1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/thread.hpp"
  43 #include "utilities/macros.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/g1CollectedHeap.inline.hpp"
  46 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  47 #include "gc/g1/heapRegion.hpp"
  48 #endif // INCLUDE_ALL_GCS
  49 #include "crc32c.h"
  50 #ifdef COMPILER2
  51 #include "opto/intrinsicnode.hpp"
  52 #endif
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) /* nothing */
  56 #define STOP(error) stop(error)
  57 #else
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define STOP(error) block_comment(error); stop(error)
  60 #endif
  61 
  62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 #ifdef ASSERT
  65 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  66 #endif
  67 
  68 static Assembler::Condition reverse[] = {
  69     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  70     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  71     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  72     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  73     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  74     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  75     Assembler::above          /* belowEqual    = 0x6 */ ,
  76     Assembler::belowEqual     /* above         = 0x7 */ ,
  77     Assembler::positive       /* negative      = 0x8 */ ,
  78     Assembler::negative       /* positive      = 0x9 */ ,
  79     Assembler::noParity       /* parity        = 0xa */ ,
  80     Assembler::parity         /* noParity      = 0xb */ ,
  81     Assembler::greaterEqual   /* less          = 0xc */ ,
  82     Assembler::less           /* greaterEqual  = 0xd */ ,
  83     Assembler::greater        /* lessEqual     = 0xe */ ,
  84     Assembler::lessEqual      /* greater       = 0xf, */
  85 
  86 };
  87 
  88 
  89 // Implementation of MacroAssembler
  90 
  91 // First all the versions that have distinct versions depending on 32/64 bit
  92 // Unless the difference is trivial (1 line or so).
  93 
  94 #ifndef _LP64
  95 
  96 // 32bit versions
  97 
  98 Address MacroAssembler::as_Address(AddressLiteral adr) {
  99   return Address(adr.target(), adr.rspec());
 100 }
 101 
 102 Address MacroAssembler::as_Address(ArrayAddress adr) {
 103   return Address::make_array(adr);
 104 }
 105 
 106 void MacroAssembler::call_VM_leaf_base(address entry_point,
 107                                        int number_of_arguments) {
 108   call(RuntimeAddress(entry_point));
 109   increment(rsp, number_of_arguments * wordSize);
 110 }
 111 
 112 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 117   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 125   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 126 }
 127 
 128 void MacroAssembler::extend_sign(Register hi, Register lo) {
 129   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 130   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 131     cdql();
 132   } else {
 133     movl(hi, lo);
 134     sarl(hi, 31);
 135   }
 136 }
 137 
 138 void MacroAssembler::jC2(Register tmp, Label& L) {
 139   // set parity bit if FPU flag C2 is set (via rax)
 140   save_rax(tmp);
 141   fwait(); fnstsw_ax();
 142   sahf();
 143   restore_rax(tmp);
 144   // branch
 145   jcc(Assembler::parity, L);
 146 }
 147 
 148 void MacroAssembler::jnC2(Register tmp, Label& L) {
 149   // set parity bit if FPU flag C2 is set (via rax)
 150   save_rax(tmp);
 151   fwait(); fnstsw_ax();
 152   sahf();
 153   restore_rax(tmp);
 154   // branch
 155   jcc(Assembler::noParity, L);
 156 }
 157 
 158 // 32bit can do a case table jump in one instruction but we no longer allow the base
 159 // to be installed in the Address class
 160 void MacroAssembler::jump(ArrayAddress entry) {
 161   jmp(as_Address(entry));
 162 }
 163 
 164 // Note: y_lo will be destroyed
 165 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 166   // Long compare for Java (semantics as described in JVM spec.)
 167   Label high, low, done;
 168 
 169   cmpl(x_hi, y_hi);
 170   jcc(Assembler::less, low);
 171   jcc(Assembler::greater, high);
 172   // x_hi is the return register
 173   xorl(x_hi, x_hi);
 174   cmpl(x_lo, y_lo);
 175   jcc(Assembler::below, low);
 176   jcc(Assembler::equal, done);
 177 
 178   bind(high);
 179   xorl(x_hi, x_hi);
 180   increment(x_hi);
 181   jmp(done);
 182 
 183   bind(low);
 184   xorl(x_hi, x_hi);
 185   decrementl(x_hi);
 186 
 187   bind(done);
 188 }
 189 
 190 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 191     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 192 }
 193 
 194 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 195   // leal(dst, as_Address(adr));
 196   // see note in movl as to why we must use a move
 197   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 198 }
 199 
 200 void MacroAssembler::leave() {
 201   mov(rsp, rbp);
 202   pop(rbp);
 203 }
 204 
 205 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 206   // Multiplication of two Java long values stored on the stack
 207   // as illustrated below. Result is in rdx:rax.
 208   //
 209   // rsp ---> [  ??  ] \               \
 210   //            ....    | y_rsp_offset  |
 211   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 212   //          [ y_hi ]                  | (in bytes)
 213   //            ....                    |
 214   //          [ x_lo ]                 /
 215   //          [ x_hi ]
 216   //            ....
 217   //
 218   // Basic idea: lo(result) = lo(x_lo * y_lo)
 219   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 220   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 221   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 222   Label quick;
 223   // load x_hi, y_hi and check if quick
 224   // multiplication is possible
 225   movl(rbx, x_hi);
 226   movl(rcx, y_hi);
 227   movl(rax, rbx);
 228   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 229   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 230   // do full multiplication
 231   // 1st step
 232   mull(y_lo);                                    // x_hi * y_lo
 233   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 234   // 2nd step
 235   movl(rax, x_lo);
 236   mull(rcx);                                     // x_lo * y_hi
 237   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 238   // 3rd step
 239   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 240   movl(rax, x_lo);
 241   mull(y_lo);                                    // x_lo * y_lo
 242   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 243 }
 244 
 245 void MacroAssembler::lneg(Register hi, Register lo) {
 246   negl(lo);
 247   adcl(hi, 0);
 248   negl(hi);
 249 }
 250 
 251 void MacroAssembler::lshl(Register hi, Register lo) {
 252   // Java shift left long support (semantics as described in JVM spec., p.305)
 253   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 254   // shift value is in rcx !
 255   assert(hi != rcx, "must not use rcx");
 256   assert(lo != rcx, "must not use rcx");
 257   const Register s = rcx;                        // shift count
 258   const int      n = BitsPerWord;
 259   Label L;
 260   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 261   cmpl(s, n);                                    // if (s < n)
 262   jcc(Assembler::less, L);                       // else (s >= n)
 263   movl(hi, lo);                                  // x := x << n
 264   xorl(lo, lo);
 265   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 266   bind(L);                                       // s (mod n) < n
 267   shldl(hi, lo);                                 // x := x << s
 268   shll(lo);
 269 }
 270 
 271 
 272 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 273   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 274   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 275   assert(hi != rcx, "must not use rcx");
 276   assert(lo != rcx, "must not use rcx");
 277   const Register s = rcx;                        // shift count
 278   const int      n = BitsPerWord;
 279   Label L;
 280   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 281   cmpl(s, n);                                    // if (s < n)
 282   jcc(Assembler::less, L);                       // else (s >= n)
 283   movl(lo, hi);                                  // x := x >> n
 284   if (sign_extension) sarl(hi, 31);
 285   else                xorl(hi, hi);
 286   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 287   bind(L);                                       // s (mod n) < n
 288   shrdl(lo, hi);                                 // x := x >> s
 289   if (sign_extension) sarl(hi);
 290   else                shrl(hi);
 291 }
 292 
 293 void MacroAssembler::movoop(Register dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::movoop(Address dst, jobject obj) {
 298   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 306   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 310   // scratch register is not used,
 311   // it is defined to match parameters of 64-bit version of this method.
 312   if (src.is_lval()) {
 313     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 314   } else {
 315     movl(dst, as_Address(src));
 316   }
 317 }
 318 
 319 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 320   movl(as_Address(dst), src);
 321 }
 322 
 323 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 324   movl(dst, as_Address(src));
 325 }
 326 
 327 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 328 void MacroAssembler::movptr(Address dst, intptr_t src) {
 329   movl(dst, src);
 330 }
 331 
 332 
 333 void MacroAssembler::pop_callee_saved_registers() {
 334   pop(rcx);
 335   pop(rdx);
 336   pop(rdi);
 337   pop(rsi);
 338 }
 339 
 340 void MacroAssembler::pop_fTOS() {
 341   fld_d(Address(rsp, 0));
 342   addl(rsp, 2 * wordSize);
 343 }
 344 
 345 void MacroAssembler::push_callee_saved_registers() {
 346   push(rsi);
 347   push(rdi);
 348   push(rdx);
 349   push(rcx);
 350 }
 351 
 352 void MacroAssembler::push_fTOS() {
 353   subl(rsp, 2 * wordSize);
 354   fstp_d(Address(rsp, 0));
 355 }
 356 
 357 
 358 void MacroAssembler::pushoop(jobject obj) {
 359   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushklass(Metadata* obj) {
 363   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 364 }
 365 
 366 void MacroAssembler::pushptr(AddressLiteral src) {
 367   if (src.is_lval()) {
 368     push_literal32((int32_t)src.target(), src.rspec());
 369   } else {
 370     pushl(as_Address(src));
 371   }
 372 }
 373 
 374 void MacroAssembler::set_word_if_not_zero(Register dst) {
 375   xorl(dst, dst);
 376   set_byte_if_not_zero(dst);
 377 }
 378 
 379 static void pass_arg0(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg1(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg2(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 static void pass_arg3(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 #ifndef PRODUCT
 396 extern "C" void findpc(intptr_t x);
 397 #endif
 398 
 399 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 400   // In order to get locks to work, we need to fake a in_VM state
 401   JavaThread* thread = JavaThread::current();
 402   JavaThreadState saved_state = thread->thread_state();
 403   thread->set_thread_state(_thread_in_vm);
 404   if (ShowMessageBoxOnError) {
 405     JavaThread* thread = JavaThread::current();
 406     JavaThreadState saved_state = thread->thread_state();
 407     thread->set_thread_state(_thread_in_vm);
 408     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 409       ttyLocker ttyl;
 410       BytecodeCounter::print();
 411     }
 412     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 413     // This is the value of eip which points to where verify_oop will return.
 414     if (os::message_box(msg, "Execution stopped, print registers?")) {
 415       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 416       BREAKPOINT;
 417     }
 418   } else {
 419     ttyLocker ttyl;
 420     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 421   }
 422   // Don't assert holding the ttyLock
 423     assert(false, "DEBUG MESSAGE: %s", msg);
 424   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 425 }
 426 
 427 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 428   ttyLocker ttyl;
 429   FlagSetting fs(Debugging, true);
 430   tty->print_cr("eip = 0x%08x", eip);
 431 #ifndef PRODUCT
 432   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 433     tty->cr();
 434     findpc(eip);
 435     tty->cr();
 436   }
 437 #endif
 438 #define PRINT_REG(rax) \
 439   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 440   PRINT_REG(rax);
 441   PRINT_REG(rbx);
 442   PRINT_REG(rcx);
 443   PRINT_REG(rdx);
 444   PRINT_REG(rdi);
 445   PRINT_REG(rsi);
 446   PRINT_REG(rbp);
 447   PRINT_REG(rsp);
 448 #undef PRINT_REG
 449   // Print some words near top of staack.
 450   int* dump_sp = (int*) rsp;
 451   for (int col1 = 0; col1 < 8; col1++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     os::print_location(tty, *dump_sp++);
 454   }
 455   for (int row = 0; row < 16; row++) {
 456     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 457     for (int col = 0; col < 8; col++) {
 458       tty->print(" 0x%08x", *dump_sp++);
 459     }
 460     tty->cr();
 461   }
 462   // Print some instructions around pc:
 463   Disassembler::decode((address)eip-64, (address)eip);
 464   tty->print_cr("--------");
 465   Disassembler::decode((address)eip, (address)eip+32);
 466 }
 467 
 468 void MacroAssembler::stop(const char* msg) {
 469   ExternalAddress message((address)msg);
 470   // push address of message
 471   pushptr(message.addr());
 472   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 473   pusha();                                            // push registers
 474   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 475   hlt();
 476 }
 477 
 478 void MacroAssembler::warn(const char* msg) {
 479   push_CPU_state();
 480 
 481   ExternalAddress message((address) msg);
 482   // push address of message
 483   pushptr(message.addr());
 484 
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 486   addl(rsp, wordSize);       // discard argument
 487   pop_CPU_state();
 488 }
 489 
 490 void MacroAssembler::print_state() {
 491   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 492   pusha();                                            // push registers
 493 
 494   push_CPU_state();
 495   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 496   pop_CPU_state();
 497 
 498   popa();
 499   addl(rsp, wordSize);
 500 }
 501 
 502 #else // _LP64
 503 
 504 // 64 bit versions
 505 
 506 Address MacroAssembler::as_Address(AddressLiteral adr) {
 507   // amd64 always does this as a pc-rel
 508   // we can be absolute or disp based on the instruction type
 509   // jmp/call are displacements others are absolute
 510   assert(!adr.is_lval(), "must be rval");
 511   assert(reachable(adr), "must be");
 512   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 513 
 514 }
 515 
 516 Address MacroAssembler::as_Address(ArrayAddress adr) {
 517   AddressLiteral base = adr.base();
 518   lea(rscratch1, base);
 519   Address index = adr.index();
 520   assert(index._disp == 0, "must not have disp"); // maybe it can?
 521   Address array(rscratch1, index._index, index._scale, index._disp);
 522   return array;
 523 }
 524 
 525 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 526   Label L, E;
 527 
 528 #ifdef _WIN64
 529   // Windows always allocates space for it's register args
 530   assert(num_args <= 4, "only register arguments supported");
 531   subq(rsp,  frame::arg_reg_save_area_bytes);
 532 #endif
 533 
 534   // Align stack if necessary
 535   testl(rsp, 15);
 536   jcc(Assembler::zero, L);
 537 
 538   subq(rsp, 8);
 539   {
 540     call(RuntimeAddress(entry_point));
 541   }
 542   addq(rsp, 8);
 543   jmp(E);
 544 
 545   bind(L);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549 
 550   bind(E);
 551 
 552 #ifdef _WIN64
 553   // restore stack pointer
 554   addq(rsp, frame::arg_reg_save_area_bytes);
 555 #endif
 556 
 557 }
 558 
 559 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 560   assert(!src2.is_lval(), "should use cmpptr");
 561 
 562   if (reachable(src2)) {
 563     cmpq(src1, as_Address(src2));
 564   } else {
 565     lea(rscratch1, src2);
 566     Assembler::cmpq(src1, Address(rscratch1, 0));
 567   }
 568 }
 569 
 570 int MacroAssembler::corrected_idivq(Register reg) {
 571   // Full implementation of Java ldiv and lrem; checks for special
 572   // case as described in JVM spec., p.243 & p.271.  The function
 573   // returns the (pc) offset of the idivl instruction - may be needed
 574   // for implicit exceptions.
 575   //
 576   //         normal case                           special case
 577   //
 578   // input : rax: dividend                         min_long
 579   //         reg: divisor   (may not be eax/edx)   -1
 580   //
 581   // output: rax: quotient  (= rax idiv reg)       min_long
 582   //         rdx: remainder (= rax irem reg)       0
 583   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 584   static const int64_t min_long = 0x8000000000000000;
 585   Label normal_case, special_case;
 586 
 587   // check for special case
 588   cmp64(rax, ExternalAddress((address) &min_long));
 589   jcc(Assembler::notEqual, normal_case);
 590   xorl(rdx, rdx); // prepare rdx for possible special case (where
 591                   // remainder = 0)
 592   cmpq(reg, -1);
 593   jcc(Assembler::equal, special_case);
 594 
 595   // handle normal case
 596   bind(normal_case);
 597   cdqq();
 598   int idivq_offset = offset();
 599   idivq(reg);
 600 
 601   // normal and special case exit
 602   bind(special_case);
 603 
 604   return idivq_offset;
 605 }
 606 
 607 void MacroAssembler::decrementq(Register reg, int value) {
 608   if (value == min_jint) { subq(reg, value); return; }
 609   if (value <  0) { incrementq(reg, -value); return; }
 610   if (value == 0) {                        ; return; }
 611   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 612   /* else */      { subq(reg, value)       ; return; }
 613 }
 614 
 615 void MacroAssembler::decrementq(Address dst, int value) {
 616   if (value == min_jint) { subq(dst, value); return; }
 617   if (value <  0) { incrementq(dst, -value); return; }
 618   if (value == 0) {                        ; return; }
 619   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 620   /* else */      { subq(dst, value)       ; return; }
 621 }
 622 
 623 void MacroAssembler::incrementq(AddressLiteral dst) {
 624   if (reachable(dst)) {
 625     incrementq(as_Address(dst));
 626   } else {
 627     lea(rscratch1, dst);
 628     incrementq(Address(rscratch1, 0));
 629   }
 630 }
 631 
 632 void MacroAssembler::incrementq(Register reg, int value) {
 633   if (value == min_jint) { addq(reg, value); return; }
 634   if (value <  0) { decrementq(reg, -value); return; }
 635   if (value == 0) {                        ; return; }
 636   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 637   /* else */      { addq(reg, value)       ; return; }
 638 }
 639 
 640 void MacroAssembler::incrementq(Address dst, int value) {
 641   if (value == min_jint) { addq(dst, value); return; }
 642   if (value <  0) { decrementq(dst, -value); return; }
 643   if (value == 0) {                        ; return; }
 644   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 645   /* else */      { addq(dst, value)       ; return; }
 646 }
 647 
 648 // 32bit can do a case table jump in one instruction but we no longer allow the base
 649 // to be installed in the Address class
 650 void MacroAssembler::jump(ArrayAddress entry) {
 651   lea(rscratch1, entry.base());
 652   Address dispatch = entry.index();
 653   assert(dispatch._base == noreg, "must be");
 654   dispatch._base = rscratch1;
 655   jmp(dispatch);
 656 }
 657 
 658 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 659   ShouldNotReachHere(); // 64bit doesn't use two regs
 660   cmpq(x_lo, y_lo);
 661 }
 662 
 663 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 664     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 665 }
 666 
 667 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 668   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 669   movptr(dst, rscratch1);
 670 }
 671 
 672 void MacroAssembler::leave() {
 673   // %%% is this really better? Why not on 32bit too?
 674   emit_int8((unsigned char)0xC9); // LEAVE
 675 }
 676 
 677 void MacroAssembler::lneg(Register hi, Register lo) {
 678   ShouldNotReachHere(); // 64bit doesn't use two regs
 679   negq(lo);
 680 }
 681 
 682 void MacroAssembler::movoop(Register dst, jobject obj) {
 683   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684 }
 685 
 686 void MacroAssembler::movoop(Address dst, jobject obj) {
 687   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 688   movq(dst, rscratch1);
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 692   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693 }
 694 
 695 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 696   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 697   movq(dst, rscratch1);
 698 }
 699 
 700 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 701   if (src.is_lval()) {
 702     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 703   } else {
 704     if (reachable(src)) {
 705       movq(dst, as_Address(src));
 706     } else {
 707       lea(scratch, src);
 708       movq(dst, Address(scratch, 0));
 709     }
 710   }
 711 }
 712 
 713 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 714   movq(as_Address(dst), src);
 715 }
 716 
 717 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 718   movq(dst, as_Address(src));
 719 }
 720 
 721 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 722 void MacroAssembler::movptr(Address dst, intptr_t src) {
 723   mov64(rscratch1, src);
 724   movq(dst, rscratch1);
 725 }
 726 
 727 // These are mostly for initializing NULL
 728 void MacroAssembler::movptr(Address dst, int32_t src) {
 729   movslq(dst, src);
 730 }
 731 
 732 void MacroAssembler::movptr(Register dst, int32_t src) {
 733   mov64(dst, (intptr_t)src);
 734 }
 735 
 736 void MacroAssembler::pushoop(jobject obj) {
 737   movoop(rscratch1, obj);
 738   push(rscratch1);
 739 }
 740 
 741 void MacroAssembler::pushklass(Metadata* obj) {
 742   mov_metadata(rscratch1, obj);
 743   push(rscratch1);
 744 }
 745 
 746 void MacroAssembler::pushptr(AddressLiteral src) {
 747   lea(rscratch1, src);
 748   if (src.is_lval()) {
 749     push(rscratch1);
 750   } else {
 751     pushq(Address(rscratch1, 0));
 752   }
 753 }
 754 
 755 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 756                                            bool clear_pc) {
 757   // we must set sp to zero to clear frame
 758   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 759   // must clear fp, so that compiled frames are not confused; it is
 760   // possible that we need it only for debugging
 761   if (clear_fp) {
 762     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 763   }
 764 
 765   if (clear_pc) {
 766     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 767   }
 768 }
 769 
 770 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 771                                          Register last_java_fp,
 772                                          address  last_java_pc) {
 773   // determine last_java_sp register
 774   if (!last_java_sp->is_valid()) {
 775     last_java_sp = rsp;
 776   }
 777 
 778   // last_java_fp is optional
 779   if (last_java_fp->is_valid()) {
 780     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 781            last_java_fp);
 782   }
 783 
 784   // last_java_pc is optional
 785   if (last_java_pc != NULL) {
 786     Address java_pc(r15_thread,
 787                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 788     lea(rscratch1, InternalAddress(last_java_pc));
 789     movptr(java_pc, rscratch1);
 790   }
 791 
 792   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 793 }
 794 
 795 static void pass_arg0(MacroAssembler* masm, Register arg) {
 796   if (c_rarg0 != arg ) {
 797     masm->mov(c_rarg0, arg);
 798   }
 799 }
 800 
 801 static void pass_arg1(MacroAssembler* masm, Register arg) {
 802   if (c_rarg1 != arg ) {
 803     masm->mov(c_rarg1, arg);
 804   }
 805 }
 806 
 807 static void pass_arg2(MacroAssembler* masm, Register arg) {
 808   if (c_rarg2 != arg ) {
 809     masm->mov(c_rarg2, arg);
 810   }
 811 }
 812 
 813 static void pass_arg3(MacroAssembler* masm, Register arg) {
 814   if (c_rarg3 != arg ) {
 815     masm->mov(c_rarg3, arg);
 816   }
 817 }
 818 
 819 void MacroAssembler::stop(const char* msg) {
 820   address rip = pc();
 821   pusha(); // get regs on stack
 822   lea(c_rarg0, ExternalAddress((address) msg));
 823   lea(c_rarg1, InternalAddress(rip));
 824   movq(c_rarg2, rsp); // pass pointer to regs array
 825   andq(rsp, -16); // align stack as required by ABI
 826   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 827   hlt();
 828 }
 829 
 830 void MacroAssembler::warn(const char* msg) {
 831   push(rbp);
 832   movq(rbp, rsp);
 833   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 834   push_CPU_state();   // keeps alignment at 16 bytes
 835   lea(c_rarg0, ExternalAddress((address) msg));
 836   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 837   pop_CPU_state();
 838   mov(rsp, rbp);
 839   pop(rbp);
 840 }
 841 
 842 void MacroAssembler::print_state() {
 843   address rip = pc();
 844   pusha();            // get regs on stack
 845   push(rbp);
 846   movq(rbp, rsp);
 847   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 848   push_CPU_state();   // keeps alignment at 16 bytes
 849 
 850   lea(c_rarg0, InternalAddress(rip));
 851   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 852   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 853 
 854   pop_CPU_state();
 855   mov(rsp, rbp);
 856   pop(rbp);
 857   popa();
 858 }
 859 
 860 #ifndef PRODUCT
 861 extern "C" void findpc(intptr_t x);
 862 #endif
 863 
 864 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 865   // In order to get locks to work, we need to fake a in_VM state
 866   if (ShowMessageBoxOnError) {
 867     JavaThread* thread = JavaThread::current();
 868     JavaThreadState saved_state = thread->thread_state();
 869     thread->set_thread_state(_thread_in_vm);
 870 #ifndef PRODUCT
 871     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 872       ttyLocker ttyl;
 873       BytecodeCounter::print();
 874     }
 875 #endif
 876     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 877     // XXX correct this offset for amd64
 878     // This is the value of eip which points to where verify_oop will return.
 879     if (os::message_box(msg, "Execution stopped, print registers?")) {
 880       print_state64(pc, regs);
 881       BREAKPOINT;
 882       assert(false, "start up GDB");
 883     }
 884     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 885   } else {
 886     ttyLocker ttyl;
 887     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 888                     msg);
 889     assert(false, "DEBUG MESSAGE: %s", msg);
 890   }
 891 }
 892 
 893 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 894   ttyLocker ttyl;
 895   FlagSetting fs(Debugging, true);
 896   tty->print_cr("rip = 0x%016lx", pc);
 897 #ifndef PRODUCT
 898   tty->cr();
 899   findpc(pc);
 900   tty->cr();
 901 #endif
 902 #define PRINT_REG(rax, value) \
 903   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 904   PRINT_REG(rax, regs[15]);
 905   PRINT_REG(rbx, regs[12]);
 906   PRINT_REG(rcx, regs[14]);
 907   PRINT_REG(rdx, regs[13]);
 908   PRINT_REG(rdi, regs[8]);
 909   PRINT_REG(rsi, regs[9]);
 910   PRINT_REG(rbp, regs[10]);
 911   PRINT_REG(rsp, regs[11]);
 912   PRINT_REG(r8 , regs[7]);
 913   PRINT_REG(r9 , regs[6]);
 914   PRINT_REG(r10, regs[5]);
 915   PRINT_REG(r11, regs[4]);
 916   PRINT_REG(r12, regs[3]);
 917   PRINT_REG(r13, regs[2]);
 918   PRINT_REG(r14, regs[1]);
 919   PRINT_REG(r15, regs[0]);
 920 #undef PRINT_REG
 921   // Print some words near top of staack.
 922   int64_t* rsp = (int64_t*) regs[11];
 923   int64_t* dump_sp = rsp;
 924   for (int col1 = 0; col1 < 8; col1++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     os::print_location(tty, *dump_sp++);
 927   }
 928   for (int row = 0; row < 25; row++) {
 929     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 930     for (int col = 0; col < 4; col++) {
 931       tty->print(" 0x%016lx", *dump_sp++);
 932     }
 933     tty->cr();
 934   }
 935   // Print some instructions around pc:
 936   Disassembler::decode((address)pc-64, (address)pc);
 937   tty->print_cr("--------");
 938   Disassembler::decode((address)pc, (address)pc+32);
 939 }
 940 
 941 #endif // _LP64
 942 
 943 // Now versions that are common to 32/64 bit
 944 
 945 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 946   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 947 }
 948 
 949 void MacroAssembler::addptr(Register dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addptr(Address dst, Register src) {
 954   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 955 }
 956 
 957 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 958   if (reachable(src)) {
 959     Assembler::addsd(dst, as_Address(src));
 960   } else {
 961     lea(rscratch1, src);
 962     Assembler::addsd(dst, Address(rscratch1, 0));
 963   }
 964 }
 965 
 966 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 967   if (reachable(src)) {
 968     addss(dst, as_Address(src));
 969   } else {
 970     lea(rscratch1, src);
 971     addss(dst, Address(rscratch1, 0));
 972   }
 973 }
 974 
 975 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 976   if (reachable(src)) {
 977     Assembler::addpd(dst, as_Address(src));
 978   } else {
 979     lea(rscratch1, src);
 980     Assembler::addpd(dst, Address(rscratch1, 0));
 981   }
 982 }
 983 
 984 void MacroAssembler::align(int modulus) {
 985   align(modulus, offset());
 986 }
 987 
 988 void MacroAssembler::align(int modulus, int target) {
 989   if (target % modulus != 0) {
 990     nop(modulus - (target % modulus));
 991   }
 992 }
 993 
 994 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 995   // Used in sign-masking with aligned address.
 996   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 997   if (reachable(src)) {
 998     Assembler::andpd(dst, as_Address(src));
 999   } else {
1000     lea(rscratch1, src);
1001     Assembler::andpd(dst, Address(rscratch1, 0));
1002   }
1003 }
1004 
1005 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1006   // Used in sign-masking with aligned address.
1007   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1008   if (reachable(src)) {
1009     Assembler::andps(dst, as_Address(src));
1010   } else {
1011     lea(rscratch1, src);
1012     Assembler::andps(dst, Address(rscratch1, 0));
1013   }
1014 }
1015 
1016 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1017   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1018 }
1019 
1020 void MacroAssembler::atomic_incl(Address counter_addr) {
1021   if (os::is_MP())
1022     lock();
1023   incrementl(counter_addr);
1024 }
1025 
1026 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1027   if (reachable(counter_addr)) {
1028     atomic_incl(as_Address(counter_addr));
1029   } else {
1030     lea(scr, counter_addr);
1031     atomic_incl(Address(scr, 0));
1032   }
1033 }
1034 
1035 #ifdef _LP64
1036 void MacroAssembler::atomic_incq(Address counter_addr) {
1037   if (os::is_MP())
1038     lock();
1039   incrementq(counter_addr);
1040 }
1041 
1042 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1043   if (reachable(counter_addr)) {
1044     atomic_incq(as_Address(counter_addr));
1045   } else {
1046     lea(scr, counter_addr);
1047     atomic_incq(Address(scr, 0));
1048   }
1049 }
1050 #endif
1051 
1052 // Writes to stack successive pages until offset reached to check for
1053 // stack overflow + shadow pages.  This clobbers tmp.
1054 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1055   movptr(tmp, rsp);
1056   // Bang stack for total size given plus shadow page size.
1057   // Bang one page at a time because large size can bang beyond yellow and
1058   // red zones.
1059   Label loop;
1060   bind(loop);
1061   movl(Address(tmp, (-os::vm_page_size())), size );
1062   subptr(tmp, os::vm_page_size());
1063   subl(size, os::vm_page_size());
1064   jcc(Assembler::greater, loop);
1065 
1066   // Bang down shadow pages too.
1067   // At this point, (tmp-0) is the last address touched, so don't
1068   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1069   // was post-decremented.)  Skip this address by starting at i=1, and
1070   // touch a few more pages below.  N.B.  It is important to touch all
1071   // the way down including all pages in the shadow zone.
1072   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1073     // this could be any sized move but this is can be a debugging crumb
1074     // so the bigger the better.
1075     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1076   }
1077 }
1078 
1079 void MacroAssembler::reserved_stack_check() {
1080     // testing if reserved zone needs to be enabled
1081     Label no_reserved_zone_enabling;
1082     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1083     NOT_LP64(get_thread(rsi);)
1084 
1085     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1086     jcc(Assembler::below, no_reserved_zone_enabling);
1087 
1088     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1089     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1090     should_not_reach_here();
1091 
1092     bind(no_reserved_zone_enabling);
1093 }
1094 
1095 int MacroAssembler::biased_locking_enter(Register lock_reg,
1096                                          Register obj_reg,
1097                                          Register swap_reg,
1098                                          Register tmp_reg,
1099                                          bool swap_reg_contains_mark,
1100                                          Label& done,
1101                                          Label* slow_case,
1102                                          BiasedLockingCounters* counters) {
1103   assert(UseBiasedLocking, "why call this otherwise?");
1104   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1105   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1106   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1107   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1108   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1109   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1110 
1111   if (PrintBiasedLockingStatistics && counters == NULL) {
1112     counters = BiasedLocking::counters();
1113   }
1114   // Biased locking
1115   // See whether the lock is currently biased toward our thread and
1116   // whether the epoch is still valid
1117   // Note that the runtime guarantees sufficient alignment of JavaThread
1118   // pointers to allow age to be placed into low bits
1119   // First check to see whether biasing is even enabled for this object
1120   Label cas_label;
1121   int null_check_offset = -1;
1122   if (!swap_reg_contains_mark) {
1123     null_check_offset = offset();
1124     movptr(swap_reg, mark_addr);
1125   }
1126   movptr(tmp_reg, swap_reg);
1127   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1128   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1129   jcc(Assembler::notEqual, cas_label);
1130   // The bias pattern is present in the object's header. Need to check
1131   // whether the bias owner and the epoch are both still current.
1132 #ifndef _LP64
1133   // Note that because there is no current thread register on x86_32 we
1134   // need to store off the mark word we read out of the object to
1135   // avoid reloading it and needing to recheck invariants below. This
1136   // store is unfortunate but it makes the overall code shorter and
1137   // simpler.
1138   movptr(saved_mark_addr, swap_reg);
1139 #endif
1140   if (swap_reg_contains_mark) {
1141     null_check_offset = offset();
1142   }
1143   load_prototype_header(tmp_reg, obj_reg);
1144 #ifdef _LP64
1145   orptr(tmp_reg, r15_thread);
1146   xorptr(tmp_reg, swap_reg);
1147   Register header_reg = tmp_reg;
1148 #else
1149   xorptr(tmp_reg, swap_reg);
1150   get_thread(swap_reg);
1151   xorptr(swap_reg, tmp_reg);
1152   Register header_reg = swap_reg;
1153 #endif
1154   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1155   if (counters != NULL) {
1156     cond_inc32(Assembler::zero,
1157                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1158   }
1159   jcc(Assembler::equal, done);
1160 
1161   Label try_revoke_bias;
1162   Label try_rebias;
1163 
1164   // At this point we know that the header has the bias pattern and
1165   // that we are not the bias owner in the current epoch. We need to
1166   // figure out more details about the state of the header in order to
1167   // know what operations can be legally performed on the object's
1168   // header.
1169 
1170   // If the low three bits in the xor result aren't clear, that means
1171   // the prototype header is no longer biased and we have to revoke
1172   // the bias on this object.
1173   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1174   jccb(Assembler::notZero, try_revoke_bias);
1175 
1176   // Biasing is still enabled for this data type. See whether the
1177   // epoch of the current bias is still valid, meaning that the epoch
1178   // bits of the mark word are equal to the epoch bits of the
1179   // prototype header. (Note that the prototype header's epoch bits
1180   // only change at a safepoint.) If not, attempt to rebias the object
1181   // toward the current thread. Note that we must be absolutely sure
1182   // that the current epoch is invalid in order to do this because
1183   // otherwise the manipulations it performs on the mark word are
1184   // illegal.
1185   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1186   jccb(Assembler::notZero, try_rebias);
1187 
1188   // The epoch of the current bias is still valid but we know nothing
1189   // about the owner; it might be set or it might be clear. Try to
1190   // acquire the bias of the object using an atomic operation. If this
1191   // fails we will go in to the runtime to revoke the object's bias.
1192   // Note that we first construct the presumed unbiased header so we
1193   // don't accidentally blow away another thread's valid bias.
1194   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1195   andptr(swap_reg,
1196          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1197 #ifdef _LP64
1198   movptr(tmp_reg, swap_reg);
1199   orptr(tmp_reg, r15_thread);
1200 #else
1201   get_thread(tmp_reg);
1202   orptr(tmp_reg, swap_reg);
1203 #endif
1204   if (os::is_MP()) {
1205     lock();
1206   }
1207   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1208   // If the biasing toward our thread failed, this means that
1209   // another thread succeeded in biasing it toward itself and we
1210   // need to revoke that bias. The revocation will occur in the
1211   // interpreter runtime in the slow case.
1212   if (counters != NULL) {
1213     cond_inc32(Assembler::zero,
1214                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1215   }
1216   if (slow_case != NULL) {
1217     jcc(Assembler::notZero, *slow_case);
1218   }
1219   jmp(done);
1220 
1221   bind(try_rebias);
1222   // At this point we know the epoch has expired, meaning that the
1223   // current "bias owner", if any, is actually invalid. Under these
1224   // circumstances _only_, we are allowed to use the current header's
1225   // value as the comparison value when doing the cas to acquire the
1226   // bias in the current epoch. In other words, we allow transfer of
1227   // the bias from one thread to another directly in this situation.
1228   //
1229   // FIXME: due to a lack of registers we currently blow away the age
1230   // bits in this situation. Should attempt to preserve them.
1231   load_prototype_header(tmp_reg, obj_reg);
1232 #ifdef _LP64
1233   orptr(tmp_reg, r15_thread);
1234 #else
1235   get_thread(swap_reg);
1236   orptr(tmp_reg, swap_reg);
1237   movptr(swap_reg, saved_mark_addr);
1238 #endif
1239   if (os::is_MP()) {
1240     lock();
1241   }
1242   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1243   // If the biasing toward our thread failed, then another thread
1244   // succeeded in biasing it toward itself and we need to revoke that
1245   // bias. The revocation will occur in the runtime in the slow case.
1246   if (counters != NULL) {
1247     cond_inc32(Assembler::zero,
1248                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1249   }
1250   if (slow_case != NULL) {
1251     jcc(Assembler::notZero, *slow_case);
1252   }
1253   jmp(done);
1254 
1255   bind(try_revoke_bias);
1256   // The prototype mark in the klass doesn't have the bias bit set any
1257   // more, indicating that objects of this data type are not supposed
1258   // to be biased any more. We are going to try to reset the mark of
1259   // this object to the prototype value and fall through to the
1260   // CAS-based locking scheme. Note that if our CAS fails, it means
1261   // that another thread raced us for the privilege of revoking the
1262   // bias of this particular object, so it's okay to continue in the
1263   // normal locking code.
1264   //
1265   // FIXME: due to a lack of registers we currently blow away the age
1266   // bits in this situation. Should attempt to preserve them.
1267   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1268   load_prototype_header(tmp_reg, obj_reg);
1269   if (os::is_MP()) {
1270     lock();
1271   }
1272   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1273   // Fall through to the normal CAS-based lock, because no matter what
1274   // the result of the above CAS, some thread must have succeeded in
1275   // removing the bias bit from the object's header.
1276   if (counters != NULL) {
1277     cond_inc32(Assembler::zero,
1278                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1279   }
1280 
1281   bind(cas_label);
1282 
1283   return null_check_offset;
1284 }
1285 
1286 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1287   assert(UseBiasedLocking, "why call this otherwise?");
1288 
1289   // Check for biased locking unlock case, which is a no-op
1290   // Note: we do not have to check the thread ID for two reasons.
1291   // First, the interpreter checks for IllegalMonitorStateException at
1292   // a higher level. Second, if the bias was revoked while we held the
1293   // lock, the object could not be rebiased toward another thread, so
1294   // the bias bit would be clear.
1295   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1296   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1297   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1298   jcc(Assembler::equal, done);
1299 }
1300 
1301 #ifdef COMPILER2
1302 
1303 #if INCLUDE_RTM_OPT
1304 
1305 // Update rtm_counters based on abort status
1306 // input: abort_status
1307 //        rtm_counters (RTMLockingCounters*)
1308 // flags are killed
1309 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1310 
1311   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1312   if (PrintPreciseRTMLockingStatistics) {
1313     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1314       Label check_abort;
1315       testl(abort_status, (1<<i));
1316       jccb(Assembler::equal, check_abort);
1317       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1318       bind(check_abort);
1319     }
1320   }
1321 }
1322 
1323 // Branch if (random & (count-1) != 0), count is 2^n
1324 // tmp, scr and flags are killed
1325 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1326   assert(tmp == rax, "");
1327   assert(scr == rdx, "");
1328   rdtsc(); // modifies EDX:EAX
1329   andptr(tmp, count-1);
1330   jccb(Assembler::notZero, brLabel);
1331 }
1332 
1333 // Perform abort ratio calculation, set no_rtm bit if high ratio
1334 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1335 // tmpReg, rtm_counters_Reg and flags are killed
1336 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1337                                                  Register rtm_counters_Reg,
1338                                                  RTMLockingCounters* rtm_counters,
1339                                                  Metadata* method_data) {
1340   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1341 
1342   if (RTMLockingCalculationDelay > 0) {
1343     // Delay calculation
1344     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1345     testptr(tmpReg, tmpReg);
1346     jccb(Assembler::equal, L_done);
1347   }
1348   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1349   //   Aborted transactions = abort_count * 100
1350   //   All transactions = total_count *  RTMTotalCountIncrRate
1351   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1352 
1353   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1354   cmpptr(tmpReg, RTMAbortThreshold);
1355   jccb(Assembler::below, L_check_always_rtm2);
1356   imulptr(tmpReg, tmpReg, 100);
1357 
1358   Register scrReg = rtm_counters_Reg;
1359   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1360   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1361   imulptr(scrReg, scrReg, RTMAbortRatio);
1362   cmpptr(tmpReg, scrReg);
1363   jccb(Assembler::below, L_check_always_rtm1);
1364   if (method_data != NULL) {
1365     // set rtm_state to "no rtm" in MDO
1366     mov_metadata(tmpReg, method_data);
1367     if (os::is_MP()) {
1368       lock();
1369     }
1370     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1371   }
1372   jmpb(L_done);
1373   bind(L_check_always_rtm1);
1374   // Reload RTMLockingCounters* address
1375   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1376   bind(L_check_always_rtm2);
1377   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1378   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1379   jccb(Assembler::below, L_done);
1380   if (method_data != NULL) {
1381     // set rtm_state to "always rtm" in MDO
1382     mov_metadata(tmpReg, method_data);
1383     if (os::is_MP()) {
1384       lock();
1385     }
1386     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1387   }
1388   bind(L_done);
1389 }
1390 
1391 // Update counters and perform abort ratio calculation
1392 // input:  abort_status_Reg
1393 // rtm_counters_Reg, flags are killed
1394 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1395                                    Register rtm_counters_Reg,
1396                                    RTMLockingCounters* rtm_counters,
1397                                    Metadata* method_data,
1398                                    bool profile_rtm) {
1399 
1400   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1401   // update rtm counters based on rax value at abort
1402   // reads abort_status_Reg, updates flags
1403   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1404   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1405   if (profile_rtm) {
1406     // Save abort status because abort_status_Reg is used by following code.
1407     if (RTMRetryCount > 0) {
1408       push(abort_status_Reg);
1409     }
1410     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1411     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1412     // restore abort status
1413     if (RTMRetryCount > 0) {
1414       pop(abort_status_Reg);
1415     }
1416   }
1417 }
1418 
1419 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1420 // inputs: retry_count_Reg
1421 //       : abort_status_Reg
1422 // output: retry_count_Reg decremented by 1
1423 // flags are killed
1424 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1425   Label doneRetry;
1426   assert(abort_status_Reg == rax, "");
1427   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1428   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1429   // if reason is in 0x6 and retry count != 0 then retry
1430   andptr(abort_status_Reg, 0x6);
1431   jccb(Assembler::zero, doneRetry);
1432   testl(retry_count_Reg, retry_count_Reg);
1433   jccb(Assembler::zero, doneRetry);
1434   pause();
1435   decrementl(retry_count_Reg);
1436   jmp(retryLabel);
1437   bind(doneRetry);
1438 }
1439 
1440 // Spin and retry if lock is busy,
1441 // inputs: box_Reg (monitor address)
1442 //       : retry_count_Reg
1443 // output: retry_count_Reg decremented by 1
1444 //       : clear z flag if retry count exceeded
1445 // tmp_Reg, scr_Reg, flags are killed
1446 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1447                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1448   Label SpinLoop, SpinExit, doneRetry;
1449   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1450 
1451   testl(retry_count_Reg, retry_count_Reg);
1452   jccb(Assembler::zero, doneRetry);
1453   decrementl(retry_count_Reg);
1454   movptr(scr_Reg, RTMSpinLoopCount);
1455 
1456   bind(SpinLoop);
1457   pause();
1458   decrementl(scr_Reg);
1459   jccb(Assembler::lessEqual, SpinExit);
1460   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1461   testptr(tmp_Reg, tmp_Reg);
1462   jccb(Assembler::notZero, SpinLoop);
1463 
1464   bind(SpinExit);
1465   jmp(retryLabel);
1466   bind(doneRetry);
1467   incrementl(retry_count_Reg); // clear z flag
1468 }
1469 
1470 // Use RTM for normal stack locks
1471 // Input: objReg (object to lock)
1472 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1473                                        Register retry_on_abort_count_Reg,
1474                                        RTMLockingCounters* stack_rtm_counters,
1475                                        Metadata* method_data, bool profile_rtm,
1476                                        Label& DONE_LABEL, Label& IsInflated) {
1477   assert(UseRTMForStackLocks, "why call this otherwise?");
1478   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1479   assert(tmpReg == rax, "");
1480   assert(scrReg == rdx, "");
1481   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1482 
1483   if (RTMRetryCount > 0) {
1484     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1485     bind(L_rtm_retry);
1486   }
1487   movptr(tmpReg, Address(objReg, 0));
1488   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1489   jcc(Assembler::notZero, IsInflated);
1490 
1491   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1492     Label L_noincrement;
1493     if (RTMTotalCountIncrRate > 1) {
1494       // tmpReg, scrReg and flags are killed
1495       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1496     }
1497     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1498     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1499     bind(L_noincrement);
1500   }
1501   xbegin(L_on_abort);
1502   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1503   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1504   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1505   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1506 
1507   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1508   if (UseRTMXendForLockBusy) {
1509     xend();
1510     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1511     jmp(L_decrement_retry);
1512   }
1513   else {
1514     xabort(0);
1515   }
1516   bind(L_on_abort);
1517   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1518     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1519   }
1520   bind(L_decrement_retry);
1521   if (RTMRetryCount > 0) {
1522     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1523     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1524   }
1525 }
1526 
1527 // Use RTM for inflating locks
1528 // inputs: objReg (object to lock)
1529 //         boxReg (on-stack box address (displaced header location) - KILLED)
1530 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1531 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1532                                           Register scrReg, Register retry_on_busy_count_Reg,
1533                                           Register retry_on_abort_count_Reg,
1534                                           RTMLockingCounters* rtm_counters,
1535                                           Metadata* method_data, bool profile_rtm,
1536                                           Label& DONE_LABEL) {
1537   assert(UseRTMLocking, "why call this otherwise?");
1538   assert(tmpReg == rax, "");
1539   assert(scrReg == rdx, "");
1540   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1541   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1542 
1543   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1544   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1545   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1546 
1547   if (RTMRetryCount > 0) {
1548     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1549     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1550     bind(L_rtm_retry);
1551   }
1552   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1553     Label L_noincrement;
1554     if (RTMTotalCountIncrRate > 1) {
1555       // tmpReg, scrReg and flags are killed
1556       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1557     }
1558     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1559     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1560     bind(L_noincrement);
1561   }
1562   xbegin(L_on_abort);
1563   movptr(tmpReg, Address(objReg, 0));
1564   movptr(tmpReg, Address(tmpReg, owner_offset));
1565   testptr(tmpReg, tmpReg);
1566   jcc(Assembler::zero, DONE_LABEL);
1567   if (UseRTMXendForLockBusy) {
1568     xend();
1569     jmp(L_decrement_retry);
1570   }
1571   else {
1572     xabort(0);
1573   }
1574   bind(L_on_abort);
1575   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1576   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1577     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1578   }
1579   if (RTMRetryCount > 0) {
1580     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1581     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1582   }
1583 
1584   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1585   testptr(tmpReg, tmpReg) ;
1586   jccb(Assembler::notZero, L_decrement_retry) ;
1587 
1588   // Appears unlocked - try to swing _owner from null to non-null.
1589   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1590 #ifdef _LP64
1591   Register threadReg = r15_thread;
1592 #else
1593   get_thread(scrReg);
1594   Register threadReg = scrReg;
1595 #endif
1596   if (os::is_MP()) {
1597     lock();
1598   }
1599   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1600 
1601   if (RTMRetryCount > 0) {
1602     // success done else retry
1603     jccb(Assembler::equal, DONE_LABEL) ;
1604     bind(L_decrement_retry);
1605     // Spin and retry if lock is busy.
1606     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1607   }
1608   else {
1609     bind(L_decrement_retry);
1610   }
1611 }
1612 
1613 #endif //  INCLUDE_RTM_OPT
1614 
1615 // Fast_Lock and Fast_Unlock used by C2
1616 
1617 // Because the transitions from emitted code to the runtime
1618 // monitorenter/exit helper stubs are so slow it's critical that
1619 // we inline both the stack-locking fast-path and the inflated fast path.
1620 //
1621 // See also: cmpFastLock and cmpFastUnlock.
1622 //
1623 // What follows is a specialized inline transliteration of the code
1624 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1625 // another option would be to emit TrySlowEnter and TrySlowExit methods
1626 // at startup-time.  These methods would accept arguments as
1627 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1628 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1629 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1630 // In practice, however, the # of lock sites is bounded and is usually small.
1631 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1632 // if the processor uses simple bimodal branch predictors keyed by EIP
1633 // Since the helper routines would be called from multiple synchronization
1634 // sites.
1635 //
1636 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1637 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1638 // to those specialized methods.  That'd give us a mostly platform-independent
1639 // implementation that the JITs could optimize and inline at their pleasure.
1640 // Done correctly, the only time we'd need to cross to native could would be
1641 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1642 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1643 // (b) explicit barriers or fence operations.
1644 //
1645 // TODO:
1646 //
1647 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1648 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1649 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1650 //    the lock operators would typically be faster than reifying Self.
1651 //
1652 // *  Ideally I'd define the primitives as:
1653 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1654 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1655 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1656 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1657 //    Furthermore the register assignments are overconstrained, possibly resulting in
1658 //    sub-optimal code near the synchronization site.
1659 //
1660 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1661 //    Alternately, use a better sp-proximity test.
1662 //
1663 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1664 //    Either one is sufficient to uniquely identify a thread.
1665 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1666 //
1667 // *  Intrinsify notify() and notifyAll() for the common cases where the
1668 //    object is locked by the calling thread but the waitlist is empty.
1669 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1670 //
1671 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1672 //    But beware of excessive branch density on AMD Opterons.
1673 //
1674 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1675 //    or failure of the fast-path.  If the fast-path fails then we pass
1676 //    control to the slow-path, typically in C.  In Fast_Lock and
1677 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1678 //    will emit a conditional branch immediately after the node.
1679 //    So we have branches to branches and lots of ICC.ZF games.
1680 //    Instead, it might be better to have C2 pass a "FailureLabel"
1681 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1682 //    will drop through the node.  ICC.ZF is undefined at exit.
1683 //    In the case of failure, the node will branch directly to the
1684 //    FailureLabel
1685 
1686 
1687 // obj: object to lock
1688 // box: on-stack box address (displaced header location) - KILLED
1689 // rax,: tmp -- KILLED
1690 // scr: tmp -- KILLED
1691 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1692                                Register scrReg, Register cx1Reg, Register cx2Reg,
1693                                BiasedLockingCounters* counters,
1694                                RTMLockingCounters* rtm_counters,
1695                                RTMLockingCounters* stack_rtm_counters,
1696                                Metadata* method_data,
1697                                bool use_rtm, bool profile_rtm) {
1698   // Ensure the register assignments are disjoint
1699   assert(tmpReg == rax, "");
1700 
1701   if (use_rtm) {
1702     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1703   } else {
1704     assert(cx1Reg == noreg, "");
1705     assert(cx2Reg == noreg, "");
1706     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1707   }
1708 
1709   if (counters != NULL) {
1710     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1711   }
1712   if (EmitSync & 1) {
1713       // set box->dhw = markOopDesc::unused_mark()
1714       // Force all sync thru slow-path: slow_enter() and slow_exit()
1715       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1716       cmpptr (rsp, (int32_t)NULL_WORD);
1717   } else {
1718     // Possible cases that we'll encounter in fast_lock
1719     // ------------------------------------------------
1720     // * Inflated
1721     //    -- unlocked
1722     //    -- Locked
1723     //       = by self
1724     //       = by other
1725     // * biased
1726     //    -- by Self
1727     //    -- by other
1728     // * neutral
1729     // * stack-locked
1730     //    -- by self
1731     //       = sp-proximity test hits
1732     //       = sp-proximity test generates false-negative
1733     //    -- by other
1734     //
1735 
1736     Label IsInflated, DONE_LABEL;
1737 
1738     // it's stack-locked, biased or neutral
1739     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1740     // order to reduce the number of conditional branches in the most common cases.
1741     // Beware -- there's a subtle invariant that fetch of the markword
1742     // at [FETCH], below, will never observe a biased encoding (*101b).
1743     // If this invariant is not held we risk exclusion (safety) failure.
1744     if (UseBiasedLocking && !UseOptoBiasInlining) {
1745       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1746     }
1747 
1748 #if INCLUDE_RTM_OPT
1749     if (UseRTMForStackLocks && use_rtm) {
1750       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1751                         stack_rtm_counters, method_data, profile_rtm,
1752                         DONE_LABEL, IsInflated);
1753     }
1754 #endif // INCLUDE_RTM_OPT
1755 
1756     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1757     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1758     jccb(Assembler::notZero, IsInflated);
1759 
1760     // Attempt stack-locking ...
1761     orptr (tmpReg, markOopDesc::unlocked_value);
1762     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1763     if (os::is_MP()) {
1764       lock();
1765     }
1766     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1767     if (counters != NULL) {
1768       cond_inc32(Assembler::equal,
1769                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1770     }
1771     jcc(Assembler::equal, DONE_LABEL);           // Success
1772 
1773     // Recursive locking.
1774     // The object is stack-locked: markword contains stack pointer to BasicLock.
1775     // Locked by current thread if difference with current SP is less than one page.
1776     subptr(tmpReg, rsp);
1777     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1778     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1779     movptr(Address(boxReg, 0), tmpReg);
1780     if (counters != NULL) {
1781       cond_inc32(Assembler::equal,
1782                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1783     }
1784     jmp(DONE_LABEL);
1785 
1786     bind(IsInflated);
1787     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1788 
1789 #if INCLUDE_RTM_OPT
1790     // Use the same RTM locking code in 32- and 64-bit VM.
1791     if (use_rtm) {
1792       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1793                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1794     } else {
1795 #endif // INCLUDE_RTM_OPT
1796 
1797 #ifndef _LP64
1798     // The object is inflated.
1799 
1800     // boxReg refers to the on-stack BasicLock in the current frame.
1801     // We'd like to write:
1802     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1803     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1804     // additional latency as we have another ST in the store buffer that must drain.
1805 
1806     if (EmitSync & 8192) {
1807        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1808        get_thread (scrReg);
1809        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1810        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1811        if (os::is_MP()) {
1812          lock();
1813        }
1814        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1815     } else
1816     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1817        // register juggle because we need tmpReg for cmpxchgptr below
1818        movptr(scrReg, boxReg);
1819        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1820 
1821        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1822        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1823           // prefetchw [eax + Offset(_owner)-2]
1824           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1825        }
1826 
1827        if ((EmitSync & 64) == 0) {
1828          // Optimistic form: consider XORL tmpReg,tmpReg
1829          movptr(tmpReg, NULL_WORD);
1830        } else {
1831          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1832          // Test-And-CAS instead of CAS
1833          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1834          testptr(tmpReg, tmpReg);                   // Locked ?
1835          jccb  (Assembler::notZero, DONE_LABEL);
1836        }
1837 
1838        // Appears unlocked - try to swing _owner from null to non-null.
1839        // Ideally, I'd manifest "Self" with get_thread and then attempt
1840        // to CAS the register containing Self into m->Owner.
1841        // But we don't have enough registers, so instead we can either try to CAS
1842        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1843        // we later store "Self" into m->Owner.  Transiently storing a stack address
1844        // (rsp or the address of the box) into  m->owner is harmless.
1845        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1846        if (os::is_MP()) {
1847          lock();
1848        }
1849        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1850        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1851        // If we weren't able to swing _owner from NULL to the BasicLock
1852        // then take the slow path.
1853        jccb  (Assembler::notZero, DONE_LABEL);
1854        // update _owner from BasicLock to thread
1855        get_thread (scrReg);                    // beware: clobbers ICCs
1856        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1857        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1858 
1859        // If the CAS fails we can either retry or pass control to the slow-path.
1860        // We use the latter tactic.
1861        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1862        // If the CAS was successful ...
1863        //   Self has acquired the lock
1864        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1865        // Intentional fall-through into DONE_LABEL ...
1866     } else {
1867        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1868        movptr(boxReg, tmpReg);
1869 
1870        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1871        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1872           // prefetchw [eax + Offset(_owner)-2]
1873           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1874        }
1875 
1876        if ((EmitSync & 64) == 0) {
1877          // Optimistic form
1878          xorptr  (tmpReg, tmpReg);
1879        } else {
1880          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1881          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1882          testptr(tmpReg, tmpReg);                   // Locked ?
1883          jccb  (Assembler::notZero, DONE_LABEL);
1884        }
1885 
1886        // Appears unlocked - try to swing _owner from null to non-null.
1887        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1888        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1889        get_thread (scrReg);
1890        if (os::is_MP()) {
1891          lock();
1892        }
1893        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1894 
1895        // If the CAS fails we can either retry or pass control to the slow-path.
1896        // We use the latter tactic.
1897        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1898        // If the CAS was successful ...
1899        //   Self has acquired the lock
1900        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1901        // Intentional fall-through into DONE_LABEL ...
1902     }
1903 #else // _LP64
1904     // It's inflated
1905     movq(scrReg, tmpReg);
1906     xorq(tmpReg, tmpReg);
1907 
1908     if (os::is_MP()) {
1909       lock();
1910     }
1911     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1912     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1913     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1914     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1915     // Intentional fall-through into DONE_LABEL ...
1916     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1917 #endif // _LP64
1918 #if INCLUDE_RTM_OPT
1919     } // use_rtm()
1920 #endif
1921     // DONE_LABEL is a hot target - we'd really like to place it at the
1922     // start of cache line by padding with NOPs.
1923     // See the AMD and Intel software optimization manuals for the
1924     // most efficient "long" NOP encodings.
1925     // Unfortunately none of our alignment mechanisms suffice.
1926     bind(DONE_LABEL);
1927 
1928     // At DONE_LABEL the icc ZFlag is set as follows ...
1929     // Fast_Unlock uses the same protocol.
1930     // ZFlag == 1 -> Success
1931     // ZFlag == 0 -> Failure - force control through the slow-path
1932   }
1933 }
1934 
1935 // obj: object to unlock
1936 // box: box address (displaced header location), killed.  Must be EAX.
1937 // tmp: killed, cannot be obj nor box.
1938 //
1939 // Some commentary on balanced locking:
1940 //
1941 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1942 // Methods that don't have provably balanced locking are forced to run in the
1943 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1944 // The interpreter provides two properties:
1945 // I1:  At return-time the interpreter automatically and quietly unlocks any
1946 //      objects acquired the current activation (frame).  Recall that the
1947 //      interpreter maintains an on-stack list of locks currently held by
1948 //      a frame.
1949 // I2:  If a method attempts to unlock an object that is not held by the
1950 //      the frame the interpreter throws IMSX.
1951 //
1952 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1953 // B() doesn't have provably balanced locking so it runs in the interpreter.
1954 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1955 // is still locked by A().
1956 //
1957 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1958 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1959 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1960 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1961 // Arguably given that the spec legislates the JNI case as undefined our implementation
1962 // could reasonably *avoid* checking owner in Fast_Unlock().
1963 // In the interest of performance we elide m->Owner==Self check in unlock.
1964 // A perfectly viable alternative is to elide the owner check except when
1965 // Xcheck:jni is enabled.
1966 
1967 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1968   assert(boxReg == rax, "");
1969   assert_different_registers(objReg, boxReg, tmpReg);
1970 
1971   if (EmitSync & 4) {
1972     // Disable - inhibit all inlining.  Force control through the slow-path
1973     cmpptr (rsp, 0);
1974   } else {
1975     Label DONE_LABEL, Stacked, CheckSucc;
1976 
1977     // Critically, the biased locking test must have precedence over
1978     // and appear before the (box->dhw == 0) recursive stack-lock test.
1979     if (UseBiasedLocking && !UseOptoBiasInlining) {
1980        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1981     }
1982 
1983 #if INCLUDE_RTM_OPT
1984     if (UseRTMForStackLocks && use_rtm) {
1985       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1986       Label L_regular_unlock;
1987       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1988       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1989       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1990       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1991       xend();                                       // otherwise end...
1992       jmp(DONE_LABEL);                              // ... and we're done
1993       bind(L_regular_unlock);
1994     }
1995 #endif
1996 
1997     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1998     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1999     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
2000     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2001     jccb  (Assembler::zero, Stacked);
2002 
2003     // It's inflated.
2004 #if INCLUDE_RTM_OPT
2005     if (use_rtm) {
2006       Label L_regular_inflated_unlock;
2007       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2008       movptr(boxReg, Address(tmpReg, owner_offset));
2009       testptr(boxReg, boxReg);
2010       jccb(Assembler::notZero, L_regular_inflated_unlock);
2011       xend();
2012       jmpb(DONE_LABEL);
2013       bind(L_regular_inflated_unlock);
2014     }
2015 #endif
2016 
2017     // Despite our balanced locking property we still check that m->_owner == Self
2018     // as java routines or native JNI code called by this thread might
2019     // have released the lock.
2020     // Refer to the comments in synchronizer.cpp for how we might encode extra
2021     // state in _succ so we can avoid fetching EntryList|cxq.
2022     //
2023     // I'd like to add more cases in fast_lock() and fast_unlock() --
2024     // such as recursive enter and exit -- but we have to be wary of
2025     // I$ bloat, T$ effects and BP$ effects.
2026     //
2027     // If there's no contention try a 1-0 exit.  That is, exit without
2028     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2029     // we detect and recover from the race that the 1-0 exit admits.
2030     //
2031     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2032     // before it STs null into _owner, releasing the lock.  Updates
2033     // to data protected by the critical section must be visible before
2034     // we drop the lock (and thus before any other thread could acquire
2035     // the lock and observe the fields protected by the lock).
2036     // IA32's memory-model is SPO, so STs are ordered with respect to
2037     // each other and there's no need for an explicit barrier (fence).
2038     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2039 #ifndef _LP64
2040     get_thread (boxReg);
2041     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2042       // prefetchw [ebx + Offset(_owner)-2]
2043       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2044     }
2045 
2046     // Note that we could employ various encoding schemes to reduce
2047     // the number of loads below (currently 4) to just 2 or 3.
2048     // Refer to the comments in synchronizer.cpp.
2049     // In practice the chain of fetches doesn't seem to impact performance, however.
2050     xorptr(boxReg, boxReg);
2051     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2052        // Attempt to reduce branch density - AMD's branch predictor.
2053        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2054        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2055        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2056        jccb  (Assembler::notZero, DONE_LABEL);
2057        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2058        jmpb  (DONE_LABEL);
2059     } else {
2060        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2061        jccb  (Assembler::notZero, DONE_LABEL);
2062        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2063        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2064        jccb  (Assembler::notZero, CheckSucc);
2065        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2066        jmpb  (DONE_LABEL);
2067     }
2068 
2069     // The Following code fragment (EmitSync & 65536) improves the performance of
2070     // contended applications and contended synchronization microbenchmarks.
2071     // Unfortunately the emission of the code - even though not executed - causes regressions
2072     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2073     // with an equal number of never-executed NOPs results in the same regression.
2074     // We leave it off by default.
2075 
2076     if ((EmitSync & 65536) != 0) {
2077        Label LSuccess, LGoSlowPath ;
2078 
2079        bind  (CheckSucc);
2080 
2081        // Optional pre-test ... it's safe to elide this
2082        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2083        jccb(Assembler::zero, LGoSlowPath);
2084 
2085        // We have a classic Dekker-style idiom:
2086        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2087        // There are a number of ways to implement the barrier:
2088        // (1) lock:andl &m->_owner, 0
2089        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2090        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2091        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2092        // (2) If supported, an explicit MFENCE is appealing.
2093        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2094        //     particularly if the write-buffer is full as might be the case if
2095        //     if stores closely precede the fence or fence-equivalent instruction.
2096        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2097        //     as the situation has changed with Nehalem and Shanghai.
2098        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2099        //     The $lines underlying the top-of-stack should be in M-state.
2100        //     The locked add instruction is serializing, of course.
2101        // (4) Use xchg, which is serializing
2102        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2103        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2104        //     The integer condition codes will tell us if succ was 0.
2105        //     Since _succ and _owner should reside in the same $line and
2106        //     we just stored into _owner, it's likely that the $line
2107        //     remains in M-state for the lock:orl.
2108        //
2109        // We currently use (3), although it's likely that switching to (2)
2110        // is correct for the future.
2111 
2112        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2113        if (os::is_MP()) {
2114          lock(); addptr(Address(rsp, 0), 0);
2115        }
2116        // Ratify _succ remains non-null
2117        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2118        jccb  (Assembler::notZero, LSuccess);
2119 
2120        xorptr(boxReg, boxReg);                  // box is really EAX
2121        if (os::is_MP()) { lock(); }
2122        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2123        // There's no successor so we tried to regrab the lock with the
2124        // placeholder value. If that didn't work, then another thread
2125        // grabbed the lock so we're done (and exit was a success).
2126        jccb  (Assembler::notEqual, LSuccess);
2127        // Since we're low on registers we installed rsp as a placeholding in _owner.
2128        // Now install Self over rsp.  This is safe as we're transitioning from
2129        // non-null to non=null
2130        get_thread (boxReg);
2131        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2132        // Intentional fall-through into LGoSlowPath ...
2133 
2134        bind  (LGoSlowPath);
2135        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2136        jmpb  (DONE_LABEL);
2137 
2138        bind  (LSuccess);
2139        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2140        jmpb  (DONE_LABEL);
2141     }
2142 
2143     bind (Stacked);
2144     // It's not inflated and it's not recursively stack-locked and it's not biased.
2145     // It must be stack-locked.
2146     // Try to reset the header to displaced header.
2147     // The "box" value on the stack is stable, so we can reload
2148     // and be assured we observe the same value as above.
2149     movptr(tmpReg, Address(boxReg, 0));
2150     if (os::is_MP()) {
2151       lock();
2152     }
2153     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2154     // Intention fall-thru into DONE_LABEL
2155 
2156     // DONE_LABEL is a hot target - we'd really like to place it at the
2157     // start of cache line by padding with NOPs.
2158     // See the AMD and Intel software optimization manuals for the
2159     // most efficient "long" NOP encodings.
2160     // Unfortunately none of our alignment mechanisms suffice.
2161     if ((EmitSync & 65536) == 0) {
2162        bind (CheckSucc);
2163     }
2164 #else // _LP64
2165     // It's inflated
2166     if (EmitSync & 1024) {
2167       // Emit code to check that _owner == Self
2168       // We could fold the _owner test into subsequent code more efficiently
2169       // than using a stand-alone check, but since _owner checking is off by
2170       // default we don't bother. We also might consider predicating the
2171       // _owner==Self check on Xcheck:jni or running on a debug build.
2172       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2173       xorptr(boxReg, r15_thread);
2174     } else {
2175       xorptr(boxReg, boxReg);
2176     }
2177     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2178     jccb  (Assembler::notZero, DONE_LABEL);
2179     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2180     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2181     jccb  (Assembler::notZero, CheckSucc);
2182     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2183     jmpb  (DONE_LABEL);
2184 
2185     if ((EmitSync & 65536) == 0) {
2186       // Try to avoid passing control into the slow_path ...
2187       Label LSuccess, LGoSlowPath ;
2188       bind  (CheckSucc);
2189 
2190       // The following optional optimization can be elided if necessary
2191       // Effectively: if (succ == null) goto SlowPath
2192       // The code reduces the window for a race, however,
2193       // and thus benefits performance.
2194       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2195       jccb  (Assembler::zero, LGoSlowPath);
2196 
2197       xorptr(boxReg, boxReg);
2198       if ((EmitSync & 16) && os::is_MP()) {
2199         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2200       } else {
2201         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2202         if (os::is_MP()) {
2203           // Memory barrier/fence
2204           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2205           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2206           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2207           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2208           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2209           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2210           lock(); addl(Address(rsp, 0), 0);
2211         }
2212       }
2213       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2214       jccb  (Assembler::notZero, LSuccess);
2215 
2216       // Rare inopportune interleaving - race.
2217       // The successor vanished in the small window above.
2218       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2219       // We need to ensure progress and succession.
2220       // Try to reacquire the lock.
2221       // If that fails then the new owner is responsible for succession and this
2222       // thread needs to take no further action and can exit via the fast path (success).
2223       // If the re-acquire succeeds then pass control into the slow path.
2224       // As implemented, this latter mode is horrible because we generated more
2225       // coherence traffic on the lock *and* artifically extended the critical section
2226       // length while by virtue of passing control into the slow path.
2227 
2228       // box is really RAX -- the following CMPXCHG depends on that binding
2229       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2230       if (os::is_MP()) { lock(); }
2231       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2232       // There's no successor so we tried to regrab the lock.
2233       // If that didn't work, then another thread grabbed the
2234       // lock so we're done (and exit was a success).
2235       jccb  (Assembler::notEqual, LSuccess);
2236       // Intentional fall-through into slow-path
2237 
2238       bind  (LGoSlowPath);
2239       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2240       jmpb  (DONE_LABEL);
2241 
2242       bind  (LSuccess);
2243       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2244       jmpb  (DONE_LABEL);
2245     }
2246 
2247     bind  (Stacked);
2248     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2249     if (os::is_MP()) { lock(); }
2250     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2251 
2252     if (EmitSync & 65536) {
2253        bind (CheckSucc);
2254     }
2255 #endif
2256     bind(DONE_LABEL);
2257   }
2258 }
2259 #endif // COMPILER2
2260 
2261 void MacroAssembler::c2bool(Register x) {
2262   // implements x == 0 ? 0 : 1
2263   // note: must only look at least-significant byte of x
2264   //       since C-style booleans are stored in one byte
2265   //       only! (was bug)
2266   andl(x, 0xFF);
2267   setb(Assembler::notZero, x);
2268 }
2269 
2270 // Wouldn't need if AddressLiteral version had new name
2271 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2272   Assembler::call(L, rtype);
2273 }
2274 
2275 void MacroAssembler::call(Register entry) {
2276   Assembler::call(entry);
2277 }
2278 
2279 void MacroAssembler::call(AddressLiteral entry) {
2280   if (reachable(entry)) {
2281     Assembler::call_literal(entry.target(), entry.rspec());
2282   } else {
2283     lea(rscratch1, entry);
2284     Assembler::call(rscratch1);
2285   }
2286 }
2287 
2288 void MacroAssembler::ic_call(address entry, jint method_index) {
2289   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2290   movptr(rax, (intptr_t)Universe::non_oop_word());
2291   call(AddressLiteral(entry, rh));
2292 }
2293 
2294 // Implementation of call_VM versions
2295 
2296 void MacroAssembler::call_VM(Register oop_result,
2297                              address entry_point,
2298                              bool check_exceptions) {
2299   Label C, E;
2300   call(C, relocInfo::none);
2301   jmp(E);
2302 
2303   bind(C);
2304   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2305   ret(0);
2306 
2307   bind(E);
2308 }
2309 
2310 void MacroAssembler::call_VM(Register oop_result,
2311                              address entry_point,
2312                              Register arg_1,
2313                              bool check_exceptions) {
2314   Label C, E;
2315   call(C, relocInfo::none);
2316   jmp(E);
2317 
2318   bind(C);
2319   pass_arg1(this, arg_1);
2320   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2321   ret(0);
2322 
2323   bind(E);
2324 }
2325 
2326 void MacroAssembler::call_VM(Register oop_result,
2327                              address entry_point,
2328                              Register arg_1,
2329                              Register arg_2,
2330                              bool check_exceptions) {
2331   Label C, E;
2332   call(C, relocInfo::none);
2333   jmp(E);
2334 
2335   bind(C);
2336 
2337   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2338 
2339   pass_arg2(this, arg_2);
2340   pass_arg1(this, arg_1);
2341   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2342   ret(0);
2343 
2344   bind(E);
2345 }
2346 
2347 void MacroAssembler::call_VM(Register oop_result,
2348                              address entry_point,
2349                              Register arg_1,
2350                              Register arg_2,
2351                              Register arg_3,
2352                              bool check_exceptions) {
2353   Label C, E;
2354   call(C, relocInfo::none);
2355   jmp(E);
2356 
2357   bind(C);
2358 
2359   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2360   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2361   pass_arg3(this, arg_3);
2362 
2363   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2364   pass_arg2(this, arg_2);
2365 
2366   pass_arg1(this, arg_1);
2367   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2368   ret(0);
2369 
2370   bind(E);
2371 }
2372 
2373 void MacroAssembler::call_VM(Register oop_result,
2374                              Register last_java_sp,
2375                              address entry_point,
2376                              int number_of_arguments,
2377                              bool check_exceptions) {
2378   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2379   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2380 }
2381 
2382 void MacroAssembler::call_VM(Register oop_result,
2383                              Register last_java_sp,
2384                              address entry_point,
2385                              Register arg_1,
2386                              bool check_exceptions) {
2387   pass_arg1(this, arg_1);
2388   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2389 }
2390 
2391 void MacroAssembler::call_VM(Register oop_result,
2392                              Register last_java_sp,
2393                              address entry_point,
2394                              Register arg_1,
2395                              Register arg_2,
2396                              bool check_exceptions) {
2397 
2398   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2399   pass_arg2(this, arg_2);
2400   pass_arg1(this, arg_1);
2401   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2402 }
2403 
2404 void MacroAssembler::call_VM(Register oop_result,
2405                              Register last_java_sp,
2406                              address entry_point,
2407                              Register arg_1,
2408                              Register arg_2,
2409                              Register arg_3,
2410                              bool check_exceptions) {
2411   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2412   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2413   pass_arg3(this, arg_3);
2414   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2415   pass_arg2(this, arg_2);
2416   pass_arg1(this, arg_1);
2417   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2418 }
2419 
2420 void MacroAssembler::super_call_VM(Register oop_result,
2421                                    Register last_java_sp,
2422                                    address entry_point,
2423                                    int number_of_arguments,
2424                                    bool check_exceptions) {
2425   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2426   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2427 }
2428 
2429 void MacroAssembler::super_call_VM(Register oop_result,
2430                                    Register last_java_sp,
2431                                    address entry_point,
2432                                    Register arg_1,
2433                                    bool check_exceptions) {
2434   pass_arg1(this, arg_1);
2435   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2436 }
2437 
2438 void MacroAssembler::super_call_VM(Register oop_result,
2439                                    Register last_java_sp,
2440                                    address entry_point,
2441                                    Register arg_1,
2442                                    Register arg_2,
2443                                    bool check_exceptions) {
2444 
2445   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2446   pass_arg2(this, arg_2);
2447   pass_arg1(this, arg_1);
2448   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2449 }
2450 
2451 void MacroAssembler::super_call_VM(Register oop_result,
2452                                    Register last_java_sp,
2453                                    address entry_point,
2454                                    Register arg_1,
2455                                    Register arg_2,
2456                                    Register arg_3,
2457                                    bool check_exceptions) {
2458   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2459   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2460   pass_arg3(this, arg_3);
2461   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2462   pass_arg2(this, arg_2);
2463   pass_arg1(this, arg_1);
2464   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2465 }
2466 
2467 void MacroAssembler::call_VM_base(Register oop_result,
2468                                   Register java_thread,
2469                                   Register last_java_sp,
2470                                   address  entry_point,
2471                                   int      number_of_arguments,
2472                                   bool     check_exceptions) {
2473   // determine java_thread register
2474   if (!java_thread->is_valid()) {
2475 #ifdef _LP64
2476     java_thread = r15_thread;
2477 #else
2478     java_thread = rdi;
2479     get_thread(java_thread);
2480 #endif // LP64
2481   }
2482   // determine last_java_sp register
2483   if (!last_java_sp->is_valid()) {
2484     last_java_sp = rsp;
2485   }
2486   // debugging support
2487   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2488   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2489 #ifdef ASSERT
2490   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2491   // r12 is the heapbase.
2492   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2493 #endif // ASSERT
2494 
2495   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2496   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2497 
2498   // push java thread (becomes first argument of C function)
2499 
2500   NOT_LP64(push(java_thread); number_of_arguments++);
2501   LP64_ONLY(mov(c_rarg0, r15_thread));
2502 
2503   // set last Java frame before call
2504   assert(last_java_sp != rbp, "can't use ebp/rbp");
2505 
2506   // Only interpreter should have to set fp
2507   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2508 
2509   // do the call, remove parameters
2510   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2511 
2512   // restore the thread (cannot use the pushed argument since arguments
2513   // may be overwritten by C code generated by an optimizing compiler);
2514   // however can use the register value directly if it is callee saved.
2515   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2516     // rdi & rsi (also r15) are callee saved -> nothing to do
2517 #ifdef ASSERT
2518     guarantee(java_thread != rax, "change this code");
2519     push(rax);
2520     { Label L;
2521       get_thread(rax);
2522       cmpptr(java_thread, rax);
2523       jcc(Assembler::equal, L);
2524       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2525       bind(L);
2526     }
2527     pop(rax);
2528 #endif
2529   } else {
2530     get_thread(java_thread);
2531   }
2532   // reset last Java frame
2533   // Only interpreter should have to clear fp
2534   reset_last_Java_frame(java_thread, true, false);
2535 
2536    // C++ interp handles this in the interpreter
2537   check_and_handle_popframe(java_thread);
2538   check_and_handle_earlyret(java_thread);
2539 
2540   if (check_exceptions) {
2541     // check for pending exceptions (java_thread is set upon return)
2542     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2543 #ifndef _LP64
2544     jump_cc(Assembler::notEqual,
2545             RuntimeAddress(StubRoutines::forward_exception_entry()));
2546 #else
2547     // This used to conditionally jump to forward_exception however it is
2548     // possible if we relocate that the branch will not reach. So we must jump
2549     // around so we can always reach
2550 
2551     Label ok;
2552     jcc(Assembler::equal, ok);
2553     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2554     bind(ok);
2555 #endif // LP64
2556   }
2557 
2558   // get oop result if there is one and reset the value in the thread
2559   if (oop_result->is_valid()) {
2560     get_vm_result(oop_result, java_thread);
2561   }
2562 }
2563 
2564 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2565 
2566   // Calculate the value for last_Java_sp
2567   // somewhat subtle. call_VM does an intermediate call
2568   // which places a return address on the stack just under the
2569   // stack pointer as the user finsihed with it. This allows
2570   // use to retrieve last_Java_pc from last_Java_sp[-1].
2571   // On 32bit we then have to push additional args on the stack to accomplish
2572   // the actual requested call. On 64bit call_VM only can use register args
2573   // so the only extra space is the return address that call_VM created.
2574   // This hopefully explains the calculations here.
2575 
2576 #ifdef _LP64
2577   // We've pushed one address, correct last_Java_sp
2578   lea(rax, Address(rsp, wordSize));
2579 #else
2580   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2581 #endif // LP64
2582 
2583   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2584 
2585 }
2586 
2587 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2588   call_VM_leaf_base(entry_point, number_of_arguments);
2589 }
2590 
2591 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2592   pass_arg0(this, arg_0);
2593   call_VM_leaf(entry_point, 1);
2594 }
2595 
2596 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2597 
2598   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2599   pass_arg1(this, arg_1);
2600   pass_arg0(this, arg_0);
2601   call_VM_leaf(entry_point, 2);
2602 }
2603 
2604 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2605   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2606   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2607   pass_arg2(this, arg_2);
2608   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2609   pass_arg1(this, arg_1);
2610   pass_arg0(this, arg_0);
2611   call_VM_leaf(entry_point, 3);
2612 }
2613 
2614 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2615   pass_arg0(this, arg_0);
2616   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2617 }
2618 
2619 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2620 
2621   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2622   pass_arg1(this, arg_1);
2623   pass_arg0(this, arg_0);
2624   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2625 }
2626 
2627 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2628   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2629   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2630   pass_arg2(this, arg_2);
2631   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2632   pass_arg1(this, arg_1);
2633   pass_arg0(this, arg_0);
2634   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2635 }
2636 
2637 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2638   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2639   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2640   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2641   pass_arg3(this, arg_3);
2642   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2643   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2644   pass_arg2(this, arg_2);
2645   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2646   pass_arg1(this, arg_1);
2647   pass_arg0(this, arg_0);
2648   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2649 }
2650 
2651 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2652   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2653   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2654   verify_oop(oop_result, "broken oop in call_VM_base");
2655 }
2656 
2657 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2658   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2659   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2660 }
2661 
2662 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2663 }
2664 
2665 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2666 }
2667 
2668 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2669   if (reachable(src1)) {
2670     cmpl(as_Address(src1), imm);
2671   } else {
2672     lea(rscratch1, src1);
2673     cmpl(Address(rscratch1, 0), imm);
2674   }
2675 }
2676 
2677 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2678   assert(!src2.is_lval(), "use cmpptr");
2679   if (reachable(src2)) {
2680     cmpl(src1, as_Address(src2));
2681   } else {
2682     lea(rscratch1, src2);
2683     cmpl(src1, Address(rscratch1, 0));
2684   }
2685 }
2686 
2687 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2688   Assembler::cmpl(src1, imm);
2689 }
2690 
2691 void MacroAssembler::cmp32(Register src1, Address src2) {
2692   Assembler::cmpl(src1, src2);
2693 }
2694 
2695 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2696   ucomisd(opr1, opr2);
2697 
2698   Label L;
2699   if (unordered_is_less) {
2700     movl(dst, -1);
2701     jcc(Assembler::parity, L);
2702     jcc(Assembler::below , L);
2703     movl(dst, 0);
2704     jcc(Assembler::equal , L);
2705     increment(dst);
2706   } else { // unordered is greater
2707     movl(dst, 1);
2708     jcc(Assembler::parity, L);
2709     jcc(Assembler::above , L);
2710     movl(dst, 0);
2711     jcc(Assembler::equal , L);
2712     decrementl(dst);
2713   }
2714   bind(L);
2715 }
2716 
2717 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2718   ucomiss(opr1, opr2);
2719 
2720   Label L;
2721   if (unordered_is_less) {
2722     movl(dst, -1);
2723     jcc(Assembler::parity, L);
2724     jcc(Assembler::below , L);
2725     movl(dst, 0);
2726     jcc(Assembler::equal , L);
2727     increment(dst);
2728   } else { // unordered is greater
2729     movl(dst, 1);
2730     jcc(Assembler::parity, L);
2731     jcc(Assembler::above , L);
2732     movl(dst, 0);
2733     jcc(Assembler::equal , L);
2734     decrementl(dst);
2735   }
2736   bind(L);
2737 }
2738 
2739 
2740 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2741   if (reachable(src1)) {
2742     cmpb(as_Address(src1), imm);
2743   } else {
2744     lea(rscratch1, src1);
2745     cmpb(Address(rscratch1, 0), imm);
2746   }
2747 }
2748 
2749 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2750 #ifdef _LP64
2751   if (src2.is_lval()) {
2752     movptr(rscratch1, src2);
2753     Assembler::cmpq(src1, rscratch1);
2754   } else if (reachable(src2)) {
2755     cmpq(src1, as_Address(src2));
2756   } else {
2757     lea(rscratch1, src2);
2758     Assembler::cmpq(src1, Address(rscratch1, 0));
2759   }
2760 #else
2761   if (src2.is_lval()) {
2762     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2763   } else {
2764     cmpl(src1, as_Address(src2));
2765   }
2766 #endif // _LP64
2767 }
2768 
2769 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2770   assert(src2.is_lval(), "not a mem-mem compare");
2771 #ifdef _LP64
2772   // moves src2's literal address
2773   movptr(rscratch1, src2);
2774   Assembler::cmpq(src1, rscratch1);
2775 #else
2776   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2777 #endif // _LP64
2778 }
2779 
2780 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2781   if (reachable(adr)) {
2782     if (os::is_MP())
2783       lock();
2784     cmpxchgptr(reg, as_Address(adr));
2785   } else {
2786     lea(rscratch1, adr);
2787     if (os::is_MP())
2788       lock();
2789     cmpxchgptr(reg, Address(rscratch1, 0));
2790   }
2791 }
2792 
2793 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2794   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2795 }
2796 
2797 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2798   if (reachable(src)) {
2799     Assembler::comisd(dst, as_Address(src));
2800   } else {
2801     lea(rscratch1, src);
2802     Assembler::comisd(dst, Address(rscratch1, 0));
2803   }
2804 }
2805 
2806 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2807   if (reachable(src)) {
2808     Assembler::comiss(dst, as_Address(src));
2809   } else {
2810     lea(rscratch1, src);
2811     Assembler::comiss(dst, Address(rscratch1, 0));
2812   }
2813 }
2814 
2815 
2816 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2817   Condition negated_cond = negate_condition(cond);
2818   Label L;
2819   jcc(negated_cond, L);
2820   pushf(); // Preserve flags
2821   atomic_incl(counter_addr);
2822   popf();
2823   bind(L);
2824 }
2825 
2826 int MacroAssembler::corrected_idivl(Register reg) {
2827   // Full implementation of Java idiv and irem; checks for
2828   // special case as described in JVM spec., p.243 & p.271.
2829   // The function returns the (pc) offset of the idivl
2830   // instruction - may be needed for implicit exceptions.
2831   //
2832   //         normal case                           special case
2833   //
2834   // input : rax,: dividend                         min_int
2835   //         reg: divisor   (may not be rax,/rdx)   -1
2836   //
2837   // output: rax,: quotient  (= rax, idiv reg)       min_int
2838   //         rdx: remainder (= rax, irem reg)       0
2839   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2840   const int min_int = 0x80000000;
2841   Label normal_case, special_case;
2842 
2843   // check for special case
2844   cmpl(rax, min_int);
2845   jcc(Assembler::notEqual, normal_case);
2846   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2847   cmpl(reg, -1);
2848   jcc(Assembler::equal, special_case);
2849 
2850   // handle normal case
2851   bind(normal_case);
2852   cdql();
2853   int idivl_offset = offset();
2854   idivl(reg);
2855 
2856   // normal and special case exit
2857   bind(special_case);
2858 
2859   return idivl_offset;
2860 }
2861 
2862 
2863 
2864 void MacroAssembler::decrementl(Register reg, int value) {
2865   if (value == min_jint) {subl(reg, value) ; return; }
2866   if (value <  0) { incrementl(reg, -value); return; }
2867   if (value == 0) {                        ; return; }
2868   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2869   /* else */      { subl(reg, value)       ; return; }
2870 }
2871 
2872 void MacroAssembler::decrementl(Address dst, int value) {
2873   if (value == min_jint) {subl(dst, value) ; return; }
2874   if (value <  0) { incrementl(dst, -value); return; }
2875   if (value == 0) {                        ; return; }
2876   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2877   /* else */      { subl(dst, value)       ; return; }
2878 }
2879 
2880 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2881   assert (shift_value > 0, "illegal shift value");
2882   Label _is_positive;
2883   testl (reg, reg);
2884   jcc (Assembler::positive, _is_positive);
2885   int offset = (1 << shift_value) - 1 ;
2886 
2887   if (offset == 1) {
2888     incrementl(reg);
2889   } else {
2890     addl(reg, offset);
2891   }
2892 
2893   bind (_is_positive);
2894   sarl(reg, shift_value);
2895 }
2896 
2897 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2898   if (reachable(src)) {
2899     Assembler::divsd(dst, as_Address(src));
2900   } else {
2901     lea(rscratch1, src);
2902     Assembler::divsd(dst, Address(rscratch1, 0));
2903   }
2904 }
2905 
2906 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2907   if (reachable(src)) {
2908     Assembler::divss(dst, as_Address(src));
2909   } else {
2910     lea(rscratch1, src);
2911     Assembler::divss(dst, Address(rscratch1, 0));
2912   }
2913 }
2914 
2915 // !defined(COMPILER2) is because of stupid core builds
2916 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2917 void MacroAssembler::empty_FPU_stack() {
2918   if (VM_Version::supports_mmx()) {
2919     emms();
2920   } else {
2921     for (int i = 8; i-- > 0; ) ffree(i);
2922   }
2923 }
2924 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2925 
2926 
2927 // Defines obj, preserves var_size_in_bytes
2928 void MacroAssembler::eden_allocate(Register obj,
2929                                    Register var_size_in_bytes,
2930                                    int con_size_in_bytes,
2931                                    Register t1,
2932                                    Label& slow_case) {
2933   assert(obj == rax, "obj must be in rax, for cmpxchg");
2934   assert_different_registers(obj, var_size_in_bytes, t1);
2935   if (!Universe::heap()->supports_inline_contig_alloc()) {
2936     jmp(slow_case);
2937   } else {
2938     Register end = t1;
2939     Label retry;
2940     bind(retry);
2941     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2942     movptr(obj, heap_top);
2943     if (var_size_in_bytes == noreg) {
2944       lea(end, Address(obj, con_size_in_bytes));
2945     } else {
2946       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2947     }
2948     // if end < obj then we wrapped around => object too long => slow case
2949     cmpptr(end, obj);
2950     jcc(Assembler::below, slow_case);
2951     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2952     jcc(Assembler::above, slow_case);
2953     // Compare obj with the top addr, and if still equal, store the new top addr in
2954     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2955     // it otherwise. Use lock prefix for atomicity on MPs.
2956     locked_cmpxchgptr(end, heap_top);
2957     jcc(Assembler::notEqual, retry);
2958   }
2959 }
2960 
2961 void MacroAssembler::enter() {
2962   push(rbp);
2963   mov(rbp, rsp);
2964 }
2965 
2966 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2967 void MacroAssembler::fat_nop() {
2968   if (UseAddressNop) {
2969     addr_nop_5();
2970   } else {
2971     emit_int8(0x26); // es:
2972     emit_int8(0x2e); // cs:
2973     emit_int8(0x64); // fs:
2974     emit_int8(0x65); // gs:
2975     emit_int8((unsigned char)0x90);
2976   }
2977 }
2978 
2979 void MacroAssembler::fcmp(Register tmp) {
2980   fcmp(tmp, 1, true, true);
2981 }
2982 
2983 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2984   assert(!pop_right || pop_left, "usage error");
2985   if (VM_Version::supports_cmov()) {
2986     assert(tmp == noreg, "unneeded temp");
2987     if (pop_left) {
2988       fucomip(index);
2989     } else {
2990       fucomi(index);
2991     }
2992     if (pop_right) {
2993       fpop();
2994     }
2995   } else {
2996     assert(tmp != noreg, "need temp");
2997     if (pop_left) {
2998       if (pop_right) {
2999         fcompp();
3000       } else {
3001         fcomp(index);
3002       }
3003     } else {
3004       fcom(index);
3005     }
3006     // convert FPU condition into eflags condition via rax,
3007     save_rax(tmp);
3008     fwait(); fnstsw_ax();
3009     sahf();
3010     restore_rax(tmp);
3011   }
3012   // condition codes set as follows:
3013   //
3014   // CF (corresponds to C0) if x < y
3015   // PF (corresponds to C2) if unordered
3016   // ZF (corresponds to C3) if x = y
3017 }
3018 
3019 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3020   fcmp2int(dst, unordered_is_less, 1, true, true);
3021 }
3022 
3023 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3024   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3025   Label L;
3026   if (unordered_is_less) {
3027     movl(dst, -1);
3028     jcc(Assembler::parity, L);
3029     jcc(Assembler::below , L);
3030     movl(dst, 0);
3031     jcc(Assembler::equal , L);
3032     increment(dst);
3033   } else { // unordered is greater
3034     movl(dst, 1);
3035     jcc(Assembler::parity, L);
3036     jcc(Assembler::above , L);
3037     movl(dst, 0);
3038     jcc(Assembler::equal , L);
3039     decrementl(dst);
3040   }
3041   bind(L);
3042 }
3043 
3044 void MacroAssembler::fld_d(AddressLiteral src) {
3045   fld_d(as_Address(src));
3046 }
3047 
3048 void MacroAssembler::fld_s(AddressLiteral src) {
3049   fld_s(as_Address(src));
3050 }
3051 
3052 void MacroAssembler::fld_x(AddressLiteral src) {
3053   Assembler::fld_x(as_Address(src));
3054 }
3055 
3056 void MacroAssembler::fldcw(AddressLiteral src) {
3057   Assembler::fldcw(as_Address(src));
3058 }
3059 
3060 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3061   if (reachable(src)) {
3062     Assembler::mulpd(dst, as_Address(src));
3063   } else {
3064     lea(rscratch1, src);
3065     Assembler::mulpd(dst, Address(rscratch1, 0));
3066   }
3067 }
3068 
3069 void MacroAssembler::increase_precision() {
3070   subptr(rsp, BytesPerWord);
3071   fnstcw(Address(rsp, 0));
3072   movl(rax, Address(rsp, 0));
3073   orl(rax, 0x300);
3074   push(rax);
3075   fldcw(Address(rsp, 0));
3076   pop(rax);
3077 }
3078 
3079 void MacroAssembler::restore_precision() {
3080   fldcw(Address(rsp, 0));
3081   addptr(rsp, BytesPerWord);
3082 }
3083 
3084 void MacroAssembler::fpop() {
3085   ffree();
3086   fincstp();
3087 }
3088 
3089 void MacroAssembler::load_float(Address src) {
3090   if (UseSSE >= 1) {
3091     movflt(xmm0, src);
3092   } else {
3093     LP64_ONLY(ShouldNotReachHere());
3094     NOT_LP64(fld_s(src));
3095   }
3096 }
3097 
3098 void MacroAssembler::store_float(Address dst) {
3099   if (UseSSE >= 1) {
3100     movflt(dst, xmm0);
3101   } else {
3102     LP64_ONLY(ShouldNotReachHere());
3103     NOT_LP64(fstp_s(dst));
3104   }
3105 }
3106 
3107 void MacroAssembler::load_double(Address src) {
3108   if (UseSSE >= 2) {
3109     movdbl(xmm0, src);
3110   } else {
3111     LP64_ONLY(ShouldNotReachHere());
3112     NOT_LP64(fld_d(src));
3113   }
3114 }
3115 
3116 void MacroAssembler::store_double(Address dst) {
3117   if (UseSSE >= 2) {
3118     movdbl(dst, xmm0);
3119   } else {
3120     LP64_ONLY(ShouldNotReachHere());
3121     NOT_LP64(fstp_d(dst));
3122   }
3123 }
3124 
3125 void MacroAssembler::fremr(Register tmp) {
3126   save_rax(tmp);
3127   { Label L;
3128     bind(L);
3129     fprem();
3130     fwait(); fnstsw_ax();
3131 #ifdef _LP64
3132     testl(rax, 0x400);
3133     jcc(Assembler::notEqual, L);
3134 #else
3135     sahf();
3136     jcc(Assembler::parity, L);
3137 #endif // _LP64
3138   }
3139   restore_rax(tmp);
3140   // Result is in ST0.
3141   // Note: fxch & fpop to get rid of ST1
3142   // (otherwise FPU stack could overflow eventually)
3143   fxch(1);
3144   fpop();
3145 }
3146 
3147 
3148 void MacroAssembler::incrementl(AddressLiteral dst) {
3149   if (reachable(dst)) {
3150     incrementl(as_Address(dst));
3151   } else {
3152     lea(rscratch1, dst);
3153     incrementl(Address(rscratch1, 0));
3154   }
3155 }
3156 
3157 void MacroAssembler::incrementl(ArrayAddress dst) {
3158   incrementl(as_Address(dst));
3159 }
3160 
3161 void MacroAssembler::incrementl(Register reg, int value) {
3162   if (value == min_jint) {addl(reg, value) ; return; }
3163   if (value <  0) { decrementl(reg, -value); return; }
3164   if (value == 0) {                        ; return; }
3165   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3166   /* else */      { addl(reg, value)       ; return; }
3167 }
3168 
3169 void MacroAssembler::incrementl(Address dst, int value) {
3170   if (value == min_jint) {addl(dst, value) ; return; }
3171   if (value <  0) { decrementl(dst, -value); return; }
3172   if (value == 0) {                        ; return; }
3173   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3174   /* else */      { addl(dst, value)       ; return; }
3175 }
3176 
3177 void MacroAssembler::jump(AddressLiteral dst) {
3178   if (reachable(dst)) {
3179     jmp_literal(dst.target(), dst.rspec());
3180   } else {
3181     lea(rscratch1, dst);
3182     jmp(rscratch1);
3183   }
3184 }
3185 
3186 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3187   if (reachable(dst)) {
3188     InstructionMark im(this);
3189     relocate(dst.reloc());
3190     const int short_size = 2;
3191     const int long_size = 6;
3192     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3193     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3194       // 0111 tttn #8-bit disp
3195       emit_int8(0x70 | cc);
3196       emit_int8((offs - short_size) & 0xFF);
3197     } else {
3198       // 0000 1111 1000 tttn #32-bit disp
3199       emit_int8(0x0F);
3200       emit_int8((unsigned char)(0x80 | cc));
3201       emit_int32(offs - long_size);
3202     }
3203   } else {
3204 #ifdef ASSERT
3205     warning("reversing conditional branch");
3206 #endif /* ASSERT */
3207     Label skip;
3208     jccb(reverse[cc], skip);
3209     lea(rscratch1, dst);
3210     Assembler::jmp(rscratch1);
3211     bind(skip);
3212   }
3213 }
3214 
3215 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3216   if (reachable(src)) {
3217     Assembler::ldmxcsr(as_Address(src));
3218   } else {
3219     lea(rscratch1, src);
3220     Assembler::ldmxcsr(Address(rscratch1, 0));
3221   }
3222 }
3223 
3224 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3225   int off;
3226   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3227     off = offset();
3228     movsbl(dst, src); // movsxb
3229   } else {
3230     off = load_unsigned_byte(dst, src);
3231     shll(dst, 24);
3232     sarl(dst, 24);
3233   }
3234   return off;
3235 }
3236 
3237 // Note: load_signed_short used to be called load_signed_word.
3238 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3239 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3240 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3241 int MacroAssembler::load_signed_short(Register dst, Address src) {
3242   int off;
3243   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3244     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3245     // version but this is what 64bit has always done. This seems to imply
3246     // that users are only using 32bits worth.
3247     off = offset();
3248     movswl(dst, src); // movsxw
3249   } else {
3250     off = load_unsigned_short(dst, src);
3251     shll(dst, 16);
3252     sarl(dst, 16);
3253   }
3254   return off;
3255 }
3256 
3257 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3258   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3259   // and "3.9 Partial Register Penalties", p. 22).
3260   int off;
3261   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3262     off = offset();
3263     movzbl(dst, src); // movzxb
3264   } else {
3265     xorl(dst, dst);
3266     off = offset();
3267     movb(dst, src);
3268   }
3269   return off;
3270 }
3271 
3272 // Note: load_unsigned_short used to be called load_unsigned_word.
3273 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3274   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3275   // and "3.9 Partial Register Penalties", p. 22).
3276   int off;
3277   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3278     off = offset();
3279     movzwl(dst, src); // movzxw
3280   } else {
3281     xorl(dst, dst);
3282     off = offset();
3283     movw(dst, src);
3284   }
3285   return off;
3286 }
3287 
3288 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3289   switch (size_in_bytes) {
3290 #ifndef _LP64
3291   case  8:
3292     assert(dst2 != noreg, "second dest register required");
3293     movl(dst,  src);
3294     movl(dst2, src.plus_disp(BytesPerInt));
3295     break;
3296 #else
3297   case  8:  movq(dst, src); break;
3298 #endif
3299   case  4:  movl(dst, src); break;
3300   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3301   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3302   default:  ShouldNotReachHere();
3303   }
3304 }
3305 
3306 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3307   switch (size_in_bytes) {
3308 #ifndef _LP64
3309   case  8:
3310     assert(src2 != noreg, "second source register required");
3311     movl(dst,                        src);
3312     movl(dst.plus_disp(BytesPerInt), src2);
3313     break;
3314 #else
3315   case  8:  movq(dst, src); break;
3316 #endif
3317   case  4:  movl(dst, src); break;
3318   case  2:  movw(dst, src); break;
3319   case  1:  movb(dst, src); break;
3320   default:  ShouldNotReachHere();
3321   }
3322 }
3323 
3324 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3325   if (reachable(dst)) {
3326     movl(as_Address(dst), src);
3327   } else {
3328     lea(rscratch1, dst);
3329     movl(Address(rscratch1, 0), src);
3330   }
3331 }
3332 
3333 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3334   if (reachable(src)) {
3335     movl(dst, as_Address(src));
3336   } else {
3337     lea(rscratch1, src);
3338     movl(dst, Address(rscratch1, 0));
3339   }
3340 }
3341 
3342 // C++ bool manipulation
3343 
3344 void MacroAssembler::movbool(Register dst, Address src) {
3345   if(sizeof(bool) == 1)
3346     movb(dst, src);
3347   else if(sizeof(bool) == 2)
3348     movw(dst, src);
3349   else if(sizeof(bool) == 4)
3350     movl(dst, src);
3351   else
3352     // unsupported
3353     ShouldNotReachHere();
3354 }
3355 
3356 void MacroAssembler::movbool(Address dst, bool boolconst) {
3357   if(sizeof(bool) == 1)
3358     movb(dst, (int) boolconst);
3359   else if(sizeof(bool) == 2)
3360     movw(dst, (int) boolconst);
3361   else if(sizeof(bool) == 4)
3362     movl(dst, (int) boolconst);
3363   else
3364     // unsupported
3365     ShouldNotReachHere();
3366 }
3367 
3368 void MacroAssembler::movbool(Address dst, Register src) {
3369   if(sizeof(bool) == 1)
3370     movb(dst, src);
3371   else if(sizeof(bool) == 2)
3372     movw(dst, src);
3373   else if(sizeof(bool) == 4)
3374     movl(dst, src);
3375   else
3376     // unsupported
3377     ShouldNotReachHere();
3378 }
3379 
3380 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3381   movb(as_Address(dst), src);
3382 }
3383 
3384 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3385   if (reachable(src)) {
3386     movdl(dst, as_Address(src));
3387   } else {
3388     lea(rscratch1, src);
3389     movdl(dst, Address(rscratch1, 0));
3390   }
3391 }
3392 
3393 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3394   if (reachable(src)) {
3395     movq(dst, as_Address(src));
3396   } else {
3397     lea(rscratch1, src);
3398     movq(dst, Address(rscratch1, 0));
3399   }
3400 }
3401 
3402 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3403   if (reachable(src)) {
3404     if (UseXmmLoadAndClearUpper) {
3405       movsd (dst, as_Address(src));
3406     } else {
3407       movlpd(dst, as_Address(src));
3408     }
3409   } else {
3410     lea(rscratch1, src);
3411     if (UseXmmLoadAndClearUpper) {
3412       movsd (dst, Address(rscratch1, 0));
3413     } else {
3414       movlpd(dst, Address(rscratch1, 0));
3415     }
3416   }
3417 }
3418 
3419 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3420   if (reachable(src)) {
3421     movss(dst, as_Address(src));
3422   } else {
3423     lea(rscratch1, src);
3424     movss(dst, Address(rscratch1, 0));
3425   }
3426 }
3427 
3428 void MacroAssembler::movptr(Register dst, Register src) {
3429   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3430 }
3431 
3432 void MacroAssembler::movptr(Register dst, Address src) {
3433   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3434 }
3435 
3436 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3437 void MacroAssembler::movptr(Register dst, intptr_t src) {
3438   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3439 }
3440 
3441 void MacroAssembler::movptr(Address dst, Register src) {
3442   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3443 }
3444 
3445 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3446   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3447     Assembler::vextractf32x4(dst, src, 0);
3448   } else {
3449     Assembler::movdqu(dst, src);
3450   }
3451 }
3452 
3453 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3454   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3455     Assembler::vinsertf32x4(dst, dst, src, 0);
3456   } else {
3457     Assembler::movdqu(dst, src);
3458   }
3459 }
3460 
3461 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3462   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3463     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3464   } else {
3465     Assembler::movdqu(dst, src);
3466   }
3467 }
3468 
3469 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3470   if (reachable(src)) {
3471     movdqu(dst, as_Address(src));
3472   } else {
3473     lea(rscratch1, src);
3474     movdqu(dst, Address(rscratch1, 0));
3475   }
3476 }
3477 
3478 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3479   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3480     vextractf64x4_low(dst, src);
3481   } else {
3482     Assembler::vmovdqu(dst, src);
3483   }
3484 }
3485 
3486 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3487   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3488     vinsertf64x4_low(dst, src);
3489   } else {
3490     Assembler::vmovdqu(dst, src);
3491   }
3492 }
3493 
3494 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3495   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3496     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3497   }
3498   else {
3499     Assembler::vmovdqu(dst, src);
3500   }
3501 }
3502 
3503 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3504   if (reachable(src)) {
3505     vmovdqu(dst, as_Address(src));
3506   }
3507   else {
3508     lea(rscratch1, src);
3509     vmovdqu(dst, Address(rscratch1, 0));
3510   }
3511 }
3512 
3513 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3514   if (reachable(src)) {
3515     Assembler::movdqa(dst, as_Address(src));
3516   } else {
3517     lea(rscratch1, src);
3518     Assembler::movdqa(dst, Address(rscratch1, 0));
3519   }
3520 }
3521 
3522 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3523   if (reachable(src)) {
3524     Assembler::movsd(dst, as_Address(src));
3525   } else {
3526     lea(rscratch1, src);
3527     Assembler::movsd(dst, Address(rscratch1, 0));
3528   }
3529 }
3530 
3531 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3532   if (reachable(src)) {
3533     Assembler::movss(dst, as_Address(src));
3534   } else {
3535     lea(rscratch1, src);
3536     Assembler::movss(dst, Address(rscratch1, 0));
3537   }
3538 }
3539 
3540 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3541   if (reachable(src)) {
3542     Assembler::mulsd(dst, as_Address(src));
3543   } else {
3544     lea(rscratch1, src);
3545     Assembler::mulsd(dst, Address(rscratch1, 0));
3546   }
3547 }
3548 
3549 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3550   if (reachable(src)) {
3551     Assembler::mulss(dst, as_Address(src));
3552   } else {
3553     lea(rscratch1, src);
3554     Assembler::mulss(dst, Address(rscratch1, 0));
3555   }
3556 }
3557 
3558 void MacroAssembler::null_check(Register reg, int offset) {
3559   if (needs_explicit_null_check(offset)) {
3560     // provoke OS NULL exception if reg = NULL by
3561     // accessing M[reg] w/o changing any (non-CC) registers
3562     // NOTE: cmpl is plenty here to provoke a segv
3563     cmpptr(rax, Address(reg, 0));
3564     // Note: should probably use testl(rax, Address(reg, 0));
3565     //       may be shorter code (however, this version of
3566     //       testl needs to be implemented first)
3567   } else {
3568     // nothing to do, (later) access of M[reg + offset]
3569     // will provoke OS NULL exception if reg = NULL
3570   }
3571 }
3572 
3573 void MacroAssembler::os_breakpoint() {
3574   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3575   // (e.g., MSVC can't call ps() otherwise)
3576   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3577 }
3578 
3579 #ifdef _LP64
3580 #define XSTATE_BV 0x200
3581 #endif
3582 
3583 void MacroAssembler::pop_CPU_state() {
3584   pop_FPU_state();
3585   pop_IU_state();
3586 }
3587 
3588 void MacroAssembler::pop_FPU_state() {
3589 #ifndef _LP64
3590   frstor(Address(rsp, 0));
3591 #else
3592   fxrstor(Address(rsp, 0));
3593 #endif
3594   addptr(rsp, FPUStateSizeInWords * wordSize);
3595 }
3596 
3597 void MacroAssembler::pop_IU_state() {
3598   popa();
3599   LP64_ONLY(addq(rsp, 8));
3600   popf();
3601 }
3602 
3603 // Save Integer and Float state
3604 // Warning: Stack must be 16 byte aligned (64bit)
3605 void MacroAssembler::push_CPU_state() {
3606   push_IU_state();
3607   push_FPU_state();
3608 }
3609 
3610 void MacroAssembler::push_FPU_state() {
3611   subptr(rsp, FPUStateSizeInWords * wordSize);
3612 #ifndef _LP64
3613   fnsave(Address(rsp, 0));
3614   fwait();
3615 #else
3616   fxsave(Address(rsp, 0));
3617 #endif // LP64
3618 }
3619 
3620 void MacroAssembler::push_IU_state() {
3621   // Push flags first because pusha kills them
3622   pushf();
3623   // Make sure rsp stays 16-byte aligned
3624   LP64_ONLY(subq(rsp, 8));
3625   pusha();
3626 }
3627 
3628 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3629   // determine java_thread register
3630   if (!java_thread->is_valid()) {
3631     java_thread = rdi;
3632     get_thread(java_thread);
3633   }
3634   // we must set sp to zero to clear frame
3635   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3636   if (clear_fp) {
3637     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3638   }
3639 
3640   if (clear_pc)
3641     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3642 
3643 }
3644 
3645 void MacroAssembler::restore_rax(Register tmp) {
3646   if (tmp == noreg) pop(rax);
3647   else if (tmp != rax) mov(rax, tmp);
3648 }
3649 
3650 void MacroAssembler::round_to(Register reg, int modulus) {
3651   addptr(reg, modulus - 1);
3652   andptr(reg, -modulus);
3653 }
3654 
3655 void MacroAssembler::save_rax(Register tmp) {
3656   if (tmp == noreg) push(rax);
3657   else if (tmp != rax) mov(tmp, rax);
3658 }
3659 
3660 // Write serialization page so VM thread can do a pseudo remote membar.
3661 // We use the current thread pointer to calculate a thread specific
3662 // offset to write to within the page. This minimizes bus traffic
3663 // due to cache line collision.
3664 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3665   movl(tmp, thread);
3666   shrl(tmp, os::get_serialize_page_shift_count());
3667   andl(tmp, (os::vm_page_size() - sizeof(int)));
3668 
3669   Address index(noreg, tmp, Address::times_1);
3670   ExternalAddress page(os::get_memory_serialize_page());
3671 
3672   // Size of store must match masking code above
3673   movl(as_Address(ArrayAddress(page, index)), tmp);
3674 }
3675 
3676 // Calls to C land
3677 //
3678 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3679 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3680 // has to be reset to 0. This is required to allow proper stack traversal.
3681 void MacroAssembler::set_last_Java_frame(Register java_thread,
3682                                          Register last_java_sp,
3683                                          Register last_java_fp,
3684                                          address  last_java_pc) {
3685   // determine java_thread register
3686   if (!java_thread->is_valid()) {
3687     java_thread = rdi;
3688     get_thread(java_thread);
3689   }
3690   // determine last_java_sp register
3691   if (!last_java_sp->is_valid()) {
3692     last_java_sp = rsp;
3693   }
3694 
3695   // last_java_fp is optional
3696 
3697   if (last_java_fp->is_valid()) {
3698     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3699   }
3700 
3701   // last_java_pc is optional
3702 
3703   if (last_java_pc != NULL) {
3704     lea(Address(java_thread,
3705                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3706         InternalAddress(last_java_pc));
3707 
3708   }
3709   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3710 }
3711 
3712 void MacroAssembler::shlptr(Register dst, int imm8) {
3713   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3714 }
3715 
3716 void MacroAssembler::shrptr(Register dst, int imm8) {
3717   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3718 }
3719 
3720 void MacroAssembler::sign_extend_byte(Register reg) {
3721   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3722     movsbl(reg, reg); // movsxb
3723   } else {
3724     shll(reg, 24);
3725     sarl(reg, 24);
3726   }
3727 }
3728 
3729 void MacroAssembler::sign_extend_short(Register reg) {
3730   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3731     movswl(reg, reg); // movsxw
3732   } else {
3733     shll(reg, 16);
3734     sarl(reg, 16);
3735   }
3736 }
3737 
3738 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3739   assert(reachable(src), "Address should be reachable");
3740   testl(dst, as_Address(src));
3741 }
3742 
3743 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3744   int dst_enc = dst->encoding();
3745   int src_enc = src->encoding();
3746   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3747     Assembler::pcmpeqb(dst, src);
3748   } else if ((dst_enc < 16) && (src_enc < 16)) {
3749     Assembler::pcmpeqb(dst, src);
3750   } else if (src_enc < 16) {
3751     subptr(rsp, 64);
3752     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3753     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3754     Assembler::pcmpeqb(xmm0, src);
3755     movdqu(dst, xmm0);
3756     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3757     addptr(rsp, 64);
3758   } else if (dst_enc < 16) {
3759     subptr(rsp, 64);
3760     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3761     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3762     Assembler::pcmpeqb(dst, xmm0);
3763     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3764     addptr(rsp, 64);
3765   } else {
3766     subptr(rsp, 64);
3767     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3768     subptr(rsp, 64);
3769     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3770     movdqu(xmm0, src);
3771     movdqu(xmm1, dst);
3772     Assembler::pcmpeqb(xmm1, xmm0);
3773     movdqu(dst, xmm1);
3774     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3775     addptr(rsp, 64);
3776     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3777     addptr(rsp, 64);
3778   }
3779 }
3780 
3781 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3782   int dst_enc = dst->encoding();
3783   int src_enc = src->encoding();
3784   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3785     Assembler::pcmpeqw(dst, src);
3786   } else if ((dst_enc < 16) && (src_enc < 16)) {
3787     Assembler::pcmpeqw(dst, src);
3788   } else if (src_enc < 16) {
3789     subptr(rsp, 64);
3790     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3791     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3792     Assembler::pcmpeqw(xmm0, src);
3793     movdqu(dst, xmm0);
3794     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3795     addptr(rsp, 64);
3796   } else if (dst_enc < 16) {
3797     subptr(rsp, 64);
3798     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3799     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3800     Assembler::pcmpeqw(dst, xmm0);
3801     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3802     addptr(rsp, 64);
3803   } else {
3804     subptr(rsp, 64);
3805     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3806     subptr(rsp, 64);
3807     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3808     movdqu(xmm0, src);
3809     movdqu(xmm1, dst);
3810     Assembler::pcmpeqw(xmm1, xmm0);
3811     movdqu(dst, xmm1);
3812     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3813     addptr(rsp, 64);
3814     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3815     addptr(rsp, 64);
3816   }
3817 }
3818 
3819 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3820   int dst_enc = dst->encoding();
3821   if (dst_enc < 16) {
3822     Assembler::pcmpestri(dst, src, imm8);
3823   } else {
3824     subptr(rsp, 64);
3825     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3826     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3827     Assembler::pcmpestri(xmm0, src, imm8);
3828     movdqu(dst, xmm0);
3829     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3830     addptr(rsp, 64);
3831   }
3832 }
3833 
3834 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3835   int dst_enc = dst->encoding();
3836   int src_enc = src->encoding();
3837   if ((dst_enc < 16) && (src_enc < 16)) {
3838     Assembler::pcmpestri(dst, src, imm8);
3839   } else if (src_enc < 16) {
3840     subptr(rsp, 64);
3841     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3842     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3843     Assembler::pcmpestri(xmm0, src, imm8);
3844     movdqu(dst, xmm0);
3845     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3846     addptr(rsp, 64);
3847   } else if (dst_enc < 16) {
3848     subptr(rsp, 64);
3849     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3850     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3851     Assembler::pcmpestri(dst, xmm0, imm8);
3852     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3853     addptr(rsp, 64);
3854   } else {
3855     subptr(rsp, 64);
3856     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3857     subptr(rsp, 64);
3858     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3859     movdqu(xmm0, src);
3860     movdqu(xmm1, dst);
3861     Assembler::pcmpestri(xmm1, xmm0, imm8);
3862     movdqu(dst, xmm1);
3863     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3864     addptr(rsp, 64);
3865     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3866     addptr(rsp, 64);
3867   }
3868 }
3869 
3870 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3871   int dst_enc = dst->encoding();
3872   int src_enc = src->encoding();
3873   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3874     Assembler::pmovzxbw(dst, src);
3875   } else if ((dst_enc < 16) && (src_enc < 16)) {
3876     Assembler::pmovzxbw(dst, src);
3877   } else if (src_enc < 16) {
3878     subptr(rsp, 64);
3879     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3880     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3881     Assembler::pmovzxbw(xmm0, src);
3882     movdqu(dst, xmm0);
3883     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3884     addptr(rsp, 64);
3885   } else if (dst_enc < 16) {
3886     subptr(rsp, 64);
3887     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3888     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3889     Assembler::pmovzxbw(dst, xmm0);
3890     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3891     addptr(rsp, 64);
3892   } else {
3893     subptr(rsp, 64);
3894     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3895     subptr(rsp, 64);
3896     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3897     movdqu(xmm0, src);
3898     movdqu(xmm1, dst);
3899     Assembler::pmovzxbw(xmm1, xmm0);
3900     movdqu(dst, xmm1);
3901     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3902     addptr(rsp, 64);
3903     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3904     addptr(rsp, 64);
3905   }
3906 }
3907 
3908 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3909   int dst_enc = dst->encoding();
3910   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3911     Assembler::pmovzxbw(dst, src);
3912   } else if (dst_enc < 16) {
3913     Assembler::pmovzxbw(dst, src);
3914   } else {
3915     subptr(rsp, 64);
3916     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3917     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3918     Assembler::pmovzxbw(xmm0, src);
3919     movdqu(dst, xmm0);
3920     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3921     addptr(rsp, 64);
3922   }
3923 }
3924 
3925 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3926   int src_enc = src->encoding();
3927   if (src_enc < 16) {
3928     Assembler::pmovmskb(dst, src);
3929   } else {
3930     subptr(rsp, 64);
3931     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3932     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3933     Assembler::pmovmskb(dst, xmm0);
3934     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3935     addptr(rsp, 64);
3936   }
3937 }
3938 
3939 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3940   int dst_enc = dst->encoding();
3941   int src_enc = src->encoding();
3942   if ((dst_enc < 16) && (src_enc < 16)) {
3943     Assembler::ptest(dst, src);
3944   } else if (src_enc < 16) {
3945     subptr(rsp, 64);
3946     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3947     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3948     Assembler::ptest(xmm0, src);
3949     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3950     addptr(rsp, 64);
3951   } else if (dst_enc < 16) {
3952     subptr(rsp, 64);
3953     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3954     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3955     Assembler::ptest(dst, xmm0);
3956     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3957     addptr(rsp, 64);
3958   } else {
3959     subptr(rsp, 64);
3960     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3961     subptr(rsp, 64);
3962     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3963     movdqu(xmm0, src);
3964     movdqu(xmm1, dst);
3965     Assembler::ptest(xmm1, xmm0);
3966     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3967     addptr(rsp, 64);
3968     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3969     addptr(rsp, 64);
3970   }
3971 }
3972 
3973 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3974   if (reachable(src)) {
3975     Assembler::sqrtsd(dst, as_Address(src));
3976   } else {
3977     lea(rscratch1, src);
3978     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3979   }
3980 }
3981 
3982 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3983   if (reachable(src)) {
3984     Assembler::sqrtss(dst, as_Address(src));
3985   } else {
3986     lea(rscratch1, src);
3987     Assembler::sqrtss(dst, Address(rscratch1, 0));
3988   }
3989 }
3990 
3991 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3992   if (reachable(src)) {
3993     Assembler::subsd(dst, as_Address(src));
3994   } else {
3995     lea(rscratch1, src);
3996     Assembler::subsd(dst, Address(rscratch1, 0));
3997   }
3998 }
3999 
4000 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4001   if (reachable(src)) {
4002     Assembler::subss(dst, as_Address(src));
4003   } else {
4004     lea(rscratch1, src);
4005     Assembler::subss(dst, Address(rscratch1, 0));
4006   }
4007 }
4008 
4009 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4010   if (reachable(src)) {
4011     Assembler::ucomisd(dst, as_Address(src));
4012   } else {
4013     lea(rscratch1, src);
4014     Assembler::ucomisd(dst, Address(rscratch1, 0));
4015   }
4016 }
4017 
4018 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4019   if (reachable(src)) {
4020     Assembler::ucomiss(dst, as_Address(src));
4021   } else {
4022     lea(rscratch1, src);
4023     Assembler::ucomiss(dst, Address(rscratch1, 0));
4024   }
4025 }
4026 
4027 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4028   // Used in sign-bit flipping with aligned address.
4029   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4030   if (reachable(src)) {
4031     Assembler::xorpd(dst, as_Address(src));
4032   } else {
4033     lea(rscratch1, src);
4034     Assembler::xorpd(dst, Address(rscratch1, 0));
4035   }
4036 }
4037 
4038 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4039   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4040     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4041   }
4042   else {
4043     Assembler::xorpd(dst, src);
4044   }
4045 }
4046 
4047 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4048   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4049     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4050   } else {
4051     Assembler::xorps(dst, src);
4052   }
4053 }
4054 
4055 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4056   // Used in sign-bit flipping with aligned address.
4057   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4058   if (reachable(src)) {
4059     Assembler::xorps(dst, as_Address(src));
4060   } else {
4061     lea(rscratch1, src);
4062     Assembler::xorps(dst, Address(rscratch1, 0));
4063   }
4064 }
4065 
4066 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4067   // Used in sign-bit flipping with aligned address.
4068   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4069   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4070   if (reachable(src)) {
4071     Assembler::pshufb(dst, as_Address(src));
4072   } else {
4073     lea(rscratch1, src);
4074     Assembler::pshufb(dst, Address(rscratch1, 0));
4075   }
4076 }
4077 
4078 // AVX 3-operands instructions
4079 
4080 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4081   if (reachable(src)) {
4082     vaddsd(dst, nds, as_Address(src));
4083   } else {
4084     lea(rscratch1, src);
4085     vaddsd(dst, nds, Address(rscratch1, 0));
4086   }
4087 }
4088 
4089 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4090   if (reachable(src)) {
4091     vaddss(dst, nds, as_Address(src));
4092   } else {
4093     lea(rscratch1, src);
4094     vaddss(dst, nds, Address(rscratch1, 0));
4095   }
4096 }
4097 
4098 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4099   int dst_enc = dst->encoding();
4100   int nds_enc = nds->encoding();
4101   int src_enc = src->encoding();
4102   if ((dst_enc < 16) && (nds_enc < 16)) {
4103     vandps(dst, nds, negate_field, vector_len);
4104   } else if ((src_enc < 16) && (dst_enc < 16)) {
4105     movss(src, nds);
4106     vandps(dst, src, negate_field, vector_len);
4107   } else if (src_enc < 16) {
4108     movss(src, nds);
4109     vandps(src, src, negate_field, vector_len);
4110     movss(dst, src);
4111   } else if (dst_enc < 16) {
4112     movdqu(src, xmm0);
4113     movss(xmm0, nds);
4114     vandps(dst, xmm0, negate_field, vector_len);
4115     movdqu(xmm0, src);
4116   } else if (nds_enc < 16) {
4117     movdqu(src, xmm0);
4118     vandps(xmm0, nds, negate_field, vector_len);
4119     movss(dst, xmm0);
4120     movdqu(xmm0, src);
4121   } else {
4122     movdqu(src, xmm0);
4123     movss(xmm0, nds);
4124     vandps(xmm0, xmm0, negate_field, vector_len);
4125     movss(dst, xmm0);
4126     movdqu(xmm0, src);
4127   }
4128 }
4129 
4130 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4131   int dst_enc = dst->encoding();
4132   int nds_enc = nds->encoding();
4133   int src_enc = src->encoding();
4134   if ((dst_enc < 16) && (nds_enc < 16)) {
4135     vandpd(dst, nds, negate_field, vector_len);
4136   } else if ((src_enc < 16) && (dst_enc < 16)) {
4137     movsd(src, nds);
4138     vandpd(dst, src, negate_field, vector_len);
4139   } else if (src_enc < 16) {
4140     movsd(src, nds);
4141     vandpd(src, src, negate_field, vector_len);
4142     movsd(dst, src);
4143   } else if (dst_enc < 16) {
4144     movdqu(src, xmm0);
4145     movsd(xmm0, nds);
4146     vandpd(dst, xmm0, negate_field, vector_len);
4147     movdqu(xmm0, src);
4148   } else if (nds_enc < 16) {
4149     movdqu(src, xmm0);
4150     vandpd(xmm0, nds, negate_field, vector_len);
4151     movsd(dst, xmm0);
4152     movdqu(xmm0, src);
4153   } else {
4154     movdqu(src, xmm0);
4155     movsd(xmm0, nds);
4156     vandpd(xmm0, xmm0, negate_field, vector_len);
4157     movsd(dst, xmm0);
4158     movdqu(xmm0, src);
4159   }
4160 }
4161 
4162 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4163   int dst_enc = dst->encoding();
4164   int nds_enc = nds->encoding();
4165   int src_enc = src->encoding();
4166   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4167     Assembler::vpaddb(dst, nds, src, vector_len);
4168   } else if ((dst_enc < 16) && (src_enc < 16)) {
4169     Assembler::vpaddb(dst, dst, src, vector_len);
4170   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4171     // use nds as scratch for src
4172     evmovdqul(nds, src, Assembler::AVX_512bit);
4173     Assembler::vpaddb(dst, dst, nds, vector_len);
4174   } else if ((src_enc < 16) && (nds_enc < 16)) {
4175     // use nds as scratch for dst
4176     evmovdqul(nds, dst, Assembler::AVX_512bit);
4177     Assembler::vpaddb(nds, nds, src, vector_len);
4178     evmovdqul(dst, nds, Assembler::AVX_512bit);
4179   } else if (dst_enc < 16) {
4180     // use nds as scatch for xmm0 to hold src
4181     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4182     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4183     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4184     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4185   } else {
4186     // worse case scenario, all regs are in the upper bank
4187     subptr(rsp, 64);
4188     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4189     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4190     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4191     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4192     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4193     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4194     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4195     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4196     addptr(rsp, 64);
4197   }
4198 }
4199 
4200 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4201   int dst_enc = dst->encoding();
4202   int nds_enc = nds->encoding();
4203   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4204     Assembler::vpaddb(dst, nds, src, vector_len);
4205   } else if (dst_enc < 16) {
4206     Assembler::vpaddb(dst, dst, src, vector_len);
4207   } else if (nds_enc < 16) {
4208     // implies dst_enc in upper bank with src as scratch
4209     evmovdqul(nds, dst, Assembler::AVX_512bit);
4210     Assembler::vpaddb(nds, nds, src, vector_len);
4211     evmovdqul(dst, nds, Assembler::AVX_512bit);
4212   } else {
4213     // worse case scenario, all regs in upper bank
4214     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4215     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4216     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4217     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4218   }
4219 }
4220 
4221 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4222   int dst_enc = dst->encoding();
4223   int nds_enc = nds->encoding();
4224   int src_enc = src->encoding();
4225   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4226     Assembler::vpaddw(dst, nds, src, vector_len);
4227   } else if ((dst_enc < 16) && (src_enc < 16)) {
4228     Assembler::vpaddw(dst, dst, src, vector_len);
4229   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4230     // use nds as scratch for src
4231     evmovdqul(nds, src, Assembler::AVX_512bit);
4232     Assembler::vpaddw(dst, dst, nds, vector_len);
4233   } else if ((src_enc < 16) && (nds_enc < 16)) {
4234     // use nds as scratch for dst
4235     evmovdqul(nds, dst, Assembler::AVX_512bit);
4236     Assembler::vpaddw(nds, nds, src, vector_len);
4237     evmovdqul(dst, nds, Assembler::AVX_512bit);
4238   } else if (dst_enc < 16) {
4239     // use nds as scatch for xmm0 to hold src
4240     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4241     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4242     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4243     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4244   } else {
4245     // worse case scenario, all regs are in the upper bank
4246     subptr(rsp, 64);
4247     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4248     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4249     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4250     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4251     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4252     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4253     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4254     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4255     addptr(rsp, 64);
4256   }
4257 }
4258 
4259 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4260   int dst_enc = dst->encoding();
4261   int nds_enc = nds->encoding();
4262   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4263     Assembler::vpaddw(dst, nds, src, vector_len);
4264   } else if (dst_enc < 16) {
4265     Assembler::vpaddw(dst, dst, src, vector_len);
4266   } else if (nds_enc < 16) {
4267     // implies dst_enc in upper bank with src as scratch
4268     evmovdqul(nds, dst, Assembler::AVX_512bit);
4269     Assembler::vpaddw(nds, nds, src, vector_len);
4270     evmovdqul(dst, nds, Assembler::AVX_512bit);
4271   } else {
4272     // worse case scenario, all regs in upper bank
4273     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4274     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4275     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4276     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4277   }
4278 }
4279 
4280 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4281   int dst_enc = dst->encoding();
4282   int src_enc = src->encoding();
4283   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4284     Assembler::vpbroadcastw(dst, src);
4285   } else if ((dst_enc < 16) && (src_enc < 16)) {
4286     Assembler::vpbroadcastw(dst, src);
4287   } else if (src_enc < 16) {
4288     subptr(rsp, 64);
4289     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4290     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4291     Assembler::vpbroadcastw(xmm0, src);
4292     movdqu(dst, xmm0);
4293     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4294     addptr(rsp, 64);
4295   } else if (dst_enc < 16) {
4296     subptr(rsp, 64);
4297     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4298     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4299     Assembler::vpbroadcastw(dst, xmm0);
4300     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4301     addptr(rsp, 64);
4302   } else {
4303     subptr(rsp, 64);
4304     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4305     subptr(rsp, 64);
4306     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4307     movdqu(xmm0, src);
4308     movdqu(xmm1, dst);
4309     Assembler::vpbroadcastw(xmm1, xmm0);
4310     movdqu(dst, xmm1);
4311     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4312     addptr(rsp, 64);
4313     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4314     addptr(rsp, 64);
4315   }
4316 }
4317 
4318 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4319   int dst_enc = dst->encoding();
4320   int nds_enc = nds->encoding();
4321   int src_enc = src->encoding();
4322   assert(dst_enc == nds_enc, "");
4323   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4324     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4325   } else if ((dst_enc < 16) && (src_enc < 16)) {
4326     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4327   } else if (src_enc < 16) {
4328     subptr(rsp, 64);
4329     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4330     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4331     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4332     movdqu(dst, xmm0);
4333     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4334     addptr(rsp, 64);
4335   } else if (dst_enc < 16) {
4336     subptr(rsp, 64);
4337     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4338     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4339     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4340     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4341     addptr(rsp, 64);
4342   } else {
4343     subptr(rsp, 64);
4344     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4345     subptr(rsp, 64);
4346     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4347     movdqu(xmm0, src);
4348     movdqu(xmm1, dst);
4349     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4350     movdqu(dst, xmm1);
4351     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4352     addptr(rsp, 64);
4353     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4354     addptr(rsp, 64);
4355   }
4356 }
4357 
4358 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4359   int dst_enc = dst->encoding();
4360   int nds_enc = nds->encoding();
4361   int src_enc = src->encoding();
4362   assert(dst_enc == nds_enc, "");
4363   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4364     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4365   } else if ((dst_enc < 16) && (src_enc < 16)) {
4366     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4367   } else if (src_enc < 16) {
4368     subptr(rsp, 64);
4369     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4370     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4371     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4372     movdqu(dst, xmm0);
4373     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4374     addptr(rsp, 64);
4375   } else if (dst_enc < 16) {
4376     subptr(rsp, 64);
4377     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4378     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4379     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4380     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4381     addptr(rsp, 64);
4382   } else {
4383     subptr(rsp, 64);
4384     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4385     subptr(rsp, 64);
4386     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4387     movdqu(xmm0, src);
4388     movdqu(xmm1, dst);
4389     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4390     movdqu(dst, xmm1);
4391     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4392     addptr(rsp, 64);
4393     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4394     addptr(rsp, 64);
4395   }
4396 }
4397 
4398 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4399   int dst_enc = dst->encoding();
4400   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4401     Assembler::vpmovzxbw(dst, src, vector_len);
4402   } else if (dst_enc < 16) {
4403     Assembler::vpmovzxbw(dst, src, vector_len);
4404   } else {
4405     subptr(rsp, 64);
4406     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4407     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4408     Assembler::vpmovzxbw(xmm0, src, vector_len);
4409     movdqu(dst, xmm0);
4410     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4411     addptr(rsp, 64);
4412   }
4413 }
4414 
4415 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4416   int src_enc = src->encoding();
4417   if (src_enc < 16) {
4418     Assembler::vpmovmskb(dst, src);
4419   } else {
4420     subptr(rsp, 64);
4421     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4422     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4423     Assembler::vpmovmskb(dst, xmm0);
4424     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4425     addptr(rsp, 64);
4426   }
4427 }
4428 
4429 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4430   int dst_enc = dst->encoding();
4431   int nds_enc = nds->encoding();
4432   int src_enc = src->encoding();
4433   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4434     Assembler::vpmullw(dst, nds, src, vector_len);
4435   } else if ((dst_enc < 16) && (src_enc < 16)) {
4436     Assembler::vpmullw(dst, dst, src, vector_len);
4437   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4438     // use nds as scratch for src
4439     evmovdqul(nds, src, Assembler::AVX_512bit);
4440     Assembler::vpmullw(dst, dst, nds, vector_len);
4441   } else if ((src_enc < 16) && (nds_enc < 16)) {
4442     // use nds as scratch for dst
4443     evmovdqul(nds, dst, Assembler::AVX_512bit);
4444     Assembler::vpmullw(nds, nds, src, vector_len);
4445     evmovdqul(dst, nds, Assembler::AVX_512bit);
4446   } else if (dst_enc < 16) {
4447     // use nds as scatch for xmm0 to hold src
4448     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4449     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4450     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4451     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4452   } else {
4453     // worse case scenario, all regs are in the upper bank
4454     subptr(rsp, 64);
4455     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4456     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4457     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4458     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4459     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4460     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4461     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4462     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4463     addptr(rsp, 64);
4464   }
4465 }
4466 
4467 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4468   int dst_enc = dst->encoding();
4469   int nds_enc = nds->encoding();
4470   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4471     Assembler::vpmullw(dst, nds, src, vector_len);
4472   } else if (dst_enc < 16) {
4473     Assembler::vpmullw(dst, dst, src, vector_len);
4474   } else if (nds_enc < 16) {
4475     // implies dst_enc in upper bank with src as scratch
4476     evmovdqul(nds, dst, Assembler::AVX_512bit);
4477     Assembler::vpmullw(nds, nds, src, vector_len);
4478     evmovdqul(dst, nds, Assembler::AVX_512bit);
4479   } else {
4480     // worse case scenario, all regs in upper bank
4481     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4482     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4483     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4484     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4485   }
4486 }
4487 
4488 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4489   int dst_enc = dst->encoding();
4490   int nds_enc = nds->encoding();
4491   int src_enc = src->encoding();
4492   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4493     Assembler::vpsubb(dst, nds, src, vector_len);
4494   } else if ((dst_enc < 16) && (src_enc < 16)) {
4495     Assembler::vpsubb(dst, dst, src, vector_len);
4496   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4497     // use nds as scratch for src
4498     evmovdqul(nds, src, Assembler::AVX_512bit);
4499     Assembler::vpsubb(dst, dst, nds, vector_len);
4500   } else if ((src_enc < 16) && (nds_enc < 16)) {
4501     // use nds as scratch for dst
4502     evmovdqul(nds, dst, Assembler::AVX_512bit);
4503     Assembler::vpsubb(nds, nds, src, vector_len);
4504     evmovdqul(dst, nds, Assembler::AVX_512bit);
4505   } else if (dst_enc < 16) {
4506     // use nds as scatch for xmm0 to hold src
4507     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4508     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4509     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4510     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4511   } else {
4512     // worse case scenario, all regs are in the upper bank
4513     subptr(rsp, 64);
4514     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4515     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4516     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4517     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4518     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4519     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4520     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4521     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4522     addptr(rsp, 64);
4523   }
4524 }
4525 
4526 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4527   int dst_enc = dst->encoding();
4528   int nds_enc = nds->encoding();
4529   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4530     Assembler::vpsubb(dst, nds, src, vector_len);
4531   } else if (dst_enc < 16) {
4532     Assembler::vpsubb(dst, dst, src, vector_len);
4533   } else if (nds_enc < 16) {
4534     // implies dst_enc in upper bank with src as scratch
4535     evmovdqul(nds, dst, Assembler::AVX_512bit);
4536     Assembler::vpsubb(nds, nds, src, vector_len);
4537     evmovdqul(dst, nds, Assembler::AVX_512bit);
4538   } else {
4539     // worse case scenario, all regs in upper bank
4540     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4541     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4542     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4543     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4544   }
4545 }
4546 
4547 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4548   int dst_enc = dst->encoding();
4549   int nds_enc = nds->encoding();
4550   int src_enc = src->encoding();
4551   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4552     Assembler::vpsubw(dst, nds, src, vector_len);
4553   } else if ((dst_enc < 16) && (src_enc < 16)) {
4554     Assembler::vpsubw(dst, dst, src, vector_len);
4555   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4556     // use nds as scratch for src
4557     evmovdqul(nds, src, Assembler::AVX_512bit);
4558     Assembler::vpsubw(dst, dst, nds, vector_len);
4559   } else if ((src_enc < 16) && (nds_enc < 16)) {
4560     // use nds as scratch for dst
4561     evmovdqul(nds, dst, Assembler::AVX_512bit);
4562     Assembler::vpsubw(nds, nds, src, vector_len);
4563     evmovdqul(dst, nds, Assembler::AVX_512bit);
4564   } else if (dst_enc < 16) {
4565     // use nds as scatch for xmm0 to hold src
4566     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4567     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4568     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4569     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4570   } else {
4571     // worse case scenario, all regs are in the upper bank
4572     subptr(rsp, 64);
4573     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4574     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4575     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4576     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4577     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4578     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4579     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4580     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4581     addptr(rsp, 64);
4582   }
4583 }
4584 
4585 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4586   int dst_enc = dst->encoding();
4587   int nds_enc = nds->encoding();
4588   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4589     Assembler::vpsubw(dst, nds, src, vector_len);
4590   } else if (dst_enc < 16) {
4591     Assembler::vpsubw(dst, dst, src, vector_len);
4592   } else if (nds_enc < 16) {
4593     // implies dst_enc in upper bank with src as scratch
4594     evmovdqul(nds, dst, Assembler::AVX_512bit);
4595     Assembler::vpsubw(nds, nds, src, vector_len);
4596     evmovdqul(dst, nds, Assembler::AVX_512bit);
4597   } else {
4598     // worse case scenario, all regs in upper bank
4599     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4600     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4601     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4602     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4603   }
4604 }
4605 
4606 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4607   int dst_enc = dst->encoding();
4608   int nds_enc = nds->encoding();
4609   int shift_enc = shift->encoding();
4610   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4611     Assembler::vpsraw(dst, nds, shift, vector_len);
4612   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4613     Assembler::vpsraw(dst, dst, shift, vector_len);
4614   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4615     // use nds_enc as scratch with shift
4616     evmovdqul(nds, shift, Assembler::AVX_512bit);
4617     Assembler::vpsraw(dst, dst, nds, vector_len);
4618   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4619     // use nds as scratch with dst
4620     evmovdqul(nds, dst, Assembler::AVX_512bit);
4621     Assembler::vpsraw(nds, nds, shift, vector_len);
4622     evmovdqul(dst, nds, Assembler::AVX_512bit);
4623   } else if (dst_enc < 16) {
4624     // use nds to save a copy of xmm0 and hold shift
4625     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4626     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4627     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4628     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4629   } else if (nds_enc < 16) {
4630     // use nds as dest as temps
4631     evmovdqul(nds, dst, Assembler::AVX_512bit);
4632     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4633     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4634     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4635     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4636     evmovdqul(dst, nds, Assembler::AVX_512bit);
4637   } else {
4638     // worse case scenario, all regs are in the upper bank
4639     subptr(rsp, 64);
4640     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4641     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4642     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4643     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4644     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4645     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4646     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4647     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4648     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4649     addptr(rsp, 64);
4650   }
4651 }
4652 
4653 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4654   int dst_enc = dst->encoding();
4655   int nds_enc = nds->encoding();
4656   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4657     Assembler::vpsraw(dst, nds, shift, vector_len);
4658   } else if (dst_enc < 16) {
4659     Assembler::vpsraw(dst, dst, shift, vector_len);
4660   } else if (nds_enc < 16) {
4661     // use nds as scratch
4662     evmovdqul(nds, dst, Assembler::AVX_512bit);
4663     Assembler::vpsraw(nds, nds, shift, vector_len);
4664     evmovdqul(dst, nds, Assembler::AVX_512bit);
4665   } else {
4666     // use nds as scratch for xmm0
4667     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4668     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4669     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4670     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4671   }
4672 }
4673 
4674 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4675   int dst_enc = dst->encoding();
4676   int nds_enc = nds->encoding();
4677   int shift_enc = shift->encoding();
4678   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4679     Assembler::vpsrlw(dst, nds, shift, vector_len);
4680   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4681     Assembler::vpsrlw(dst, dst, shift, vector_len);
4682   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4683     // use nds_enc as scratch with shift
4684     evmovdqul(nds, shift, Assembler::AVX_512bit);
4685     Assembler::vpsrlw(dst, dst, nds, vector_len);
4686   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4687     // use nds as scratch with dst
4688     evmovdqul(nds, dst, Assembler::AVX_512bit);
4689     Assembler::vpsrlw(nds, nds, shift, vector_len);
4690     evmovdqul(dst, nds, Assembler::AVX_512bit);
4691   } else if (dst_enc < 16) {
4692     // use nds to save a copy of xmm0 and hold shift
4693     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4694     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4695     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4696     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4697   } else if (nds_enc < 16) {
4698     // use nds as dest as temps
4699     evmovdqul(nds, dst, Assembler::AVX_512bit);
4700     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4701     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4702     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4703     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4704     evmovdqul(dst, nds, Assembler::AVX_512bit);
4705   } else {
4706     // worse case scenario, all regs are in the upper bank
4707     subptr(rsp, 64);
4708     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4709     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4710     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4711     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4712     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4713     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4714     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4715     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4716     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4717     addptr(rsp, 64);
4718   }
4719 }
4720 
4721 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4722   int dst_enc = dst->encoding();
4723   int nds_enc = nds->encoding();
4724   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4725     Assembler::vpsrlw(dst, nds, shift, vector_len);
4726   } else if (dst_enc < 16) {
4727     Assembler::vpsrlw(dst, dst, shift, vector_len);
4728   } else if (nds_enc < 16) {
4729     // use nds as scratch
4730     evmovdqul(nds, dst, Assembler::AVX_512bit);
4731     Assembler::vpsrlw(nds, nds, shift, vector_len);
4732     evmovdqul(dst, nds, Assembler::AVX_512bit);
4733   } else {
4734     // use nds as scratch for xmm0
4735     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4736     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4737     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4738     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4739   }
4740 }
4741 
4742 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4743   int dst_enc = dst->encoding();
4744   int nds_enc = nds->encoding();
4745   int shift_enc = shift->encoding();
4746   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4747     Assembler::vpsllw(dst, nds, shift, vector_len);
4748   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4749     Assembler::vpsllw(dst, dst, shift, vector_len);
4750   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4751     // use nds_enc as scratch with shift
4752     evmovdqul(nds, shift, Assembler::AVX_512bit);
4753     Assembler::vpsllw(dst, dst, nds, vector_len);
4754   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4755     // use nds as scratch with dst
4756     evmovdqul(nds, dst, Assembler::AVX_512bit);
4757     Assembler::vpsllw(nds, nds, shift, vector_len);
4758     evmovdqul(dst, nds, Assembler::AVX_512bit);
4759   } else if (dst_enc < 16) {
4760     // use nds to save a copy of xmm0 and hold shift
4761     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4762     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4763     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4764     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4765   } else if (nds_enc < 16) {
4766     // use nds as dest as temps
4767     evmovdqul(nds, dst, Assembler::AVX_512bit);
4768     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4769     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4770     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4771     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4772     evmovdqul(dst, nds, Assembler::AVX_512bit);
4773   } else {
4774     // worse case scenario, all regs are in the upper bank
4775     subptr(rsp, 64);
4776     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4777     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4778     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4779     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4780     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4781     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4782     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4783     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4784     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4785     addptr(rsp, 64);
4786   }
4787 }
4788 
4789 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4790   int dst_enc = dst->encoding();
4791   int nds_enc = nds->encoding();
4792   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4793     Assembler::vpsllw(dst, nds, shift, vector_len);
4794   } else if (dst_enc < 16) {
4795     Assembler::vpsllw(dst, dst, shift, vector_len);
4796   } else if (nds_enc < 16) {
4797     // use nds as scratch
4798     evmovdqul(nds, dst, Assembler::AVX_512bit);
4799     Assembler::vpsllw(nds, nds, shift, vector_len);
4800     evmovdqul(dst, nds, Assembler::AVX_512bit);
4801   } else {
4802     // use nds as scratch for xmm0
4803     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4804     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4805     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4806     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4807   }
4808 }
4809 
4810 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4811   int dst_enc = dst->encoding();
4812   int src_enc = src->encoding();
4813   if ((dst_enc < 16) && (src_enc < 16)) {
4814     Assembler::vptest(dst, src);
4815   } else if (src_enc < 16) {
4816     subptr(rsp, 64);
4817     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4818     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4819     Assembler::vptest(xmm0, src);
4820     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4821     addptr(rsp, 64);
4822   } else if (dst_enc < 16) {
4823     subptr(rsp, 64);
4824     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4825     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4826     Assembler::vptest(dst, xmm0);
4827     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4828     addptr(rsp, 64);
4829   } else {
4830     subptr(rsp, 64);
4831     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4832     subptr(rsp, 64);
4833     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4834     movdqu(xmm0, src);
4835     movdqu(xmm1, dst);
4836     Assembler::vptest(xmm1, xmm0);
4837     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4838     addptr(rsp, 64);
4839     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4840     addptr(rsp, 64);
4841   }
4842 }
4843 
4844 // This instruction exists within macros, ergo we cannot control its input
4845 // when emitted through those patterns.
4846 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4847   if (VM_Version::supports_avx512nobw()) {
4848     int dst_enc = dst->encoding();
4849     int src_enc = src->encoding();
4850     if (dst_enc == src_enc) {
4851       if (dst_enc < 16) {
4852         Assembler::punpcklbw(dst, src);
4853       } else {
4854         subptr(rsp, 64);
4855         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4856         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4857         Assembler::punpcklbw(xmm0, xmm0);
4858         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4859         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4860         addptr(rsp, 64);
4861       }
4862     } else {
4863       if ((src_enc < 16) && (dst_enc < 16)) {
4864         Assembler::punpcklbw(dst, src);
4865       } else if (src_enc < 16) {
4866         subptr(rsp, 64);
4867         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4868         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4869         Assembler::punpcklbw(xmm0, src);
4870         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4871         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4872         addptr(rsp, 64);
4873       } else if (dst_enc < 16) {
4874         subptr(rsp, 64);
4875         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4876         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4877         Assembler::punpcklbw(dst, xmm0);
4878         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4879         addptr(rsp, 64);
4880       } else {
4881         subptr(rsp, 64);
4882         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4883         subptr(rsp, 64);
4884         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4885         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4886         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4887         Assembler::punpcklbw(xmm0, xmm1);
4888         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4889         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4890         addptr(rsp, 64);
4891         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4892         addptr(rsp, 64);
4893       }
4894     }
4895   } else {
4896     Assembler::punpcklbw(dst, src);
4897   }
4898 }
4899 
4900 // This instruction exists within macros, ergo we cannot control its input
4901 // when emitted through those patterns.
4902 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4903   if (VM_Version::supports_avx512nobw()) {
4904     int dst_enc = dst->encoding();
4905     int src_enc = src->encoding();
4906     if (dst_enc == src_enc) {
4907       if (dst_enc < 16) {
4908         Assembler::pshuflw(dst, src, mode);
4909       } else {
4910         subptr(rsp, 64);
4911         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4912         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4913         Assembler::pshuflw(xmm0, xmm0, mode);
4914         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4915         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4916         addptr(rsp, 64);
4917       }
4918     } else {
4919       if ((src_enc < 16) && (dst_enc < 16)) {
4920         Assembler::pshuflw(dst, src, mode);
4921       } else if (src_enc < 16) {
4922         subptr(rsp, 64);
4923         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4924         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4925         Assembler::pshuflw(xmm0, src, mode);
4926         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4927         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4928         addptr(rsp, 64);
4929       } else if (dst_enc < 16) {
4930         subptr(rsp, 64);
4931         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4932         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4933         Assembler::pshuflw(dst, xmm0, mode);
4934         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4935         addptr(rsp, 64);
4936       } else {
4937         subptr(rsp, 64);
4938         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4939         subptr(rsp, 64);
4940         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4941         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4942         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4943         Assembler::pshuflw(xmm0, xmm1, mode);
4944         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4945         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4946         addptr(rsp, 64);
4947         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4948         addptr(rsp, 64);
4949       }
4950     }
4951   } else {
4952     Assembler::pshuflw(dst, src, mode);
4953   }
4954 }
4955 
4956 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4957   if (reachable(src)) {
4958     vandpd(dst, nds, as_Address(src), vector_len);
4959   } else {
4960     lea(rscratch1, src);
4961     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
4962   }
4963 }
4964 
4965 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4966   if (reachable(src)) {
4967     vandps(dst, nds, as_Address(src), vector_len);
4968   } else {
4969     lea(rscratch1, src);
4970     vandps(dst, nds, Address(rscratch1, 0), vector_len);
4971   }
4972 }
4973 
4974 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4975   if (reachable(src)) {
4976     vdivsd(dst, nds, as_Address(src));
4977   } else {
4978     lea(rscratch1, src);
4979     vdivsd(dst, nds, Address(rscratch1, 0));
4980   }
4981 }
4982 
4983 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4984   if (reachable(src)) {
4985     vdivss(dst, nds, as_Address(src));
4986   } else {
4987     lea(rscratch1, src);
4988     vdivss(dst, nds, Address(rscratch1, 0));
4989   }
4990 }
4991 
4992 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4993   if (reachable(src)) {
4994     vmulsd(dst, nds, as_Address(src));
4995   } else {
4996     lea(rscratch1, src);
4997     vmulsd(dst, nds, Address(rscratch1, 0));
4998   }
4999 }
5000 
5001 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5002   if (reachable(src)) {
5003     vmulss(dst, nds, as_Address(src));
5004   } else {
5005     lea(rscratch1, src);
5006     vmulss(dst, nds, Address(rscratch1, 0));
5007   }
5008 }
5009 
5010 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5011   if (reachable(src)) {
5012     vsubsd(dst, nds, as_Address(src));
5013   } else {
5014     lea(rscratch1, src);
5015     vsubsd(dst, nds, Address(rscratch1, 0));
5016   }
5017 }
5018 
5019 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5020   if (reachable(src)) {
5021     vsubss(dst, nds, as_Address(src));
5022   } else {
5023     lea(rscratch1, src);
5024     vsubss(dst, nds, Address(rscratch1, 0));
5025   }
5026 }
5027 
5028 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5029   int nds_enc = nds->encoding();
5030   int dst_enc = dst->encoding();
5031   bool dst_upper_bank = (dst_enc > 15);
5032   bool nds_upper_bank = (nds_enc > 15);
5033   if (VM_Version::supports_avx512novl() &&
5034       (nds_upper_bank || dst_upper_bank)) {
5035     if (dst_upper_bank) {
5036       subptr(rsp, 64);
5037       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5038       movflt(xmm0, nds);
5039       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5040       movflt(dst, xmm0);
5041       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5042       addptr(rsp, 64);
5043     } else {
5044       movflt(dst, nds);
5045       vxorps(dst, dst, src, Assembler::AVX_128bit);
5046     }
5047   } else {
5048     vxorps(dst, nds, src, Assembler::AVX_128bit);
5049   }
5050 }
5051 
5052 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5053   int nds_enc = nds->encoding();
5054   int dst_enc = dst->encoding();
5055   bool dst_upper_bank = (dst_enc > 15);
5056   bool nds_upper_bank = (nds_enc > 15);
5057   if (VM_Version::supports_avx512novl() &&
5058       (nds_upper_bank || dst_upper_bank)) {
5059     if (dst_upper_bank) {
5060       subptr(rsp, 64);
5061       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5062       movdbl(xmm0, nds);
5063       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5064       movdbl(dst, xmm0);
5065       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5066       addptr(rsp, 64);
5067     } else {
5068       movdbl(dst, nds);
5069       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5070     }
5071   } else {
5072     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5073   }
5074 }
5075 
5076 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5077   if (reachable(src)) {
5078     vxorpd(dst, nds, as_Address(src), vector_len);
5079   } else {
5080     lea(rscratch1, src);
5081     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5082   }
5083 }
5084 
5085 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5086   if (reachable(src)) {
5087     vxorps(dst, nds, as_Address(src), vector_len);
5088   } else {
5089     lea(rscratch1, src);
5090     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5091   }
5092 }
5093 
5094 
5095 //////////////////////////////////////////////////////////////////////////////////
5096 #if INCLUDE_ALL_GCS
5097 
5098 void MacroAssembler::g1_write_barrier_pre(Register obj,
5099                                           Register pre_val,
5100                                           Register thread,
5101                                           Register tmp,
5102                                           bool tosca_live,
5103                                           bool expand_call) {
5104 
5105   // If expand_call is true then we expand the call_VM_leaf macro
5106   // directly to skip generating the check by
5107   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
5108 
5109 #ifdef _LP64
5110   assert(thread == r15_thread, "must be");
5111 #endif // _LP64
5112 
5113   Label done;
5114   Label runtime;
5115 
5116   assert(pre_val != noreg, "check this code");
5117 
5118   if (obj != noreg) {
5119     assert_different_registers(obj, pre_val, tmp);
5120     assert(pre_val != rax, "check this code");
5121   }
5122 
5123   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5124                                        SATBMarkQueue::byte_offset_of_active()));
5125   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5126                                        SATBMarkQueue::byte_offset_of_index()));
5127   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5128                                        SATBMarkQueue::byte_offset_of_buf()));
5129 
5130 
5131   // Is marking active?
5132   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
5133     cmpl(in_progress, 0);
5134   } else {
5135     assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
5136     cmpb(in_progress, 0);
5137   }
5138   jcc(Assembler::equal, done);
5139 
5140   // Do we need to load the previous value?
5141   if (obj != noreg) {
5142     load_heap_oop(pre_val, Address(obj, 0));
5143   }
5144 
5145   // Is the previous value null?
5146   cmpptr(pre_val, (int32_t) NULL_WORD);
5147   jcc(Assembler::equal, done);
5148 
5149   // Can we store original value in the thread's buffer?
5150   // Is index == 0?
5151   // (The index field is typed as size_t.)
5152 
5153   movptr(tmp, index);                   // tmp := *index_adr
5154   cmpptr(tmp, 0);                       // tmp == 0?
5155   jcc(Assembler::equal, runtime);       // If yes, goto runtime
5156 
5157   subptr(tmp, wordSize);                // tmp := tmp - wordSize
5158   movptr(index, tmp);                   // *index_adr := tmp
5159   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
5160 
5161   // Record the previous value
5162   movptr(Address(tmp, 0), pre_val);
5163   jmp(done);
5164 
5165   bind(runtime);
5166   // save the live input values
5167   if(tosca_live) push(rax);
5168 
5169   if (obj != noreg && obj != rax)
5170     push(obj);
5171 
5172   if (pre_val != rax)
5173     push(pre_val);
5174 
5175   // Calling the runtime using the regular call_VM_leaf mechanism generates
5176   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
5177   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
5178   //
5179   // If we care generating the pre-barrier without a frame (e.g. in the
5180   // intrinsified Reference.get() routine) then ebp might be pointing to
5181   // the caller frame and so this check will most likely fail at runtime.
5182   //
5183   // Expanding the call directly bypasses the generation of the check.
5184   // So when we do not have have a full interpreter frame on the stack
5185   // expand_call should be passed true.
5186 
5187   NOT_LP64( push(thread); )
5188 
5189   if (expand_call) {
5190     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
5191     pass_arg1(this, thread);
5192     pass_arg0(this, pre_val);
5193     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
5194   } else {
5195     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
5196   }
5197 
5198   NOT_LP64( pop(thread); )
5199 
5200   // save the live input values
5201   if (pre_val != rax)
5202     pop(pre_val);
5203 
5204   if (obj != noreg && obj != rax)
5205     pop(obj);
5206 
5207   if(tosca_live) pop(rax);
5208 
5209   bind(done);
5210 }
5211 
5212 void MacroAssembler::g1_write_barrier_post(Register store_addr,
5213                                            Register new_val,
5214                                            Register thread,
5215                                            Register tmp,
5216                                            Register tmp2) {
5217 #ifdef _LP64
5218   assert(thread == r15_thread, "must be");
5219 #endif // _LP64
5220 
5221   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5222                                        DirtyCardQueue::byte_offset_of_index()));
5223   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5224                                        DirtyCardQueue::byte_offset_of_buf()));
5225 
5226   CardTableModRefBS* ct =
5227     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
5228   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5229 
5230   Label done;
5231   Label runtime;
5232 
5233   // Does store cross heap regions?
5234 
5235   movptr(tmp, store_addr);
5236   xorptr(tmp, new_val);
5237   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
5238   jcc(Assembler::equal, done);
5239 
5240   // crosses regions, storing NULL?
5241 
5242   cmpptr(new_val, (int32_t) NULL_WORD);
5243   jcc(Assembler::equal, done);
5244 
5245   // storing region crossing non-NULL, is card already dirty?
5246 
5247   const Register card_addr = tmp;
5248   const Register cardtable = tmp2;
5249 
5250   movptr(card_addr, store_addr);
5251   shrptr(card_addr, CardTableModRefBS::card_shift);
5252   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
5253   // a valid address and therefore is not properly handled by the relocation code.
5254   movptr(cardtable, (intptr_t)ct->byte_map_base);
5255   addptr(card_addr, cardtable);
5256 
5257   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
5258   jcc(Assembler::equal, done);
5259 
5260   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
5261   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5262   jcc(Assembler::equal, done);
5263 
5264 
5265   // storing a region crossing, non-NULL oop, card is clean.
5266   // dirty card and log.
5267 
5268   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5269 
5270   cmpl(queue_index, 0);
5271   jcc(Assembler::equal, runtime);
5272   subl(queue_index, wordSize);
5273   movptr(tmp2, buffer);
5274 #ifdef _LP64
5275   movslq(rscratch1, queue_index);
5276   addq(tmp2, rscratch1);
5277   movq(Address(tmp2, 0), card_addr);
5278 #else
5279   addl(tmp2, queue_index);
5280   movl(Address(tmp2, 0), card_addr);
5281 #endif
5282   jmp(done);
5283 
5284   bind(runtime);
5285   // save the live input values
5286   push(store_addr);
5287   push(new_val);
5288 #ifdef _LP64
5289   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
5290 #else
5291   push(thread);
5292   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
5293   pop(thread);
5294 #endif
5295   pop(new_val);
5296   pop(store_addr);
5297 
5298   bind(done);
5299 }
5300 
5301 #endif // INCLUDE_ALL_GCS
5302 //////////////////////////////////////////////////////////////////////////////////
5303 
5304 
5305 void MacroAssembler::store_check(Register obj, Address dst) {
5306   store_check(obj);
5307 }
5308 
5309 void MacroAssembler::store_check(Register obj) {
5310   // Does a store check for the oop in register obj. The content of
5311   // register obj is destroyed afterwards.
5312   BarrierSet* bs = Universe::heap()->barrier_set();
5313   assert(bs->kind() == BarrierSet::CardTableForRS ||
5314          bs->kind() == BarrierSet::CardTableExtension,
5315          "Wrong barrier set kind");
5316 
5317   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
5318   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5319 
5320   shrptr(obj, CardTableModRefBS::card_shift);
5321 
5322   Address card_addr;
5323 
5324   // The calculation for byte_map_base is as follows:
5325   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
5326   // So this essentially converts an address to a displacement and it will
5327   // never need to be relocated. On 64bit however the value may be too
5328   // large for a 32bit displacement.
5329   intptr_t disp = (intptr_t) ct->byte_map_base;
5330   if (is_simm32(disp)) {
5331     card_addr = Address(noreg, obj, Address::times_1, disp);
5332   } else {
5333     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
5334     // displacement and done in a single instruction given favorable mapping and a
5335     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
5336     // entry and that entry is not properly handled by the relocation code.
5337     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
5338     Address index(noreg, obj, Address::times_1);
5339     card_addr = as_Address(ArrayAddress(cardtable, index));
5340   }
5341 
5342   int dirty = CardTableModRefBS::dirty_card_val();
5343   if (UseCondCardMark) {
5344     Label L_already_dirty;
5345     if (UseConcMarkSweepGC) {
5346       membar(Assembler::StoreLoad);
5347     }
5348     cmpb(card_addr, dirty);
5349     jcc(Assembler::equal, L_already_dirty);
5350     movb(card_addr, dirty);
5351     bind(L_already_dirty);
5352   } else {
5353     movb(card_addr, dirty);
5354   }
5355 }
5356 
5357 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5358   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5359 }
5360 
5361 // Force generation of a 4 byte immediate value even if it fits into 8bit
5362 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5363   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5364 }
5365 
5366 void MacroAssembler::subptr(Register dst, Register src) {
5367   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5368 }
5369 
5370 // C++ bool manipulation
5371 void MacroAssembler::testbool(Register dst) {
5372   if(sizeof(bool) == 1)
5373     testb(dst, 0xff);
5374   else if(sizeof(bool) == 2) {
5375     // testw implementation needed for two byte bools
5376     ShouldNotReachHere();
5377   } else if(sizeof(bool) == 4)
5378     testl(dst, dst);
5379   else
5380     // unsupported
5381     ShouldNotReachHere();
5382 }
5383 
5384 void MacroAssembler::testptr(Register dst, Register src) {
5385   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5386 }
5387 
5388 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5389 void MacroAssembler::tlab_allocate(Register obj,
5390                                    Register var_size_in_bytes,
5391                                    int con_size_in_bytes,
5392                                    Register t1,
5393                                    Register t2,
5394                                    Label& slow_case) {
5395   assert_different_registers(obj, t1, t2);
5396   assert_different_registers(obj, var_size_in_bytes, t1);
5397   Register end = t2;
5398   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
5399 
5400   verify_tlab();
5401 
5402   NOT_LP64(get_thread(thread));
5403 
5404   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
5405   if (var_size_in_bytes == noreg) {
5406     lea(end, Address(obj, con_size_in_bytes));
5407   } else {
5408     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
5409   }
5410   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
5411   jcc(Assembler::above, slow_case);
5412 
5413   // update the tlab top pointer
5414   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
5415 
5416   // recover var_size_in_bytes if necessary
5417   if (var_size_in_bytes == end) {
5418     subptr(var_size_in_bytes, obj);
5419   }
5420   verify_tlab();
5421 }
5422 
5423 // Preserves rbx, and rdx.
5424 Register MacroAssembler::tlab_refill(Label& retry,
5425                                      Label& try_eden,
5426                                      Label& slow_case) {
5427   Register top = rax;
5428   Register t1  = rcx; // object size
5429   Register t2  = rsi;
5430   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
5431   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
5432   Label do_refill, discard_tlab;
5433 
5434   if (!Universe::heap()->supports_inline_contig_alloc()) {
5435     // No allocation in the shared eden.
5436     jmp(slow_case);
5437   }
5438 
5439   NOT_LP64(get_thread(thread_reg));
5440 
5441   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5442   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5443 
5444   // calculate amount of free space
5445   subptr(t1, top);
5446   shrptr(t1, LogHeapWordSize);
5447 
5448   // Retain tlab and allocate object in shared space if
5449   // the amount free in the tlab is too large to discard.
5450   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
5451   jcc(Assembler::lessEqual, discard_tlab);
5452 
5453   // Retain
5454   // %%% yuck as movptr...
5455   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
5456   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
5457   if (TLABStats) {
5458     // increment number of slow_allocations
5459     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
5460   }
5461   jmp(try_eden);
5462 
5463   bind(discard_tlab);
5464   if (TLABStats) {
5465     // increment number of refills
5466     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
5467     // accumulate wastage -- t1 is amount free in tlab
5468     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
5469   }
5470 
5471   // if tlab is currently allocated (top or end != null) then
5472   // fill [top, end + alignment_reserve) with array object
5473   testptr(top, top);
5474   jcc(Assembler::zero, do_refill);
5475 
5476   // set up the mark word
5477   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
5478   // set the length to the remaining space
5479   subptr(t1, typeArrayOopDesc::header_size(T_INT));
5480   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
5481   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
5482   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
5483   // set klass to intArrayKlass
5484   // dubious reloc why not an oop reloc?
5485   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
5486   // store klass last.  concurrent gcs assumes klass length is valid if
5487   // klass field is not null.
5488   store_klass(top, t1);
5489 
5490   movptr(t1, top);
5491   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5492   incr_allocated_bytes(thread_reg, t1, 0);
5493 
5494   // refill the tlab with an eden allocation
5495   bind(do_refill);
5496   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5497   shlptr(t1, LogHeapWordSize);
5498   // allocate new tlab, address returned in top
5499   eden_allocate(top, t1, 0, t2, slow_case);
5500 
5501   // Check that t1 was preserved in eden_allocate.
5502 #ifdef ASSERT
5503   if (UseTLAB) {
5504     Label ok;
5505     Register tsize = rsi;
5506     assert_different_registers(tsize, thread_reg, t1);
5507     push(tsize);
5508     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5509     shlptr(tsize, LogHeapWordSize);
5510     cmpptr(t1, tsize);
5511     jcc(Assembler::equal, ok);
5512     STOP("assert(t1 != tlab size)");
5513     should_not_reach_here();
5514 
5515     bind(ok);
5516     pop(tsize);
5517   }
5518 #endif
5519   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
5520   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
5521   addptr(top, t1);
5522   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
5523   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
5524 
5525   if (ZeroTLAB) {
5526     // This is a fast TLAB refill, therefore the GC is not notified of it.
5527     // So compiled code must fill the new TLAB with zeroes.
5528     movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5529     zero_memory(top, t1, 0, t2);
5530   }
5531 
5532   verify_tlab();
5533   jmp(retry);
5534 
5535   return thread_reg; // for use by caller
5536 }
5537 
5538 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5539 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5540   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5541   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5542   Label done;
5543 
5544   testptr(length_in_bytes, length_in_bytes);
5545   jcc(Assembler::zero, done);
5546 
5547   // initialize topmost word, divide index by 2, check if odd and test if zero
5548   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5549 #ifdef ASSERT
5550   {
5551     Label L;
5552     testptr(length_in_bytes, BytesPerWord - 1);
5553     jcc(Assembler::zero, L);
5554     stop("length must be a multiple of BytesPerWord");
5555     bind(L);
5556   }
5557 #endif
5558   Register index = length_in_bytes;
5559   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5560   if (UseIncDec) {
5561     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5562   } else {
5563     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5564     shrptr(index, 1);
5565   }
5566 #ifndef _LP64
5567   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5568   {
5569     Label even;
5570     // note: if index was a multiple of 8, then it cannot
5571     //       be 0 now otherwise it must have been 0 before
5572     //       => if it is even, we don't need to check for 0 again
5573     jcc(Assembler::carryClear, even);
5574     // clear topmost word (no jump would be needed if conditional assignment worked here)
5575     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5576     // index could be 0 now, must check again
5577     jcc(Assembler::zero, done);
5578     bind(even);
5579   }
5580 #endif // !_LP64
5581   // initialize remaining object fields: index is a multiple of 2 now
5582   {
5583     Label loop;
5584     bind(loop);
5585     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5586     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5587     decrement(index);
5588     jcc(Assembler::notZero, loop);
5589   }
5590 
5591   bind(done);
5592 }
5593 
5594 void MacroAssembler::incr_allocated_bytes(Register thread,
5595                                           Register var_size_in_bytes,
5596                                           int con_size_in_bytes,
5597                                           Register t1) {
5598   if (!thread->is_valid()) {
5599 #ifdef _LP64
5600     thread = r15_thread;
5601 #else
5602     assert(t1->is_valid(), "need temp reg");
5603     thread = t1;
5604     get_thread(thread);
5605 #endif
5606   }
5607 
5608 #ifdef _LP64
5609   if (var_size_in_bytes->is_valid()) {
5610     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5611   } else {
5612     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5613   }
5614 #else
5615   if (var_size_in_bytes->is_valid()) {
5616     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5617   } else {
5618     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5619   }
5620   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
5621 #endif
5622 }
5623 
5624 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
5625   pusha();
5626 
5627   // if we are coming from c1, xmm registers may be live
5628   int num_xmm_regs = LP64_ONLY(16) NOT_LP64(8);
5629   if (UseAVX > 2) {
5630     num_xmm_regs = LP64_ONLY(32) NOT_LP64(8);
5631   }
5632 
5633   if (UseSSE == 1)  {
5634     subptr(rsp, sizeof(jdouble)*8);
5635     for (int n = 0; n < 8; n++) {
5636       movflt(Address(rsp, n*sizeof(jdouble)), as_XMMRegister(n));
5637     }
5638   } else if (UseSSE >= 2)  {
5639     if (UseAVX > 2) {
5640       push(rbx);
5641       movl(rbx, 0xffff);
5642       kmovwl(k1, rbx);
5643       pop(rbx);
5644     }
5645 #ifdef COMPILER2
5646     if (MaxVectorSize > 16) {
5647       if(UseAVX > 2) {
5648         // Save upper half of ZMM registers
5649         subptr(rsp, 32*num_xmm_regs);
5650         for (int n = 0; n < num_xmm_regs; n++) {
5651           vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
5652         }
5653       }
5654       assert(UseAVX > 0, "256 bit vectors are supported only with AVX");
5655       // Save upper half of YMM registers
5656       subptr(rsp, 16*num_xmm_regs);
5657       for (int n = 0; n < num_xmm_regs; n++) {
5658         vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
5659       }
5660     }
5661 #endif
5662     // Save whole 128bit (16 bytes) XMM registers
5663     subptr(rsp, 16*num_xmm_regs);
5664 #ifdef _LP64
5665     if (VM_Version::supports_evex()) {
5666       for (int n = 0; n < num_xmm_regs; n++) {
5667         vextractf32x4(Address(rsp, n*16), as_XMMRegister(n), 0);
5668       }
5669     } else {
5670       for (int n = 0; n < num_xmm_regs; n++) {
5671         movdqu(Address(rsp, n*16), as_XMMRegister(n));
5672       }
5673     }
5674 #else
5675     for (int n = 0; n < num_xmm_regs; n++) {
5676       movdqu(Address(rsp, n*16), as_XMMRegister(n));
5677     }
5678 #endif
5679   }
5680 
5681   // Preserve registers across runtime call
5682   int incoming_argument_and_return_value_offset = -1;
5683   if (num_fpu_regs_in_use > 1) {
5684     // Must preserve all other FPU regs (could alternatively convert
5685     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
5686     // FPU state, but can not trust C compiler)
5687     NEEDS_CLEANUP;
5688     // NOTE that in this case we also push the incoming argument(s) to
5689     // the stack and restore it later; we also use this stack slot to
5690     // hold the return value from dsin, dcos etc.
5691     for (int i = 0; i < num_fpu_regs_in_use; i++) {
5692       subptr(rsp, sizeof(jdouble));
5693       fstp_d(Address(rsp, 0));
5694     }
5695     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
5696     for (int i = nb_args-1; i >= 0; i--) {
5697       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
5698     }
5699   }
5700 
5701   subptr(rsp, nb_args*sizeof(jdouble));
5702   for (int i = 0; i < nb_args; i++) {
5703     fstp_d(Address(rsp, i*sizeof(jdouble)));
5704   }
5705 
5706 #ifdef _LP64
5707   if (nb_args > 0) {
5708     movdbl(xmm0, Address(rsp, 0));
5709   }
5710   if (nb_args > 1) {
5711     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
5712   }
5713   assert(nb_args <= 2, "unsupported number of args");
5714 #endif // _LP64
5715 
5716   // NOTE: we must not use call_VM_leaf here because that requires a
5717   // complete interpreter frame in debug mode -- same bug as 4387334
5718   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
5719   // do proper 64bit abi
5720 
5721   NEEDS_CLEANUP;
5722   // Need to add stack banging before this runtime call if it needs to
5723   // be taken; however, there is no generic stack banging routine at
5724   // the MacroAssembler level
5725 
5726   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
5727 
5728 #ifdef _LP64
5729   movsd(Address(rsp, 0), xmm0);
5730   fld_d(Address(rsp, 0));
5731 #endif // _LP64
5732   addptr(rsp, sizeof(jdouble)*nb_args);
5733   if (num_fpu_regs_in_use > 1) {
5734     // Must save return value to stack and then restore entire FPU
5735     // stack except incoming arguments
5736     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
5737     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
5738       fld_d(Address(rsp, 0));
5739       addptr(rsp, sizeof(jdouble));
5740     }
5741     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
5742     addptr(rsp, sizeof(jdouble)*nb_args);
5743   }
5744 
5745   if (UseSSE == 1)  {
5746     for (int n = 0; n < 8; n++) {
5747       movflt(as_XMMRegister(n), Address(rsp, n*sizeof(jdouble)));
5748     }
5749     addptr(rsp, sizeof(jdouble)*8);
5750   } else if (UseSSE >= 2)  {
5751     // Restore whole 128bit (16 bytes) XMM registers
5752 #ifdef _LP64
5753   if (VM_Version::supports_evex()) {
5754     for (int n = 0; n < num_xmm_regs; n++) {
5755       vinsertf32x4(as_XMMRegister(n), as_XMMRegister(n), Address(rsp, n*16), 0);
5756     }
5757   } else {
5758     for (int n = 0; n < num_xmm_regs; n++) {
5759       movdqu(as_XMMRegister(n), Address(rsp, n*16));
5760     }
5761   }
5762 #else
5763   for (int n = 0; n < num_xmm_regs; n++) {
5764     movdqu(as_XMMRegister(n), Address(rsp, n*16));
5765   }
5766 #endif
5767     addptr(rsp, 16*num_xmm_regs);
5768 
5769 #ifdef COMPILER2
5770     if (MaxVectorSize > 16) {
5771       // Restore upper half of YMM registers.
5772       for (int n = 0; n < num_xmm_regs; n++) {
5773         vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16));
5774       }
5775       addptr(rsp, 16*num_xmm_regs);
5776       if(UseAVX > 2) {
5777         for (int n = 0; n < num_xmm_regs; n++) {
5778           vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32));
5779         }
5780         addptr(rsp, 32*num_xmm_regs);
5781       }
5782     }
5783 #endif
5784   }
5785   popa();
5786 }
5787 
5788 static const double     pi_4 =  0.7853981633974483;
5789 
5790 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
5791   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
5792   // was attempted in this code; unfortunately it appears that the
5793   // switch to 80-bit precision and back causes this to be
5794   // unprofitable compared with simply performing a runtime call if
5795   // the argument is out of the (-pi/4, pi/4) range.
5796 
5797   Register tmp = noreg;
5798   if (!VM_Version::supports_cmov()) {
5799     // fcmp needs a temporary so preserve rbx,
5800     tmp = rbx;
5801     push(tmp);
5802   }
5803 
5804   Label slow_case, done;
5805   if (trig == 't') {
5806     ExternalAddress pi4_adr = (address)&pi_4;
5807     if (reachable(pi4_adr)) {
5808       // x ?<= pi/4
5809       fld_d(pi4_adr);
5810       fld_s(1);                // Stack:  X  PI/4  X
5811       fabs();                  // Stack: |X| PI/4  X
5812       fcmp(tmp);
5813       jcc(Assembler::above, slow_case);
5814 
5815       // fastest case: -pi/4 <= x <= pi/4
5816       ftan();
5817 
5818       jmp(done);
5819     }
5820   }
5821   // slow case: runtime call
5822   bind(slow_case);
5823 
5824   switch(trig) {
5825   case 's':
5826     {
5827       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
5828     }
5829     break;
5830   case 'c':
5831     {
5832       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
5833     }
5834     break;
5835   case 't':
5836     {
5837       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
5838     }
5839     break;
5840   default:
5841     assert(false, "bad intrinsic");
5842     break;
5843   }
5844 
5845   // Come here with result in F-TOS
5846   bind(done);
5847 
5848   if (tmp != noreg) {
5849     pop(tmp);
5850   }
5851 }
5852 
5853 // Look up the method for a megamorphic invokeinterface call.
5854 // The target method is determined by <intf_klass, itable_index>.
5855 // The receiver klass is in recv_klass.
5856 // On success, the result will be in method_result, and execution falls through.
5857 // On failure, execution transfers to the given label.
5858 void MacroAssembler::lookup_interface_method(Register recv_klass,
5859                                              Register intf_klass,
5860                                              RegisterOrConstant itable_index,
5861                                              Register method_result,
5862                                              Register scan_temp,
5863                                              Label& L_no_such_interface) {
5864   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
5865   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5866          "caller must use same register for non-constant itable index as for method");
5867 
5868   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5869   int vtable_base = in_bytes(Klass::vtable_start_offset());
5870   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5871   int scan_step   = itableOffsetEntry::size() * wordSize;
5872   int vte_size    = vtableEntry::size_in_bytes();
5873   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5874   assert(vte_size == wordSize, "else adjust times_vte_scale");
5875 
5876   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
5877 
5878   // %%% Could store the aligned, prescaled offset in the klassoop.
5879   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5880 
5881   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5882   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5883   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5884 
5885   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5886   //   if (scan->interface() == intf) {
5887   //     result = (klass + scan->offset() + itable_index);
5888   //   }
5889   // }
5890   Label search, found_method;
5891 
5892   for (int peel = 1; peel >= 0; peel--) {
5893     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5894     cmpptr(intf_klass, method_result);
5895 
5896     if (peel) {
5897       jccb(Assembler::equal, found_method);
5898     } else {
5899       jccb(Assembler::notEqual, search);
5900       // (invert the test to fall through to found_method...)
5901     }
5902 
5903     if (!peel)  break;
5904 
5905     bind(search);
5906 
5907     // Check that the previous entry is non-null.  A null entry means that
5908     // the receiver class doesn't implement the interface, and wasn't the
5909     // same as when the caller was compiled.
5910     testptr(method_result, method_result);
5911     jcc(Assembler::zero, L_no_such_interface);
5912     addptr(scan_temp, scan_step);
5913   }
5914 
5915   bind(found_method);
5916 
5917   // Got a hit.
5918   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5919   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5920 }
5921 
5922 
5923 // virtual method calling
5924 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5925                                            RegisterOrConstant vtable_index,
5926                                            Register method_result) {
5927   const int base = in_bytes(Klass::vtable_start_offset());
5928   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5929   Address vtable_entry_addr(recv_klass,
5930                             vtable_index, Address::times_ptr,
5931                             base + vtableEntry::method_offset_in_bytes());
5932   movptr(method_result, vtable_entry_addr);
5933 }
5934 
5935 
5936 void MacroAssembler::check_klass_subtype(Register sub_klass,
5937                            Register super_klass,
5938                            Register temp_reg,
5939                            Label& L_success) {
5940   Label L_failure;
5941   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5942   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5943   bind(L_failure);
5944 }
5945 
5946 
5947 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5948                                                    Register super_klass,
5949                                                    Register temp_reg,
5950                                                    Label* L_success,
5951                                                    Label* L_failure,
5952                                                    Label* L_slow_path,
5953                                         RegisterOrConstant super_check_offset) {
5954   assert_different_registers(sub_klass, super_klass, temp_reg);
5955   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5956   if (super_check_offset.is_register()) {
5957     assert_different_registers(sub_klass, super_klass,
5958                                super_check_offset.as_register());
5959   } else if (must_load_sco) {
5960     assert(temp_reg != noreg, "supply either a temp or a register offset");
5961   }
5962 
5963   Label L_fallthrough;
5964   int label_nulls = 0;
5965   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5966   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5967   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5968   assert(label_nulls <= 1, "at most one NULL in the batch");
5969 
5970   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5971   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5972   Address super_check_offset_addr(super_klass, sco_offset);
5973 
5974   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5975   // range of a jccb.  If this routine grows larger, reconsider at
5976   // least some of these.
5977 #define local_jcc(assembler_cond, label)                                \
5978   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5979   else                             jcc( assembler_cond, label) /*omit semi*/
5980 
5981   // Hacked jmp, which may only be used just before L_fallthrough.
5982 #define final_jmp(label)                                                \
5983   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5984   else                            jmp(label)                /*omit semi*/
5985 
5986   // If the pointers are equal, we are done (e.g., String[] elements).
5987   // This self-check enables sharing of secondary supertype arrays among
5988   // non-primary types such as array-of-interface.  Otherwise, each such
5989   // type would need its own customized SSA.
5990   // We move this check to the front of the fast path because many
5991   // type checks are in fact trivially successful in this manner,
5992   // so we get a nicely predicted branch right at the start of the check.
5993   cmpptr(sub_klass, super_klass);
5994   local_jcc(Assembler::equal, *L_success);
5995 
5996   // Check the supertype display:
5997   if (must_load_sco) {
5998     // Positive movl does right thing on LP64.
5999     movl(temp_reg, super_check_offset_addr);
6000     super_check_offset = RegisterOrConstant(temp_reg);
6001   }
6002   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
6003   cmpptr(super_klass, super_check_addr); // load displayed supertype
6004 
6005   // This check has worked decisively for primary supers.
6006   // Secondary supers are sought in the super_cache ('super_cache_addr').
6007   // (Secondary supers are interfaces and very deeply nested subtypes.)
6008   // This works in the same check above because of a tricky aliasing
6009   // between the super_cache and the primary super display elements.
6010   // (The 'super_check_addr' can address either, as the case requires.)
6011   // Note that the cache is updated below if it does not help us find
6012   // what we need immediately.
6013   // So if it was a primary super, we can just fail immediately.
6014   // Otherwise, it's the slow path for us (no success at this point).
6015 
6016   if (super_check_offset.is_register()) {
6017     local_jcc(Assembler::equal, *L_success);
6018     cmpl(super_check_offset.as_register(), sc_offset);
6019     if (L_failure == &L_fallthrough) {
6020       local_jcc(Assembler::equal, *L_slow_path);
6021     } else {
6022       local_jcc(Assembler::notEqual, *L_failure);
6023       final_jmp(*L_slow_path);
6024     }
6025   } else if (super_check_offset.as_constant() == sc_offset) {
6026     // Need a slow path; fast failure is impossible.
6027     if (L_slow_path == &L_fallthrough) {
6028       local_jcc(Assembler::equal, *L_success);
6029     } else {
6030       local_jcc(Assembler::notEqual, *L_slow_path);
6031       final_jmp(*L_success);
6032     }
6033   } else {
6034     // No slow path; it's a fast decision.
6035     if (L_failure == &L_fallthrough) {
6036       local_jcc(Assembler::equal, *L_success);
6037     } else {
6038       local_jcc(Assembler::notEqual, *L_failure);
6039       final_jmp(*L_success);
6040     }
6041   }
6042 
6043   bind(L_fallthrough);
6044 
6045 #undef local_jcc
6046 #undef final_jmp
6047 }
6048 
6049 
6050 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
6051                                                    Register super_klass,
6052                                                    Register temp_reg,
6053                                                    Register temp2_reg,
6054                                                    Label* L_success,
6055                                                    Label* L_failure,
6056                                                    bool set_cond_codes) {
6057   assert_different_registers(sub_klass, super_klass, temp_reg);
6058   if (temp2_reg != noreg)
6059     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
6060 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
6061 
6062   Label L_fallthrough;
6063   int label_nulls = 0;
6064   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
6065   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
6066   assert(label_nulls <= 1, "at most one NULL in the batch");
6067 
6068   // a couple of useful fields in sub_klass:
6069   int ss_offset = in_bytes(Klass::secondary_supers_offset());
6070   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
6071   Address secondary_supers_addr(sub_klass, ss_offset);
6072   Address super_cache_addr(     sub_klass, sc_offset);
6073 
6074   // Do a linear scan of the secondary super-klass chain.
6075   // This code is rarely used, so simplicity is a virtue here.
6076   // The repne_scan instruction uses fixed registers, which we must spill.
6077   // Don't worry too much about pre-existing connections with the input regs.
6078 
6079   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
6080   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
6081 
6082   // Get super_klass value into rax (even if it was in rdi or rcx).
6083   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
6084   if (super_klass != rax || UseCompressedOops) {
6085     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
6086     mov(rax, super_klass);
6087   }
6088   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
6089   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
6090 
6091 #ifndef PRODUCT
6092   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
6093   ExternalAddress pst_counter_addr((address) pst_counter);
6094   NOT_LP64(  incrementl(pst_counter_addr) );
6095   LP64_ONLY( lea(rcx, pst_counter_addr) );
6096   LP64_ONLY( incrementl(Address(rcx, 0)) );
6097 #endif //PRODUCT
6098 
6099   // We will consult the secondary-super array.
6100   movptr(rdi, secondary_supers_addr);
6101   // Load the array length.  (Positive movl does right thing on LP64.)
6102   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
6103   // Skip to start of data.
6104   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
6105 
6106   // Scan RCX words at [RDI] for an occurrence of RAX.
6107   // Set NZ/Z based on last compare.
6108   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
6109   // not change flags (only scas instruction which is repeated sets flags).
6110   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
6111 
6112     testptr(rax,rax); // Set Z = 0
6113     repne_scan();
6114 
6115   // Unspill the temp. registers:
6116   if (pushed_rdi)  pop(rdi);
6117   if (pushed_rcx)  pop(rcx);
6118   if (pushed_rax)  pop(rax);
6119 
6120   if (set_cond_codes) {
6121     // Special hack for the AD files:  rdi is guaranteed non-zero.
6122     assert(!pushed_rdi, "rdi must be left non-NULL");
6123     // Also, the condition codes are properly set Z/NZ on succeed/failure.
6124   }
6125 
6126   if (L_failure == &L_fallthrough)
6127         jccb(Assembler::notEqual, *L_failure);
6128   else  jcc(Assembler::notEqual, *L_failure);
6129 
6130   // Success.  Cache the super we found and proceed in triumph.
6131   movptr(super_cache_addr, super_klass);
6132 
6133   if (L_success != &L_fallthrough) {
6134     jmp(*L_success);
6135   }
6136 
6137 #undef IS_A_TEMP
6138 
6139   bind(L_fallthrough);
6140 }
6141 
6142 
6143 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
6144   if (VM_Version::supports_cmov()) {
6145     cmovl(cc, dst, src);
6146   } else {
6147     Label L;
6148     jccb(negate_condition(cc), L);
6149     movl(dst, src);
6150     bind(L);
6151   }
6152 }
6153 
6154 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
6155   if (VM_Version::supports_cmov()) {
6156     cmovl(cc, dst, src);
6157   } else {
6158     Label L;
6159     jccb(negate_condition(cc), L);
6160     movl(dst, src);
6161     bind(L);
6162   }
6163 }
6164 
6165 void MacroAssembler::verify_oop(Register reg, const char* s) {
6166   if (!VerifyOops) return;
6167 
6168   // Pass register number to verify_oop_subroutine
6169   const char* b = NULL;
6170   {
6171     ResourceMark rm;
6172     stringStream ss;
6173     ss.print("verify_oop: %s: %s", reg->name(), s);
6174     b = code_string(ss.as_string());
6175   }
6176   BLOCK_COMMENT("verify_oop {");
6177 #ifdef _LP64
6178   push(rscratch1);                    // save r10, trashed by movptr()
6179 #endif
6180   push(rax);                          // save rax,
6181   push(reg);                          // pass register argument
6182   ExternalAddress buffer((address) b);
6183   // avoid using pushptr, as it modifies scratch registers
6184   // and our contract is not to modify anything
6185   movptr(rax, buffer.addr());
6186   push(rax);
6187   // call indirectly to solve generation ordering problem
6188   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6189   call(rax);
6190   // Caller pops the arguments (oop, message) and restores rax, r10
6191   BLOCK_COMMENT("} verify_oop");
6192 }
6193 
6194 
6195 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
6196                                                       Register tmp,
6197                                                       int offset) {
6198   intptr_t value = *delayed_value_addr;
6199   if (value != 0)
6200     return RegisterOrConstant(value + offset);
6201 
6202   // load indirectly to solve generation ordering problem
6203   movptr(tmp, ExternalAddress((address) delayed_value_addr));
6204 
6205 #ifdef ASSERT
6206   { Label L;
6207     testptr(tmp, tmp);
6208     if (WizardMode) {
6209       const char* buf = NULL;
6210       {
6211         ResourceMark rm;
6212         stringStream ss;
6213         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
6214         buf = code_string(ss.as_string());
6215       }
6216       jcc(Assembler::notZero, L);
6217       STOP(buf);
6218     } else {
6219       jccb(Assembler::notZero, L);
6220       hlt();
6221     }
6222     bind(L);
6223   }
6224 #endif
6225 
6226   if (offset != 0)
6227     addptr(tmp, offset);
6228 
6229   return RegisterOrConstant(tmp);
6230 }
6231 
6232 
6233 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
6234                                          int extra_slot_offset) {
6235   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
6236   int stackElementSize = Interpreter::stackElementSize;
6237   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
6238 #ifdef ASSERT
6239   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
6240   assert(offset1 - offset == stackElementSize, "correct arithmetic");
6241 #endif
6242   Register             scale_reg    = noreg;
6243   Address::ScaleFactor scale_factor = Address::no_scale;
6244   if (arg_slot.is_constant()) {
6245     offset += arg_slot.as_constant() * stackElementSize;
6246   } else {
6247     scale_reg    = arg_slot.as_register();
6248     scale_factor = Address::times(stackElementSize);
6249   }
6250   offset += wordSize;           // return PC is on stack
6251   return Address(rsp, scale_reg, scale_factor, offset);
6252 }
6253 
6254 
6255 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
6256   if (!VerifyOops) return;
6257 
6258   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
6259   // Pass register number to verify_oop_subroutine
6260   const char* b = NULL;
6261   {
6262     ResourceMark rm;
6263     stringStream ss;
6264     ss.print("verify_oop_addr: %s", s);
6265     b = code_string(ss.as_string());
6266   }
6267 #ifdef _LP64
6268   push(rscratch1);                    // save r10, trashed by movptr()
6269 #endif
6270   push(rax);                          // save rax,
6271   // addr may contain rsp so we will have to adjust it based on the push
6272   // we just did (and on 64 bit we do two pushes)
6273   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
6274   // stores rax into addr which is backwards of what was intended.
6275   if (addr.uses(rsp)) {
6276     lea(rax, addr);
6277     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
6278   } else {
6279     pushptr(addr);
6280   }
6281 
6282   ExternalAddress buffer((address) b);
6283   // pass msg argument
6284   // avoid using pushptr, as it modifies scratch registers
6285   // and our contract is not to modify anything
6286   movptr(rax, buffer.addr());
6287   push(rax);
6288 
6289   // call indirectly to solve generation ordering problem
6290   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6291   call(rax);
6292   // Caller pops the arguments (addr, message) and restores rax, r10.
6293 }
6294 
6295 void MacroAssembler::verify_tlab() {
6296 #ifdef ASSERT
6297   if (UseTLAB && VerifyOops) {
6298     Label next, ok;
6299     Register t1 = rsi;
6300     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
6301 
6302     push(t1);
6303     NOT_LP64(push(thread_reg));
6304     NOT_LP64(get_thread(thread_reg));
6305 
6306     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6307     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
6308     jcc(Assembler::aboveEqual, next);
6309     STOP("assert(top >= start)");
6310     should_not_reach_here();
6311 
6312     bind(next);
6313     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
6314     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6315     jcc(Assembler::aboveEqual, ok);
6316     STOP("assert(top <= end)");
6317     should_not_reach_here();
6318 
6319     bind(ok);
6320     NOT_LP64(pop(thread_reg));
6321     pop(t1);
6322   }
6323 #endif
6324 }
6325 
6326 class ControlWord {
6327  public:
6328   int32_t _value;
6329 
6330   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
6331   int  precision_control() const       { return  (_value >>  8) & 3      ; }
6332   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6333   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6334   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6335   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6336   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6337   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6338 
6339   void print() const {
6340     // rounding control
6341     const char* rc;
6342     switch (rounding_control()) {
6343       case 0: rc = "round near"; break;
6344       case 1: rc = "round down"; break;
6345       case 2: rc = "round up  "; break;
6346       case 3: rc = "chop      "; break;
6347     };
6348     // precision control
6349     const char* pc;
6350     switch (precision_control()) {
6351       case 0: pc = "24 bits "; break;
6352       case 1: pc = "reserved"; break;
6353       case 2: pc = "53 bits "; break;
6354       case 3: pc = "64 bits "; break;
6355     };
6356     // flags
6357     char f[9];
6358     f[0] = ' ';
6359     f[1] = ' ';
6360     f[2] = (precision   ()) ? 'P' : 'p';
6361     f[3] = (underflow   ()) ? 'U' : 'u';
6362     f[4] = (overflow    ()) ? 'O' : 'o';
6363     f[5] = (zero_divide ()) ? 'Z' : 'z';
6364     f[6] = (denormalized()) ? 'D' : 'd';
6365     f[7] = (invalid     ()) ? 'I' : 'i';
6366     f[8] = '\x0';
6367     // output
6368     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
6369   }
6370 
6371 };
6372 
6373 class StatusWord {
6374  public:
6375   int32_t _value;
6376 
6377   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
6378   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
6379   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
6380   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
6381   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
6382   int  top() const                     { return  (_value >> 11) & 7      ; }
6383   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
6384   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
6385   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6386   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6387   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6388   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6389   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6390   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6391 
6392   void print() const {
6393     // condition codes
6394     char c[5];
6395     c[0] = (C3()) ? '3' : '-';
6396     c[1] = (C2()) ? '2' : '-';
6397     c[2] = (C1()) ? '1' : '-';
6398     c[3] = (C0()) ? '0' : '-';
6399     c[4] = '\x0';
6400     // flags
6401     char f[9];
6402     f[0] = (error_status()) ? 'E' : '-';
6403     f[1] = (stack_fault ()) ? 'S' : '-';
6404     f[2] = (precision   ()) ? 'P' : '-';
6405     f[3] = (underflow   ()) ? 'U' : '-';
6406     f[4] = (overflow    ()) ? 'O' : '-';
6407     f[5] = (zero_divide ()) ? 'Z' : '-';
6408     f[6] = (denormalized()) ? 'D' : '-';
6409     f[7] = (invalid     ()) ? 'I' : '-';
6410     f[8] = '\x0';
6411     // output
6412     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
6413   }
6414 
6415 };
6416 
6417 class TagWord {
6418  public:
6419   int32_t _value;
6420 
6421   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
6422 
6423   void print() const {
6424     printf("%04x", _value & 0xFFFF);
6425   }
6426 
6427 };
6428 
6429 class FPU_Register {
6430  public:
6431   int32_t _m0;
6432   int32_t _m1;
6433   int16_t _ex;
6434 
6435   bool is_indefinite() const           {
6436     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
6437   }
6438 
6439   void print() const {
6440     char  sign = (_ex < 0) ? '-' : '+';
6441     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
6442     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
6443   };
6444 
6445 };
6446 
6447 class FPU_State {
6448  public:
6449   enum {
6450     register_size       = 10,
6451     number_of_registers =  8,
6452     register_mask       =  7
6453   };
6454 
6455   ControlWord  _control_word;
6456   StatusWord   _status_word;
6457   TagWord      _tag_word;
6458   int32_t      _error_offset;
6459   int32_t      _error_selector;
6460   int32_t      _data_offset;
6461   int32_t      _data_selector;
6462   int8_t       _register[register_size * number_of_registers];
6463 
6464   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
6465   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
6466 
6467   const char* tag_as_string(int tag) const {
6468     switch (tag) {
6469       case 0: return "valid";
6470       case 1: return "zero";
6471       case 2: return "special";
6472       case 3: return "empty";
6473     }
6474     ShouldNotReachHere();
6475     return NULL;
6476   }
6477 
6478   void print() const {
6479     // print computation registers
6480     { int t = _status_word.top();
6481       for (int i = 0; i < number_of_registers; i++) {
6482         int j = (i - t) & register_mask;
6483         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
6484         st(j)->print();
6485         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
6486       }
6487     }
6488     printf("\n");
6489     // print control registers
6490     printf("ctrl = "); _control_word.print(); printf("\n");
6491     printf("stat = "); _status_word .print(); printf("\n");
6492     printf("tags = "); _tag_word    .print(); printf("\n");
6493   }
6494 
6495 };
6496 
6497 class Flag_Register {
6498  public:
6499   int32_t _value;
6500 
6501   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
6502   bool direction() const               { return ((_value >> 10) & 1) != 0; }
6503   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
6504   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
6505   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
6506   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
6507   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
6508 
6509   void print() const {
6510     // flags
6511     char f[8];
6512     f[0] = (overflow       ()) ? 'O' : '-';
6513     f[1] = (direction      ()) ? 'D' : '-';
6514     f[2] = (sign           ()) ? 'S' : '-';
6515     f[3] = (zero           ()) ? 'Z' : '-';
6516     f[4] = (auxiliary_carry()) ? 'A' : '-';
6517     f[5] = (parity         ()) ? 'P' : '-';
6518     f[6] = (carry          ()) ? 'C' : '-';
6519     f[7] = '\x0';
6520     // output
6521     printf("%08x  flags = %s", _value, f);
6522   }
6523 
6524 };
6525 
6526 class IU_Register {
6527  public:
6528   int32_t _value;
6529 
6530   void print() const {
6531     printf("%08x  %11d", _value, _value);
6532   }
6533 
6534 };
6535 
6536 class IU_State {
6537  public:
6538   Flag_Register _eflags;
6539   IU_Register   _rdi;
6540   IU_Register   _rsi;
6541   IU_Register   _rbp;
6542   IU_Register   _rsp;
6543   IU_Register   _rbx;
6544   IU_Register   _rdx;
6545   IU_Register   _rcx;
6546   IU_Register   _rax;
6547 
6548   void print() const {
6549     // computation registers
6550     printf("rax,  = "); _rax.print(); printf("\n");
6551     printf("rbx,  = "); _rbx.print(); printf("\n");
6552     printf("rcx  = "); _rcx.print(); printf("\n");
6553     printf("rdx  = "); _rdx.print(); printf("\n");
6554     printf("rdi  = "); _rdi.print(); printf("\n");
6555     printf("rsi  = "); _rsi.print(); printf("\n");
6556     printf("rbp,  = "); _rbp.print(); printf("\n");
6557     printf("rsp  = "); _rsp.print(); printf("\n");
6558     printf("\n");
6559     // control registers
6560     printf("flgs = "); _eflags.print(); printf("\n");
6561   }
6562 };
6563 
6564 
6565 class CPU_State {
6566  public:
6567   FPU_State _fpu_state;
6568   IU_State  _iu_state;
6569 
6570   void print() const {
6571     printf("--------------------------------------------------\n");
6572     _iu_state .print();
6573     printf("\n");
6574     _fpu_state.print();
6575     printf("--------------------------------------------------\n");
6576   }
6577 
6578 };
6579 
6580 
6581 static void _print_CPU_state(CPU_State* state) {
6582   state->print();
6583 };
6584 
6585 
6586 void MacroAssembler::print_CPU_state() {
6587   push_CPU_state();
6588   push(rsp);                // pass CPU state
6589   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6590   addptr(rsp, wordSize);       // discard argument
6591   pop_CPU_state();
6592 }
6593 
6594 
6595 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6596   static int counter = 0;
6597   FPU_State* fs = &state->_fpu_state;
6598   counter++;
6599   // For leaf calls, only verify that the top few elements remain empty.
6600   // We only need 1 empty at the top for C2 code.
6601   if( stack_depth < 0 ) {
6602     if( fs->tag_for_st(7) != 3 ) {
6603       printf("FPR7 not empty\n");
6604       state->print();
6605       assert(false, "error");
6606       return false;
6607     }
6608     return true;                // All other stack states do not matter
6609   }
6610 
6611   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6612          "bad FPU control word");
6613 
6614   // compute stack depth
6615   int i = 0;
6616   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6617   int d = i;
6618   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6619   // verify findings
6620   if (i != FPU_State::number_of_registers) {
6621     // stack not contiguous
6622     printf("%s: stack not contiguous at ST%d\n", s, i);
6623     state->print();
6624     assert(false, "error");
6625     return false;
6626   }
6627   // check if computed stack depth corresponds to expected stack depth
6628   if (stack_depth < 0) {
6629     // expected stack depth is -stack_depth or less
6630     if (d > -stack_depth) {
6631       // too many elements on the stack
6632       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6633       state->print();
6634       assert(false, "error");
6635       return false;
6636     }
6637   } else {
6638     // expected stack depth is stack_depth
6639     if (d != stack_depth) {
6640       // wrong stack depth
6641       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6642       state->print();
6643       assert(false, "error");
6644       return false;
6645     }
6646   }
6647   // everything is cool
6648   return true;
6649 }
6650 
6651 
6652 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6653   if (!VerifyFPU) return;
6654   push_CPU_state();
6655   push(rsp);                // pass CPU state
6656   ExternalAddress msg((address) s);
6657   // pass message string s
6658   pushptr(msg.addr());
6659   push(stack_depth);        // pass stack depth
6660   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6661   addptr(rsp, 3 * wordSize);   // discard arguments
6662   // check for error
6663   { Label L;
6664     testl(rax, rax);
6665     jcc(Assembler::notZero, L);
6666     int3();                  // break if error condition
6667     bind(L);
6668   }
6669   pop_CPU_state();
6670 }
6671 
6672 void MacroAssembler::restore_cpu_control_state_after_jni() {
6673   // Either restore the MXCSR register after returning from the JNI Call
6674   // or verify that it wasn't changed (with -Xcheck:jni flag).
6675   if (VM_Version::supports_sse()) {
6676     if (RestoreMXCSROnJNICalls) {
6677       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6678     } else if (CheckJNICalls) {
6679       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6680     }
6681   }
6682   if (VM_Version::supports_avx()) {
6683     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6684     vzeroupper();
6685   }
6686 
6687 #ifndef _LP64
6688   // Either restore the x87 floating pointer control word after returning
6689   // from the JNI call or verify that it wasn't changed.
6690   if (CheckJNICalls) {
6691     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6692   }
6693 #endif // _LP64
6694 }
6695 
6696 
6697 void MacroAssembler::load_klass(Register dst, Register src) {
6698 #ifdef _LP64
6699   if (UseCompressedClassPointers) {
6700     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6701     decode_klass_not_null(dst);
6702   } else
6703 #endif
6704     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6705 }
6706 
6707 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6708   load_klass(dst, src);
6709   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6710 }
6711 
6712 void MacroAssembler::store_klass(Register dst, Register src) {
6713 #ifdef _LP64
6714   if (UseCompressedClassPointers) {
6715     encode_klass_not_null(src);
6716     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6717   } else
6718 #endif
6719     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6720 }
6721 
6722 void MacroAssembler::load_heap_oop(Register dst, Address src) {
6723 #ifdef _LP64
6724   // FIXME: Must change all places where we try to load the klass.
6725   if (UseCompressedOops) {
6726     movl(dst, src);
6727     decode_heap_oop(dst);
6728   } else
6729 #endif
6730     movptr(dst, src);
6731 }
6732 
6733 // Doesn't do verfication, generates fixed size code
6734 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
6735 #ifdef _LP64
6736   if (UseCompressedOops) {
6737     movl(dst, src);
6738     decode_heap_oop_not_null(dst);
6739   } else
6740 #endif
6741     movptr(dst, src);
6742 }
6743 
6744 void MacroAssembler::store_heap_oop(Address dst, Register src) {
6745 #ifdef _LP64
6746   if (UseCompressedOops) {
6747     assert(!dst.uses(src), "not enough registers");
6748     encode_heap_oop(src);
6749     movl(dst, src);
6750   } else
6751 #endif
6752     movptr(dst, src);
6753 }
6754 
6755 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
6756   assert_different_registers(src1, tmp);
6757 #ifdef _LP64
6758   if (UseCompressedOops) {
6759     bool did_push = false;
6760     if (tmp == noreg) {
6761       tmp = rax;
6762       push(tmp);
6763       did_push = true;
6764       assert(!src2.uses(rsp), "can't push");
6765     }
6766     load_heap_oop(tmp, src2);
6767     cmpptr(src1, tmp);
6768     if (did_push)  pop(tmp);
6769   } else
6770 #endif
6771     cmpptr(src1, src2);
6772 }
6773 
6774 // Used for storing NULLs.
6775 void MacroAssembler::store_heap_oop_null(Address dst) {
6776 #ifdef _LP64
6777   if (UseCompressedOops) {
6778     movl(dst, (int32_t)NULL_WORD);
6779   } else {
6780     movslq(dst, (int32_t)NULL_WORD);
6781   }
6782 #else
6783   movl(dst, (int32_t)NULL_WORD);
6784 #endif
6785 }
6786 
6787 #ifdef _LP64
6788 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6789   if (UseCompressedClassPointers) {
6790     // Store to klass gap in destination
6791     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6792   }
6793 }
6794 
6795 #ifdef ASSERT
6796 void MacroAssembler::verify_heapbase(const char* msg) {
6797   assert (UseCompressedOops, "should be compressed");
6798   assert (Universe::heap() != NULL, "java heap should be initialized");
6799   if (CheckCompressedOops) {
6800     Label ok;
6801     push(rscratch1); // cmpptr trashes rscratch1
6802     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6803     jcc(Assembler::equal, ok);
6804     STOP(msg);
6805     bind(ok);
6806     pop(rscratch1);
6807   }
6808 }
6809 #endif
6810 
6811 // Algorithm must match oop.inline.hpp encode_heap_oop.
6812 void MacroAssembler::encode_heap_oop(Register r) {
6813 #ifdef ASSERT
6814   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6815 #endif
6816   verify_oop(r, "broken oop in encode_heap_oop");
6817   if (Universe::narrow_oop_base() == NULL) {
6818     if (Universe::narrow_oop_shift() != 0) {
6819       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6820       shrq(r, LogMinObjAlignmentInBytes);
6821     }
6822     return;
6823   }
6824   testq(r, r);
6825   cmovq(Assembler::equal, r, r12_heapbase);
6826   subq(r, r12_heapbase);
6827   shrq(r, LogMinObjAlignmentInBytes);
6828 }
6829 
6830 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6831 #ifdef ASSERT
6832   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6833   if (CheckCompressedOops) {
6834     Label ok;
6835     testq(r, r);
6836     jcc(Assembler::notEqual, ok);
6837     STOP("null oop passed to encode_heap_oop_not_null");
6838     bind(ok);
6839   }
6840 #endif
6841   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6842   if (Universe::narrow_oop_base() != NULL) {
6843     subq(r, r12_heapbase);
6844   }
6845   if (Universe::narrow_oop_shift() != 0) {
6846     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6847     shrq(r, LogMinObjAlignmentInBytes);
6848   }
6849 }
6850 
6851 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6852 #ifdef ASSERT
6853   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6854   if (CheckCompressedOops) {
6855     Label ok;
6856     testq(src, src);
6857     jcc(Assembler::notEqual, ok);
6858     STOP("null oop passed to encode_heap_oop_not_null2");
6859     bind(ok);
6860   }
6861 #endif
6862   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6863   if (dst != src) {
6864     movq(dst, src);
6865   }
6866   if (Universe::narrow_oop_base() != NULL) {
6867     subq(dst, r12_heapbase);
6868   }
6869   if (Universe::narrow_oop_shift() != 0) {
6870     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6871     shrq(dst, LogMinObjAlignmentInBytes);
6872   }
6873 }
6874 
6875 void  MacroAssembler::decode_heap_oop(Register r) {
6876 #ifdef ASSERT
6877   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6878 #endif
6879   if (Universe::narrow_oop_base() == NULL) {
6880     if (Universe::narrow_oop_shift() != 0) {
6881       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6882       shlq(r, LogMinObjAlignmentInBytes);
6883     }
6884   } else {
6885     Label done;
6886     shlq(r, LogMinObjAlignmentInBytes);
6887     jccb(Assembler::equal, done);
6888     addq(r, r12_heapbase);
6889     bind(done);
6890   }
6891   verify_oop(r, "broken oop in decode_heap_oop");
6892 }
6893 
6894 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6895   // Note: it will change flags
6896   assert (UseCompressedOops, "should only be used for compressed headers");
6897   assert (Universe::heap() != NULL, "java heap should be initialized");
6898   // Cannot assert, unverified entry point counts instructions (see .ad file)
6899   // vtableStubs also counts instructions in pd_code_size_limit.
6900   // Also do not verify_oop as this is called by verify_oop.
6901   if (Universe::narrow_oop_shift() != 0) {
6902     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6903     shlq(r, LogMinObjAlignmentInBytes);
6904     if (Universe::narrow_oop_base() != NULL) {
6905       addq(r, r12_heapbase);
6906     }
6907   } else {
6908     assert (Universe::narrow_oop_base() == NULL, "sanity");
6909   }
6910 }
6911 
6912 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6913   // Note: it will change flags
6914   assert (UseCompressedOops, "should only be used for compressed headers");
6915   assert (Universe::heap() != NULL, "java heap should be initialized");
6916   // Cannot assert, unverified entry point counts instructions (see .ad file)
6917   // vtableStubs also counts instructions in pd_code_size_limit.
6918   // Also do not verify_oop as this is called by verify_oop.
6919   if (Universe::narrow_oop_shift() != 0) {
6920     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6921     if (LogMinObjAlignmentInBytes == Address::times_8) {
6922       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6923     } else {
6924       if (dst != src) {
6925         movq(dst, src);
6926       }
6927       shlq(dst, LogMinObjAlignmentInBytes);
6928       if (Universe::narrow_oop_base() != NULL) {
6929         addq(dst, r12_heapbase);
6930       }
6931     }
6932   } else {
6933     assert (Universe::narrow_oop_base() == NULL, "sanity");
6934     if (dst != src) {
6935       movq(dst, src);
6936     }
6937   }
6938 }
6939 
6940 void MacroAssembler::encode_klass_not_null(Register r) {
6941   if (Universe::narrow_klass_base() != NULL) {
6942     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6943     assert(r != r12_heapbase, "Encoding a klass in r12");
6944     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6945     subq(r, r12_heapbase);
6946   }
6947   if (Universe::narrow_klass_shift() != 0) {
6948     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6949     shrq(r, LogKlassAlignmentInBytes);
6950   }
6951   if (Universe::narrow_klass_base() != NULL) {
6952     reinit_heapbase();
6953   }
6954 }
6955 
6956 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6957   if (dst == src) {
6958     encode_klass_not_null(src);
6959   } else {
6960     if (Universe::narrow_klass_base() != NULL) {
6961       mov64(dst, (int64_t)Universe::narrow_klass_base());
6962       negq(dst);
6963       addq(dst, src);
6964     } else {
6965       movptr(dst, src);
6966     }
6967     if (Universe::narrow_klass_shift() != 0) {
6968       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6969       shrq(dst, LogKlassAlignmentInBytes);
6970     }
6971   }
6972 }
6973 
6974 // Function instr_size_for_decode_klass_not_null() counts the instructions
6975 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6976 // when (Universe::heap() != NULL).  Hence, if the instructions they
6977 // generate change, then this method needs to be updated.
6978 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6979   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6980   if (Universe::narrow_klass_base() != NULL) {
6981     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6982     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6983   } else {
6984     // longest load decode klass function, mov64, leaq
6985     return 16;
6986   }
6987 }
6988 
6989 // !!! If the instructions that get generated here change then function
6990 // instr_size_for_decode_klass_not_null() needs to get updated.
6991 void  MacroAssembler::decode_klass_not_null(Register r) {
6992   // Note: it will change flags
6993   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6994   assert(r != r12_heapbase, "Decoding a klass in r12");
6995   // Cannot assert, unverified entry point counts instructions (see .ad file)
6996   // vtableStubs also counts instructions in pd_code_size_limit.
6997   // Also do not verify_oop as this is called by verify_oop.
6998   if (Universe::narrow_klass_shift() != 0) {
6999     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
7000     shlq(r, LogKlassAlignmentInBytes);
7001   }
7002   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
7003   if (Universe::narrow_klass_base() != NULL) {
7004     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
7005     addq(r, r12_heapbase);
7006     reinit_heapbase();
7007   }
7008 }
7009 
7010 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
7011   // Note: it will change flags
7012   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7013   if (dst == src) {
7014     decode_klass_not_null(dst);
7015   } else {
7016     // Cannot assert, unverified entry point counts instructions (see .ad file)
7017     // vtableStubs also counts instructions in pd_code_size_limit.
7018     // Also do not verify_oop as this is called by verify_oop.
7019     mov64(dst, (int64_t)Universe::narrow_klass_base());
7020     if (Universe::narrow_klass_shift() != 0) {
7021       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
7022       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
7023       leaq(dst, Address(dst, src, Address::times_8, 0));
7024     } else {
7025       addq(dst, src);
7026     }
7027   }
7028 }
7029 
7030 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
7031   assert (UseCompressedOops, "should only be used for compressed headers");
7032   assert (Universe::heap() != NULL, "java heap should be initialized");
7033   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7034   int oop_index = oop_recorder()->find_index(obj);
7035   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7036   mov_narrow_oop(dst, oop_index, rspec);
7037 }
7038 
7039 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
7040   assert (UseCompressedOops, "should only be used for compressed headers");
7041   assert (Universe::heap() != NULL, "java heap should be initialized");
7042   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7043   int oop_index = oop_recorder()->find_index(obj);
7044   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7045   mov_narrow_oop(dst, oop_index, rspec);
7046 }
7047 
7048 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
7049   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7050   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7051   int klass_index = oop_recorder()->find_index(k);
7052   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7053   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
7054 }
7055 
7056 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
7057   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7058   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7059   int klass_index = oop_recorder()->find_index(k);
7060   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7061   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
7062 }
7063 
7064 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
7065   assert (UseCompressedOops, "should only be used for compressed headers");
7066   assert (Universe::heap() != NULL, "java heap should be initialized");
7067   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7068   int oop_index = oop_recorder()->find_index(obj);
7069   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7070   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
7071 }
7072 
7073 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
7074   assert (UseCompressedOops, "should only be used for compressed headers");
7075   assert (Universe::heap() != NULL, "java heap should be initialized");
7076   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7077   int oop_index = oop_recorder()->find_index(obj);
7078   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7079   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
7080 }
7081 
7082 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
7083   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7084   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7085   int klass_index = oop_recorder()->find_index(k);
7086   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7087   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
7088 }
7089 
7090 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
7091   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7092   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7093   int klass_index = oop_recorder()->find_index(k);
7094   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7095   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
7096 }
7097 
7098 void MacroAssembler::reinit_heapbase() {
7099   if (UseCompressedOops || UseCompressedClassPointers) {
7100     if (Universe::heap() != NULL) {
7101       if (Universe::narrow_oop_base() == NULL) {
7102         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
7103       } else {
7104         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
7105       }
7106     } else {
7107       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
7108     }
7109   }
7110 }
7111 
7112 #endif // _LP64
7113 
7114 
7115 // C2 compiled method's prolog code.
7116 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
7117 
7118   // WARNING: Initial instruction MUST be 5 bytes or longer so that
7119   // NativeJump::patch_verified_entry will be able to patch out the entry
7120   // code safely. The push to verify stack depth is ok at 5 bytes,
7121   // the frame allocation can be either 3 or 6 bytes. So if we don't do
7122   // stack bang then we must use the 6 byte frame allocation even if
7123   // we have no frame. :-(
7124   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
7125 
7126   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
7127   // Remove word for return addr
7128   framesize -= wordSize;
7129   stack_bang_size -= wordSize;
7130 
7131   // Calls to C2R adapters often do not accept exceptional returns.
7132   // We require that their callers must bang for them.  But be careful, because
7133   // some VM calls (such as call site linkage) can use several kilobytes of
7134   // stack.  But the stack safety zone should account for that.
7135   // See bugs 4446381, 4468289, 4497237.
7136   if (stack_bang_size > 0) {
7137     generate_stack_overflow_check(stack_bang_size);
7138 
7139     // We always push rbp, so that on return to interpreter rbp, will be
7140     // restored correctly and we can correct the stack.
7141     push(rbp);
7142     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7143     if (PreserveFramePointer) {
7144       mov(rbp, rsp);
7145     }
7146     // Remove word for ebp
7147     framesize -= wordSize;
7148 
7149     // Create frame
7150     if (framesize) {
7151       subptr(rsp, framesize);
7152     }
7153   } else {
7154     // Create frame (force generation of a 4 byte immediate value)
7155     subptr_imm32(rsp, framesize);
7156 
7157     // Save RBP register now.
7158     framesize -= wordSize;
7159     movptr(Address(rsp, framesize), rbp);
7160     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7161     if (PreserveFramePointer) {
7162       movptr(rbp, rsp);
7163       if (framesize > 0) {
7164         addptr(rbp, framesize);
7165       }
7166     }
7167   }
7168 
7169   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
7170     framesize -= wordSize;
7171     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
7172   }
7173 
7174 #ifndef _LP64
7175   // If method sets FPU control word do it now
7176   if (fp_mode_24b) {
7177     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
7178   }
7179   if (UseSSE >= 2 && VerifyFPU) {
7180     verify_FPU(0, "FPU stack must be clean on entry");
7181   }
7182 #endif
7183 
7184 #ifdef ASSERT
7185   if (VerifyStackAtCalls) {
7186     Label L;
7187     push(rax);
7188     mov(rax, rsp);
7189     andptr(rax, StackAlignmentInBytes-1);
7190     cmpptr(rax, StackAlignmentInBytes-wordSize);
7191     pop(rax);
7192     jcc(Assembler::equal, L);
7193     STOP("Stack is not properly aligned!");
7194     bind(L);
7195   }
7196 #endif
7197 
7198 }
7199 
7200 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, bool is_large) {
7201   // cnt - number of qwords (8-byte words).
7202   // base - start address, qword aligned.
7203   // is_large - if optimizers know cnt is larger than InitArrayShortSize
7204   assert(base==rdi, "base register must be edi for rep stos");
7205   assert(tmp==rax,   "tmp register must be eax for rep stos");
7206   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
7207   assert(InitArrayShortSize % BytesPerLong == 0,
7208     "InitArrayShortSize should be the multiple of BytesPerLong");
7209 
7210   Label DONE;
7211 
7212   xorptr(tmp, tmp);
7213 
7214   if (!is_large) {
7215     Label LOOP, LONG;
7216     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
7217     jccb(Assembler::greater, LONG);
7218 
7219     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7220 
7221     decrement(cnt);
7222     jccb(Assembler::negative, DONE); // Zero length
7223 
7224     // Use individual pointer-sized stores for small counts:
7225     BIND(LOOP);
7226     movptr(Address(base, cnt, Address::times_ptr), tmp);
7227     decrement(cnt);
7228     jccb(Assembler::greaterEqual, LOOP);
7229     jmpb(DONE);
7230 
7231     BIND(LONG);
7232   }
7233 
7234   // Use longer rep-prefixed ops for non-small counts:
7235   if (UseFastStosb) {
7236     shlptr(cnt, 3); // convert to number of bytes
7237     rep_stosb();
7238   } else {
7239     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7240     rep_stos();
7241   }
7242 
7243   BIND(DONE);
7244 }
7245 
7246 #ifdef COMPILER2
7247 
7248 // IndexOf for constant substrings with size >= 8 chars
7249 // which don't need to be loaded through stack.
7250 void MacroAssembler::string_indexofC8(Register str1, Register str2,
7251                                       Register cnt1, Register cnt2,
7252                                       int int_cnt2,  Register result,
7253                                       XMMRegister vec, Register tmp,
7254                                       int ae) {
7255   ShortBranchVerifier sbv(this);
7256   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7257   assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7258   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7259 
7260   // This method uses the pcmpestri instruction with bound registers
7261   //   inputs:
7262   //     xmm - substring
7263   //     rax - substring length (elements count)
7264   //     mem - scanned string
7265   //     rdx - string length (elements count)
7266   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7267   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7268   //   outputs:
7269   //     rcx - matched index in string
7270   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7271   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7272   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7273   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7274   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7275 
7276   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
7277         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
7278         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
7279 
7280   // Note, inline_string_indexOf() generates checks:
7281   // if (substr.count > string.count) return -1;
7282   // if (substr.count == 0) return 0;
7283   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
7284 
7285   // Load substring.
7286   if (ae == StrIntrinsicNode::UL) {
7287     pmovzxbw(vec, Address(str2, 0));
7288   } else {
7289     movdqu(vec, Address(str2, 0));
7290   }
7291   movl(cnt2, int_cnt2);
7292   movptr(result, str1); // string addr
7293 
7294   if (int_cnt2 > stride) {
7295     jmpb(SCAN_TO_SUBSTR);
7296 
7297     // Reload substr for rescan, this code
7298     // is executed only for large substrings (> 8 chars)
7299     bind(RELOAD_SUBSTR);
7300     if (ae == StrIntrinsicNode::UL) {
7301       pmovzxbw(vec, Address(str2, 0));
7302     } else {
7303       movdqu(vec, Address(str2, 0));
7304     }
7305     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
7306 
7307     bind(RELOAD_STR);
7308     // We came here after the beginning of the substring was
7309     // matched but the rest of it was not so we need to search
7310     // again. Start from the next element after the previous match.
7311 
7312     // cnt2 is number of substring reminding elements and
7313     // cnt1 is number of string reminding elements when cmp failed.
7314     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
7315     subl(cnt1, cnt2);
7316     addl(cnt1, int_cnt2);
7317     movl(cnt2, int_cnt2); // Now restore cnt2
7318 
7319     decrementl(cnt1);     // Shift to next element
7320     cmpl(cnt1, cnt2);
7321     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7322 
7323     addptr(result, (1<<scale1));
7324 
7325   } // (int_cnt2 > 8)
7326 
7327   // Scan string for start of substr in 16-byte vectors
7328   bind(SCAN_TO_SUBSTR);
7329   pcmpestri(vec, Address(result, 0), mode);
7330   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7331   subl(cnt1, stride);
7332   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7333   cmpl(cnt1, cnt2);
7334   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7335   addptr(result, 16);
7336   jmpb(SCAN_TO_SUBSTR);
7337 
7338   // Found a potential substr
7339   bind(FOUND_CANDIDATE);
7340   // Matched whole vector if first element matched (tmp(rcx) == 0).
7341   if (int_cnt2 == stride) {
7342     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
7343   } else { // int_cnt2 > 8
7344     jccb(Assembler::overflow, FOUND_SUBSTR);
7345   }
7346   // After pcmpestri tmp(rcx) contains matched element index
7347   // Compute start addr of substr
7348   lea(result, Address(result, tmp, scale1));
7349 
7350   // Make sure string is still long enough
7351   subl(cnt1, tmp);
7352   cmpl(cnt1, cnt2);
7353   if (int_cnt2 == stride) {
7354     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7355   } else { // int_cnt2 > 8
7356     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
7357   }
7358   // Left less then substring.
7359 
7360   bind(RET_NOT_FOUND);
7361   movl(result, -1);
7362   jmpb(EXIT);
7363 
7364   if (int_cnt2 > stride) {
7365     // This code is optimized for the case when whole substring
7366     // is matched if its head is matched.
7367     bind(MATCH_SUBSTR_HEAD);
7368     pcmpestri(vec, Address(result, 0), mode);
7369     // Reload only string if does not match
7370     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
7371 
7372     Label CONT_SCAN_SUBSTR;
7373     // Compare the rest of substring (> 8 chars).
7374     bind(FOUND_SUBSTR);
7375     // First 8 chars are already matched.
7376     negptr(cnt2);
7377     addptr(cnt2, stride);
7378 
7379     bind(SCAN_SUBSTR);
7380     subl(cnt1, stride);
7381     cmpl(cnt2, -stride); // Do not read beyond substring
7382     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
7383     // Back-up strings to avoid reading beyond substring:
7384     // cnt1 = cnt1 - cnt2 + 8
7385     addl(cnt1, cnt2); // cnt2 is negative
7386     addl(cnt1, stride);
7387     movl(cnt2, stride); negptr(cnt2);
7388     bind(CONT_SCAN_SUBSTR);
7389     if (int_cnt2 < (int)G) {
7390       int tail_off1 = int_cnt2<<scale1;
7391       int tail_off2 = int_cnt2<<scale2;
7392       if (ae == StrIntrinsicNode::UL) {
7393         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
7394       } else {
7395         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
7396       }
7397       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
7398     } else {
7399       // calculate index in register to avoid integer overflow (int_cnt2*2)
7400       movl(tmp, int_cnt2);
7401       addptr(tmp, cnt2);
7402       if (ae == StrIntrinsicNode::UL) {
7403         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
7404       } else {
7405         movdqu(vec, Address(str2, tmp, scale2, 0));
7406       }
7407       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
7408     }
7409     // Need to reload strings pointers if not matched whole vector
7410     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7411     addptr(cnt2, stride);
7412     jcc(Assembler::negative, SCAN_SUBSTR);
7413     // Fall through if found full substring
7414 
7415   } // (int_cnt2 > 8)
7416 
7417   bind(RET_FOUND);
7418   // Found result if we matched full small substring.
7419   // Compute substr offset
7420   subptr(result, str1);
7421   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7422     shrl(result, 1); // index
7423   }
7424   bind(EXIT);
7425 
7426 } // string_indexofC8
7427 
7428 // Small strings are loaded through stack if they cross page boundary.
7429 void MacroAssembler::string_indexof(Register str1, Register str2,
7430                                     Register cnt1, Register cnt2,
7431                                     int int_cnt2,  Register result,
7432                                     XMMRegister vec, Register tmp,
7433                                     int ae) {
7434   ShortBranchVerifier sbv(this);
7435   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7436   assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7437   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7438 
7439   //
7440   // int_cnt2 is length of small (< 8 chars) constant substring
7441   // or (-1) for non constant substring in which case its length
7442   // is in cnt2 register.
7443   //
7444   // Note, inline_string_indexOf() generates checks:
7445   // if (substr.count > string.count) return -1;
7446   // if (substr.count == 0) return 0;
7447   //
7448   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7449   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
7450   // This method uses the pcmpestri instruction with bound registers
7451   //   inputs:
7452   //     xmm - substring
7453   //     rax - substring length (elements count)
7454   //     mem - scanned string
7455   //     rdx - string length (elements count)
7456   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7457   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7458   //   outputs:
7459   //     rcx - matched index in string
7460   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7461   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7462   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7463   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7464 
7465   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
7466         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
7467         FOUND_CANDIDATE;
7468 
7469   { //========================================================
7470     // We don't know where these strings are located
7471     // and we can't read beyond them. Load them through stack.
7472     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
7473 
7474     movptr(tmp, rsp); // save old SP
7475 
7476     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
7477       if (int_cnt2 == (1>>scale2)) { // One byte
7478         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
7479         load_unsigned_byte(result, Address(str2, 0));
7480         movdl(vec, result); // move 32 bits
7481       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
7482         // Not enough header space in 32-bit VM: 12+3 = 15.
7483         movl(result, Address(str2, -1));
7484         shrl(result, 8);
7485         movdl(vec, result); // move 32 bits
7486       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
7487         load_unsigned_short(result, Address(str2, 0));
7488         movdl(vec, result); // move 32 bits
7489       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
7490         movdl(vec, Address(str2, 0)); // move 32 bits
7491       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
7492         movq(vec, Address(str2, 0));  // move 64 bits
7493       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
7494         // Array header size is 12 bytes in 32-bit VM
7495         // + 6 bytes for 3 chars == 18 bytes,
7496         // enough space to load vec and shift.
7497         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
7498         if (ae == StrIntrinsicNode::UL) {
7499           int tail_off = int_cnt2-8;
7500           pmovzxbw(vec, Address(str2, tail_off));
7501           psrldq(vec, -2*tail_off);
7502         }
7503         else {
7504           int tail_off = int_cnt2*(1<<scale2);
7505           movdqu(vec, Address(str2, tail_off-16));
7506           psrldq(vec, 16-tail_off);
7507         }
7508       }
7509     } else { // not constant substring
7510       cmpl(cnt2, stride);
7511       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
7512 
7513       // We can read beyond string if srt+16 does not cross page boundary
7514       // since heaps are aligned and mapped by pages.
7515       assert(os::vm_page_size() < (int)G, "default page should be small");
7516       movl(result, str2); // We need only low 32 bits
7517       andl(result, (os::vm_page_size()-1));
7518       cmpl(result, (os::vm_page_size()-16));
7519       jccb(Assembler::belowEqual, CHECK_STR);
7520 
7521       // Move small strings to stack to allow load 16 bytes into vec.
7522       subptr(rsp, 16);
7523       int stk_offset = wordSize-(1<<scale2);
7524       push(cnt2);
7525 
7526       bind(COPY_SUBSTR);
7527       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7528         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7529         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7530       } else if (ae == StrIntrinsicNode::UU) {
7531         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7532         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7533       }
7534       decrement(cnt2);
7535       jccb(Assembler::notZero, COPY_SUBSTR);
7536 
7537       pop(cnt2);
7538       movptr(str2, rsp);  // New substring address
7539     } // non constant
7540 
7541     bind(CHECK_STR);
7542     cmpl(cnt1, stride);
7543     jccb(Assembler::aboveEqual, BIG_STRINGS);
7544 
7545     // Check cross page boundary.
7546     movl(result, str1); // We need only low 32 bits
7547     andl(result, (os::vm_page_size()-1));
7548     cmpl(result, (os::vm_page_size()-16));
7549     jccb(Assembler::belowEqual, BIG_STRINGS);
7550 
7551     subptr(rsp, 16);
7552     int stk_offset = -(1<<scale1);
7553     if (int_cnt2 < 0) { // not constant
7554       push(cnt2);
7555       stk_offset += wordSize;
7556     }
7557     movl(cnt2, cnt1);
7558 
7559     bind(COPY_STR);
7560     if (ae == StrIntrinsicNode::LL) {
7561       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7562       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7563     } else {
7564       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7565       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7566     }
7567     decrement(cnt2);
7568     jccb(Assembler::notZero, COPY_STR);
7569 
7570     if (int_cnt2 < 0) { // not constant
7571       pop(cnt2);
7572     }
7573     movptr(str1, rsp);  // New string address
7574 
7575     bind(BIG_STRINGS);
7576     // Load substring.
7577     if (int_cnt2 < 0) { // -1
7578       if (ae == StrIntrinsicNode::UL) {
7579         pmovzxbw(vec, Address(str2, 0));
7580       } else {
7581         movdqu(vec, Address(str2, 0));
7582       }
7583       push(cnt2);       // substr count
7584       push(str2);       // substr addr
7585       push(str1);       // string addr
7586     } else {
7587       // Small (< 8 chars) constant substrings are loaded already.
7588       movl(cnt2, int_cnt2);
7589     }
7590     push(tmp);  // original SP
7591 
7592   } // Finished loading
7593 
7594   //========================================================
7595   // Start search
7596   //
7597 
7598   movptr(result, str1); // string addr
7599 
7600   if (int_cnt2  < 0) {  // Only for non constant substring
7601     jmpb(SCAN_TO_SUBSTR);
7602 
7603     // SP saved at sp+0
7604     // String saved at sp+1*wordSize
7605     // Substr saved at sp+2*wordSize
7606     // Substr count saved at sp+3*wordSize
7607 
7608     // Reload substr for rescan, this code
7609     // is executed only for large substrings (> 8 chars)
7610     bind(RELOAD_SUBSTR);
7611     movptr(str2, Address(rsp, 2*wordSize));
7612     movl(cnt2, Address(rsp, 3*wordSize));
7613     if (ae == StrIntrinsicNode::UL) {
7614       pmovzxbw(vec, Address(str2, 0));
7615     } else {
7616       movdqu(vec, Address(str2, 0));
7617     }
7618     // We came here after the beginning of the substring was
7619     // matched but the rest of it was not so we need to search
7620     // again. Start from the next element after the previous match.
7621     subptr(str1, result); // Restore counter
7622     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7623       shrl(str1, 1);
7624     }
7625     addl(cnt1, str1);
7626     decrementl(cnt1);   // Shift to next element
7627     cmpl(cnt1, cnt2);
7628     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7629 
7630     addptr(result, (1<<scale1));
7631   } // non constant
7632 
7633   // Scan string for start of substr in 16-byte vectors
7634   bind(SCAN_TO_SUBSTR);
7635   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7636   pcmpestri(vec, Address(result, 0), mode);
7637   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7638   subl(cnt1, stride);
7639   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7640   cmpl(cnt1, cnt2);
7641   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7642   addptr(result, 16);
7643 
7644   bind(ADJUST_STR);
7645   cmpl(cnt1, stride); // Do not read beyond string
7646   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7647   // Back-up string to avoid reading beyond string.
7648   lea(result, Address(result, cnt1, scale1, -16));
7649   movl(cnt1, stride);
7650   jmpb(SCAN_TO_SUBSTR);
7651 
7652   // Found a potential substr
7653   bind(FOUND_CANDIDATE);
7654   // After pcmpestri tmp(rcx) contains matched element index
7655 
7656   // Make sure string is still long enough
7657   subl(cnt1, tmp);
7658   cmpl(cnt1, cnt2);
7659   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7660   // Left less then substring.
7661 
7662   bind(RET_NOT_FOUND);
7663   movl(result, -1);
7664   jmpb(CLEANUP);
7665 
7666   bind(FOUND_SUBSTR);
7667   // Compute start addr of substr
7668   lea(result, Address(result, tmp, scale1));
7669   if (int_cnt2 > 0) { // Constant substring
7670     // Repeat search for small substring (< 8 chars)
7671     // from new point without reloading substring.
7672     // Have to check that we don't read beyond string.
7673     cmpl(tmp, stride-int_cnt2);
7674     jccb(Assembler::greater, ADJUST_STR);
7675     // Fall through if matched whole substring.
7676   } else { // non constant
7677     assert(int_cnt2 == -1, "should be != 0");
7678 
7679     addl(tmp, cnt2);
7680     // Found result if we matched whole substring.
7681     cmpl(tmp, stride);
7682     jccb(Assembler::lessEqual, RET_FOUND);
7683 
7684     // Repeat search for small substring (<= 8 chars)
7685     // from new point 'str1' without reloading substring.
7686     cmpl(cnt2, stride);
7687     // Have to check that we don't read beyond string.
7688     jccb(Assembler::lessEqual, ADJUST_STR);
7689 
7690     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7691     // Compare the rest of substring (> 8 chars).
7692     movptr(str1, result);
7693 
7694     cmpl(tmp, cnt2);
7695     // First 8 chars are already matched.
7696     jccb(Assembler::equal, CHECK_NEXT);
7697 
7698     bind(SCAN_SUBSTR);
7699     pcmpestri(vec, Address(str1, 0), mode);
7700     // Need to reload strings pointers if not matched whole vector
7701     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7702 
7703     bind(CHECK_NEXT);
7704     subl(cnt2, stride);
7705     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7706     addptr(str1, 16);
7707     if (ae == StrIntrinsicNode::UL) {
7708       addptr(str2, 8);
7709     } else {
7710       addptr(str2, 16);
7711     }
7712     subl(cnt1, stride);
7713     cmpl(cnt2, stride); // Do not read beyond substring
7714     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7715     // Back-up strings to avoid reading beyond substring.
7716 
7717     if (ae == StrIntrinsicNode::UL) {
7718       lea(str2, Address(str2, cnt2, scale2, -8));
7719       lea(str1, Address(str1, cnt2, scale1, -16));
7720     } else {
7721       lea(str2, Address(str2, cnt2, scale2, -16));
7722       lea(str1, Address(str1, cnt2, scale1, -16));
7723     }
7724     subl(cnt1, cnt2);
7725     movl(cnt2, stride);
7726     addl(cnt1, stride);
7727     bind(CONT_SCAN_SUBSTR);
7728     if (ae == StrIntrinsicNode::UL) {
7729       pmovzxbw(vec, Address(str2, 0));
7730     } else {
7731       movdqu(vec, Address(str2, 0));
7732     }
7733     jmpb(SCAN_SUBSTR);
7734 
7735     bind(RET_FOUND_LONG);
7736     movptr(str1, Address(rsp, wordSize));
7737   } // non constant
7738 
7739   bind(RET_FOUND);
7740   // Compute substr offset
7741   subptr(result, str1);
7742   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7743     shrl(result, 1); // index
7744   }
7745   bind(CLEANUP);
7746   pop(rsp); // restore SP
7747 
7748 } // string_indexof
7749 
7750 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7751                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7752   ShortBranchVerifier sbv(this);
7753   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7754   assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7755 
7756   int stride = 8;
7757 
7758   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7759         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7760         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7761         FOUND_SEQ_CHAR, DONE_LABEL;
7762 
7763   movptr(result, str1);
7764   if (UseAVX >= 2) {
7765     cmpl(cnt1, stride);
7766     jccb(Assembler::less, SCAN_TO_CHAR_LOOP);
7767     cmpl(cnt1, 2*stride);
7768     jccb(Assembler::less, SCAN_TO_8_CHAR_INIT);
7769     movdl(vec1, ch);
7770     vpbroadcastw(vec1, vec1);
7771     vpxor(vec2, vec2);
7772     movl(tmp, cnt1);
7773     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7774     andl(cnt1,0x0000000F);  //tail count (in chars)
7775 
7776     bind(SCAN_TO_16_CHAR_LOOP);
7777     vmovdqu(vec3, Address(result, 0));
7778     vpcmpeqw(vec3, vec3, vec1, 1);
7779     vptest(vec2, vec3);
7780     jcc(Assembler::carryClear, FOUND_CHAR);
7781     addptr(result, 32);
7782     subl(tmp, 2*stride);
7783     jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7784     jmp(SCAN_TO_8_CHAR);
7785     bind(SCAN_TO_8_CHAR_INIT);
7786     movdl(vec1, ch);
7787     pshuflw(vec1, vec1, 0x00);
7788     pshufd(vec1, vec1, 0);
7789     pxor(vec2, vec2);
7790   }
7791   bind(SCAN_TO_8_CHAR);
7792   cmpl(cnt1, stride);
7793   if (UseAVX >= 2) {
7794     jccb(Assembler::less, SCAN_TO_CHAR);
7795   } else {
7796     jccb(Assembler::less, SCAN_TO_CHAR_LOOP);
7797     movdl(vec1, ch);
7798     pshuflw(vec1, vec1, 0x00);
7799     pshufd(vec1, vec1, 0);
7800     pxor(vec2, vec2);
7801   }
7802   movl(tmp, cnt1);
7803   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7804   andl(cnt1,0x00000007);  //tail count (in chars)
7805 
7806   bind(SCAN_TO_8_CHAR_LOOP);
7807   movdqu(vec3, Address(result, 0));
7808   pcmpeqw(vec3, vec1);
7809   ptest(vec2, vec3);
7810   jcc(Assembler::carryClear, FOUND_CHAR);
7811   addptr(result, 16);
7812   subl(tmp, stride);
7813   jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7814   bind(SCAN_TO_CHAR);
7815   testl(cnt1, cnt1);
7816   jcc(Assembler::zero, RET_NOT_FOUND);
7817   bind(SCAN_TO_CHAR_LOOP);
7818   load_unsigned_short(tmp, Address(result, 0));
7819   cmpl(ch, tmp);
7820   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7821   addptr(result, 2);
7822   subl(cnt1, 1);
7823   jccb(Assembler::zero, RET_NOT_FOUND);
7824   jmp(SCAN_TO_CHAR_LOOP);
7825 
7826   bind(RET_NOT_FOUND);
7827   movl(result, -1);
7828   jmpb(DONE_LABEL);
7829 
7830   bind(FOUND_CHAR);
7831   if (UseAVX >= 2) {
7832     vpmovmskb(tmp, vec3);
7833   } else {
7834     pmovmskb(tmp, vec3);
7835   }
7836   bsfl(ch, tmp);
7837   addl(result, ch);
7838 
7839   bind(FOUND_SEQ_CHAR);
7840   subptr(result, str1);
7841   shrl(result, 1);
7842 
7843   bind(DONE_LABEL);
7844 } // string_indexof_char
7845 
7846 // helper function for string_compare
7847 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7848                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7849                                         Address::ScaleFactor scale2, Register index, int ae) {
7850   if (ae == StrIntrinsicNode::LL) {
7851     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7852     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7853   } else if (ae == StrIntrinsicNode::UU) {
7854     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7855     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7856   } else {
7857     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7858     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7859   }
7860 }
7861 
7862 // Compare strings, used for char[] and byte[].
7863 void MacroAssembler::string_compare(Register str1, Register str2,
7864                                     Register cnt1, Register cnt2, Register result,
7865                                     XMMRegister vec1, int ae) {
7866   ShortBranchVerifier sbv(this);
7867   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7868   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7869   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7870   int stride2x2 = 0x40;
7871   Address::ScaleFactor scale = Address::no_scale;
7872   Address::ScaleFactor scale1 = Address::no_scale;
7873   Address::ScaleFactor scale2 = Address::no_scale;
7874 
7875   if (ae != StrIntrinsicNode::LL) {
7876     stride2x2 = 0x20;
7877   }
7878 
7879   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7880     shrl(cnt2, 1);
7881   }
7882   // Compute the minimum of the string lengths and the
7883   // difference of the string lengths (stack).
7884   // Do the conditional move stuff
7885   movl(result, cnt1);
7886   subl(cnt1, cnt2);
7887   push(cnt1);
7888   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7889 
7890   // Is the minimum length zero?
7891   testl(cnt2, cnt2);
7892   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7893   if (ae == StrIntrinsicNode::LL) {
7894     // Load first bytes
7895     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7896     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7897   } else if (ae == StrIntrinsicNode::UU) {
7898     // Load first characters
7899     load_unsigned_short(result, Address(str1, 0));
7900     load_unsigned_short(cnt1, Address(str2, 0));
7901   } else {
7902     load_unsigned_byte(result, Address(str1, 0));
7903     load_unsigned_short(cnt1, Address(str2, 0));
7904   }
7905   subl(result, cnt1);
7906   jcc(Assembler::notZero,  POP_LABEL);
7907 
7908   if (ae == StrIntrinsicNode::UU) {
7909     // Divide length by 2 to get number of chars
7910     shrl(cnt2, 1);
7911   }
7912   cmpl(cnt2, 1);
7913   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7914 
7915   // Check if the strings start at the same location and setup scale and stride
7916   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7917     cmpptr(str1, str2);
7918     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7919     if (ae == StrIntrinsicNode::LL) {
7920       scale = Address::times_1;
7921       stride = 16;
7922     } else {
7923       scale = Address::times_2;
7924       stride = 8;
7925     }
7926   } else {
7927     scale1 = Address::times_1;
7928     scale2 = Address::times_2;
7929     // scale not used
7930     stride = 8;
7931   }
7932 
7933   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7934     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7935     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7936     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7937     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7938     Label COMPARE_TAIL_LONG;
7939     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7940 
7941     int pcmpmask = 0x19;
7942     if (ae == StrIntrinsicNode::LL) {
7943       pcmpmask &= ~0x01;
7944     }
7945 
7946     // Setup to compare 16-chars (32-bytes) vectors,
7947     // start from first character again because it has aligned address.
7948     if (ae == StrIntrinsicNode::LL) {
7949       stride2 = 32;
7950     } else {
7951       stride2 = 16;
7952     }
7953     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7954       adr_stride = stride << scale;
7955     } else {
7956       adr_stride1 = 8;  //stride << scale1;
7957       adr_stride2 = 16; //stride << scale2;
7958     }
7959 
7960     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7961     // rax and rdx are used by pcmpestri as elements counters
7962     movl(result, cnt2);
7963     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7964     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7965 
7966     // fast path : compare first 2 8-char vectors.
7967     bind(COMPARE_16_CHARS);
7968     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7969       movdqu(vec1, Address(str1, 0));
7970     } else {
7971       pmovzxbw(vec1, Address(str1, 0));
7972     }
7973     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7974     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7975 
7976     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7977       movdqu(vec1, Address(str1, adr_stride));
7978       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7979     } else {
7980       pmovzxbw(vec1, Address(str1, adr_stride1));
7981       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7982     }
7983     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7984     addl(cnt1, stride);
7985 
7986     // Compare the characters at index in cnt1
7987     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7988     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7989     subl(result, cnt2);
7990     jmp(POP_LABEL);
7991 
7992     // Setup the registers to start vector comparison loop
7993     bind(COMPARE_WIDE_VECTORS);
7994     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7995       lea(str1, Address(str1, result, scale));
7996       lea(str2, Address(str2, result, scale));
7997     } else {
7998       lea(str1, Address(str1, result, scale1));
7999       lea(str2, Address(str2, result, scale2));
8000     }
8001     subl(result, stride2);
8002     subl(cnt2, stride2);
8003     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
8004     negptr(result);
8005 
8006     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
8007     bind(COMPARE_WIDE_VECTORS_LOOP);
8008 
8009 #ifdef _LP64
8010     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8011       cmpl(cnt2, stride2x2);
8012       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8013       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
8014       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
8015 
8016       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8017       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8018         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
8019         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
8020       } else {
8021         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
8022         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
8023       }
8024       kortestql(k7, k7);
8025       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
8026       addptr(result, stride2x2);  // update since we already compared at this addr
8027       subl(cnt2, stride2x2);      // and sub the size too
8028       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8029 
8030       vpxor(vec1, vec1);
8031       jmpb(COMPARE_WIDE_TAIL);
8032     }//if (VM_Version::supports_avx512vlbw())
8033 #endif // _LP64
8034 
8035 
8036     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8037     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8038       vmovdqu(vec1, Address(str1, result, scale));
8039       vpxor(vec1, Address(str2, result, scale));
8040     } else {
8041       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
8042       vpxor(vec1, Address(str2, result, scale2));
8043     }
8044     vptest(vec1, vec1);
8045     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
8046     addptr(result, stride2);
8047     subl(cnt2, stride2);
8048     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
8049     // clean upper bits of YMM registers
8050     vpxor(vec1, vec1);
8051 
8052     // compare wide vectors tail
8053     bind(COMPARE_WIDE_TAIL);
8054     testptr(result, result);
8055     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
8056 
8057     movl(result, stride2);
8058     movl(cnt2, result);
8059     negptr(result);
8060     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8061 
8062     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
8063     bind(VECTOR_NOT_EQUAL);
8064     // clean upper bits of YMM registers
8065     vpxor(vec1, vec1);
8066     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8067       lea(str1, Address(str1, result, scale));
8068       lea(str2, Address(str2, result, scale));
8069     } else {
8070       lea(str1, Address(str1, result, scale1));
8071       lea(str2, Address(str2, result, scale2));
8072     }
8073     jmp(COMPARE_16_CHARS);
8074 
8075     // Compare tail chars, length between 1 to 15 chars
8076     bind(COMPARE_TAIL_LONG);
8077     movl(cnt2, result);
8078     cmpl(cnt2, stride);
8079     jccb(Assembler::less, COMPARE_SMALL_STR);
8080 
8081     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8082       movdqu(vec1, Address(str1, 0));
8083     } else {
8084       pmovzxbw(vec1, Address(str1, 0));
8085     }
8086     pcmpestri(vec1, Address(str2, 0), pcmpmask);
8087     jcc(Assembler::below, COMPARE_INDEX_CHAR);
8088     subptr(cnt2, stride);
8089     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
8090     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8091       lea(str1, Address(str1, result, scale));
8092       lea(str2, Address(str2, result, scale));
8093     } else {
8094       lea(str1, Address(str1, result, scale1));
8095       lea(str2, Address(str2, result, scale2));
8096     }
8097     negptr(cnt2);
8098     jmpb(WHILE_HEAD_LABEL);
8099 
8100     bind(COMPARE_SMALL_STR);
8101   } else if (UseSSE42Intrinsics) {
8102     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
8103     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
8104     int pcmpmask = 0x19;
8105     // Setup to compare 8-char (16-byte) vectors,
8106     // start from first character again because it has aligned address.
8107     movl(result, cnt2);
8108     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
8109     if (ae == StrIntrinsicNode::LL) {
8110       pcmpmask &= ~0x01;
8111     }
8112     jccb(Assembler::zero, COMPARE_TAIL);
8113     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8114       lea(str1, Address(str1, result, scale));
8115       lea(str2, Address(str2, result, scale));
8116     } else {
8117       lea(str1, Address(str1, result, scale1));
8118       lea(str2, Address(str2, result, scale2));
8119     }
8120     negptr(result);
8121 
8122     // pcmpestri
8123     //   inputs:
8124     //     vec1- substring
8125     //     rax - negative string length (elements count)
8126     //     mem - scanned string
8127     //     rdx - string length (elements count)
8128     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
8129     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
8130     //   outputs:
8131     //     rcx - first mismatched element index
8132     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
8133 
8134     bind(COMPARE_WIDE_VECTORS);
8135     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8136       movdqu(vec1, Address(str1, result, scale));
8137       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8138     } else {
8139       pmovzxbw(vec1, Address(str1, result, scale1));
8140       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8141     }
8142     // After pcmpestri cnt1(rcx) contains mismatched element index
8143 
8144     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
8145     addptr(result, stride);
8146     subptr(cnt2, stride);
8147     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
8148 
8149     // compare wide vectors tail
8150     testptr(result, result);
8151     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
8152 
8153     movl(cnt2, stride);
8154     movl(result, stride);
8155     negptr(result);
8156     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8157       movdqu(vec1, Address(str1, result, scale));
8158       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8159     } else {
8160       pmovzxbw(vec1, Address(str1, result, scale1));
8161       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8162     }
8163     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
8164 
8165     // Mismatched characters in the vectors
8166     bind(VECTOR_NOT_EQUAL);
8167     addptr(cnt1, result);
8168     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
8169     subl(result, cnt2);
8170     jmpb(POP_LABEL);
8171 
8172     bind(COMPARE_TAIL); // limit is zero
8173     movl(cnt2, result);
8174     // Fallthru to tail compare
8175   }
8176   // Shift str2 and str1 to the end of the arrays, negate min
8177   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8178     lea(str1, Address(str1, cnt2, scale));
8179     lea(str2, Address(str2, cnt2, scale));
8180   } else {
8181     lea(str1, Address(str1, cnt2, scale1));
8182     lea(str2, Address(str2, cnt2, scale2));
8183   }
8184   decrementl(cnt2);  // first character was compared already
8185   negptr(cnt2);
8186 
8187   // Compare the rest of the elements
8188   bind(WHILE_HEAD_LABEL);
8189   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
8190   subl(result, cnt1);
8191   jccb(Assembler::notZero, POP_LABEL);
8192   increment(cnt2);
8193   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
8194 
8195   // Strings are equal up to min length.  Return the length difference.
8196   bind(LENGTH_DIFF_LABEL);
8197   pop(result);
8198   if (ae == StrIntrinsicNode::UU) {
8199     // Divide diff by 2 to get number of chars
8200     sarl(result, 1);
8201   }
8202   jmpb(DONE_LABEL);
8203 
8204 #ifdef _LP64
8205   if (VM_Version::supports_avx512vlbw()) {
8206 
8207     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
8208 
8209     kmovql(cnt1, k7);
8210     notq(cnt1);
8211     bsfq(cnt2, cnt1);
8212     if (ae != StrIntrinsicNode::LL) {
8213       // Divide diff by 2 to get number of chars
8214       sarl(cnt2, 1);
8215     }
8216     addq(result, cnt2);
8217     if (ae == StrIntrinsicNode::LL) {
8218       load_unsigned_byte(cnt1, Address(str2, result));
8219       load_unsigned_byte(result, Address(str1, result));
8220     } else if (ae == StrIntrinsicNode::UU) {
8221       load_unsigned_short(cnt1, Address(str2, result, scale));
8222       load_unsigned_short(result, Address(str1, result, scale));
8223     } else {
8224       load_unsigned_short(cnt1, Address(str2, result, scale2));
8225       load_unsigned_byte(result, Address(str1, result, scale1));
8226     }
8227     subl(result, cnt1);
8228     jmpb(POP_LABEL);
8229   }//if (VM_Version::supports_avx512vlbw())
8230 #endif // _LP64
8231 
8232   // Discard the stored length difference
8233   bind(POP_LABEL);
8234   pop(cnt1);
8235 
8236   // That's it
8237   bind(DONE_LABEL);
8238   if(ae == StrIntrinsicNode::UL) {
8239     negl(result);
8240   }
8241 
8242 }
8243 
8244 // Search for Non-ASCII character (Negative byte value) in a byte array,
8245 // return true if it has any and false otherwise.
8246 void MacroAssembler::has_negatives(Register ary1, Register len,
8247                                    Register result, Register tmp1,
8248                                    XMMRegister vec1, XMMRegister vec2) {
8249 
8250   // rsi: byte array
8251   // rcx: len
8252   // rax: result
8253   ShortBranchVerifier sbv(this);
8254   assert_different_registers(ary1, len, result, tmp1);
8255   assert_different_registers(vec1, vec2);
8256   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
8257 
8258   // len == 0
8259   testl(len, len);
8260   jcc(Assembler::zero, FALSE_LABEL);
8261 
8262   movl(result, len); // copy
8263 
8264   if (UseAVX >= 2 && UseSSE >= 2) {
8265     // With AVX2, use 32-byte vector compare
8266     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8267 
8268     // Compare 32-byte vectors
8269     andl(result, 0x0000001f);  //   tail count (in bytes)
8270     andl(len, 0xffffffe0);   // vector count (in bytes)
8271     jccb(Assembler::zero, COMPARE_TAIL);
8272 
8273     lea(ary1, Address(ary1, len, Address::times_1));
8274     negptr(len);
8275 
8276     movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
8277     movdl(vec2, tmp1);
8278     vpbroadcastd(vec2, vec2);
8279 
8280     bind(COMPARE_WIDE_VECTORS);
8281     vmovdqu(vec1, Address(ary1, len, Address::times_1));
8282     vptest(vec1, vec2);
8283     jccb(Assembler::notZero, TRUE_LABEL);
8284     addptr(len, 32);
8285     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8286 
8287     testl(result, result);
8288     jccb(Assembler::zero, FALSE_LABEL);
8289 
8290     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8291     vptest(vec1, vec2);
8292     jccb(Assembler::notZero, TRUE_LABEL);
8293     jmpb(FALSE_LABEL);
8294 
8295     bind(COMPARE_TAIL); // len is zero
8296     movl(len, result);
8297     // Fallthru to tail compare
8298   } else if (UseSSE42Intrinsics) {
8299     assert(UseSSE >= 4, "SSE4 must be  for SSE4.2 intrinsics to be available");
8300     // With SSE4.2, use double quad vector compare
8301     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8302 
8303     // Compare 16-byte vectors
8304     andl(result, 0x0000000f);  //   tail count (in bytes)
8305     andl(len, 0xfffffff0);   // vector count (in bytes)
8306     jccb(Assembler::zero, COMPARE_TAIL);
8307 
8308     lea(ary1, Address(ary1, len, Address::times_1));
8309     negptr(len);
8310 
8311     movl(tmp1, 0x80808080);
8312     movdl(vec2, tmp1);
8313     pshufd(vec2, vec2, 0);
8314 
8315     bind(COMPARE_WIDE_VECTORS);
8316     movdqu(vec1, Address(ary1, len, Address::times_1));
8317     ptest(vec1, vec2);
8318     jccb(Assembler::notZero, TRUE_LABEL);
8319     addptr(len, 16);
8320     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8321 
8322     testl(result, result);
8323     jccb(Assembler::zero, FALSE_LABEL);
8324 
8325     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8326     ptest(vec1, vec2);
8327     jccb(Assembler::notZero, TRUE_LABEL);
8328     jmpb(FALSE_LABEL);
8329 
8330     bind(COMPARE_TAIL); // len is zero
8331     movl(len, result);
8332     // Fallthru to tail compare
8333   }
8334 
8335   // Compare 4-byte vectors
8336   andl(len, 0xfffffffc); // vector count (in bytes)
8337   jccb(Assembler::zero, COMPARE_CHAR);
8338 
8339   lea(ary1, Address(ary1, len, Address::times_1));
8340   negptr(len);
8341 
8342   bind(COMPARE_VECTORS);
8343   movl(tmp1, Address(ary1, len, Address::times_1));
8344   andl(tmp1, 0x80808080);
8345   jccb(Assembler::notZero, TRUE_LABEL);
8346   addptr(len, 4);
8347   jcc(Assembler::notZero, COMPARE_VECTORS);
8348 
8349   // Compare trailing char (final 2 bytes), if any
8350   bind(COMPARE_CHAR);
8351   testl(result, 0x2);   // tail  char
8352   jccb(Assembler::zero, COMPARE_BYTE);
8353   load_unsigned_short(tmp1, Address(ary1, 0));
8354   andl(tmp1, 0x00008080);
8355   jccb(Assembler::notZero, TRUE_LABEL);
8356   subptr(result, 2);
8357   lea(ary1, Address(ary1, 2));
8358 
8359   bind(COMPARE_BYTE);
8360   testl(result, 0x1);   // tail  byte
8361   jccb(Assembler::zero, FALSE_LABEL);
8362   load_unsigned_byte(tmp1, Address(ary1, 0));
8363   andl(tmp1, 0x00000080);
8364   jccb(Assembler::notEqual, TRUE_LABEL);
8365   jmpb(FALSE_LABEL);
8366 
8367   bind(TRUE_LABEL);
8368   movl(result, 1);   // return true
8369   jmpb(DONE);
8370 
8371   bind(FALSE_LABEL);
8372   xorl(result, result); // return false
8373 
8374   // That's it
8375   bind(DONE);
8376   if (UseAVX >= 2 && UseSSE >= 2) {
8377     // clean upper bits of YMM registers
8378     vpxor(vec1, vec1);
8379     vpxor(vec2, vec2);
8380   }
8381 }
8382 
8383 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
8384 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8385                                    Register limit, Register result, Register chr,
8386                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
8387   ShortBranchVerifier sbv(this);
8388   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
8389 
8390   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8391   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
8392 
8393   if (is_array_equ) {
8394     // Check the input args
8395     cmpptr(ary1, ary2);
8396     jcc(Assembler::equal, TRUE_LABEL);
8397 
8398     // Need additional checks for arrays_equals.
8399     testptr(ary1, ary1);
8400     jcc(Assembler::zero, FALSE_LABEL);
8401     testptr(ary2, ary2);
8402     jcc(Assembler::zero, FALSE_LABEL);
8403 
8404     // Check the lengths
8405     movl(limit, Address(ary1, length_offset));
8406     cmpl(limit, Address(ary2, length_offset));
8407     jcc(Assembler::notEqual, FALSE_LABEL);
8408   }
8409 
8410   // count == 0
8411   testl(limit, limit);
8412   jcc(Assembler::zero, TRUE_LABEL);
8413 
8414   if (is_array_equ) {
8415     // Load array address
8416     lea(ary1, Address(ary1, base_offset));
8417     lea(ary2, Address(ary2, base_offset));
8418   }
8419 
8420   if (is_array_equ && is_char) {
8421     // arrays_equals when used for char[].
8422     shll(limit, 1);      // byte count != 0
8423   }
8424   movl(result, limit); // copy
8425 
8426   if (UseAVX >= 2) {
8427     // With AVX2, use 32-byte vector compare
8428     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8429 
8430     // Compare 32-byte vectors
8431     andl(result, 0x0000001f);  //   tail count (in bytes)
8432     andl(limit, 0xffffffe0);   // vector count (in bytes)
8433     jcc(Assembler::zero, COMPARE_TAIL);
8434 
8435     lea(ary1, Address(ary1, limit, Address::times_1));
8436     lea(ary2, Address(ary2, limit, Address::times_1));
8437     negptr(limit);
8438 
8439     bind(COMPARE_WIDE_VECTORS);
8440 
8441 #ifdef _LP64
8442     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8443       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8444 
8445       cmpl(limit, -64);
8446       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8447 
8448       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8449 
8450       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8451       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8452       kortestql(k7, k7);
8453       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8454       addptr(limit, 64);  // update since we already compared at this addr
8455       cmpl(limit, -64);
8456       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8457 
8458       // At this point we may still need to compare -limit+result bytes.
8459       // We could execute the next two instruction and just continue via non-wide path:
8460       //  cmpl(limit, 0);
8461       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8462       // But since we stopped at the points ary{1,2}+limit which are
8463       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8464       // (|limit| <= 32 and result < 32),
8465       // we may just compare the last 64 bytes.
8466       //
8467       addptr(result, -64);   // it is safe, bc we just came from this area
8468       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8469       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8470       kortestql(k7, k7);
8471       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8472 
8473       jmp(TRUE_LABEL);
8474 
8475       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8476 
8477     }//if (VM_Version::supports_avx512vlbw())
8478 #endif //_LP64
8479 
8480     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8481     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8482     vpxor(vec1, vec2);
8483 
8484     vptest(vec1, vec1);
8485     jccb(Assembler::notZero, FALSE_LABEL);
8486     addptr(limit, 32);
8487     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8488 
8489     testl(result, result);
8490     jccb(Assembler::zero, TRUE_LABEL);
8491 
8492     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8493     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8494     vpxor(vec1, vec2);
8495 
8496     vptest(vec1, vec1);
8497     jccb(Assembler::notZero, FALSE_LABEL);
8498     jmpb(TRUE_LABEL);
8499 
8500     bind(COMPARE_TAIL); // limit is zero
8501     movl(limit, result);
8502     // Fallthru to tail compare
8503   } else if (UseSSE42Intrinsics) {
8504     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
8505     // With SSE4.2, use double quad vector compare
8506     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8507 
8508     // Compare 16-byte vectors
8509     andl(result, 0x0000000f);  //   tail count (in bytes)
8510     andl(limit, 0xfffffff0);   // vector count (in bytes)
8511     jccb(Assembler::zero, COMPARE_TAIL);
8512 
8513     lea(ary1, Address(ary1, limit, Address::times_1));
8514     lea(ary2, Address(ary2, limit, Address::times_1));
8515     negptr(limit);
8516 
8517     bind(COMPARE_WIDE_VECTORS);
8518     movdqu(vec1, Address(ary1, limit, Address::times_1));
8519     movdqu(vec2, Address(ary2, limit, Address::times_1));
8520     pxor(vec1, vec2);
8521 
8522     ptest(vec1, vec1);
8523     jccb(Assembler::notZero, FALSE_LABEL);
8524     addptr(limit, 16);
8525     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8526 
8527     testl(result, result);
8528     jccb(Assembler::zero, TRUE_LABEL);
8529 
8530     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8531     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8532     pxor(vec1, vec2);
8533 
8534     ptest(vec1, vec1);
8535     jccb(Assembler::notZero, FALSE_LABEL);
8536     jmpb(TRUE_LABEL);
8537 
8538     bind(COMPARE_TAIL); // limit is zero
8539     movl(limit, result);
8540     // Fallthru to tail compare
8541   }
8542 
8543   // Compare 4-byte vectors
8544   andl(limit, 0xfffffffc); // vector count (in bytes)
8545   jccb(Assembler::zero, COMPARE_CHAR);
8546 
8547   lea(ary1, Address(ary1, limit, Address::times_1));
8548   lea(ary2, Address(ary2, limit, Address::times_1));
8549   negptr(limit);
8550 
8551   bind(COMPARE_VECTORS);
8552   movl(chr, Address(ary1, limit, Address::times_1));
8553   cmpl(chr, Address(ary2, limit, Address::times_1));
8554   jccb(Assembler::notEqual, FALSE_LABEL);
8555   addptr(limit, 4);
8556   jcc(Assembler::notZero, COMPARE_VECTORS);
8557 
8558   // Compare trailing char (final 2 bytes), if any
8559   bind(COMPARE_CHAR);
8560   testl(result, 0x2);   // tail  char
8561   jccb(Assembler::zero, COMPARE_BYTE);
8562   load_unsigned_short(chr, Address(ary1, 0));
8563   load_unsigned_short(limit, Address(ary2, 0));
8564   cmpl(chr, limit);
8565   jccb(Assembler::notEqual, FALSE_LABEL);
8566 
8567   if (is_array_equ && is_char) {
8568     bind(COMPARE_BYTE);
8569   } else {
8570     lea(ary1, Address(ary1, 2));
8571     lea(ary2, Address(ary2, 2));
8572 
8573     bind(COMPARE_BYTE);
8574     testl(result, 0x1);   // tail  byte
8575     jccb(Assembler::zero, TRUE_LABEL);
8576     load_unsigned_byte(chr, Address(ary1, 0));
8577     load_unsigned_byte(limit, Address(ary2, 0));
8578     cmpl(chr, limit);
8579     jccb(Assembler::notEqual, FALSE_LABEL);
8580   }
8581   bind(TRUE_LABEL);
8582   movl(result, 1);   // return true
8583   jmpb(DONE);
8584 
8585   bind(FALSE_LABEL);
8586   xorl(result, result); // return false
8587 
8588   // That's it
8589   bind(DONE);
8590   if (UseAVX >= 2) {
8591     // clean upper bits of YMM registers
8592     vpxor(vec1, vec1);
8593     vpxor(vec2, vec2);
8594   }
8595 }
8596 
8597 #endif
8598 
8599 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8600                                    Register to, Register value, Register count,
8601                                    Register rtmp, XMMRegister xtmp) {
8602   ShortBranchVerifier sbv(this);
8603   assert_different_registers(to, value, count, rtmp);
8604   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8605   Label L_fill_2_bytes, L_fill_4_bytes;
8606 
8607   int shift = -1;
8608   switch (t) {
8609     case T_BYTE:
8610       shift = 2;
8611       break;
8612     case T_SHORT:
8613       shift = 1;
8614       break;
8615     case T_INT:
8616       shift = 0;
8617       break;
8618     default: ShouldNotReachHere();
8619   }
8620 
8621   if (t == T_BYTE) {
8622     andl(value, 0xff);
8623     movl(rtmp, value);
8624     shll(rtmp, 8);
8625     orl(value, rtmp);
8626   }
8627   if (t == T_SHORT) {
8628     andl(value, 0xffff);
8629   }
8630   if (t == T_BYTE || t == T_SHORT) {
8631     movl(rtmp, value);
8632     shll(rtmp, 16);
8633     orl(value, rtmp);
8634   }
8635 
8636   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8637   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8638   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8639     // align source address at 4 bytes address boundary
8640     if (t == T_BYTE) {
8641       // One byte misalignment happens only for byte arrays
8642       testptr(to, 1);
8643       jccb(Assembler::zero, L_skip_align1);
8644       movb(Address(to, 0), value);
8645       increment(to);
8646       decrement(count);
8647       BIND(L_skip_align1);
8648     }
8649     // Two bytes misalignment happens only for byte and short (char) arrays
8650     testptr(to, 2);
8651     jccb(Assembler::zero, L_skip_align2);
8652     movw(Address(to, 0), value);
8653     addptr(to, 2);
8654     subl(count, 1<<(shift-1));
8655     BIND(L_skip_align2);
8656   }
8657   if (UseSSE < 2) {
8658     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8659     // Fill 32-byte chunks
8660     subl(count, 8 << shift);
8661     jcc(Assembler::less, L_check_fill_8_bytes);
8662     align(16);
8663 
8664     BIND(L_fill_32_bytes_loop);
8665 
8666     for (int i = 0; i < 32; i += 4) {
8667       movl(Address(to, i), value);
8668     }
8669 
8670     addptr(to, 32);
8671     subl(count, 8 << shift);
8672     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8673     BIND(L_check_fill_8_bytes);
8674     addl(count, 8 << shift);
8675     jccb(Assembler::zero, L_exit);
8676     jmpb(L_fill_8_bytes);
8677 
8678     //
8679     // length is too short, just fill qwords
8680     //
8681     BIND(L_fill_8_bytes_loop);
8682     movl(Address(to, 0), value);
8683     movl(Address(to, 4), value);
8684     addptr(to, 8);
8685     BIND(L_fill_8_bytes);
8686     subl(count, 1 << (shift + 1));
8687     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8688     // fall through to fill 4 bytes
8689   } else {
8690     Label L_fill_32_bytes;
8691     if (!UseUnalignedLoadStores) {
8692       // align to 8 bytes, we know we are 4 byte aligned to start
8693       testptr(to, 4);
8694       jccb(Assembler::zero, L_fill_32_bytes);
8695       movl(Address(to, 0), value);
8696       addptr(to, 4);
8697       subl(count, 1<<shift);
8698     }
8699     BIND(L_fill_32_bytes);
8700     {
8701       assert( UseSSE >= 2, "supported cpu only" );
8702       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8703       if (UseAVX > 2) {
8704         movl(rtmp, 0xffff);
8705         kmovwl(k1, rtmp);
8706       }
8707       movdl(xtmp, value);
8708       if (UseAVX > 2 && UseUnalignedLoadStores) {
8709         // Fill 64-byte chunks
8710         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8711         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8712 
8713         subl(count, 16 << shift);
8714         jcc(Assembler::less, L_check_fill_32_bytes);
8715         align(16);
8716 
8717         BIND(L_fill_64_bytes_loop);
8718         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8719         addptr(to, 64);
8720         subl(count, 16 << shift);
8721         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8722 
8723         BIND(L_check_fill_32_bytes);
8724         addl(count, 8 << shift);
8725         jccb(Assembler::less, L_check_fill_8_bytes);
8726         vmovdqu(Address(to, 0), xtmp);
8727         addptr(to, 32);
8728         subl(count, 8 << shift);
8729 
8730         BIND(L_check_fill_8_bytes);
8731       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8732         // Fill 64-byte chunks
8733         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8734         vpbroadcastd(xtmp, xtmp);
8735 
8736         subl(count, 16 << shift);
8737         jcc(Assembler::less, L_check_fill_32_bytes);
8738         align(16);
8739 
8740         BIND(L_fill_64_bytes_loop);
8741         vmovdqu(Address(to, 0), xtmp);
8742         vmovdqu(Address(to, 32), xtmp);
8743         addptr(to, 64);
8744         subl(count, 16 << shift);
8745         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8746 
8747         BIND(L_check_fill_32_bytes);
8748         addl(count, 8 << shift);
8749         jccb(Assembler::less, L_check_fill_8_bytes);
8750         vmovdqu(Address(to, 0), xtmp);
8751         addptr(to, 32);
8752         subl(count, 8 << shift);
8753 
8754         BIND(L_check_fill_8_bytes);
8755         // clean upper bits of YMM registers
8756         movdl(xtmp, value);
8757         pshufd(xtmp, xtmp, 0);
8758       } else {
8759         // Fill 32-byte chunks
8760         pshufd(xtmp, xtmp, 0);
8761 
8762         subl(count, 8 << shift);
8763         jcc(Assembler::less, L_check_fill_8_bytes);
8764         align(16);
8765 
8766         BIND(L_fill_32_bytes_loop);
8767 
8768         if (UseUnalignedLoadStores) {
8769           movdqu(Address(to, 0), xtmp);
8770           movdqu(Address(to, 16), xtmp);
8771         } else {
8772           movq(Address(to, 0), xtmp);
8773           movq(Address(to, 8), xtmp);
8774           movq(Address(to, 16), xtmp);
8775           movq(Address(to, 24), xtmp);
8776         }
8777 
8778         addptr(to, 32);
8779         subl(count, 8 << shift);
8780         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8781 
8782         BIND(L_check_fill_8_bytes);
8783       }
8784       addl(count, 8 << shift);
8785       jccb(Assembler::zero, L_exit);
8786       jmpb(L_fill_8_bytes);
8787 
8788       //
8789       // length is too short, just fill qwords
8790       //
8791       BIND(L_fill_8_bytes_loop);
8792       movq(Address(to, 0), xtmp);
8793       addptr(to, 8);
8794       BIND(L_fill_8_bytes);
8795       subl(count, 1 << (shift + 1));
8796       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8797     }
8798   }
8799   // fill trailing 4 bytes
8800   BIND(L_fill_4_bytes);
8801   testl(count, 1<<shift);
8802   jccb(Assembler::zero, L_fill_2_bytes);
8803   movl(Address(to, 0), value);
8804   if (t == T_BYTE || t == T_SHORT) {
8805     addptr(to, 4);
8806     BIND(L_fill_2_bytes);
8807     // fill trailing 2 bytes
8808     testl(count, 1<<(shift-1));
8809     jccb(Assembler::zero, L_fill_byte);
8810     movw(Address(to, 0), value);
8811     if (t == T_BYTE) {
8812       addptr(to, 2);
8813       BIND(L_fill_byte);
8814       // fill trailing byte
8815       testl(count, 1);
8816       jccb(Assembler::zero, L_exit);
8817       movb(Address(to, 0), value);
8818     } else {
8819       BIND(L_fill_byte);
8820     }
8821   } else {
8822     BIND(L_fill_2_bytes);
8823   }
8824   BIND(L_exit);
8825 }
8826 
8827 // encode char[] to byte[] in ISO_8859_1
8828 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8829                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8830                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8831                                       Register tmp5, Register result) {
8832   // rsi: src
8833   // rdi: dst
8834   // rdx: len
8835   // rcx: tmp5
8836   // rax: result
8837   ShortBranchVerifier sbv(this);
8838   assert_different_registers(src, dst, len, tmp5, result);
8839   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8840 
8841   // set result
8842   xorl(result, result);
8843   // check for zero length
8844   testl(len, len);
8845   jcc(Assembler::zero, L_done);
8846   movl(result, len);
8847 
8848   // Setup pointers
8849   lea(src, Address(src, len, Address::times_2)); // char[]
8850   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8851   negptr(len);
8852 
8853   if (UseSSE42Intrinsics || UseAVX >= 2) {
8854     assert(UseSSE42Intrinsics ? UseSSE >= 4 : true, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
8855     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8856     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8857 
8858     if (UseAVX >= 2) {
8859       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8860       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8861       movdl(tmp1Reg, tmp5);
8862       vpbroadcastd(tmp1Reg, tmp1Reg);
8863       jmpb(L_chars_32_check);
8864 
8865       bind(L_copy_32_chars);
8866       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8867       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8868       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8869       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8870       jccb(Assembler::notZero, L_copy_32_chars_exit);
8871       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8872       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8873       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8874 
8875       bind(L_chars_32_check);
8876       addptr(len, 32);
8877       jccb(Assembler::lessEqual, L_copy_32_chars);
8878 
8879       bind(L_copy_32_chars_exit);
8880       subptr(len, 16);
8881       jccb(Assembler::greater, L_copy_16_chars_exit);
8882 
8883     } else if (UseSSE42Intrinsics) {
8884       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8885       movdl(tmp1Reg, tmp5);
8886       pshufd(tmp1Reg, tmp1Reg, 0);
8887       jmpb(L_chars_16_check);
8888     }
8889 
8890     bind(L_copy_16_chars);
8891     if (UseAVX >= 2) {
8892       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
8893       vptest(tmp2Reg, tmp1Reg);
8894       jccb(Assembler::notZero, L_copy_16_chars_exit);
8895       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
8896       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
8897     } else {
8898       if (UseAVX > 0) {
8899         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8900         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8901         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
8902       } else {
8903         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8904         por(tmp2Reg, tmp3Reg);
8905         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8906         por(tmp2Reg, tmp4Reg);
8907       }
8908       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8909       jccb(Assembler::notZero, L_copy_16_chars_exit);
8910       packuswb(tmp3Reg, tmp4Reg);
8911     }
8912     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
8913 
8914     bind(L_chars_16_check);
8915     addptr(len, 16);
8916     jccb(Assembler::lessEqual, L_copy_16_chars);
8917 
8918     bind(L_copy_16_chars_exit);
8919     if (UseAVX >= 2) {
8920       // clean upper bits of YMM registers
8921       vpxor(tmp2Reg, tmp2Reg);
8922       vpxor(tmp3Reg, tmp3Reg);
8923       vpxor(tmp4Reg, tmp4Reg);
8924       movdl(tmp1Reg, tmp5);
8925       pshufd(tmp1Reg, tmp1Reg, 0);
8926     }
8927     subptr(len, 8);
8928     jccb(Assembler::greater, L_copy_8_chars_exit);
8929 
8930     bind(L_copy_8_chars);
8931     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
8932     ptest(tmp3Reg, tmp1Reg);
8933     jccb(Assembler::notZero, L_copy_8_chars_exit);
8934     packuswb(tmp3Reg, tmp1Reg);
8935     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
8936     addptr(len, 8);
8937     jccb(Assembler::lessEqual, L_copy_8_chars);
8938 
8939     bind(L_copy_8_chars_exit);
8940     subptr(len, 8);
8941     jccb(Assembler::zero, L_done);
8942   }
8943 
8944   bind(L_copy_1_char);
8945   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
8946   testl(tmp5, 0xff00);      // check if Unicode char
8947   jccb(Assembler::notZero, L_copy_1_char_exit);
8948   movb(Address(dst, len, Address::times_1, 0), tmp5);
8949   addptr(len, 1);
8950   jccb(Assembler::less, L_copy_1_char);
8951 
8952   bind(L_copy_1_char_exit);
8953   addptr(result, len); // len is negative count of not processed elements
8954   bind(L_done);
8955 }
8956 
8957 #ifdef _LP64
8958 /**
8959  * Helper for multiply_to_len().
8960  */
8961 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
8962   addq(dest_lo, src1);
8963   adcq(dest_hi, 0);
8964   addq(dest_lo, src2);
8965   adcq(dest_hi, 0);
8966 }
8967 
8968 /**
8969  * Multiply 64 bit by 64 bit first loop.
8970  */
8971 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
8972                                            Register y, Register y_idx, Register z,
8973                                            Register carry, Register product,
8974                                            Register idx, Register kdx) {
8975   //
8976   //  jlong carry, x[], y[], z[];
8977   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8978   //    huge_128 product = y[idx] * x[xstart] + carry;
8979   //    z[kdx] = (jlong)product;
8980   //    carry  = (jlong)(product >>> 64);
8981   //  }
8982   //  z[xstart] = carry;
8983   //
8984 
8985   Label L_first_loop, L_first_loop_exit;
8986   Label L_one_x, L_one_y, L_multiply;
8987 
8988   decrementl(xstart);
8989   jcc(Assembler::negative, L_one_x);
8990 
8991   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8992   rorq(x_xstart, 32); // convert big-endian to little-endian
8993 
8994   bind(L_first_loop);
8995   decrementl(idx);
8996   jcc(Assembler::negative, L_first_loop_exit);
8997   decrementl(idx);
8998   jcc(Assembler::negative, L_one_y);
8999   movq(y_idx, Address(y, idx, Address::times_4,  0));
9000   rorq(y_idx, 32); // convert big-endian to little-endian
9001   bind(L_multiply);
9002   movq(product, x_xstart);
9003   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
9004   addq(product, carry);
9005   adcq(rdx, 0);
9006   subl(kdx, 2);
9007   movl(Address(z, kdx, Address::times_4,  4), product);
9008   shrq(product, 32);
9009   movl(Address(z, kdx, Address::times_4,  0), product);
9010   movq(carry, rdx);
9011   jmp(L_first_loop);
9012 
9013   bind(L_one_y);
9014   movl(y_idx, Address(y,  0));
9015   jmp(L_multiply);
9016 
9017   bind(L_one_x);
9018   movl(x_xstart, Address(x,  0));
9019   jmp(L_first_loop);
9020 
9021   bind(L_first_loop_exit);
9022 }
9023 
9024 /**
9025  * Multiply 64 bit by 64 bit and add 128 bit.
9026  */
9027 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
9028                                             Register yz_idx, Register idx,
9029                                             Register carry, Register product, int offset) {
9030   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
9031   //     z[kdx] = (jlong)product;
9032 
9033   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
9034   rorq(yz_idx, 32); // convert big-endian to little-endian
9035   movq(product, x_xstart);
9036   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
9037   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
9038   rorq(yz_idx, 32); // convert big-endian to little-endian
9039 
9040   add2_with_carry(rdx, product, carry, yz_idx);
9041 
9042   movl(Address(z, idx, Address::times_4,  offset+4), product);
9043   shrq(product, 32);
9044   movl(Address(z, idx, Address::times_4,  offset), product);
9045 
9046 }
9047 
9048 /**
9049  * Multiply 128 bit by 128 bit. Unrolled inner loop.
9050  */
9051 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
9052                                              Register yz_idx, Register idx, Register jdx,
9053                                              Register carry, Register product,
9054                                              Register carry2) {
9055   //   jlong carry, x[], y[], z[];
9056   //   int kdx = ystart+1;
9057   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9058   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
9059   //     z[kdx+idx+1] = (jlong)product;
9060   //     jlong carry2  = (jlong)(product >>> 64);
9061   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
9062   //     z[kdx+idx] = (jlong)product;
9063   //     carry  = (jlong)(product >>> 64);
9064   //   }
9065   //   idx += 2;
9066   //   if (idx > 0) {
9067   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
9068   //     z[kdx+idx] = (jlong)product;
9069   //     carry  = (jlong)(product >>> 64);
9070   //   }
9071   //
9072 
9073   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9074 
9075   movl(jdx, idx);
9076   andl(jdx, 0xFFFFFFFC);
9077   shrl(jdx, 2);
9078 
9079   bind(L_third_loop);
9080   subl(jdx, 1);
9081   jcc(Assembler::negative, L_third_loop_exit);
9082   subl(idx, 4);
9083 
9084   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
9085   movq(carry2, rdx);
9086 
9087   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
9088   movq(carry, rdx);
9089   jmp(L_third_loop);
9090 
9091   bind (L_third_loop_exit);
9092 
9093   andl (idx, 0x3);
9094   jcc(Assembler::zero, L_post_third_loop_done);
9095 
9096   Label L_check_1;
9097   subl(idx, 2);
9098   jcc(Assembler::negative, L_check_1);
9099 
9100   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
9101   movq(carry, rdx);
9102 
9103   bind (L_check_1);
9104   addl (idx, 0x2);
9105   andl (idx, 0x1);
9106   subl(idx, 1);
9107   jcc(Assembler::negative, L_post_third_loop_done);
9108 
9109   movl(yz_idx, Address(y, idx, Address::times_4,  0));
9110   movq(product, x_xstart);
9111   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
9112   movl(yz_idx, Address(z, idx, Address::times_4,  0));
9113 
9114   add2_with_carry(rdx, product, yz_idx, carry);
9115 
9116   movl(Address(z, idx, Address::times_4,  0), product);
9117   shrq(product, 32);
9118 
9119   shlq(rdx, 32);
9120   orq(product, rdx);
9121   movq(carry, product);
9122 
9123   bind(L_post_third_loop_done);
9124 }
9125 
9126 /**
9127  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
9128  *
9129  */
9130 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
9131                                                   Register carry, Register carry2,
9132                                                   Register idx, Register jdx,
9133                                                   Register yz_idx1, Register yz_idx2,
9134                                                   Register tmp, Register tmp3, Register tmp4) {
9135   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
9136 
9137   //   jlong carry, x[], y[], z[];
9138   //   int kdx = ystart+1;
9139   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9140   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
9141   //     jlong carry2  = (jlong)(tmp3 >>> 64);
9142   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
9143   //     carry  = (jlong)(tmp4 >>> 64);
9144   //     z[kdx+idx+1] = (jlong)tmp3;
9145   //     z[kdx+idx] = (jlong)tmp4;
9146   //   }
9147   //   idx += 2;
9148   //   if (idx > 0) {
9149   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
9150   //     z[kdx+idx] = (jlong)yz_idx1;
9151   //     carry  = (jlong)(yz_idx1 >>> 64);
9152   //   }
9153   //
9154 
9155   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9156 
9157   movl(jdx, idx);
9158   andl(jdx, 0xFFFFFFFC);
9159   shrl(jdx, 2);
9160 
9161   bind(L_third_loop);
9162   subl(jdx, 1);
9163   jcc(Assembler::negative, L_third_loop_exit);
9164   subl(idx, 4);
9165 
9166   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
9167   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
9168   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
9169   rorxq(yz_idx2, yz_idx2, 32);
9170 
9171   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
9172   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
9173 
9174   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
9175   rorxq(yz_idx1, yz_idx1, 32);
9176   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9177   rorxq(yz_idx2, yz_idx2, 32);
9178 
9179   if (VM_Version::supports_adx()) {
9180     adcxq(tmp3, carry);
9181     adoxq(tmp3, yz_idx1);
9182 
9183     adcxq(tmp4, tmp);
9184     adoxq(tmp4, yz_idx2);
9185 
9186     movl(carry, 0); // does not affect flags
9187     adcxq(carry2, carry);
9188     adoxq(carry2, carry);
9189   } else {
9190     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
9191     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
9192   }
9193   movq(carry, carry2);
9194 
9195   movl(Address(z, idx, Address::times_4, 12), tmp3);
9196   shrq(tmp3, 32);
9197   movl(Address(z, idx, Address::times_4,  8), tmp3);
9198 
9199   movl(Address(z, idx, Address::times_4,  4), tmp4);
9200   shrq(tmp4, 32);
9201   movl(Address(z, idx, Address::times_4,  0), tmp4);
9202 
9203   jmp(L_third_loop);
9204 
9205   bind (L_third_loop_exit);
9206 
9207   andl (idx, 0x3);
9208   jcc(Assembler::zero, L_post_third_loop_done);
9209 
9210   Label L_check_1;
9211   subl(idx, 2);
9212   jcc(Assembler::negative, L_check_1);
9213 
9214   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
9215   rorxq(yz_idx1, yz_idx1, 32);
9216   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
9217   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9218   rorxq(yz_idx2, yz_idx2, 32);
9219 
9220   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
9221 
9222   movl(Address(z, idx, Address::times_4,  4), tmp3);
9223   shrq(tmp3, 32);
9224   movl(Address(z, idx, Address::times_4,  0), tmp3);
9225   movq(carry, tmp4);
9226 
9227   bind (L_check_1);
9228   addl (idx, 0x2);
9229   andl (idx, 0x1);
9230   subl(idx, 1);
9231   jcc(Assembler::negative, L_post_third_loop_done);
9232   movl(tmp4, Address(y, idx, Address::times_4,  0));
9233   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
9234   movl(tmp4, Address(z, idx, Address::times_4,  0));
9235 
9236   add2_with_carry(carry2, tmp3, tmp4, carry);
9237 
9238   movl(Address(z, idx, Address::times_4,  0), tmp3);
9239   shrq(tmp3, 32);
9240 
9241   shlq(carry2, 32);
9242   orq(tmp3, carry2);
9243   movq(carry, tmp3);
9244 
9245   bind(L_post_third_loop_done);
9246 }
9247 
9248 /**
9249  * Code for BigInteger::multiplyToLen() instrinsic.
9250  *
9251  * rdi: x
9252  * rax: xlen
9253  * rsi: y
9254  * rcx: ylen
9255  * r8:  z
9256  * r11: zlen
9257  * r12: tmp1
9258  * r13: tmp2
9259  * r14: tmp3
9260  * r15: tmp4
9261  * rbx: tmp5
9262  *
9263  */
9264 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
9265                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
9266   ShortBranchVerifier sbv(this);
9267   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
9268 
9269   push(tmp1);
9270   push(tmp2);
9271   push(tmp3);
9272   push(tmp4);
9273   push(tmp5);
9274 
9275   push(xlen);
9276   push(zlen);
9277 
9278   const Register idx = tmp1;
9279   const Register kdx = tmp2;
9280   const Register xstart = tmp3;
9281 
9282   const Register y_idx = tmp4;
9283   const Register carry = tmp5;
9284   const Register product  = xlen;
9285   const Register x_xstart = zlen;  // reuse register
9286 
9287   // First Loop.
9288   //
9289   //  final static long LONG_MASK = 0xffffffffL;
9290   //  int xstart = xlen - 1;
9291   //  int ystart = ylen - 1;
9292   //  long carry = 0;
9293   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
9294   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
9295   //    z[kdx] = (int)product;
9296   //    carry = product >>> 32;
9297   //  }
9298   //  z[xstart] = (int)carry;
9299   //
9300 
9301   movl(idx, ylen);      // idx = ylen;
9302   movl(kdx, zlen);      // kdx = xlen+ylen;
9303   xorq(carry, carry);   // carry = 0;
9304 
9305   Label L_done;
9306 
9307   movl(xstart, xlen);
9308   decrementl(xstart);
9309   jcc(Assembler::negative, L_done);
9310 
9311   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
9312 
9313   Label L_second_loop;
9314   testl(kdx, kdx);
9315   jcc(Assembler::zero, L_second_loop);
9316 
9317   Label L_carry;
9318   subl(kdx, 1);
9319   jcc(Assembler::zero, L_carry);
9320 
9321   movl(Address(z, kdx, Address::times_4,  0), carry);
9322   shrq(carry, 32);
9323   subl(kdx, 1);
9324 
9325   bind(L_carry);
9326   movl(Address(z, kdx, Address::times_4,  0), carry);
9327 
9328   // Second and third (nested) loops.
9329   //
9330   // for (int i = xstart-1; i >= 0; i--) { // Second loop
9331   //   carry = 0;
9332   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
9333   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
9334   //                    (z[k] & LONG_MASK) + carry;
9335   //     z[k] = (int)product;
9336   //     carry = product >>> 32;
9337   //   }
9338   //   z[i] = (int)carry;
9339   // }
9340   //
9341   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
9342 
9343   const Register jdx = tmp1;
9344 
9345   bind(L_second_loop);
9346   xorl(carry, carry);    // carry = 0;
9347   movl(jdx, ylen);       // j = ystart+1
9348 
9349   subl(xstart, 1);       // i = xstart-1;
9350   jcc(Assembler::negative, L_done);
9351 
9352   push (z);
9353 
9354   Label L_last_x;
9355   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
9356   subl(xstart, 1);       // i = xstart-1;
9357   jcc(Assembler::negative, L_last_x);
9358 
9359   if (UseBMI2Instructions) {
9360     movq(rdx,  Address(x, xstart, Address::times_4,  0));
9361     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
9362   } else {
9363     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9364     rorq(x_xstart, 32);  // convert big-endian to little-endian
9365   }
9366 
9367   Label L_third_loop_prologue;
9368   bind(L_third_loop_prologue);
9369 
9370   push (x);
9371   push (xstart);
9372   push (ylen);
9373 
9374 
9375   if (UseBMI2Instructions) {
9376     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
9377   } else { // !UseBMI2Instructions
9378     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
9379   }
9380 
9381   pop(ylen);
9382   pop(xlen);
9383   pop(x);
9384   pop(z);
9385 
9386   movl(tmp3, xlen);
9387   addl(tmp3, 1);
9388   movl(Address(z, tmp3, Address::times_4,  0), carry);
9389   subl(tmp3, 1);
9390   jccb(Assembler::negative, L_done);
9391 
9392   shrq(carry, 32);
9393   movl(Address(z, tmp3, Address::times_4,  0), carry);
9394   jmp(L_second_loop);
9395 
9396   // Next infrequent code is moved outside loops.
9397   bind(L_last_x);
9398   if (UseBMI2Instructions) {
9399     movl(rdx, Address(x,  0));
9400   } else {
9401     movl(x_xstart, Address(x,  0));
9402   }
9403   jmp(L_third_loop_prologue);
9404 
9405   bind(L_done);
9406 
9407   pop(zlen);
9408   pop(xlen);
9409 
9410   pop(tmp5);
9411   pop(tmp4);
9412   pop(tmp3);
9413   pop(tmp2);
9414   pop(tmp1);
9415 }
9416 
9417 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
9418   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
9419   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
9420   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
9421   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
9422   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9423   Label SAME_TILL_END, DONE;
9424   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9425 
9426   //scale is in rcx in both Win64 and Unix
9427   ShortBranchVerifier sbv(this);
9428 
9429   shlq(length);
9430   xorq(result, result);
9431 
9432   cmpq(length, 8);
9433   jcc(Assembler::equal, VECTOR8_LOOP);
9434   jcc(Assembler::less, VECTOR4_TAIL);
9435 
9436   if (UseAVX >= 2){
9437 
9438     cmpq(length, 16);
9439     jcc(Assembler::equal, VECTOR16_LOOP);
9440     jcc(Assembler::less, VECTOR8_LOOP);
9441 
9442     cmpq(length, 32);
9443     jccb(Assembler::less, VECTOR16_TAIL);
9444 
9445     subq(length, 32);
9446     bind(VECTOR32_LOOP);
9447     vmovdqu(rymm0, Address(obja, result));
9448     vmovdqu(rymm1, Address(objb, result));
9449     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9450     vptest(rymm2, rymm2);
9451     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9452     addq(result, 32);
9453     subq(length, 32);
9454     jccb(Assembler::greaterEqual, VECTOR32_LOOP);
9455     addq(length, 32);
9456     jcc(Assembler::equal, SAME_TILL_END);
9457     //falling through if less than 32 bytes left //close the branch here.
9458 
9459     bind(VECTOR16_TAIL);
9460     cmpq(length, 16);
9461     jccb(Assembler::less, VECTOR8_TAIL);
9462     bind(VECTOR16_LOOP);
9463     movdqu(rymm0, Address(obja, result));
9464     movdqu(rymm1, Address(objb, result));
9465     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9466     ptest(rymm2, rymm2);
9467     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9468     addq(result, 16);
9469     subq(length, 16);
9470     jcc(Assembler::equal, SAME_TILL_END);
9471     //falling through if less than 16 bytes left
9472   } else {//regular intrinsics
9473 
9474     cmpq(length, 16);
9475     jccb(Assembler::less, VECTOR8_TAIL);
9476 
9477     subq(length, 16);
9478     bind(VECTOR16_LOOP);
9479     movdqu(rymm0, Address(obja, result));
9480     movdqu(rymm1, Address(objb, result));
9481     pxor(rymm0, rymm1);
9482     ptest(rymm0, rymm0);
9483     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9484     addq(result, 16);
9485     subq(length, 16);
9486     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9487     addq(length, 16);
9488     jcc(Assembler::equal, SAME_TILL_END);
9489     //falling through if less than 16 bytes left
9490   }
9491 
9492   bind(VECTOR8_TAIL);
9493   cmpq(length, 8);
9494   jccb(Assembler::less, VECTOR4_TAIL);
9495   bind(VECTOR8_LOOP);
9496   movq(tmp1, Address(obja, result));
9497   movq(tmp2, Address(objb, result));
9498   xorq(tmp1, tmp2);
9499   testq(tmp1, tmp1);
9500   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9501   addq(result, 8);
9502   subq(length, 8);
9503   jcc(Assembler::equal, SAME_TILL_END);
9504   //falling through if less than 8 bytes left
9505 
9506   bind(VECTOR4_TAIL);
9507   cmpq(length, 4);
9508   jccb(Assembler::less, BYTES_TAIL);
9509   bind(VECTOR4_LOOP);
9510   movl(tmp1, Address(obja, result));
9511   xorl(tmp1, Address(objb, result));
9512   testl(tmp1, tmp1);
9513   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9514   addq(result, 4);
9515   subq(length, 4);
9516   jcc(Assembler::equal, SAME_TILL_END);
9517   //falling through if less than 4 bytes left
9518 
9519   bind(BYTES_TAIL);
9520   bind(BYTES_LOOP);
9521   load_unsigned_byte(tmp1, Address(obja, result));
9522   load_unsigned_byte(tmp2, Address(objb, result));
9523   xorl(tmp1, tmp2);
9524   testl(tmp1, tmp1);
9525   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9526   decq(length);
9527   jccb(Assembler::zero, SAME_TILL_END);
9528   incq(result);
9529   load_unsigned_byte(tmp1, Address(obja, result));
9530   load_unsigned_byte(tmp2, Address(objb, result));
9531   xorl(tmp1, tmp2);
9532   testl(tmp1, tmp1);
9533   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9534   decq(length);
9535   jccb(Assembler::zero, SAME_TILL_END);
9536   incq(result);
9537   load_unsigned_byte(tmp1, Address(obja, result));
9538   load_unsigned_byte(tmp2, Address(objb, result));
9539   xorl(tmp1, tmp2);
9540   testl(tmp1, tmp1);
9541   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9542   jmpb(SAME_TILL_END);
9543 
9544   if (UseAVX >= 2){
9545     bind(VECTOR32_NOT_EQUAL);
9546     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9547     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9548     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9549     vpmovmskb(tmp1, rymm0);
9550     bsfq(tmp1, tmp1);
9551     addq(result, tmp1);
9552     shrq(result);
9553     jmpb(DONE);
9554   }
9555 
9556   bind(VECTOR16_NOT_EQUAL);
9557   if (UseAVX >= 2){
9558     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9559     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9560     pxor(rymm0, rymm2);
9561   } else {
9562     pcmpeqb(rymm2, rymm2);
9563     pxor(rymm0, rymm1);
9564     pcmpeqb(rymm0, rymm1);
9565     pxor(rymm0, rymm2);
9566   }
9567   pmovmskb(tmp1, rymm0);
9568   bsfq(tmp1, tmp1);
9569   addq(result, tmp1);
9570   shrq(result);
9571   jmpb(DONE);
9572 
9573   bind(VECTOR8_NOT_EQUAL);
9574   bind(VECTOR4_NOT_EQUAL);
9575   bsfq(tmp1, tmp1);
9576   shrq(tmp1, 3);
9577   addq(result, tmp1);
9578   bind(BYTES_NOT_EQUAL);
9579   shrq(result);
9580   jmpb(DONE);
9581 
9582   bind(SAME_TILL_END);
9583   mov64(result, -1);
9584 
9585   bind(DONE);
9586 }
9587 
9588 
9589 //Helper functions for square_to_len()
9590 
9591 /**
9592  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9593  * Preserves x and z and modifies rest of the registers.
9594  */
9595 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9596   // Perform square and right shift by 1
9597   // Handle odd xlen case first, then for even xlen do the following
9598   // jlong carry = 0;
9599   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9600   //     huge_128 product = x[j:j+1] * x[j:j+1];
9601   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9602   //     z[i+2:i+3] = (jlong)(product >>> 1);
9603   //     carry = (jlong)product;
9604   // }
9605 
9606   xorq(tmp5, tmp5);     // carry
9607   xorq(rdxReg, rdxReg);
9608   xorl(tmp1, tmp1);     // index for x
9609   xorl(tmp4, tmp4);     // index for z
9610 
9611   Label L_first_loop, L_first_loop_exit;
9612 
9613   testl(xlen, 1);
9614   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9615 
9616   // Square and right shift by 1 the odd element using 32 bit multiply
9617   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9618   imulq(raxReg, raxReg);
9619   shrq(raxReg, 1);
9620   adcq(tmp5, 0);
9621   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9622   incrementl(tmp1);
9623   addl(tmp4, 2);
9624 
9625   // Square and  right shift by 1 the rest using 64 bit multiply
9626   bind(L_first_loop);
9627   cmpptr(tmp1, xlen);
9628   jccb(Assembler::equal, L_first_loop_exit);
9629 
9630   // Square
9631   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9632   rorq(raxReg, 32);    // convert big-endian to little-endian
9633   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9634 
9635   // Right shift by 1 and save carry
9636   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9637   rcrq(rdxReg, 1);
9638   rcrq(raxReg, 1);
9639   adcq(tmp5, 0);
9640 
9641   // Store result in z
9642   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9643   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9644 
9645   // Update indices for x and z
9646   addl(tmp1, 2);
9647   addl(tmp4, 4);
9648   jmp(L_first_loop);
9649 
9650   bind(L_first_loop_exit);
9651 }
9652 
9653 
9654 /**
9655  * Perform the following multiply add operation using BMI2 instructions
9656  * carry:sum = sum + op1*op2 + carry
9657  * op2 should be in rdx
9658  * op2 is preserved, all other registers are modified
9659  */
9660 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9661   // assert op2 is rdx
9662   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9663   addq(sum, carry);
9664   adcq(tmp2, 0);
9665   addq(sum, op1);
9666   adcq(tmp2, 0);
9667   movq(carry, tmp2);
9668 }
9669 
9670 /**
9671  * Perform the following multiply add operation:
9672  * carry:sum = sum + op1*op2 + carry
9673  * Preserves op1, op2 and modifies rest of registers
9674  */
9675 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9676   // rdx:rax = op1 * op2
9677   movq(raxReg, op2);
9678   mulq(op1);
9679 
9680   //  rdx:rax = sum + carry + rdx:rax
9681   addq(sum, carry);
9682   adcq(rdxReg, 0);
9683   addq(sum, raxReg);
9684   adcq(rdxReg, 0);
9685 
9686   // carry:sum = rdx:sum
9687   movq(carry, rdxReg);
9688 }
9689 
9690 /**
9691  * Add 64 bit long carry into z[] with carry propogation.
9692  * Preserves z and carry register values and modifies rest of registers.
9693  *
9694  */
9695 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9696   Label L_fourth_loop, L_fourth_loop_exit;
9697 
9698   movl(tmp1, 1);
9699   subl(zlen, 2);
9700   addq(Address(z, zlen, Address::times_4, 0), carry);
9701 
9702   bind(L_fourth_loop);
9703   jccb(Assembler::carryClear, L_fourth_loop_exit);
9704   subl(zlen, 2);
9705   jccb(Assembler::negative, L_fourth_loop_exit);
9706   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9707   jmp(L_fourth_loop);
9708   bind(L_fourth_loop_exit);
9709 }
9710 
9711 /**
9712  * Shift z[] left by 1 bit.
9713  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9714  *
9715  */
9716 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9717 
9718   Label L_fifth_loop, L_fifth_loop_exit;
9719 
9720   // Fifth loop
9721   // Perform primitiveLeftShift(z, zlen, 1)
9722 
9723   const Register prev_carry = tmp1;
9724   const Register new_carry = tmp4;
9725   const Register value = tmp2;
9726   const Register zidx = tmp3;
9727 
9728   // int zidx, carry;
9729   // long value;
9730   // carry = 0;
9731   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9732   //    (carry:value)  = (z[i] << 1) | carry ;
9733   //    z[i] = value;
9734   // }
9735 
9736   movl(zidx, zlen);
9737   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9738 
9739   bind(L_fifth_loop);
9740   decl(zidx);  // Use decl to preserve carry flag
9741   decl(zidx);
9742   jccb(Assembler::negative, L_fifth_loop_exit);
9743 
9744   if (UseBMI2Instructions) {
9745      movq(value, Address(z, zidx, Address::times_4, 0));
9746      rclq(value, 1);
9747      rorxq(value, value, 32);
9748      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9749   }
9750   else {
9751     // clear new_carry
9752     xorl(new_carry, new_carry);
9753 
9754     // Shift z[i] by 1, or in previous carry and save new carry
9755     movq(value, Address(z, zidx, Address::times_4, 0));
9756     shlq(value, 1);
9757     adcl(new_carry, 0);
9758 
9759     orq(value, prev_carry);
9760     rorq(value, 0x20);
9761     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9762 
9763     // Set previous carry = new carry
9764     movl(prev_carry, new_carry);
9765   }
9766   jmp(L_fifth_loop);
9767 
9768   bind(L_fifth_loop_exit);
9769 }
9770 
9771 
9772 /**
9773  * Code for BigInteger::squareToLen() intrinsic
9774  *
9775  * rdi: x
9776  * rsi: len
9777  * r8:  z
9778  * rcx: zlen
9779  * r12: tmp1
9780  * r13: tmp2
9781  * r14: tmp3
9782  * r15: tmp4
9783  * rbx: tmp5
9784  *
9785  */
9786 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9787 
9788   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9789   push(tmp1);
9790   push(tmp2);
9791   push(tmp3);
9792   push(tmp4);
9793   push(tmp5);
9794 
9795   // First loop
9796   // Store the squares, right shifted one bit (i.e., divided by 2).
9797   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9798 
9799   // Add in off-diagonal sums.
9800   //
9801   // Second, third (nested) and fourth loops.
9802   // zlen +=2;
9803   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9804   //    carry = 0;
9805   //    long op2 = x[xidx:xidx+1];
9806   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9807   //       k -= 2;
9808   //       long op1 = x[j:j+1];
9809   //       long sum = z[k:k+1];
9810   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9811   //       z[k:k+1] = sum;
9812   //    }
9813   //    add_one_64(z, k, carry, tmp_regs);
9814   // }
9815 
9816   const Register carry = tmp5;
9817   const Register sum = tmp3;
9818   const Register op1 = tmp4;
9819   Register op2 = tmp2;
9820 
9821   push(zlen);
9822   push(len);
9823   addl(zlen,2);
9824   bind(L_second_loop);
9825   xorq(carry, carry);
9826   subl(zlen, 4);
9827   subl(len, 2);
9828   push(zlen);
9829   push(len);
9830   cmpl(len, 0);
9831   jccb(Assembler::lessEqual, L_second_loop_exit);
9832 
9833   // Multiply an array by one 64 bit long.
9834   if (UseBMI2Instructions) {
9835     op2 = rdxReg;
9836     movq(op2, Address(x, len, Address::times_4,  0));
9837     rorxq(op2, op2, 32);
9838   }
9839   else {
9840     movq(op2, Address(x, len, Address::times_4,  0));
9841     rorq(op2, 32);
9842   }
9843 
9844   bind(L_third_loop);
9845   decrementl(len);
9846   jccb(Assembler::negative, L_third_loop_exit);
9847   decrementl(len);
9848   jccb(Assembler::negative, L_last_x);
9849 
9850   movq(op1, Address(x, len, Address::times_4,  0));
9851   rorq(op1, 32);
9852 
9853   bind(L_multiply);
9854   subl(zlen, 2);
9855   movq(sum, Address(z, zlen, Address::times_4,  0));
9856 
9857   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9858   if (UseBMI2Instructions) {
9859     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9860   }
9861   else {
9862     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9863   }
9864 
9865   movq(Address(z, zlen, Address::times_4, 0), sum);
9866 
9867   jmp(L_third_loop);
9868   bind(L_third_loop_exit);
9869 
9870   // Fourth loop
9871   // Add 64 bit long carry into z with carry propogation.
9872   // Uses offsetted zlen.
9873   add_one_64(z, zlen, carry, tmp1);
9874 
9875   pop(len);
9876   pop(zlen);
9877   jmp(L_second_loop);
9878 
9879   // Next infrequent code is moved outside loops.
9880   bind(L_last_x);
9881   movl(op1, Address(x, 0));
9882   jmp(L_multiply);
9883 
9884   bind(L_second_loop_exit);
9885   pop(len);
9886   pop(zlen);
9887   pop(len);
9888   pop(zlen);
9889 
9890   // Fifth loop
9891   // Shift z left 1 bit.
9892   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
9893 
9894   // z[zlen-1] |= x[len-1] & 1;
9895   movl(tmp3, Address(x, len, Address::times_4, -4));
9896   andl(tmp3, 1);
9897   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
9898 
9899   pop(tmp5);
9900   pop(tmp4);
9901   pop(tmp3);
9902   pop(tmp2);
9903   pop(tmp1);
9904 }
9905 
9906 /**
9907  * Helper function for mul_add()
9908  * Multiply the in[] by int k and add to out[] starting at offset offs using
9909  * 128 bit by 32 bit multiply and return the carry in tmp5.
9910  * Only quad int aligned length of in[] is operated on in this function.
9911  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
9912  * This function preserves out, in and k registers.
9913  * len and offset point to the appropriate index in "in" & "out" correspondingly
9914  * tmp5 has the carry.
9915  * other registers are temporary and are modified.
9916  *
9917  */
9918 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
9919   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
9920   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9921 
9922   Label L_first_loop, L_first_loop_exit;
9923 
9924   movl(tmp1, len);
9925   shrl(tmp1, 2);
9926 
9927   bind(L_first_loop);
9928   subl(tmp1, 1);
9929   jccb(Assembler::negative, L_first_loop_exit);
9930 
9931   subl(len, 4);
9932   subl(offset, 4);
9933 
9934   Register op2 = tmp2;
9935   const Register sum = tmp3;
9936   const Register op1 = tmp4;
9937   const Register carry = tmp5;
9938 
9939   if (UseBMI2Instructions) {
9940     op2 = rdxReg;
9941   }
9942 
9943   movq(op1, Address(in, len, Address::times_4,  8));
9944   rorq(op1, 32);
9945   movq(sum, Address(out, offset, Address::times_4,  8));
9946   rorq(sum, 32);
9947   if (UseBMI2Instructions) {
9948     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9949   }
9950   else {
9951     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9952   }
9953   // Store back in big endian from little endian
9954   rorq(sum, 0x20);
9955   movq(Address(out, offset, Address::times_4,  8), sum);
9956 
9957   movq(op1, Address(in, len, Address::times_4,  0));
9958   rorq(op1, 32);
9959   movq(sum, Address(out, offset, Address::times_4,  0));
9960   rorq(sum, 32);
9961   if (UseBMI2Instructions) {
9962     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9963   }
9964   else {
9965     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9966   }
9967   // Store back in big endian from little endian
9968   rorq(sum, 0x20);
9969   movq(Address(out, offset, Address::times_4,  0), sum);
9970 
9971   jmp(L_first_loop);
9972   bind(L_first_loop_exit);
9973 }
9974 
9975 /**
9976  * Code for BigInteger::mulAdd() intrinsic
9977  *
9978  * rdi: out
9979  * rsi: in
9980  * r11: offs (out.length - offset)
9981  * rcx: len
9982  * r8:  k
9983  * r12: tmp1
9984  * r13: tmp2
9985  * r14: tmp3
9986  * r15: tmp4
9987  * rbx: tmp5
9988  * Multiply the in[] by word k and add to out[], return the carry in rax
9989  */
9990 void MacroAssembler::mul_add(Register out, Register in, Register offs,
9991    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
9992    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9993 
9994   Label L_carry, L_last_in, L_done;
9995 
9996 // carry = 0;
9997 // for (int j=len-1; j >= 0; j--) {
9998 //    long product = (in[j] & LONG_MASK) * kLong +
9999 //                   (out[offs] & LONG_MASK) + carry;
10000 //    out[offs--] = (int)product;
10001 //    carry = product >>> 32;
10002 // }
10003 //
10004   push(tmp1);
10005   push(tmp2);
10006   push(tmp3);
10007   push(tmp4);
10008   push(tmp5);
10009 
10010   Register op2 = tmp2;
10011   const Register sum = tmp3;
10012   const Register op1 = tmp4;
10013   const Register carry =  tmp5;
10014 
10015   if (UseBMI2Instructions) {
10016     op2 = rdxReg;
10017     movl(op2, k);
10018   }
10019   else {
10020     movl(op2, k);
10021   }
10022 
10023   xorq(carry, carry);
10024 
10025   //First loop
10026 
10027   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
10028   //The carry is in tmp5
10029   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
10030 
10031   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
10032   decrementl(len);
10033   jccb(Assembler::negative, L_carry);
10034   decrementl(len);
10035   jccb(Assembler::negative, L_last_in);
10036 
10037   movq(op1, Address(in, len, Address::times_4,  0));
10038   rorq(op1, 32);
10039 
10040   subl(offs, 2);
10041   movq(sum, Address(out, offs, Address::times_4,  0));
10042   rorq(sum, 32);
10043 
10044   if (UseBMI2Instructions) {
10045     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10046   }
10047   else {
10048     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10049   }
10050 
10051   // Store back in big endian from little endian
10052   rorq(sum, 0x20);
10053   movq(Address(out, offs, Address::times_4,  0), sum);
10054 
10055   testl(len, len);
10056   jccb(Assembler::zero, L_carry);
10057 
10058   //Multiply the last in[] entry, if any
10059   bind(L_last_in);
10060   movl(op1, Address(in, 0));
10061   movl(sum, Address(out, offs, Address::times_4,  -4));
10062 
10063   movl(raxReg, k);
10064   mull(op1); //tmp4 * eax -> edx:eax
10065   addl(sum, carry);
10066   adcl(rdxReg, 0);
10067   addl(sum, raxReg);
10068   adcl(rdxReg, 0);
10069   movl(carry, rdxReg);
10070 
10071   movl(Address(out, offs, Address::times_4,  -4), sum);
10072 
10073   bind(L_carry);
10074   //return tmp5/carry as carry in rax
10075   movl(rax, carry);
10076 
10077   bind(L_done);
10078   pop(tmp5);
10079   pop(tmp4);
10080   pop(tmp3);
10081   pop(tmp2);
10082   pop(tmp1);
10083 }
10084 #endif
10085 
10086 /**
10087  * Emits code to update CRC-32 with a byte value according to constants in table
10088  *
10089  * @param [in,out]crc   Register containing the crc.
10090  * @param [in]val       Register containing the byte to fold into the CRC.
10091  * @param [in]table     Register containing the table of crc constants.
10092  *
10093  * uint32_t crc;
10094  * val = crc_table[(val ^ crc) & 0xFF];
10095  * crc = val ^ (crc >> 8);
10096  *
10097  */
10098 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
10099   xorl(val, crc);
10100   andl(val, 0xFF);
10101   shrl(crc, 8); // unsigned shift
10102   xorl(crc, Address(table, val, Address::times_4, 0));
10103 }
10104 
10105 /**
10106  * Fold 128-bit data chunk
10107  */
10108 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
10109   if (UseAVX > 0) {
10110     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
10111     vpclmulldq(xcrc, xK, xcrc); // [63:0]
10112     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
10113     pxor(xcrc, xtmp);
10114   } else {
10115     movdqa(xtmp, xcrc);
10116     pclmulhdq(xtmp, xK);   // [123:64]
10117     pclmulldq(xcrc, xK);   // [63:0]
10118     pxor(xcrc, xtmp);
10119     movdqu(xtmp, Address(buf, offset));
10120     pxor(xcrc, xtmp);
10121   }
10122 }
10123 
10124 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
10125   if (UseAVX > 0) {
10126     vpclmulhdq(xtmp, xK, xcrc);
10127     vpclmulldq(xcrc, xK, xcrc);
10128     pxor(xcrc, xbuf);
10129     pxor(xcrc, xtmp);
10130   } else {
10131     movdqa(xtmp, xcrc);
10132     pclmulhdq(xtmp, xK);
10133     pclmulldq(xcrc, xK);
10134     pxor(xcrc, xbuf);
10135     pxor(xcrc, xtmp);
10136   }
10137 }
10138 
10139 /**
10140  * 8-bit folds to compute 32-bit CRC
10141  *
10142  * uint64_t xcrc;
10143  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
10144  */
10145 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
10146   movdl(tmp, xcrc);
10147   andl(tmp, 0xFF);
10148   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
10149   psrldq(xcrc, 1); // unsigned shift one byte
10150   pxor(xcrc, xtmp);
10151 }
10152 
10153 /**
10154  * uint32_t crc;
10155  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
10156  */
10157 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
10158   movl(tmp, crc);
10159   andl(tmp, 0xFF);
10160   shrl(crc, 8);
10161   xorl(crc, Address(table, tmp, Address::times_4, 0));
10162 }
10163 
10164 /**
10165  * @param crc   register containing existing CRC (32-bit)
10166  * @param buf   register pointing to input byte buffer (byte*)
10167  * @param len   register containing number of bytes
10168  * @param table register that will contain address of CRC table
10169  * @param tmp   scratch register
10170  */
10171 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
10172   assert_different_registers(crc, buf, len, table, tmp, rax);
10173 
10174   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
10175   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
10176 
10177   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
10178   // context for the registers used, where all instructions below are using 128-bit mode
10179   // On EVEX without VL and BW, these instructions will all be AVX.
10180   if (VM_Version::supports_avx512vlbw()) {
10181     movl(tmp, 0xffff);
10182     kmovwl(k1, tmp);
10183   }
10184 
10185   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
10186   notl(crc); // ~crc
10187   cmpl(len, 16);
10188   jcc(Assembler::less, L_tail);
10189 
10190   // Align buffer to 16 bytes
10191   movl(tmp, buf);
10192   andl(tmp, 0xF);
10193   jccb(Assembler::zero, L_aligned);
10194   subl(tmp,  16);
10195   addl(len, tmp);
10196 
10197   align(4);
10198   BIND(L_align_loop);
10199   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10200   update_byte_crc32(crc, rax, table);
10201   increment(buf);
10202   incrementl(tmp);
10203   jccb(Assembler::less, L_align_loop);
10204 
10205   BIND(L_aligned);
10206   movl(tmp, len); // save
10207   shrl(len, 4);
10208   jcc(Assembler::zero, L_tail_restore);
10209 
10210   // Fold crc into first bytes of vector
10211   movdqa(xmm1, Address(buf, 0));
10212   movdl(rax, xmm1);
10213   xorl(crc, rax);
10214   pinsrd(xmm1, crc, 0);
10215   addptr(buf, 16);
10216   subl(len, 4); // len > 0
10217   jcc(Assembler::less, L_fold_tail);
10218 
10219   movdqa(xmm2, Address(buf,  0));
10220   movdqa(xmm3, Address(buf, 16));
10221   movdqa(xmm4, Address(buf, 32));
10222   addptr(buf, 48);
10223   subl(len, 3);
10224   jcc(Assembler::lessEqual, L_fold_512b);
10225 
10226   // Fold total 512 bits of polynomial on each iteration,
10227   // 128 bits per each of 4 parallel streams.
10228   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
10229 
10230   align(32);
10231   BIND(L_fold_512b_loop);
10232   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10233   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
10234   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
10235   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
10236   addptr(buf, 64);
10237   subl(len, 4);
10238   jcc(Assembler::greater, L_fold_512b_loop);
10239 
10240   // Fold 512 bits to 128 bits.
10241   BIND(L_fold_512b);
10242   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10243   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
10244   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
10245   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
10246 
10247   // Fold the rest of 128 bits data chunks
10248   BIND(L_fold_tail);
10249   addl(len, 3);
10250   jccb(Assembler::lessEqual, L_fold_128b);
10251   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10252 
10253   BIND(L_fold_tail_loop);
10254   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10255   addptr(buf, 16);
10256   decrementl(len);
10257   jccb(Assembler::greater, L_fold_tail_loop);
10258 
10259   // Fold 128 bits in xmm1 down into 32 bits in crc register.
10260   BIND(L_fold_128b);
10261   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
10262   if (UseAVX > 0) {
10263     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
10264     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
10265     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
10266   } else {
10267     movdqa(xmm2, xmm0);
10268     pclmulqdq(xmm2, xmm1, 0x1);
10269     movdqa(xmm3, xmm0);
10270     pand(xmm3, xmm2);
10271     pclmulqdq(xmm0, xmm3, 0x1);
10272   }
10273   psrldq(xmm1, 8);
10274   psrldq(xmm2, 4);
10275   pxor(xmm0, xmm1);
10276   pxor(xmm0, xmm2);
10277 
10278   // 8 8-bit folds to compute 32-bit CRC.
10279   for (int j = 0; j < 4; j++) {
10280     fold_8bit_crc32(xmm0, table, xmm1, rax);
10281   }
10282   movdl(crc, xmm0); // mov 32 bits to general register
10283   for (int j = 0; j < 4; j++) {
10284     fold_8bit_crc32(crc, table, rax);
10285   }
10286 
10287   BIND(L_tail_restore);
10288   movl(len, tmp); // restore
10289   BIND(L_tail);
10290   andl(len, 0xf);
10291   jccb(Assembler::zero, L_exit);
10292 
10293   // Fold the rest of bytes
10294   align(4);
10295   BIND(L_tail_loop);
10296   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10297   update_byte_crc32(crc, rax, table);
10298   increment(buf);
10299   decrementl(len);
10300   jccb(Assembler::greater, L_tail_loop);
10301 
10302   BIND(L_exit);
10303   notl(crc); // ~c
10304 }
10305 
10306 #ifdef _LP64
10307 // S. Gueron / Information Processing Letters 112 (2012) 184
10308 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
10309 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
10310 // Output: the 64-bit carry-less product of B * CONST
10311 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
10312                                      Register tmp1, Register tmp2, Register tmp3) {
10313   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10314   if (n > 0) {
10315     addq(tmp3, n * 256 * 8);
10316   }
10317   //    Q1 = TABLEExt[n][B & 0xFF];
10318   movl(tmp1, in);
10319   andl(tmp1, 0x000000FF);
10320   shll(tmp1, 3);
10321   addq(tmp1, tmp3);
10322   movq(tmp1, Address(tmp1, 0));
10323 
10324   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10325   movl(tmp2, in);
10326   shrl(tmp2, 8);
10327   andl(tmp2, 0x000000FF);
10328   shll(tmp2, 3);
10329   addq(tmp2, tmp3);
10330   movq(tmp2, Address(tmp2, 0));
10331 
10332   shlq(tmp2, 8);
10333   xorq(tmp1, tmp2);
10334 
10335   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10336   movl(tmp2, in);
10337   shrl(tmp2, 16);
10338   andl(tmp2, 0x000000FF);
10339   shll(tmp2, 3);
10340   addq(tmp2, tmp3);
10341   movq(tmp2, Address(tmp2, 0));
10342 
10343   shlq(tmp2, 16);
10344   xorq(tmp1, tmp2);
10345 
10346   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10347   shrl(in, 24);
10348   andl(in, 0x000000FF);
10349   shll(in, 3);
10350   addq(in, tmp3);
10351   movq(in, Address(in, 0));
10352 
10353   shlq(in, 24);
10354   xorq(in, tmp1);
10355   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10356 }
10357 
10358 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10359                                       Register in_out,
10360                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10361                                       XMMRegister w_xtmp2,
10362                                       Register tmp1,
10363                                       Register n_tmp2, Register n_tmp3) {
10364   if (is_pclmulqdq_supported) {
10365     movdl(w_xtmp1, in_out); // modified blindly
10366 
10367     movl(tmp1, const_or_pre_comp_const_index);
10368     movdl(w_xtmp2, tmp1);
10369     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10370 
10371     movdq(in_out, w_xtmp1);
10372   } else {
10373     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10374   }
10375 }
10376 
10377 // Recombination Alternative 2: No bit-reflections
10378 // T1 = (CRC_A * U1) << 1
10379 // T2 = (CRC_B * U2) << 1
10380 // C1 = T1 >> 32
10381 // C2 = T2 >> 32
10382 // T1 = T1 & 0xFFFFFFFF
10383 // T2 = T2 & 0xFFFFFFFF
10384 // T1 = CRC32(0, T1)
10385 // T2 = CRC32(0, T2)
10386 // C1 = C1 ^ T1
10387 // C2 = C2 ^ T2
10388 // CRC = C1 ^ C2 ^ CRC_C
10389 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10390                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10391                                      Register tmp1, Register tmp2,
10392                                      Register n_tmp3) {
10393   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10394   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10395   shlq(in_out, 1);
10396   movl(tmp1, in_out);
10397   shrq(in_out, 32);
10398   xorl(tmp2, tmp2);
10399   crc32(tmp2, tmp1, 4);
10400   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10401   shlq(in1, 1);
10402   movl(tmp1, in1);
10403   shrq(in1, 32);
10404   xorl(tmp2, tmp2);
10405   crc32(tmp2, tmp1, 4);
10406   xorl(in1, tmp2);
10407   xorl(in_out, in1);
10408   xorl(in_out, in2);
10409 }
10410 
10411 // Set N to predefined value
10412 // Subtract from a lenght of a buffer
10413 // execute in a loop:
10414 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10415 // for i = 1 to N do
10416 //  CRC_A = CRC32(CRC_A, A[i])
10417 //  CRC_B = CRC32(CRC_B, B[i])
10418 //  CRC_C = CRC32(CRC_C, C[i])
10419 // end for
10420 // Recombine
10421 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10422                                        Register in_out1, Register in_out2, Register in_out3,
10423                                        Register tmp1, Register tmp2, Register tmp3,
10424                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10425                                        Register tmp4, Register tmp5,
10426                                        Register n_tmp6) {
10427   Label L_processPartitions;
10428   Label L_processPartition;
10429   Label L_exit;
10430 
10431   bind(L_processPartitions);
10432   cmpl(in_out1, 3 * size);
10433   jcc(Assembler::less, L_exit);
10434     xorl(tmp1, tmp1);
10435     xorl(tmp2, tmp2);
10436     movq(tmp3, in_out2);
10437     addq(tmp3, size);
10438 
10439     bind(L_processPartition);
10440       crc32(in_out3, Address(in_out2, 0), 8);
10441       crc32(tmp1, Address(in_out2, size), 8);
10442       crc32(tmp2, Address(in_out2, size * 2), 8);
10443       addq(in_out2, 8);
10444       cmpq(in_out2, tmp3);
10445       jcc(Assembler::less, L_processPartition);
10446     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10447             w_xtmp1, w_xtmp2, w_xtmp3,
10448             tmp4, tmp5,
10449             n_tmp6);
10450     addq(in_out2, 2 * size);
10451     subl(in_out1, 3 * size);
10452     jmp(L_processPartitions);
10453 
10454   bind(L_exit);
10455 }
10456 #else
10457 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10458                                      Register tmp1, Register tmp2, Register tmp3,
10459                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10460   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10461   if (n > 0) {
10462     addl(tmp3, n * 256 * 8);
10463   }
10464   //    Q1 = TABLEExt[n][B & 0xFF];
10465   movl(tmp1, in_out);
10466   andl(tmp1, 0x000000FF);
10467   shll(tmp1, 3);
10468   addl(tmp1, tmp3);
10469   movq(xtmp1, Address(tmp1, 0));
10470 
10471   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10472   movl(tmp2, in_out);
10473   shrl(tmp2, 8);
10474   andl(tmp2, 0x000000FF);
10475   shll(tmp2, 3);
10476   addl(tmp2, tmp3);
10477   movq(xtmp2, Address(tmp2, 0));
10478 
10479   psllq(xtmp2, 8);
10480   pxor(xtmp1, xtmp2);
10481 
10482   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10483   movl(tmp2, in_out);
10484   shrl(tmp2, 16);
10485   andl(tmp2, 0x000000FF);
10486   shll(tmp2, 3);
10487   addl(tmp2, tmp3);
10488   movq(xtmp2, Address(tmp2, 0));
10489 
10490   psllq(xtmp2, 16);
10491   pxor(xtmp1, xtmp2);
10492 
10493   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10494   shrl(in_out, 24);
10495   andl(in_out, 0x000000FF);
10496   shll(in_out, 3);
10497   addl(in_out, tmp3);
10498   movq(xtmp2, Address(in_out, 0));
10499 
10500   psllq(xtmp2, 24);
10501   pxor(xtmp1, xtmp2); // Result in CXMM
10502   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10503 }
10504 
10505 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10506                                       Register in_out,
10507                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10508                                       XMMRegister w_xtmp2,
10509                                       Register tmp1,
10510                                       Register n_tmp2, Register n_tmp3) {
10511   if (is_pclmulqdq_supported) {
10512     movdl(w_xtmp1, in_out);
10513 
10514     movl(tmp1, const_or_pre_comp_const_index);
10515     movdl(w_xtmp2, tmp1);
10516     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10517     // Keep result in XMM since GPR is 32 bit in length
10518   } else {
10519     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10520   }
10521 }
10522 
10523 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10524                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10525                                      Register tmp1, Register tmp2,
10526                                      Register n_tmp3) {
10527   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10528   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10529 
10530   psllq(w_xtmp1, 1);
10531   movdl(tmp1, w_xtmp1);
10532   psrlq(w_xtmp1, 32);
10533   movdl(in_out, w_xtmp1);
10534 
10535   xorl(tmp2, tmp2);
10536   crc32(tmp2, tmp1, 4);
10537   xorl(in_out, tmp2);
10538 
10539   psllq(w_xtmp2, 1);
10540   movdl(tmp1, w_xtmp2);
10541   psrlq(w_xtmp2, 32);
10542   movdl(in1, w_xtmp2);
10543 
10544   xorl(tmp2, tmp2);
10545   crc32(tmp2, tmp1, 4);
10546   xorl(in1, tmp2);
10547   xorl(in_out, in1);
10548   xorl(in_out, in2);
10549 }
10550 
10551 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10552                                        Register in_out1, Register in_out2, Register in_out3,
10553                                        Register tmp1, Register tmp2, Register tmp3,
10554                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10555                                        Register tmp4, Register tmp5,
10556                                        Register n_tmp6) {
10557   Label L_processPartitions;
10558   Label L_processPartition;
10559   Label L_exit;
10560 
10561   bind(L_processPartitions);
10562   cmpl(in_out1, 3 * size);
10563   jcc(Assembler::less, L_exit);
10564     xorl(tmp1, tmp1);
10565     xorl(tmp2, tmp2);
10566     movl(tmp3, in_out2);
10567     addl(tmp3, size);
10568 
10569     bind(L_processPartition);
10570       crc32(in_out3, Address(in_out2, 0), 4);
10571       crc32(tmp1, Address(in_out2, size), 4);
10572       crc32(tmp2, Address(in_out2, size*2), 4);
10573       crc32(in_out3, Address(in_out2, 0+4), 4);
10574       crc32(tmp1, Address(in_out2, size+4), 4);
10575       crc32(tmp2, Address(in_out2, size*2+4), 4);
10576       addl(in_out2, 8);
10577       cmpl(in_out2, tmp3);
10578       jcc(Assembler::less, L_processPartition);
10579 
10580         push(tmp3);
10581         push(in_out1);
10582         push(in_out2);
10583         tmp4 = tmp3;
10584         tmp5 = in_out1;
10585         n_tmp6 = in_out2;
10586 
10587       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10588             w_xtmp1, w_xtmp2, w_xtmp3,
10589             tmp4, tmp5,
10590             n_tmp6);
10591 
10592         pop(in_out2);
10593         pop(in_out1);
10594         pop(tmp3);
10595 
10596     addl(in_out2, 2 * size);
10597     subl(in_out1, 3 * size);
10598     jmp(L_processPartitions);
10599 
10600   bind(L_exit);
10601 }
10602 #endif //LP64
10603 
10604 #ifdef _LP64
10605 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10606 // Input: A buffer I of L bytes.
10607 // Output: the CRC32C value of the buffer.
10608 // Notations:
10609 // Write L = 24N + r, with N = floor (L/24).
10610 // r = L mod 24 (0 <= r < 24).
10611 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10612 // N quadwords, and R consists of r bytes.
10613 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10614 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10615 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10616 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10617 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10618                                           Register tmp1, Register tmp2, Register tmp3,
10619                                           Register tmp4, Register tmp5, Register tmp6,
10620                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10621                                           bool is_pclmulqdq_supported) {
10622   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10623   Label L_wordByWord;
10624   Label L_byteByByteProlog;
10625   Label L_byteByByte;
10626   Label L_exit;
10627 
10628   if (is_pclmulqdq_supported ) {
10629     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10630     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10631 
10632     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10633     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10634 
10635     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10636     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10637     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10638   } else {
10639     const_or_pre_comp_const_index[0] = 1;
10640     const_or_pre_comp_const_index[1] = 0;
10641 
10642     const_or_pre_comp_const_index[2] = 3;
10643     const_or_pre_comp_const_index[3] = 2;
10644 
10645     const_or_pre_comp_const_index[4] = 5;
10646     const_or_pre_comp_const_index[5] = 4;
10647    }
10648   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10649                     in2, in1, in_out,
10650                     tmp1, tmp2, tmp3,
10651                     w_xtmp1, w_xtmp2, w_xtmp3,
10652                     tmp4, tmp5,
10653                     tmp6);
10654   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10655                     in2, in1, in_out,
10656                     tmp1, tmp2, tmp3,
10657                     w_xtmp1, w_xtmp2, w_xtmp3,
10658                     tmp4, tmp5,
10659                     tmp6);
10660   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10661                     in2, in1, in_out,
10662                     tmp1, tmp2, tmp3,
10663                     w_xtmp1, w_xtmp2, w_xtmp3,
10664                     tmp4, tmp5,
10665                     tmp6);
10666   movl(tmp1, in2);
10667   andl(tmp1, 0x00000007);
10668   negl(tmp1);
10669   addl(tmp1, in2);
10670   addq(tmp1, in1);
10671 
10672   BIND(L_wordByWord);
10673   cmpq(in1, tmp1);
10674   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10675     crc32(in_out, Address(in1, 0), 4);
10676     addq(in1, 4);
10677     jmp(L_wordByWord);
10678 
10679   BIND(L_byteByByteProlog);
10680   andl(in2, 0x00000007);
10681   movl(tmp2, 1);
10682 
10683   BIND(L_byteByByte);
10684   cmpl(tmp2, in2);
10685   jccb(Assembler::greater, L_exit);
10686     crc32(in_out, Address(in1, 0), 1);
10687     incq(in1);
10688     incl(tmp2);
10689     jmp(L_byteByByte);
10690 
10691   BIND(L_exit);
10692 }
10693 #else
10694 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10695                                           Register tmp1, Register  tmp2, Register tmp3,
10696                                           Register tmp4, Register  tmp5, Register tmp6,
10697                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10698                                           bool is_pclmulqdq_supported) {
10699   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10700   Label L_wordByWord;
10701   Label L_byteByByteProlog;
10702   Label L_byteByByte;
10703   Label L_exit;
10704 
10705   if (is_pclmulqdq_supported) {
10706     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10707     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10708 
10709     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10710     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10711 
10712     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10713     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10714   } else {
10715     const_or_pre_comp_const_index[0] = 1;
10716     const_or_pre_comp_const_index[1] = 0;
10717 
10718     const_or_pre_comp_const_index[2] = 3;
10719     const_or_pre_comp_const_index[3] = 2;
10720 
10721     const_or_pre_comp_const_index[4] = 5;
10722     const_or_pre_comp_const_index[5] = 4;
10723   }
10724   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10725                     in2, in1, in_out,
10726                     tmp1, tmp2, tmp3,
10727                     w_xtmp1, w_xtmp2, w_xtmp3,
10728                     tmp4, tmp5,
10729                     tmp6);
10730   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10731                     in2, in1, in_out,
10732                     tmp1, tmp2, tmp3,
10733                     w_xtmp1, w_xtmp2, w_xtmp3,
10734                     tmp4, tmp5,
10735                     tmp6);
10736   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10737                     in2, in1, in_out,
10738                     tmp1, tmp2, tmp3,
10739                     w_xtmp1, w_xtmp2, w_xtmp3,
10740                     tmp4, tmp5,
10741                     tmp6);
10742   movl(tmp1, in2);
10743   andl(tmp1, 0x00000007);
10744   negl(tmp1);
10745   addl(tmp1, in2);
10746   addl(tmp1, in1);
10747 
10748   BIND(L_wordByWord);
10749   cmpl(in1, tmp1);
10750   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10751     crc32(in_out, Address(in1,0), 4);
10752     addl(in1, 4);
10753     jmp(L_wordByWord);
10754 
10755   BIND(L_byteByByteProlog);
10756   andl(in2, 0x00000007);
10757   movl(tmp2, 1);
10758 
10759   BIND(L_byteByByte);
10760   cmpl(tmp2, in2);
10761   jccb(Assembler::greater, L_exit);
10762     movb(tmp1, Address(in1, 0));
10763     crc32(in_out, tmp1, 1);
10764     incl(in1);
10765     incl(tmp2);
10766     jmp(L_byteByByte);
10767 
10768   BIND(L_exit);
10769 }
10770 #endif // LP64
10771 #undef BIND
10772 #undef BLOCK_COMMENT
10773 
10774 
10775 // Compress char[] array to byte[].
10776 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10777                                          XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10778                                          XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10779                                          Register tmp5, Register result) {
10780   Label copy_chars_loop, return_length, return_zero, done;
10781 
10782   // rsi: src
10783   // rdi: dst
10784   // rdx: len
10785   // rcx: tmp5
10786   // rax: result
10787 
10788   // rsi holds start addr of source char[] to be compressed
10789   // rdi holds start addr of destination byte[]
10790   // rdx holds length
10791 
10792   assert(len != result, "");
10793 
10794   // save length for return
10795   push(len);
10796 
10797   if (UseSSE42Intrinsics) {
10798     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
10799     Label copy_32_loop, copy_16, copy_tail;
10800 
10801     movl(result, len);
10802     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
10803 
10804     // vectored compression
10805     andl(len, 0xfffffff0);    // vector count (in chars)
10806     andl(result, 0x0000000f);    // tail count (in chars)
10807     testl(len, len);
10808     jccb(Assembler::zero, copy_16);
10809 
10810     // compress 16 chars per iter
10811     movdl(tmp1Reg, tmp5);
10812     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10813     pxor(tmp4Reg, tmp4Reg);
10814 
10815     lea(src, Address(src, len, Address::times_2));
10816     lea(dst, Address(dst, len, Address::times_1));
10817     negptr(len);
10818 
10819     bind(copy_32_loop);
10820     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
10821     por(tmp4Reg, tmp2Reg);
10822     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
10823     por(tmp4Reg, tmp3Reg);
10824     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
10825     jcc(Assembler::notZero, return_zero);
10826     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
10827     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
10828     addptr(len, 16);
10829     jcc(Assembler::notZero, copy_32_loop);
10830 
10831     // compress next vector of 8 chars (if any)
10832     bind(copy_16);
10833     movl(len, result);
10834     andl(len, 0xfffffff8);    // vector count (in chars)
10835     andl(result, 0x00000007);    // tail count (in chars)
10836     testl(len, len);
10837     jccb(Assembler::zero, copy_tail);
10838 
10839     movdl(tmp1Reg, tmp5);
10840     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10841     pxor(tmp3Reg, tmp3Reg);
10842 
10843     movdqu(tmp2Reg, Address(src, 0));
10844     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
10845     jccb(Assembler::notZero, return_zero);
10846     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
10847     movq(Address(dst, 0), tmp2Reg);
10848     addptr(src, 16);
10849     addptr(dst, 8);
10850 
10851     bind(copy_tail);
10852     movl(len, result);
10853   }
10854   // compress 1 char per iter
10855   testl(len, len);
10856   jccb(Assembler::zero, return_length);
10857   lea(src, Address(src, len, Address::times_2));
10858   lea(dst, Address(dst, len, Address::times_1));
10859   negptr(len);
10860 
10861   bind(copy_chars_loop);
10862   load_unsigned_short(result, Address(src, len, Address::times_2));
10863   testl(result, 0xff00);      // check if Unicode char
10864   jccb(Assembler::notZero, return_zero);
10865   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
10866   increment(len);
10867   jcc(Assembler::notZero, copy_chars_loop);
10868 
10869   // if compression succeeded, return length
10870   bind(return_length);
10871   pop(result);
10872   jmpb(done);
10873 
10874   // if compression failed, return 0
10875   bind(return_zero);
10876   xorl(result, result);
10877   addptr(rsp, wordSize);
10878 
10879   bind(done);
10880 }
10881 
10882 // Inflate byte[] array to char[].
10883 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
10884                                         XMMRegister tmp1, Register tmp2) {
10885   Label copy_chars_loop, done;
10886 
10887   // rsi: src
10888   // rdi: dst
10889   // rdx: len
10890   // rcx: tmp2
10891 
10892   // rsi holds start addr of source byte[] to be inflated
10893   // rdi holds start addr of destination char[]
10894   // rdx holds length
10895   assert_different_registers(src, dst, len, tmp2);
10896 
10897   if (UseSSE42Intrinsics) {
10898     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
10899     Label copy_8_loop, copy_bytes, copy_tail;
10900 
10901     movl(tmp2, len);
10902     andl(tmp2, 0x00000007);   // tail count (in chars)
10903     andl(len, 0xfffffff8);    // vector count (in chars)
10904     jccb(Assembler::zero, copy_tail);
10905 
10906     // vectored inflation
10907     lea(src, Address(src, len, Address::times_1));
10908     lea(dst, Address(dst, len, Address::times_2));
10909     negptr(len);
10910 
10911     // inflate 8 chars per iter
10912     bind(copy_8_loop);
10913     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
10914     movdqu(Address(dst, len, Address::times_2), tmp1);
10915     addptr(len, 8);
10916     jcc(Assembler::notZero, copy_8_loop);
10917 
10918     bind(copy_tail);
10919     movl(len, tmp2);
10920 
10921     cmpl(len, 4);
10922     jccb(Assembler::less, copy_bytes);
10923 
10924     movdl(tmp1, Address(src, 0));  // load 4 byte chars
10925     pmovzxbw(tmp1, tmp1);
10926     movq(Address(dst, 0), tmp1);
10927     subptr(len, 4);
10928     addptr(src, 4);
10929     addptr(dst, 8);
10930 
10931     bind(copy_bytes);
10932   }
10933   testl(len, len);
10934   jccb(Assembler::zero, done);
10935   lea(src, Address(src, len, Address::times_1));
10936   lea(dst, Address(dst, len, Address::times_2));
10937   negptr(len);
10938 
10939   // inflate 1 char per iter
10940   bind(copy_chars_loop);
10941   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
10942   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
10943   increment(len);
10944   jcc(Assembler::notZero, copy_chars_loop);
10945 
10946   bind(done);
10947 }
10948 
10949 
10950 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
10951   switch (cond) {
10952     // Note some conditions are synonyms for others
10953     case Assembler::zero:         return Assembler::notZero;
10954     case Assembler::notZero:      return Assembler::zero;
10955     case Assembler::less:         return Assembler::greaterEqual;
10956     case Assembler::lessEqual:    return Assembler::greater;
10957     case Assembler::greater:      return Assembler::lessEqual;
10958     case Assembler::greaterEqual: return Assembler::less;
10959     case Assembler::below:        return Assembler::aboveEqual;
10960     case Assembler::belowEqual:   return Assembler::above;
10961     case Assembler::above:        return Assembler::belowEqual;
10962     case Assembler::aboveEqual:   return Assembler::below;
10963     case Assembler::overflow:     return Assembler::noOverflow;
10964     case Assembler::noOverflow:   return Assembler::overflow;
10965     case Assembler::negative:     return Assembler::positive;
10966     case Assembler::positive:     return Assembler::negative;
10967     case Assembler::parity:       return Assembler::noParity;
10968     case Assembler::noParity:     return Assembler::parity;
10969   }
10970   ShouldNotReachHere(); return Assembler::overflow;
10971 }
10972 
10973 SkipIfEqual::SkipIfEqual(
10974     MacroAssembler* masm, const bool* flag_addr, bool value) {
10975   _masm = masm;
10976   _masm->cmp8(ExternalAddress((address)flag_addr), value);
10977   _masm->jcc(Assembler::equal, _label);
10978 }
10979 
10980 SkipIfEqual::~SkipIfEqual() {
10981   _masm->bind(_label);
10982 }
10983 
10984 // 32-bit Windows has its own fast-path implementation
10985 // of get_thread
10986 #if !defined(WIN32) || defined(_LP64)
10987 
10988 // This is simply a call to Thread::current()
10989 void MacroAssembler::get_thread(Register thread) {
10990   if (thread != rax) {
10991     push(rax);
10992   }
10993   LP64_ONLY(push(rdi);)
10994   LP64_ONLY(push(rsi);)
10995   push(rdx);
10996   push(rcx);
10997 #ifdef _LP64
10998   push(r8);
10999   push(r9);
11000   push(r10);
11001   push(r11);
11002 #endif
11003 
11004   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
11005 
11006 #ifdef _LP64
11007   pop(r11);
11008   pop(r10);
11009   pop(r9);
11010   pop(r8);
11011 #endif
11012   pop(rcx);
11013   pop(rdx);
11014   LP64_ONLY(pop(rsi);)
11015   LP64_ONLY(pop(rdi);)
11016   if (thread != rax) {
11017     mov(thread, rax);
11018     pop(rax);
11019   }
11020 }
11021 
11022 #endif