlen,2);
9551   bind(L_second_loop);
9552   xorq(carry, carry);
9553   subl(zlen, 4);
9554   subl(len, 2);
9555   push(zlen);
9556   push(len);
9557   cmpl(len, 0);
9558   jccb(Assembler::lessEqual, L_second_loop_exit);
9559 
9560   // Multiply an array by one 64 bit long.
9561   if (UseBMI2Instructions) {
9562     op2 = rdxReg;
9563     movq(op2, Address(x, len, Address::times_4,  0));
9564     rorxq(op2, op2, 32);
9565   }
9566   else {
9567     movq(op2, Address(x, len, Address::times_4,  0));
9568     rorq(op2, 32);
9569   }
9570 
9571   bind(L_third_loop);
9572   decrementl(len);
9573   jccb(Assembler::negative, L_third_loop_exit);
9574   decrementl(len);
9575   jccb(Assembler::negative, L_last_x);
9576 
9577   movq(op1, Address(x, len, Address::times_4,  0));
9578   rorq(op1, 32);
9579 
9580   bind(L_multiply);
9581   subl(zlen, 2);
9582   movq(sum, Address(z, zlen, Address::times_4,  0));
9583 
9584   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9585   if (UseBMI2Instructions) {
9586     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9587   }
9588   else {
9589     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9590   }
9591 
9592   movq(Address(z, zlen, Address::times_4, 0), sum);
9593 
9594   jmp(L_third_loop);
9595   bind(L_third_loop_exit);
9596 
9597   // Fourth loop
9598   // Add 64 bit long carry into z with carry propogation.
9599   // Uses offsetted zlen.
9600   add_one_64(z, zlen, carry, tmp1);
9601 
9602   pop(len);
9603   pop(zlen);
9604   jmp(L_second_loop);
9605 
9606   // Next infrequent code is moved outside loops.
9607   bind(L_last_x);
9608   movl(op1, Address(x, 0));
9609   jmp(L_multiply);
9610 
9611   bind(L_second_loop_exit);
9612   pop(len);
9613   pop(zlen);
9614   pop(len);
9615   pop(zlen);
9616 
9617   // Fifth loop
9618   // Shift z left 1 bit.
9619   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
9620 
9621   // z[zlen-1] |= x[len-1] & 1;
9622   movl(tmp3, Address(x, len, Address::times_4, -4));
9623   andl(tmp3, 1);
9624   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
9625 
9626   pop(tmp5);
9627   pop(tmp4);
9628   pop(tmp3);
9629   pop(tmp2);
9630   pop(tmp1);
9631 }
9632 
9633 /**
9634  * Helper function for mul_add()
9635  * Multiply the in[] by int k and add to out[] starting at offset offs using
9636  * 128 bit by 32 bit multiply and return the carry in tmp5.
9637  * Only quad int aligned length of in[] is operated on in this function.
9638  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
9639  * This function preserves out, in and k registers.
9640  * len and offset point to the appropriate index in "in" & "out" correspondingly
9641  * tmp5 has the carry.
9642  * other registers are temporary and are modified.
9643  *
9644  */
9645 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
9646   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
9647   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9648 
9649   Label L_first_loop, L_first_loop_exit;
9650 
9651   movl(tmp1, len);
9652   shrl(tmp1, 2);
9653 
9654   bind(L_first_loop);
9655   subl(tmp1, 1);
9656   jccb(Assembler::negative, L_first_loop_exit);
9657 
9658   subl(len, 4);
9659   subl(offset, 4);
9660 
9661   Register op2 = tmp2;
9662   const Register sum = tmp3;
9663   const Register op1 = tmp4;
9664   const Register carry = tmp5;
9665 
9666   if (UseBMI2Instructions) {
9667     op2 = rdxReg;
9668   }
9669 
9670   movq(op1, Address(in, len, Address::times_4,  8));
9671   rorq(op1, 32);
9672   movq(sum, Address(out, offset, Address::times_4,  8));
9673   rorq(sum, 32);
9674   if (UseBMI2Instructions) {
9675     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9676   }
9677   else {
9678     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9679   }
9680   // Store back in big endian from little endian
9681   rorq(sum, 0x20);
9682   movq(Address(out, offset, Address::times_4,  8), sum);
9683 
9684   movq(op1, Address(in, len, Address::times_4,  0));
9685   rorq(op1, 32);
9686   movq(sum, Address(out, offset, Address::times_4,  0));
9687   rorq(sum, 32);
9688   if (UseBMI2Instructions) {
9689     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9690   }
9691   else {
9692     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9693   }
9694   // Store back in big endian from little endian
9695   rorq(sum, 0x20);
9696   movq(Address(out, offset, Address::times_4,  0), sum);
9697 
9698   jmp(L_first_loop);
9699   bind(L_first_loop_exit);
9700 }
9701 
9702 /**
9703  * Code for BigInteger::mulAdd() intrinsic
9704  *
9705  * rdi: out
9706  * rsi: in
9707  * r11: offs (out.length - offset)
9708  * rcx: len
9709  * r8:  k
9710  * r12: tmp1
9711  * r13: tmp2
9712  * r14: tmp3
9713  * r15: tmp4
9714  * rbx: tmp5
9715  * Multiply the in[] by word k and add to out[], return the carry in rax
9716  */
9717 void MacroAssembler::mul_add(Register out, Register in, Register offs,
9718    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
9719    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9720 
9721   Label L_carry, L_last_in, L_done;
9722 
9723 // carry = 0;
9724 // for (int j=len-1; j >= 0; j--) {
9725 //    long product = (in[j] & LONG_MASK) * kLong +
9726 //                   (out[offs] & LONG_MASK) + carry;
9727 //    out[offs--] = (int)product;
9728 //    carry = product >>> 32;
9729 // }
9730 //
9731   push(tmp1);
9732   push(tmp2);
9733   push(tmp3);
9734   push(tmp4);
9735   push(tmp5);
9736 
9737   Register op2 = tmp2;
9738   const Register sum = tmp3;
9739   const Register op1 = tmp4;
9740   const Register carry =  tmp5;
9741 
9742   if (UseBMI2Instructions) {
9743     op2 = rdxReg;
9744     movl(op2, k);
9745   }
9746   else {
9747     movl(op2, k);
9748   }
9749 
9750   xorq(carry, carry);
9751 
9752   //First loop
9753 
9754   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
9755   //The carry is in tmp5
9756   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
9757 
9758   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
9759   decrementl(len);
9760   jccb(Assembler::negative, L_carry);
9761   decrementl(len);
9762   jccb(Assembler::negative, L_last_in);
9763 
9764   movq(op1, Address(in, len, Address::times_4,  0));
9765   rorq(op1, 32);
9766 
9767   subl(offs, 2);
9768   movq(sum, Address(out, offs, Address::times_4,  0));
9769   rorq(sum, 32);
9770 
9771   if (UseBMI2Instructions) {
9772     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9773   }
9774   else {
9775     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9776   }
9777 
9778   // Store back in big endian from little endian
9779   rorq(sum, 0x20);
9780   movq(Address(out, offs, Address::times_4,  0), sum);
9781 
9782   testl(len, len);
9783   jccb(Assembler::zero, L_carry);
9784 
9785   //Multiply the last in[] entry, if any
9786   bind(L_last_in);
9787   movl(op1, Address(in, 0));
9788   movl(sum, Address(out, offs, Address::times_4,  -4));
9789 
9790   movl(raxReg, k);
9791   mull(op1); //tmp4 * eax -> edx:eax
9792   addl(sum, carry);
9793   adcl(rdxReg, 0);
9794   addl(sum, raxReg);
9795   adcl(rdxReg, 0);
9796   movl(carry, rdxReg);
9797 
9798   movl(Address(out, offs, Address::times_4,  -4), sum);
9799 
9800   bind(L_carry);
9801   //return tmp5/carry as carry in rax
9802   movl(rax, carry);
9803 
9804   bind(L_done);
9805   pop(tmp5);
9806   pop(tmp4);
9807   pop(tmp3);
9808   pop(tmp2);
9809   pop(tmp1);
9810 }
9811 #endif
9812 
9813 /**
9814  * Emits code to update CRC-32 with a byte value according to constants in table
9815  *
9816  * @param [in,out]crc   Register containing the crc.
9817  * @param [in]val       Register containing the byte to fold into the CRC.
9818  * @param [in]table     Register containing the table of crc constants.
9819  *
9820  * uint32_t crc;
9821  * val = crc_table[(val ^ crc) & 0xFF];
9822  * crc = val ^ (crc >> 8);
9823  *
9824  */
9825 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
9826   xorl(val, crc);
9827   andl(val, 0xFF);
9828   shrl(crc, 8); // unsigned shift
9829   xorl(crc, Address(table, val, Address::times_4, 0));
9830 }
9831 
9832 /**
9833 * Fold four 128-bit data chunks
9834 */
9835 void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
9836   evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64]
9837   evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0]
9838   evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */);
9839   evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */);
9840 }
9841 
9842 /**
9843  * Fold 128-bit data chunk
9844  */
9845 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
9846   if (UseAVX > 0) {
9847     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
9848     vpclmulldq(xcrc, xK, xcrc); // [63:0]
9849     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
9850     pxor(xcrc, xtmp);
9851   } else {
9852     movdqa(xtmp, xcrc);
9853     pclmulhdq(xtmp, xK);   // [123:64]
9854     pclmulldq(xcrc, xK);   // [63:0]
9855     pxor(xcrc, xtmp);
9856     movdqu(xtmp, Address(buf, offset));
9857     pxor(xcrc, xtmp);
9858   }
9859 }
9860 
9861 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
9862   if (UseAVX > 0) {
9863     vpclmulhdq(xtmp, xK, xcrc);
9864     vpclmulldq(xcrc, xK, xcrc);
9865     pxor(xcrc, xbuf);
9866     pxor(xcrc, xtmp);
9867   } else {
9868     movdqa(xtmp, xcrc);
9869     pclmulhdq(xtmp, xK);
9870     pclmulldq(xcrc, xK);
9871     pxor(xcrc, xbuf);
9872     pxor(xcrc, xtmp);
9873   }
9874 }
9875 
9876 /**
9877  * 8-bit folds to compute 32-bit CRC
9878  *
9879  * uint64_t xcrc;
9880  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
9881  */
9882 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
9883   movdl(tmp, xcrc);
9884   andl(tmp, 0xFF);
9885   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
9886   psrldq(xcrc, 1); // unsigned shift one byte
9887   pxor(xcrc, xtmp);
9888 }
9889 
9890 /**
9891  * uint32_t crc;
9892  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
9893  */
9894 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
9895   movl(tmp, crc);
9896   andl(tmp, 0xFF);
9897   shrl(crc, 8);
9898   xorl(crc, Address(table, tmp, Address::times_4, 0));
9899 }
9900 
9901 /**
9902  * @param crc   register containing existing CRC (32-bit)
9903  * @param buf   register pointing to input byte buffer (byte*)
9904  * @param len   register containing number of bytes
9905  * @param table register that will contain address of CRC table
9906  * @param tmp   scratch register
9907  */
9908 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
9909   assert_different_registers(crc, buf, len, table, tmp, rax);
9910 
9911   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
9912   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
9913 
9914   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
9915   // context for the registers used, where all instructions below are using 128-bit mode
9916   // On EVEX without VL and BW, these instructions will all be AVX.
9917   if (VM_Version::supports_avx512vlbw()) {
9918     movl(tmp, 0xffff);
9919     kmovwl(k1, tmp);
9920   }
9921 
9922   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
9923   notl(crc); // ~crc
9924   cmpl(len, 16);
9925   jcc(Assembler::less, L_tail);
9926 
9927   // Align buffer to 16 bytes
9928   movl(tmp, buf);
9929   andl(tmp, 0xF);
9930   jccb(Assembler::zero, L_aligned);
9931   subl(tmp,  16);
9932   addl(len, tmp);
9933 
9934   align(4);
9935   BIND(L_align_loop);
9936   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9937   update_byte_crc32(crc, rax, table);
9938   increment(buf);
9939   incrementl(tmp);
9940   jccb(Assembler::less, L_align_loop);
9941 
9942   BIND(L_aligned);
9943   movl(tmp, len); // save
9944   shrl(len, 4);
9945   jcc(Assembler::zero, L_tail_restore);
9946 
9947   // Fold total 512 bits of polynomial on each iteration
9948   if (VM_Version::supports_vpclmulqdq()) {
9949     Label Parallel_loop, L_No_Parallel;
9950 
9951     cmpl(len, 8);
9952     jccb(Assembler::less, L_No_Parallel);
9953 
9954     movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
9955     evmovdquq(xmm1, Address(buf, 0), Assembler::AVX_512bit);
9956     movdl(xmm5, crc);
9957     evpxorq(xmm1, xmm1, xmm5, Assembler::AVX_512bit);
9958     addptr(buf, 64);
9959     subl(len, 7);
9960     evshufi64x2(xmm0, xmm0, xmm0, 0x00, Assembler::AVX_512bit); //propagate the mask from 128 bits to 512 bits
9961 
9962     BIND(Parallel_loop);
9963     fold_128bit_crc32_avx512(xmm1, xmm0, xmm5, buf, 0);
9964     addptr(buf, 64);
9965     subl(len, 4);
9966     jcc(Assembler::greater, Parallel_loop);
9967 
9968     vextracti64x2(xmm2, xmm1, 0x01);
9969     vextracti64x2(xmm3, xmm1, 0x02);
9970     vextracti64x2(xmm4, xmm1, 0x03);
9971     jmp(L_fold_512b);
9972 
9973     BIND(L_No_Parallel);
9974   }
9975   // Fold crc into first bytes of vector
9976   movdqa(xmm1, Address(buf, 0));
9977   movdl(rax, xmm1);
9978   xorl(crc, rax);
9979   if (VM_Version::supports_sse4_1()) {
9980     pinsrd(xmm1, crc, 0);
9981   } else {
9982     pinsrw(xmm1, crc, 0);
9983     shrl(crc, 16);
9984     pinsrw(xmm1, crc, 1);
9985   }
9986   addptr(buf, 16);
9987   subl(len, 4); // len > 0
9988   jcc(Assembler::less, L_fold_tail);
9989 
9990   movdqa(xmm2, Address(buf,  0));
9991   movdqa(xmm3, Address(buf, 16));
9992   movdqa(xmm4, Address(buf, 32));
9993   addptr(buf, 48);
9994   subl(len, 3);
9995   jcc(Assembler::lessEqual, L_fold_512b);
9996 
9997   // Fold total 512 bits of polynomial on each iteration,
9998   // 128 bits per each of 4 parallel streams.
9999   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
10000 
10001   align(32);
10002   BIND(L_fold_512b_loop);
10003   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10004   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
10005   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
10006   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
10007   addptr(buf, 64);
10008   subl(len, 4);
10009   jcc(Assembler::greater, L_fold_512b_loop);
10010 
10011   // Fold 512 bits to 128 bits.
10012   BIND(L_fold_512b);
10013   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10014   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
10015   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
10016   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
10017 
10018   // Fold the rest of 128 bits data chunks
10019   BIND(L_fold_tail);
10020   addl(len, 3);
10021   jccb(Assembler::lessEqual, L_fold_128b);
10022   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10023 
10024   BIND(L_fold_tail_loop);
10025   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10026   addptr(buf, 16);
10027   decrementl(len);
10028   jccb(Assembler::greater, L_fold_tail_loop);
10029 
10030   // Fold 128 bits in xmm1 down into 32 bits in crc register.
10031   BIND(L_fold_128b);
10032   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
10033   if (UseAVX > 0) {
10034     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
10035     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
10036     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
10037   } else {
10038     movdqa(xmm2, xmm0);
10039     pclmulqdq(xmm2, xmm1, 0x1);
10040     movdqa(xmm3, xmm0);
10041     pand(xmm3, xmm2);
10042     pclmulqdq(xmm0, xmm3, 0x1);
10043   }
10044   psrldq(xmm1, 8);
10045   psrldq(xmm2, 4);
10046   pxor(xmm0, xmm1);
10047   pxor(xmm0, xmm2);
10048 
10049   // 8 8-bit folds to compute 32-bit CRC.
10050   for (int j = 0; j < 4; j++) {
10051     fold_8bit_crc32(xmm0, table, xmm1, rax);
10052   }
10053   movdl(crc, xmm0); // mov 32 bits to general register
10054   for (int j = 0; j < 4; j++) {
10055     fold_8bit_crc32(crc, table, rax);
10056   }
10057 
10058   BIND(L_tail_restore);
10059   movl(len, tmp); // restore
10060   BIND(L_tail);
10061   andl(len, 0xf);
10062   jccb(Assembler::zero, L_exit);
10063 
10064   // Fold the rest of bytes
10065   align(4);
10066   BIND(L_tail_loop);
10067   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10068   update_byte_crc32(crc, rax, table);
10069   increment(buf);
10070   decrementl(len);
10071   jccb(Assembler::greater, L_tail_loop);
10072 
10073   BIND(L_exit);
10074   notl(crc); // ~c
10075 }
10076 
10077 #ifdef _LP64
10078 // S. Gueron / Information Processing Letters 112 (2012) 184
10079 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
10080 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
10081 // Output: the 64-bit carry-less product of B * CONST
10082 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
10083                                      Register tmp1, Register tmp2, Register tmp3) {
10084   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10085   if (n > 0) {
10086     addq(tmp3, n * 256 * 8);
10087   }
10088   //    Q1 = TABLEExt[n][B & 0xFF];
10089   movl(tmp1, in);
10090   andl(tmp1, 0x000000FF);
10091   shll(tmp1, 3);
10092   addq(tmp1, tmp3);
10093   movq(tmp1, Address(tmp1, 0));
10094 
10095   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10096   movl(tmp2, in);
10097   shrl(tmp2, 8);
10098   andl(tmp2, 0x000000FF);
10099   shll(tmp2, 3);
10100   addq(tmp2, tmp3);
10101   movq(tmp2, Address(tmp2, 0));
10102 
10103   shlq(tmp2, 8);
10104   xorq(tmp1, tmp2);
10105 
10106   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10107   movl(tmp2, in);
10108   shrl(tmp2, 16);
10109   andl(tmp2, 0x000000FF);
10110   shll(tmp2, 3);
10111   addq(tmp2, tmp3);
10112   movq(tmp2, Address(tmp2, 0));
10113 
10114   shlq(tmp2, 16);
10115   xorq(tmp1, tmp2);
10116 
10117   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10118   shrl(in, 24);
10119   andl(in, 0x000000FF);
10120   shll(in, 3);
10121   addq(in, tmp3);
10122   movq(in, Address(in, 0));
10123 
10124   shlq(in, 24);
10125   xorq(in, tmp1);
10126   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10127 }
10128 
10129 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10130                                       Register in_out,
10131                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10132                                       XMMRegister w_xtmp2,
10133                                       Register tmp1,
10134                                       Register n_tmp2, Register n_tmp3) {
10135   if (is_pclmulqdq_supported) {
10136     movdl(w_xtmp1, in_out); // modified blindly
10137 
10138     movl(tmp1, const_or_pre_comp_const_index);
10139     movdl(w_xtmp2, tmp1);
10140     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10141 
10142     movdq(in_out, w_xtmp1);
10143   } else {
10144     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10145   }
10146 }
10147 
10148 // Recombination Alternative 2: No bit-reflections
10149 // T1 = (CRC_A * U1) << 1
10150 // T2 = (CRC_B * U2) << 1
10151 // C1 = T1 >> 32
10152 // C2 = T2 >> 32
10153 // T1 = T1 & 0xFFFFFFFF
10154 // T2 = T2 & 0xFFFFFFFF
10155 // T1 = CRC32(0, T1)
10156 // T2 = CRC32(0, T2)
10157 // C1 = C1 ^ T1
10158 // C2 = C2 ^ T2
10159 // CRC = C1 ^ C2 ^ CRC_C
10160 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10161                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10162                                      Register tmp1, Register tmp2,
10163                                      Register n_tmp3) {
10164   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10165   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10166   shlq(in_out, 1);
10167   movl(tmp1, in_out);
10168   shrq(in_out, 32);
10169   xorl(tmp2, tmp2);
10170   crc32(tmp2, tmp1, 4);
10171   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10172   shlq(in1, 1);
10173   movl(tmp1, in1);
10174   shrq(in1, 32);
10175   xorl(tmp2, tmp2);
10176   crc32(tmp2, tmp1, 4);
10177   xorl(in1, tmp2);
10178   xorl(in_out, in1);
10179   xorl(in_out, in2);
10180 }
10181 
10182 // Set N to predefined value
10183 // Subtract from a lenght of a buffer
10184 // execute in a loop:
10185 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10186 // for i = 1 to N do
10187 //  CRC_A = CRC32(CRC_A, A[i])
10188 //  CRC_B = CRC32(CRC_B, B[i])
10189 //  CRC_C = CRC32(CRC_C, C[i])
10190 // end for
10191 // Recombine
10192 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10193                                        Register in_out1, Register in_out2, Register in_out3,
10194                                        Register tmp1, Register tmp2, Register tmp3,
10195                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10196                                        Register tmp4, Register tmp5,
10197                                        Register n_tmp6) {
10198   Label L_processPartitions;
10199   Label L_processPartition;
10200   Label L_exit;
10201 
10202   bind(L_processPartitions);
10203   cmpl(in_out1, 3 * size);
10204   jcc(Assembler::less, L_exit);
10205     xorl(tmp1, tmp1);
10206     xorl(tmp2, tmp2);
10207     movq(tmp3, in_out2);
10208     addq(tmp3, size);
10209 
10210     bind(L_processPartition);
10211       crc32(in_out3, Address(in_out2, 0), 8);
10212       crc32(tmp1, Address(in_out2, size), 8);
10213       crc32(tmp2, Address(in_out2, size * 2), 8);
10214       addq(in_out2, 8);
10215       cmpq(in_out2, tmp3);
10216       jcc(Assembler::less, L_processPartition);
10217     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10218             w_xtmp1, w_xtmp2, w_xtmp3,
10219             tmp4, tmp5,
10220             n_tmp6);
10221     addq(in_out2, 2 * size);
10222     subl(in_out1, 3 * size);
10223     jmp(L_processPartitions);
10224 
10225   bind(L_exit);
10226 }
10227 #else
10228 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10229                                      Register tmp1, Register tmp2, Register tmp3,
10230                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10231   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10232   if (n > 0) {
10233     addl(tmp3, n * 256 * 8);
10234   }
10235   //    Q1 = TABLEExt[n][B & 0xFF];
10236   movl(tmp1, in_out);
10237   andl(tmp1, 0x000000FF);
10238   shll(tmp1, 3);
10239   addl(tmp1, tmp3);
10240   movq(xtmp1, Address(tmp1, 0));
10241 
10242   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10243   movl(tmp2, in_out);
10244   shrl(tmp2, 8);
10245   andl(tmp2, 0x000000FF);
10246   shll(tmp2, 3);
10247   addl(tmp2, tmp3);
10248   movq(xtmp2, Address(tmp2, 0));
10249 
10250   psllq(xtmp2, 8);
10251   pxor(xtmp1, xtmp2);
10252 
10253   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10254   movl(tmp2, in_out);
10255   shrl(tmp2, 16);
10256   andl(tmp2, 0x000000FF);
10257   shll(tmp2, 3);
10258   addl(tmp2, tmp3);
10259   movq(xtmp2, Address(tmp2, 0));
10260 
10261   psllq(xtmp2, 16);
10262   pxor(xtmp1, xtmp2);
10263 
10264   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10265   shrl(in_out, 24);
10266   andl(in_out, 0x000000FF);
10267   shll(in_out, 3);
10268   addl(in_out, tmp3);
10269   movq(xtmp2, Address(in_out, 0));
10270 
10271   psllq(xtmp2, 24);
10272   pxor(xtmp1, xtmp2); // Result in CXMM
10273   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10274 }
10275 
10276 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10277                                       Register in_out,
10278                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10279                                       XMMRegister w_xtmp2,
10280                                       Register tmp1,
10281                                       Register n_tmp2, Register n_tmp3) {
10282   if (is_pclmulqdq_supported) {
10283     movdl(w_xtmp1, in_out);
10284 
10285     movl(tmp1, const_or_pre_comp_const_index);
10286     movdl(w_xtmp2, tmp1);
10287     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10288     // Keep result in XMM since GPR is 32 bit in length
10289   } else {
10290     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10291   }
10292 }
10293 
10294 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10295                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10296                                      Register tmp1, Register tmp2,
10297                                      Register n_tmp3) {
10298   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10299   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10300 
10301   psllq(w_xtmp1, 1);
10302   movdl(tmp1, w_xtmp1);
10303   psrlq(w_xtmp1, 32);
10304   movdl(in_out, w_xtmp1);
10305 
10306   xorl(tmp2, tmp2);
10307   crc32(tmp2, tmp1, 4);
10308   xorl(in_out, tmp2);
10309 
10310   psllq(w_xtmp2, 1);
10311   movdl(tmp1, w_xtmp2);
10312   psrlq(w_xtmp2, 32);
10313   movdl(in1, w_xtmp2);
10314 
10315   xorl(tmp2, tmp2);
10316   crc32(tmp2, tmp1, 4);
10317   xorl(in1, tmp2);
10318   xorl(in_out, in1);
10319   xorl(in_out, in2);
10320 }
10321 
10322 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10323                                        Register in_out1, Register in_out2, Register in_out3,
10324                                        Register tmp1, Register tmp2, Register tmp3,
10325                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10326                                        Register tmp4, Register tmp5,
10327                                        Register n_tmp6) {
10328   Label L_processPartitions;
10329   Label L_processPartition;
10330   Label L_exit;
10331 
10332   bind(L_processPartitions);
10333   cmpl(in_out1, 3 * size);
10334   jcc(Assembler::less, L_exit);
10335     xorl(tmp1, tmp1);
10336     xorl(tmp2, tmp2);
10337     movl(tmp3, in_out2);
10338     addl(tmp3, size);
10339 
10340     bind(L_processPartition);
10341       crc32(in_out3, Address(in_out2, 0), 4);
10342       crc32(tmp1, Address(in_out2, size), 4);
10343       crc32(tmp2, Address(in_out2, size*2), 4);
10344       crc32(in_out3, Address(in_out2, 0+4), 4);
10345       crc32(tmp1, Address(in_out2, size+4), 4);
10346       crc32(tmp2, Address(in_out2, size*2+4), 4);
10347       addl(in_out2, 8);
10348       cmpl(in_out2, tmp3);
10349       jcc(Assembler::less, L_processPartition);
10350 
10351         push(tmp3);
10352         push(in_out1);
10353         push(in_out2);
10354         tmp4 = tmp3;
10355         tmp5 = in_out1;
10356         n_tmp6 = in_out2;
10357 
10358       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10359             w_xtmp1, w_xtmp2, w_xtmp3,
10360             tmp4, tmp5,
10361             n_tmp6);
10362 
10363         pop(in_out2);
10364         pop(in_out1);
10365         pop(tmp3);
10366 
10367     addl(in_out2, 2 * size);
10368     subl(in_out1, 3 * size);
10369     jmp(L_processPartitions);
10370 
10371   bind(L_exit);
10372 }
10373 #endif //LP64
10374 
10375 #ifdef _LP64
10376 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10377 // Input: A buffer I of L bytes.
10378 // Output: the CRC32C value of the buffer.
10379 // Notations:
10380 // Write L = 24N + r, with N = floor (L/24).
10381 // r = L mod 24 (0 <= r < 24).
10382 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10383 // N quadwords, and R consists of r bytes.
10384 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10385 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10386 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10387 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10388 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10389                                           Register tmp1, Register tmp2, Register tmp3,
10390                                           Register tmp4, Register tmp5, Register tmp6,
10391                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10392                                           bool is_pclmulqdq_supported) {
10393   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10394   Label L_wordByWord;
10395   Label L_byteByByteProlog;
10396   Label L_byteByByte;
10397   Label L_exit;
10398 
10399   if (is_pclmulqdq_supported ) {
10400     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10401     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10402 
10403     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10404     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10405 
10406     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10407     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10408     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10409   } else {
10410     const_or_pre_comp_const_index[0] = 1;
10411     const_or_pre_comp_const_index[1] = 0;
10412 
10413     const_or_pre_comp_const_index[2] = 3;
10414     const_or_pre_comp_const_index[3] = 2;
10415 
10416     const_or_pre_comp_const_index[4] = 5;
10417     const_or_pre_comp_const_index[5] = 4;
10418    }
10419   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10420                     in2, in1, in_out,
10421                     tmp1, tmp2, tmp3,
10422                     w_xtmp1, w_xtmp2, w_xtmp3,
10423                     tmp4, tmp5,
10424                     tmp6);
10425   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10426                     in2, in1, in_out,
10427                     tmp1, tmp2, tmp3,
10428                     w_xtmp1, w_xtmp2, w_xtmp3,
10429                     tmp4, tmp5,
10430                     tmp6);
10431   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10432                     in2, in1, in_out,
10433                     tmp1, tmp2, tmp3,
10434                     w_xtmp1, w_xtmp2, w_xtmp3,
10435                     tmp4, tmp5,
10436                     tmp6);
10437   movl(tmp1, in2);
10438   andl(tmp1, 0x00000007);
10439   negl(tmp1);
10440   addl(tmp1, in2);
10441   addq(tmp1, in1);
10442 
10443   BIND(L_wordByWord);
10444   cmpq(in1, tmp1);
10445   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10446     crc32(in_out, Address(in1, 0), 4);
10447     addq(in1, 4);
10448     jmp(L_wordByWord);
10449 
10450   BIND(L_byteByByteProlog);
10451   andl(in2, 0x00000007);
10452   movl(tmp2, 1);
10453 
10454   BIND(L_byteByByte);
10455   cmpl(tmp2, in2);
10456   jccb(Assembler::greater, L_exit);
10457     crc32(in_out, Address(in1, 0), 1);
10458     incq(in1);
10459     incl(tmp2);
10460     jmp(L_byteByByte);
10461 
10462   BIND(L_exit);
10463 }
10464 #else
10465 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10466                                           Register tmp1, Register  tmp2, Register tmp3,
10467                                           Register tmp4, Register  tmp5, Register tmp6,
10468                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10469                                           bool is_pclmulqdq_supported) {
10470   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10471   Label L_wordByWord;
10472   Label L_byteByByteProlog;
10473   Label L_byteByByte;
10474   Label L_exit;
10475 
10476   if (is_pclmulqdq_supported) {
10477     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10478     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10479 
10480     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10481     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10482 
10483     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10484     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10485   } else {
10486     const_or_pre_comp_const_index[0] = 1;
10487     const_or_pre_comp_const_index[1] = 0;
10488 
10489     const_or_pre_comp_const_index[2] = 3;
10490     const_or_pre_comp_const_index[3] = 2;
10491 
10492     const_or_pre_comp_const_index[4] = 5;
10493     const_or_pre_comp_const_index[5] = 4;
10494   }
10495   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10496                     in2, in1, in_out,
10497                     tmp1, tmp2, tmp3,
10498                     w_xtmp1, w_xtmp2, w_xtmp3,
10499                     tmp4, tmp5,
10500                     tmp6);
10501   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10502                     in2, in1, in_out,
10503                     tmp1, tmp2, tmp3,
10504                     w_xtmp1, w_xtmp2, w_xtmp3,
10505                     tmp4, tmp5,
10506                     tmp6);
10507   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10508                     in2, in1, in_out,
10509                     tmp1, tmp2, tmp3,
10510                     w_xtmp1, w_xtmp2, w_xtmp3,
10511                     tmp4, tmp5,
10512                     tmp6);
10513   movl(tmp1, in2);
10514   andl(tmp1, 0x00000007);
10515   negl(tmp1);
10516   addl(tmp1, in2);
10517   addl(tmp1, in1);
10518 
10519   BIND(L_wordByWord);
10520   cmpl(in1, tmp1);
10521   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10522     crc32(in_out, Address(in1,0), 4);
10523     addl(in1, 4);
10524     jmp(L_wordByWord);
10525 
10526   BIND(L_byteByByteProlog);
10527   andl(in2, 0x00000007);
10528   movl(tmp2, 1);
10529 
10530   BIND(L_byteByByte);
10531   cmpl(tmp2, in2);
10532   jccb(Assembler::greater, L_exit);
10533     movb(tmp1, Address(in1, 0));
10534     crc32(in_out, tmp1, 1);
10535     incl(in1);
10536     incl(tmp2);
10537     jmp(L_byteByByte);
10538 
10539   BIND(L_exit);
10540 }
10541 #endif // LP64
10542 #undef BIND
10543 #undef BLOCK_COMMENT
10544 
10545 // Compress char[] array to byte[].
10546 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
10547 //   @HotSpotIntrinsicCandidate
10548 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
10549 //     for (int i = 0; i < len; i++) {
10550 //       int c = src[srcOff++];
10551 //       if (c >>> 8 != 0) {
10552 //         return 0;
10553 //       }
10554 //       dst[dstOff++] = (byte)c;
10555 //     }
10556 //     return len;
10557 //   }
10558 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10559   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10560   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10561   Register tmp5, Register result) {
10562   Label copy_chars_loop, return_length, return_zero, done, below_threshold;
10563 
10564   // rsi: src
10565   // rdi: dst
10566   // rdx: len
10567   // rcx: tmp5
10568   // rax: result
10569 
10570   // rsi holds start addr of source char[] to be compressed
10571   // rdi holds start addr of destination byte[]
10572   // rdx holds length
10573 
10574   assert(len != result, "");
10575 
10576   // save length for return
10577   push(len);
10578 
10579   if ((UseAVX > 2) && // AVX512
10580     VM_Version::supports_avx512vlbw() &&
10581     VM_Version::supports_bmi2()) {
10582 
10583     set_vector_masking();  // opening of the stub context for programming mask registers
10584 
10585     Label copy_32_loop, copy_loop_tail, restore_k1_return_zero;
10586 
10587     // alignement
10588     Label post_alignement;
10589 
10590     // if length of the string is less than 16, handle it in an old fashioned
10591     // way
10592     testl(len, -32);
10593     jcc(Assembler::zero, below_threshold);
10594 
10595     // First check whether a character is compressable ( <= 0xFF).
10596     // Create mask to test for Unicode chars inside zmm vector
10597     movl(result, 0x00FF);
10598     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
10599 
10600     // Save k1
10601     kmovql(k3, k1);
10602 
10603     testl(len, -64);
10604     jcc(Assembler::zero, post_alignement);
10605 
10606     movl(tmp5, dst);
10607     andl(tmp5, (32 - 1));
10608     negl(tmp5);
10609     andl(tmp5, (32 - 1));
10610 
10611     // bail out when there is nothing to be done
10612     testl(tmp5, 0xFFFFFFFF);
10613     jcc(Assembler::zero, post_alignement);
10614 
10615     // ~(~0 << len), where len is the # of remaining elements to process
10616     movl(result, 0xFFFFFFFF);
10617     shlxl(result, result, tmp5);
10618     notl(result);
10619     kmovdl(k1, result);
10620 
10621     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10622     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10623     ktestd(k2, k1);
10624     jcc(Assembler::carryClear, restore_k1_return_zero);
10625 
10626     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10627 
10628     addptr(src, tmp5);
10629     addptr(src, tmp5);
10630     addptr(dst, tmp5);
10631     subl(len, tmp5);
10632 
10633     bind(post_alignement);
10634     // end of alignement
10635 
10636     movl(tmp5, len);
10637     andl(tmp5, (32 - 1));    // tail count (in chars)
10638     andl(len, ~(32 - 1));    // vector count (in chars)
10639     jcc(Assembler::zero, copy_loop_tail);
10640 
10641     lea(src, Address(src, len, Address::times_2));
10642     lea(dst, Address(dst, len, Address::times_1));
10643     negptr(len);
10644 
10645     bind(copy_32_loop);
10646     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
10647     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10648     kortestdl(k2, k2);
10649     jcc(Assembler::carryClear, restore_k1_return_zero);
10650 
10651     // All elements in current processed chunk are valid candidates for
10652     // compression. Write a truncated byte elements to the memory.
10653     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
10654     addptr(len, 32);
10655     jcc(Assembler::notZero, copy_32_loop);
10656 
10657     bind(copy_loop_tail);
10658     // bail out when there is nothing to be done
10659     testl(tmp5, 0xFFFFFFFF);
10660     // Restore k1
10661     kmovql(k1, k3);
10662     jcc(Assembler::zero, return_length);
10663 
10664     movl(len, tmp5);
10665 
10666     // ~(~0 << len), where len is the # of remaining elements to process
10667     movl(result, 0xFFFFFFFF);
10668     shlxl(result, result, len);
10669     notl(result);
10670 
10671     kmovdl(k1, result);
10672 
10673     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10674     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10675     ktestd(k2, k1);
10676     jcc(Assembler::carryClear, restore_k1_return_zero);
10677 
10678     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10679     // Restore k1
10680     kmovql(k1, k3);
10681     jmp(return_length);
10682 
10683     bind(restore_k1_return_zero);
10684     // Restore k1
10685     kmovql(k1, k3);
10686     jmp(return_zero);
10687 
10688     clear_vector_masking();   // closing of the stub context for programming mask registers
10689   }
10690   if (UseSSE42Intrinsics) {
10691     Label copy_32_loop, copy_16, copy_tail;
10692 
10693     bind(below_threshold);
10694 
10695     movl(result, len);
10696 
10697     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
10698 
10699     // vectored compression
10700     andl(len, 0xfffffff0);    // vector count (in chars)
10701     andl(result, 0x0000000f);    // tail count (in chars)
10702     testl(len, len);
10703     jccb(Assembler::zero, copy_16);
10704 
10705     // compress 16 chars per iter
10706     movdl(tmp1Reg, tmp5);
10707     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10708     pxor(tmp4Reg, tmp4Reg);
10709 
10710     lea(src, Address(src, len, Address::times_2));
10711     lea(dst, Address(dst, len, Address::times_1));
10712     negptr(len);
10713 
10714     bind(copy_32_loop);
10715     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
10716     por(tmp4Reg, tmp2Reg);
10717     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
10718     por(tmp4Reg, tmp3Reg);
10719     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
10720     jcc(Assembler::notZero, return_zero);
10721     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
10722     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
10723     addptr(len, 16);
10724     jcc(Assembler::notZero, copy_32_loop);
10725 
10726     // compress next vector of 8 chars (if any)
10727     bind(copy_16);
10728     movl(len, result);
10729     andl(len, 0xfffffff8);    // vector count (in chars)
10730     andl(result, 0x00000007);    // tail count (in chars)
10731     testl(len, len);
10732     jccb(Assembler::zero, copy_tail);
10733 
10734     movdl(tmp1Reg, tmp5);
10735     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10736     pxor(tmp3Reg, tmp3Reg);
10737 
10738     movdqu(tmp2Reg, Address(src, 0));
10739     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
10740     jccb(Assembler::notZero, return_zero);
10741     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
10742     movq(Address(dst, 0), tmp2Reg);
10743     addptr(src, 16);
10744     addptr(dst, 8);
10745 
10746     bind(copy_tail);
10747     movl(len, result);
10748   }
10749   // compress 1 char per iter
10750   testl(len, len);
10751   jccb(Assembler::zero, return_length);
10752   lea(src, Address(src, len, Address::times_2));
10753   lea(dst, Address(dst, len, Address::times_1));
10754   negptr(len);
10755 
10756   bind(copy_chars_loop);
10757   load_unsigned_short(result, Address(src, len, Address::times_2));
10758   testl(result, 0xff00);      // check if Unicode char
10759   jccb(Assembler::notZero, return_zero);
10760   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
10761   increment(len);
10762   jcc(Assembler::notZero, copy_chars_loop);
10763 
10764   // if compression succeeded, return length
10765   bind(return_length);
10766   pop(result);
10767   jmpb(done);
10768 
10769   // if compression failed, return 0
10770   bind(return_zero);
10771   xorl(result, result);
10772   addptr(rsp, wordSize);
10773 
10774   bind(done);
10775 }
10776 
10777 // Inflate byte[] array to char[].
10778 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
10779 //   @HotSpotIntrinsicCandidate
10780 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
10781 //     for (int i = 0; i < len; i++) {
10782 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
10783 //     }
10784 //   }
10785 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
10786   XMMRegister tmp1, Register tmp2) {
10787   Label copy_chars_loop, done, below_threshold;
10788   // rsi: src
10789   // rdi: dst
10790   // rdx: len
10791   // rcx: tmp2
10792 
10793   // rsi holds start addr of source byte[] to be inflated
10794   // rdi holds start addr of destination char[]
10795   // rdx holds length
10796   assert_different_registers(src, dst, len, tmp2);
10797 
10798   if ((UseAVX > 2) && // AVX512
10799     VM_Version::supports_avx512vlbw() &&
10800     VM_Version::supports_bmi2()) {
10801 
10802     set_vector_masking();  // opening of the stub context for programming mask registers
10803 
10804     Label copy_32_loop, copy_tail;
10805     Register tmp3_aliased = len;
10806 
10807     // if length of the string is less than 16, handle it in an old fashioned
10808     // way
10809     testl(len, -16);
10810     jcc(Assembler::zero, below_threshold);
10811 
10812     // In order to use only one arithmetic operation for the main loop we use
10813     // this pre-calculation
10814     movl(tmp2, len);
10815     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
10816     andl(len, -32);     // vector count
10817     jccb(Assembler::zero, copy_tail);
10818 
10819     lea(src, Address(src, len, Address::times_1));
10820     lea(dst, Address(dst, len, Address::times_2));
10821     negptr(len);
10822 
10823 
10824     // inflate 32 chars per iter
10825     bind(copy_32_loop);
10826     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
10827     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
10828     addptr(len, 32);
10829     jcc(Assembler::notZero, copy_32_loop);
10830 
10831     bind(copy_tail);
10832     // bail out when there is nothing to be done
10833     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
10834     jcc(Assembler::zero, done);
10835 
10836     // Save k1
10837     kmovql(k2, k1);
10838 
10839     // ~(~0 << length), where length is the # of remaining elements to process
10840     movl(tmp3_aliased, -1);
10841     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
10842     notl(tmp3_aliased);
10843     kmovdl(k1, tmp3_aliased);
10844     evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
10845     evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
10846 
10847     // Restore k1
10848     kmovql(k1, k2);
10849     jmp(done);
10850 
10851     clear_vector_masking();   // closing of the stub context for programming mask registers
10852   }
10853   if (UseSSE42Intrinsics) {
10854     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
10855 
10856     movl(tmp2, len);
10857 
10858     if (UseAVX > 1) {
10859       andl(tmp2, (16 - 1));
10860       andl(len, -16);
10861       jccb(Assembler::zero, copy_new_tail);
10862     } else {
10863       andl(tmp2, 0x00000007);   // tail count (in chars)
10864       andl(len, 0xfffffff8);    // vector count (in chars)
10865       jccb(Assembler::zero, copy_tail);
10866     }
10867 
10868     // vectored inflation
10869     lea(src, Address(src, len, Address::times_1));
10870     lea(dst, Address(dst, len, Address::times_2));
10871     negptr(len);
10872 
10873     if (UseAVX > 1) {
10874       bind(copy_16_loop);
10875       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
10876       vmovdqu(Address(dst, len, Address::times_2), tmp1);
10877       addptr(len, 16);
10878       jcc(Assembler::notZero, copy_16_loop);
10879 
10880       bind(below_threshold);
10881       bind(copy_new_tail);
10882       if ((UseAVX > 2) &&
10883         VM_Version::supports_avx512vlbw() &&
10884         VM_Version::supports_bmi2()) {
10885         movl(tmp2, len);
10886       } else {
10887         movl(len, tmp2);
10888       }
10889       andl(tmp2, 0x00000007);
10890       andl(len, 0xFFFFFFF8);
10891       jccb(Assembler::zero, copy_tail);
10892 
10893       pmovzxbw(tmp1, Address(src, 0));
10894       movdqu(Address(dst, 0), tmp1);
10895       addptr(src, 8);
10896       addptr(dst, 2 * 8);
10897 
10898       jmp(copy_tail, true);
10899     }
10900 
10901     // inflate 8 chars per iter
10902     bind(copy_8_loop);
10903     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
10904     movdqu(Address(dst, len, Address::times_2), tmp1);
10905     addptr(len, 8);
10906     jcc(Assembler::notZero, copy_8_loop);
10907 
10908     bind(copy_tail);
10909     movl(len, tmp2);
10910 
10911     cmpl(len, 4);
10912     jccb(Assembler::less, copy_bytes);
10913 
10914     movdl(tmp1, Address(src, 0));  // load 4 byte chars
10915     pmovzxbw(tmp1, tmp1);
10916     movq(Address(dst, 0), tmp1);
10917     subptr(len, 4);
10918     addptr(src, 4);
10919     addptr(dst, 8);
10920 
10921     bind(copy_bytes);
10922   }
10923   testl(len, len);
10924   jccb(Assembler::zero, done);
10925   lea(src, Address(src, len, Address::times_1));
10926   lea(dst, Address(dst, len, Address::times_2));
10927   negptr(len);
10928 
10929   // inflate 1 char per iter
10930   bind(copy_chars_loop);
10931   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
10932   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
10933   increment(len);
10934   jcc(Assembler::notZero, copy_chars_loop);
10935 
10936   bind(done);
10937 }
10938 
10939 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
10940   switch (cond) {
10941     // Note some conditions are synonyms for others
10942     case Assembler::zero:         return Assembler::notZero;
10943     case Assembler::notZero:      return Assembler::zero;
10944     case Assembler::less:         return Assembler::greaterEqual;
10945     case Assembler::lessEqual:    return Assembler::greater;
10946     case Assembler::greater:      return Assembler::lessEqual;
10947     case Assembler::greaterEqual: return Assembler::less;
10948     case Assembler::below:        return Assembler::aboveEqual;
10949     case Assembler::belowEqual:   return Assembler::above;
10950     case Assembler::above:        return Assembler::belowEqual;
10951     case Assembler::aboveEqual:   return Assembler::below;
10952     case Assembler::overflow:     return Assembler::noOverflow;
10953     case Assembler::noOverflow:   return Assembler::overflow;
10954     case Assembler::negative:     return Assembler::positive;
10955     case Assembler::positive:     return Assembler::negative;
10956     case Assembler::parity:       return Assembler::noParity;
10957     case Assembler::noParity:     return Assembler::parity;
10958   }
10959   ShouldNotReachHere(); return Assembler::overflow;
10960 }
10961 
10962 SkipIfEqual::SkipIfEqual(
10963     MacroAssembler* masm, const bool* flag_addr, bool value) {
10964   _masm = masm;
10965   _masm->cmp8(ExternalAddress((address)flag_addr), value);
10966   _masm->jcc(Assembler::equal, _label);
10967 }
10968 
10969 SkipIfEqual::~SkipIfEqual() {
10970   _masm->bind(_label);
10971 }
10972 
10973 // 32-bit Windows has its own fast-path implementation
10974 // of get_thread
10975 #if !defined(WIN32) || defined(_LP64)
10976 
10977 // This is simply a call to Thread::current()
10978 void MacroAssembler::get_thread(Register thread) {
10979   if (thread != rax) {
10980     push(rax);
10981   }
10982   LP64_ONLY(push(rdi);)
10983   LP64_ONLY(push(rsi);)
10984   push(rdx);
10985   push(rcx);
10986 #ifdef _LP64
10987   push(r8);
10988   push(r9);
10989   push(r10);
10990   push(r11);
10991 #endif
10992 
10993   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
10994 
10995 #ifdef _LP64
10996   pop(r11);
10997   pop(r10);
10998   pop(r9);
10999   pop(r8);
11000 #endif
11001   pop(rcx);
11002   pop(rdx);
11003   LP64_ONLY(pop(rsi);)
11004   LP64_ONLY(pop(rdi);)
11005   if (thread != rax) {
11006     mov(thread, rax);
11007     pop(rax);
11008   }
11009 }
11010 
11011 #endif