1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  75   // The implementation is only non-empty for the InterpreterMacroAssembler,
  76   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  77   virtual void check_and_handle_popframe(Register java_thread);
  78   virtual void check_and_handle_earlyret(Register java_thread);
  79 
  80   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  81 
  82   // helpers for FPU flag access
  83   // tmp is a temporary register, if none is available use noreg
  84   void save_rax   (Register tmp);
  85   void restore_rax(Register tmp);
  86 
  87  public:
  88   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // Support optimal SSE move instructions.
 160   void movflt(XMMRegister dst, XMMRegister src) {
 161     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 162     else                       { movss (dst, src); return; }
 163   }
 164   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 165   void movflt(XMMRegister dst, AddressLiteral src);
 166   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 167 
 168   void movdbl(XMMRegister dst, XMMRegister src) {
 169     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 170     else                       { movsd (dst, src); return; }
 171   }
 172 
 173   void movdbl(XMMRegister dst, AddressLiteral src);
 174 
 175   void movdbl(XMMRegister dst, Address src) {
 176     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 177     else                         { movlpd(dst, src); return; }
 178   }
 179   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 180 
 181   void incrementl(AddressLiteral dst);
 182   void incrementl(ArrayAddress dst);
 183 
 184   void incrementq(AddressLiteral dst);
 185 
 186   // Alignment
 187   void align(int modulus);
 188   void align(int modulus, int target);
 189 
 190   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 191   void fat_nop();
 192 
 193   // Stack frame creation/removal
 194   void enter();
 195   void leave();
 196 
 197   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 198   // The pointer will be loaded into the thread register.
 199   void get_thread(Register thread);
 200 
 201 
 202   // Support for VM calls
 203   //
 204   // It is imperative that all calls into the VM are handled via the call_VM macros.
 205   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 206   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 207 
 208 
 209   void call_VM(Register oop_result,
 210                address entry_point,
 211                bool check_exceptions = true);
 212   void call_VM(Register oop_result,
 213                address entry_point,
 214                Register arg_1,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1, Register arg_2,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2, Register arg_3,
 223                bool check_exceptions = true);
 224 
 225   // Overloadings with last_Java_sp
 226   void call_VM(Register oop_result,
 227                Register last_java_sp,
 228                address entry_point,
 229                int number_of_arguments = 0,
 230                bool check_exceptions = true);
 231   void call_VM(Register oop_result,
 232                Register last_java_sp,
 233                address entry_point,
 234                Register arg_1, bool
 235                check_exceptions = true);
 236   void call_VM(Register oop_result,
 237                Register last_java_sp,
 238                address entry_point,
 239                Register arg_1, Register arg_2,
 240                bool check_exceptions = true);
 241   void call_VM(Register oop_result,
 242                Register last_java_sp,
 243                address entry_point,
 244                Register arg_1, Register arg_2, Register arg_3,
 245                bool check_exceptions = true);
 246 
 247   void get_vm_result  (Register oop_result, Register thread);
 248   void get_vm_result_2(Register metadata_result, Register thread);
 249 
 250   // These always tightly bind to MacroAssembler::call_VM_base
 251   // bypassing the virtual implementation
 252   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 253   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 254   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 255   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 257 
 258   void call_VM_leaf(address entry_point,
 259                     int number_of_arguments = 0);
 260   void call_VM_leaf(address entry_point,
 261                     Register arg_1);
 262   void call_VM_leaf(address entry_point,
 263                     Register arg_1, Register arg_2);
 264   void call_VM_leaf(address entry_point,
 265                     Register arg_1, Register arg_2, Register arg_3);
 266 
 267   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 268   // bypassing the virtual implementation
 269   void super_call_VM_leaf(address entry_point);
 270   void super_call_VM_leaf(address entry_point, Register arg_1);
 271   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 272   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 273   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 274 
 275   // last Java Frame (fills frame anchor)
 276   void set_last_Java_frame(Register thread,
 277                            Register last_java_sp,
 278                            Register last_java_fp,
 279                            address last_java_pc);
 280 
 281   // thread in the default location (r15_thread on 64bit)
 282   void set_last_Java_frame(Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
 287 
 288   // thread in the default location (r15_thread on 64bit)
 289   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
 290 
 291   // Stores
 292   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 293   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 294 
 295 #if INCLUDE_ALL_GCS
 296 
 297   void g1_write_barrier_pre(Register obj,
 298                             Register pre_val,
 299                             Register thread,
 300                             Register tmp,
 301                             bool tosca_live,
 302                             bool expand_call);
 303 
 304   void g1_write_barrier_post(Register store_addr,
 305                              Register new_val,
 306                              Register thread,
 307                              Register tmp,
 308                              Register tmp2);
 309 
 310 #endif // INCLUDE_ALL_GCS
 311 
 312   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 313   void c2bool(Register x);
 314 
 315   // C++ bool manipulation
 316 
 317   void movbool(Register dst, Address src);
 318   void movbool(Address dst, bool boolconst);
 319   void movbool(Address dst, Register src);
 320   void testbool(Register dst);
 321 
 322   // oop manipulations
 323   void load_klass(Register dst, Register src);
 324   void store_klass(Register dst, Register src);
 325 
 326   void load_heap_oop(Register dst, Address src);
 327   void load_heap_oop_not_null(Register dst, Address src);
 328   void store_heap_oop(Address dst, Register src);
 329   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 330 
 331   // Used for storing NULL. All other oop constants should be
 332   // stored using routines that take a jobject.
 333   void store_heap_oop_null(Address dst);
 334 
 335   void load_prototype_header(Register dst, Register src);
 336 
 337 #ifdef _LP64
 338   void store_klass_gap(Register dst, Register src);
 339 
 340   // This dummy is to prevent a call to store_heap_oop from
 341   // converting a zero (like NULL) into a Register by giving
 342   // the compiler two choices it can't resolve
 343 
 344   void store_heap_oop(Address dst, void* dummy);
 345 
 346   void encode_heap_oop(Register r);
 347   void decode_heap_oop(Register r);
 348   void encode_heap_oop_not_null(Register r);
 349   void decode_heap_oop_not_null(Register r);
 350   void encode_heap_oop_not_null(Register dst, Register src);
 351   void decode_heap_oop_not_null(Register dst, Register src);
 352 
 353   void set_narrow_oop(Register dst, jobject obj);
 354   void set_narrow_oop(Address dst, jobject obj);
 355   void cmp_narrow_oop(Register dst, jobject obj);
 356   void cmp_narrow_oop(Address dst, jobject obj);
 357 
 358   void encode_klass_not_null(Register r);
 359   void decode_klass_not_null(Register r);
 360   void encode_klass_not_null(Register dst, Register src);
 361   void decode_klass_not_null(Register dst, Register src);
 362   void set_narrow_klass(Register dst, Klass* k);
 363   void set_narrow_klass(Address dst, Klass* k);
 364   void cmp_narrow_klass(Register dst, Klass* k);
 365   void cmp_narrow_klass(Address dst, Klass* k);
 366 
 367   // Returns the byte size of the instructions generated by decode_klass_not_null()
 368   // when compressed klass pointers are being used.
 369   static int instr_size_for_decode_klass_not_null();
 370 
 371   // if heap base register is used - reinit it with the correct value
 372   void reinit_heapbase();
 373 
 374   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 375 
 376 #endif // _LP64
 377 
 378   // Int division/remainder for Java
 379   // (as idivl, but checks for special case as described in JVM spec.)
 380   // returns idivl instruction offset for implicit exception handling
 381   int corrected_idivl(Register reg);
 382 
 383   // Long division/remainder for Java
 384   // (as idivq, but checks for special case as described in JVM spec.)
 385   // returns idivq instruction offset for implicit exception handling
 386   int corrected_idivq(Register reg);
 387 
 388   void int3();
 389 
 390   // Long operation macros for a 32bit cpu
 391   // Long negation for Java
 392   void lneg(Register hi, Register lo);
 393 
 394   // Long multiplication for Java
 395   // (destroys contents of eax, ebx, ecx and edx)
 396   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 397 
 398   // Long shifts for Java
 399   // (semantics as described in JVM spec.)
 400   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 401   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 402 
 403   // Long compare for Java
 404   // (semantics as described in JVM spec.)
 405   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 406 
 407 
 408   // misc
 409 
 410   // Sign extension
 411   void sign_extend_short(Register reg);
 412   void sign_extend_byte(Register reg);
 413 
 414   // Division by power of 2, rounding towards 0
 415   void division_with_shift(Register reg, int shift_value);
 416 
 417   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 418   //
 419   // CF (corresponds to C0) if x < y
 420   // PF (corresponds to C2) if unordered
 421   // ZF (corresponds to C3) if x = y
 422   //
 423   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 424   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 425   void fcmp(Register tmp);
 426   // Variant of the above which allows y to be further down the stack
 427   // and which only pops x and y if specified. If pop_right is
 428   // specified then pop_left must also be specified.
 429   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 430 
 431   // Floating-point comparison for Java
 432   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 433   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 434   // (semantics as described in JVM spec.)
 435   void fcmp2int(Register dst, bool unordered_is_less);
 436   // Variant of the above which allows y to be further down the stack
 437   // and which only pops x and y if specified. If pop_right is
 438   // specified then pop_left must also be specified.
 439   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 440 
 441   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 442   // tmp is a temporary register, if none is available use noreg
 443   void fremr(Register tmp);
 444 
 445 
 446   // same as fcmp2int, but using SSE2
 447   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 448   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 449 
 450   void mathfunc(address runtime_entry);
 451 
 452   // branch to L if FPU flag C2 is set/not set
 453   // tmp is a temporary register, if none is available use noreg
 454   void jC2 (Register tmp, Label& L);
 455   void jnC2(Register tmp, Label& L);
 456 
 457   // Pop ST (ffree & fincstp combined)
 458   void fpop();
 459 
 460   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 461   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 462   void load_float(Address src);
 463 
 464   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 465   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 466   void store_float(Address dst);
 467 
 468   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 469   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 470   void load_double(Address src);
 471 
 472   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 473   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 474   void store_double(Address dst);
 475 
 476   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 477   void push_fTOS();
 478 
 479   // pops double TOS element from CPU stack and pushes on FPU stack
 480   void pop_fTOS();
 481 
 482   void empty_FPU_stack();
 483 
 484   void push_IU_state();
 485   void pop_IU_state();
 486 
 487   void push_FPU_state();
 488   void pop_FPU_state();
 489 
 490   void push_CPU_state();
 491   void pop_CPU_state();
 492 
 493   // Round up to a power of two
 494   void round_to(Register reg, int modulus);
 495 
 496   // Callee saved registers handling
 497   void push_callee_saved_registers();
 498   void pop_callee_saved_registers();
 499 
 500   // allocation
 501   void eden_allocate(
 502     Register obj,                      // result: pointer to object after successful allocation
 503     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 504     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 505     Register t1,                       // temp register
 506     Label&   slow_case                 // continuation point if fast allocation fails
 507   );
 508   void tlab_allocate(
 509     Register obj,                      // result: pointer to object after successful allocation
 510     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 511     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 512     Register t1,                       // temp register
 513     Register t2,                       // temp register
 514     Label&   slow_case                 // continuation point if fast allocation fails
 515   );
 516   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 517   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 518 
 519   void incr_allocated_bytes(Register thread,
 520                             Register var_size_in_bytes, int con_size_in_bytes,
 521                             Register t1 = noreg);
 522 
 523   // interface method calling
 524   void lookup_interface_method(Register recv_klass,
 525                                Register intf_klass,
 526                                RegisterOrConstant itable_index,
 527                                Register method_result,
 528                                Register scan_temp,
 529                                Label& no_such_interface);
 530 
 531   // virtual method calling
 532   void lookup_virtual_method(Register recv_klass,
 533                              RegisterOrConstant vtable_index,
 534                              Register method_result);
 535 
 536   // Test sub_klass against super_klass, with fast and slow paths.
 537 
 538   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 539   // One of the three labels can be NULL, meaning take the fall-through.
 540   // If super_check_offset is -1, the value is loaded up from super_klass.
 541   // No registers are killed, except temp_reg.
 542   void check_klass_subtype_fast_path(Register sub_klass,
 543                                      Register super_klass,
 544                                      Register temp_reg,
 545                                      Label* L_success,
 546                                      Label* L_failure,
 547                                      Label* L_slow_path,
 548                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 549 
 550   // The rest of the type check; must be wired to a corresponding fast path.
 551   // It does not repeat the fast path logic, so don't use it standalone.
 552   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 553   // Updates the sub's secondary super cache as necessary.
 554   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 555   void check_klass_subtype_slow_path(Register sub_klass,
 556                                      Register super_klass,
 557                                      Register temp_reg,
 558                                      Register temp2_reg,
 559                                      Label* L_success,
 560                                      Label* L_failure,
 561                                      bool set_cond_codes = false);
 562 
 563   // Simplified, combined version, good for typical uses.
 564   // Falls through on failure.
 565   void check_klass_subtype(Register sub_klass,
 566                            Register super_klass,
 567                            Register temp_reg,
 568                            Label& L_success);
 569 
 570   // method handles (JSR 292)
 571   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 572 
 573   //----
 574   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 575 
 576   // Debugging
 577 
 578   // only if +VerifyOops
 579   // TODO: Make these macros with file and line like sparc version!
 580   void verify_oop(Register reg, const char* s = "broken oop");
 581   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 582 
 583   // TODO: verify method and klass metadata (compare against vptr?)
 584   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 585   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 586 
 587 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 588 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 589 
 590   // only if +VerifyFPU
 591   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 592 
 593   // Verify or restore cpu control state after JNI call
 594   void restore_cpu_control_state_after_jni();
 595 
 596   // prints msg, dumps registers and stops execution
 597   void stop(const char* msg);
 598 
 599   // prints msg and continues
 600   void warn(const char* msg);
 601 
 602   // dumps registers and other state
 603   void print_state();
 604 
 605   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 606   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 607   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 608   static void print_state64(int64_t pc, int64_t regs[]);
 609 
 610   void os_breakpoint();
 611 
 612   void untested()                                { stop("untested"); }
 613 
 614   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 615 
 616   void should_not_reach_here()                   { stop("should not reach here"); }
 617 
 618   void print_CPU_state();
 619 
 620   // Stack overflow checking
 621   void bang_stack_with_offset(int offset) {
 622     // stack grows down, caller passes positive offset
 623     assert(offset > 0, "must bang with negative offset");
 624     movl(Address(rsp, (-offset)), rax);
 625   }
 626 
 627   // Writes to stack successive pages until offset reached to check for
 628   // stack overflow + shadow pages.  Also, clobbers tmp
 629   void bang_stack_size(Register size, Register tmp);
 630 
 631   // Check for reserved stack access in method being exited (for JIT)
 632   void reserved_stack_check();
 633 
 634   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 635                                                 Register tmp,
 636                                                 int offset);
 637 
 638   // Support for serializing memory accesses between threads
 639   void serialize_memory(Register thread, Register tmp);
 640 
 641   void verify_tlab();
 642 
 643   // Biased locking support
 644   // lock_reg and obj_reg must be loaded up with the appropriate values.
 645   // swap_reg must be rax, and is killed.
 646   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 647   // be killed; if not supplied, push/pop will be used internally to
 648   // allocate a temporary (inefficient, avoid if possible).
 649   // Optional slow case is for implementations (interpreter and C1) which branch to
 650   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 651   // Returns offset of first potentially-faulting instruction for null
 652   // check info (currently consumed only by C1). If
 653   // swap_reg_contains_mark is true then returns -1 as it is assumed
 654   // the calling code has already passed any potential faults.
 655   int biased_locking_enter(Register lock_reg, Register obj_reg,
 656                            Register swap_reg, Register tmp_reg,
 657                            bool swap_reg_contains_mark,
 658                            Label& done, Label* slow_case = NULL,
 659                            BiasedLockingCounters* counters = NULL);
 660   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 661 #ifdef COMPILER2
 662   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 663   // See full desription in macroAssembler_x86.cpp.
 664   void fast_lock(Register obj, Register box, Register tmp,
 665                  Register scr, Register cx1, Register cx2,
 666                  BiasedLockingCounters* counters,
 667                  RTMLockingCounters* rtm_counters,
 668                  RTMLockingCounters* stack_rtm_counters,
 669                  Metadata* method_data,
 670                  bool use_rtm, bool profile_rtm);
 671   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 672 #if INCLUDE_RTM_OPT
 673   void rtm_counters_update(Register abort_status, Register rtm_counters);
 674   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 675   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 676                                    RTMLockingCounters* rtm_counters,
 677                                    Metadata* method_data);
 678   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 679                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 680   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 681   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 682   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 683                          Register retry_on_abort_count,
 684                          RTMLockingCounters* stack_rtm_counters,
 685                          Metadata* method_data, bool profile_rtm,
 686                          Label& DONE_LABEL, Label& IsInflated);
 687   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 688                             Register scr, Register retry_on_busy_count,
 689                             Register retry_on_abort_count,
 690                             RTMLockingCounters* rtm_counters,
 691                             Metadata* method_data, bool profile_rtm,
 692                             Label& DONE_LABEL);
 693 #endif
 694 #endif
 695 
 696   Condition negate_condition(Condition cond);
 697 
 698   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 699   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 700   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 701   // here in MacroAssembler. The major exception to this rule is call
 702 
 703   // Arithmetics
 704 
 705 
 706   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 707   void addptr(Address dst, Register src);
 708 
 709   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 710   void addptr(Register dst, int32_t src);
 711   void addptr(Register dst, Register src);
 712   void addptr(Register dst, RegisterOrConstant src) {
 713     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 714     else                   addptr(dst,       src.as_register());
 715   }
 716 
 717   void andptr(Register dst, int32_t src);
 718   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 719 
 720   void cmp8(AddressLiteral src1, int imm);
 721 
 722   // renamed to drag out the casting of address to int32_t/intptr_t
 723   void cmp32(Register src1, int32_t imm);
 724 
 725   void cmp32(AddressLiteral src1, int32_t imm);
 726   // compare reg - mem, or reg - &mem
 727   void cmp32(Register src1, AddressLiteral src2);
 728 
 729   void cmp32(Register src1, Address src2);
 730 
 731 #ifndef _LP64
 732   void cmpklass(Address dst, Metadata* obj);
 733   void cmpklass(Register dst, Metadata* obj);
 734   void cmpoop(Address dst, jobject obj);
 735   void cmpoop(Register dst, jobject obj);
 736 #endif // _LP64
 737 
 738   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 739   void cmpptr(Address src1, AddressLiteral src2);
 740 
 741   void cmpptr(Register src1, AddressLiteral src2);
 742 
 743   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 744   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 745   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 746 
 747   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 748   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 749 
 750   // cmp64 to avoild hiding cmpq
 751   void cmp64(Register src1, AddressLiteral src);
 752 
 753   void cmpxchgptr(Register reg, Address adr);
 754 
 755   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 756 
 757 
 758   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 759   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 760 
 761 
 762   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 763 
 764   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 765 
 766   void shlptr(Register dst, int32_t shift);
 767   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 768 
 769   void shrptr(Register dst, int32_t shift);
 770   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 771 
 772   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 773   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 774 
 775   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 776 
 777   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 778   void subptr(Register dst, int32_t src);
 779   // Force generation of a 4 byte immediate value even if it fits into 8bit
 780   void subptr_imm32(Register dst, int32_t src);
 781   void subptr(Register dst, Register src);
 782   void subptr(Register dst, RegisterOrConstant src) {
 783     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 784     else                   subptr(dst,       src.as_register());
 785   }
 786 
 787   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 788   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 789 
 790   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 791   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 792 
 793   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 794 
 795 
 796 
 797   // Helper functions for statistics gathering.
 798   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 799   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 800   // Unconditional atomic increment.
 801   void atomic_incl(Address counter_addr);
 802   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 803 #ifdef _LP64
 804   void atomic_incq(Address counter_addr);
 805   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 806 #endif
 807   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 808   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 809 
 810   void lea(Register dst, AddressLiteral adr);
 811   void lea(Address dst, AddressLiteral adr);
 812   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 813 
 814   void leal32(Register dst, Address src) { leal(dst, src); }
 815 
 816   // Import other testl() methods from the parent class or else
 817   // they will be hidden by the following overriding declaration.
 818   using Assembler::testl;
 819   void testl(Register dst, AddressLiteral src);
 820 
 821   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 822   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 823   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 824   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 825 
 826   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 827   void testptr(Register src1, Register src2);
 828 
 829   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 830   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 831 
 832   // Calls
 833 
 834   void call(Label& L, relocInfo::relocType rtype);
 835   void call(Register entry);
 836 
 837   // NOTE: this call tranfers to the effective address of entry NOT
 838   // the address contained by entry. This is because this is more natural
 839   // for jumps/calls.
 840   void call(AddressLiteral entry);
 841 
 842   // Emit the CompiledIC call idiom
 843   void ic_call(address entry, jint method_index = 0);
 844 
 845   // Jumps
 846 
 847   // NOTE: these jumps tranfer to the effective address of dst NOT
 848   // the address contained by dst. This is because this is more natural
 849   // for jumps/calls.
 850   void jump(AddressLiteral dst);
 851   void jump_cc(Condition cc, AddressLiteral dst);
 852 
 853   // 32bit can do a case table jump in one instruction but we no longer allow the base
 854   // to be installed in the Address class. This jump will tranfers to the address
 855   // contained in the location described by entry (not the address of entry)
 856   void jump(ArrayAddress entry);
 857 
 858   // Floating
 859 
 860   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 861   void andpd(XMMRegister dst, AddressLiteral src);
 862   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 863 
 864   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 865   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 866   void andps(XMMRegister dst, AddressLiteral src);
 867 
 868   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 869   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 870   void comiss(XMMRegister dst, AddressLiteral src);
 871 
 872   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 873   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 874   void comisd(XMMRegister dst, AddressLiteral src);
 875 
 876   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 877   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 878 
 879   void fldcw(Address src) { Assembler::fldcw(src); }
 880   void fldcw(AddressLiteral src);
 881 
 882   void fld_s(int index)   { Assembler::fld_s(index); }
 883   void fld_s(Address src) { Assembler::fld_s(src); }
 884   void fld_s(AddressLiteral src);
 885 
 886   void fld_d(Address src) { Assembler::fld_d(src); }
 887   void fld_d(AddressLiteral src);
 888 
 889   void fld_x(Address src) { Assembler::fld_x(src); }
 890   void fld_x(AddressLiteral src);
 891 
 892   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 893   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 894 
 895   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 896   void ldmxcsr(AddressLiteral src);
 897 
 898   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 899                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 900                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 901                  bool multi_block);
 902 
 903 #ifdef _LP64
 904   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 905                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 906                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 907                    bool multi_block, XMMRegister shuf_mask);
 908 #else
 909   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 910                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 911                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 912                    bool multi_block);
 913 #endif
 914 
 915   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 916                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 917                 Register rax, Register rcx, Register rdx, Register tmp);
 918 
 919 #ifdef _LP64
 920   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 921                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 922                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 923 
 924   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 925                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 926                   Register rax, Register rcx, Register rdx, Register r11);
 927 
 928   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
 929                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
 930                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
 931 
 932   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 933                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 934                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
 935                 Register tmp3, Register tmp4);
 936 
 937   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 938                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 939                 Register rax, Register rcx, Register rdx, Register tmp1,
 940                 Register tmp2, Register tmp3, Register tmp4);
 941   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 942                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 943                 Register rax, Register rcx, Register rdx, Register tmp1,
 944                 Register tmp2, Register tmp3, Register tmp4);
 945 #else
 946   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 947                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 948                 Register rax, Register rcx, Register rdx, Register tmp1);
 949 
 950   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 951                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 952                 Register rax, Register rcx, Register rdx, Register tmp);
 953 
 954   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
 955                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
 956                 Register rdx, Register tmp);
 957 
 958   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 959                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 960                 Register rax, Register rbx, Register rdx);
 961 
 962   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 963                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 964                 Register rax, Register rcx, Register rdx, Register tmp);
 965 
 966   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
 967                         Register edx, Register ebx, Register esi, Register edi,
 968                         Register ebp, Register esp);
 969 
 970   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
 971                          Register esi, Register edi, Register ebp, Register esp);
 972 
 973   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
 974                         Register edx, Register ebx, Register esi, Register edi,
 975                         Register ebp, Register esp);
 976 
 977   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 978                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 979                 Register rax, Register rcx, Register rdx, Register tmp);
 980 #endif
 981 
 982   void increase_precision();
 983   void restore_precision();
 984 
 985 private:
 986 
 987   // these are private because users should be doing movflt/movdbl
 988 
 989   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
 990   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
 991   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
 992   void movss(XMMRegister dst, AddressLiteral src);
 993 
 994   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
 995   void movlpd(XMMRegister dst, AddressLiteral src);
 996 
 997 public:
 998 
 999   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1000   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1001   void addsd(XMMRegister dst, AddressLiteral src);
1002 
1003   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1004   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1005   void addss(XMMRegister dst, AddressLiteral src);
1006 
1007   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1008   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1009   void addpd(XMMRegister dst, AddressLiteral src);
1010 
1011   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1012   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1013   void divsd(XMMRegister dst, AddressLiteral src);
1014 
1015   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1016   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1017   void divss(XMMRegister dst, AddressLiteral src);
1018 
1019   // Move Unaligned Double Quadword
1020   void movdqu(Address     dst, XMMRegister src);
1021   void movdqu(XMMRegister dst, Address src);
1022   void movdqu(XMMRegister dst, XMMRegister src);
1023   void movdqu(XMMRegister dst, AddressLiteral src);
1024   // AVX Unaligned forms
1025   void vmovdqu(Address     dst, XMMRegister src);
1026   void vmovdqu(XMMRegister dst, Address src);
1027   void vmovdqu(XMMRegister dst, XMMRegister src);
1028   void vmovdqu(XMMRegister dst, AddressLiteral src);
1029 
1030   // Move Aligned Double Quadword
1031   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1032   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1033   void movdqa(XMMRegister dst, AddressLiteral src);
1034 
1035   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1036   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1037   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1038   void movsd(XMMRegister dst, AddressLiteral src);
1039 
1040   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1041   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1042   void mulpd(XMMRegister dst, AddressLiteral src);
1043 
1044   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1045   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1046   void mulsd(XMMRegister dst, AddressLiteral src);
1047 
1048   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1049   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1050   void mulss(XMMRegister dst, AddressLiteral src);
1051 
1052   // Carry-Less Multiplication Quadword
1053   void pclmulldq(XMMRegister dst, XMMRegister src) {
1054     // 0x00 - multiply lower 64 bits [0:63]
1055     Assembler::pclmulqdq(dst, src, 0x00);
1056   }
1057   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1058     // 0x11 - multiply upper 64 bits [64:127]
1059     Assembler::pclmulqdq(dst, src, 0x11);
1060   }
1061 
1062   void pcmpeqb(XMMRegister dst, XMMRegister src);
1063   void pcmpeqw(XMMRegister dst, XMMRegister src);
1064 
1065   void pcmpestri(XMMRegister dst, Address src, int imm8);
1066   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1067 
1068   void pmovzxbw(XMMRegister dst, XMMRegister src);
1069   void pmovzxbw(XMMRegister dst, Address src);
1070 
1071   void pmovmskb(Register dst, XMMRegister src);
1072 
1073   void ptest(XMMRegister dst, XMMRegister src);
1074 
1075   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1076   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1077   void sqrtsd(XMMRegister dst, AddressLiteral src);
1078 
1079   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1080   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1081   void sqrtss(XMMRegister dst, AddressLiteral src);
1082 
1083   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1084   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1085   void subsd(XMMRegister dst, AddressLiteral src);
1086 
1087   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1088   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1089   void subss(XMMRegister dst, AddressLiteral src);
1090 
1091   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1092   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1093   void ucomiss(XMMRegister dst, AddressLiteral src);
1094 
1095   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1096   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1097   void ucomisd(XMMRegister dst, AddressLiteral src);
1098 
1099   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1100   void xorpd(XMMRegister dst, XMMRegister src);
1101   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1102   void xorpd(XMMRegister dst, AddressLiteral src);
1103 
1104   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1105   void xorps(XMMRegister dst, XMMRegister src);
1106   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1107   void xorps(XMMRegister dst, AddressLiteral src);
1108 
1109   // Shuffle Bytes
1110   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1111   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1112   void pshufb(XMMRegister dst, AddressLiteral src);
1113   // AVX 3-operands instructions
1114 
1115   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1116   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1117   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1118 
1119   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1120   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1121   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1122 
1123   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1124   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1125 
1126   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1127   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1128 
1129   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1130   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1131 
1132   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1133 
1134   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1135   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1136 
1137   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1138   void vpmovmskb(Register dst, XMMRegister src);
1139 
1140   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1141   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1142 
1143   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1144   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1145 
1146   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1147   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1148 
1149   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1150   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1151 
1152   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1153   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1154 
1155   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1156   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1157 
1158   void vptest(XMMRegister dst, XMMRegister src);
1159 
1160   void punpcklbw(XMMRegister dst, XMMRegister src);
1161   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1162 
1163   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1164   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1165 
1166   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1167   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1168   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1169 
1170   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1171   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1172   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1173 
1174   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1175   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1176   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1177 
1178   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1179   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1180   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1181 
1182   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1183   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1184   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1185 
1186   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1187   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1188   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1189 
1190   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1191   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1192   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1193 
1194   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1195   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1196   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1197 
1198   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1199   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1200 
1201   // AVX Vector instructions
1202 
1203   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1204   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1205   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1206 
1207   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1208   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1209   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1210 
1211   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1212     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1213       Assembler::vpxor(dst, nds, src, vector_len);
1214     else
1215       Assembler::vxorpd(dst, nds, src, vector_len);
1216   }
1217   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1218     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1219       Assembler::vpxor(dst, nds, src, vector_len);
1220     else
1221       Assembler::vxorpd(dst, nds, src, vector_len);
1222   }
1223 
1224   // Simple version for AVX2 256bit vectors
1225   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1226   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1227 
1228   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1229     if (UseAVX > 2) {
1230       Assembler::vinserti32x4(dst, dst, src, imm8);
1231     } else if (UseAVX > 1) {
1232       // vinserti128 is available only in AVX2
1233       Assembler::vinserti128(dst, nds, src, imm8);
1234     } else {
1235       Assembler::vinsertf128(dst, nds, src, imm8);
1236     }
1237   }
1238 
1239   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1240     if (UseAVX > 2) {
1241       Assembler::vinserti32x4(dst, dst, src, imm8);
1242     } else if (UseAVX > 1) {
1243       // vinserti128 is available only in AVX2
1244       Assembler::vinserti128(dst, nds, src, imm8);
1245     } else {
1246       Assembler::vinsertf128(dst, nds, src, imm8);
1247     }
1248   }
1249 
1250   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1251     if (UseAVX > 2) {
1252       Assembler::vextracti32x4(dst, src, imm8);
1253     } else if (UseAVX > 1) {
1254       // vextracti128 is available only in AVX2
1255       Assembler::vextracti128(dst, src, imm8);
1256     } else {
1257       Assembler::vextractf128(dst, src, imm8);
1258     }
1259   }
1260 
1261   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1262     if (UseAVX > 2) {
1263       Assembler::vextracti32x4(dst, src, imm8);
1264     } else if (UseAVX > 1) {
1265       // vextracti128 is available only in AVX2
1266       Assembler::vextracti128(dst, src, imm8);
1267     } else {
1268       Assembler::vextractf128(dst, src, imm8);
1269     }
1270   }
1271 
1272   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1273   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1274     vinserti128(dst, dst, src, 1);
1275   }
1276   void vinserti128_high(XMMRegister dst, Address src) {
1277     vinserti128(dst, dst, src, 1);
1278   }
1279   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1280     vextracti128(dst, src, 1);
1281   }
1282   void vextracti128_high(Address dst, XMMRegister src) {
1283     vextracti128(dst, src, 1);
1284   }
1285 
1286   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1287     if (UseAVX > 2) {
1288       Assembler::vinsertf32x4(dst, dst, src, 1);
1289     } else {
1290       Assembler::vinsertf128(dst, dst, src, 1);
1291     }
1292   }
1293 
1294   void vinsertf128_high(XMMRegister dst, Address src) {
1295     if (UseAVX > 2) {
1296       Assembler::vinsertf32x4(dst, dst, src, 1);
1297     } else {
1298       Assembler::vinsertf128(dst, dst, src, 1);
1299     }
1300   }
1301 
1302   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1303     if (UseAVX > 2) {
1304       Assembler::vextractf32x4(dst, src, 1);
1305     } else {
1306       Assembler::vextractf128(dst, src, 1);
1307     }
1308   }
1309 
1310   void vextractf128_high(Address dst, XMMRegister src) {
1311     if (UseAVX > 2) {
1312       Assembler::vextractf32x4(dst, src, 1);
1313     } else {
1314       Assembler::vextractf128(dst, src, 1);
1315     }
1316   }
1317 
1318   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1319   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1320     Assembler::vinserti64x4(dst, dst, src, 1);
1321   }
1322   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1323     Assembler::vinsertf64x4(dst, dst, src, 1);
1324   }
1325   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1326     Assembler::vextracti64x4(dst, src, 1);
1327   }
1328   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1329     Assembler::vextractf64x4(dst, src, 1);
1330   }
1331   void vextractf64x4_high(Address dst, XMMRegister src) {
1332     Assembler::vextractf64x4(dst, src, 1);
1333   }
1334   void vinsertf64x4_high(XMMRegister dst, Address src) {
1335     Assembler::vinsertf64x4(dst, dst, src, 1);
1336   }
1337 
1338   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1339   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1340     vinserti128(dst, dst, src, 0);
1341   }
1342   void vinserti128_low(XMMRegister dst, Address src) {
1343     vinserti128(dst, dst, src, 0);
1344   }
1345   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1346     vextracti128(dst, src, 0);
1347   }
1348   void vextracti128_low(Address dst, XMMRegister src) {
1349     vextracti128(dst, src, 0);
1350   }
1351 
1352   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1353     if (UseAVX > 2) {
1354       Assembler::vinsertf32x4(dst, dst, src, 0);
1355     } else {
1356       Assembler::vinsertf128(dst, dst, src, 0);
1357     }
1358   }
1359 
1360   void vinsertf128_low(XMMRegister dst, Address src) {
1361     if (UseAVX > 2) {
1362       Assembler::vinsertf32x4(dst, dst, src, 0);
1363     } else {
1364       Assembler::vinsertf128(dst, dst, src, 0);
1365     }
1366   }
1367 
1368   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1369     if (UseAVX > 2) {
1370       Assembler::vextractf32x4(dst, src, 0);
1371     } else {
1372       Assembler::vextractf128(dst, src, 0);
1373     }
1374   }
1375 
1376   void vextractf128_low(Address dst, XMMRegister src) {
1377     if (UseAVX > 2) {
1378       Assembler::vextractf32x4(dst, src, 0);
1379     } else {
1380       Assembler::vextractf128(dst, src, 0);
1381     }
1382   }
1383 
1384   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1385   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1386     Assembler::vinserti64x4(dst, dst, src, 0);
1387   }
1388   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1389     Assembler::vinsertf64x4(dst, dst, src, 0);
1390   }
1391   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1392     Assembler::vextracti64x4(dst, src, 0);
1393   }
1394   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1395     Assembler::vextractf64x4(dst, src, 0);
1396   }
1397   void vextractf64x4_low(Address dst, XMMRegister src) {
1398     Assembler::vextractf64x4(dst, src, 0);
1399   }
1400   void vinsertf64x4_low(XMMRegister dst, Address src) {
1401     Assembler::vinsertf64x4(dst, dst, src, 0);
1402   }
1403 
1404   // Carry-Less Multiplication Quadword
1405   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1406     // 0x00 - multiply lower 64 bits [0:63]
1407     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1408   }
1409   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1410     // 0x11 - multiply upper 64 bits [64:127]
1411     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1412   }
1413 
1414   // Data
1415 
1416   void cmov32( Condition cc, Register dst, Address  src);
1417   void cmov32( Condition cc, Register dst, Register src);
1418 
1419   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1420 
1421   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1422   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1423 
1424   void movoop(Register dst, jobject obj);
1425   void movoop(Address dst, jobject obj);
1426 
1427   void mov_metadata(Register dst, Metadata* obj);
1428   void mov_metadata(Address dst, Metadata* obj);
1429 
1430   void movptr(ArrayAddress dst, Register src);
1431   // can this do an lea?
1432   void movptr(Register dst, ArrayAddress src);
1433 
1434   void movptr(Register dst, Address src);
1435 
1436 #ifdef _LP64
1437   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1438 #else
1439   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1440 #endif
1441 
1442   void movptr(Register dst, intptr_t src);
1443   void movptr(Register dst, Register src);
1444   void movptr(Address dst, intptr_t src);
1445 
1446   void movptr(Address dst, Register src);
1447 
1448   void movptr(Register dst, RegisterOrConstant src) {
1449     if (src.is_constant()) movptr(dst, src.as_constant());
1450     else                   movptr(dst, src.as_register());
1451   }
1452 
1453 #ifdef _LP64
1454   // Generally the next two are only used for moving NULL
1455   // Although there are situations in initializing the mark word where
1456   // they could be used. They are dangerous.
1457 
1458   // They only exist on LP64 so that int32_t and intptr_t are not the same
1459   // and we have ambiguous declarations.
1460 
1461   void movptr(Address dst, int32_t imm32);
1462   void movptr(Register dst, int32_t imm32);
1463 #endif // _LP64
1464 
1465   // to avoid hiding movl
1466   void mov32(AddressLiteral dst, Register src);
1467   void mov32(Register dst, AddressLiteral src);
1468 
1469   // to avoid hiding movb
1470   void movbyte(ArrayAddress dst, int src);
1471 
1472   // Import other mov() methods from the parent class or else
1473   // they will be hidden by the following overriding declaration.
1474   using Assembler::movdl;
1475   using Assembler::movq;
1476   void movdl(XMMRegister dst, AddressLiteral src);
1477   void movq(XMMRegister dst, AddressLiteral src);
1478 
1479   // Can push value or effective address
1480   void pushptr(AddressLiteral src);
1481 
1482   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1483   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1484 
1485   void pushoop(jobject obj);
1486   void pushklass(Metadata* obj);
1487 
1488   // sign extend as need a l to ptr sized element
1489   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1490   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1491 
1492   // C2 compiled method's prolog code.
1493   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1494 
1495   // clear memory of size 'cnt' qwords, starting at 'base';
1496   // if 'is_large' is set, do not try to produce short loop
1497   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1498 
1499 #ifdef COMPILER2
1500   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1501                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1502 
1503   // IndexOf strings.
1504   // Small strings are loaded through stack if they cross page boundary.
1505   void string_indexof(Register str1, Register str2,
1506                       Register cnt1, Register cnt2,
1507                       int int_cnt2,  Register result,
1508                       XMMRegister vec, Register tmp,
1509                       int ae);
1510 
1511   // IndexOf for constant substrings with size >= 8 elements
1512   // which don't need to be loaded through stack.
1513   void string_indexofC8(Register str1, Register str2,
1514                       Register cnt1, Register cnt2,
1515                       int int_cnt2,  Register result,
1516                       XMMRegister vec, Register tmp,
1517                       int ae);
1518 
1519     // Smallest code: we don't need to load through stack,
1520     // check string tail.
1521 
1522   // helper function for string_compare
1523   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1524                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1525                           Address::ScaleFactor scale2, Register index, int ae);
1526   // Compare strings.
1527   void string_compare(Register str1, Register str2,
1528                       Register cnt1, Register cnt2, Register result,
1529                       XMMRegister vec1, int ae);
1530 
1531   // Search for Non-ASCII character (Negative byte value) in a byte array,
1532   // return true if it has any and false otherwise.
1533   void has_negatives(Register ary1, Register len,
1534                      Register result, Register tmp1,
1535                      XMMRegister vec1, XMMRegister vec2);
1536 
1537   // Compare char[] or byte[] arrays.
1538   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1539                      Register limit, Register result, Register chr,
1540                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1541 
1542 #endif
1543 
1544   // Fill primitive arrays
1545   void generate_fill(BasicType t, bool aligned,
1546                      Register to, Register value, Register count,
1547                      Register rtmp, XMMRegister xtmp);
1548 
1549   void encode_iso_array(Register src, Register dst, Register len,
1550                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1551                         XMMRegister tmp4, Register tmp5, Register result);
1552 
1553 #ifdef _LP64
1554   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1555   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1556                              Register y, Register y_idx, Register z,
1557                              Register carry, Register product,
1558                              Register idx, Register kdx);
1559   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1560                               Register yz_idx, Register idx,
1561                               Register carry, Register product, int offset);
1562   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1563                                     Register carry, Register carry2,
1564                                     Register idx, Register jdx,
1565                                     Register yz_idx1, Register yz_idx2,
1566                                     Register tmp, Register tmp3, Register tmp4);
1567   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1568                                Register yz_idx, Register idx, Register jdx,
1569                                Register carry, Register product,
1570                                Register carry2);
1571   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1572                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1573   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1574                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1575   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1576                             Register tmp2);
1577   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1578                        Register rdxReg, Register raxReg);
1579   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1580   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1581                        Register tmp3, Register tmp4);
1582   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1583                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1584 
1585   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1586                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1587                Register raxReg);
1588   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1589                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1590                Register raxReg);
1591   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1592                            Register result, Register tmp1, Register tmp2,
1593                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1594 #endif
1595 
1596   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1597   void update_byte_crc32(Register crc, Register val, Register table);
1598   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1599   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1600   // Note on a naming convention:
1601   // Prefix w = register only used on a Westmere+ architecture
1602   // Prefix n = register only used on a Nehalem architecture
1603 #ifdef _LP64
1604   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1605                        Register tmp1, Register tmp2, Register tmp3);
1606 #else
1607   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1608                        Register tmp1, Register tmp2, Register tmp3,
1609                        XMMRegister xtmp1, XMMRegister xtmp2);
1610 #endif
1611   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1612                         Register in_out,
1613                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1614                         XMMRegister w_xtmp2,
1615                         Register tmp1,
1616                         Register n_tmp2, Register n_tmp3);
1617   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1618                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1619                        Register tmp1, Register tmp2,
1620                        Register n_tmp3);
1621   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1622                          Register in_out1, Register in_out2, Register in_out3,
1623                          Register tmp1, Register tmp2, Register tmp3,
1624                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1625                          Register tmp4, Register tmp5,
1626                          Register n_tmp6);
1627   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1628                             Register tmp1, Register tmp2, Register tmp3,
1629                             Register tmp4, Register tmp5, Register tmp6,
1630                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1631                             bool is_pclmulqdq_supported);
1632   // Fold 128-bit data chunk
1633   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1634   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1635   // Fold 8-bit data
1636   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1637   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1638 
1639   // Compress char[] array to byte[].
1640   void char_array_compress(Register src, Register dst, Register len,
1641                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1642                            XMMRegister tmp4, Register tmp5, Register result);
1643 
1644   // Inflate byte[] array to char[].
1645   void byte_array_inflate(Register src, Register dst, Register len,
1646                           XMMRegister tmp1, Register tmp2);
1647 
1648 };
1649 
1650 /**
1651  * class SkipIfEqual:
1652  *
1653  * Instantiating this class will result in assembly code being output that will
1654  * jump around any code emitted between the creation of the instance and it's
1655  * automatic destruction at the end of a scope block, depending on the value of
1656  * the flag passed to the constructor, which will be checked at run-time.
1657  */
1658 class SkipIfEqual {
1659  private:
1660   MacroAssembler* _masm;
1661   Label _label;
1662 
1663  public:
1664    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1665    ~SkipIfEqual();
1666 };
1667 
1668 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP