1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/thread.hpp"
  43 #include "utilities/macros.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/g1CollectedHeap.inline.hpp"
  46 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  47 #include "gc/g1/heapRegion.hpp"
  48 #endif // INCLUDE_ALL_GCS
  49 #include "crc32c.h"
  50 #ifdef COMPILER2
  51 #include "opto/intrinsicnode.hpp"
  52 #endif
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) /* nothing */
  56 #define STOP(error) stop(error)
  57 #else
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define STOP(error) block_comment(error); stop(error)
  60 #endif
  61 
  62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 #ifdef ASSERT
  65 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  66 #endif
  67 
  68 static Assembler::Condition reverse[] = {
  69     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  70     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  71     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  72     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  73     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  74     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  75     Assembler::above          /* belowEqual    = 0x6 */ ,
  76     Assembler::belowEqual     /* above         = 0x7 */ ,
  77     Assembler::positive       /* negative      = 0x8 */ ,
  78     Assembler::negative       /* positive      = 0x9 */ ,
  79     Assembler::noParity       /* parity        = 0xa */ ,
  80     Assembler::parity         /* noParity      = 0xb */ ,
  81     Assembler::greaterEqual   /* less          = 0xc */ ,
  82     Assembler::less           /* greaterEqual  = 0xd */ ,
  83     Assembler::greater        /* lessEqual     = 0xe */ ,
  84     Assembler::lessEqual      /* greater       = 0xf, */
  85 
  86 };
  87 
  88 
  89 // Implementation of MacroAssembler
  90 
  91 // First all the versions that have distinct versions depending on 32/64 bit
  92 // Unless the difference is trivial (1 line or so).
  93 
  94 #ifndef _LP64
  95 
  96 // 32bit versions
  97 
  98 Address MacroAssembler::as_Address(AddressLiteral adr) {
  99   return Address(adr.target(), adr.rspec());
 100 }
 101 
 102 Address MacroAssembler::as_Address(ArrayAddress adr) {
 103   return Address::make_array(adr);
 104 }
 105 
 106 void MacroAssembler::call_VM_leaf_base(address entry_point,
 107                                        int number_of_arguments) {
 108   call(RuntimeAddress(entry_point));
 109   increment(rsp, number_of_arguments * wordSize);
 110 }
 111 
 112 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 117   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 125   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 126 }
 127 
 128 void MacroAssembler::extend_sign(Register hi, Register lo) {
 129   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 130   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 131     cdql();
 132   } else {
 133     movl(hi, lo);
 134     sarl(hi, 31);
 135   }
 136 }
 137 
 138 void MacroAssembler::jC2(Register tmp, Label& L) {
 139   // set parity bit if FPU flag C2 is set (via rax)
 140   save_rax(tmp);
 141   fwait(); fnstsw_ax();
 142   sahf();
 143   restore_rax(tmp);
 144   // branch
 145   jcc(Assembler::parity, L);
 146 }
 147 
 148 void MacroAssembler::jnC2(Register tmp, Label& L) {
 149   // set parity bit if FPU flag C2 is set (via rax)
 150   save_rax(tmp);
 151   fwait(); fnstsw_ax();
 152   sahf();
 153   restore_rax(tmp);
 154   // branch
 155   jcc(Assembler::noParity, L);
 156 }
 157 
 158 // 32bit can do a case table jump in one instruction but we no longer allow the base
 159 // to be installed in the Address class
 160 void MacroAssembler::jump(ArrayAddress entry) {
 161   jmp(as_Address(entry));
 162 }
 163 
 164 // Note: y_lo will be destroyed
 165 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 166   // Long compare for Java (semantics as described in JVM spec.)
 167   Label high, low, done;
 168 
 169   cmpl(x_hi, y_hi);
 170   jcc(Assembler::less, low);
 171   jcc(Assembler::greater, high);
 172   // x_hi is the return register
 173   xorl(x_hi, x_hi);
 174   cmpl(x_lo, y_lo);
 175   jcc(Assembler::below, low);
 176   jcc(Assembler::equal, done);
 177 
 178   bind(high);
 179   xorl(x_hi, x_hi);
 180   increment(x_hi);
 181   jmp(done);
 182 
 183   bind(low);
 184   xorl(x_hi, x_hi);
 185   decrementl(x_hi);
 186 
 187   bind(done);
 188 }
 189 
 190 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 191     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 192 }
 193 
 194 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 195   // leal(dst, as_Address(adr));
 196   // see note in movl as to why we must use a move
 197   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 198 }
 199 
 200 void MacroAssembler::leave() {
 201   mov(rsp, rbp);
 202   pop(rbp);
 203 }
 204 
 205 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 206   // Multiplication of two Java long values stored on the stack
 207   // as illustrated below. Result is in rdx:rax.
 208   //
 209   // rsp ---> [  ??  ] \               \
 210   //            ....    | y_rsp_offset  |
 211   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 212   //          [ y_hi ]                  | (in bytes)
 213   //            ....                    |
 214   //          [ x_lo ]                 /
 215   //          [ x_hi ]
 216   //            ....
 217   //
 218   // Basic idea: lo(result) = lo(x_lo * y_lo)
 219   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 220   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 221   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 222   Label quick;
 223   // load x_hi, y_hi and check if quick
 224   // multiplication is possible
 225   movl(rbx, x_hi);
 226   movl(rcx, y_hi);
 227   movl(rax, rbx);
 228   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 229   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 230   // do full multiplication
 231   // 1st step
 232   mull(y_lo);                                    // x_hi * y_lo
 233   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 234   // 2nd step
 235   movl(rax, x_lo);
 236   mull(rcx);                                     // x_lo * y_hi
 237   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 238   // 3rd step
 239   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 240   movl(rax, x_lo);
 241   mull(y_lo);                                    // x_lo * y_lo
 242   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 243 }
 244 
 245 void MacroAssembler::lneg(Register hi, Register lo) {
 246   negl(lo);
 247   adcl(hi, 0);
 248   negl(hi);
 249 }
 250 
 251 void MacroAssembler::lshl(Register hi, Register lo) {
 252   // Java shift left long support (semantics as described in JVM spec., p.305)
 253   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 254   // shift value is in rcx !
 255   assert(hi != rcx, "must not use rcx");
 256   assert(lo != rcx, "must not use rcx");
 257   const Register s = rcx;                        // shift count
 258   const int      n = BitsPerWord;
 259   Label L;
 260   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 261   cmpl(s, n);                                    // if (s < n)
 262   jcc(Assembler::less, L);                       // else (s >= n)
 263   movl(hi, lo);                                  // x := x << n
 264   xorl(lo, lo);
 265   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 266   bind(L);                                       // s (mod n) < n
 267   shldl(hi, lo);                                 // x := x << s
 268   shll(lo);
 269 }
 270 
 271 
 272 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 273   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 274   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 275   assert(hi != rcx, "must not use rcx");
 276   assert(lo != rcx, "must not use rcx");
 277   const Register s = rcx;                        // shift count
 278   const int      n = BitsPerWord;
 279   Label L;
 280   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 281   cmpl(s, n);                                    // if (s < n)
 282   jcc(Assembler::less, L);                       // else (s >= n)
 283   movl(lo, hi);                                  // x := x >> n
 284   if (sign_extension) sarl(hi, 31);
 285   else                xorl(hi, hi);
 286   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 287   bind(L);                                       // s (mod n) < n
 288   shrdl(lo, hi);                                 // x := x >> s
 289   if (sign_extension) sarl(hi);
 290   else                shrl(hi);
 291 }
 292 
 293 void MacroAssembler::movoop(Register dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::movoop(Address dst, jobject obj) {
 298   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 306   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 310   // scratch register is not used,
 311   // it is defined to match parameters of 64-bit version of this method.
 312   if (src.is_lval()) {
 313     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 314   } else {
 315     movl(dst, as_Address(src));
 316   }
 317 }
 318 
 319 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 320   movl(as_Address(dst), src);
 321 }
 322 
 323 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 324   movl(dst, as_Address(src));
 325 }
 326 
 327 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 328 void MacroAssembler::movptr(Address dst, intptr_t src) {
 329   movl(dst, src);
 330 }
 331 
 332 
 333 void MacroAssembler::pop_callee_saved_registers() {
 334   pop(rcx);
 335   pop(rdx);
 336   pop(rdi);
 337   pop(rsi);
 338 }
 339 
 340 void MacroAssembler::pop_fTOS() {
 341   fld_d(Address(rsp, 0));
 342   addl(rsp, 2 * wordSize);
 343 }
 344 
 345 void MacroAssembler::push_callee_saved_registers() {
 346   push(rsi);
 347   push(rdi);
 348   push(rdx);
 349   push(rcx);
 350 }
 351 
 352 void MacroAssembler::push_fTOS() {
 353   subl(rsp, 2 * wordSize);
 354   fstp_d(Address(rsp, 0));
 355 }
 356 
 357 
 358 void MacroAssembler::pushoop(jobject obj) {
 359   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushklass(Metadata* obj) {
 363   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 364 }
 365 
 366 void MacroAssembler::pushptr(AddressLiteral src) {
 367   if (src.is_lval()) {
 368     push_literal32((int32_t)src.target(), src.rspec());
 369   } else {
 370     pushl(as_Address(src));
 371   }
 372 }
 373 
 374 void MacroAssembler::set_word_if_not_zero(Register dst) {
 375   xorl(dst, dst);
 376   set_byte_if_not_zero(dst);
 377 }
 378 
 379 static void pass_arg0(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg1(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg2(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 static void pass_arg3(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 #ifndef PRODUCT
 396 extern "C" void findpc(intptr_t x);
 397 #endif
 398 
 399 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 400   // In order to get locks to work, we need to fake a in_VM state
 401   JavaThread* thread = JavaThread::current();
 402   JavaThreadState saved_state = thread->thread_state();
 403   thread->set_thread_state(_thread_in_vm);
 404   if (ShowMessageBoxOnError) {
 405     JavaThread* thread = JavaThread::current();
 406     JavaThreadState saved_state = thread->thread_state();
 407     thread->set_thread_state(_thread_in_vm);
 408     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 409       ttyLocker ttyl;
 410       BytecodeCounter::print();
 411     }
 412     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 413     // This is the value of eip which points to where verify_oop will return.
 414     if (os::message_box(msg, "Execution stopped, print registers?")) {
 415       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 416       BREAKPOINT;
 417     }
 418   } else {
 419     ttyLocker ttyl;
 420     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 421   }
 422   // Don't assert holding the ttyLock
 423     assert(false, "DEBUG MESSAGE: %s", msg);
 424   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 425 }
 426 
 427 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 428   ttyLocker ttyl;
 429   FlagSetting fs(Debugging, true);
 430   tty->print_cr("eip = 0x%08x", eip);
 431 #ifndef PRODUCT
 432   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 433     tty->cr();
 434     findpc(eip);
 435     tty->cr();
 436   }
 437 #endif
 438 #define PRINT_REG(rax) \
 439   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 440   PRINT_REG(rax);
 441   PRINT_REG(rbx);
 442   PRINT_REG(rcx);
 443   PRINT_REG(rdx);
 444   PRINT_REG(rdi);
 445   PRINT_REG(rsi);
 446   PRINT_REG(rbp);
 447   PRINT_REG(rsp);
 448 #undef PRINT_REG
 449   // Print some words near top of staack.
 450   int* dump_sp = (int*) rsp;
 451   for (int col1 = 0; col1 < 8; col1++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     os::print_location(tty, *dump_sp++);
 454   }
 455   for (int row = 0; row < 16; row++) {
 456     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 457     for (int col = 0; col < 8; col++) {
 458       tty->print(" 0x%08x", *dump_sp++);
 459     }
 460     tty->cr();
 461   }
 462   // Print some instructions around pc:
 463   Disassembler::decode((address)eip-64, (address)eip);
 464   tty->print_cr("--------");
 465   Disassembler::decode((address)eip, (address)eip+32);
 466 }
 467 
 468 void MacroAssembler::stop(const char* msg) {
 469   ExternalAddress message((address)msg);
 470   // push address of message
 471   pushptr(message.addr());
 472   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 473   pusha();                                            // push registers
 474   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 475   hlt();
 476 }
 477 
 478 void MacroAssembler::warn(const char* msg) {
 479   push_CPU_state();
 480 
 481   ExternalAddress message((address) msg);
 482   // push address of message
 483   pushptr(message.addr());
 484 
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 486   addl(rsp, wordSize);       // discard argument
 487   pop_CPU_state();
 488 }
 489 
 490 void MacroAssembler::print_state() {
 491   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 492   pusha();                                            // push registers
 493 
 494   push_CPU_state();
 495   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 496   pop_CPU_state();
 497 
 498   popa();
 499   addl(rsp, wordSize);
 500 }
 501 
 502 #else // _LP64
 503 
 504 // 64 bit versions
 505 
 506 Address MacroAssembler::as_Address(AddressLiteral adr) {
 507   // amd64 always does this as a pc-rel
 508   // we can be absolute or disp based on the instruction type
 509   // jmp/call are displacements others are absolute
 510   assert(!adr.is_lval(), "must be rval");
 511   assert(reachable(adr), "must be");
 512   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 513 
 514 }
 515 
 516 Address MacroAssembler::as_Address(ArrayAddress adr) {
 517   AddressLiteral base = adr.base();
 518   lea(rscratch1, base);
 519   Address index = adr.index();
 520   assert(index._disp == 0, "must not have disp"); // maybe it can?
 521   Address array(rscratch1, index._index, index._scale, index._disp);
 522   return array;
 523 }
 524 
 525 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 526   Label L, E;
 527 
 528 #ifdef _WIN64
 529   // Windows always allocates space for it's register args
 530   assert(num_args <= 4, "only register arguments supported");
 531   subq(rsp,  frame::arg_reg_save_area_bytes);
 532 #endif
 533 
 534   // Align stack if necessary
 535   testl(rsp, 15);
 536   jcc(Assembler::zero, L);
 537 
 538   subq(rsp, 8);
 539   {
 540     call(RuntimeAddress(entry_point));
 541   }
 542   addq(rsp, 8);
 543   jmp(E);
 544 
 545   bind(L);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549 
 550   bind(E);
 551 
 552 #ifdef _WIN64
 553   // restore stack pointer
 554   addq(rsp, frame::arg_reg_save_area_bytes);
 555 #endif
 556 
 557 }
 558 
 559 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 560   assert(!src2.is_lval(), "should use cmpptr");
 561 
 562   if (reachable(src2)) {
 563     cmpq(src1, as_Address(src2));
 564   } else {
 565     lea(rscratch1, src2);
 566     Assembler::cmpq(src1, Address(rscratch1, 0));
 567   }
 568 }
 569 
 570 int MacroAssembler::corrected_idivq(Register reg) {
 571   // Full implementation of Java ldiv and lrem; checks for special
 572   // case as described in JVM spec., p.243 & p.271.  The function
 573   // returns the (pc) offset of the idivl instruction - may be needed
 574   // for implicit exceptions.
 575   //
 576   //         normal case                           special case
 577   //
 578   // input : rax: dividend                         min_long
 579   //         reg: divisor   (may not be eax/edx)   -1
 580   //
 581   // output: rax: quotient  (= rax idiv reg)       min_long
 582   //         rdx: remainder (= rax irem reg)       0
 583   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 584   static const int64_t min_long = 0x8000000000000000;
 585   Label normal_case, special_case;
 586 
 587   // check for special case
 588   cmp64(rax, ExternalAddress((address) &min_long));
 589   jcc(Assembler::notEqual, normal_case);
 590   xorl(rdx, rdx); // prepare rdx for possible special case (where
 591                   // remainder = 0)
 592   cmpq(reg, -1);
 593   jcc(Assembler::equal, special_case);
 594 
 595   // handle normal case
 596   bind(normal_case);
 597   cdqq();
 598   int idivq_offset = offset();
 599   idivq(reg);
 600 
 601   // normal and special case exit
 602   bind(special_case);
 603 
 604   return idivq_offset;
 605 }
 606 
 607 void MacroAssembler::decrementq(Register reg, int value) {
 608   if (value == min_jint) { subq(reg, value); return; }
 609   if (value <  0) { incrementq(reg, -value); return; }
 610   if (value == 0) {                        ; return; }
 611   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 612   /* else */      { subq(reg, value)       ; return; }
 613 }
 614 
 615 void MacroAssembler::decrementq(Address dst, int value) {
 616   if (value == min_jint) { subq(dst, value); return; }
 617   if (value <  0) { incrementq(dst, -value); return; }
 618   if (value == 0) {                        ; return; }
 619   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 620   /* else */      { subq(dst, value)       ; return; }
 621 }
 622 
 623 void MacroAssembler::incrementq(AddressLiteral dst) {
 624   if (reachable(dst)) {
 625     incrementq(as_Address(dst));
 626   } else {
 627     lea(rscratch1, dst);
 628     incrementq(Address(rscratch1, 0));
 629   }
 630 }
 631 
 632 void MacroAssembler::incrementq(Register reg, int value) {
 633   if (value == min_jint) { addq(reg, value); return; }
 634   if (value <  0) { decrementq(reg, -value); return; }
 635   if (value == 0) {                        ; return; }
 636   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 637   /* else */      { addq(reg, value)       ; return; }
 638 }
 639 
 640 void MacroAssembler::incrementq(Address dst, int value) {
 641   if (value == min_jint) { addq(dst, value); return; }
 642   if (value <  0) { decrementq(dst, -value); return; }
 643   if (value == 0) {                        ; return; }
 644   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 645   /* else */      { addq(dst, value)       ; return; }
 646 }
 647 
 648 // 32bit can do a case table jump in one instruction but we no longer allow the base
 649 // to be installed in the Address class
 650 void MacroAssembler::jump(ArrayAddress entry) {
 651   lea(rscratch1, entry.base());
 652   Address dispatch = entry.index();
 653   assert(dispatch._base == noreg, "must be");
 654   dispatch._base = rscratch1;
 655   jmp(dispatch);
 656 }
 657 
 658 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 659   ShouldNotReachHere(); // 64bit doesn't use two regs
 660   cmpq(x_lo, y_lo);
 661 }
 662 
 663 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 664     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 665 }
 666 
 667 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 668   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 669   movptr(dst, rscratch1);
 670 }
 671 
 672 void MacroAssembler::leave() {
 673   // %%% is this really better? Why not on 32bit too?
 674   emit_int8((unsigned char)0xC9); // LEAVE
 675 }
 676 
 677 void MacroAssembler::lneg(Register hi, Register lo) {
 678   ShouldNotReachHere(); // 64bit doesn't use two regs
 679   negq(lo);
 680 }
 681 
 682 void MacroAssembler::movoop(Register dst, jobject obj) {
 683   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684 }
 685 
 686 void MacroAssembler::movoop(Address dst, jobject obj) {
 687   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 688   movq(dst, rscratch1);
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 692   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693 }
 694 
 695 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 696   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 697   movq(dst, rscratch1);
 698 }
 699 
 700 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 701   if (src.is_lval()) {
 702     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 703   } else {
 704     if (reachable(src)) {
 705       movq(dst, as_Address(src));
 706     } else {
 707       lea(scratch, src);
 708       movq(dst, Address(scratch, 0));
 709     }
 710   }
 711 }
 712 
 713 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 714   movq(as_Address(dst), src);
 715 }
 716 
 717 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 718   movq(dst, as_Address(src));
 719 }
 720 
 721 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 722 void MacroAssembler::movptr(Address dst, intptr_t src) {
 723   mov64(rscratch1, src);
 724   movq(dst, rscratch1);
 725 }
 726 
 727 // These are mostly for initializing NULL
 728 void MacroAssembler::movptr(Address dst, int32_t src) {
 729   movslq(dst, src);
 730 }
 731 
 732 void MacroAssembler::movptr(Register dst, int32_t src) {
 733   mov64(dst, (intptr_t)src);
 734 }
 735 
 736 void MacroAssembler::pushoop(jobject obj) {
 737   movoop(rscratch1, obj);
 738   push(rscratch1);
 739 }
 740 
 741 void MacroAssembler::pushklass(Metadata* obj) {
 742   mov_metadata(rscratch1, obj);
 743   push(rscratch1);
 744 }
 745 
 746 void MacroAssembler::pushptr(AddressLiteral src) {
 747   lea(rscratch1, src);
 748   if (src.is_lval()) {
 749     push(rscratch1);
 750   } else {
 751     pushq(Address(rscratch1, 0));
 752   }
 753 }
 754 
 755 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 756                                            bool clear_pc) {
 757   // we must set sp to zero to clear frame
 758   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 759   // must clear fp, so that compiled frames are not confused; it is
 760   // possible that we need it only for debugging
 761   if (clear_fp) {
 762     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 763   }
 764 
 765   if (clear_pc) {
 766     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 767   }
 768 }
 769 
 770 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 771                                          Register last_java_fp,
 772                                          address  last_java_pc) {
 773   // determine last_java_sp register
 774   if (!last_java_sp->is_valid()) {
 775     last_java_sp = rsp;
 776   }
 777 
 778   // last_java_fp is optional
 779   if (last_java_fp->is_valid()) {
 780     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 781            last_java_fp);
 782   }
 783 
 784   // last_java_pc is optional
 785   if (last_java_pc != NULL) {
 786     Address java_pc(r15_thread,
 787                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 788     lea(rscratch1, InternalAddress(last_java_pc));
 789     movptr(java_pc, rscratch1);
 790   }
 791 
 792   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 793 }
 794 
 795 static void pass_arg0(MacroAssembler* masm, Register arg) {
 796   if (c_rarg0 != arg ) {
 797     masm->mov(c_rarg0, arg);
 798   }
 799 }
 800 
 801 static void pass_arg1(MacroAssembler* masm, Register arg) {
 802   if (c_rarg1 != arg ) {
 803     masm->mov(c_rarg1, arg);
 804   }
 805 }
 806 
 807 static void pass_arg2(MacroAssembler* masm, Register arg) {
 808   if (c_rarg2 != arg ) {
 809     masm->mov(c_rarg2, arg);
 810   }
 811 }
 812 
 813 static void pass_arg3(MacroAssembler* masm, Register arg) {
 814   if (c_rarg3 != arg ) {
 815     masm->mov(c_rarg3, arg);
 816   }
 817 }
 818 
 819 void MacroAssembler::stop(const char* msg) {
 820   address rip = pc();
 821   pusha(); // get regs on stack
 822   lea(c_rarg0, ExternalAddress((address) msg));
 823   lea(c_rarg1, InternalAddress(rip));
 824   movq(c_rarg2, rsp); // pass pointer to regs array
 825   andq(rsp, -16); // align stack as required by ABI
 826   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 827   hlt();
 828 }
 829 
 830 void MacroAssembler::warn(const char* msg) {
 831   push(rbp);
 832   movq(rbp, rsp);
 833   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 834   push_CPU_state();   // keeps alignment at 16 bytes
 835   lea(c_rarg0, ExternalAddress((address) msg));
 836   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 837   pop_CPU_state();
 838   mov(rsp, rbp);
 839   pop(rbp);
 840 }
 841 
 842 void MacroAssembler::print_state() {
 843   address rip = pc();
 844   pusha();            // get regs on stack
 845   push(rbp);
 846   movq(rbp, rsp);
 847   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 848   push_CPU_state();   // keeps alignment at 16 bytes
 849 
 850   lea(c_rarg0, InternalAddress(rip));
 851   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 852   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 853 
 854   pop_CPU_state();
 855   mov(rsp, rbp);
 856   pop(rbp);
 857   popa();
 858 }
 859 
 860 #ifndef PRODUCT
 861 extern "C" void findpc(intptr_t x);
 862 #endif
 863 
 864 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 865   // In order to get locks to work, we need to fake a in_VM state
 866   if (ShowMessageBoxOnError) {
 867     JavaThread* thread = JavaThread::current();
 868     JavaThreadState saved_state = thread->thread_state();
 869     thread->set_thread_state(_thread_in_vm);
 870 #ifndef PRODUCT
 871     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 872       ttyLocker ttyl;
 873       BytecodeCounter::print();
 874     }
 875 #endif
 876     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 877     // XXX correct this offset for amd64
 878     // This is the value of eip which points to where verify_oop will return.
 879     if (os::message_box(msg, "Execution stopped, print registers?")) {
 880       print_state64(pc, regs);
 881       BREAKPOINT;
 882       assert(false, "start up GDB");
 883     }
 884     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 885   } else {
 886     ttyLocker ttyl;
 887     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 888                     msg);
 889     assert(false, "DEBUG MESSAGE: %s", msg);
 890   }
 891 }
 892 
 893 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 894   ttyLocker ttyl;
 895   FlagSetting fs(Debugging, true);
 896   tty->print_cr("rip = 0x%016lx", pc);
 897 #ifndef PRODUCT
 898   tty->cr();
 899   findpc(pc);
 900   tty->cr();
 901 #endif
 902 #define PRINT_REG(rax, value) \
 903   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 904   PRINT_REG(rax, regs[15]);
 905   PRINT_REG(rbx, regs[12]);
 906   PRINT_REG(rcx, regs[14]);
 907   PRINT_REG(rdx, regs[13]);
 908   PRINT_REG(rdi, regs[8]);
 909   PRINT_REG(rsi, regs[9]);
 910   PRINT_REG(rbp, regs[10]);
 911   PRINT_REG(rsp, regs[11]);
 912   PRINT_REG(r8 , regs[7]);
 913   PRINT_REG(r9 , regs[6]);
 914   PRINT_REG(r10, regs[5]);
 915   PRINT_REG(r11, regs[4]);
 916   PRINT_REG(r12, regs[3]);
 917   PRINT_REG(r13, regs[2]);
 918   PRINT_REG(r14, regs[1]);
 919   PRINT_REG(r15, regs[0]);
 920 #undef PRINT_REG
 921   // Print some words near top of staack.
 922   int64_t* rsp = (int64_t*) regs[11];
 923   int64_t* dump_sp = rsp;
 924   for (int col1 = 0; col1 < 8; col1++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     os::print_location(tty, *dump_sp++);
 927   }
 928   for (int row = 0; row < 25; row++) {
 929     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 930     for (int col = 0; col < 4; col++) {
 931       tty->print(" 0x%016lx", *dump_sp++);
 932     }
 933     tty->cr();
 934   }
 935   // Print some instructions around pc:
 936   Disassembler::decode((address)pc-64, (address)pc);
 937   tty->print_cr("--------");
 938   Disassembler::decode((address)pc, (address)pc+32);
 939 }
 940 
 941 #endif // _LP64
 942 
 943 // Now versions that are common to 32/64 bit
 944 
 945 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 946   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 947 }
 948 
 949 void MacroAssembler::addptr(Register dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addptr(Address dst, Register src) {
 954   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 955 }
 956 
 957 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 958   if (reachable(src)) {
 959     Assembler::addsd(dst, as_Address(src));
 960   } else {
 961     lea(rscratch1, src);
 962     Assembler::addsd(dst, Address(rscratch1, 0));
 963   }
 964 }
 965 
 966 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 967   if (reachable(src)) {
 968     addss(dst, as_Address(src));
 969   } else {
 970     lea(rscratch1, src);
 971     addss(dst, Address(rscratch1, 0));
 972   }
 973 }
 974 
 975 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 976   if (reachable(src)) {
 977     Assembler::addpd(dst, as_Address(src));
 978   } else {
 979     lea(rscratch1, src);
 980     Assembler::addpd(dst, Address(rscratch1, 0));
 981   }
 982 }
 983 
 984 void MacroAssembler::align(int modulus) {
 985   align(modulus, offset());
 986 }
 987 
 988 void MacroAssembler::align(int modulus, int target) {
 989   if (target % modulus != 0) {
 990     nop(modulus - (target % modulus));
 991   }
 992 }
 993 
 994 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 995   // Used in sign-masking with aligned address.
 996   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 997   if (reachable(src)) {
 998     Assembler::andpd(dst, as_Address(src));
 999   } else {
1000     lea(rscratch1, src);
1001     Assembler::andpd(dst, Address(rscratch1, 0));
1002   }
1003 }
1004 
1005 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1006   // Used in sign-masking with aligned address.
1007   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1008   if (reachable(src)) {
1009     Assembler::andps(dst, as_Address(src));
1010   } else {
1011     lea(rscratch1, src);
1012     Assembler::andps(dst, Address(rscratch1, 0));
1013   }
1014 }
1015 
1016 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1017   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1018 }
1019 
1020 void MacroAssembler::atomic_incl(Address counter_addr) {
1021   if (os::is_MP())
1022     lock();
1023   incrementl(counter_addr);
1024 }
1025 
1026 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1027   if (reachable(counter_addr)) {
1028     atomic_incl(as_Address(counter_addr));
1029   } else {
1030     lea(scr, counter_addr);
1031     atomic_incl(Address(scr, 0));
1032   }
1033 }
1034 
1035 #ifdef _LP64
1036 void MacroAssembler::atomic_incq(Address counter_addr) {
1037   if (os::is_MP())
1038     lock();
1039   incrementq(counter_addr);
1040 }
1041 
1042 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1043   if (reachable(counter_addr)) {
1044     atomic_incq(as_Address(counter_addr));
1045   } else {
1046     lea(scr, counter_addr);
1047     atomic_incq(Address(scr, 0));
1048   }
1049 }
1050 #endif
1051 
1052 // Writes to stack successive pages until offset reached to check for
1053 // stack overflow + shadow pages.  This clobbers tmp.
1054 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1055   movptr(tmp, rsp);
1056   // Bang stack for total size given plus shadow page size.
1057   // Bang one page at a time because large size can bang beyond yellow and
1058   // red zones.
1059   Label loop;
1060   bind(loop);
1061   movl(Address(tmp, (-os::vm_page_size())), size );
1062   subptr(tmp, os::vm_page_size());
1063   subl(size, os::vm_page_size());
1064   jcc(Assembler::greater, loop);
1065 
1066   // Bang down shadow pages too.
1067   // At this point, (tmp-0) is the last address touched, so don't
1068   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1069   // was post-decremented.)  Skip this address by starting at i=1, and
1070   // touch a few more pages below.  N.B.  It is important to touch all
1071   // the way down including all pages in the shadow zone.
1072   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1073     // this could be any sized move but this is can be a debugging crumb
1074     // so the bigger the better.
1075     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1076   }
1077 }
1078 
1079 void MacroAssembler::reserved_stack_check() {
1080     // testing if reserved zone needs to be enabled
1081     Label no_reserved_zone_enabling;
1082     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1083     NOT_LP64(get_thread(rsi);)
1084 
1085     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1086     jcc(Assembler::below, no_reserved_zone_enabling);
1087 
1088     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1089     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1090     should_not_reach_here();
1091 
1092     bind(no_reserved_zone_enabling);
1093 }
1094 
1095 int MacroAssembler::biased_locking_enter(Register lock_reg,
1096                                          Register obj_reg,
1097                                          Register swap_reg,
1098                                          Register tmp_reg,
1099                                          bool swap_reg_contains_mark,
1100                                          Label& done,
1101                                          Label* slow_case,
1102                                          BiasedLockingCounters* counters) {
1103   assert(UseBiasedLocking, "why call this otherwise?");
1104   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1105   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1106   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1107   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1108   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1109   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1110 
1111   if (PrintBiasedLockingStatistics && counters == NULL) {
1112     counters = BiasedLocking::counters();
1113   }
1114   // Biased locking
1115   // See whether the lock is currently biased toward our thread and
1116   // whether the epoch is still valid
1117   // Note that the runtime guarantees sufficient alignment of JavaThread
1118   // pointers to allow age to be placed into low bits
1119   // First check to see whether biasing is even enabled for this object
1120   Label cas_label;
1121   int null_check_offset = -1;
1122   if (!swap_reg_contains_mark) {
1123     null_check_offset = offset();
1124     movptr(swap_reg, mark_addr);
1125   }
1126   movptr(tmp_reg, swap_reg);
1127   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1128   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1129   jcc(Assembler::notEqual, cas_label);
1130   // The bias pattern is present in the object's header. Need to check
1131   // whether the bias owner and the epoch are both still current.
1132 #ifndef _LP64
1133   // Note that because there is no current thread register on x86_32 we
1134   // need to store off the mark word we read out of the object to
1135   // avoid reloading it and needing to recheck invariants below. This
1136   // store is unfortunate but it makes the overall code shorter and
1137   // simpler.
1138   movptr(saved_mark_addr, swap_reg);
1139 #endif
1140   if (swap_reg_contains_mark) {
1141     null_check_offset = offset();
1142   }
1143   load_prototype_header(tmp_reg, obj_reg);
1144 #ifdef _LP64
1145   orptr(tmp_reg, r15_thread);
1146   xorptr(tmp_reg, swap_reg);
1147   Register header_reg = tmp_reg;
1148 #else
1149   xorptr(tmp_reg, swap_reg);
1150   get_thread(swap_reg);
1151   xorptr(swap_reg, tmp_reg);
1152   Register header_reg = swap_reg;
1153 #endif
1154   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1155   if (counters != NULL) {
1156     cond_inc32(Assembler::zero,
1157                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1158   }
1159   jcc(Assembler::equal, done);
1160 
1161   Label try_revoke_bias;
1162   Label try_rebias;
1163 
1164   // At this point we know that the header has the bias pattern and
1165   // that we are not the bias owner in the current epoch. We need to
1166   // figure out more details about the state of the header in order to
1167   // know what operations can be legally performed on the object's
1168   // header.
1169 
1170   // If the low three bits in the xor result aren't clear, that means
1171   // the prototype header is no longer biased and we have to revoke
1172   // the bias on this object.
1173   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1174   jccb(Assembler::notZero, try_revoke_bias);
1175 
1176   // Biasing is still enabled for this data type. See whether the
1177   // epoch of the current bias is still valid, meaning that the epoch
1178   // bits of the mark word are equal to the epoch bits of the
1179   // prototype header. (Note that the prototype header's epoch bits
1180   // only change at a safepoint.) If not, attempt to rebias the object
1181   // toward the current thread. Note that we must be absolutely sure
1182   // that the current epoch is invalid in order to do this because
1183   // otherwise the manipulations it performs on the mark word are
1184   // illegal.
1185   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1186   jccb(Assembler::notZero, try_rebias);
1187 
1188   // The epoch of the current bias is still valid but we know nothing
1189   // about the owner; it might be set or it might be clear. Try to
1190   // acquire the bias of the object using an atomic operation. If this
1191   // fails we will go in to the runtime to revoke the object's bias.
1192   // Note that we first construct the presumed unbiased header so we
1193   // don't accidentally blow away another thread's valid bias.
1194   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1195   andptr(swap_reg,
1196          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1197 #ifdef _LP64
1198   movptr(tmp_reg, swap_reg);
1199   orptr(tmp_reg, r15_thread);
1200 #else
1201   get_thread(tmp_reg);
1202   orptr(tmp_reg, swap_reg);
1203 #endif
1204   if (os::is_MP()) {
1205     lock();
1206   }
1207   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1208   // If the biasing toward our thread failed, this means that
1209   // another thread succeeded in biasing it toward itself and we
1210   // need to revoke that bias. The revocation will occur in the
1211   // interpreter runtime in the slow case.
1212   if (counters != NULL) {
1213     cond_inc32(Assembler::zero,
1214                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1215   }
1216   if (slow_case != NULL) {
1217     jcc(Assembler::notZero, *slow_case);
1218   }
1219   jmp(done);
1220 
1221   bind(try_rebias);
1222   // At this point we know the epoch has expired, meaning that the
1223   // current "bias owner", if any, is actually invalid. Under these
1224   // circumstances _only_, we are allowed to use the current header's
1225   // value as the comparison value when doing the cas to acquire the
1226   // bias in the current epoch. In other words, we allow transfer of
1227   // the bias from one thread to another directly in this situation.
1228   //
1229   // FIXME: due to a lack of registers we currently blow away the age
1230   // bits in this situation. Should attempt to preserve them.
1231   load_prototype_header(tmp_reg, obj_reg);
1232 #ifdef _LP64
1233   orptr(tmp_reg, r15_thread);
1234 #else
1235   get_thread(swap_reg);
1236   orptr(tmp_reg, swap_reg);
1237   movptr(swap_reg, saved_mark_addr);
1238 #endif
1239   if (os::is_MP()) {
1240     lock();
1241   }
1242   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1243   // If the biasing toward our thread failed, then another thread
1244   // succeeded in biasing it toward itself and we need to revoke that
1245   // bias. The revocation will occur in the runtime in the slow case.
1246   if (counters != NULL) {
1247     cond_inc32(Assembler::zero,
1248                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1249   }
1250   if (slow_case != NULL) {
1251     jcc(Assembler::notZero, *slow_case);
1252   }
1253   jmp(done);
1254 
1255   bind(try_revoke_bias);
1256   // The prototype mark in the klass doesn't have the bias bit set any
1257   // more, indicating that objects of this data type are not supposed
1258   // to be biased any more. We are going to try to reset the mark of
1259   // this object to the prototype value and fall through to the
1260   // CAS-based locking scheme. Note that if our CAS fails, it means
1261   // that another thread raced us for the privilege of revoking the
1262   // bias of this particular object, so it's okay to continue in the
1263   // normal locking code.
1264   //
1265   // FIXME: due to a lack of registers we currently blow away the age
1266   // bits in this situation. Should attempt to preserve them.
1267   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1268   load_prototype_header(tmp_reg, obj_reg);
1269   if (os::is_MP()) {
1270     lock();
1271   }
1272   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1273   // Fall through to the normal CAS-based lock, because no matter what
1274   // the result of the above CAS, some thread must have succeeded in
1275   // removing the bias bit from the object's header.
1276   if (counters != NULL) {
1277     cond_inc32(Assembler::zero,
1278                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1279   }
1280 
1281   bind(cas_label);
1282 
1283   return null_check_offset;
1284 }
1285 
1286 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1287   assert(UseBiasedLocking, "why call this otherwise?");
1288 
1289   // Check for biased locking unlock case, which is a no-op
1290   // Note: we do not have to check the thread ID for two reasons.
1291   // First, the interpreter checks for IllegalMonitorStateException at
1292   // a higher level. Second, if the bias was revoked while we held the
1293   // lock, the object could not be rebiased toward another thread, so
1294   // the bias bit would be clear.
1295   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1296   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1297   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1298   jcc(Assembler::equal, done);
1299 }
1300 
1301 #ifdef COMPILER2
1302 
1303 #if INCLUDE_RTM_OPT
1304 
1305 // Update rtm_counters based on abort status
1306 // input: abort_status
1307 //        rtm_counters (RTMLockingCounters*)
1308 // flags are killed
1309 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1310 
1311   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1312   if (PrintPreciseRTMLockingStatistics) {
1313     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1314       Label check_abort;
1315       testl(abort_status, (1<<i));
1316       jccb(Assembler::equal, check_abort);
1317       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1318       bind(check_abort);
1319     }
1320   }
1321 }
1322 
1323 // Branch if (random & (count-1) != 0), count is 2^n
1324 // tmp, scr and flags are killed
1325 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1326   assert(tmp == rax, "");
1327   assert(scr == rdx, "");
1328   rdtsc(); // modifies EDX:EAX
1329   andptr(tmp, count-1);
1330   jccb(Assembler::notZero, brLabel);
1331 }
1332 
1333 // Perform abort ratio calculation, set no_rtm bit if high ratio
1334 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1335 // tmpReg, rtm_counters_Reg and flags are killed
1336 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1337                                                  Register rtm_counters_Reg,
1338                                                  RTMLockingCounters* rtm_counters,
1339                                                  Metadata* method_data) {
1340   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1341 
1342   if (RTMLockingCalculationDelay > 0) {
1343     // Delay calculation
1344     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1345     testptr(tmpReg, tmpReg);
1346     jccb(Assembler::equal, L_done);
1347   }
1348   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1349   //   Aborted transactions = abort_count * 100
1350   //   All transactions = total_count *  RTMTotalCountIncrRate
1351   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1352 
1353   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1354   cmpptr(tmpReg, RTMAbortThreshold);
1355   jccb(Assembler::below, L_check_always_rtm2);
1356   imulptr(tmpReg, tmpReg, 100);
1357 
1358   Register scrReg = rtm_counters_Reg;
1359   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1360   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1361   imulptr(scrReg, scrReg, RTMAbortRatio);
1362   cmpptr(tmpReg, scrReg);
1363   jccb(Assembler::below, L_check_always_rtm1);
1364   if (method_data != NULL) {
1365     // set rtm_state to "no rtm" in MDO
1366     mov_metadata(tmpReg, method_data);
1367     if (os::is_MP()) {
1368       lock();
1369     }
1370     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1371   }
1372   jmpb(L_done);
1373   bind(L_check_always_rtm1);
1374   // Reload RTMLockingCounters* address
1375   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1376   bind(L_check_always_rtm2);
1377   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1378   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1379   jccb(Assembler::below, L_done);
1380   if (method_data != NULL) {
1381     // set rtm_state to "always rtm" in MDO
1382     mov_metadata(tmpReg, method_data);
1383     if (os::is_MP()) {
1384       lock();
1385     }
1386     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1387   }
1388   bind(L_done);
1389 }
1390 
1391 // Update counters and perform abort ratio calculation
1392 // input:  abort_status_Reg
1393 // rtm_counters_Reg, flags are killed
1394 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1395                                    Register rtm_counters_Reg,
1396                                    RTMLockingCounters* rtm_counters,
1397                                    Metadata* method_data,
1398                                    bool profile_rtm) {
1399 
1400   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1401   // update rtm counters based on rax value at abort
1402   // reads abort_status_Reg, updates flags
1403   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1404   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1405   if (profile_rtm) {
1406     // Save abort status because abort_status_Reg is used by following code.
1407     if (RTMRetryCount > 0) {
1408       push(abort_status_Reg);
1409     }
1410     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1411     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1412     // restore abort status
1413     if (RTMRetryCount > 0) {
1414       pop(abort_status_Reg);
1415     }
1416   }
1417 }
1418 
1419 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1420 // inputs: retry_count_Reg
1421 //       : abort_status_Reg
1422 // output: retry_count_Reg decremented by 1
1423 // flags are killed
1424 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1425   Label doneRetry;
1426   assert(abort_status_Reg == rax, "");
1427   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1428   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1429   // if reason is in 0x6 and retry count != 0 then retry
1430   andptr(abort_status_Reg, 0x6);
1431   jccb(Assembler::zero, doneRetry);
1432   testl(retry_count_Reg, retry_count_Reg);
1433   jccb(Assembler::zero, doneRetry);
1434   pause();
1435   decrementl(retry_count_Reg);
1436   jmp(retryLabel);
1437   bind(doneRetry);
1438 }
1439 
1440 // Spin and retry if lock is busy,
1441 // inputs: box_Reg (monitor address)
1442 //       : retry_count_Reg
1443 // output: retry_count_Reg decremented by 1
1444 //       : clear z flag if retry count exceeded
1445 // tmp_Reg, scr_Reg, flags are killed
1446 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1447                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1448   Label SpinLoop, SpinExit, doneRetry;
1449   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1450 
1451   testl(retry_count_Reg, retry_count_Reg);
1452   jccb(Assembler::zero, doneRetry);
1453   decrementl(retry_count_Reg);
1454   movptr(scr_Reg, RTMSpinLoopCount);
1455 
1456   bind(SpinLoop);
1457   pause();
1458   decrementl(scr_Reg);
1459   jccb(Assembler::lessEqual, SpinExit);
1460   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1461   testptr(tmp_Reg, tmp_Reg);
1462   jccb(Assembler::notZero, SpinLoop);
1463 
1464   bind(SpinExit);
1465   jmp(retryLabel);
1466   bind(doneRetry);
1467   incrementl(retry_count_Reg); // clear z flag
1468 }
1469 
1470 // Use RTM for normal stack locks
1471 // Input: objReg (object to lock)
1472 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1473                                        Register retry_on_abort_count_Reg,
1474                                        RTMLockingCounters* stack_rtm_counters,
1475                                        Metadata* method_data, bool profile_rtm,
1476                                        Label& DONE_LABEL, Label& IsInflated) {
1477   assert(UseRTMForStackLocks, "why call this otherwise?");
1478   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1479   assert(tmpReg == rax, "");
1480   assert(scrReg == rdx, "");
1481   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1482 
1483   if (RTMRetryCount > 0) {
1484     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1485     bind(L_rtm_retry);
1486   }
1487   movptr(tmpReg, Address(objReg, 0));
1488   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1489   jcc(Assembler::notZero, IsInflated);
1490 
1491   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1492     Label L_noincrement;
1493     if (RTMTotalCountIncrRate > 1) {
1494       // tmpReg, scrReg and flags are killed
1495       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1496     }
1497     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1498     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1499     bind(L_noincrement);
1500   }
1501   xbegin(L_on_abort);
1502   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1503   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1504   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1505   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1506 
1507   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1508   if (UseRTMXendForLockBusy) {
1509     xend();
1510     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1511     jmp(L_decrement_retry);
1512   }
1513   else {
1514     xabort(0);
1515   }
1516   bind(L_on_abort);
1517   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1518     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1519   }
1520   bind(L_decrement_retry);
1521   if (RTMRetryCount > 0) {
1522     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1523     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1524   }
1525 }
1526 
1527 // Use RTM for inflating locks
1528 // inputs: objReg (object to lock)
1529 //         boxReg (on-stack box address (displaced header location) - KILLED)
1530 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1531 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1532                                           Register scrReg, Register retry_on_busy_count_Reg,
1533                                           Register retry_on_abort_count_Reg,
1534                                           RTMLockingCounters* rtm_counters,
1535                                           Metadata* method_data, bool profile_rtm,
1536                                           Label& DONE_LABEL) {
1537   assert(UseRTMLocking, "why call this otherwise?");
1538   assert(tmpReg == rax, "");
1539   assert(scrReg == rdx, "");
1540   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1541   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1542 
1543   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1544   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1545   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1546 
1547   if (RTMRetryCount > 0) {
1548     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1549     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1550     bind(L_rtm_retry);
1551   }
1552   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1553     Label L_noincrement;
1554     if (RTMTotalCountIncrRate > 1) {
1555       // tmpReg, scrReg and flags are killed
1556       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1557     }
1558     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1559     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1560     bind(L_noincrement);
1561   }
1562   xbegin(L_on_abort);
1563   movptr(tmpReg, Address(objReg, 0));
1564   movptr(tmpReg, Address(tmpReg, owner_offset));
1565   testptr(tmpReg, tmpReg);
1566   jcc(Assembler::zero, DONE_LABEL);
1567   if (UseRTMXendForLockBusy) {
1568     xend();
1569     jmp(L_decrement_retry);
1570   }
1571   else {
1572     xabort(0);
1573   }
1574   bind(L_on_abort);
1575   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1576   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1577     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1578   }
1579   if (RTMRetryCount > 0) {
1580     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1581     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1582   }
1583 
1584   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1585   testptr(tmpReg, tmpReg) ;
1586   jccb(Assembler::notZero, L_decrement_retry) ;
1587 
1588   // Appears unlocked - try to swing _owner from null to non-null.
1589   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1590 #ifdef _LP64
1591   Register threadReg = r15_thread;
1592 #else
1593   get_thread(scrReg);
1594   Register threadReg = scrReg;
1595 #endif
1596   if (os::is_MP()) {
1597     lock();
1598   }
1599   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1600 
1601   if (RTMRetryCount > 0) {
1602     // success done else retry
1603     jccb(Assembler::equal, DONE_LABEL) ;
1604     bind(L_decrement_retry);
1605     // Spin and retry if lock is busy.
1606     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1607   }
1608   else {
1609     bind(L_decrement_retry);
1610   }
1611 }
1612 
1613 #endif //  INCLUDE_RTM_OPT
1614 
1615 // Fast_Lock and Fast_Unlock used by C2
1616 
1617 // Because the transitions from emitted code to the runtime
1618 // monitorenter/exit helper stubs are so slow it's critical that
1619 // we inline both the stack-locking fast-path and the inflated fast path.
1620 //
1621 // See also: cmpFastLock and cmpFastUnlock.
1622 //
1623 // What follows is a specialized inline transliteration of the code
1624 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1625 // another option would be to emit TrySlowEnter and TrySlowExit methods
1626 // at startup-time.  These methods would accept arguments as
1627 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1628 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1629 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1630 // In practice, however, the # of lock sites is bounded and is usually small.
1631 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1632 // if the processor uses simple bimodal branch predictors keyed by EIP
1633 // Since the helper routines would be called from multiple synchronization
1634 // sites.
1635 //
1636 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1637 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1638 // to those specialized methods.  That'd give us a mostly platform-independent
1639 // implementation that the JITs could optimize and inline at their pleasure.
1640 // Done correctly, the only time we'd need to cross to native could would be
1641 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1642 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1643 // (b) explicit barriers or fence operations.
1644 //
1645 // TODO:
1646 //
1647 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1648 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1649 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1650 //    the lock operators would typically be faster than reifying Self.
1651 //
1652 // *  Ideally I'd define the primitives as:
1653 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1654 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1655 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1656 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1657 //    Furthermore the register assignments are overconstrained, possibly resulting in
1658 //    sub-optimal code near the synchronization site.
1659 //
1660 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1661 //    Alternately, use a better sp-proximity test.
1662 //
1663 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1664 //    Either one is sufficient to uniquely identify a thread.
1665 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1666 //
1667 // *  Intrinsify notify() and notifyAll() for the common cases where the
1668 //    object is locked by the calling thread but the waitlist is empty.
1669 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1670 //
1671 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1672 //    But beware of excessive branch density on AMD Opterons.
1673 //
1674 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1675 //    or failure of the fast-path.  If the fast-path fails then we pass
1676 //    control to the slow-path, typically in C.  In Fast_Lock and
1677 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1678 //    will emit a conditional branch immediately after the node.
1679 //    So we have branches to branches and lots of ICC.ZF games.
1680 //    Instead, it might be better to have C2 pass a "FailureLabel"
1681 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1682 //    will drop through the node.  ICC.ZF is undefined at exit.
1683 //    In the case of failure, the node will branch directly to the
1684 //    FailureLabel
1685 
1686 
1687 // obj: object to lock
1688 // box: on-stack box address (displaced header location) - KILLED
1689 // rax,: tmp -- KILLED
1690 // scr: tmp -- KILLED
1691 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1692                                Register scrReg, Register cx1Reg, Register cx2Reg,
1693                                BiasedLockingCounters* counters,
1694                                RTMLockingCounters* rtm_counters,
1695                                RTMLockingCounters* stack_rtm_counters,
1696                                Metadata* method_data,
1697                                bool use_rtm, bool profile_rtm) {
1698   // Ensure the register assignments are disjoint
1699   assert(tmpReg == rax, "");
1700 
1701   if (use_rtm) {
1702     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1703   } else {
1704     assert(cx1Reg == noreg, "");
1705     assert(cx2Reg == noreg, "");
1706     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1707   }
1708 
1709   if (counters != NULL) {
1710     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1711   }
1712   if (EmitSync & 1) {
1713       // set box->dhw = markOopDesc::unused_mark()
1714       // Force all sync thru slow-path: slow_enter() and slow_exit()
1715       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1716       cmpptr (rsp, (int32_t)NULL_WORD);
1717   } else {
1718     // Possible cases that we'll encounter in fast_lock
1719     // ------------------------------------------------
1720     // * Inflated
1721     //    -- unlocked
1722     //    -- Locked
1723     //       = by self
1724     //       = by other
1725     // * biased
1726     //    -- by Self
1727     //    -- by other
1728     // * neutral
1729     // * stack-locked
1730     //    -- by self
1731     //       = sp-proximity test hits
1732     //       = sp-proximity test generates false-negative
1733     //    -- by other
1734     //
1735 
1736     Label IsInflated, DONE_LABEL;
1737 
1738     // it's stack-locked, biased or neutral
1739     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1740     // order to reduce the number of conditional branches in the most common cases.
1741     // Beware -- there's a subtle invariant that fetch of the markword
1742     // at [FETCH], below, will never observe a biased encoding (*101b).
1743     // If this invariant is not held we risk exclusion (safety) failure.
1744     if (UseBiasedLocking && !UseOptoBiasInlining) {
1745       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1746     }
1747 
1748 #if INCLUDE_RTM_OPT
1749     if (UseRTMForStackLocks && use_rtm) {
1750       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1751                         stack_rtm_counters, method_data, profile_rtm,
1752                         DONE_LABEL, IsInflated);
1753     }
1754 #endif // INCLUDE_RTM_OPT
1755 
1756     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1757     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1758     jccb(Assembler::notZero, IsInflated);
1759 
1760     // Attempt stack-locking ...
1761     orptr (tmpReg, markOopDesc::unlocked_value);
1762     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1763     if (os::is_MP()) {
1764       lock();
1765     }
1766     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1767     if (counters != NULL) {
1768       cond_inc32(Assembler::equal,
1769                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1770     }
1771     jcc(Assembler::equal, DONE_LABEL);           // Success
1772 
1773     // Recursive locking.
1774     // The object is stack-locked: markword contains stack pointer to BasicLock.
1775     // Locked by current thread if difference with current SP is less than one page.
1776     subptr(tmpReg, rsp);
1777     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1778     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1779     movptr(Address(boxReg, 0), tmpReg);
1780     if (counters != NULL) {
1781       cond_inc32(Assembler::equal,
1782                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1783     }
1784     jmp(DONE_LABEL);
1785 
1786     bind(IsInflated);
1787     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1788 
1789 #if INCLUDE_RTM_OPT
1790     // Use the same RTM locking code in 32- and 64-bit VM.
1791     if (use_rtm) {
1792       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1793                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1794     } else {
1795 #endif // INCLUDE_RTM_OPT
1796 
1797 #ifndef _LP64
1798     // The object is inflated.
1799 
1800     // boxReg refers to the on-stack BasicLock in the current frame.
1801     // We'd like to write:
1802     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1803     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1804     // additional latency as we have another ST in the store buffer that must drain.
1805 
1806     if (EmitSync & 8192) {
1807        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1808        get_thread (scrReg);
1809        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1810        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1811        if (os::is_MP()) {
1812          lock();
1813        }
1814        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1815     } else
1816     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1817        // register juggle because we need tmpReg for cmpxchgptr below
1818        movptr(scrReg, boxReg);
1819        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1820 
1821        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1822        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1823           // prefetchw [eax + Offset(_owner)-2]
1824           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1825        }
1826 
1827        if ((EmitSync & 64) == 0) {
1828          // Optimistic form: consider XORL tmpReg,tmpReg
1829          movptr(tmpReg, NULL_WORD);
1830        } else {
1831          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1832          // Test-And-CAS instead of CAS
1833          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1834          testptr(tmpReg, tmpReg);                   // Locked ?
1835          jccb  (Assembler::notZero, DONE_LABEL);
1836        }
1837 
1838        // Appears unlocked - try to swing _owner from null to non-null.
1839        // Ideally, I'd manifest "Self" with get_thread and then attempt
1840        // to CAS the register containing Self into m->Owner.
1841        // But we don't have enough registers, so instead we can either try to CAS
1842        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1843        // we later store "Self" into m->Owner.  Transiently storing a stack address
1844        // (rsp or the address of the box) into  m->owner is harmless.
1845        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1846        if (os::is_MP()) {
1847          lock();
1848        }
1849        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1850        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1851        // If we weren't able to swing _owner from NULL to the BasicLock
1852        // then take the slow path.
1853        jccb  (Assembler::notZero, DONE_LABEL);
1854        // update _owner from BasicLock to thread
1855        get_thread (scrReg);                    // beware: clobbers ICCs
1856        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1857        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1858 
1859        // If the CAS fails we can either retry or pass control to the slow-path.
1860        // We use the latter tactic.
1861        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1862        // If the CAS was successful ...
1863        //   Self has acquired the lock
1864        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1865        // Intentional fall-through into DONE_LABEL ...
1866     } else {
1867        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1868        movptr(boxReg, tmpReg);
1869 
1870        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1871        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1872           // prefetchw [eax + Offset(_owner)-2]
1873           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1874        }
1875 
1876        if ((EmitSync & 64) == 0) {
1877          // Optimistic form
1878          xorptr  (tmpReg, tmpReg);
1879        } else {
1880          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1881          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1882          testptr(tmpReg, tmpReg);                   // Locked ?
1883          jccb  (Assembler::notZero, DONE_LABEL);
1884        }
1885 
1886        // Appears unlocked - try to swing _owner from null to non-null.
1887        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1888        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1889        get_thread (scrReg);
1890        if (os::is_MP()) {
1891          lock();
1892        }
1893        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1894 
1895        // If the CAS fails we can either retry or pass control to the slow-path.
1896        // We use the latter tactic.
1897        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1898        // If the CAS was successful ...
1899        //   Self has acquired the lock
1900        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1901        // Intentional fall-through into DONE_LABEL ...
1902     }
1903 #else // _LP64
1904     // It's inflated
1905     movq(scrReg, tmpReg);
1906     xorq(tmpReg, tmpReg);
1907 
1908     if (os::is_MP()) {
1909       lock();
1910     }
1911     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1912     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1913     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1914     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1915     // Intentional fall-through into DONE_LABEL ...
1916     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1917 #endif // _LP64
1918 #if INCLUDE_RTM_OPT
1919     } // use_rtm()
1920 #endif
1921     // DONE_LABEL is a hot target - we'd really like to place it at the
1922     // start of cache line by padding with NOPs.
1923     // See the AMD and Intel software optimization manuals for the
1924     // most efficient "long" NOP encodings.
1925     // Unfortunately none of our alignment mechanisms suffice.
1926     bind(DONE_LABEL);
1927 
1928     // At DONE_LABEL the icc ZFlag is set as follows ...
1929     // Fast_Unlock uses the same protocol.
1930     // ZFlag == 1 -> Success
1931     // ZFlag == 0 -> Failure - force control through the slow-path
1932   }
1933 }
1934 
1935 // obj: object to unlock
1936 // box: box address (displaced header location), killed.  Must be EAX.
1937 // tmp: killed, cannot be obj nor box.
1938 //
1939 // Some commentary on balanced locking:
1940 //
1941 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1942 // Methods that don't have provably balanced locking are forced to run in the
1943 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1944 // The interpreter provides two properties:
1945 // I1:  At return-time the interpreter automatically and quietly unlocks any
1946 //      objects acquired the current activation (frame).  Recall that the
1947 //      interpreter maintains an on-stack list of locks currently held by
1948 //      a frame.
1949 // I2:  If a method attempts to unlock an object that is not held by the
1950 //      the frame the interpreter throws IMSX.
1951 //
1952 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1953 // B() doesn't have provably balanced locking so it runs in the interpreter.
1954 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1955 // is still locked by A().
1956 //
1957 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1958 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1959 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1960 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1961 // Arguably given that the spec legislates the JNI case as undefined our implementation
1962 // could reasonably *avoid* checking owner in Fast_Unlock().
1963 // In the interest of performance we elide m->Owner==Self check in unlock.
1964 // A perfectly viable alternative is to elide the owner check except when
1965 // Xcheck:jni is enabled.
1966 
1967 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1968   assert(boxReg == rax, "");
1969   assert_different_registers(objReg, boxReg, tmpReg);
1970 
1971   if (EmitSync & 4) {
1972     // Disable - inhibit all inlining.  Force control through the slow-path
1973     cmpptr (rsp, 0);
1974   } else {
1975     Label DONE_LABEL, Stacked, CheckSucc;
1976 
1977     // Critically, the biased locking test must have precedence over
1978     // and appear before the (box->dhw == 0) recursive stack-lock test.
1979     if (UseBiasedLocking && !UseOptoBiasInlining) {
1980        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1981     }
1982 
1983 #if INCLUDE_RTM_OPT
1984     if (UseRTMForStackLocks && use_rtm) {
1985       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1986       Label L_regular_unlock;
1987       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1988       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1989       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1990       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1991       xend();                                       // otherwise end...
1992       jmp(DONE_LABEL);                              // ... and we're done
1993       bind(L_regular_unlock);
1994     }
1995 #endif
1996 
1997     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1998     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1999     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
2000     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2001     jccb  (Assembler::zero, Stacked);
2002 
2003     // It's inflated.
2004 #if INCLUDE_RTM_OPT
2005     if (use_rtm) {
2006       Label L_regular_inflated_unlock;
2007       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2008       movptr(boxReg, Address(tmpReg, owner_offset));
2009       testptr(boxReg, boxReg);
2010       jccb(Assembler::notZero, L_regular_inflated_unlock);
2011       xend();
2012       jmpb(DONE_LABEL);
2013       bind(L_regular_inflated_unlock);
2014     }
2015 #endif
2016 
2017     // Despite our balanced locking property we still check that m->_owner == Self
2018     // as java routines or native JNI code called by this thread might
2019     // have released the lock.
2020     // Refer to the comments in synchronizer.cpp for how we might encode extra
2021     // state in _succ so we can avoid fetching EntryList|cxq.
2022     //
2023     // I'd like to add more cases in fast_lock() and fast_unlock() --
2024     // such as recursive enter and exit -- but we have to be wary of
2025     // I$ bloat, T$ effects and BP$ effects.
2026     //
2027     // If there's no contention try a 1-0 exit.  That is, exit without
2028     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2029     // we detect and recover from the race that the 1-0 exit admits.
2030     //
2031     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2032     // before it STs null into _owner, releasing the lock.  Updates
2033     // to data protected by the critical section must be visible before
2034     // we drop the lock (and thus before any other thread could acquire
2035     // the lock and observe the fields protected by the lock).
2036     // IA32's memory-model is SPO, so STs are ordered with respect to
2037     // each other and there's no need for an explicit barrier (fence).
2038     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2039 #ifndef _LP64
2040     get_thread (boxReg);
2041     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2042       // prefetchw [ebx + Offset(_owner)-2]
2043       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2044     }
2045 
2046     // Note that we could employ various encoding schemes to reduce
2047     // the number of loads below (currently 4) to just 2 or 3.
2048     // Refer to the comments in synchronizer.cpp.
2049     // In practice the chain of fetches doesn't seem to impact performance, however.
2050     xorptr(boxReg, boxReg);
2051     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2052        // Attempt to reduce branch density - AMD's branch predictor.
2053        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2054        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2055        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2056        jccb  (Assembler::notZero, DONE_LABEL);
2057        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2058        jmpb  (DONE_LABEL);
2059     } else {
2060        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2061        jccb  (Assembler::notZero, DONE_LABEL);
2062        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2063        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2064        jccb  (Assembler::notZero, CheckSucc);
2065        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2066        jmpb  (DONE_LABEL);
2067     }
2068 
2069     // The Following code fragment (EmitSync & 65536) improves the performance of
2070     // contended applications and contended synchronization microbenchmarks.
2071     // Unfortunately the emission of the code - even though not executed - causes regressions
2072     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2073     // with an equal number of never-executed NOPs results in the same regression.
2074     // We leave it off by default.
2075 
2076     if ((EmitSync & 65536) != 0) {
2077        Label LSuccess, LGoSlowPath ;
2078 
2079        bind  (CheckSucc);
2080 
2081        // Optional pre-test ... it's safe to elide this
2082        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2083        jccb(Assembler::zero, LGoSlowPath);
2084 
2085        // We have a classic Dekker-style idiom:
2086        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2087        // There are a number of ways to implement the barrier:
2088        // (1) lock:andl &m->_owner, 0
2089        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2090        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2091        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2092        // (2) If supported, an explicit MFENCE is appealing.
2093        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2094        //     particularly if the write-buffer is full as might be the case if
2095        //     if stores closely precede the fence or fence-equivalent instruction.
2096        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2097        //     as the situation has changed with Nehalem and Shanghai.
2098        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2099        //     The $lines underlying the top-of-stack should be in M-state.
2100        //     The locked add instruction is serializing, of course.
2101        // (4) Use xchg, which is serializing
2102        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2103        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2104        //     The integer condition codes will tell us if succ was 0.
2105        //     Since _succ and _owner should reside in the same $line and
2106        //     we just stored into _owner, it's likely that the $line
2107        //     remains in M-state for the lock:orl.
2108        //
2109        // We currently use (3), although it's likely that switching to (2)
2110        // is correct for the future.
2111 
2112        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2113        if (os::is_MP()) {
2114          lock(); addptr(Address(rsp, 0), 0);
2115        }
2116        // Ratify _succ remains non-null
2117        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2118        jccb  (Assembler::notZero, LSuccess);
2119 
2120        xorptr(boxReg, boxReg);                  // box is really EAX
2121        if (os::is_MP()) { lock(); }
2122        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2123        // There's no successor so we tried to regrab the lock with the
2124        // placeholder value. If that didn't work, then another thread
2125        // grabbed the lock so we're done (and exit was a success).
2126        jccb  (Assembler::notEqual, LSuccess);
2127        // Since we're low on registers we installed rsp as a placeholding in _owner.
2128        // Now install Self over rsp.  This is safe as we're transitioning from
2129        // non-null to non=null
2130        get_thread (boxReg);
2131        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2132        // Intentional fall-through into LGoSlowPath ...
2133 
2134        bind  (LGoSlowPath);
2135        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2136        jmpb  (DONE_LABEL);
2137 
2138        bind  (LSuccess);
2139        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2140        jmpb  (DONE_LABEL);
2141     }
2142 
2143     bind (Stacked);
2144     // It's not inflated and it's not recursively stack-locked and it's not biased.
2145     // It must be stack-locked.
2146     // Try to reset the header to displaced header.
2147     // The "box" value on the stack is stable, so we can reload
2148     // and be assured we observe the same value as above.
2149     movptr(tmpReg, Address(boxReg, 0));
2150     if (os::is_MP()) {
2151       lock();
2152     }
2153     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2154     // Intention fall-thru into DONE_LABEL
2155 
2156     // DONE_LABEL is a hot target - we'd really like to place it at the
2157     // start of cache line by padding with NOPs.
2158     // See the AMD and Intel software optimization manuals for the
2159     // most efficient "long" NOP encodings.
2160     // Unfortunately none of our alignment mechanisms suffice.
2161     if ((EmitSync & 65536) == 0) {
2162        bind (CheckSucc);
2163     }
2164 #else // _LP64
2165     // It's inflated
2166     if (EmitSync & 1024) {
2167       // Emit code to check that _owner == Self
2168       // We could fold the _owner test into subsequent code more efficiently
2169       // than using a stand-alone check, but since _owner checking is off by
2170       // default we don't bother. We also might consider predicating the
2171       // _owner==Self check on Xcheck:jni or running on a debug build.
2172       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2173       xorptr(boxReg, r15_thread);
2174     } else {
2175       xorptr(boxReg, boxReg);
2176     }
2177     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2178     jccb  (Assembler::notZero, DONE_LABEL);
2179     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2180     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2181     jccb  (Assembler::notZero, CheckSucc);
2182     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2183     jmpb  (DONE_LABEL);
2184 
2185     if ((EmitSync & 65536) == 0) {
2186       // Try to avoid passing control into the slow_path ...
2187       Label LSuccess, LGoSlowPath ;
2188       bind  (CheckSucc);
2189 
2190       // The following optional optimization can be elided if necessary
2191       // Effectively: if (succ == null) goto SlowPath
2192       // The code reduces the window for a race, however,
2193       // and thus benefits performance.
2194       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2195       jccb  (Assembler::zero, LGoSlowPath);
2196 
2197       xorptr(boxReg, boxReg);
2198       if ((EmitSync & 16) && os::is_MP()) {
2199         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2200       } else {
2201         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2202         if (os::is_MP()) {
2203           // Memory barrier/fence
2204           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2205           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2206           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2207           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2208           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2209           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2210           lock(); addl(Address(rsp, 0), 0);
2211         }
2212       }
2213       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2214       jccb  (Assembler::notZero, LSuccess);
2215 
2216       // Rare inopportune interleaving - race.
2217       // The successor vanished in the small window above.
2218       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2219       // We need to ensure progress and succession.
2220       // Try to reacquire the lock.
2221       // If that fails then the new owner is responsible for succession and this
2222       // thread needs to take no further action and can exit via the fast path (success).
2223       // If the re-acquire succeeds then pass control into the slow path.
2224       // As implemented, this latter mode is horrible because we generated more
2225       // coherence traffic on the lock *and* artifically extended the critical section
2226       // length while by virtue of passing control into the slow path.
2227 
2228       // box is really RAX -- the following CMPXCHG depends on that binding
2229       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2230       if (os::is_MP()) { lock(); }
2231       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2232       // There's no successor so we tried to regrab the lock.
2233       // If that didn't work, then another thread grabbed the
2234       // lock so we're done (and exit was a success).
2235       jccb  (Assembler::notEqual, LSuccess);
2236       // Intentional fall-through into slow-path
2237 
2238       bind  (LGoSlowPath);
2239       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2240       jmpb  (DONE_LABEL);
2241 
2242       bind  (LSuccess);
2243       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2244       jmpb  (DONE_LABEL);
2245     }
2246 
2247     bind  (Stacked);
2248     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2249     if (os::is_MP()) { lock(); }
2250     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2251 
2252     if (EmitSync & 65536) {
2253        bind (CheckSucc);
2254     }
2255 #endif
2256     bind(DONE_LABEL);
2257   }
2258 }
2259 #endif // COMPILER2
2260 
2261 void MacroAssembler::c2bool(Register x) {
2262   // implements x == 0 ? 0 : 1
2263   // note: must only look at least-significant byte of x
2264   //       since C-style booleans are stored in one byte
2265   //       only! (was bug)
2266   andl(x, 0xFF);
2267   setb(Assembler::notZero, x);
2268 }
2269 
2270 // Wouldn't need if AddressLiteral version had new name
2271 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2272   Assembler::call(L, rtype);
2273 }
2274 
2275 void MacroAssembler::call(Register entry) {
2276   Assembler::call(entry);
2277 }
2278 
2279 void MacroAssembler::call(AddressLiteral entry) {
2280   if (reachable(entry)) {
2281     Assembler::call_literal(entry.target(), entry.rspec());
2282   } else {
2283     lea(rscratch1, entry);
2284     Assembler::call(rscratch1);
2285   }
2286 }
2287 
2288 void MacroAssembler::ic_call(address entry, jint method_index) {
2289   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2290   movptr(rax, (intptr_t)Universe::non_oop_word());
2291   call(AddressLiteral(entry, rh));
2292 }
2293 
2294 // Implementation of call_VM versions
2295 
2296 void MacroAssembler::call_VM(Register oop_result,
2297                              address entry_point,
2298                              bool check_exceptions) {
2299   Label C, E;
2300   call(C, relocInfo::none);
2301   jmp(E);
2302 
2303   bind(C);
2304   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2305   ret(0);
2306 
2307   bind(E);
2308 }
2309 
2310 void MacroAssembler::call_VM(Register oop_result,
2311                              address entry_point,
2312                              Register arg_1,
2313                              bool check_exceptions) {
2314   Label C, E;
2315   call(C, relocInfo::none);
2316   jmp(E);
2317 
2318   bind(C);
2319   pass_arg1(this, arg_1);
2320   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2321   ret(0);
2322 
2323   bind(E);
2324 }
2325 
2326 void MacroAssembler::call_VM(Register oop_result,
2327                              address entry_point,
2328                              Register arg_1,
2329                              Register arg_2,
2330                              bool check_exceptions) {
2331   Label C, E;
2332   call(C, relocInfo::none);
2333   jmp(E);
2334 
2335   bind(C);
2336 
2337   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2338 
2339   pass_arg2(this, arg_2);
2340   pass_arg1(this, arg_1);
2341   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2342   ret(0);
2343 
2344   bind(E);
2345 }
2346 
2347 void MacroAssembler::call_VM(Register oop_result,
2348                              address entry_point,
2349                              Register arg_1,
2350                              Register arg_2,
2351                              Register arg_3,
2352                              bool check_exceptions) {
2353   Label C, E;
2354   call(C, relocInfo::none);
2355   jmp(E);
2356 
2357   bind(C);
2358 
2359   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2360   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2361   pass_arg3(this, arg_3);
2362 
2363   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2364   pass_arg2(this, arg_2);
2365 
2366   pass_arg1(this, arg_1);
2367   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2368   ret(0);
2369 
2370   bind(E);
2371 }
2372 
2373 void MacroAssembler::call_VM(Register oop_result,
2374                              Register last_java_sp,
2375                              address entry_point,
2376                              int number_of_arguments,
2377                              bool check_exceptions) {
2378   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2379   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2380 }
2381 
2382 void MacroAssembler::call_VM(Register oop_result,
2383                              Register last_java_sp,
2384                              address entry_point,
2385                              Register arg_1,
2386                              bool check_exceptions) {
2387   pass_arg1(this, arg_1);
2388   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2389 }
2390 
2391 void MacroAssembler::call_VM(Register oop_result,
2392                              Register last_java_sp,
2393                              address entry_point,
2394                              Register arg_1,
2395                              Register arg_2,
2396                              bool check_exceptions) {
2397 
2398   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2399   pass_arg2(this, arg_2);
2400   pass_arg1(this, arg_1);
2401   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2402 }
2403 
2404 void MacroAssembler::call_VM(Register oop_result,
2405                              Register last_java_sp,
2406                              address entry_point,
2407                              Register arg_1,
2408                              Register arg_2,
2409                              Register arg_3,
2410                              bool check_exceptions) {
2411   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2412   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2413   pass_arg3(this, arg_3);
2414   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2415   pass_arg2(this, arg_2);
2416   pass_arg1(this, arg_1);
2417   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2418 }
2419 
2420 void MacroAssembler::super_call_VM(Register oop_result,
2421                                    Register last_java_sp,
2422                                    address entry_point,
2423                                    int number_of_arguments,
2424                                    bool check_exceptions) {
2425   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2426   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2427 }
2428 
2429 void MacroAssembler::super_call_VM(Register oop_result,
2430                                    Register last_java_sp,
2431                                    address entry_point,
2432                                    Register arg_1,
2433                                    bool check_exceptions) {
2434   pass_arg1(this, arg_1);
2435   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2436 }
2437 
2438 void MacroAssembler::super_call_VM(Register oop_result,
2439                                    Register last_java_sp,
2440                                    address entry_point,
2441                                    Register arg_1,
2442                                    Register arg_2,
2443                                    bool check_exceptions) {
2444 
2445   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2446   pass_arg2(this, arg_2);
2447   pass_arg1(this, arg_1);
2448   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2449 }
2450 
2451 void MacroAssembler::super_call_VM(Register oop_result,
2452                                    Register last_java_sp,
2453                                    address entry_point,
2454                                    Register arg_1,
2455                                    Register arg_2,
2456                                    Register arg_3,
2457                                    bool check_exceptions) {
2458   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2459   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2460   pass_arg3(this, arg_3);
2461   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2462   pass_arg2(this, arg_2);
2463   pass_arg1(this, arg_1);
2464   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2465 }
2466 
2467 void MacroAssembler::call_VM_base(Register oop_result,
2468                                   Register java_thread,
2469                                   Register last_java_sp,
2470                                   address  entry_point,
2471                                   int      number_of_arguments,
2472                                   bool     check_exceptions) {
2473   // determine java_thread register
2474   if (!java_thread->is_valid()) {
2475 #ifdef _LP64
2476     java_thread = r15_thread;
2477 #else
2478     java_thread = rdi;
2479     get_thread(java_thread);
2480 #endif // LP64
2481   }
2482   // determine last_java_sp register
2483   if (!last_java_sp->is_valid()) {
2484     last_java_sp = rsp;
2485   }
2486   // debugging support
2487   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2488   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2489 #ifdef ASSERT
2490   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2491   // r12 is the heapbase.
2492   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2493 #endif // ASSERT
2494 
2495   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2496   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2497 
2498   // push java thread (becomes first argument of C function)
2499 
2500   NOT_LP64(push(java_thread); number_of_arguments++);
2501   LP64_ONLY(mov(c_rarg0, r15_thread));
2502 
2503   // set last Java frame before call
2504   assert(last_java_sp != rbp, "can't use ebp/rbp");
2505 
2506   // Only interpreter should have to set fp
2507   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2508 
2509   // do the call, remove parameters
2510   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2511 
2512   // restore the thread (cannot use the pushed argument since arguments
2513   // may be overwritten by C code generated by an optimizing compiler);
2514   // however can use the register value directly if it is callee saved.
2515   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2516     // rdi & rsi (also r15) are callee saved -> nothing to do
2517 #ifdef ASSERT
2518     guarantee(java_thread != rax, "change this code");
2519     push(rax);
2520     { Label L;
2521       get_thread(rax);
2522       cmpptr(java_thread, rax);
2523       jcc(Assembler::equal, L);
2524       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2525       bind(L);
2526     }
2527     pop(rax);
2528 #endif
2529   } else {
2530     get_thread(java_thread);
2531   }
2532   // reset last Java frame
2533   // Only interpreter should have to clear fp
2534   reset_last_Java_frame(java_thread, true, false);
2535 
2536    // C++ interp handles this in the interpreter
2537   check_and_handle_popframe(java_thread);
2538   check_and_handle_earlyret(java_thread);
2539 
2540   if (check_exceptions) {
2541     // check for pending exceptions (java_thread is set upon return)
2542     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2543 #ifndef _LP64
2544     jump_cc(Assembler::notEqual,
2545             RuntimeAddress(StubRoutines::forward_exception_entry()));
2546 #else
2547     // This used to conditionally jump to forward_exception however it is
2548     // possible if we relocate that the branch will not reach. So we must jump
2549     // around so we can always reach
2550 
2551     Label ok;
2552     jcc(Assembler::equal, ok);
2553     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2554     bind(ok);
2555 #endif // LP64
2556   }
2557 
2558   // get oop result if there is one and reset the value in the thread
2559   if (oop_result->is_valid()) {
2560     get_vm_result(oop_result, java_thread);
2561   }
2562 }
2563 
2564 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2565 
2566   // Calculate the value for last_Java_sp
2567   // somewhat subtle. call_VM does an intermediate call
2568   // which places a return address on the stack just under the
2569   // stack pointer as the user finsihed with it. This allows
2570   // use to retrieve last_Java_pc from last_Java_sp[-1].
2571   // On 32bit we then have to push additional args on the stack to accomplish
2572   // the actual requested call. On 64bit call_VM only can use register args
2573   // so the only extra space is the return address that call_VM created.
2574   // This hopefully explains the calculations here.
2575 
2576 #ifdef _LP64
2577   // We've pushed one address, correct last_Java_sp
2578   lea(rax, Address(rsp, wordSize));
2579 #else
2580   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2581 #endif // LP64
2582 
2583   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2584 
2585 }
2586 
2587 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2588   call_VM_leaf_base(entry_point, number_of_arguments);
2589 }
2590 
2591 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2592   pass_arg0(this, arg_0);
2593   call_VM_leaf(entry_point, 1);
2594 }
2595 
2596 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2597 
2598   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2599   pass_arg1(this, arg_1);
2600   pass_arg0(this, arg_0);
2601   call_VM_leaf(entry_point, 2);
2602 }
2603 
2604 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2605   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2606   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2607   pass_arg2(this, arg_2);
2608   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2609   pass_arg1(this, arg_1);
2610   pass_arg0(this, arg_0);
2611   call_VM_leaf(entry_point, 3);
2612 }
2613 
2614 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2615   pass_arg0(this, arg_0);
2616   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2617 }
2618 
2619 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2620 
2621   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2622   pass_arg1(this, arg_1);
2623   pass_arg0(this, arg_0);
2624   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2625 }
2626 
2627 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2628   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2629   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2630   pass_arg2(this, arg_2);
2631   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2632   pass_arg1(this, arg_1);
2633   pass_arg0(this, arg_0);
2634   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2635 }
2636 
2637 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2638   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2639   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2640   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2641   pass_arg3(this, arg_3);
2642   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2643   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2644   pass_arg2(this, arg_2);
2645   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2646   pass_arg1(this, arg_1);
2647   pass_arg0(this, arg_0);
2648   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2649 }
2650 
2651 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2652   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2653   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2654   verify_oop(oop_result, "broken oop in call_VM_base");
2655 }
2656 
2657 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2658   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2659   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2660 }
2661 
2662 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2663 }
2664 
2665 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2666 }
2667 
2668 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2669   if (reachable(src1)) {
2670     cmpl(as_Address(src1), imm);
2671   } else {
2672     lea(rscratch1, src1);
2673     cmpl(Address(rscratch1, 0), imm);
2674   }
2675 }
2676 
2677 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2678   assert(!src2.is_lval(), "use cmpptr");
2679   if (reachable(src2)) {
2680     cmpl(src1, as_Address(src2));
2681   } else {
2682     lea(rscratch1, src2);
2683     cmpl(src1, Address(rscratch1, 0));
2684   }
2685 }
2686 
2687 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2688   Assembler::cmpl(src1, imm);
2689 }
2690 
2691 void MacroAssembler::cmp32(Register src1, Address src2) {
2692   Assembler::cmpl(src1, src2);
2693 }
2694 
2695 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2696   ucomisd(opr1, opr2);
2697 
2698   Label L;
2699   if (unordered_is_less) {
2700     movl(dst, -1);
2701     jcc(Assembler::parity, L);
2702     jcc(Assembler::below , L);
2703     movl(dst, 0);
2704     jcc(Assembler::equal , L);
2705     increment(dst);
2706   } else { // unordered is greater
2707     movl(dst, 1);
2708     jcc(Assembler::parity, L);
2709     jcc(Assembler::above , L);
2710     movl(dst, 0);
2711     jcc(Assembler::equal , L);
2712     decrementl(dst);
2713   }
2714   bind(L);
2715 }
2716 
2717 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2718   ucomiss(opr1, opr2);
2719 
2720   Label L;
2721   if (unordered_is_less) {
2722     movl(dst, -1);
2723     jcc(Assembler::parity, L);
2724     jcc(Assembler::below , L);
2725     movl(dst, 0);
2726     jcc(Assembler::equal , L);
2727     increment(dst);
2728   } else { // unordered is greater
2729     movl(dst, 1);
2730     jcc(Assembler::parity, L);
2731     jcc(Assembler::above , L);
2732     movl(dst, 0);
2733     jcc(Assembler::equal , L);
2734     decrementl(dst);
2735   }
2736   bind(L);
2737 }
2738 
2739 
2740 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2741   if (reachable(src1)) {
2742     cmpb(as_Address(src1), imm);
2743   } else {
2744     lea(rscratch1, src1);
2745     cmpb(Address(rscratch1, 0), imm);
2746   }
2747 }
2748 
2749 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2750 #ifdef _LP64
2751   if (src2.is_lval()) {
2752     movptr(rscratch1, src2);
2753     Assembler::cmpq(src1, rscratch1);
2754   } else if (reachable(src2)) {
2755     cmpq(src1, as_Address(src2));
2756   } else {
2757     lea(rscratch1, src2);
2758     Assembler::cmpq(src1, Address(rscratch1, 0));
2759   }
2760 #else
2761   if (src2.is_lval()) {
2762     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2763   } else {
2764     cmpl(src1, as_Address(src2));
2765   }
2766 #endif // _LP64
2767 }
2768 
2769 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2770   assert(src2.is_lval(), "not a mem-mem compare");
2771 #ifdef _LP64
2772   // moves src2's literal address
2773   movptr(rscratch1, src2);
2774   Assembler::cmpq(src1, rscratch1);
2775 #else
2776   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2777 #endif // _LP64
2778 }
2779 
2780 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2781   if (reachable(adr)) {
2782     if (os::is_MP())
2783       lock();
2784     cmpxchgptr(reg, as_Address(adr));
2785   } else {
2786     lea(rscratch1, adr);
2787     if (os::is_MP())
2788       lock();
2789     cmpxchgptr(reg, Address(rscratch1, 0));
2790   }
2791 }
2792 
2793 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2794   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2795 }
2796 
2797 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2798   if (reachable(src)) {
2799     Assembler::comisd(dst, as_Address(src));
2800   } else {
2801     lea(rscratch1, src);
2802     Assembler::comisd(dst, Address(rscratch1, 0));
2803   }
2804 }
2805 
2806 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2807   if (reachable(src)) {
2808     Assembler::comiss(dst, as_Address(src));
2809   } else {
2810     lea(rscratch1, src);
2811     Assembler::comiss(dst, Address(rscratch1, 0));
2812   }
2813 }
2814 
2815 
2816 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2817   Condition negated_cond = negate_condition(cond);
2818   Label L;
2819   jcc(negated_cond, L);
2820   pushf(); // Preserve flags
2821   atomic_incl(counter_addr);
2822   popf();
2823   bind(L);
2824 }
2825 
2826 int MacroAssembler::corrected_idivl(Register reg) {
2827   // Full implementation of Java idiv and irem; checks for
2828   // special case as described in JVM spec., p.243 & p.271.
2829   // The function returns the (pc) offset of the idivl
2830   // instruction - may be needed for implicit exceptions.
2831   //
2832   //         normal case                           special case
2833   //
2834   // input : rax,: dividend                         min_int
2835   //         reg: divisor   (may not be rax,/rdx)   -1
2836   //
2837   // output: rax,: quotient  (= rax, idiv reg)       min_int
2838   //         rdx: remainder (= rax, irem reg)       0
2839   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2840   const int min_int = 0x80000000;
2841   Label normal_case, special_case;
2842 
2843   // check for special case
2844   cmpl(rax, min_int);
2845   jcc(Assembler::notEqual, normal_case);
2846   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2847   cmpl(reg, -1);
2848   jcc(Assembler::equal, special_case);
2849 
2850   // handle normal case
2851   bind(normal_case);
2852   cdql();
2853   int idivl_offset = offset();
2854   idivl(reg);
2855 
2856   // normal and special case exit
2857   bind(special_case);
2858 
2859   return idivl_offset;
2860 }
2861 
2862 
2863 
2864 void MacroAssembler::decrementl(Register reg, int value) {
2865   if (value == min_jint) {subl(reg, value) ; return; }
2866   if (value <  0) { incrementl(reg, -value); return; }
2867   if (value == 0) {                        ; return; }
2868   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2869   /* else */      { subl(reg, value)       ; return; }
2870 }
2871 
2872 void MacroAssembler::decrementl(Address dst, int value) {
2873   if (value == min_jint) {subl(dst, value) ; return; }
2874   if (value <  0) { incrementl(dst, -value); return; }
2875   if (value == 0) {                        ; return; }
2876   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2877   /* else */      { subl(dst, value)       ; return; }
2878 }
2879 
2880 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2881   assert (shift_value > 0, "illegal shift value");
2882   Label _is_positive;
2883   testl (reg, reg);
2884   jcc (Assembler::positive, _is_positive);
2885   int offset = (1 << shift_value) - 1 ;
2886 
2887   if (offset == 1) {
2888     incrementl(reg);
2889   } else {
2890     addl(reg, offset);
2891   }
2892 
2893   bind (_is_positive);
2894   sarl(reg, shift_value);
2895 }
2896 
2897 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2898   if (reachable(src)) {
2899     Assembler::divsd(dst, as_Address(src));
2900   } else {
2901     lea(rscratch1, src);
2902     Assembler::divsd(dst, Address(rscratch1, 0));
2903   }
2904 }
2905 
2906 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2907   if (reachable(src)) {
2908     Assembler::divss(dst, as_Address(src));
2909   } else {
2910     lea(rscratch1, src);
2911     Assembler::divss(dst, Address(rscratch1, 0));
2912   }
2913 }
2914 
2915 // !defined(COMPILER2) is because of stupid core builds
2916 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2917 void MacroAssembler::empty_FPU_stack() {
2918   if (VM_Version::supports_mmx()) {
2919     emms();
2920   } else {
2921     for (int i = 8; i-- > 0; ) ffree(i);
2922   }
2923 }
2924 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2925 
2926 
2927 // Defines obj, preserves var_size_in_bytes
2928 void MacroAssembler::eden_allocate(Register obj,
2929                                    Register var_size_in_bytes,
2930                                    int con_size_in_bytes,
2931                                    Register t1,
2932                                    Label& slow_case) {
2933   assert(obj == rax, "obj must be in rax, for cmpxchg");
2934   assert_different_registers(obj, var_size_in_bytes, t1);
2935   if (!Universe::heap()->supports_inline_contig_alloc()) {
2936     jmp(slow_case);
2937   } else {
2938     Register end = t1;
2939     Label retry;
2940     bind(retry);
2941     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2942     movptr(obj, heap_top);
2943     if (var_size_in_bytes == noreg) {
2944       lea(end, Address(obj, con_size_in_bytes));
2945     } else {
2946       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2947     }
2948     // if end < obj then we wrapped around => object too long => slow case
2949     cmpptr(end, obj);
2950     jcc(Assembler::below, slow_case);
2951     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2952     jcc(Assembler::above, slow_case);
2953     // Compare obj with the top addr, and if still equal, store the new top addr in
2954     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2955     // it otherwise. Use lock prefix for atomicity on MPs.
2956     locked_cmpxchgptr(end, heap_top);
2957     jcc(Assembler::notEqual, retry);
2958   }
2959 }
2960 
2961 void MacroAssembler::enter() {
2962   push(rbp);
2963   mov(rbp, rsp);
2964 }
2965 
2966 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2967 void MacroAssembler::fat_nop() {
2968   if (UseAddressNop) {
2969     addr_nop_5();
2970   } else {
2971     emit_int8(0x26); // es:
2972     emit_int8(0x2e); // cs:
2973     emit_int8(0x64); // fs:
2974     emit_int8(0x65); // gs:
2975     emit_int8((unsigned char)0x90);
2976   }
2977 }
2978 
2979 void MacroAssembler::fcmp(Register tmp) {
2980   fcmp(tmp, 1, true, true);
2981 }
2982 
2983 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2984   assert(!pop_right || pop_left, "usage error");
2985   if (VM_Version::supports_cmov()) {
2986     assert(tmp == noreg, "unneeded temp");
2987     if (pop_left) {
2988       fucomip(index);
2989     } else {
2990       fucomi(index);
2991     }
2992     if (pop_right) {
2993       fpop();
2994     }
2995   } else {
2996     assert(tmp != noreg, "need temp");
2997     if (pop_left) {
2998       if (pop_right) {
2999         fcompp();
3000       } else {
3001         fcomp(index);
3002       }
3003     } else {
3004       fcom(index);
3005     }
3006     // convert FPU condition into eflags condition via rax,
3007     save_rax(tmp);
3008     fwait(); fnstsw_ax();
3009     sahf();
3010     restore_rax(tmp);
3011   }
3012   // condition codes set as follows:
3013   //
3014   // CF (corresponds to C0) if x < y
3015   // PF (corresponds to C2) if unordered
3016   // ZF (corresponds to C3) if x = y
3017 }
3018 
3019 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3020   fcmp2int(dst, unordered_is_less, 1, true, true);
3021 }
3022 
3023 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3024   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3025   Label L;
3026   if (unordered_is_less) {
3027     movl(dst, -1);
3028     jcc(Assembler::parity, L);
3029     jcc(Assembler::below , L);
3030     movl(dst, 0);
3031     jcc(Assembler::equal , L);
3032     increment(dst);
3033   } else { // unordered is greater
3034     movl(dst, 1);
3035     jcc(Assembler::parity, L);
3036     jcc(Assembler::above , L);
3037     movl(dst, 0);
3038     jcc(Assembler::equal , L);
3039     decrementl(dst);
3040   }
3041   bind(L);
3042 }
3043 
3044 void MacroAssembler::fld_d(AddressLiteral src) {
3045   fld_d(as_Address(src));
3046 }
3047 
3048 void MacroAssembler::fld_s(AddressLiteral src) {
3049   fld_s(as_Address(src));
3050 }
3051 
3052 void MacroAssembler::fld_x(AddressLiteral src) {
3053   Assembler::fld_x(as_Address(src));
3054 }
3055 
3056 void MacroAssembler::fldcw(AddressLiteral src) {
3057   Assembler::fldcw(as_Address(src));
3058 }
3059 
3060 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3061   if (reachable(src)) {
3062     Assembler::mulpd(dst, as_Address(src));
3063   } else {
3064     lea(rscratch1, src);
3065     Assembler::mulpd(dst, Address(rscratch1, 0));
3066   }
3067 }
3068 
3069 void MacroAssembler::increase_precision() {
3070   subptr(rsp, BytesPerWord);
3071   fnstcw(Address(rsp, 0));
3072   movl(rax, Address(rsp, 0));
3073   orl(rax, 0x300);
3074   push(rax);
3075   fldcw(Address(rsp, 0));
3076   pop(rax);
3077 }
3078 
3079 void MacroAssembler::restore_precision() {
3080   fldcw(Address(rsp, 0));
3081   addptr(rsp, BytesPerWord);
3082 }
3083 
3084 void MacroAssembler::fpop() {
3085   ffree();
3086   fincstp();
3087 }
3088 
3089 void MacroAssembler::load_float(Address src) {
3090   if (UseSSE >= 1) {
3091     movflt(xmm0, src);
3092   } else {
3093     LP64_ONLY(ShouldNotReachHere());
3094     NOT_LP64(fld_s(src));
3095   }
3096 }
3097 
3098 void MacroAssembler::store_float(Address dst) {
3099   if (UseSSE >= 1) {
3100     movflt(dst, xmm0);
3101   } else {
3102     LP64_ONLY(ShouldNotReachHere());
3103     NOT_LP64(fstp_s(dst));
3104   }
3105 }
3106 
3107 void MacroAssembler::load_double(Address src) {
3108   if (UseSSE >= 2) {
3109     movdbl(xmm0, src);
3110   } else {
3111     LP64_ONLY(ShouldNotReachHere());
3112     NOT_LP64(fld_d(src));
3113   }
3114 }
3115 
3116 void MacroAssembler::store_double(Address dst) {
3117   if (UseSSE >= 2) {
3118     movdbl(dst, xmm0);
3119   } else {
3120     LP64_ONLY(ShouldNotReachHere());
3121     NOT_LP64(fstp_d(dst));
3122   }
3123 }
3124 
3125 void MacroAssembler::fremr(Register tmp) {
3126   save_rax(tmp);
3127   { Label L;
3128     bind(L);
3129     fprem();
3130     fwait(); fnstsw_ax();
3131 #ifdef _LP64
3132     testl(rax, 0x400);
3133     jcc(Assembler::notEqual, L);
3134 #else
3135     sahf();
3136     jcc(Assembler::parity, L);
3137 #endif // _LP64
3138   }
3139   restore_rax(tmp);
3140   // Result is in ST0.
3141   // Note: fxch & fpop to get rid of ST1
3142   // (otherwise FPU stack could overflow eventually)
3143   fxch(1);
3144   fpop();
3145 }
3146 
3147 
3148 void MacroAssembler::incrementl(AddressLiteral dst) {
3149   if (reachable(dst)) {
3150     incrementl(as_Address(dst));
3151   } else {
3152     lea(rscratch1, dst);
3153     incrementl(Address(rscratch1, 0));
3154   }
3155 }
3156 
3157 void MacroAssembler::incrementl(ArrayAddress dst) {
3158   incrementl(as_Address(dst));
3159 }
3160 
3161 void MacroAssembler::incrementl(Register reg, int value) {
3162   if (value == min_jint) {addl(reg, value) ; return; }
3163   if (value <  0) { decrementl(reg, -value); return; }
3164   if (value == 0) {                        ; return; }
3165   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3166   /* else */      { addl(reg, value)       ; return; }
3167 }
3168 
3169 void MacroAssembler::incrementl(Address dst, int value) {
3170   if (value == min_jint) {addl(dst, value) ; return; }
3171   if (value <  0) { decrementl(dst, -value); return; }
3172   if (value == 0) {                        ; return; }
3173   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3174   /* else */      { addl(dst, value)       ; return; }
3175 }
3176 
3177 void MacroAssembler::jump(AddressLiteral dst) {
3178   if (reachable(dst)) {
3179     jmp_literal(dst.target(), dst.rspec());
3180   } else {
3181     lea(rscratch1, dst);
3182     jmp(rscratch1);
3183   }
3184 }
3185 
3186 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3187   if (reachable(dst)) {
3188     InstructionMark im(this);
3189     relocate(dst.reloc());
3190     const int short_size = 2;
3191     const int long_size = 6;
3192     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3193     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3194       // 0111 tttn #8-bit disp
3195       emit_int8(0x70 | cc);
3196       emit_int8((offs - short_size) & 0xFF);
3197     } else {
3198       // 0000 1111 1000 tttn #32-bit disp
3199       emit_int8(0x0F);
3200       emit_int8((unsigned char)(0x80 | cc));
3201       emit_int32(offs - long_size);
3202     }
3203   } else {
3204 #ifdef ASSERT
3205     warning("reversing conditional branch");
3206 #endif /* ASSERT */
3207     Label skip;
3208     jccb(reverse[cc], skip);
3209     lea(rscratch1, dst);
3210     Assembler::jmp(rscratch1);
3211     bind(skip);
3212   }
3213 }
3214 
3215 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3216   if (reachable(src)) {
3217     Assembler::ldmxcsr(as_Address(src));
3218   } else {
3219     lea(rscratch1, src);
3220     Assembler::ldmxcsr(Address(rscratch1, 0));
3221   }
3222 }
3223 
3224 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3225   int off;
3226   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3227     off = offset();
3228     movsbl(dst, src); // movsxb
3229   } else {
3230     off = load_unsigned_byte(dst, src);
3231     shll(dst, 24);
3232     sarl(dst, 24);
3233   }
3234   return off;
3235 }
3236 
3237 // Note: load_signed_short used to be called load_signed_word.
3238 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3239 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3240 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3241 int MacroAssembler::load_signed_short(Register dst, Address src) {
3242   int off;
3243   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3244     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3245     // version but this is what 64bit has always done. This seems to imply
3246     // that users are only using 32bits worth.
3247     off = offset();
3248     movswl(dst, src); // movsxw
3249   } else {
3250     off = load_unsigned_short(dst, src);
3251     shll(dst, 16);
3252     sarl(dst, 16);
3253   }
3254   return off;
3255 }
3256 
3257 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3258   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3259   // and "3.9 Partial Register Penalties", p. 22).
3260   int off;
3261   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3262     off = offset();
3263     movzbl(dst, src); // movzxb
3264   } else {
3265     xorl(dst, dst);
3266     off = offset();
3267     movb(dst, src);
3268   }
3269   return off;
3270 }
3271 
3272 // Note: load_unsigned_short used to be called load_unsigned_word.
3273 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3274   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3275   // and "3.9 Partial Register Penalties", p. 22).
3276   int off;
3277   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3278     off = offset();
3279     movzwl(dst, src); // movzxw
3280   } else {
3281     xorl(dst, dst);
3282     off = offset();
3283     movw(dst, src);
3284   }
3285   return off;
3286 }
3287 
3288 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3289   switch (size_in_bytes) {
3290 #ifndef _LP64
3291   case  8:
3292     assert(dst2 != noreg, "second dest register required");
3293     movl(dst,  src);
3294     movl(dst2, src.plus_disp(BytesPerInt));
3295     break;
3296 #else
3297   case  8:  movq(dst, src); break;
3298 #endif
3299   case  4:  movl(dst, src); break;
3300   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3301   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3302   default:  ShouldNotReachHere();
3303   }
3304 }
3305 
3306 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3307   switch (size_in_bytes) {
3308 #ifndef _LP64
3309   case  8:
3310     assert(src2 != noreg, "second source register required");
3311     movl(dst,                        src);
3312     movl(dst.plus_disp(BytesPerInt), src2);
3313     break;
3314 #else
3315   case  8:  movq(dst, src); break;
3316 #endif
3317   case  4:  movl(dst, src); break;
3318   case  2:  movw(dst, src); break;
3319   case  1:  movb(dst, src); break;
3320   default:  ShouldNotReachHere();
3321   }
3322 }
3323 
3324 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3325   if (reachable(dst)) {
3326     movl(as_Address(dst), src);
3327   } else {
3328     lea(rscratch1, dst);
3329     movl(Address(rscratch1, 0), src);
3330   }
3331 }
3332 
3333 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3334   if (reachable(src)) {
3335     movl(dst, as_Address(src));
3336   } else {
3337     lea(rscratch1, src);
3338     movl(dst, Address(rscratch1, 0));
3339   }
3340 }
3341 
3342 // C++ bool manipulation
3343 
3344 void MacroAssembler::movbool(Register dst, Address src) {
3345   if(sizeof(bool) == 1)
3346     movb(dst, src);
3347   else if(sizeof(bool) == 2)
3348     movw(dst, src);
3349   else if(sizeof(bool) == 4)
3350     movl(dst, src);
3351   else
3352     // unsupported
3353     ShouldNotReachHere();
3354 }
3355 
3356 void MacroAssembler::movbool(Address dst, bool boolconst) {
3357   if(sizeof(bool) == 1)
3358     movb(dst, (int) boolconst);
3359   else if(sizeof(bool) == 2)
3360     movw(dst, (int) boolconst);
3361   else if(sizeof(bool) == 4)
3362     movl(dst, (int) boolconst);
3363   else
3364     // unsupported
3365     ShouldNotReachHere();
3366 }
3367 
3368 void MacroAssembler::movbool(Address dst, Register src) {
3369   if(sizeof(bool) == 1)
3370     movb(dst, src);
3371   else if(sizeof(bool) == 2)
3372     movw(dst, src);
3373   else if(sizeof(bool) == 4)
3374     movl(dst, src);
3375   else
3376     // unsupported
3377     ShouldNotReachHere();
3378 }
3379 
3380 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3381   movb(as_Address(dst), src);
3382 }
3383 
3384 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3385   if (reachable(src)) {
3386     movdl(dst, as_Address(src));
3387   } else {
3388     lea(rscratch1, src);
3389     movdl(dst, Address(rscratch1, 0));
3390   }
3391 }
3392 
3393 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3394   if (reachable(src)) {
3395     movq(dst, as_Address(src));
3396   } else {
3397     lea(rscratch1, src);
3398     movq(dst, Address(rscratch1, 0));
3399   }
3400 }
3401 
3402 void MacroAssembler::setvectmask(Register dst, Register src) {
3403   Assembler::movl(dst, 1);
3404   Assembler::shlxl(dst, dst, src);
3405   Assembler::decl(dst);
3406   Assembler::kmovdl(k1, dst);
3407   Assembler::movl(dst, src);
3408 }
3409 
3410 void MacroAssembler::restorevectmask() {
3411   Assembler::knotwl(k1, k0);
3412 }
3413 
3414 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3415   if (reachable(src)) {
3416     if (UseXmmLoadAndClearUpper) {
3417       movsd (dst, as_Address(src));
3418     } else {
3419       movlpd(dst, as_Address(src));
3420     }
3421   } else {
3422     lea(rscratch1, src);
3423     if (UseXmmLoadAndClearUpper) {
3424       movsd (dst, Address(rscratch1, 0));
3425     } else {
3426       movlpd(dst, Address(rscratch1, 0));
3427     }
3428   }
3429 }
3430 
3431 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3432   if (reachable(src)) {
3433     movss(dst, as_Address(src));
3434   } else {
3435     lea(rscratch1, src);
3436     movss(dst, Address(rscratch1, 0));
3437   }
3438 }
3439 
3440 void MacroAssembler::movptr(Register dst, Register src) {
3441   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3442 }
3443 
3444 void MacroAssembler::movptr(Register dst, Address src) {
3445   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3446 }
3447 
3448 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3449 void MacroAssembler::movptr(Register dst, intptr_t src) {
3450   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3451 }
3452 
3453 void MacroAssembler::movptr(Address dst, Register src) {
3454   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3455 }
3456 
3457 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3458   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3459     Assembler::vextractf32x4(dst, src, 0);
3460   } else {
3461     Assembler::movdqu(dst, src);
3462   }
3463 }
3464 
3465 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3466   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3467     Assembler::vinsertf32x4(dst, dst, src, 0);
3468   } else {
3469     Assembler::movdqu(dst, src);
3470   }
3471 }
3472 
3473 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3474   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3475     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3476   } else {
3477     Assembler::movdqu(dst, src);
3478   }
3479 }
3480 
3481 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3482   if (reachable(src)) {
3483     movdqu(dst, as_Address(src));
3484   } else {
3485     lea(rscratch1, src);
3486     movdqu(dst, Address(rscratch1, 0));
3487   }
3488 }
3489 
3490 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3491   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3492     vextractf64x4_low(dst, src);
3493   } else {
3494     Assembler::vmovdqu(dst, src);
3495   }
3496 }
3497 
3498 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3499   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3500     vinsertf64x4_low(dst, src);
3501   } else {
3502     Assembler::vmovdqu(dst, src);
3503   }
3504 }
3505 
3506 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3507   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3508     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3509   }
3510   else {
3511     Assembler::vmovdqu(dst, src);
3512   }
3513 }
3514 
3515 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3516   if (reachable(src)) {
3517     vmovdqu(dst, as_Address(src));
3518   }
3519   else {
3520     lea(rscratch1, src);
3521     vmovdqu(dst, Address(rscratch1, 0));
3522   }
3523 }
3524 
3525 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3526   if (reachable(src)) {
3527     Assembler::movdqa(dst, as_Address(src));
3528   } else {
3529     lea(rscratch1, src);
3530     Assembler::movdqa(dst, Address(rscratch1, 0));
3531   }
3532 }
3533 
3534 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3535   if (reachable(src)) {
3536     Assembler::movsd(dst, as_Address(src));
3537   } else {
3538     lea(rscratch1, src);
3539     Assembler::movsd(dst, Address(rscratch1, 0));
3540   }
3541 }
3542 
3543 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3544   if (reachable(src)) {
3545     Assembler::movss(dst, as_Address(src));
3546   } else {
3547     lea(rscratch1, src);
3548     Assembler::movss(dst, Address(rscratch1, 0));
3549   }
3550 }
3551 
3552 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3553   if (reachable(src)) {
3554     Assembler::mulsd(dst, as_Address(src));
3555   } else {
3556     lea(rscratch1, src);
3557     Assembler::mulsd(dst, Address(rscratch1, 0));
3558   }
3559 }
3560 
3561 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3562   if (reachable(src)) {
3563     Assembler::mulss(dst, as_Address(src));
3564   } else {
3565     lea(rscratch1, src);
3566     Assembler::mulss(dst, Address(rscratch1, 0));
3567   }
3568 }
3569 
3570 void MacroAssembler::null_check(Register reg, int offset) {
3571   if (needs_explicit_null_check(offset)) {
3572     // provoke OS NULL exception if reg = NULL by
3573     // accessing M[reg] w/o changing any (non-CC) registers
3574     // NOTE: cmpl is plenty here to provoke a segv
3575     cmpptr(rax, Address(reg, 0));
3576     // Note: should probably use testl(rax, Address(reg, 0));
3577     //       may be shorter code (however, this version of
3578     //       testl needs to be implemented first)
3579   } else {
3580     // nothing to do, (later) access of M[reg + offset]
3581     // will provoke OS NULL exception if reg = NULL
3582   }
3583 }
3584 
3585 void MacroAssembler::os_breakpoint() {
3586   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3587   // (e.g., MSVC can't call ps() otherwise)
3588   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3589 }
3590 
3591 #ifdef _LP64
3592 #define XSTATE_BV 0x200
3593 #endif
3594 
3595 void MacroAssembler::pop_CPU_state() {
3596   pop_FPU_state();
3597   pop_IU_state();
3598 }
3599 
3600 void MacroAssembler::pop_FPU_state() {
3601 #ifndef _LP64
3602   frstor(Address(rsp, 0));
3603 #else
3604   fxrstor(Address(rsp, 0));
3605 #endif
3606   addptr(rsp, FPUStateSizeInWords * wordSize);
3607 }
3608 
3609 void MacroAssembler::pop_IU_state() {
3610   popa();
3611   LP64_ONLY(addq(rsp, 8));
3612   popf();
3613 }
3614 
3615 // Save Integer and Float state
3616 // Warning: Stack must be 16 byte aligned (64bit)
3617 void MacroAssembler::push_CPU_state() {
3618   push_IU_state();
3619   push_FPU_state();
3620 }
3621 
3622 void MacroAssembler::push_FPU_state() {
3623   subptr(rsp, FPUStateSizeInWords * wordSize);
3624 #ifndef _LP64
3625   fnsave(Address(rsp, 0));
3626   fwait();
3627 #else
3628   fxsave(Address(rsp, 0));
3629 #endif // LP64
3630 }
3631 
3632 void MacroAssembler::push_IU_state() {
3633   // Push flags first because pusha kills them
3634   pushf();
3635   // Make sure rsp stays 16-byte aligned
3636   LP64_ONLY(subq(rsp, 8));
3637   pusha();
3638 }
3639 
3640 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3641   // determine java_thread register
3642   if (!java_thread->is_valid()) {
3643     java_thread = rdi;
3644     get_thread(java_thread);
3645   }
3646   // we must set sp to zero to clear frame
3647   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3648   if (clear_fp) {
3649     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3650   }
3651 
3652   if (clear_pc)
3653     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3654 
3655 }
3656 
3657 void MacroAssembler::restore_rax(Register tmp) {
3658   if (tmp == noreg) pop(rax);
3659   else if (tmp != rax) mov(rax, tmp);
3660 }
3661 
3662 void MacroAssembler::round_to(Register reg, int modulus) {
3663   addptr(reg, modulus - 1);
3664   andptr(reg, -modulus);
3665 }
3666 
3667 void MacroAssembler::save_rax(Register tmp) {
3668   if (tmp == noreg) push(rax);
3669   else if (tmp != rax) mov(tmp, rax);
3670 }
3671 
3672 // Write serialization page so VM thread can do a pseudo remote membar.
3673 // We use the current thread pointer to calculate a thread specific
3674 // offset to write to within the page. This minimizes bus traffic
3675 // due to cache line collision.
3676 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3677   movl(tmp, thread);
3678   shrl(tmp, os::get_serialize_page_shift_count());
3679   andl(tmp, (os::vm_page_size() - sizeof(int)));
3680 
3681   Address index(noreg, tmp, Address::times_1);
3682   ExternalAddress page(os::get_memory_serialize_page());
3683 
3684   // Size of store must match masking code above
3685   movl(as_Address(ArrayAddress(page, index)), tmp);
3686 }
3687 
3688 // Calls to C land
3689 //
3690 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3691 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3692 // has to be reset to 0. This is required to allow proper stack traversal.
3693 void MacroAssembler::set_last_Java_frame(Register java_thread,
3694                                          Register last_java_sp,
3695                                          Register last_java_fp,
3696                                          address  last_java_pc) {
3697   // determine java_thread register
3698   if (!java_thread->is_valid()) {
3699     java_thread = rdi;
3700     get_thread(java_thread);
3701   }
3702   // determine last_java_sp register
3703   if (!last_java_sp->is_valid()) {
3704     last_java_sp = rsp;
3705   }
3706 
3707   // last_java_fp is optional
3708 
3709   if (last_java_fp->is_valid()) {
3710     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3711   }
3712 
3713   // last_java_pc is optional
3714 
3715   if (last_java_pc != NULL) {
3716     lea(Address(java_thread,
3717                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3718         InternalAddress(last_java_pc));
3719 
3720   }
3721   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3722 }
3723 
3724 void MacroAssembler::shlptr(Register dst, int imm8) {
3725   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3726 }
3727 
3728 void MacroAssembler::shrptr(Register dst, int imm8) {
3729   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3730 }
3731 
3732 void MacroAssembler::sign_extend_byte(Register reg) {
3733   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3734     movsbl(reg, reg); // movsxb
3735   } else {
3736     shll(reg, 24);
3737     sarl(reg, 24);
3738   }
3739 }
3740 
3741 void MacroAssembler::sign_extend_short(Register reg) {
3742   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3743     movswl(reg, reg); // movsxw
3744   } else {
3745     shll(reg, 16);
3746     sarl(reg, 16);
3747   }
3748 }
3749 
3750 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3751   assert(reachable(src), "Address should be reachable");
3752   testl(dst, as_Address(src));
3753 }
3754 
3755 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3756   int dst_enc = dst->encoding();
3757   int src_enc = src->encoding();
3758   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3759     Assembler::pcmpeqb(dst, src);
3760   } else if ((dst_enc < 16) && (src_enc < 16)) {
3761     Assembler::pcmpeqb(dst, src);
3762   } else if (src_enc < 16) {
3763     subptr(rsp, 64);
3764     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3765     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3766     Assembler::pcmpeqb(xmm0, src);
3767     movdqu(dst, xmm0);
3768     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3769     addptr(rsp, 64);
3770   } else if (dst_enc < 16) {
3771     subptr(rsp, 64);
3772     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3773     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3774     Assembler::pcmpeqb(dst, xmm0);
3775     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3776     addptr(rsp, 64);
3777   } else {
3778     subptr(rsp, 64);
3779     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3780     subptr(rsp, 64);
3781     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3782     movdqu(xmm0, src);
3783     movdqu(xmm1, dst);
3784     Assembler::pcmpeqb(xmm1, xmm0);
3785     movdqu(dst, xmm1);
3786     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3787     addptr(rsp, 64);
3788     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3789     addptr(rsp, 64);
3790   }
3791 }
3792 
3793 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3794   int dst_enc = dst->encoding();
3795   int src_enc = src->encoding();
3796   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3797     Assembler::pcmpeqw(dst, src);
3798   } else if ((dst_enc < 16) && (src_enc < 16)) {
3799     Assembler::pcmpeqw(dst, src);
3800   } else if (src_enc < 16) {
3801     subptr(rsp, 64);
3802     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3803     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3804     Assembler::pcmpeqw(xmm0, src);
3805     movdqu(dst, xmm0);
3806     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3807     addptr(rsp, 64);
3808   } else if (dst_enc < 16) {
3809     subptr(rsp, 64);
3810     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3811     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3812     Assembler::pcmpeqw(dst, xmm0);
3813     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3814     addptr(rsp, 64);
3815   } else {
3816     subptr(rsp, 64);
3817     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3818     subptr(rsp, 64);
3819     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3820     movdqu(xmm0, src);
3821     movdqu(xmm1, dst);
3822     Assembler::pcmpeqw(xmm1, xmm0);
3823     movdqu(dst, xmm1);
3824     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3825     addptr(rsp, 64);
3826     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3827     addptr(rsp, 64);
3828   }
3829 }
3830 
3831 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3832   int dst_enc = dst->encoding();
3833   if (dst_enc < 16) {
3834     Assembler::pcmpestri(dst, src, imm8);
3835   } else {
3836     subptr(rsp, 64);
3837     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3838     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3839     Assembler::pcmpestri(xmm0, src, imm8);
3840     movdqu(dst, xmm0);
3841     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3842     addptr(rsp, 64);
3843   }
3844 }
3845 
3846 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3847   int dst_enc = dst->encoding();
3848   int src_enc = src->encoding();
3849   if ((dst_enc < 16) && (src_enc < 16)) {
3850     Assembler::pcmpestri(dst, src, imm8);
3851   } else if (src_enc < 16) {
3852     subptr(rsp, 64);
3853     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3854     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3855     Assembler::pcmpestri(xmm0, src, imm8);
3856     movdqu(dst, xmm0);
3857     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3858     addptr(rsp, 64);
3859   } else if (dst_enc < 16) {
3860     subptr(rsp, 64);
3861     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3862     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3863     Assembler::pcmpestri(dst, xmm0, imm8);
3864     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3865     addptr(rsp, 64);
3866   } else {
3867     subptr(rsp, 64);
3868     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3869     subptr(rsp, 64);
3870     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3871     movdqu(xmm0, src);
3872     movdqu(xmm1, dst);
3873     Assembler::pcmpestri(xmm1, xmm0, imm8);
3874     movdqu(dst, xmm1);
3875     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3876     addptr(rsp, 64);
3877     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3878     addptr(rsp, 64);
3879   }
3880 }
3881 
3882 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3883   int dst_enc = dst->encoding();
3884   int src_enc = src->encoding();
3885   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3886     Assembler::pmovzxbw(dst, src);
3887   } else if ((dst_enc < 16) && (src_enc < 16)) {
3888     Assembler::pmovzxbw(dst, src);
3889   } else if (src_enc < 16) {
3890     subptr(rsp, 64);
3891     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3892     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3893     Assembler::pmovzxbw(xmm0, src);
3894     movdqu(dst, xmm0);
3895     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3896     addptr(rsp, 64);
3897   } else if (dst_enc < 16) {
3898     subptr(rsp, 64);
3899     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3900     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3901     Assembler::pmovzxbw(dst, xmm0);
3902     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3903     addptr(rsp, 64);
3904   } else {
3905     subptr(rsp, 64);
3906     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3907     subptr(rsp, 64);
3908     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3909     movdqu(xmm0, src);
3910     movdqu(xmm1, dst);
3911     Assembler::pmovzxbw(xmm1, xmm0);
3912     movdqu(dst, xmm1);
3913     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3914     addptr(rsp, 64);
3915     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3916     addptr(rsp, 64);
3917   }
3918 }
3919 
3920 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3921   int dst_enc = dst->encoding();
3922   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3923     Assembler::pmovzxbw(dst, src);
3924   } else if (dst_enc < 16) {
3925     Assembler::pmovzxbw(dst, src);
3926   } else {
3927     subptr(rsp, 64);
3928     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3929     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3930     Assembler::pmovzxbw(xmm0, src);
3931     movdqu(dst, xmm0);
3932     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3933     addptr(rsp, 64);
3934   }
3935 }
3936 
3937 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3938   int src_enc = src->encoding();
3939   if (src_enc < 16) {
3940     Assembler::pmovmskb(dst, src);
3941   } else {
3942     subptr(rsp, 64);
3943     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3944     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3945     Assembler::pmovmskb(dst, xmm0);
3946     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3947     addptr(rsp, 64);
3948   }
3949 }
3950 
3951 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3952   int dst_enc = dst->encoding();
3953   int src_enc = src->encoding();
3954   if ((dst_enc < 16) && (src_enc < 16)) {
3955     Assembler::ptest(dst, src);
3956   } else if (src_enc < 16) {
3957     subptr(rsp, 64);
3958     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3959     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3960     Assembler::ptest(xmm0, src);
3961     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3962     addptr(rsp, 64);
3963   } else if (dst_enc < 16) {
3964     subptr(rsp, 64);
3965     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3966     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3967     Assembler::ptest(dst, xmm0);
3968     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3969     addptr(rsp, 64);
3970   } else {
3971     subptr(rsp, 64);
3972     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3973     subptr(rsp, 64);
3974     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3975     movdqu(xmm0, src);
3976     movdqu(xmm1, dst);
3977     Assembler::ptest(xmm1, xmm0);
3978     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3979     addptr(rsp, 64);
3980     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3981     addptr(rsp, 64);
3982   }
3983 }
3984 
3985 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3986   if (reachable(src)) {
3987     Assembler::sqrtsd(dst, as_Address(src));
3988   } else {
3989     lea(rscratch1, src);
3990     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3991   }
3992 }
3993 
3994 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3995   if (reachable(src)) {
3996     Assembler::sqrtss(dst, as_Address(src));
3997   } else {
3998     lea(rscratch1, src);
3999     Assembler::sqrtss(dst, Address(rscratch1, 0));
4000   }
4001 }
4002 
4003 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
4004   if (reachable(src)) {
4005     Assembler::subsd(dst, as_Address(src));
4006   } else {
4007     lea(rscratch1, src);
4008     Assembler::subsd(dst, Address(rscratch1, 0));
4009   }
4010 }
4011 
4012 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4013   if (reachable(src)) {
4014     Assembler::subss(dst, as_Address(src));
4015   } else {
4016     lea(rscratch1, src);
4017     Assembler::subss(dst, Address(rscratch1, 0));
4018   }
4019 }
4020 
4021 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4022   if (reachable(src)) {
4023     Assembler::ucomisd(dst, as_Address(src));
4024   } else {
4025     lea(rscratch1, src);
4026     Assembler::ucomisd(dst, Address(rscratch1, 0));
4027   }
4028 }
4029 
4030 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4031   if (reachable(src)) {
4032     Assembler::ucomiss(dst, as_Address(src));
4033   } else {
4034     lea(rscratch1, src);
4035     Assembler::ucomiss(dst, Address(rscratch1, 0));
4036   }
4037 }
4038 
4039 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4040   // Used in sign-bit flipping with aligned address.
4041   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4042   if (reachable(src)) {
4043     Assembler::xorpd(dst, as_Address(src));
4044   } else {
4045     lea(rscratch1, src);
4046     Assembler::xorpd(dst, Address(rscratch1, 0));
4047   }
4048 }
4049 
4050 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4051   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4052     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4053   }
4054   else {
4055     Assembler::xorpd(dst, src);
4056   }
4057 }
4058 
4059 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4060   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4061     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4062   } else {
4063     Assembler::xorps(dst, src);
4064   }
4065 }
4066 
4067 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4068   // Used in sign-bit flipping with aligned address.
4069   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4070   if (reachable(src)) {
4071     Assembler::xorps(dst, as_Address(src));
4072   } else {
4073     lea(rscratch1, src);
4074     Assembler::xorps(dst, Address(rscratch1, 0));
4075   }
4076 }
4077 
4078 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4079   // Used in sign-bit flipping with aligned address.
4080   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4081   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4082   if (reachable(src)) {
4083     Assembler::pshufb(dst, as_Address(src));
4084   } else {
4085     lea(rscratch1, src);
4086     Assembler::pshufb(dst, Address(rscratch1, 0));
4087   }
4088 }
4089 
4090 // AVX 3-operands instructions
4091 
4092 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4093   if (reachable(src)) {
4094     vaddsd(dst, nds, as_Address(src));
4095   } else {
4096     lea(rscratch1, src);
4097     vaddsd(dst, nds, Address(rscratch1, 0));
4098   }
4099 }
4100 
4101 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4102   if (reachable(src)) {
4103     vaddss(dst, nds, as_Address(src));
4104   } else {
4105     lea(rscratch1, src);
4106     vaddss(dst, nds, Address(rscratch1, 0));
4107   }
4108 }
4109 
4110 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4111   int dst_enc = dst->encoding();
4112   int nds_enc = nds->encoding();
4113   int src_enc = src->encoding();
4114   if ((dst_enc < 16) && (nds_enc < 16)) {
4115     vandps(dst, nds, negate_field, vector_len);
4116   } else if ((src_enc < 16) && (dst_enc < 16)) {
4117     movss(src, nds);
4118     vandps(dst, src, negate_field, vector_len);
4119   } else if (src_enc < 16) {
4120     movss(src, nds);
4121     vandps(src, src, negate_field, vector_len);
4122     movss(dst, src);
4123   } else if (dst_enc < 16) {
4124     movdqu(src, xmm0);
4125     movss(xmm0, nds);
4126     vandps(dst, xmm0, negate_field, vector_len);
4127     movdqu(xmm0, src);
4128   } else if (nds_enc < 16) {
4129     movdqu(src, xmm0);
4130     vandps(xmm0, nds, negate_field, vector_len);
4131     movss(dst, xmm0);
4132     movdqu(xmm0, src);
4133   } else {
4134     movdqu(src, xmm0);
4135     movss(xmm0, nds);
4136     vandps(xmm0, xmm0, negate_field, vector_len);
4137     movss(dst, xmm0);
4138     movdqu(xmm0, src);
4139   }
4140 }
4141 
4142 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4143   int dst_enc = dst->encoding();
4144   int nds_enc = nds->encoding();
4145   int src_enc = src->encoding();
4146   if ((dst_enc < 16) && (nds_enc < 16)) {
4147     vandpd(dst, nds, negate_field, vector_len);
4148   } else if ((src_enc < 16) && (dst_enc < 16)) {
4149     movsd(src, nds);
4150     vandpd(dst, src, negate_field, vector_len);
4151   } else if (src_enc < 16) {
4152     movsd(src, nds);
4153     vandpd(src, src, negate_field, vector_len);
4154     movsd(dst, src);
4155   } else if (dst_enc < 16) {
4156     movdqu(src, xmm0);
4157     movsd(xmm0, nds);
4158     vandpd(dst, xmm0, negate_field, vector_len);
4159     movdqu(xmm0, src);
4160   } else if (nds_enc < 16) {
4161     movdqu(src, xmm0);
4162     vandpd(xmm0, nds, negate_field, vector_len);
4163     movsd(dst, xmm0);
4164     movdqu(xmm0, src);
4165   } else {
4166     movdqu(src, xmm0);
4167     movsd(xmm0, nds);
4168     vandpd(xmm0, xmm0, negate_field, vector_len);
4169     movsd(dst, xmm0);
4170     movdqu(xmm0, src);
4171   }
4172 }
4173 
4174 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4175   int dst_enc = dst->encoding();
4176   int nds_enc = nds->encoding();
4177   int src_enc = src->encoding();
4178   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4179     Assembler::vpaddb(dst, nds, src, vector_len);
4180   } else if ((dst_enc < 16) && (src_enc < 16)) {
4181     Assembler::vpaddb(dst, dst, src, vector_len);
4182   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4183     // use nds as scratch for src
4184     evmovdqul(nds, src, Assembler::AVX_512bit);
4185     Assembler::vpaddb(dst, dst, nds, vector_len);
4186   } else if ((src_enc < 16) && (nds_enc < 16)) {
4187     // use nds as scratch for dst
4188     evmovdqul(nds, dst, Assembler::AVX_512bit);
4189     Assembler::vpaddb(nds, nds, src, vector_len);
4190     evmovdqul(dst, nds, Assembler::AVX_512bit);
4191   } else if (dst_enc < 16) {
4192     // use nds as scatch for xmm0 to hold src
4193     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4194     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4195     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4196     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4197   } else {
4198     // worse case scenario, all regs are in the upper bank
4199     subptr(rsp, 64);
4200     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4201     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4202     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4203     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4204     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4205     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4206     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4207     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4208     addptr(rsp, 64);
4209   }
4210 }
4211 
4212 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4213   int dst_enc = dst->encoding();
4214   int nds_enc = nds->encoding();
4215   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4216     Assembler::vpaddb(dst, nds, src, vector_len);
4217   } else if (dst_enc < 16) {
4218     Assembler::vpaddb(dst, dst, src, vector_len);
4219   } else if (nds_enc < 16) {
4220     // implies dst_enc in upper bank with src as scratch
4221     evmovdqul(nds, dst, Assembler::AVX_512bit);
4222     Assembler::vpaddb(nds, nds, src, vector_len);
4223     evmovdqul(dst, nds, Assembler::AVX_512bit);
4224   } else {
4225     // worse case scenario, all regs in upper bank
4226     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4227     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4228     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4229     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4230   }
4231 }
4232 
4233 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4234   int dst_enc = dst->encoding();
4235   int nds_enc = nds->encoding();
4236   int src_enc = src->encoding();
4237   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4238     Assembler::vpaddw(dst, nds, src, vector_len);
4239   } else if ((dst_enc < 16) && (src_enc < 16)) {
4240     Assembler::vpaddw(dst, dst, src, vector_len);
4241   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4242     // use nds as scratch for src
4243     evmovdqul(nds, src, Assembler::AVX_512bit);
4244     Assembler::vpaddw(dst, dst, nds, vector_len);
4245   } else if ((src_enc < 16) && (nds_enc < 16)) {
4246     // use nds as scratch for dst
4247     evmovdqul(nds, dst, Assembler::AVX_512bit);
4248     Assembler::vpaddw(nds, nds, src, vector_len);
4249     evmovdqul(dst, nds, Assembler::AVX_512bit);
4250   } else if (dst_enc < 16) {
4251     // use nds as scatch for xmm0 to hold src
4252     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4253     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4254     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4255     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4256   } else {
4257     // worse case scenario, all regs are in the upper bank
4258     subptr(rsp, 64);
4259     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4260     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4261     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4262     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4263     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4264     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4265     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4266     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4267     addptr(rsp, 64);
4268   }
4269 }
4270 
4271 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4272   int dst_enc = dst->encoding();
4273   int nds_enc = nds->encoding();
4274   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4275     Assembler::vpaddw(dst, nds, src, vector_len);
4276   } else if (dst_enc < 16) {
4277     Assembler::vpaddw(dst, dst, src, vector_len);
4278   } else if (nds_enc < 16) {
4279     // implies dst_enc in upper bank with src as scratch
4280     evmovdqul(nds, dst, Assembler::AVX_512bit);
4281     Assembler::vpaddw(nds, nds, src, vector_len);
4282     evmovdqul(dst, nds, Assembler::AVX_512bit);
4283   } else {
4284     // worse case scenario, all regs in upper bank
4285     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4286     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4287     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4288     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4289   }
4290 }
4291 
4292 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4293   int dst_enc = dst->encoding();
4294   int src_enc = src->encoding();
4295   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4296     Assembler::vpbroadcastw(dst, src);
4297   } else if ((dst_enc < 16) && (src_enc < 16)) {
4298     Assembler::vpbroadcastw(dst, src);
4299   } else if (src_enc < 16) {
4300     subptr(rsp, 64);
4301     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4302     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4303     Assembler::vpbroadcastw(xmm0, src);
4304     movdqu(dst, xmm0);
4305     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4306     addptr(rsp, 64);
4307   } else if (dst_enc < 16) {
4308     subptr(rsp, 64);
4309     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4310     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4311     Assembler::vpbroadcastw(dst, xmm0);
4312     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4313     addptr(rsp, 64);
4314   } else {
4315     subptr(rsp, 64);
4316     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4317     subptr(rsp, 64);
4318     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4319     movdqu(xmm0, src);
4320     movdqu(xmm1, dst);
4321     Assembler::vpbroadcastw(xmm1, xmm0);
4322     movdqu(dst, xmm1);
4323     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4324     addptr(rsp, 64);
4325     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4326     addptr(rsp, 64);
4327   }
4328 }
4329 
4330 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4331   int dst_enc = dst->encoding();
4332   int nds_enc = nds->encoding();
4333   int src_enc = src->encoding();
4334   assert(dst_enc == nds_enc, "");
4335   if ((dst_enc < 16) && (src_enc < 16)) {
4336     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4337   } else if (src_enc < 16) {
4338     subptr(rsp, 64);
4339     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4340     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4341     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4342     movdqu(dst, xmm0);
4343     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4344     addptr(rsp, 64);
4345   } else if (dst_enc < 16) {
4346     subptr(rsp, 64);
4347     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4348     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4349     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4350     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4351     addptr(rsp, 64);
4352   } else {
4353     subptr(rsp, 64);
4354     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4355     subptr(rsp, 64);
4356     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4357     movdqu(xmm0, src);
4358     movdqu(xmm1, dst);
4359     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4360     movdqu(dst, xmm1);
4361     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4362     addptr(rsp, 64);
4363     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4364     addptr(rsp, 64);
4365   }
4366 }
4367 
4368 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4369   int dst_enc = dst->encoding();
4370   int nds_enc = nds->encoding();
4371   int src_enc = src->encoding();
4372   assert(dst_enc == nds_enc, "");
4373   if ((dst_enc < 16) && (src_enc < 16)) {
4374     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4375   } else if (src_enc < 16) {
4376     subptr(rsp, 64);
4377     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4378     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4379     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4380     movdqu(dst, xmm0);
4381     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4382     addptr(rsp, 64);
4383   } else if (dst_enc < 16) {
4384     subptr(rsp, 64);
4385     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4386     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4387     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4388     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4389     addptr(rsp, 64);
4390   } else {
4391     subptr(rsp, 64);
4392     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4393     subptr(rsp, 64);
4394     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4395     movdqu(xmm0, src);
4396     movdqu(xmm1, dst);
4397     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4398     movdqu(dst, xmm1);
4399     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4400     addptr(rsp, 64);
4401     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4402     addptr(rsp, 64);
4403   }
4404 }
4405 
4406 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4407   int dst_enc = dst->encoding();
4408   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4409     Assembler::vpmovzxbw(dst, src, vector_len);
4410   } else if (dst_enc < 16) {
4411     Assembler::vpmovzxbw(dst, src, vector_len);
4412   } else {
4413     subptr(rsp, 64);
4414     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4415     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4416     Assembler::vpmovzxbw(xmm0, src, vector_len);
4417     movdqu(dst, xmm0);
4418     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4419     addptr(rsp, 64);
4420   }
4421 }
4422 
4423 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4424   int src_enc = src->encoding();
4425   if (src_enc < 16) {
4426     Assembler::vpmovmskb(dst, src);
4427   } else {
4428     subptr(rsp, 64);
4429     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4430     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4431     Assembler::vpmovmskb(dst, xmm0);
4432     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4433     addptr(rsp, 64);
4434   }
4435 }
4436 
4437 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4438   int dst_enc = dst->encoding();
4439   int nds_enc = nds->encoding();
4440   int src_enc = src->encoding();
4441   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4442     Assembler::vpmullw(dst, nds, src, vector_len);
4443   } else if ((dst_enc < 16) && (src_enc < 16)) {
4444     Assembler::vpmullw(dst, dst, src, vector_len);
4445   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4446     // use nds as scratch for src
4447     evmovdqul(nds, src, Assembler::AVX_512bit);
4448     Assembler::vpmullw(dst, dst, nds, vector_len);
4449   } else if ((src_enc < 16) && (nds_enc < 16)) {
4450     // use nds as scratch for dst
4451     evmovdqul(nds, dst, Assembler::AVX_512bit);
4452     Assembler::vpmullw(nds, nds, src, vector_len);
4453     evmovdqul(dst, nds, Assembler::AVX_512bit);
4454   } else if (dst_enc < 16) {
4455     // use nds as scatch for xmm0 to hold src
4456     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4457     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4458     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4459     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4460   } else {
4461     // worse case scenario, all regs are in the upper bank
4462     subptr(rsp, 64);
4463     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4464     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4465     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4466     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4467     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4468     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4469     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4470     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4471     addptr(rsp, 64);
4472   }
4473 }
4474 
4475 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4476   int dst_enc = dst->encoding();
4477   int nds_enc = nds->encoding();
4478   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4479     Assembler::vpmullw(dst, nds, src, vector_len);
4480   } else if (dst_enc < 16) {
4481     Assembler::vpmullw(dst, dst, src, vector_len);
4482   } else if (nds_enc < 16) {
4483     // implies dst_enc in upper bank with src as scratch
4484     evmovdqul(nds, dst, Assembler::AVX_512bit);
4485     Assembler::vpmullw(nds, nds, src, vector_len);
4486     evmovdqul(dst, nds, Assembler::AVX_512bit);
4487   } else {
4488     // worse case scenario, all regs in upper bank
4489     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4490     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4491     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4492     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4493   }
4494 }
4495 
4496 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4497   int dst_enc = dst->encoding();
4498   int nds_enc = nds->encoding();
4499   int src_enc = src->encoding();
4500   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4501     Assembler::vpsubb(dst, nds, src, vector_len);
4502   } else if ((dst_enc < 16) && (src_enc < 16)) {
4503     Assembler::vpsubb(dst, dst, src, vector_len);
4504   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4505     // use nds as scratch for src
4506     evmovdqul(nds, src, Assembler::AVX_512bit);
4507     Assembler::vpsubb(dst, dst, nds, vector_len);
4508   } else if ((src_enc < 16) && (nds_enc < 16)) {
4509     // use nds as scratch for dst
4510     evmovdqul(nds, dst, Assembler::AVX_512bit);
4511     Assembler::vpsubb(nds, nds, src, vector_len);
4512     evmovdqul(dst, nds, Assembler::AVX_512bit);
4513   } else if (dst_enc < 16) {
4514     // use nds as scatch for xmm0 to hold src
4515     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4516     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4517     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4518     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4519   } else {
4520     // worse case scenario, all regs are in the upper bank
4521     subptr(rsp, 64);
4522     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4523     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4524     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4525     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4526     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4527     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4528     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4529     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4530     addptr(rsp, 64);
4531   }
4532 }
4533 
4534 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4535   int dst_enc = dst->encoding();
4536   int nds_enc = nds->encoding();
4537   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4538     Assembler::vpsubb(dst, nds, src, vector_len);
4539   } else if (dst_enc < 16) {
4540     Assembler::vpsubb(dst, dst, src, vector_len);
4541   } else if (nds_enc < 16) {
4542     // implies dst_enc in upper bank with src as scratch
4543     evmovdqul(nds, dst, Assembler::AVX_512bit);
4544     Assembler::vpsubb(nds, nds, src, vector_len);
4545     evmovdqul(dst, nds, Assembler::AVX_512bit);
4546   } else {
4547     // worse case scenario, all regs in upper bank
4548     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4549     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4550     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4551     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4552   }
4553 }
4554 
4555 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4556   int dst_enc = dst->encoding();
4557   int nds_enc = nds->encoding();
4558   int src_enc = src->encoding();
4559   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4560     Assembler::vpsubw(dst, nds, src, vector_len);
4561   } else if ((dst_enc < 16) && (src_enc < 16)) {
4562     Assembler::vpsubw(dst, dst, src, vector_len);
4563   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4564     // use nds as scratch for src
4565     evmovdqul(nds, src, Assembler::AVX_512bit);
4566     Assembler::vpsubw(dst, dst, nds, vector_len);
4567   } else if ((src_enc < 16) && (nds_enc < 16)) {
4568     // use nds as scratch for dst
4569     evmovdqul(nds, dst, Assembler::AVX_512bit);
4570     Assembler::vpsubw(nds, nds, src, vector_len);
4571     evmovdqul(dst, nds, Assembler::AVX_512bit);
4572   } else if (dst_enc < 16) {
4573     // use nds as scatch for xmm0 to hold src
4574     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4575     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4576     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4577     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4578   } else {
4579     // worse case scenario, all regs are in the upper bank
4580     subptr(rsp, 64);
4581     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4582     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4583     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4584     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4585     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4586     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4587     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4588     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4589     addptr(rsp, 64);
4590   }
4591 }
4592 
4593 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4594   int dst_enc = dst->encoding();
4595   int nds_enc = nds->encoding();
4596   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4597     Assembler::vpsubw(dst, nds, src, vector_len);
4598   } else if (dst_enc < 16) {
4599     Assembler::vpsubw(dst, dst, src, vector_len);
4600   } else if (nds_enc < 16) {
4601     // implies dst_enc in upper bank with src as scratch
4602     evmovdqul(nds, dst, Assembler::AVX_512bit);
4603     Assembler::vpsubw(nds, nds, src, vector_len);
4604     evmovdqul(dst, nds, Assembler::AVX_512bit);
4605   } else {
4606     // worse case scenario, all regs in upper bank
4607     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4608     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4609     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4610     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4611   }
4612 }
4613 
4614 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4615   int dst_enc = dst->encoding();
4616   int nds_enc = nds->encoding();
4617   int shift_enc = shift->encoding();
4618   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4619     Assembler::vpsraw(dst, nds, shift, vector_len);
4620   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4621     Assembler::vpsraw(dst, dst, shift, vector_len);
4622   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4623     // use nds_enc as scratch with shift
4624     evmovdqul(nds, shift, Assembler::AVX_512bit);
4625     Assembler::vpsraw(dst, dst, nds, vector_len);
4626   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4627     // use nds as scratch with dst
4628     evmovdqul(nds, dst, Assembler::AVX_512bit);
4629     Assembler::vpsraw(nds, nds, shift, vector_len);
4630     evmovdqul(dst, nds, Assembler::AVX_512bit);
4631   } else if (dst_enc < 16) {
4632     // use nds to save a copy of xmm0 and hold shift
4633     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4634     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4635     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4636     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4637   } else if (nds_enc < 16) {
4638     // use nds as dest as temps
4639     evmovdqul(nds, dst, Assembler::AVX_512bit);
4640     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4641     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4642     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4643     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4644     evmovdqul(dst, nds, Assembler::AVX_512bit);
4645   } else {
4646     // worse case scenario, all regs are in the upper bank
4647     subptr(rsp, 64);
4648     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4649     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4650     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4651     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4652     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4653     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4654     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4655     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4656     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4657     addptr(rsp, 64);
4658   }
4659 }
4660 
4661 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4662   int dst_enc = dst->encoding();
4663   int nds_enc = nds->encoding();
4664   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4665     Assembler::vpsraw(dst, nds, shift, vector_len);
4666   } else if (dst_enc < 16) {
4667     Assembler::vpsraw(dst, dst, shift, vector_len);
4668   } else if (nds_enc < 16) {
4669     // use nds as scratch
4670     evmovdqul(nds, dst, Assembler::AVX_512bit);
4671     Assembler::vpsraw(nds, nds, shift, vector_len);
4672     evmovdqul(dst, nds, Assembler::AVX_512bit);
4673   } else {
4674     // use nds as scratch for xmm0
4675     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4676     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4677     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4678     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4679   }
4680 }
4681 
4682 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4683   int dst_enc = dst->encoding();
4684   int nds_enc = nds->encoding();
4685   int shift_enc = shift->encoding();
4686   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4687     Assembler::vpsrlw(dst, nds, shift, vector_len);
4688   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4689     Assembler::vpsrlw(dst, dst, shift, vector_len);
4690   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4691     // use nds_enc as scratch with shift
4692     evmovdqul(nds, shift, Assembler::AVX_512bit);
4693     Assembler::vpsrlw(dst, dst, nds, vector_len);
4694   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4695     // use nds as scratch with dst
4696     evmovdqul(nds, dst, Assembler::AVX_512bit);
4697     Assembler::vpsrlw(nds, nds, shift, vector_len);
4698     evmovdqul(dst, nds, Assembler::AVX_512bit);
4699   } else if (dst_enc < 16) {
4700     // use nds to save a copy of xmm0 and hold shift
4701     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4702     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4703     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4704     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4705   } else if (nds_enc < 16) {
4706     // use nds as dest as temps
4707     evmovdqul(nds, dst, Assembler::AVX_512bit);
4708     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4709     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4710     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4711     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4712     evmovdqul(dst, nds, Assembler::AVX_512bit);
4713   } else {
4714     // worse case scenario, all regs are in the upper bank
4715     subptr(rsp, 64);
4716     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4717     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4718     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4719     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4720     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4721     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4722     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4723     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4724     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4725     addptr(rsp, 64);
4726   }
4727 }
4728 
4729 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4730   int dst_enc = dst->encoding();
4731   int nds_enc = nds->encoding();
4732   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4733     Assembler::vpsrlw(dst, nds, shift, vector_len);
4734   } else if (dst_enc < 16) {
4735     Assembler::vpsrlw(dst, dst, shift, vector_len);
4736   } else if (nds_enc < 16) {
4737     // use nds as scratch
4738     evmovdqul(nds, dst, Assembler::AVX_512bit);
4739     Assembler::vpsrlw(nds, nds, shift, vector_len);
4740     evmovdqul(dst, nds, Assembler::AVX_512bit);
4741   } else {
4742     // use nds as scratch for xmm0
4743     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4744     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4745     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4746     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4747   }
4748 }
4749 
4750 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4751   int dst_enc = dst->encoding();
4752   int nds_enc = nds->encoding();
4753   int shift_enc = shift->encoding();
4754   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4755     Assembler::vpsllw(dst, nds, shift, vector_len);
4756   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4757     Assembler::vpsllw(dst, dst, shift, vector_len);
4758   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4759     // use nds_enc as scratch with shift
4760     evmovdqul(nds, shift, Assembler::AVX_512bit);
4761     Assembler::vpsllw(dst, dst, nds, vector_len);
4762   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4763     // use nds as scratch with dst
4764     evmovdqul(nds, dst, Assembler::AVX_512bit);
4765     Assembler::vpsllw(nds, nds, shift, vector_len);
4766     evmovdqul(dst, nds, Assembler::AVX_512bit);
4767   } else if (dst_enc < 16) {
4768     // use nds to save a copy of xmm0 and hold shift
4769     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4770     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4771     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4772     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4773   } else if (nds_enc < 16) {
4774     // use nds as dest as temps
4775     evmovdqul(nds, dst, Assembler::AVX_512bit);
4776     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4777     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4778     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4779     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4780     evmovdqul(dst, nds, Assembler::AVX_512bit);
4781   } else {
4782     // worse case scenario, all regs are in the upper bank
4783     subptr(rsp, 64);
4784     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4785     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4786     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4787     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4788     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4789     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4790     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4791     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4792     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4793     addptr(rsp, 64);
4794   }
4795 }
4796 
4797 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4798   int dst_enc = dst->encoding();
4799   int nds_enc = nds->encoding();
4800   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4801     Assembler::vpsllw(dst, nds, shift, vector_len);
4802   } else if (dst_enc < 16) {
4803     Assembler::vpsllw(dst, dst, shift, vector_len);
4804   } else if (nds_enc < 16) {
4805     // use nds as scratch
4806     evmovdqul(nds, dst, Assembler::AVX_512bit);
4807     Assembler::vpsllw(nds, nds, shift, vector_len);
4808     evmovdqul(dst, nds, Assembler::AVX_512bit);
4809   } else {
4810     // use nds as scratch for xmm0
4811     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4812     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4813     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4814     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4815   }
4816 }
4817 
4818 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4819   int dst_enc = dst->encoding();
4820   int src_enc = src->encoding();
4821   if ((dst_enc < 16) && (src_enc < 16)) {
4822     Assembler::vptest(dst, src);
4823   } else if (src_enc < 16) {
4824     subptr(rsp, 64);
4825     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4826     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4827     Assembler::vptest(xmm0, src);
4828     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4829     addptr(rsp, 64);
4830   } else if (dst_enc < 16) {
4831     subptr(rsp, 64);
4832     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4833     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4834     Assembler::vptest(dst, xmm0);
4835     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4836     addptr(rsp, 64);
4837   } else {
4838     subptr(rsp, 64);
4839     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4840     subptr(rsp, 64);
4841     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4842     movdqu(xmm0, src);
4843     movdqu(xmm1, dst);
4844     Assembler::vptest(xmm1, xmm0);
4845     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4846     addptr(rsp, 64);
4847     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4848     addptr(rsp, 64);
4849   }
4850 }
4851 
4852 // This instruction exists within macros, ergo we cannot control its input
4853 // when emitted through those patterns.
4854 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4855   if (VM_Version::supports_avx512nobw()) {
4856     int dst_enc = dst->encoding();
4857     int src_enc = src->encoding();
4858     if (dst_enc == src_enc) {
4859       if (dst_enc < 16) {
4860         Assembler::punpcklbw(dst, src);
4861       } else {
4862         subptr(rsp, 64);
4863         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4864         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4865         Assembler::punpcklbw(xmm0, xmm0);
4866         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4867         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4868         addptr(rsp, 64);
4869       }
4870     } else {
4871       if ((src_enc < 16) && (dst_enc < 16)) {
4872         Assembler::punpcklbw(dst, src);
4873       } else if (src_enc < 16) {
4874         subptr(rsp, 64);
4875         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4876         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4877         Assembler::punpcklbw(xmm0, src);
4878         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4879         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4880         addptr(rsp, 64);
4881       } else if (dst_enc < 16) {
4882         subptr(rsp, 64);
4883         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4884         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4885         Assembler::punpcklbw(dst, xmm0);
4886         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4887         addptr(rsp, 64);
4888       } else {
4889         subptr(rsp, 64);
4890         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4891         subptr(rsp, 64);
4892         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4893         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4894         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4895         Assembler::punpcklbw(xmm0, xmm1);
4896         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4897         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4898         addptr(rsp, 64);
4899         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4900         addptr(rsp, 64);
4901       }
4902     }
4903   } else {
4904     Assembler::punpcklbw(dst, src);
4905   }
4906 }
4907 
4908 // This instruction exists within macros, ergo we cannot control its input
4909 // when emitted through those patterns.
4910 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4911   if (VM_Version::supports_avx512nobw()) {
4912     int dst_enc = dst->encoding();
4913     int src_enc = src->encoding();
4914     if (dst_enc == src_enc) {
4915       if (dst_enc < 16) {
4916         Assembler::pshuflw(dst, src, mode);
4917       } else {
4918         subptr(rsp, 64);
4919         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4920         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4921         Assembler::pshuflw(xmm0, xmm0, mode);
4922         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4923         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4924         addptr(rsp, 64);
4925       }
4926     } else {
4927       if ((src_enc < 16) && (dst_enc < 16)) {
4928         Assembler::pshuflw(dst, src, mode);
4929       } else if (src_enc < 16) {
4930         subptr(rsp, 64);
4931         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4932         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4933         Assembler::pshuflw(xmm0, src, mode);
4934         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4935         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4936         addptr(rsp, 64);
4937       } else if (dst_enc < 16) {
4938         subptr(rsp, 64);
4939         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4940         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4941         Assembler::pshuflw(dst, xmm0, mode);
4942         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4943         addptr(rsp, 64);
4944       } else {
4945         subptr(rsp, 64);
4946         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4947         subptr(rsp, 64);
4948         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4949         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4950         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4951         Assembler::pshuflw(xmm0, xmm1, mode);
4952         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4953         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4954         addptr(rsp, 64);
4955         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4956         addptr(rsp, 64);
4957       }
4958     }
4959   } else {
4960     Assembler::pshuflw(dst, src, mode);
4961   }
4962 }
4963 
4964 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4965   if (reachable(src)) {
4966     vandpd(dst, nds, as_Address(src), vector_len);
4967   } else {
4968     lea(rscratch1, src);
4969     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
4970   }
4971 }
4972 
4973 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4974   if (reachable(src)) {
4975     vandps(dst, nds, as_Address(src), vector_len);
4976   } else {
4977     lea(rscratch1, src);
4978     vandps(dst, nds, Address(rscratch1, 0), vector_len);
4979   }
4980 }
4981 
4982 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4983   if (reachable(src)) {
4984     vdivsd(dst, nds, as_Address(src));
4985   } else {
4986     lea(rscratch1, src);
4987     vdivsd(dst, nds, Address(rscratch1, 0));
4988   }
4989 }
4990 
4991 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4992   if (reachable(src)) {
4993     vdivss(dst, nds, as_Address(src));
4994   } else {
4995     lea(rscratch1, src);
4996     vdivss(dst, nds, Address(rscratch1, 0));
4997   }
4998 }
4999 
5000 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5001   if (reachable(src)) {
5002     vmulsd(dst, nds, as_Address(src));
5003   } else {
5004     lea(rscratch1, src);
5005     vmulsd(dst, nds, Address(rscratch1, 0));
5006   }
5007 }
5008 
5009 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5010   if (reachable(src)) {
5011     vmulss(dst, nds, as_Address(src));
5012   } else {
5013     lea(rscratch1, src);
5014     vmulss(dst, nds, Address(rscratch1, 0));
5015   }
5016 }
5017 
5018 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5019   if (reachable(src)) {
5020     vsubsd(dst, nds, as_Address(src));
5021   } else {
5022     lea(rscratch1, src);
5023     vsubsd(dst, nds, Address(rscratch1, 0));
5024   }
5025 }
5026 
5027 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5028   if (reachable(src)) {
5029     vsubss(dst, nds, as_Address(src));
5030   } else {
5031     lea(rscratch1, src);
5032     vsubss(dst, nds, Address(rscratch1, 0));
5033   }
5034 }
5035 
5036 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5037   int nds_enc = nds->encoding();
5038   int dst_enc = dst->encoding();
5039   bool dst_upper_bank = (dst_enc > 15);
5040   bool nds_upper_bank = (nds_enc > 15);
5041   if (VM_Version::supports_avx512novl() &&
5042       (nds_upper_bank || dst_upper_bank)) {
5043     if (dst_upper_bank) {
5044       subptr(rsp, 64);
5045       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5046       movflt(xmm0, nds);
5047       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5048       movflt(dst, xmm0);
5049       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5050       addptr(rsp, 64);
5051     } else {
5052       movflt(dst, nds);
5053       vxorps(dst, dst, src, Assembler::AVX_128bit);
5054     }
5055   } else {
5056     vxorps(dst, nds, src, Assembler::AVX_128bit);
5057   }
5058 }
5059 
5060 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5061   int nds_enc = nds->encoding();
5062   int dst_enc = dst->encoding();
5063   bool dst_upper_bank = (dst_enc > 15);
5064   bool nds_upper_bank = (nds_enc > 15);
5065   if (VM_Version::supports_avx512novl() &&
5066       (nds_upper_bank || dst_upper_bank)) {
5067     if (dst_upper_bank) {
5068       subptr(rsp, 64);
5069       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5070       movdbl(xmm0, nds);
5071       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5072       movdbl(dst, xmm0);
5073       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5074       addptr(rsp, 64);
5075     } else {
5076       movdbl(dst, nds);
5077       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5078     }
5079   } else {
5080     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5081   }
5082 }
5083 
5084 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5085   if (reachable(src)) {
5086     vxorpd(dst, nds, as_Address(src), vector_len);
5087   } else {
5088     lea(rscratch1, src);
5089     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5090   }
5091 }
5092 
5093 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5094   if (reachable(src)) {
5095     vxorps(dst, nds, as_Address(src), vector_len);
5096   } else {
5097     lea(rscratch1, src);
5098     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5099   }
5100 }
5101 
5102 
5103 //////////////////////////////////////////////////////////////////////////////////
5104 #if INCLUDE_ALL_GCS
5105 
5106 void MacroAssembler::g1_write_barrier_pre(Register obj,
5107                                           Register pre_val,
5108                                           Register thread,
5109                                           Register tmp,
5110                                           bool tosca_live,
5111                                           bool expand_call) {
5112 
5113   // If expand_call is true then we expand the call_VM_leaf macro
5114   // directly to skip generating the check by
5115   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
5116 
5117 #ifdef _LP64
5118   assert(thread == r15_thread, "must be");
5119 #endif // _LP64
5120 
5121   Label done;
5122   Label runtime;
5123 
5124   assert(pre_val != noreg, "check this code");
5125 
5126   if (obj != noreg) {
5127     assert_different_registers(obj, pre_val, tmp);
5128     assert(pre_val != rax, "check this code");
5129   }
5130 
5131   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5132                                        SATBMarkQueue::byte_offset_of_active()));
5133   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5134                                        SATBMarkQueue::byte_offset_of_index()));
5135   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5136                                        SATBMarkQueue::byte_offset_of_buf()));
5137 
5138 
5139   // Is marking active?
5140   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
5141     cmpl(in_progress, 0);
5142   } else {
5143     assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
5144     cmpb(in_progress, 0);
5145   }
5146   jcc(Assembler::equal, done);
5147 
5148   // Do we need to load the previous value?
5149   if (obj != noreg) {
5150     load_heap_oop(pre_val, Address(obj, 0));
5151   }
5152 
5153   // Is the previous value null?
5154   cmpptr(pre_val, (int32_t) NULL_WORD);
5155   jcc(Assembler::equal, done);
5156 
5157   // Can we store original value in the thread's buffer?
5158   // Is index == 0?
5159   // (The index field is typed as size_t.)
5160 
5161   movptr(tmp, index);                   // tmp := *index_adr
5162   cmpptr(tmp, 0);                       // tmp == 0?
5163   jcc(Assembler::equal, runtime);       // If yes, goto runtime
5164 
5165   subptr(tmp, wordSize);                // tmp := tmp - wordSize
5166   movptr(index, tmp);                   // *index_adr := tmp
5167   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
5168 
5169   // Record the previous value
5170   movptr(Address(tmp, 0), pre_val);
5171   jmp(done);
5172 
5173   bind(runtime);
5174   // save the live input values
5175   if(tosca_live) push(rax);
5176 
5177   if (obj != noreg && obj != rax)
5178     push(obj);
5179 
5180   if (pre_val != rax)
5181     push(pre_val);
5182 
5183   // Calling the runtime using the regular call_VM_leaf mechanism generates
5184   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
5185   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
5186   //
5187   // If we care generating the pre-barrier without a frame (e.g. in the
5188   // intrinsified Reference.get() routine) then ebp might be pointing to
5189   // the caller frame and so this check will most likely fail at runtime.
5190   //
5191   // Expanding the call directly bypasses the generation of the check.
5192   // So when we do not have have a full interpreter frame on the stack
5193   // expand_call should be passed true.
5194 
5195   NOT_LP64( push(thread); )
5196 
5197   if (expand_call) {
5198     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
5199     pass_arg1(this, thread);
5200     pass_arg0(this, pre_val);
5201     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
5202   } else {
5203     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
5204   }
5205 
5206   NOT_LP64( pop(thread); )
5207 
5208   // save the live input values
5209   if (pre_val != rax)
5210     pop(pre_val);
5211 
5212   if (obj != noreg && obj != rax)
5213     pop(obj);
5214 
5215   if(tosca_live) pop(rax);
5216 
5217   bind(done);
5218 }
5219 
5220 void MacroAssembler::g1_write_barrier_post(Register store_addr,
5221                                            Register new_val,
5222                                            Register thread,
5223                                            Register tmp,
5224                                            Register tmp2) {
5225 #ifdef _LP64
5226   assert(thread == r15_thread, "must be");
5227 #endif // _LP64
5228 
5229   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5230                                        DirtyCardQueue::byte_offset_of_index()));
5231   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5232                                        DirtyCardQueue::byte_offset_of_buf()));
5233 
5234   CardTableModRefBS* ct =
5235     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
5236   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5237 
5238   Label done;
5239   Label runtime;
5240 
5241   // Does store cross heap regions?
5242 
5243   movptr(tmp, store_addr);
5244   xorptr(tmp, new_val);
5245   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
5246   jcc(Assembler::equal, done);
5247 
5248   // crosses regions, storing NULL?
5249 
5250   cmpptr(new_val, (int32_t) NULL_WORD);
5251   jcc(Assembler::equal, done);
5252 
5253   // storing region crossing non-NULL, is card already dirty?
5254 
5255   const Register card_addr = tmp;
5256   const Register cardtable = tmp2;
5257 
5258   movptr(card_addr, store_addr);
5259   shrptr(card_addr, CardTableModRefBS::card_shift);
5260   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
5261   // a valid address and therefore is not properly handled by the relocation code.
5262   movptr(cardtable, (intptr_t)ct->byte_map_base);
5263   addptr(card_addr, cardtable);
5264 
5265   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
5266   jcc(Assembler::equal, done);
5267 
5268   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
5269   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5270   jcc(Assembler::equal, done);
5271 
5272 
5273   // storing a region crossing, non-NULL oop, card is clean.
5274   // dirty card and log.
5275 
5276   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5277 
5278   cmpl(queue_index, 0);
5279   jcc(Assembler::equal, runtime);
5280   subl(queue_index, wordSize);
5281   movptr(tmp2, buffer);
5282 #ifdef _LP64
5283   movslq(rscratch1, queue_index);
5284   addq(tmp2, rscratch1);
5285   movq(Address(tmp2, 0), card_addr);
5286 #else
5287   addl(tmp2, queue_index);
5288   movl(Address(tmp2, 0), card_addr);
5289 #endif
5290   jmp(done);
5291 
5292   bind(runtime);
5293   // save the live input values
5294   push(store_addr);
5295   push(new_val);
5296 #ifdef _LP64
5297   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
5298 #else
5299   push(thread);
5300   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
5301   pop(thread);
5302 #endif
5303   pop(new_val);
5304   pop(store_addr);
5305 
5306   bind(done);
5307 }
5308 
5309 #endif // INCLUDE_ALL_GCS
5310 //////////////////////////////////////////////////////////////////////////////////
5311 
5312 
5313 void MacroAssembler::store_check(Register obj, Address dst) {
5314   store_check(obj);
5315 }
5316 
5317 void MacroAssembler::store_check(Register obj) {
5318   // Does a store check for the oop in register obj. The content of
5319   // register obj is destroyed afterwards.
5320   BarrierSet* bs = Universe::heap()->barrier_set();
5321   assert(bs->kind() == BarrierSet::CardTableForRS ||
5322          bs->kind() == BarrierSet::CardTableExtension,
5323          "Wrong barrier set kind");
5324 
5325   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
5326   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5327 
5328   shrptr(obj, CardTableModRefBS::card_shift);
5329 
5330   Address card_addr;
5331 
5332   // The calculation for byte_map_base is as follows:
5333   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
5334   // So this essentially converts an address to a displacement and it will
5335   // never need to be relocated. On 64bit however the value may be too
5336   // large for a 32bit displacement.
5337   intptr_t disp = (intptr_t) ct->byte_map_base;
5338   if (is_simm32(disp)) {
5339     card_addr = Address(noreg, obj, Address::times_1, disp);
5340   } else {
5341     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
5342     // displacement and done in a single instruction given favorable mapping and a
5343     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
5344     // entry and that entry is not properly handled by the relocation code.
5345     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
5346     Address index(noreg, obj, Address::times_1);
5347     card_addr = as_Address(ArrayAddress(cardtable, index));
5348   }
5349 
5350   int dirty = CardTableModRefBS::dirty_card_val();
5351   if (UseCondCardMark) {
5352     Label L_already_dirty;
5353     if (UseConcMarkSweepGC) {
5354       membar(Assembler::StoreLoad);
5355     }
5356     cmpb(card_addr, dirty);
5357     jcc(Assembler::equal, L_already_dirty);
5358     movb(card_addr, dirty);
5359     bind(L_already_dirty);
5360   } else {
5361     movb(card_addr, dirty);
5362   }
5363 }
5364 
5365 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5366   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5367 }
5368 
5369 // Force generation of a 4 byte immediate value even if it fits into 8bit
5370 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5371   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5372 }
5373 
5374 void MacroAssembler::subptr(Register dst, Register src) {
5375   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5376 }
5377 
5378 // C++ bool manipulation
5379 void MacroAssembler::testbool(Register dst) {
5380   if(sizeof(bool) == 1)
5381     testb(dst, 0xff);
5382   else if(sizeof(bool) == 2) {
5383     // testw implementation needed for two byte bools
5384     ShouldNotReachHere();
5385   } else if(sizeof(bool) == 4)
5386     testl(dst, dst);
5387   else
5388     // unsupported
5389     ShouldNotReachHere();
5390 }
5391 
5392 void MacroAssembler::testptr(Register dst, Register src) {
5393   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5394 }
5395 
5396 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5397 void MacroAssembler::tlab_allocate(Register obj,
5398                                    Register var_size_in_bytes,
5399                                    int con_size_in_bytes,
5400                                    Register t1,
5401                                    Register t2,
5402                                    Label& slow_case) {
5403   assert_different_registers(obj, t1, t2);
5404   assert_different_registers(obj, var_size_in_bytes, t1);
5405   Register end = t2;
5406   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
5407 
5408   verify_tlab();
5409 
5410   NOT_LP64(get_thread(thread));
5411 
5412   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
5413   if (var_size_in_bytes == noreg) {
5414     lea(end, Address(obj, con_size_in_bytes));
5415   } else {
5416     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
5417   }
5418   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
5419   jcc(Assembler::above, slow_case);
5420 
5421   // update the tlab top pointer
5422   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
5423 
5424   // recover var_size_in_bytes if necessary
5425   if (var_size_in_bytes == end) {
5426     subptr(var_size_in_bytes, obj);
5427   }
5428   verify_tlab();
5429 }
5430 
5431 // Preserves rbx, and rdx.
5432 Register MacroAssembler::tlab_refill(Label& retry,
5433                                      Label& try_eden,
5434                                      Label& slow_case) {
5435   Register top = rax;
5436   Register t1  = rcx; // object size
5437   Register t2  = rsi;
5438   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
5439   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
5440   Label do_refill, discard_tlab;
5441 
5442   if (!Universe::heap()->supports_inline_contig_alloc()) {
5443     // No allocation in the shared eden.
5444     jmp(slow_case);
5445   }
5446 
5447   NOT_LP64(get_thread(thread_reg));
5448 
5449   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5450   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5451 
5452   // calculate amount of free space
5453   subptr(t1, top);
5454   shrptr(t1, LogHeapWordSize);
5455 
5456   // Retain tlab and allocate object in shared space if
5457   // the amount free in the tlab is too large to discard.
5458   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
5459   jcc(Assembler::lessEqual, discard_tlab);
5460 
5461   // Retain
5462   // %%% yuck as movptr...
5463   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
5464   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
5465   if (TLABStats) {
5466     // increment number of slow_allocations
5467     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
5468   }
5469   jmp(try_eden);
5470 
5471   bind(discard_tlab);
5472   if (TLABStats) {
5473     // increment number of refills
5474     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
5475     // accumulate wastage -- t1 is amount free in tlab
5476     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
5477   }
5478 
5479   // if tlab is currently allocated (top or end != null) then
5480   // fill [top, end + alignment_reserve) with array object
5481   testptr(top, top);
5482   jcc(Assembler::zero, do_refill);
5483 
5484   // set up the mark word
5485   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
5486   // set the length to the remaining space
5487   subptr(t1, typeArrayOopDesc::header_size(T_INT));
5488   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
5489   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
5490   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
5491   // set klass to intArrayKlass
5492   // dubious reloc why not an oop reloc?
5493   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
5494   // store klass last.  concurrent gcs assumes klass length is valid if
5495   // klass field is not null.
5496   store_klass(top, t1);
5497 
5498   movptr(t1, top);
5499   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5500   incr_allocated_bytes(thread_reg, t1, 0);
5501 
5502   // refill the tlab with an eden allocation
5503   bind(do_refill);
5504   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5505   shlptr(t1, LogHeapWordSize);
5506   // allocate new tlab, address returned in top
5507   eden_allocate(top, t1, 0, t2, slow_case);
5508 
5509   // Check that t1 was preserved in eden_allocate.
5510 #ifdef ASSERT
5511   if (UseTLAB) {
5512     Label ok;
5513     Register tsize = rsi;
5514     assert_different_registers(tsize, thread_reg, t1);
5515     push(tsize);
5516     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5517     shlptr(tsize, LogHeapWordSize);
5518     cmpptr(t1, tsize);
5519     jcc(Assembler::equal, ok);
5520     STOP("assert(t1 != tlab size)");
5521     should_not_reach_here();
5522 
5523     bind(ok);
5524     pop(tsize);
5525   }
5526 #endif
5527   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
5528   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
5529   addptr(top, t1);
5530   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
5531   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
5532 
5533   if (ZeroTLAB) {
5534     // This is a fast TLAB refill, therefore the GC is not notified of it.
5535     // So compiled code must fill the new TLAB with zeroes.
5536     movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5537     zero_memory(top, t1, 0, t2);
5538   }
5539 
5540   verify_tlab();
5541   jmp(retry);
5542 
5543   return thread_reg; // for use by caller
5544 }
5545 
5546 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5547 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5548   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5549   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5550   Label done;
5551 
5552   testptr(length_in_bytes, length_in_bytes);
5553   jcc(Assembler::zero, done);
5554 
5555   // initialize topmost word, divide index by 2, check if odd and test if zero
5556   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5557 #ifdef ASSERT
5558   {
5559     Label L;
5560     testptr(length_in_bytes, BytesPerWord - 1);
5561     jcc(Assembler::zero, L);
5562     stop("length must be a multiple of BytesPerWord");
5563     bind(L);
5564   }
5565 #endif
5566   Register index = length_in_bytes;
5567   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5568   if (UseIncDec) {
5569     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5570   } else {
5571     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5572     shrptr(index, 1);
5573   }
5574 #ifndef _LP64
5575   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5576   {
5577     Label even;
5578     // note: if index was a multiple of 8, then it cannot
5579     //       be 0 now otherwise it must have been 0 before
5580     //       => if it is even, we don't need to check for 0 again
5581     jcc(Assembler::carryClear, even);
5582     // clear topmost word (no jump would be needed if conditional assignment worked here)
5583     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5584     // index could be 0 now, must check again
5585     jcc(Assembler::zero, done);
5586     bind(even);
5587   }
5588 #endif // !_LP64
5589   // initialize remaining object fields: index is a multiple of 2 now
5590   {
5591     Label loop;
5592     bind(loop);
5593     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5594     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5595     decrement(index);
5596     jcc(Assembler::notZero, loop);
5597   }
5598 
5599   bind(done);
5600 }
5601 
5602 void MacroAssembler::incr_allocated_bytes(Register thread,
5603                                           Register var_size_in_bytes,
5604                                           int con_size_in_bytes,
5605                                           Register t1) {
5606   if (!thread->is_valid()) {
5607 #ifdef _LP64
5608     thread = r15_thread;
5609 #else
5610     assert(t1->is_valid(), "need temp reg");
5611     thread = t1;
5612     get_thread(thread);
5613 #endif
5614   }
5615 
5616 #ifdef _LP64
5617   if (var_size_in_bytes->is_valid()) {
5618     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5619   } else {
5620     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5621   }
5622 #else
5623   if (var_size_in_bytes->is_valid()) {
5624     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5625   } else {
5626     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5627   }
5628   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
5629 #endif
5630 }
5631 
5632 void MacroAssembler::mathfunc(address runtime_entry) {
5633   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
5634 }
5635 
5636 // Look up the method for a megamorphic invokeinterface call.
5637 // The target method is determined by <intf_klass, itable_index>.
5638 // The receiver klass is in recv_klass.
5639 // On success, the result will be in method_result, and execution falls through.
5640 // On failure, execution transfers to the given label.
5641 void MacroAssembler::lookup_interface_method(Register recv_klass,
5642                                              Register intf_klass,
5643                                              RegisterOrConstant itable_index,
5644                                              Register method_result,
5645                                              Register scan_temp,
5646                                              Label& L_no_such_interface) {
5647   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
5648   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5649          "caller must use same register for non-constant itable index as for method");
5650 
5651   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5652   int vtable_base = in_bytes(Klass::vtable_start_offset());
5653   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5654   int scan_step   = itableOffsetEntry::size() * wordSize;
5655   int vte_size    = vtableEntry::size_in_bytes();
5656   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5657   assert(vte_size == wordSize, "else adjust times_vte_scale");
5658 
5659   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
5660 
5661   // %%% Could store the aligned, prescaled offset in the klassoop.
5662   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5663 
5664   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5665   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5666   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5667 
5668   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5669   //   if (scan->interface() == intf) {
5670   //     result = (klass + scan->offset() + itable_index);
5671   //   }
5672   // }
5673   Label search, found_method;
5674 
5675   for (int peel = 1; peel >= 0; peel--) {
5676     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5677     cmpptr(intf_klass, method_result);
5678 
5679     if (peel) {
5680       jccb(Assembler::equal, found_method);
5681     } else {
5682       jccb(Assembler::notEqual, search);
5683       // (invert the test to fall through to found_method...)
5684     }
5685 
5686     if (!peel)  break;
5687 
5688     bind(search);
5689 
5690     // Check that the previous entry is non-null.  A null entry means that
5691     // the receiver class doesn't implement the interface, and wasn't the
5692     // same as when the caller was compiled.
5693     testptr(method_result, method_result);
5694     jcc(Assembler::zero, L_no_such_interface);
5695     addptr(scan_temp, scan_step);
5696   }
5697 
5698   bind(found_method);
5699 
5700   // Got a hit.
5701   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5702   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5703 }
5704 
5705 
5706 // virtual method calling
5707 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5708                                            RegisterOrConstant vtable_index,
5709                                            Register method_result) {
5710   const int base = in_bytes(Klass::vtable_start_offset());
5711   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5712   Address vtable_entry_addr(recv_klass,
5713                             vtable_index, Address::times_ptr,
5714                             base + vtableEntry::method_offset_in_bytes());
5715   movptr(method_result, vtable_entry_addr);
5716 }
5717 
5718 
5719 void MacroAssembler::check_klass_subtype(Register sub_klass,
5720                            Register super_klass,
5721                            Register temp_reg,
5722                            Label& L_success) {
5723   Label L_failure;
5724   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5725   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5726   bind(L_failure);
5727 }
5728 
5729 
5730 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5731                                                    Register super_klass,
5732                                                    Register temp_reg,
5733                                                    Label* L_success,
5734                                                    Label* L_failure,
5735                                                    Label* L_slow_path,
5736                                         RegisterOrConstant super_check_offset) {
5737   assert_different_registers(sub_klass, super_klass, temp_reg);
5738   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5739   if (super_check_offset.is_register()) {
5740     assert_different_registers(sub_klass, super_klass,
5741                                super_check_offset.as_register());
5742   } else if (must_load_sco) {
5743     assert(temp_reg != noreg, "supply either a temp or a register offset");
5744   }
5745 
5746   Label L_fallthrough;
5747   int label_nulls = 0;
5748   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5749   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5750   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5751   assert(label_nulls <= 1, "at most one NULL in the batch");
5752 
5753   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5754   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5755   Address super_check_offset_addr(super_klass, sco_offset);
5756 
5757   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5758   // range of a jccb.  If this routine grows larger, reconsider at
5759   // least some of these.
5760 #define local_jcc(assembler_cond, label)                                \
5761   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5762   else                             jcc( assembler_cond, label) /*omit semi*/
5763 
5764   // Hacked jmp, which may only be used just before L_fallthrough.
5765 #define final_jmp(label)                                                \
5766   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5767   else                            jmp(label)                /*omit semi*/
5768 
5769   // If the pointers are equal, we are done (e.g., String[] elements).
5770   // This self-check enables sharing of secondary supertype arrays among
5771   // non-primary types such as array-of-interface.  Otherwise, each such
5772   // type would need its own customized SSA.
5773   // We move this check to the front of the fast path because many
5774   // type checks are in fact trivially successful in this manner,
5775   // so we get a nicely predicted branch right at the start of the check.
5776   cmpptr(sub_klass, super_klass);
5777   local_jcc(Assembler::equal, *L_success);
5778 
5779   // Check the supertype display:
5780   if (must_load_sco) {
5781     // Positive movl does right thing on LP64.
5782     movl(temp_reg, super_check_offset_addr);
5783     super_check_offset = RegisterOrConstant(temp_reg);
5784   }
5785   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5786   cmpptr(super_klass, super_check_addr); // load displayed supertype
5787 
5788   // This check has worked decisively for primary supers.
5789   // Secondary supers are sought in the super_cache ('super_cache_addr').
5790   // (Secondary supers are interfaces and very deeply nested subtypes.)
5791   // This works in the same check above because of a tricky aliasing
5792   // between the super_cache and the primary super display elements.
5793   // (The 'super_check_addr' can address either, as the case requires.)
5794   // Note that the cache is updated below if it does not help us find
5795   // what we need immediately.
5796   // So if it was a primary super, we can just fail immediately.
5797   // Otherwise, it's the slow path for us (no success at this point).
5798 
5799   if (super_check_offset.is_register()) {
5800     local_jcc(Assembler::equal, *L_success);
5801     cmpl(super_check_offset.as_register(), sc_offset);
5802     if (L_failure == &L_fallthrough) {
5803       local_jcc(Assembler::equal, *L_slow_path);
5804     } else {
5805       local_jcc(Assembler::notEqual, *L_failure);
5806       final_jmp(*L_slow_path);
5807     }
5808   } else if (super_check_offset.as_constant() == sc_offset) {
5809     // Need a slow path; fast failure is impossible.
5810     if (L_slow_path == &L_fallthrough) {
5811       local_jcc(Assembler::equal, *L_success);
5812     } else {
5813       local_jcc(Assembler::notEqual, *L_slow_path);
5814       final_jmp(*L_success);
5815     }
5816   } else {
5817     // No slow path; it's a fast decision.
5818     if (L_failure == &L_fallthrough) {
5819       local_jcc(Assembler::equal, *L_success);
5820     } else {
5821       local_jcc(Assembler::notEqual, *L_failure);
5822       final_jmp(*L_success);
5823     }
5824   }
5825 
5826   bind(L_fallthrough);
5827 
5828 #undef local_jcc
5829 #undef final_jmp
5830 }
5831 
5832 
5833 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5834                                                    Register super_klass,
5835                                                    Register temp_reg,
5836                                                    Register temp2_reg,
5837                                                    Label* L_success,
5838                                                    Label* L_failure,
5839                                                    bool set_cond_codes) {
5840   assert_different_registers(sub_klass, super_klass, temp_reg);
5841   if (temp2_reg != noreg)
5842     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5843 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5844 
5845   Label L_fallthrough;
5846   int label_nulls = 0;
5847   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5848   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5849   assert(label_nulls <= 1, "at most one NULL in the batch");
5850 
5851   // a couple of useful fields in sub_klass:
5852   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5853   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5854   Address secondary_supers_addr(sub_klass, ss_offset);
5855   Address super_cache_addr(     sub_klass, sc_offset);
5856 
5857   // Do a linear scan of the secondary super-klass chain.
5858   // This code is rarely used, so simplicity is a virtue here.
5859   // The repne_scan instruction uses fixed registers, which we must spill.
5860   // Don't worry too much about pre-existing connections with the input regs.
5861 
5862   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5863   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5864 
5865   // Get super_klass value into rax (even if it was in rdi or rcx).
5866   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5867   if (super_klass != rax || UseCompressedOops) {
5868     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5869     mov(rax, super_klass);
5870   }
5871   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5872   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5873 
5874 #ifndef PRODUCT
5875   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5876   ExternalAddress pst_counter_addr((address) pst_counter);
5877   NOT_LP64(  incrementl(pst_counter_addr) );
5878   LP64_ONLY( lea(rcx, pst_counter_addr) );
5879   LP64_ONLY( incrementl(Address(rcx, 0)) );
5880 #endif //PRODUCT
5881 
5882   // We will consult the secondary-super array.
5883   movptr(rdi, secondary_supers_addr);
5884   // Load the array length.  (Positive movl does right thing on LP64.)
5885   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5886   // Skip to start of data.
5887   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5888 
5889   // Scan RCX words at [RDI] for an occurrence of RAX.
5890   // Set NZ/Z based on last compare.
5891   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5892   // not change flags (only scas instruction which is repeated sets flags).
5893   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5894 
5895     testptr(rax,rax); // Set Z = 0
5896     repne_scan();
5897 
5898   // Unspill the temp. registers:
5899   if (pushed_rdi)  pop(rdi);
5900   if (pushed_rcx)  pop(rcx);
5901   if (pushed_rax)  pop(rax);
5902 
5903   if (set_cond_codes) {
5904     // Special hack for the AD files:  rdi is guaranteed non-zero.
5905     assert(!pushed_rdi, "rdi must be left non-NULL");
5906     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5907   }
5908 
5909   if (L_failure == &L_fallthrough)
5910         jccb(Assembler::notEqual, *L_failure);
5911   else  jcc(Assembler::notEqual, *L_failure);
5912 
5913   // Success.  Cache the super we found and proceed in triumph.
5914   movptr(super_cache_addr, super_klass);
5915 
5916   if (L_success != &L_fallthrough) {
5917     jmp(*L_success);
5918   }
5919 
5920 #undef IS_A_TEMP
5921 
5922   bind(L_fallthrough);
5923 }
5924 
5925 
5926 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5927   if (VM_Version::supports_cmov()) {
5928     cmovl(cc, dst, src);
5929   } else {
5930     Label L;
5931     jccb(negate_condition(cc), L);
5932     movl(dst, src);
5933     bind(L);
5934   }
5935 }
5936 
5937 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5938   if (VM_Version::supports_cmov()) {
5939     cmovl(cc, dst, src);
5940   } else {
5941     Label L;
5942     jccb(negate_condition(cc), L);
5943     movl(dst, src);
5944     bind(L);
5945   }
5946 }
5947 
5948 void MacroAssembler::verify_oop(Register reg, const char* s) {
5949   if (!VerifyOops) return;
5950 
5951   // Pass register number to verify_oop_subroutine
5952   const char* b = NULL;
5953   {
5954     ResourceMark rm;
5955     stringStream ss;
5956     ss.print("verify_oop: %s: %s", reg->name(), s);
5957     b = code_string(ss.as_string());
5958   }
5959   BLOCK_COMMENT("verify_oop {");
5960 #ifdef _LP64
5961   push(rscratch1);                    // save r10, trashed by movptr()
5962 #endif
5963   push(rax);                          // save rax,
5964   push(reg);                          // pass register argument
5965   ExternalAddress buffer((address) b);
5966   // avoid using pushptr, as it modifies scratch registers
5967   // and our contract is not to modify anything
5968   movptr(rax, buffer.addr());
5969   push(rax);
5970   // call indirectly to solve generation ordering problem
5971   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5972   call(rax);
5973   // Caller pops the arguments (oop, message) and restores rax, r10
5974   BLOCK_COMMENT("} verify_oop");
5975 }
5976 
5977 
5978 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5979                                                       Register tmp,
5980                                                       int offset) {
5981   intptr_t value = *delayed_value_addr;
5982   if (value != 0)
5983     return RegisterOrConstant(value + offset);
5984 
5985   // load indirectly to solve generation ordering problem
5986   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5987 
5988 #ifdef ASSERT
5989   { Label L;
5990     testptr(tmp, tmp);
5991     if (WizardMode) {
5992       const char* buf = NULL;
5993       {
5994         ResourceMark rm;
5995         stringStream ss;
5996         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
5997         buf = code_string(ss.as_string());
5998       }
5999       jcc(Assembler::notZero, L);
6000       STOP(buf);
6001     } else {
6002       jccb(Assembler::notZero, L);
6003       hlt();
6004     }
6005     bind(L);
6006   }
6007 #endif
6008 
6009   if (offset != 0)
6010     addptr(tmp, offset);
6011 
6012   return RegisterOrConstant(tmp);
6013 }
6014 
6015 
6016 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
6017                                          int extra_slot_offset) {
6018   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
6019   int stackElementSize = Interpreter::stackElementSize;
6020   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
6021 #ifdef ASSERT
6022   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
6023   assert(offset1 - offset == stackElementSize, "correct arithmetic");
6024 #endif
6025   Register             scale_reg    = noreg;
6026   Address::ScaleFactor scale_factor = Address::no_scale;
6027   if (arg_slot.is_constant()) {
6028     offset += arg_slot.as_constant() * stackElementSize;
6029   } else {
6030     scale_reg    = arg_slot.as_register();
6031     scale_factor = Address::times(stackElementSize);
6032   }
6033   offset += wordSize;           // return PC is on stack
6034   return Address(rsp, scale_reg, scale_factor, offset);
6035 }
6036 
6037 
6038 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
6039   if (!VerifyOops) return;
6040 
6041   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
6042   // Pass register number to verify_oop_subroutine
6043   const char* b = NULL;
6044   {
6045     ResourceMark rm;
6046     stringStream ss;
6047     ss.print("verify_oop_addr: %s", s);
6048     b = code_string(ss.as_string());
6049   }
6050 #ifdef _LP64
6051   push(rscratch1);                    // save r10, trashed by movptr()
6052 #endif
6053   push(rax);                          // save rax,
6054   // addr may contain rsp so we will have to adjust it based on the push
6055   // we just did (and on 64 bit we do two pushes)
6056   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
6057   // stores rax into addr which is backwards of what was intended.
6058   if (addr.uses(rsp)) {
6059     lea(rax, addr);
6060     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
6061   } else {
6062     pushptr(addr);
6063   }
6064 
6065   ExternalAddress buffer((address) b);
6066   // pass msg argument
6067   // avoid using pushptr, as it modifies scratch registers
6068   // and our contract is not to modify anything
6069   movptr(rax, buffer.addr());
6070   push(rax);
6071 
6072   // call indirectly to solve generation ordering problem
6073   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6074   call(rax);
6075   // Caller pops the arguments (addr, message) and restores rax, r10.
6076 }
6077 
6078 void MacroAssembler::verify_tlab() {
6079 #ifdef ASSERT
6080   if (UseTLAB && VerifyOops) {
6081     Label next, ok;
6082     Register t1 = rsi;
6083     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
6084 
6085     push(t1);
6086     NOT_LP64(push(thread_reg));
6087     NOT_LP64(get_thread(thread_reg));
6088 
6089     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6090     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
6091     jcc(Assembler::aboveEqual, next);
6092     STOP("assert(top >= start)");
6093     should_not_reach_here();
6094 
6095     bind(next);
6096     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
6097     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6098     jcc(Assembler::aboveEqual, ok);
6099     STOP("assert(top <= end)");
6100     should_not_reach_here();
6101 
6102     bind(ok);
6103     NOT_LP64(pop(thread_reg));
6104     pop(t1);
6105   }
6106 #endif
6107 }
6108 
6109 class ControlWord {
6110  public:
6111   int32_t _value;
6112 
6113   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
6114   int  precision_control() const       { return  (_value >>  8) & 3      ; }
6115   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6116   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6117   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6118   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6119   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6120   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6121 
6122   void print() const {
6123     // rounding control
6124     const char* rc;
6125     switch (rounding_control()) {
6126       case 0: rc = "round near"; break;
6127       case 1: rc = "round down"; break;
6128       case 2: rc = "round up  "; break;
6129       case 3: rc = "chop      "; break;
6130     };
6131     // precision control
6132     const char* pc;
6133     switch (precision_control()) {
6134       case 0: pc = "24 bits "; break;
6135       case 1: pc = "reserved"; break;
6136       case 2: pc = "53 bits "; break;
6137       case 3: pc = "64 bits "; break;
6138     };
6139     // flags
6140     char f[9];
6141     f[0] = ' ';
6142     f[1] = ' ';
6143     f[2] = (precision   ()) ? 'P' : 'p';
6144     f[3] = (underflow   ()) ? 'U' : 'u';
6145     f[4] = (overflow    ()) ? 'O' : 'o';
6146     f[5] = (zero_divide ()) ? 'Z' : 'z';
6147     f[6] = (denormalized()) ? 'D' : 'd';
6148     f[7] = (invalid     ()) ? 'I' : 'i';
6149     f[8] = '\x0';
6150     // output
6151     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
6152   }
6153 
6154 };
6155 
6156 class StatusWord {
6157  public:
6158   int32_t _value;
6159 
6160   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
6161   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
6162   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
6163   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
6164   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
6165   int  top() const                     { return  (_value >> 11) & 7      ; }
6166   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
6167   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
6168   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6169   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6170   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6171   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6172   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6173   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6174 
6175   void print() const {
6176     // condition codes
6177     char c[5];
6178     c[0] = (C3()) ? '3' : '-';
6179     c[1] = (C2()) ? '2' : '-';
6180     c[2] = (C1()) ? '1' : '-';
6181     c[3] = (C0()) ? '0' : '-';
6182     c[4] = '\x0';
6183     // flags
6184     char f[9];
6185     f[0] = (error_status()) ? 'E' : '-';
6186     f[1] = (stack_fault ()) ? 'S' : '-';
6187     f[2] = (precision   ()) ? 'P' : '-';
6188     f[3] = (underflow   ()) ? 'U' : '-';
6189     f[4] = (overflow    ()) ? 'O' : '-';
6190     f[5] = (zero_divide ()) ? 'Z' : '-';
6191     f[6] = (denormalized()) ? 'D' : '-';
6192     f[7] = (invalid     ()) ? 'I' : '-';
6193     f[8] = '\x0';
6194     // output
6195     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
6196   }
6197 
6198 };
6199 
6200 class TagWord {
6201  public:
6202   int32_t _value;
6203 
6204   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
6205 
6206   void print() const {
6207     printf("%04x", _value & 0xFFFF);
6208   }
6209 
6210 };
6211 
6212 class FPU_Register {
6213  public:
6214   int32_t _m0;
6215   int32_t _m1;
6216   int16_t _ex;
6217 
6218   bool is_indefinite() const           {
6219     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
6220   }
6221 
6222   void print() const {
6223     char  sign = (_ex < 0) ? '-' : '+';
6224     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
6225     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
6226   };
6227 
6228 };
6229 
6230 class FPU_State {
6231  public:
6232   enum {
6233     register_size       = 10,
6234     number_of_registers =  8,
6235     register_mask       =  7
6236   };
6237 
6238   ControlWord  _control_word;
6239   StatusWord   _status_word;
6240   TagWord      _tag_word;
6241   int32_t      _error_offset;
6242   int32_t      _error_selector;
6243   int32_t      _data_offset;
6244   int32_t      _data_selector;
6245   int8_t       _register[register_size * number_of_registers];
6246 
6247   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
6248   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
6249 
6250   const char* tag_as_string(int tag) const {
6251     switch (tag) {
6252       case 0: return "valid";
6253       case 1: return "zero";
6254       case 2: return "special";
6255       case 3: return "empty";
6256     }
6257     ShouldNotReachHere();
6258     return NULL;
6259   }
6260 
6261   void print() const {
6262     // print computation registers
6263     { int t = _status_word.top();
6264       for (int i = 0; i < number_of_registers; i++) {
6265         int j = (i - t) & register_mask;
6266         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
6267         st(j)->print();
6268         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
6269       }
6270     }
6271     printf("\n");
6272     // print control registers
6273     printf("ctrl = "); _control_word.print(); printf("\n");
6274     printf("stat = "); _status_word .print(); printf("\n");
6275     printf("tags = "); _tag_word    .print(); printf("\n");
6276   }
6277 
6278 };
6279 
6280 class Flag_Register {
6281  public:
6282   int32_t _value;
6283 
6284   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
6285   bool direction() const               { return ((_value >> 10) & 1) != 0; }
6286   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
6287   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
6288   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
6289   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
6290   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
6291 
6292   void print() const {
6293     // flags
6294     char f[8];
6295     f[0] = (overflow       ()) ? 'O' : '-';
6296     f[1] = (direction      ()) ? 'D' : '-';
6297     f[2] = (sign           ()) ? 'S' : '-';
6298     f[3] = (zero           ()) ? 'Z' : '-';
6299     f[4] = (auxiliary_carry()) ? 'A' : '-';
6300     f[5] = (parity         ()) ? 'P' : '-';
6301     f[6] = (carry          ()) ? 'C' : '-';
6302     f[7] = '\x0';
6303     // output
6304     printf("%08x  flags = %s", _value, f);
6305   }
6306 
6307 };
6308 
6309 class IU_Register {
6310  public:
6311   int32_t _value;
6312 
6313   void print() const {
6314     printf("%08x  %11d", _value, _value);
6315   }
6316 
6317 };
6318 
6319 class IU_State {
6320  public:
6321   Flag_Register _eflags;
6322   IU_Register   _rdi;
6323   IU_Register   _rsi;
6324   IU_Register   _rbp;
6325   IU_Register   _rsp;
6326   IU_Register   _rbx;
6327   IU_Register   _rdx;
6328   IU_Register   _rcx;
6329   IU_Register   _rax;
6330 
6331   void print() const {
6332     // computation registers
6333     printf("rax,  = "); _rax.print(); printf("\n");
6334     printf("rbx,  = "); _rbx.print(); printf("\n");
6335     printf("rcx  = "); _rcx.print(); printf("\n");
6336     printf("rdx  = "); _rdx.print(); printf("\n");
6337     printf("rdi  = "); _rdi.print(); printf("\n");
6338     printf("rsi  = "); _rsi.print(); printf("\n");
6339     printf("rbp,  = "); _rbp.print(); printf("\n");
6340     printf("rsp  = "); _rsp.print(); printf("\n");
6341     printf("\n");
6342     // control registers
6343     printf("flgs = "); _eflags.print(); printf("\n");
6344   }
6345 };
6346 
6347 
6348 class CPU_State {
6349  public:
6350   FPU_State _fpu_state;
6351   IU_State  _iu_state;
6352 
6353   void print() const {
6354     printf("--------------------------------------------------\n");
6355     _iu_state .print();
6356     printf("\n");
6357     _fpu_state.print();
6358     printf("--------------------------------------------------\n");
6359   }
6360 
6361 };
6362 
6363 
6364 static void _print_CPU_state(CPU_State* state) {
6365   state->print();
6366 };
6367 
6368 
6369 void MacroAssembler::print_CPU_state() {
6370   push_CPU_state();
6371   push(rsp);                // pass CPU state
6372   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6373   addptr(rsp, wordSize);       // discard argument
6374   pop_CPU_state();
6375 }
6376 
6377 
6378 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6379   static int counter = 0;
6380   FPU_State* fs = &state->_fpu_state;
6381   counter++;
6382   // For leaf calls, only verify that the top few elements remain empty.
6383   // We only need 1 empty at the top for C2 code.
6384   if( stack_depth < 0 ) {
6385     if( fs->tag_for_st(7) != 3 ) {
6386       printf("FPR7 not empty\n");
6387       state->print();
6388       assert(false, "error");
6389       return false;
6390     }
6391     return true;                // All other stack states do not matter
6392   }
6393 
6394   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6395          "bad FPU control word");
6396 
6397   // compute stack depth
6398   int i = 0;
6399   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6400   int d = i;
6401   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6402   // verify findings
6403   if (i != FPU_State::number_of_registers) {
6404     // stack not contiguous
6405     printf("%s: stack not contiguous at ST%d\n", s, i);
6406     state->print();
6407     assert(false, "error");
6408     return false;
6409   }
6410   // check if computed stack depth corresponds to expected stack depth
6411   if (stack_depth < 0) {
6412     // expected stack depth is -stack_depth or less
6413     if (d > -stack_depth) {
6414       // too many elements on the stack
6415       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6416       state->print();
6417       assert(false, "error");
6418       return false;
6419     }
6420   } else {
6421     // expected stack depth is stack_depth
6422     if (d != stack_depth) {
6423       // wrong stack depth
6424       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6425       state->print();
6426       assert(false, "error");
6427       return false;
6428     }
6429   }
6430   // everything is cool
6431   return true;
6432 }
6433 
6434 
6435 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6436   if (!VerifyFPU) return;
6437   push_CPU_state();
6438   push(rsp);                // pass CPU state
6439   ExternalAddress msg((address) s);
6440   // pass message string s
6441   pushptr(msg.addr());
6442   push(stack_depth);        // pass stack depth
6443   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6444   addptr(rsp, 3 * wordSize);   // discard arguments
6445   // check for error
6446   { Label L;
6447     testl(rax, rax);
6448     jcc(Assembler::notZero, L);
6449     int3();                  // break if error condition
6450     bind(L);
6451   }
6452   pop_CPU_state();
6453 }
6454 
6455 void MacroAssembler::restore_cpu_control_state_after_jni() {
6456   // Either restore the MXCSR register after returning from the JNI Call
6457   // or verify that it wasn't changed (with -Xcheck:jni flag).
6458   if (VM_Version::supports_sse()) {
6459     if (RestoreMXCSROnJNICalls) {
6460       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6461     } else if (CheckJNICalls) {
6462       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6463     }
6464   }
6465   if (VM_Version::supports_avx()) {
6466     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6467     vzeroupper();
6468   }
6469 
6470 #ifndef _LP64
6471   // Either restore the x87 floating pointer control word after returning
6472   // from the JNI call or verify that it wasn't changed.
6473   if (CheckJNICalls) {
6474     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6475   }
6476 #endif // _LP64
6477 }
6478 
6479 void MacroAssembler::load_mirror(Register mirror, Register method) {
6480   // get mirror
6481   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
6482   movptr(mirror, Address(method, Method::const_offset()));
6483   movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
6484   movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
6485   movptr(mirror, Address(mirror, mirror_offset));
6486 }
6487 
6488 void MacroAssembler::load_klass(Register dst, Register src) {
6489 #ifdef _LP64
6490   if (UseCompressedClassPointers) {
6491     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6492     decode_klass_not_null(dst);
6493   } else
6494 #endif
6495     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6496 }
6497 
6498 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6499   load_klass(dst, src);
6500   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6501 }
6502 
6503 void MacroAssembler::store_klass(Register dst, Register src) {
6504 #ifdef _LP64
6505   if (UseCompressedClassPointers) {
6506     encode_klass_not_null(src);
6507     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6508   } else
6509 #endif
6510     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6511 }
6512 
6513 void MacroAssembler::load_heap_oop(Register dst, Address src) {
6514 #ifdef _LP64
6515   // FIXME: Must change all places where we try to load the klass.
6516   if (UseCompressedOops) {
6517     movl(dst, src);
6518     decode_heap_oop(dst);
6519   } else
6520 #endif
6521     movptr(dst, src);
6522 }
6523 
6524 // Doesn't do verfication, generates fixed size code
6525 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
6526 #ifdef _LP64
6527   if (UseCompressedOops) {
6528     movl(dst, src);
6529     decode_heap_oop_not_null(dst);
6530   } else
6531 #endif
6532     movptr(dst, src);
6533 }
6534 
6535 void MacroAssembler::store_heap_oop(Address dst, Register src) {
6536 #ifdef _LP64
6537   if (UseCompressedOops) {
6538     assert(!dst.uses(src), "not enough registers");
6539     encode_heap_oop(src);
6540     movl(dst, src);
6541   } else
6542 #endif
6543     movptr(dst, src);
6544 }
6545 
6546 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
6547   assert_different_registers(src1, tmp);
6548 #ifdef _LP64
6549   if (UseCompressedOops) {
6550     bool did_push = false;
6551     if (tmp == noreg) {
6552       tmp = rax;
6553       push(tmp);
6554       did_push = true;
6555       assert(!src2.uses(rsp), "can't push");
6556     }
6557     load_heap_oop(tmp, src2);
6558     cmpptr(src1, tmp);
6559     if (did_push)  pop(tmp);
6560   } else
6561 #endif
6562     cmpptr(src1, src2);
6563 }
6564 
6565 // Used for storing NULLs.
6566 void MacroAssembler::store_heap_oop_null(Address dst) {
6567 #ifdef _LP64
6568   if (UseCompressedOops) {
6569     movl(dst, (int32_t)NULL_WORD);
6570   } else {
6571     movslq(dst, (int32_t)NULL_WORD);
6572   }
6573 #else
6574   movl(dst, (int32_t)NULL_WORD);
6575 #endif
6576 }
6577 
6578 #ifdef _LP64
6579 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6580   if (UseCompressedClassPointers) {
6581     // Store to klass gap in destination
6582     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6583   }
6584 }
6585 
6586 #ifdef ASSERT
6587 void MacroAssembler::verify_heapbase(const char* msg) {
6588   assert (UseCompressedOops, "should be compressed");
6589   assert (Universe::heap() != NULL, "java heap should be initialized");
6590   if (CheckCompressedOops) {
6591     Label ok;
6592     push(rscratch1); // cmpptr trashes rscratch1
6593     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6594     jcc(Assembler::equal, ok);
6595     STOP(msg);
6596     bind(ok);
6597     pop(rscratch1);
6598   }
6599 }
6600 #endif
6601 
6602 // Algorithm must match oop.inline.hpp encode_heap_oop.
6603 void MacroAssembler::encode_heap_oop(Register r) {
6604 #ifdef ASSERT
6605   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6606 #endif
6607   verify_oop(r, "broken oop in encode_heap_oop");
6608   if (Universe::narrow_oop_base() == NULL) {
6609     if (Universe::narrow_oop_shift() != 0) {
6610       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6611       shrq(r, LogMinObjAlignmentInBytes);
6612     }
6613     return;
6614   }
6615   testq(r, r);
6616   cmovq(Assembler::equal, r, r12_heapbase);
6617   subq(r, r12_heapbase);
6618   shrq(r, LogMinObjAlignmentInBytes);
6619 }
6620 
6621 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6622 #ifdef ASSERT
6623   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6624   if (CheckCompressedOops) {
6625     Label ok;
6626     testq(r, r);
6627     jcc(Assembler::notEqual, ok);
6628     STOP("null oop passed to encode_heap_oop_not_null");
6629     bind(ok);
6630   }
6631 #endif
6632   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6633   if (Universe::narrow_oop_base() != NULL) {
6634     subq(r, r12_heapbase);
6635   }
6636   if (Universe::narrow_oop_shift() != 0) {
6637     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6638     shrq(r, LogMinObjAlignmentInBytes);
6639   }
6640 }
6641 
6642 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6643 #ifdef ASSERT
6644   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6645   if (CheckCompressedOops) {
6646     Label ok;
6647     testq(src, src);
6648     jcc(Assembler::notEqual, ok);
6649     STOP("null oop passed to encode_heap_oop_not_null2");
6650     bind(ok);
6651   }
6652 #endif
6653   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6654   if (dst != src) {
6655     movq(dst, src);
6656   }
6657   if (Universe::narrow_oop_base() != NULL) {
6658     subq(dst, r12_heapbase);
6659   }
6660   if (Universe::narrow_oop_shift() != 0) {
6661     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6662     shrq(dst, LogMinObjAlignmentInBytes);
6663   }
6664 }
6665 
6666 void  MacroAssembler::decode_heap_oop(Register r) {
6667 #ifdef ASSERT
6668   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6669 #endif
6670   if (Universe::narrow_oop_base() == NULL) {
6671     if (Universe::narrow_oop_shift() != 0) {
6672       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6673       shlq(r, LogMinObjAlignmentInBytes);
6674     }
6675   } else {
6676     Label done;
6677     shlq(r, LogMinObjAlignmentInBytes);
6678     jccb(Assembler::equal, done);
6679     addq(r, r12_heapbase);
6680     bind(done);
6681   }
6682   verify_oop(r, "broken oop in decode_heap_oop");
6683 }
6684 
6685 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6686   // Note: it will change flags
6687   assert (UseCompressedOops, "should only be used for compressed headers");
6688   assert (Universe::heap() != NULL, "java heap should be initialized");
6689   // Cannot assert, unverified entry point counts instructions (see .ad file)
6690   // vtableStubs also counts instructions in pd_code_size_limit.
6691   // Also do not verify_oop as this is called by verify_oop.
6692   if (Universe::narrow_oop_shift() != 0) {
6693     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6694     shlq(r, LogMinObjAlignmentInBytes);
6695     if (Universe::narrow_oop_base() != NULL) {
6696       addq(r, r12_heapbase);
6697     }
6698   } else {
6699     assert (Universe::narrow_oop_base() == NULL, "sanity");
6700   }
6701 }
6702 
6703 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6704   // Note: it will change flags
6705   assert (UseCompressedOops, "should only be used for compressed headers");
6706   assert (Universe::heap() != NULL, "java heap should be initialized");
6707   // Cannot assert, unverified entry point counts instructions (see .ad file)
6708   // vtableStubs also counts instructions in pd_code_size_limit.
6709   // Also do not verify_oop as this is called by verify_oop.
6710   if (Universe::narrow_oop_shift() != 0) {
6711     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6712     if (LogMinObjAlignmentInBytes == Address::times_8) {
6713       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6714     } else {
6715       if (dst != src) {
6716         movq(dst, src);
6717       }
6718       shlq(dst, LogMinObjAlignmentInBytes);
6719       if (Universe::narrow_oop_base() != NULL) {
6720         addq(dst, r12_heapbase);
6721       }
6722     }
6723   } else {
6724     assert (Universe::narrow_oop_base() == NULL, "sanity");
6725     if (dst != src) {
6726       movq(dst, src);
6727     }
6728   }
6729 }
6730 
6731 void MacroAssembler::encode_klass_not_null(Register r) {
6732   if (Universe::narrow_klass_base() != NULL) {
6733     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6734     assert(r != r12_heapbase, "Encoding a klass in r12");
6735     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6736     subq(r, r12_heapbase);
6737   }
6738   if (Universe::narrow_klass_shift() != 0) {
6739     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6740     shrq(r, LogKlassAlignmentInBytes);
6741   }
6742   if (Universe::narrow_klass_base() != NULL) {
6743     reinit_heapbase();
6744   }
6745 }
6746 
6747 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6748   if (dst == src) {
6749     encode_klass_not_null(src);
6750   } else {
6751     if (Universe::narrow_klass_base() != NULL) {
6752       mov64(dst, (int64_t)Universe::narrow_klass_base());
6753       negq(dst);
6754       addq(dst, src);
6755     } else {
6756       movptr(dst, src);
6757     }
6758     if (Universe::narrow_klass_shift() != 0) {
6759       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6760       shrq(dst, LogKlassAlignmentInBytes);
6761     }
6762   }
6763 }
6764 
6765 // Function instr_size_for_decode_klass_not_null() counts the instructions
6766 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6767 // when (Universe::heap() != NULL).  Hence, if the instructions they
6768 // generate change, then this method needs to be updated.
6769 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6770   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6771   if (Universe::narrow_klass_base() != NULL) {
6772     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6773     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6774   } else {
6775     // longest load decode klass function, mov64, leaq
6776     return 16;
6777   }
6778 }
6779 
6780 // !!! If the instructions that get generated here change then function
6781 // instr_size_for_decode_klass_not_null() needs to get updated.
6782 void  MacroAssembler::decode_klass_not_null(Register r) {
6783   // Note: it will change flags
6784   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6785   assert(r != r12_heapbase, "Decoding a klass in r12");
6786   // Cannot assert, unverified entry point counts instructions (see .ad file)
6787   // vtableStubs also counts instructions in pd_code_size_limit.
6788   // Also do not verify_oop as this is called by verify_oop.
6789   if (Universe::narrow_klass_shift() != 0) {
6790     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6791     shlq(r, LogKlassAlignmentInBytes);
6792   }
6793   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6794   if (Universe::narrow_klass_base() != NULL) {
6795     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6796     addq(r, r12_heapbase);
6797     reinit_heapbase();
6798   }
6799 }
6800 
6801 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6802   // Note: it will change flags
6803   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6804   if (dst == src) {
6805     decode_klass_not_null(dst);
6806   } else {
6807     // Cannot assert, unverified entry point counts instructions (see .ad file)
6808     // vtableStubs also counts instructions in pd_code_size_limit.
6809     // Also do not verify_oop as this is called by verify_oop.
6810     mov64(dst, (int64_t)Universe::narrow_klass_base());
6811     if (Universe::narrow_klass_shift() != 0) {
6812       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6813       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6814       leaq(dst, Address(dst, src, Address::times_8, 0));
6815     } else {
6816       addq(dst, src);
6817     }
6818   }
6819 }
6820 
6821 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6822   assert (UseCompressedOops, "should only be used for compressed headers");
6823   assert (Universe::heap() != NULL, "java heap should be initialized");
6824   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6825   int oop_index = oop_recorder()->find_index(obj);
6826   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6827   mov_narrow_oop(dst, oop_index, rspec);
6828 }
6829 
6830 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6831   assert (UseCompressedOops, "should only be used for compressed headers");
6832   assert (Universe::heap() != NULL, "java heap should be initialized");
6833   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6834   int oop_index = oop_recorder()->find_index(obj);
6835   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6836   mov_narrow_oop(dst, oop_index, rspec);
6837 }
6838 
6839 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6840   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6841   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6842   int klass_index = oop_recorder()->find_index(k);
6843   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6844   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6845 }
6846 
6847 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6848   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6849   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6850   int klass_index = oop_recorder()->find_index(k);
6851   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6852   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6853 }
6854 
6855 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6856   assert (UseCompressedOops, "should only be used for compressed headers");
6857   assert (Universe::heap() != NULL, "java heap should be initialized");
6858   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6859   int oop_index = oop_recorder()->find_index(obj);
6860   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6861   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6862 }
6863 
6864 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6865   assert (UseCompressedOops, "should only be used for compressed headers");
6866   assert (Universe::heap() != NULL, "java heap should be initialized");
6867   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6868   int oop_index = oop_recorder()->find_index(obj);
6869   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6870   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6871 }
6872 
6873 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6874   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6875   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6876   int klass_index = oop_recorder()->find_index(k);
6877   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6878   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6879 }
6880 
6881 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6882   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6883   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6884   int klass_index = oop_recorder()->find_index(k);
6885   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6886   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6887 }
6888 
6889 void MacroAssembler::reinit_heapbase() {
6890   if (UseCompressedOops || UseCompressedClassPointers) {
6891     if (Universe::heap() != NULL) {
6892       if (Universe::narrow_oop_base() == NULL) {
6893         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6894       } else {
6895         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6896       }
6897     } else {
6898       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6899     }
6900   }
6901 }
6902 
6903 #endif // _LP64
6904 
6905 
6906 // C2 compiled method's prolog code.
6907 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6908 
6909   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6910   // NativeJump::patch_verified_entry will be able to patch out the entry
6911   // code safely. The push to verify stack depth is ok at 5 bytes,
6912   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6913   // stack bang then we must use the 6 byte frame allocation even if
6914   // we have no frame. :-(
6915   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6916 
6917   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6918   // Remove word for return addr
6919   framesize -= wordSize;
6920   stack_bang_size -= wordSize;
6921 
6922   // Calls to C2R adapters often do not accept exceptional returns.
6923   // We require that their callers must bang for them.  But be careful, because
6924   // some VM calls (such as call site linkage) can use several kilobytes of
6925   // stack.  But the stack safety zone should account for that.
6926   // See bugs 4446381, 4468289, 4497237.
6927   if (stack_bang_size > 0) {
6928     generate_stack_overflow_check(stack_bang_size);
6929 
6930     // We always push rbp, so that on return to interpreter rbp, will be
6931     // restored correctly and we can correct the stack.
6932     push(rbp);
6933     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6934     if (PreserveFramePointer) {
6935       mov(rbp, rsp);
6936     }
6937     // Remove word for ebp
6938     framesize -= wordSize;
6939 
6940     // Create frame
6941     if (framesize) {
6942       subptr(rsp, framesize);
6943     }
6944   } else {
6945     // Create frame (force generation of a 4 byte immediate value)
6946     subptr_imm32(rsp, framesize);
6947 
6948     // Save RBP register now.
6949     framesize -= wordSize;
6950     movptr(Address(rsp, framesize), rbp);
6951     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6952     if (PreserveFramePointer) {
6953       movptr(rbp, rsp);
6954       if (framesize > 0) {
6955         addptr(rbp, framesize);
6956       }
6957     }
6958   }
6959 
6960   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6961     framesize -= wordSize;
6962     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6963   }
6964 
6965 #ifndef _LP64
6966   // If method sets FPU control word do it now
6967   if (fp_mode_24b) {
6968     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6969   }
6970   if (UseSSE >= 2 && VerifyFPU) {
6971     verify_FPU(0, "FPU stack must be clean on entry");
6972   }
6973 #endif
6974 
6975 #ifdef ASSERT
6976   if (VerifyStackAtCalls) {
6977     Label L;
6978     push(rax);
6979     mov(rax, rsp);
6980     andptr(rax, StackAlignmentInBytes-1);
6981     cmpptr(rax, StackAlignmentInBytes-wordSize);
6982     pop(rax);
6983     jcc(Assembler::equal, L);
6984     STOP("Stack is not properly aligned!");
6985     bind(L);
6986   }
6987 #endif
6988 
6989 }
6990 
6991 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, bool is_large) {
6992   // cnt - number of qwords (8-byte words).
6993   // base - start address, qword aligned.
6994   // is_large - if optimizers know cnt is larger than InitArrayShortSize
6995   assert(base==rdi, "base register must be edi for rep stos");
6996   assert(tmp==rax,   "tmp register must be eax for rep stos");
6997   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6998   assert(InitArrayShortSize % BytesPerLong == 0,
6999     "InitArrayShortSize should be the multiple of BytesPerLong");
7000 
7001   Label DONE;
7002 
7003   xorptr(tmp, tmp);
7004 
7005   if (!is_large) {
7006     Label LOOP, LONG;
7007     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
7008     jccb(Assembler::greater, LONG);
7009 
7010     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7011 
7012     decrement(cnt);
7013     jccb(Assembler::negative, DONE); // Zero length
7014 
7015     // Use individual pointer-sized stores for small counts:
7016     BIND(LOOP);
7017     movptr(Address(base, cnt, Address::times_ptr), tmp);
7018     decrement(cnt);
7019     jccb(Assembler::greaterEqual, LOOP);
7020     jmpb(DONE);
7021 
7022     BIND(LONG);
7023   }
7024 
7025   // Use longer rep-prefixed ops for non-small counts:
7026   if (UseFastStosb) {
7027     shlptr(cnt, 3); // convert to number of bytes
7028     rep_stosb();
7029   } else {
7030     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7031     rep_stos();
7032   }
7033 
7034   BIND(DONE);
7035 }
7036 
7037 #ifdef COMPILER2
7038 
7039 // IndexOf for constant substrings with size >= 8 chars
7040 // which don't need to be loaded through stack.
7041 void MacroAssembler::string_indexofC8(Register str1, Register str2,
7042                                       Register cnt1, Register cnt2,
7043                                       int int_cnt2,  Register result,
7044                                       XMMRegister vec, Register tmp,
7045                                       int ae) {
7046   ShortBranchVerifier sbv(this);
7047   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7048   assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7049   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7050 
7051   // This method uses the pcmpestri instruction with bound registers
7052   //   inputs:
7053   //     xmm - substring
7054   //     rax - substring length (elements count)
7055   //     mem - scanned string
7056   //     rdx - string length (elements count)
7057   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7058   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7059   //   outputs:
7060   //     rcx - matched index in string
7061   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7062   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7063   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7064   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7065   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7066 
7067   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
7068         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
7069         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
7070 
7071   // Note, inline_string_indexOf() generates checks:
7072   // if (substr.count > string.count) return -1;
7073   // if (substr.count == 0) return 0;
7074   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
7075 
7076   // Load substring.
7077   if (ae == StrIntrinsicNode::UL) {
7078     pmovzxbw(vec, Address(str2, 0));
7079   } else {
7080     movdqu(vec, Address(str2, 0));
7081   }
7082   movl(cnt2, int_cnt2);
7083   movptr(result, str1); // string addr
7084 
7085   if (int_cnt2 > stride) {
7086     jmpb(SCAN_TO_SUBSTR);
7087 
7088     // Reload substr for rescan, this code
7089     // is executed only for large substrings (> 8 chars)
7090     bind(RELOAD_SUBSTR);
7091     if (ae == StrIntrinsicNode::UL) {
7092       pmovzxbw(vec, Address(str2, 0));
7093     } else {
7094       movdqu(vec, Address(str2, 0));
7095     }
7096     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
7097 
7098     bind(RELOAD_STR);
7099     // We came here after the beginning of the substring was
7100     // matched but the rest of it was not so we need to search
7101     // again. Start from the next element after the previous match.
7102 
7103     // cnt2 is number of substring reminding elements and
7104     // cnt1 is number of string reminding elements when cmp failed.
7105     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
7106     subl(cnt1, cnt2);
7107     addl(cnt1, int_cnt2);
7108     movl(cnt2, int_cnt2); // Now restore cnt2
7109 
7110     decrementl(cnt1);     // Shift to next element
7111     cmpl(cnt1, cnt2);
7112     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7113 
7114     addptr(result, (1<<scale1));
7115 
7116   } // (int_cnt2 > 8)
7117 
7118   // Scan string for start of substr in 16-byte vectors
7119   bind(SCAN_TO_SUBSTR);
7120   pcmpestri(vec, Address(result, 0), mode);
7121   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7122   subl(cnt1, stride);
7123   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7124   cmpl(cnt1, cnt2);
7125   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7126   addptr(result, 16);
7127   jmpb(SCAN_TO_SUBSTR);
7128 
7129   // Found a potential substr
7130   bind(FOUND_CANDIDATE);
7131   // Matched whole vector if first element matched (tmp(rcx) == 0).
7132   if (int_cnt2 == stride) {
7133     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
7134   } else { // int_cnt2 > 8
7135     jccb(Assembler::overflow, FOUND_SUBSTR);
7136   }
7137   // After pcmpestri tmp(rcx) contains matched element index
7138   // Compute start addr of substr
7139   lea(result, Address(result, tmp, scale1));
7140 
7141   // Make sure string is still long enough
7142   subl(cnt1, tmp);
7143   cmpl(cnt1, cnt2);
7144   if (int_cnt2 == stride) {
7145     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7146   } else { // int_cnt2 > 8
7147     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
7148   }
7149   // Left less then substring.
7150 
7151   bind(RET_NOT_FOUND);
7152   movl(result, -1);
7153   jmp(EXIT);
7154 
7155   if (int_cnt2 > stride) {
7156     // This code is optimized for the case when whole substring
7157     // is matched if its head is matched.
7158     bind(MATCH_SUBSTR_HEAD);
7159     pcmpestri(vec, Address(result, 0), mode);
7160     // Reload only string if does not match
7161     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
7162 
7163     Label CONT_SCAN_SUBSTR;
7164     // Compare the rest of substring (> 8 chars).
7165     bind(FOUND_SUBSTR);
7166     // First 8 chars are already matched.
7167     negptr(cnt2);
7168     addptr(cnt2, stride);
7169 
7170     bind(SCAN_SUBSTR);
7171     subl(cnt1, stride);
7172     cmpl(cnt2, -stride); // Do not read beyond substring
7173     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
7174     // Back-up strings to avoid reading beyond substring:
7175     // cnt1 = cnt1 - cnt2 + 8
7176     addl(cnt1, cnt2); // cnt2 is negative
7177     addl(cnt1, stride);
7178     movl(cnt2, stride); negptr(cnt2);
7179     bind(CONT_SCAN_SUBSTR);
7180     if (int_cnt2 < (int)G) {
7181       int tail_off1 = int_cnt2<<scale1;
7182       int tail_off2 = int_cnt2<<scale2;
7183       if (ae == StrIntrinsicNode::UL) {
7184         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
7185       } else {
7186         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
7187       }
7188       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
7189     } else {
7190       // calculate index in register to avoid integer overflow (int_cnt2*2)
7191       movl(tmp, int_cnt2);
7192       addptr(tmp, cnt2);
7193       if (ae == StrIntrinsicNode::UL) {
7194         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
7195       } else {
7196         movdqu(vec, Address(str2, tmp, scale2, 0));
7197       }
7198       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
7199     }
7200     // Need to reload strings pointers if not matched whole vector
7201     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7202     addptr(cnt2, stride);
7203     jcc(Assembler::negative, SCAN_SUBSTR);
7204     // Fall through if found full substring
7205 
7206   } // (int_cnt2 > 8)
7207 
7208   bind(RET_FOUND);
7209   // Found result if we matched full small substring.
7210   // Compute substr offset
7211   subptr(result, str1);
7212   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7213     shrl(result, 1); // index
7214   }
7215   bind(EXIT);
7216 
7217 } // string_indexofC8
7218 
7219 // Small strings are loaded through stack if they cross page boundary.
7220 void MacroAssembler::string_indexof(Register str1, Register str2,
7221                                     Register cnt1, Register cnt2,
7222                                     int int_cnt2,  Register result,
7223                                     XMMRegister vec, Register tmp,
7224                                     int ae) {
7225   ShortBranchVerifier sbv(this);
7226   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7227   assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7228   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7229 
7230   //
7231   // int_cnt2 is length of small (< 8 chars) constant substring
7232   // or (-1) for non constant substring in which case its length
7233   // is in cnt2 register.
7234   //
7235   // Note, inline_string_indexOf() generates checks:
7236   // if (substr.count > string.count) return -1;
7237   // if (substr.count == 0) return 0;
7238   //
7239   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7240   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
7241   // This method uses the pcmpestri instruction with bound registers
7242   //   inputs:
7243   //     xmm - substring
7244   //     rax - substring length (elements count)
7245   //     mem - scanned string
7246   //     rdx - string length (elements count)
7247   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7248   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7249   //   outputs:
7250   //     rcx - matched index in string
7251   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7252   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7253   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7254   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7255 
7256   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
7257         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
7258         FOUND_CANDIDATE;
7259 
7260   { //========================================================
7261     // We don't know where these strings are located
7262     // and we can't read beyond them. Load them through stack.
7263     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
7264 
7265     movptr(tmp, rsp); // save old SP
7266 
7267     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
7268       if (int_cnt2 == (1>>scale2)) { // One byte
7269         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
7270         load_unsigned_byte(result, Address(str2, 0));
7271         movdl(vec, result); // move 32 bits
7272       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
7273         // Not enough header space in 32-bit VM: 12+3 = 15.
7274         movl(result, Address(str2, -1));
7275         shrl(result, 8);
7276         movdl(vec, result); // move 32 bits
7277       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
7278         load_unsigned_short(result, Address(str2, 0));
7279         movdl(vec, result); // move 32 bits
7280       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
7281         movdl(vec, Address(str2, 0)); // move 32 bits
7282       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
7283         movq(vec, Address(str2, 0));  // move 64 bits
7284       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
7285         // Array header size is 12 bytes in 32-bit VM
7286         // + 6 bytes for 3 chars == 18 bytes,
7287         // enough space to load vec and shift.
7288         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
7289         if (ae == StrIntrinsicNode::UL) {
7290           int tail_off = int_cnt2-8;
7291           pmovzxbw(vec, Address(str2, tail_off));
7292           psrldq(vec, -2*tail_off);
7293         }
7294         else {
7295           int tail_off = int_cnt2*(1<<scale2);
7296           movdqu(vec, Address(str2, tail_off-16));
7297           psrldq(vec, 16-tail_off);
7298         }
7299       }
7300     } else { // not constant substring
7301       cmpl(cnt2, stride);
7302       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
7303 
7304       // We can read beyond string if srt+16 does not cross page boundary
7305       // since heaps are aligned and mapped by pages.
7306       assert(os::vm_page_size() < (int)G, "default page should be small");
7307       movl(result, str2); // We need only low 32 bits
7308       andl(result, (os::vm_page_size()-1));
7309       cmpl(result, (os::vm_page_size()-16));
7310       jccb(Assembler::belowEqual, CHECK_STR);
7311 
7312       // Move small strings to stack to allow load 16 bytes into vec.
7313       subptr(rsp, 16);
7314       int stk_offset = wordSize-(1<<scale2);
7315       push(cnt2);
7316 
7317       bind(COPY_SUBSTR);
7318       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7319         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7320         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7321       } else if (ae == StrIntrinsicNode::UU) {
7322         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7323         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7324       }
7325       decrement(cnt2);
7326       jccb(Assembler::notZero, COPY_SUBSTR);
7327 
7328       pop(cnt2);
7329       movptr(str2, rsp);  // New substring address
7330     } // non constant
7331 
7332     bind(CHECK_STR);
7333     cmpl(cnt1, stride);
7334     jccb(Assembler::aboveEqual, BIG_STRINGS);
7335 
7336     // Check cross page boundary.
7337     movl(result, str1); // We need only low 32 bits
7338     andl(result, (os::vm_page_size()-1));
7339     cmpl(result, (os::vm_page_size()-16));
7340     jccb(Assembler::belowEqual, BIG_STRINGS);
7341 
7342     subptr(rsp, 16);
7343     int stk_offset = -(1<<scale1);
7344     if (int_cnt2 < 0) { // not constant
7345       push(cnt2);
7346       stk_offset += wordSize;
7347     }
7348     movl(cnt2, cnt1);
7349 
7350     bind(COPY_STR);
7351     if (ae == StrIntrinsicNode::LL) {
7352       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7353       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7354     } else {
7355       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7356       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7357     }
7358     decrement(cnt2);
7359     jccb(Assembler::notZero, COPY_STR);
7360 
7361     if (int_cnt2 < 0) { // not constant
7362       pop(cnt2);
7363     }
7364     movptr(str1, rsp);  // New string address
7365 
7366     bind(BIG_STRINGS);
7367     // Load substring.
7368     if (int_cnt2 < 0) { // -1
7369       if (ae == StrIntrinsicNode::UL) {
7370         pmovzxbw(vec, Address(str2, 0));
7371       } else {
7372         movdqu(vec, Address(str2, 0));
7373       }
7374       push(cnt2);       // substr count
7375       push(str2);       // substr addr
7376       push(str1);       // string addr
7377     } else {
7378       // Small (< 8 chars) constant substrings are loaded already.
7379       movl(cnt2, int_cnt2);
7380     }
7381     push(tmp);  // original SP
7382 
7383   } // Finished loading
7384 
7385   //========================================================
7386   // Start search
7387   //
7388 
7389   movptr(result, str1); // string addr
7390 
7391   if (int_cnt2  < 0) {  // Only for non constant substring
7392     jmpb(SCAN_TO_SUBSTR);
7393 
7394     // SP saved at sp+0
7395     // String saved at sp+1*wordSize
7396     // Substr saved at sp+2*wordSize
7397     // Substr count saved at sp+3*wordSize
7398 
7399     // Reload substr for rescan, this code
7400     // is executed only for large substrings (> 8 chars)
7401     bind(RELOAD_SUBSTR);
7402     movptr(str2, Address(rsp, 2*wordSize));
7403     movl(cnt2, Address(rsp, 3*wordSize));
7404     if (ae == StrIntrinsicNode::UL) {
7405       pmovzxbw(vec, Address(str2, 0));
7406     } else {
7407       movdqu(vec, Address(str2, 0));
7408     }
7409     // We came here after the beginning of the substring was
7410     // matched but the rest of it was not so we need to search
7411     // again. Start from the next element after the previous match.
7412     subptr(str1, result); // Restore counter
7413     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7414       shrl(str1, 1);
7415     }
7416     addl(cnt1, str1);
7417     decrementl(cnt1);   // Shift to next element
7418     cmpl(cnt1, cnt2);
7419     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7420 
7421     addptr(result, (1<<scale1));
7422   } // non constant
7423 
7424   // Scan string for start of substr in 16-byte vectors
7425   bind(SCAN_TO_SUBSTR);
7426   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7427   pcmpestri(vec, Address(result, 0), mode);
7428   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7429   subl(cnt1, stride);
7430   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7431   cmpl(cnt1, cnt2);
7432   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7433   addptr(result, 16);
7434 
7435   bind(ADJUST_STR);
7436   cmpl(cnt1, stride); // Do not read beyond string
7437   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7438   // Back-up string to avoid reading beyond string.
7439   lea(result, Address(result, cnt1, scale1, -16));
7440   movl(cnt1, stride);
7441   jmpb(SCAN_TO_SUBSTR);
7442 
7443   // Found a potential substr
7444   bind(FOUND_CANDIDATE);
7445   // After pcmpestri tmp(rcx) contains matched element index
7446 
7447   // Make sure string is still long enough
7448   subl(cnt1, tmp);
7449   cmpl(cnt1, cnt2);
7450   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7451   // Left less then substring.
7452 
7453   bind(RET_NOT_FOUND);
7454   movl(result, -1);
7455   jmpb(CLEANUP);
7456 
7457   bind(FOUND_SUBSTR);
7458   // Compute start addr of substr
7459   lea(result, Address(result, tmp, scale1));
7460   if (int_cnt2 > 0) { // Constant substring
7461     // Repeat search for small substring (< 8 chars)
7462     // from new point without reloading substring.
7463     // Have to check that we don't read beyond string.
7464     cmpl(tmp, stride-int_cnt2);
7465     jccb(Assembler::greater, ADJUST_STR);
7466     // Fall through if matched whole substring.
7467   } else { // non constant
7468     assert(int_cnt2 == -1, "should be != 0");
7469 
7470     addl(tmp, cnt2);
7471     // Found result if we matched whole substring.
7472     cmpl(tmp, stride);
7473     jccb(Assembler::lessEqual, RET_FOUND);
7474 
7475     // Repeat search for small substring (<= 8 chars)
7476     // from new point 'str1' without reloading substring.
7477     cmpl(cnt2, stride);
7478     // Have to check that we don't read beyond string.
7479     jccb(Assembler::lessEqual, ADJUST_STR);
7480 
7481     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7482     // Compare the rest of substring (> 8 chars).
7483     movptr(str1, result);
7484 
7485     cmpl(tmp, cnt2);
7486     // First 8 chars are already matched.
7487     jccb(Assembler::equal, CHECK_NEXT);
7488 
7489     bind(SCAN_SUBSTR);
7490     pcmpestri(vec, Address(str1, 0), mode);
7491     // Need to reload strings pointers if not matched whole vector
7492     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7493 
7494     bind(CHECK_NEXT);
7495     subl(cnt2, stride);
7496     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7497     addptr(str1, 16);
7498     if (ae == StrIntrinsicNode::UL) {
7499       addptr(str2, 8);
7500     } else {
7501       addptr(str2, 16);
7502     }
7503     subl(cnt1, stride);
7504     cmpl(cnt2, stride); // Do not read beyond substring
7505     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7506     // Back-up strings to avoid reading beyond substring.
7507 
7508     if (ae == StrIntrinsicNode::UL) {
7509       lea(str2, Address(str2, cnt2, scale2, -8));
7510       lea(str1, Address(str1, cnt2, scale1, -16));
7511     } else {
7512       lea(str2, Address(str2, cnt2, scale2, -16));
7513       lea(str1, Address(str1, cnt2, scale1, -16));
7514     }
7515     subl(cnt1, cnt2);
7516     movl(cnt2, stride);
7517     addl(cnt1, stride);
7518     bind(CONT_SCAN_SUBSTR);
7519     if (ae == StrIntrinsicNode::UL) {
7520       pmovzxbw(vec, Address(str2, 0));
7521     } else {
7522       movdqu(vec, Address(str2, 0));
7523     }
7524     jmp(SCAN_SUBSTR);
7525 
7526     bind(RET_FOUND_LONG);
7527     movptr(str1, Address(rsp, wordSize));
7528   } // non constant
7529 
7530   bind(RET_FOUND);
7531   // Compute substr offset
7532   subptr(result, str1);
7533   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7534     shrl(result, 1); // index
7535   }
7536   bind(CLEANUP);
7537   pop(rsp); // restore SP
7538 
7539 } // string_indexof
7540 
7541 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7542                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7543   ShortBranchVerifier sbv(this);
7544   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7545   assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7546 
7547   int stride = 8;
7548 
7549   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7550         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7551         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7552         FOUND_SEQ_CHAR, DONE_LABEL;
7553 
7554   movptr(result, str1);
7555   if (UseAVX >= 2) {
7556     cmpl(cnt1, stride);
7557     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7558     cmpl(cnt1, 2*stride);
7559     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
7560     movdl(vec1, ch);
7561     vpbroadcastw(vec1, vec1);
7562     vpxor(vec2, vec2);
7563     movl(tmp, cnt1);
7564     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7565     andl(cnt1,0x0000000F);  //tail count (in chars)
7566 
7567     bind(SCAN_TO_16_CHAR_LOOP);
7568     vmovdqu(vec3, Address(result, 0));
7569     vpcmpeqw(vec3, vec3, vec1, 1);
7570     vptest(vec2, vec3);
7571     jcc(Assembler::carryClear, FOUND_CHAR);
7572     addptr(result, 32);
7573     subl(tmp, 2*stride);
7574     jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7575     jmp(SCAN_TO_8_CHAR);
7576     bind(SCAN_TO_8_CHAR_INIT);
7577     movdl(vec1, ch);
7578     pshuflw(vec1, vec1, 0x00);
7579     pshufd(vec1, vec1, 0);
7580     pxor(vec2, vec2);
7581   }
7582   bind(SCAN_TO_8_CHAR);
7583   cmpl(cnt1, stride);
7584   if (UseAVX >= 2) {
7585     jcc(Assembler::less, SCAN_TO_CHAR);
7586   } else {
7587     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7588     movdl(vec1, ch);
7589     pshuflw(vec1, vec1, 0x00);
7590     pshufd(vec1, vec1, 0);
7591     pxor(vec2, vec2);
7592   }
7593   movl(tmp, cnt1);
7594   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7595   andl(cnt1,0x00000007);  //tail count (in chars)
7596 
7597   bind(SCAN_TO_8_CHAR_LOOP);
7598   movdqu(vec3, Address(result, 0));
7599   pcmpeqw(vec3, vec1);
7600   ptest(vec2, vec3);
7601   jcc(Assembler::carryClear, FOUND_CHAR);
7602   addptr(result, 16);
7603   subl(tmp, stride);
7604   jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7605   bind(SCAN_TO_CHAR);
7606   testl(cnt1, cnt1);
7607   jcc(Assembler::zero, RET_NOT_FOUND);
7608   bind(SCAN_TO_CHAR_LOOP);
7609   load_unsigned_short(tmp, Address(result, 0));
7610   cmpl(ch, tmp);
7611   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7612   addptr(result, 2);
7613   subl(cnt1, 1);
7614   jccb(Assembler::zero, RET_NOT_FOUND);
7615   jmp(SCAN_TO_CHAR_LOOP);
7616 
7617   bind(RET_NOT_FOUND);
7618   movl(result, -1);
7619   jmpb(DONE_LABEL);
7620 
7621   bind(FOUND_CHAR);
7622   if (UseAVX >= 2) {
7623     vpmovmskb(tmp, vec3);
7624   } else {
7625     pmovmskb(tmp, vec3);
7626   }
7627   bsfl(ch, tmp);
7628   addl(result, ch);
7629 
7630   bind(FOUND_SEQ_CHAR);
7631   subptr(result, str1);
7632   shrl(result, 1);
7633 
7634   bind(DONE_LABEL);
7635 } // string_indexof_char
7636 
7637 // helper function for string_compare
7638 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7639                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7640                                         Address::ScaleFactor scale2, Register index, int ae) {
7641   if (ae == StrIntrinsicNode::LL) {
7642     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7643     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7644   } else if (ae == StrIntrinsicNode::UU) {
7645     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7646     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7647   } else {
7648     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7649     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7650   }
7651 }
7652 
7653 // Compare strings, used for char[] and byte[].
7654 void MacroAssembler::string_compare(Register str1, Register str2,
7655                                     Register cnt1, Register cnt2, Register result,
7656                                     XMMRegister vec1, int ae) {
7657   ShortBranchVerifier sbv(this);
7658   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7659   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7660   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7661   int stride2x2 = 0x40;
7662   Address::ScaleFactor scale = Address::no_scale;
7663   Address::ScaleFactor scale1 = Address::no_scale;
7664   Address::ScaleFactor scale2 = Address::no_scale;
7665 
7666   if (ae != StrIntrinsicNode::LL) {
7667     stride2x2 = 0x20;
7668   }
7669 
7670   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7671     shrl(cnt2, 1);
7672   }
7673   // Compute the minimum of the string lengths and the
7674   // difference of the string lengths (stack).
7675   // Do the conditional move stuff
7676   movl(result, cnt1);
7677   subl(cnt1, cnt2);
7678   push(cnt1);
7679   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7680 
7681   // Is the minimum length zero?
7682   testl(cnt2, cnt2);
7683   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7684   if (ae == StrIntrinsicNode::LL) {
7685     // Load first bytes
7686     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7687     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7688   } else if (ae == StrIntrinsicNode::UU) {
7689     // Load first characters
7690     load_unsigned_short(result, Address(str1, 0));
7691     load_unsigned_short(cnt1, Address(str2, 0));
7692   } else {
7693     load_unsigned_byte(result, Address(str1, 0));
7694     load_unsigned_short(cnt1, Address(str2, 0));
7695   }
7696   subl(result, cnt1);
7697   jcc(Assembler::notZero,  POP_LABEL);
7698 
7699   if (ae == StrIntrinsicNode::UU) {
7700     // Divide length by 2 to get number of chars
7701     shrl(cnt2, 1);
7702   }
7703   cmpl(cnt2, 1);
7704   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7705 
7706   // Check if the strings start at the same location and setup scale and stride
7707   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7708     cmpptr(str1, str2);
7709     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7710     if (ae == StrIntrinsicNode::LL) {
7711       scale = Address::times_1;
7712       stride = 16;
7713     } else {
7714       scale = Address::times_2;
7715       stride = 8;
7716     }
7717   } else {
7718     scale1 = Address::times_1;
7719     scale2 = Address::times_2;
7720     // scale not used
7721     stride = 8;
7722   }
7723 
7724   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7725     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7726     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7727     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7728     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7729     Label COMPARE_TAIL_LONG;
7730     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7731 
7732     int pcmpmask = 0x19;
7733     if (ae == StrIntrinsicNode::LL) {
7734       pcmpmask &= ~0x01;
7735     }
7736 
7737     // Setup to compare 16-chars (32-bytes) vectors,
7738     // start from first character again because it has aligned address.
7739     if (ae == StrIntrinsicNode::LL) {
7740       stride2 = 32;
7741     } else {
7742       stride2 = 16;
7743     }
7744     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7745       adr_stride = stride << scale;
7746     } else {
7747       adr_stride1 = 8;  //stride << scale1;
7748       adr_stride2 = 16; //stride << scale2;
7749     }
7750 
7751     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7752     // rax and rdx are used by pcmpestri as elements counters
7753     movl(result, cnt2);
7754     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7755     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7756 
7757     // fast path : compare first 2 8-char vectors.
7758     bind(COMPARE_16_CHARS);
7759     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7760       movdqu(vec1, Address(str1, 0));
7761     } else {
7762       pmovzxbw(vec1, Address(str1, 0));
7763     }
7764     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7765     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7766 
7767     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7768       movdqu(vec1, Address(str1, adr_stride));
7769       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7770     } else {
7771       pmovzxbw(vec1, Address(str1, adr_stride1));
7772       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7773     }
7774     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7775     addl(cnt1, stride);
7776 
7777     // Compare the characters at index in cnt1
7778     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7779     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7780     subl(result, cnt2);
7781     jmp(POP_LABEL);
7782 
7783     // Setup the registers to start vector comparison loop
7784     bind(COMPARE_WIDE_VECTORS);
7785     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7786       lea(str1, Address(str1, result, scale));
7787       lea(str2, Address(str2, result, scale));
7788     } else {
7789       lea(str1, Address(str1, result, scale1));
7790       lea(str2, Address(str2, result, scale2));
7791     }
7792     subl(result, stride2);
7793     subl(cnt2, stride2);
7794     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
7795     negptr(result);
7796 
7797     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
7798     bind(COMPARE_WIDE_VECTORS_LOOP);
7799 
7800 #ifdef _LP64
7801     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7802       cmpl(cnt2, stride2x2);
7803       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7804       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
7805       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
7806 
7807       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7808       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7809         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
7810         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7811       } else {
7812         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
7813         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7814       }
7815       kortestql(k7, k7);
7816       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
7817       addptr(result, stride2x2);  // update since we already compared at this addr
7818       subl(cnt2, stride2x2);      // and sub the size too
7819       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7820 
7821       vpxor(vec1, vec1);
7822       jmpb(COMPARE_WIDE_TAIL);
7823     }//if (VM_Version::supports_avx512vlbw())
7824 #endif // _LP64
7825 
7826 
7827     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7828     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7829       vmovdqu(vec1, Address(str1, result, scale));
7830       vpxor(vec1, Address(str2, result, scale));
7831     } else {
7832       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
7833       vpxor(vec1, Address(str2, result, scale2));
7834     }
7835     vptest(vec1, vec1);
7836     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
7837     addptr(result, stride2);
7838     subl(cnt2, stride2);
7839     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
7840     // clean upper bits of YMM registers
7841     vpxor(vec1, vec1);
7842 
7843     // compare wide vectors tail
7844     bind(COMPARE_WIDE_TAIL);
7845     testptr(result, result);
7846     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7847 
7848     movl(result, stride2);
7849     movl(cnt2, result);
7850     negptr(result);
7851     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7852 
7853     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
7854     bind(VECTOR_NOT_EQUAL);
7855     // clean upper bits of YMM registers
7856     vpxor(vec1, vec1);
7857     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7858       lea(str1, Address(str1, result, scale));
7859       lea(str2, Address(str2, result, scale));
7860     } else {
7861       lea(str1, Address(str1, result, scale1));
7862       lea(str2, Address(str2, result, scale2));
7863     }
7864     jmp(COMPARE_16_CHARS);
7865 
7866     // Compare tail chars, length between 1 to 15 chars
7867     bind(COMPARE_TAIL_LONG);
7868     movl(cnt2, result);
7869     cmpl(cnt2, stride);
7870     jcc(Assembler::less, COMPARE_SMALL_STR);
7871 
7872     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7873       movdqu(vec1, Address(str1, 0));
7874     } else {
7875       pmovzxbw(vec1, Address(str1, 0));
7876     }
7877     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7878     jcc(Assembler::below, COMPARE_INDEX_CHAR);
7879     subptr(cnt2, stride);
7880     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7881     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7882       lea(str1, Address(str1, result, scale));
7883       lea(str2, Address(str2, result, scale));
7884     } else {
7885       lea(str1, Address(str1, result, scale1));
7886       lea(str2, Address(str2, result, scale2));
7887     }
7888     negptr(cnt2);
7889     jmpb(WHILE_HEAD_LABEL);
7890 
7891     bind(COMPARE_SMALL_STR);
7892   } else if (UseSSE42Intrinsics) {
7893     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7894     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
7895     int pcmpmask = 0x19;
7896     // Setup to compare 8-char (16-byte) vectors,
7897     // start from first character again because it has aligned address.
7898     movl(result, cnt2);
7899     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
7900     if (ae == StrIntrinsicNode::LL) {
7901       pcmpmask &= ~0x01;
7902     }
7903     jcc(Assembler::zero, COMPARE_TAIL);
7904     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7905       lea(str1, Address(str1, result, scale));
7906       lea(str2, Address(str2, result, scale));
7907     } else {
7908       lea(str1, Address(str1, result, scale1));
7909       lea(str2, Address(str2, result, scale2));
7910     }
7911     negptr(result);
7912 
7913     // pcmpestri
7914     //   inputs:
7915     //     vec1- substring
7916     //     rax - negative string length (elements count)
7917     //     mem - scanned string
7918     //     rdx - string length (elements count)
7919     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
7920     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
7921     //   outputs:
7922     //     rcx - first mismatched element index
7923     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7924 
7925     bind(COMPARE_WIDE_VECTORS);
7926     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7927       movdqu(vec1, Address(str1, result, scale));
7928       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7929     } else {
7930       pmovzxbw(vec1, Address(str1, result, scale1));
7931       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7932     }
7933     // After pcmpestri cnt1(rcx) contains mismatched element index
7934 
7935     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
7936     addptr(result, stride);
7937     subptr(cnt2, stride);
7938     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
7939 
7940     // compare wide vectors tail
7941     testptr(result, result);
7942     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7943 
7944     movl(cnt2, stride);
7945     movl(result, stride);
7946     negptr(result);
7947     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7948       movdqu(vec1, Address(str1, result, scale));
7949       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7950     } else {
7951       pmovzxbw(vec1, Address(str1, result, scale1));
7952       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7953     }
7954     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
7955 
7956     // Mismatched characters in the vectors
7957     bind(VECTOR_NOT_EQUAL);
7958     addptr(cnt1, result);
7959     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7960     subl(result, cnt2);
7961     jmpb(POP_LABEL);
7962 
7963     bind(COMPARE_TAIL); // limit is zero
7964     movl(cnt2, result);
7965     // Fallthru to tail compare
7966   }
7967   // Shift str2 and str1 to the end of the arrays, negate min
7968   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7969     lea(str1, Address(str1, cnt2, scale));
7970     lea(str2, Address(str2, cnt2, scale));
7971   } else {
7972     lea(str1, Address(str1, cnt2, scale1));
7973     lea(str2, Address(str2, cnt2, scale2));
7974   }
7975   decrementl(cnt2);  // first character was compared already
7976   negptr(cnt2);
7977 
7978   // Compare the rest of the elements
7979   bind(WHILE_HEAD_LABEL);
7980   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
7981   subl(result, cnt1);
7982   jccb(Assembler::notZero, POP_LABEL);
7983   increment(cnt2);
7984   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
7985 
7986   // Strings are equal up to min length.  Return the length difference.
7987   bind(LENGTH_DIFF_LABEL);
7988   pop(result);
7989   if (ae == StrIntrinsicNode::UU) {
7990     // Divide diff by 2 to get number of chars
7991     sarl(result, 1);
7992   }
7993   jmpb(DONE_LABEL);
7994 
7995 #ifdef _LP64
7996   if (VM_Version::supports_avx512vlbw()) {
7997 
7998     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
7999 
8000     kmovql(cnt1, k7);
8001     notq(cnt1);
8002     bsfq(cnt2, cnt1);
8003     if (ae != StrIntrinsicNode::LL) {
8004       // Divide diff by 2 to get number of chars
8005       sarl(cnt2, 1);
8006     }
8007     addq(result, cnt2);
8008     if (ae == StrIntrinsicNode::LL) {
8009       load_unsigned_byte(cnt1, Address(str2, result));
8010       load_unsigned_byte(result, Address(str1, result));
8011     } else if (ae == StrIntrinsicNode::UU) {
8012       load_unsigned_short(cnt1, Address(str2, result, scale));
8013       load_unsigned_short(result, Address(str1, result, scale));
8014     } else {
8015       load_unsigned_short(cnt1, Address(str2, result, scale2));
8016       load_unsigned_byte(result, Address(str1, result, scale1));
8017     }
8018     subl(result, cnt1);
8019     jmpb(POP_LABEL);
8020   }//if (VM_Version::supports_avx512vlbw())
8021 #endif // _LP64
8022 
8023   // Discard the stored length difference
8024   bind(POP_LABEL);
8025   pop(cnt1);
8026 
8027   // That's it
8028   bind(DONE_LABEL);
8029   if(ae == StrIntrinsicNode::UL) {
8030     negl(result);
8031   }
8032 
8033 }
8034 
8035 // Search for Non-ASCII character (Negative byte value) in a byte array,
8036 // return true if it has any and false otherwise.
8037 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
8038 //   @HotSpotIntrinsicCandidate
8039 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
8040 //     for (int i = off; i < off + len; i++) {
8041 //       if (ba[i] < 0) {
8042 //         return true;
8043 //       }
8044 //     }
8045 //     return false;
8046 //   }
8047 void MacroAssembler::has_negatives(Register ary1, Register len,
8048   Register result, Register tmp1,
8049   XMMRegister vec1, XMMRegister vec2) {
8050   // rsi: byte array
8051   // rcx: len
8052   // rax: result
8053   ShortBranchVerifier sbv(this);
8054   assert_different_registers(ary1, len, result, tmp1);
8055   assert_different_registers(vec1, vec2);
8056   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
8057 
8058   // len == 0
8059   testl(len, len);
8060   jcc(Assembler::zero, FALSE_LABEL);
8061 
8062   if ((UseAVX > 2) && // AVX512
8063     VM_Version::supports_avx512vlbw() &&
8064     VM_Version::supports_bmi2()) {
8065 
8066     set_vector_masking();  // opening of the stub context for programming mask registers
8067 
8068     Label test_64_loop, test_tail;
8069     Register tmp3_aliased = len;
8070 
8071     movl(tmp1, len);
8072     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
8073 
8074     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
8075     andl(len, ~(64 - 1));    // vector count (in chars)
8076     jccb(Assembler::zero, test_tail);
8077 
8078     lea(ary1, Address(ary1, len, Address::times_1));
8079     negptr(len);
8080 
8081     bind(test_64_loop);
8082     // Check whether our 64 elements of size byte contain negatives
8083     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
8084     kortestql(k2, k2);
8085     jcc(Assembler::notZero, TRUE_LABEL);
8086 
8087     addptr(len, 64);
8088     jccb(Assembler::notZero, test_64_loop);
8089 
8090 
8091     bind(test_tail);
8092     // bail out when there is nothing to be done
8093     testl(tmp1, -1);
8094     jcc(Assembler::zero, FALSE_LABEL);
8095 
8096     // Save k1
8097     kmovql(k3, k1);
8098 
8099     // ~(~0 << len) applied up to two times (for 32-bit scenario)
8100 #ifdef _LP64
8101     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
8102     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
8103     notq(tmp3_aliased);
8104     kmovql(k1, tmp3_aliased);
8105 #else
8106     Label k_init;
8107     jmp(k_init);
8108 
8109     // We could not read 64-bits from a general purpose register thus we move
8110     // data required to compose 64 1's to the instruction stream
8111     // We emit 64 byte wide series of elements from 0..63 which later on would
8112     // be used as a compare targets with tail count contained in tmp1 register.
8113     // Result would be a k1 register having tmp1 consecutive number or 1
8114     // counting from least significant bit.
8115     address tmp = pc();
8116     emit_int64(0x0706050403020100);
8117     emit_int64(0x0F0E0D0C0B0A0908);
8118     emit_int64(0x1716151413121110);
8119     emit_int64(0x1F1E1D1C1B1A1918);
8120     emit_int64(0x2726252423222120);
8121     emit_int64(0x2F2E2D2C2B2A2928);
8122     emit_int64(0x3736353433323130);
8123     emit_int64(0x3F3E3D3C3B3A3938);
8124 
8125     bind(k_init);
8126     lea(len, InternalAddress(tmp));
8127     // create mask to test for negative byte inside a vector
8128     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
8129     evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
8130 
8131 #endif
8132     evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
8133     ktestq(k2, k1);
8134     // Restore k1
8135     kmovql(k1, k3);
8136     jcc(Assembler::notZero, TRUE_LABEL);
8137 
8138     jmp(FALSE_LABEL);
8139 
8140     clear_vector_masking();   // closing of the stub context for programming mask registers
8141   }
8142   else {
8143     movl(result, len); // copy
8144 
8145     if (UseAVX == 2 && UseSSE >= 2) {
8146       // With AVX2, use 32-byte vector compare
8147       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8148 
8149       // Compare 32-byte vectors
8150       andl(result, 0x0000001f);  //   tail count (in bytes)
8151       andl(len, 0xffffffe0);   // vector count (in bytes)
8152       jccb(Assembler::zero, COMPARE_TAIL);
8153 
8154       lea(ary1, Address(ary1, len, Address::times_1));
8155       negptr(len);
8156 
8157       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
8158       movdl(vec2, tmp1);
8159       vpbroadcastd(vec2, vec2);
8160 
8161       bind(COMPARE_WIDE_VECTORS);
8162       vmovdqu(vec1, Address(ary1, len, Address::times_1));
8163       vptest(vec1, vec2);
8164       jccb(Assembler::notZero, TRUE_LABEL);
8165       addptr(len, 32);
8166       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8167 
8168       testl(result, result);
8169       jccb(Assembler::zero, FALSE_LABEL);
8170 
8171       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8172       vptest(vec1, vec2);
8173       jccb(Assembler::notZero, TRUE_LABEL);
8174       jmpb(FALSE_LABEL);
8175 
8176       bind(COMPARE_TAIL); // len is zero
8177       movl(len, result);
8178       // Fallthru to tail compare
8179     }
8180     else if (UseSSE42Intrinsics) {
8181       assert(UseSSE >= 4, "SSE4 must be  for SSE4.2 intrinsics to be available");
8182       // With SSE4.2, use double quad vector compare
8183       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8184 
8185       // Compare 16-byte vectors
8186       andl(result, 0x0000000f);  //   tail count (in bytes)
8187       andl(len, 0xfffffff0);   // vector count (in bytes)
8188       jccb(Assembler::zero, COMPARE_TAIL);
8189 
8190       lea(ary1, Address(ary1, len, Address::times_1));
8191       negptr(len);
8192 
8193       movl(tmp1, 0x80808080);
8194       movdl(vec2, tmp1);
8195       pshufd(vec2, vec2, 0);
8196 
8197       bind(COMPARE_WIDE_VECTORS);
8198       movdqu(vec1, Address(ary1, len, Address::times_1));
8199       ptest(vec1, vec2);
8200       jccb(Assembler::notZero, TRUE_LABEL);
8201       addptr(len, 16);
8202       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8203 
8204       testl(result, result);
8205       jccb(Assembler::zero, FALSE_LABEL);
8206 
8207       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8208       ptest(vec1, vec2);
8209       jccb(Assembler::notZero, TRUE_LABEL);
8210       jmpb(FALSE_LABEL);
8211 
8212       bind(COMPARE_TAIL); // len is zero
8213       movl(len, result);
8214       // Fallthru to tail compare
8215     }
8216   }
8217   // Compare 4-byte vectors
8218   andl(len, 0xfffffffc); // vector count (in bytes)
8219   jccb(Assembler::zero, COMPARE_CHAR);
8220 
8221   lea(ary1, Address(ary1, len, Address::times_1));
8222   negptr(len);
8223 
8224   bind(COMPARE_VECTORS);
8225   movl(tmp1, Address(ary1, len, Address::times_1));
8226   andl(tmp1, 0x80808080);
8227   jccb(Assembler::notZero, TRUE_LABEL);
8228   addptr(len, 4);
8229   jcc(Assembler::notZero, COMPARE_VECTORS);
8230 
8231   // Compare trailing char (final 2 bytes), if any
8232   bind(COMPARE_CHAR);
8233   testl(result, 0x2);   // tail  char
8234   jccb(Assembler::zero, COMPARE_BYTE);
8235   load_unsigned_short(tmp1, Address(ary1, 0));
8236   andl(tmp1, 0x00008080);
8237   jccb(Assembler::notZero, TRUE_LABEL);
8238   subptr(result, 2);
8239   lea(ary1, Address(ary1, 2));
8240 
8241   bind(COMPARE_BYTE);
8242   testl(result, 0x1);   // tail  byte
8243   jccb(Assembler::zero, FALSE_LABEL);
8244   load_unsigned_byte(tmp1, Address(ary1, 0));
8245   andl(tmp1, 0x00000080);
8246   jccb(Assembler::notEqual, TRUE_LABEL);
8247   jmpb(FALSE_LABEL);
8248 
8249   bind(TRUE_LABEL);
8250   movl(result, 1);   // return true
8251   jmpb(DONE);
8252 
8253   bind(FALSE_LABEL);
8254   xorl(result, result); // return false
8255 
8256   // That's it
8257   bind(DONE);
8258   if (UseAVX >= 2 && UseSSE >= 2) {
8259     // clean upper bits of YMM registers
8260     vpxor(vec1, vec1);
8261     vpxor(vec2, vec2);
8262   }
8263 }
8264 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
8265 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8266                                    Register limit, Register result, Register chr,
8267                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
8268   ShortBranchVerifier sbv(this);
8269   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
8270 
8271   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8272   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
8273 
8274   if (is_array_equ) {
8275     // Check the input args
8276     cmpptr(ary1, ary2);
8277     jcc(Assembler::equal, TRUE_LABEL);
8278 
8279     // Need additional checks for arrays_equals.
8280     testptr(ary1, ary1);
8281     jcc(Assembler::zero, FALSE_LABEL);
8282     testptr(ary2, ary2);
8283     jcc(Assembler::zero, FALSE_LABEL);
8284 
8285     // Check the lengths
8286     movl(limit, Address(ary1, length_offset));
8287     cmpl(limit, Address(ary2, length_offset));
8288     jcc(Assembler::notEqual, FALSE_LABEL);
8289   }
8290 
8291   // count == 0
8292   testl(limit, limit);
8293   jcc(Assembler::zero, TRUE_LABEL);
8294 
8295   if (is_array_equ) {
8296     // Load array address
8297     lea(ary1, Address(ary1, base_offset));
8298     lea(ary2, Address(ary2, base_offset));
8299   }
8300 
8301   if (is_array_equ && is_char) {
8302     // arrays_equals when used for char[].
8303     shll(limit, 1);      // byte count != 0
8304   }
8305   movl(result, limit); // copy
8306 
8307   if (UseAVX >= 2) {
8308     // With AVX2, use 32-byte vector compare
8309     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8310 
8311     // Compare 32-byte vectors
8312     andl(result, 0x0000001f);  //   tail count (in bytes)
8313     andl(limit, 0xffffffe0);   // vector count (in bytes)
8314     jcc(Assembler::zero, COMPARE_TAIL);
8315 
8316     lea(ary1, Address(ary1, limit, Address::times_1));
8317     lea(ary2, Address(ary2, limit, Address::times_1));
8318     negptr(limit);
8319 
8320     bind(COMPARE_WIDE_VECTORS);
8321 
8322 #ifdef _LP64
8323     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8324       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8325 
8326       cmpl(limit, -64);
8327       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8328 
8329       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8330 
8331       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8332       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8333       kortestql(k7, k7);
8334       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8335       addptr(limit, 64);  // update since we already compared at this addr
8336       cmpl(limit, -64);
8337       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8338 
8339       // At this point we may still need to compare -limit+result bytes.
8340       // We could execute the next two instruction and just continue via non-wide path:
8341       //  cmpl(limit, 0);
8342       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8343       // But since we stopped at the points ary{1,2}+limit which are
8344       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8345       // (|limit| <= 32 and result < 32),
8346       // we may just compare the last 64 bytes.
8347       //
8348       addptr(result, -64);   // it is safe, bc we just came from this area
8349       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8350       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8351       kortestql(k7, k7);
8352       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8353 
8354       jmp(TRUE_LABEL);
8355 
8356       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8357 
8358     }//if (VM_Version::supports_avx512vlbw())
8359 #endif //_LP64
8360 
8361     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8362     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8363     vpxor(vec1, vec2);
8364 
8365     vptest(vec1, vec1);
8366     jcc(Assembler::notZero, FALSE_LABEL);
8367     addptr(limit, 32);
8368     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8369 
8370     testl(result, result);
8371     jcc(Assembler::zero, TRUE_LABEL);
8372 
8373     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8374     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8375     vpxor(vec1, vec2);
8376 
8377     vptest(vec1, vec1);
8378     jccb(Assembler::notZero, FALSE_LABEL);
8379     jmpb(TRUE_LABEL);
8380 
8381     bind(COMPARE_TAIL); // limit is zero
8382     movl(limit, result);
8383     // Fallthru to tail compare
8384   } else if (UseSSE42Intrinsics) {
8385     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
8386     // With SSE4.2, use double quad vector compare
8387     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8388 
8389     // Compare 16-byte vectors
8390     andl(result, 0x0000000f);  //   tail count (in bytes)
8391     andl(limit, 0xfffffff0);   // vector count (in bytes)
8392     jcc(Assembler::zero, COMPARE_TAIL);
8393 
8394     lea(ary1, Address(ary1, limit, Address::times_1));
8395     lea(ary2, Address(ary2, limit, Address::times_1));
8396     negptr(limit);
8397 
8398     bind(COMPARE_WIDE_VECTORS);
8399     movdqu(vec1, Address(ary1, limit, Address::times_1));
8400     movdqu(vec2, Address(ary2, limit, Address::times_1));
8401     pxor(vec1, vec2);
8402 
8403     ptest(vec1, vec1);
8404     jcc(Assembler::notZero, FALSE_LABEL);
8405     addptr(limit, 16);
8406     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8407 
8408     testl(result, result);
8409     jcc(Assembler::zero, TRUE_LABEL);
8410 
8411     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8412     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8413     pxor(vec1, vec2);
8414 
8415     ptest(vec1, vec1);
8416     jccb(Assembler::notZero, FALSE_LABEL);
8417     jmpb(TRUE_LABEL);
8418 
8419     bind(COMPARE_TAIL); // limit is zero
8420     movl(limit, result);
8421     // Fallthru to tail compare
8422   }
8423 
8424   // Compare 4-byte vectors
8425   andl(limit, 0xfffffffc); // vector count (in bytes)
8426   jccb(Assembler::zero, COMPARE_CHAR);
8427 
8428   lea(ary1, Address(ary1, limit, Address::times_1));
8429   lea(ary2, Address(ary2, limit, Address::times_1));
8430   negptr(limit);
8431 
8432   bind(COMPARE_VECTORS);
8433   movl(chr, Address(ary1, limit, Address::times_1));
8434   cmpl(chr, Address(ary2, limit, Address::times_1));
8435   jccb(Assembler::notEqual, FALSE_LABEL);
8436   addptr(limit, 4);
8437   jcc(Assembler::notZero, COMPARE_VECTORS);
8438 
8439   // Compare trailing char (final 2 bytes), if any
8440   bind(COMPARE_CHAR);
8441   testl(result, 0x2);   // tail  char
8442   jccb(Assembler::zero, COMPARE_BYTE);
8443   load_unsigned_short(chr, Address(ary1, 0));
8444   load_unsigned_short(limit, Address(ary2, 0));
8445   cmpl(chr, limit);
8446   jccb(Assembler::notEqual, FALSE_LABEL);
8447 
8448   if (is_array_equ && is_char) {
8449     bind(COMPARE_BYTE);
8450   } else {
8451     lea(ary1, Address(ary1, 2));
8452     lea(ary2, Address(ary2, 2));
8453 
8454     bind(COMPARE_BYTE);
8455     testl(result, 0x1);   // tail  byte
8456     jccb(Assembler::zero, TRUE_LABEL);
8457     load_unsigned_byte(chr, Address(ary1, 0));
8458     load_unsigned_byte(limit, Address(ary2, 0));
8459     cmpl(chr, limit);
8460     jccb(Assembler::notEqual, FALSE_LABEL);
8461   }
8462   bind(TRUE_LABEL);
8463   movl(result, 1);   // return true
8464   jmpb(DONE);
8465 
8466   bind(FALSE_LABEL);
8467   xorl(result, result); // return false
8468 
8469   // That's it
8470   bind(DONE);
8471   if (UseAVX >= 2) {
8472     // clean upper bits of YMM registers
8473     vpxor(vec1, vec1);
8474     vpxor(vec2, vec2);
8475   }
8476 }
8477 
8478 #endif
8479 
8480 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8481                                    Register to, Register value, Register count,
8482                                    Register rtmp, XMMRegister xtmp) {
8483   ShortBranchVerifier sbv(this);
8484   assert_different_registers(to, value, count, rtmp);
8485   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8486   Label L_fill_2_bytes, L_fill_4_bytes;
8487 
8488   int shift = -1;
8489   switch (t) {
8490     case T_BYTE:
8491       shift = 2;
8492       break;
8493     case T_SHORT:
8494       shift = 1;
8495       break;
8496     case T_INT:
8497       shift = 0;
8498       break;
8499     default: ShouldNotReachHere();
8500   }
8501 
8502   if (t == T_BYTE) {
8503     andl(value, 0xff);
8504     movl(rtmp, value);
8505     shll(rtmp, 8);
8506     orl(value, rtmp);
8507   }
8508   if (t == T_SHORT) {
8509     andl(value, 0xffff);
8510   }
8511   if (t == T_BYTE || t == T_SHORT) {
8512     movl(rtmp, value);
8513     shll(rtmp, 16);
8514     orl(value, rtmp);
8515   }
8516 
8517   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8518   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8519   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8520     // align source address at 4 bytes address boundary
8521     if (t == T_BYTE) {
8522       // One byte misalignment happens only for byte arrays
8523       testptr(to, 1);
8524       jccb(Assembler::zero, L_skip_align1);
8525       movb(Address(to, 0), value);
8526       increment(to);
8527       decrement(count);
8528       BIND(L_skip_align1);
8529     }
8530     // Two bytes misalignment happens only for byte and short (char) arrays
8531     testptr(to, 2);
8532     jccb(Assembler::zero, L_skip_align2);
8533     movw(Address(to, 0), value);
8534     addptr(to, 2);
8535     subl(count, 1<<(shift-1));
8536     BIND(L_skip_align2);
8537   }
8538   if (UseSSE < 2) {
8539     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8540     // Fill 32-byte chunks
8541     subl(count, 8 << shift);
8542     jcc(Assembler::less, L_check_fill_8_bytes);
8543     align(16);
8544 
8545     BIND(L_fill_32_bytes_loop);
8546 
8547     for (int i = 0; i < 32; i += 4) {
8548       movl(Address(to, i), value);
8549     }
8550 
8551     addptr(to, 32);
8552     subl(count, 8 << shift);
8553     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8554     BIND(L_check_fill_8_bytes);
8555     addl(count, 8 << shift);
8556     jccb(Assembler::zero, L_exit);
8557     jmpb(L_fill_8_bytes);
8558 
8559     //
8560     // length is too short, just fill qwords
8561     //
8562     BIND(L_fill_8_bytes_loop);
8563     movl(Address(to, 0), value);
8564     movl(Address(to, 4), value);
8565     addptr(to, 8);
8566     BIND(L_fill_8_bytes);
8567     subl(count, 1 << (shift + 1));
8568     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8569     // fall through to fill 4 bytes
8570   } else {
8571     Label L_fill_32_bytes;
8572     if (!UseUnalignedLoadStores) {
8573       // align to 8 bytes, we know we are 4 byte aligned to start
8574       testptr(to, 4);
8575       jccb(Assembler::zero, L_fill_32_bytes);
8576       movl(Address(to, 0), value);
8577       addptr(to, 4);
8578       subl(count, 1<<shift);
8579     }
8580     BIND(L_fill_32_bytes);
8581     {
8582       assert( UseSSE >= 2, "supported cpu only" );
8583       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8584       if (UseAVX > 2) {
8585         movl(rtmp, 0xffff);
8586         kmovwl(k1, rtmp);
8587       }
8588       movdl(xtmp, value);
8589       if (UseAVX > 2 && UseUnalignedLoadStores) {
8590         // Fill 64-byte chunks
8591         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8592         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8593 
8594         subl(count, 16 << shift);
8595         jcc(Assembler::less, L_check_fill_32_bytes);
8596         align(16);
8597 
8598         BIND(L_fill_64_bytes_loop);
8599         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8600         addptr(to, 64);
8601         subl(count, 16 << shift);
8602         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8603 
8604         BIND(L_check_fill_32_bytes);
8605         addl(count, 8 << shift);
8606         jccb(Assembler::less, L_check_fill_8_bytes);
8607         vmovdqu(Address(to, 0), xtmp);
8608         addptr(to, 32);
8609         subl(count, 8 << shift);
8610 
8611         BIND(L_check_fill_8_bytes);
8612       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8613         // Fill 64-byte chunks
8614         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8615         vpbroadcastd(xtmp, xtmp);
8616 
8617         subl(count, 16 << shift);
8618         jcc(Assembler::less, L_check_fill_32_bytes);
8619         align(16);
8620 
8621         BIND(L_fill_64_bytes_loop);
8622         vmovdqu(Address(to, 0), xtmp);
8623         vmovdqu(Address(to, 32), xtmp);
8624         addptr(to, 64);
8625         subl(count, 16 << shift);
8626         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8627 
8628         BIND(L_check_fill_32_bytes);
8629         addl(count, 8 << shift);
8630         jccb(Assembler::less, L_check_fill_8_bytes);
8631         vmovdqu(Address(to, 0), xtmp);
8632         addptr(to, 32);
8633         subl(count, 8 << shift);
8634 
8635         BIND(L_check_fill_8_bytes);
8636         // clean upper bits of YMM registers
8637         movdl(xtmp, value);
8638         pshufd(xtmp, xtmp, 0);
8639       } else {
8640         // Fill 32-byte chunks
8641         pshufd(xtmp, xtmp, 0);
8642 
8643         subl(count, 8 << shift);
8644         jcc(Assembler::less, L_check_fill_8_bytes);
8645         align(16);
8646 
8647         BIND(L_fill_32_bytes_loop);
8648 
8649         if (UseUnalignedLoadStores) {
8650           movdqu(Address(to, 0), xtmp);
8651           movdqu(Address(to, 16), xtmp);
8652         } else {
8653           movq(Address(to, 0), xtmp);
8654           movq(Address(to, 8), xtmp);
8655           movq(Address(to, 16), xtmp);
8656           movq(Address(to, 24), xtmp);
8657         }
8658 
8659         addptr(to, 32);
8660         subl(count, 8 << shift);
8661         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8662 
8663         BIND(L_check_fill_8_bytes);
8664       }
8665       addl(count, 8 << shift);
8666       jccb(Assembler::zero, L_exit);
8667       jmpb(L_fill_8_bytes);
8668 
8669       //
8670       // length is too short, just fill qwords
8671       //
8672       BIND(L_fill_8_bytes_loop);
8673       movq(Address(to, 0), xtmp);
8674       addptr(to, 8);
8675       BIND(L_fill_8_bytes);
8676       subl(count, 1 << (shift + 1));
8677       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8678     }
8679   }
8680   // fill trailing 4 bytes
8681   BIND(L_fill_4_bytes);
8682   testl(count, 1<<shift);
8683   jccb(Assembler::zero, L_fill_2_bytes);
8684   movl(Address(to, 0), value);
8685   if (t == T_BYTE || t == T_SHORT) {
8686     addptr(to, 4);
8687     BIND(L_fill_2_bytes);
8688     // fill trailing 2 bytes
8689     testl(count, 1<<(shift-1));
8690     jccb(Assembler::zero, L_fill_byte);
8691     movw(Address(to, 0), value);
8692     if (t == T_BYTE) {
8693       addptr(to, 2);
8694       BIND(L_fill_byte);
8695       // fill trailing byte
8696       testl(count, 1);
8697       jccb(Assembler::zero, L_exit);
8698       movb(Address(to, 0), value);
8699     } else {
8700       BIND(L_fill_byte);
8701     }
8702   } else {
8703     BIND(L_fill_2_bytes);
8704   }
8705   BIND(L_exit);
8706 }
8707 
8708 // encode char[] to byte[] in ISO_8859_1
8709    //@HotSpotIntrinsicCandidate
8710    //private static int implEncodeISOArray(byte[] sa, int sp,
8711    //byte[] da, int dp, int len) {
8712    //  int i = 0;
8713    //  for (; i < len; i++) {
8714    //    char c = StringUTF16.getChar(sa, sp++);
8715    //    if (c > '\u00FF')
8716    //      break;
8717    //    da[dp++] = (byte)c;
8718    //  }
8719    //  return i;
8720    //}
8721 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8722   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8723   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8724   Register tmp5, Register result) {
8725 
8726   // rsi: src
8727   // rdi: dst
8728   // rdx: len
8729   // rcx: tmp5
8730   // rax: result
8731   ShortBranchVerifier sbv(this);
8732   assert_different_registers(src, dst, len, tmp5, result);
8733   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8734 
8735   // set result
8736   xorl(result, result);
8737   // check for zero length
8738   testl(len, len);
8739   jcc(Assembler::zero, L_done);
8740 
8741   movl(result, len);
8742 
8743   // Setup pointers
8744   lea(src, Address(src, len, Address::times_2)); // char[]
8745   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8746   negptr(len);
8747 
8748   if (UseSSE42Intrinsics || UseAVX >= 2) {
8749     assert(UseSSE42Intrinsics ? UseSSE >= 4 : true, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
8750     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8751     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8752 
8753     if (UseAVX >= 2) {
8754       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8755       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8756       movdl(tmp1Reg, tmp5);
8757       vpbroadcastd(tmp1Reg, tmp1Reg);
8758       jmp(L_chars_32_check);
8759 
8760       bind(L_copy_32_chars);
8761       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8762       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8763       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8764       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8765       jccb(Assembler::notZero, L_copy_32_chars_exit);
8766       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8767       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8768       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8769 
8770       bind(L_chars_32_check);
8771       addptr(len, 32);
8772       jcc(Assembler::lessEqual, L_copy_32_chars);
8773 
8774       bind(L_copy_32_chars_exit);
8775       subptr(len, 16);
8776       jccb(Assembler::greater, L_copy_16_chars_exit);
8777 
8778     } else if (UseSSE42Intrinsics) {
8779       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8780       movdl(tmp1Reg, tmp5);
8781       pshufd(tmp1Reg, tmp1Reg, 0);
8782       jmpb(L_chars_16_check);
8783     }
8784 
8785     bind(L_copy_16_chars);
8786     if (UseAVX >= 2) {
8787       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
8788       vptest(tmp2Reg, tmp1Reg);
8789       jcc(Assembler::notZero, L_copy_16_chars_exit);
8790       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
8791       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
8792     } else {
8793       if (UseAVX > 0) {
8794         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8795         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8796         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
8797       } else {
8798         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8799         por(tmp2Reg, tmp3Reg);
8800         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8801         por(tmp2Reg, tmp4Reg);
8802       }
8803       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8804       jccb(Assembler::notZero, L_copy_16_chars_exit);
8805       packuswb(tmp3Reg, tmp4Reg);
8806     }
8807     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
8808 
8809     bind(L_chars_16_check);
8810     addptr(len, 16);
8811     jcc(Assembler::lessEqual, L_copy_16_chars);
8812 
8813     bind(L_copy_16_chars_exit);
8814     if (UseAVX >= 2) {
8815       // clean upper bits of YMM registers
8816       vpxor(tmp2Reg, tmp2Reg);
8817       vpxor(tmp3Reg, tmp3Reg);
8818       vpxor(tmp4Reg, tmp4Reg);
8819       movdl(tmp1Reg, tmp5);
8820       pshufd(tmp1Reg, tmp1Reg, 0);
8821     }
8822     subptr(len, 8);
8823     jccb(Assembler::greater, L_copy_8_chars_exit);
8824 
8825     bind(L_copy_8_chars);
8826     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
8827     ptest(tmp3Reg, tmp1Reg);
8828     jccb(Assembler::notZero, L_copy_8_chars_exit);
8829     packuswb(tmp3Reg, tmp1Reg);
8830     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
8831     addptr(len, 8);
8832     jccb(Assembler::lessEqual, L_copy_8_chars);
8833 
8834     bind(L_copy_8_chars_exit);
8835     subptr(len, 8);
8836     jccb(Assembler::zero, L_done);
8837   }
8838 
8839   bind(L_copy_1_char);
8840   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
8841   testl(tmp5, 0xff00);      // check if Unicode char
8842   jccb(Assembler::notZero, L_copy_1_char_exit);
8843   movb(Address(dst, len, Address::times_1, 0), tmp5);
8844   addptr(len, 1);
8845   jccb(Assembler::less, L_copy_1_char);
8846 
8847   bind(L_copy_1_char_exit);
8848   addptr(result, len); // len is negative count of not processed elements
8849 
8850   bind(L_done);
8851 }
8852 
8853 #ifdef _LP64
8854 /**
8855  * Helper for multiply_to_len().
8856  */
8857 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
8858   addq(dest_lo, src1);
8859   adcq(dest_hi, 0);
8860   addq(dest_lo, src2);
8861   adcq(dest_hi, 0);
8862 }
8863 
8864 /**
8865  * Multiply 64 bit by 64 bit first loop.
8866  */
8867 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
8868                                            Register y, Register y_idx, Register z,
8869                                            Register carry, Register product,
8870                                            Register idx, Register kdx) {
8871   //
8872   //  jlong carry, x[], y[], z[];
8873   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8874   //    huge_128 product = y[idx] * x[xstart] + carry;
8875   //    z[kdx] = (jlong)product;
8876   //    carry  = (jlong)(product >>> 64);
8877   //  }
8878   //  z[xstart] = carry;
8879   //
8880 
8881   Label L_first_loop, L_first_loop_exit;
8882   Label L_one_x, L_one_y, L_multiply;
8883 
8884   decrementl(xstart);
8885   jcc(Assembler::negative, L_one_x);
8886 
8887   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8888   rorq(x_xstart, 32); // convert big-endian to little-endian
8889 
8890   bind(L_first_loop);
8891   decrementl(idx);
8892   jcc(Assembler::negative, L_first_loop_exit);
8893   decrementl(idx);
8894   jcc(Assembler::negative, L_one_y);
8895   movq(y_idx, Address(y, idx, Address::times_4,  0));
8896   rorq(y_idx, 32); // convert big-endian to little-endian
8897   bind(L_multiply);
8898   movq(product, x_xstart);
8899   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
8900   addq(product, carry);
8901   adcq(rdx, 0);
8902   subl(kdx, 2);
8903   movl(Address(z, kdx, Address::times_4,  4), product);
8904   shrq(product, 32);
8905   movl(Address(z, kdx, Address::times_4,  0), product);
8906   movq(carry, rdx);
8907   jmp(L_first_loop);
8908 
8909   bind(L_one_y);
8910   movl(y_idx, Address(y,  0));
8911   jmp(L_multiply);
8912 
8913   bind(L_one_x);
8914   movl(x_xstart, Address(x,  0));
8915   jmp(L_first_loop);
8916 
8917   bind(L_first_loop_exit);
8918 }
8919 
8920 /**
8921  * Multiply 64 bit by 64 bit and add 128 bit.
8922  */
8923 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
8924                                             Register yz_idx, Register idx,
8925                                             Register carry, Register product, int offset) {
8926   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
8927   //     z[kdx] = (jlong)product;
8928 
8929   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
8930   rorq(yz_idx, 32); // convert big-endian to little-endian
8931   movq(product, x_xstart);
8932   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
8933   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
8934   rorq(yz_idx, 32); // convert big-endian to little-endian
8935 
8936   add2_with_carry(rdx, product, carry, yz_idx);
8937 
8938   movl(Address(z, idx, Address::times_4,  offset+4), product);
8939   shrq(product, 32);
8940   movl(Address(z, idx, Address::times_4,  offset), product);
8941 
8942 }
8943 
8944 /**
8945  * Multiply 128 bit by 128 bit. Unrolled inner loop.
8946  */
8947 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
8948                                              Register yz_idx, Register idx, Register jdx,
8949                                              Register carry, Register product,
8950                                              Register carry2) {
8951   //   jlong carry, x[], y[], z[];
8952   //   int kdx = ystart+1;
8953   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
8954   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
8955   //     z[kdx+idx+1] = (jlong)product;
8956   //     jlong carry2  = (jlong)(product >>> 64);
8957   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
8958   //     z[kdx+idx] = (jlong)product;
8959   //     carry  = (jlong)(product >>> 64);
8960   //   }
8961   //   idx += 2;
8962   //   if (idx > 0) {
8963   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
8964   //     z[kdx+idx] = (jlong)product;
8965   //     carry  = (jlong)(product >>> 64);
8966   //   }
8967   //
8968 
8969   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
8970 
8971   movl(jdx, idx);
8972   andl(jdx, 0xFFFFFFFC);
8973   shrl(jdx, 2);
8974 
8975   bind(L_third_loop);
8976   subl(jdx, 1);
8977   jcc(Assembler::negative, L_third_loop_exit);
8978   subl(idx, 4);
8979 
8980   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
8981   movq(carry2, rdx);
8982 
8983   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
8984   movq(carry, rdx);
8985   jmp(L_third_loop);
8986 
8987   bind (L_third_loop_exit);
8988 
8989   andl (idx, 0x3);
8990   jcc(Assembler::zero, L_post_third_loop_done);
8991 
8992   Label L_check_1;
8993   subl(idx, 2);
8994   jcc(Assembler::negative, L_check_1);
8995 
8996   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
8997   movq(carry, rdx);
8998 
8999   bind (L_check_1);
9000   addl (idx, 0x2);
9001   andl (idx, 0x1);
9002   subl(idx, 1);
9003   jcc(Assembler::negative, L_post_third_loop_done);
9004 
9005   movl(yz_idx, Address(y, idx, Address::times_4,  0));
9006   movq(product, x_xstart);
9007   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
9008   movl(yz_idx, Address(z, idx, Address::times_4,  0));
9009 
9010   add2_with_carry(rdx, product, yz_idx, carry);
9011 
9012   movl(Address(z, idx, Address::times_4,  0), product);
9013   shrq(product, 32);
9014 
9015   shlq(rdx, 32);
9016   orq(product, rdx);
9017   movq(carry, product);
9018 
9019   bind(L_post_third_loop_done);
9020 }
9021 
9022 /**
9023  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
9024  *
9025  */
9026 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
9027                                                   Register carry, Register carry2,
9028                                                   Register idx, Register jdx,
9029                                                   Register yz_idx1, Register yz_idx2,
9030                                                   Register tmp, Register tmp3, Register tmp4) {
9031   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
9032 
9033   //   jlong carry, x[], y[], z[];
9034   //   int kdx = ystart+1;
9035   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9036   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
9037   //     jlong carry2  = (jlong)(tmp3 >>> 64);
9038   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
9039   //     carry  = (jlong)(tmp4 >>> 64);
9040   //     z[kdx+idx+1] = (jlong)tmp3;
9041   //     z[kdx+idx] = (jlong)tmp4;
9042   //   }
9043   //   idx += 2;
9044   //   if (idx > 0) {
9045   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
9046   //     z[kdx+idx] = (jlong)yz_idx1;
9047   //     carry  = (jlong)(yz_idx1 >>> 64);
9048   //   }
9049   //
9050 
9051   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9052 
9053   movl(jdx, idx);
9054   andl(jdx, 0xFFFFFFFC);
9055   shrl(jdx, 2);
9056 
9057   bind(L_third_loop);
9058   subl(jdx, 1);
9059   jcc(Assembler::negative, L_third_loop_exit);
9060   subl(idx, 4);
9061 
9062   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
9063   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
9064   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
9065   rorxq(yz_idx2, yz_idx2, 32);
9066 
9067   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
9068   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
9069 
9070   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
9071   rorxq(yz_idx1, yz_idx1, 32);
9072   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9073   rorxq(yz_idx2, yz_idx2, 32);
9074 
9075   if (VM_Version::supports_adx()) {
9076     adcxq(tmp3, carry);
9077     adoxq(tmp3, yz_idx1);
9078 
9079     adcxq(tmp4, tmp);
9080     adoxq(tmp4, yz_idx2);
9081 
9082     movl(carry, 0); // does not affect flags
9083     adcxq(carry2, carry);
9084     adoxq(carry2, carry);
9085   } else {
9086     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
9087     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
9088   }
9089   movq(carry, carry2);
9090 
9091   movl(Address(z, idx, Address::times_4, 12), tmp3);
9092   shrq(tmp3, 32);
9093   movl(Address(z, idx, Address::times_4,  8), tmp3);
9094 
9095   movl(Address(z, idx, Address::times_4,  4), tmp4);
9096   shrq(tmp4, 32);
9097   movl(Address(z, idx, Address::times_4,  0), tmp4);
9098 
9099   jmp(L_third_loop);
9100 
9101   bind (L_third_loop_exit);
9102 
9103   andl (idx, 0x3);
9104   jcc(Assembler::zero, L_post_third_loop_done);
9105 
9106   Label L_check_1;
9107   subl(idx, 2);
9108   jcc(Assembler::negative, L_check_1);
9109 
9110   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
9111   rorxq(yz_idx1, yz_idx1, 32);
9112   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
9113   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9114   rorxq(yz_idx2, yz_idx2, 32);
9115 
9116   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
9117 
9118   movl(Address(z, idx, Address::times_4,  4), tmp3);
9119   shrq(tmp3, 32);
9120   movl(Address(z, idx, Address::times_4,  0), tmp3);
9121   movq(carry, tmp4);
9122 
9123   bind (L_check_1);
9124   addl (idx, 0x2);
9125   andl (idx, 0x1);
9126   subl(idx, 1);
9127   jcc(Assembler::negative, L_post_third_loop_done);
9128   movl(tmp4, Address(y, idx, Address::times_4,  0));
9129   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
9130   movl(tmp4, Address(z, idx, Address::times_4,  0));
9131 
9132   add2_with_carry(carry2, tmp3, tmp4, carry);
9133 
9134   movl(Address(z, idx, Address::times_4,  0), tmp3);
9135   shrq(tmp3, 32);
9136 
9137   shlq(carry2, 32);
9138   orq(tmp3, carry2);
9139   movq(carry, tmp3);
9140 
9141   bind(L_post_third_loop_done);
9142 }
9143 
9144 /**
9145  * Code for BigInteger::multiplyToLen() instrinsic.
9146  *
9147  * rdi: x
9148  * rax: xlen
9149  * rsi: y
9150  * rcx: ylen
9151  * r8:  z
9152  * r11: zlen
9153  * r12: tmp1
9154  * r13: tmp2
9155  * r14: tmp3
9156  * r15: tmp4
9157  * rbx: tmp5
9158  *
9159  */
9160 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
9161                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
9162   ShortBranchVerifier sbv(this);
9163   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
9164 
9165   push(tmp1);
9166   push(tmp2);
9167   push(tmp3);
9168   push(tmp4);
9169   push(tmp5);
9170 
9171   push(xlen);
9172   push(zlen);
9173 
9174   const Register idx = tmp1;
9175   const Register kdx = tmp2;
9176   const Register xstart = tmp3;
9177 
9178   const Register y_idx = tmp4;
9179   const Register carry = tmp5;
9180   const Register product  = xlen;
9181   const Register x_xstart = zlen;  // reuse register
9182 
9183   // First Loop.
9184   //
9185   //  final static long LONG_MASK = 0xffffffffL;
9186   //  int xstart = xlen - 1;
9187   //  int ystart = ylen - 1;
9188   //  long carry = 0;
9189   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
9190   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
9191   //    z[kdx] = (int)product;
9192   //    carry = product >>> 32;
9193   //  }
9194   //  z[xstart] = (int)carry;
9195   //
9196 
9197   movl(idx, ylen);      // idx = ylen;
9198   movl(kdx, zlen);      // kdx = xlen+ylen;
9199   xorq(carry, carry);   // carry = 0;
9200 
9201   Label L_done;
9202 
9203   movl(xstart, xlen);
9204   decrementl(xstart);
9205   jcc(Assembler::negative, L_done);
9206 
9207   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
9208 
9209   Label L_second_loop;
9210   testl(kdx, kdx);
9211   jcc(Assembler::zero, L_second_loop);
9212 
9213   Label L_carry;
9214   subl(kdx, 1);
9215   jcc(Assembler::zero, L_carry);
9216 
9217   movl(Address(z, kdx, Address::times_4,  0), carry);
9218   shrq(carry, 32);
9219   subl(kdx, 1);
9220 
9221   bind(L_carry);
9222   movl(Address(z, kdx, Address::times_4,  0), carry);
9223 
9224   // Second and third (nested) loops.
9225   //
9226   // for (int i = xstart-1; i >= 0; i--) { // Second loop
9227   //   carry = 0;
9228   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
9229   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
9230   //                    (z[k] & LONG_MASK) + carry;
9231   //     z[k] = (int)product;
9232   //     carry = product >>> 32;
9233   //   }
9234   //   z[i] = (int)carry;
9235   // }
9236   //
9237   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
9238 
9239   const Register jdx = tmp1;
9240 
9241   bind(L_second_loop);
9242   xorl(carry, carry);    // carry = 0;
9243   movl(jdx, ylen);       // j = ystart+1
9244 
9245   subl(xstart, 1);       // i = xstart-1;
9246   jcc(Assembler::negative, L_done);
9247 
9248   push (z);
9249 
9250   Label L_last_x;
9251   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
9252   subl(xstart, 1);       // i = xstart-1;
9253   jcc(Assembler::negative, L_last_x);
9254 
9255   if (UseBMI2Instructions) {
9256     movq(rdx,  Address(x, xstart, Address::times_4,  0));
9257     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
9258   } else {
9259     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9260     rorq(x_xstart, 32);  // convert big-endian to little-endian
9261   }
9262 
9263   Label L_third_loop_prologue;
9264   bind(L_third_loop_prologue);
9265 
9266   push (x);
9267   push (xstart);
9268   push (ylen);
9269 
9270 
9271   if (UseBMI2Instructions) {
9272     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
9273   } else { // !UseBMI2Instructions
9274     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
9275   }
9276 
9277   pop(ylen);
9278   pop(xlen);
9279   pop(x);
9280   pop(z);
9281 
9282   movl(tmp3, xlen);
9283   addl(tmp3, 1);
9284   movl(Address(z, tmp3, Address::times_4,  0), carry);
9285   subl(tmp3, 1);
9286   jccb(Assembler::negative, L_done);
9287 
9288   shrq(carry, 32);
9289   movl(Address(z, tmp3, Address::times_4,  0), carry);
9290   jmp(L_second_loop);
9291 
9292   // Next infrequent code is moved outside loops.
9293   bind(L_last_x);
9294   if (UseBMI2Instructions) {
9295     movl(rdx, Address(x,  0));
9296   } else {
9297     movl(x_xstart, Address(x,  0));
9298   }
9299   jmp(L_third_loop_prologue);
9300 
9301   bind(L_done);
9302 
9303   pop(zlen);
9304   pop(xlen);
9305 
9306   pop(tmp5);
9307   pop(tmp4);
9308   pop(tmp3);
9309   pop(tmp2);
9310   pop(tmp1);
9311 }
9312 
9313 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
9314   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
9315   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
9316   Label VECTOR64_LOOP, VECTOR64_TAIL, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
9317   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
9318   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
9319   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9320   Label SAME_TILL_END, DONE;
9321   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9322 
9323   //scale is in rcx in both Win64 and Unix
9324   ShortBranchVerifier sbv(this);
9325 
9326   shlq(length);
9327   xorq(result, result);
9328 
9329   if ((UseAVX > 2) &&
9330       VM_Version::supports_avx512vlbw()) {
9331     set_vector_masking();  // opening of the stub context for programming mask registers
9332     cmpq(length, 64);
9333     jcc(Assembler::less, VECTOR32_TAIL);
9334     movq(tmp1, length);
9335     andq(tmp1, 0x3F);      // tail count
9336     andq(length, ~(0x3F)); //vector count
9337 
9338     bind(VECTOR64_LOOP);
9339     // AVX512 code to compare 64 byte vectors.
9340     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
9341     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
9342     kortestql(k7, k7);
9343     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
9344     addq(result, 64);
9345     subq(length, 64);
9346     jccb(Assembler::notZero, VECTOR64_LOOP);
9347 
9348     //bind(VECTOR64_TAIL);
9349     testq(tmp1, tmp1);
9350     jcc(Assembler::zero, SAME_TILL_END);
9351 
9352     bind(VECTOR64_TAIL);
9353     // AVX512 code to compare upto 63 byte vectors.
9354     // Save k1
9355     kmovql(k3, k1);
9356     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
9357     shlxq(tmp2, tmp2, tmp1);
9358     notq(tmp2);
9359     kmovql(k1, tmp2);
9360 
9361     evmovdqub(rymm0, k1, Address(obja, result), Assembler::AVX_512bit);
9362     evpcmpeqb(k7, k1, rymm0, Address(objb, result), Assembler::AVX_512bit);
9363 
9364     ktestql(k7, k1);
9365     // Restore k1
9366     kmovql(k1, k3);
9367     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
9368 
9369     bind(VECTOR64_NOT_EQUAL);
9370     kmovql(tmp1, k7);
9371     notq(tmp1);
9372     tzcntq(tmp1, tmp1);
9373     addq(result, tmp1);
9374     shrq(result);
9375     jmp(DONE);
9376     bind(VECTOR32_TAIL);
9377     clear_vector_masking();   // closing of the stub context for programming mask registers
9378   }
9379 
9380   cmpq(length, 8);
9381   jcc(Assembler::equal, VECTOR8_LOOP);
9382   jcc(Assembler::less, VECTOR4_TAIL);
9383 
9384   if (UseAVX >= 2) {
9385 
9386     cmpq(length, 16);
9387     jcc(Assembler::equal, VECTOR16_LOOP);
9388     jcc(Assembler::less, VECTOR8_LOOP);
9389 
9390     cmpq(length, 32);
9391     jccb(Assembler::less, VECTOR16_TAIL);
9392 
9393     subq(length, 32);
9394     bind(VECTOR32_LOOP);
9395     vmovdqu(rymm0, Address(obja, result));
9396     vmovdqu(rymm1, Address(objb, result));
9397     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9398     vptest(rymm2, rymm2);
9399     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9400     addq(result, 32);
9401     subq(length, 32);
9402     jccb(Assembler::greaterEqual, VECTOR32_LOOP);
9403     addq(length, 32);
9404     jcc(Assembler::equal, SAME_TILL_END);
9405     //falling through if less than 32 bytes left //close the branch here.
9406 
9407     bind(VECTOR16_TAIL);
9408     cmpq(length, 16);
9409     jccb(Assembler::less, VECTOR8_TAIL);
9410     bind(VECTOR16_LOOP);
9411     movdqu(rymm0, Address(obja, result));
9412     movdqu(rymm1, Address(objb, result));
9413     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9414     ptest(rymm2, rymm2);
9415     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9416     addq(result, 16);
9417     subq(length, 16);
9418     jcc(Assembler::equal, SAME_TILL_END);
9419     //falling through if less than 16 bytes left
9420   } else {//regular intrinsics
9421 
9422     cmpq(length, 16);
9423     jccb(Assembler::less, VECTOR8_TAIL);
9424 
9425     subq(length, 16);
9426     bind(VECTOR16_LOOP);
9427     movdqu(rymm0, Address(obja, result));
9428     movdqu(rymm1, Address(objb, result));
9429     pxor(rymm0, rymm1);
9430     ptest(rymm0, rymm0);
9431     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9432     addq(result, 16);
9433     subq(length, 16);
9434     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9435     addq(length, 16);
9436     jcc(Assembler::equal, SAME_TILL_END);
9437     //falling through if less than 16 bytes left
9438   }
9439 
9440   bind(VECTOR8_TAIL);
9441   cmpq(length, 8);
9442   jccb(Assembler::less, VECTOR4_TAIL);
9443   bind(VECTOR8_LOOP);
9444   movq(tmp1, Address(obja, result));
9445   movq(tmp2, Address(objb, result));
9446   xorq(tmp1, tmp2);
9447   testq(tmp1, tmp1);
9448   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9449   addq(result, 8);
9450   subq(length, 8);
9451   jcc(Assembler::equal, SAME_TILL_END);
9452   //falling through if less than 8 bytes left
9453 
9454   bind(VECTOR4_TAIL);
9455   cmpq(length, 4);
9456   jccb(Assembler::less, BYTES_TAIL);
9457   bind(VECTOR4_LOOP);
9458   movl(tmp1, Address(obja, result));
9459   xorl(tmp1, Address(objb, result));
9460   testl(tmp1, tmp1);
9461   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9462   addq(result, 4);
9463   subq(length, 4);
9464   jcc(Assembler::equal, SAME_TILL_END);
9465   //falling through if less than 4 bytes left
9466 
9467   bind(BYTES_TAIL);
9468   bind(BYTES_LOOP);
9469   load_unsigned_byte(tmp1, Address(obja, result));
9470   load_unsigned_byte(tmp2, Address(objb, result));
9471   xorl(tmp1, tmp2);
9472   testl(tmp1, tmp1);
9473   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9474   decq(length);
9475   jccb(Assembler::zero, SAME_TILL_END);
9476   incq(result);
9477   load_unsigned_byte(tmp1, Address(obja, result));
9478   load_unsigned_byte(tmp2, Address(objb, result));
9479   xorl(tmp1, tmp2);
9480   testl(tmp1, tmp1);
9481   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9482   decq(length);
9483   jccb(Assembler::zero, SAME_TILL_END);
9484   incq(result);
9485   load_unsigned_byte(tmp1, Address(obja, result));
9486   load_unsigned_byte(tmp2, Address(objb, result));
9487   xorl(tmp1, tmp2);
9488   testl(tmp1, tmp1);
9489   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9490   jmpb(SAME_TILL_END);
9491 
9492   if (UseAVX >= 2) {
9493     bind(VECTOR32_NOT_EQUAL);
9494     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9495     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9496     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9497     vpmovmskb(tmp1, rymm0);
9498     bsfq(tmp1, tmp1);
9499     addq(result, tmp1);
9500     shrq(result);
9501     jmpb(DONE);
9502   }
9503 
9504   bind(VECTOR16_NOT_EQUAL);
9505   if (UseAVX >= 2) {
9506     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9507     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9508     pxor(rymm0, rymm2);
9509   } else {
9510     pcmpeqb(rymm2, rymm2);
9511     pxor(rymm0, rymm1);
9512     pcmpeqb(rymm0, rymm1);
9513     pxor(rymm0, rymm2);
9514   }
9515   pmovmskb(tmp1, rymm0);
9516   bsfq(tmp1, tmp1);
9517   addq(result, tmp1);
9518   shrq(result);
9519   jmpb(DONE);
9520 
9521   bind(VECTOR8_NOT_EQUAL);
9522   bind(VECTOR4_NOT_EQUAL);
9523   bsfq(tmp1, tmp1);
9524   shrq(tmp1, 3);
9525   addq(result, tmp1);
9526   bind(BYTES_NOT_EQUAL);
9527   shrq(result);
9528   jmpb(DONE);
9529 
9530   bind(SAME_TILL_END);
9531   mov64(result, -1);
9532 
9533   bind(DONE);
9534 }
9535 
9536 //Helper functions for square_to_len()
9537 
9538 /**
9539  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9540  * Preserves x and z and modifies rest of the registers.
9541  */
9542 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9543   // Perform square and right shift by 1
9544   // Handle odd xlen case first, then for even xlen do the following
9545   // jlong carry = 0;
9546   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9547   //     huge_128 product = x[j:j+1] * x[j:j+1];
9548   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9549   //     z[i+2:i+3] = (jlong)(product >>> 1);
9550   //     carry = (jlong)product;
9551   // }
9552 
9553   xorq(tmp5, tmp5);     // carry
9554   xorq(rdxReg, rdxReg);
9555   xorl(tmp1, tmp1);     // index for x
9556   xorl(tmp4, tmp4);     // index for z
9557 
9558   Label L_first_loop, L_first_loop_exit;
9559 
9560   testl(xlen, 1);
9561   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9562 
9563   // Square and right shift by 1 the odd element using 32 bit multiply
9564   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9565   imulq(raxReg, raxReg);
9566   shrq(raxReg, 1);
9567   adcq(tmp5, 0);
9568   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9569   incrementl(tmp1);
9570   addl(tmp4, 2);
9571 
9572   // Square and  right shift by 1 the rest using 64 bit multiply
9573   bind(L_first_loop);
9574   cmpptr(tmp1, xlen);
9575   jccb(Assembler::equal, L_first_loop_exit);
9576 
9577   // Square
9578   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9579   rorq(raxReg, 32);    // convert big-endian to little-endian
9580   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9581 
9582   // Right shift by 1 and save carry
9583   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9584   rcrq(rdxReg, 1);
9585   rcrq(raxReg, 1);
9586   adcq(tmp5, 0);
9587 
9588   // Store result in z
9589   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9590   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9591 
9592   // Update indices for x and z
9593   addl(tmp1, 2);
9594   addl(tmp4, 4);
9595   jmp(L_first_loop);
9596 
9597   bind(L_first_loop_exit);
9598 }
9599 
9600 
9601 /**
9602  * Perform the following multiply add operation using BMI2 instructions
9603  * carry:sum = sum + op1*op2 + carry
9604  * op2 should be in rdx
9605  * op2 is preserved, all other registers are modified
9606  */
9607 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9608   // assert op2 is rdx
9609   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9610   addq(sum, carry);
9611   adcq(tmp2, 0);
9612   addq(sum, op1);
9613   adcq(tmp2, 0);
9614   movq(carry, tmp2);
9615 }
9616 
9617 /**
9618  * Perform the following multiply add operation:
9619  * carry:sum = sum + op1*op2 + carry
9620  * Preserves op1, op2 and modifies rest of registers
9621  */
9622 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9623   // rdx:rax = op1 * op2
9624   movq(raxReg, op2);
9625   mulq(op1);
9626 
9627   //  rdx:rax = sum + carry + rdx:rax
9628   addq(sum, carry);
9629   adcq(rdxReg, 0);
9630   addq(sum, raxReg);
9631   adcq(rdxReg, 0);
9632 
9633   // carry:sum = rdx:sum
9634   movq(carry, rdxReg);
9635 }
9636 
9637 /**
9638  * Add 64 bit long carry into z[] with carry propogation.
9639  * Preserves z and carry register values and modifies rest of registers.
9640  *
9641  */
9642 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9643   Label L_fourth_loop, L_fourth_loop_exit;
9644 
9645   movl(tmp1, 1);
9646   subl(zlen, 2);
9647   addq(Address(z, zlen, Address::times_4, 0), carry);
9648 
9649   bind(L_fourth_loop);
9650   jccb(Assembler::carryClear, L_fourth_loop_exit);
9651   subl(zlen, 2);
9652   jccb(Assembler::negative, L_fourth_loop_exit);
9653   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9654   jmp(L_fourth_loop);
9655   bind(L_fourth_loop_exit);
9656 }
9657 
9658 /**
9659  * Shift z[] left by 1 bit.
9660  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9661  *
9662  */
9663 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9664 
9665   Label L_fifth_loop, L_fifth_loop_exit;
9666 
9667   // Fifth loop
9668   // Perform primitiveLeftShift(z, zlen, 1)
9669 
9670   const Register prev_carry = tmp1;
9671   const Register new_carry = tmp4;
9672   const Register value = tmp2;
9673   const Register zidx = tmp3;
9674 
9675   // int zidx, carry;
9676   // long value;
9677   // carry = 0;
9678   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9679   //    (carry:value)  = (z[i] << 1) | carry ;
9680   //    z[i] = value;
9681   // }
9682 
9683   movl(zidx, zlen);
9684   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9685 
9686   bind(L_fifth_loop);
9687   decl(zidx);  // Use decl to preserve carry flag
9688   decl(zidx);
9689   jccb(Assembler::negative, L_fifth_loop_exit);
9690 
9691   if (UseBMI2Instructions) {
9692      movq(value, Address(z, zidx, Address::times_4, 0));
9693      rclq(value, 1);
9694      rorxq(value, value, 32);
9695      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9696   }
9697   else {
9698     // clear new_carry
9699     xorl(new_carry, new_carry);
9700 
9701     // Shift z[i] by 1, or in previous carry and save new carry
9702     movq(value, Address(z, zidx, Address::times_4, 0));
9703     shlq(value, 1);
9704     adcl(new_carry, 0);
9705 
9706     orq(value, prev_carry);
9707     rorq(value, 0x20);
9708     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9709 
9710     // Set previous carry = new carry
9711     movl(prev_carry, new_carry);
9712   }
9713   jmp(L_fifth_loop);
9714 
9715   bind(L_fifth_loop_exit);
9716 }
9717 
9718 
9719 /**
9720  * Code for BigInteger::squareToLen() intrinsic
9721  *
9722  * rdi: x
9723  * rsi: len
9724  * r8:  z
9725  * rcx: zlen
9726  * r12: tmp1
9727  * r13: tmp2
9728  * r14: tmp3
9729  * r15: tmp4
9730  * rbx: tmp5
9731  *
9732  */
9733 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9734 
9735   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9736   push(tmp1);
9737   push(tmp2);
9738   push(tmp3);
9739   push(tmp4);
9740   push(tmp5);
9741 
9742   // First loop
9743   // Store the squares, right shifted one bit (i.e., divided by 2).
9744   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9745 
9746   // Add in off-diagonal sums.
9747   //
9748   // Second, third (nested) and fourth loops.
9749   // zlen +=2;
9750   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9751   //    carry = 0;
9752   //    long op2 = x[xidx:xidx+1];
9753   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9754   //       k -= 2;
9755   //       long op1 = x[j:j+1];
9756   //       long sum = z[k:k+1];
9757   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9758   //       z[k:k+1] = sum;
9759   //    }
9760   //    add_one_64(z, k, carry, tmp_regs);
9761   // }
9762 
9763   const Register carry = tmp5;
9764   const Register sum = tmp3;
9765   const Register op1 = tmp4;
9766   Register op2 = tmp2;
9767 
9768   push(zlen);
9769   push(len);
9770   addl(zlen,2);
9771   bind(L_second_loop);
9772   xorq(carry, carry);
9773   subl(zlen, 4);
9774   subl(len, 2);
9775   push(zlen);
9776   push(len);
9777   cmpl(len, 0);
9778   jccb(Assembler::lessEqual, L_second_loop_exit);
9779 
9780   // Multiply an array by one 64 bit long.
9781   if (UseBMI2Instructions) {
9782     op2 = rdxReg;
9783     movq(op2, Address(x, len, Address::times_4,  0));
9784     rorxq(op2, op2, 32);
9785   }
9786   else {
9787     movq(op2, Address(x, len, Address::times_4,  0));
9788     rorq(op2, 32);
9789   }
9790 
9791   bind(L_third_loop);
9792   decrementl(len);
9793   jccb(Assembler::negative, L_third_loop_exit);
9794   decrementl(len);
9795   jccb(Assembler::negative, L_last_x);
9796 
9797   movq(op1, Address(x, len, Address::times_4,  0));
9798   rorq(op1, 32);
9799 
9800   bind(L_multiply);
9801   subl(zlen, 2);
9802   movq(sum, Address(z, zlen, Address::times_4,  0));
9803 
9804   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9805   if (UseBMI2Instructions) {
9806     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9807   }
9808   else {
9809     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9810   }
9811 
9812   movq(Address(z, zlen, Address::times_4, 0), sum);
9813 
9814   jmp(L_third_loop);
9815   bind(L_third_loop_exit);
9816 
9817   // Fourth loop
9818   // Add 64 bit long carry into z with carry propogation.
9819   // Uses offsetted zlen.
9820   add_one_64(z, zlen, carry, tmp1);
9821 
9822   pop(len);
9823   pop(zlen);
9824   jmp(L_second_loop);
9825 
9826   // Next infrequent code is moved outside loops.
9827   bind(L_last_x);
9828   movl(op1, Address(x, 0));
9829   jmp(L_multiply);
9830 
9831   bind(L_second_loop_exit);
9832   pop(len);
9833   pop(zlen);
9834   pop(len);
9835   pop(zlen);
9836 
9837   // Fifth loop
9838   // Shift z left 1 bit.
9839   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
9840 
9841   // z[zlen-1] |= x[len-1] & 1;
9842   movl(tmp3, Address(x, len, Address::times_4, -4));
9843   andl(tmp3, 1);
9844   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
9845 
9846   pop(tmp5);
9847   pop(tmp4);
9848   pop(tmp3);
9849   pop(tmp2);
9850   pop(tmp1);
9851 }
9852 
9853 /**
9854  * Helper function for mul_add()
9855  * Multiply the in[] by int k and add to out[] starting at offset offs using
9856  * 128 bit by 32 bit multiply and return the carry in tmp5.
9857  * Only quad int aligned length of in[] is operated on in this function.
9858  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
9859  * This function preserves out, in and k registers.
9860  * len and offset point to the appropriate index in "in" & "out" correspondingly
9861  * tmp5 has the carry.
9862  * other registers are temporary and are modified.
9863  *
9864  */
9865 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
9866   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
9867   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9868 
9869   Label L_first_loop, L_first_loop_exit;
9870 
9871   movl(tmp1, len);
9872   shrl(tmp1, 2);
9873 
9874   bind(L_first_loop);
9875   subl(tmp1, 1);
9876   jccb(Assembler::negative, L_first_loop_exit);
9877 
9878   subl(len, 4);
9879   subl(offset, 4);
9880 
9881   Register op2 = tmp2;
9882   const Register sum = tmp3;
9883   const Register op1 = tmp4;
9884   const Register carry = tmp5;
9885 
9886   if (UseBMI2Instructions) {
9887     op2 = rdxReg;
9888   }
9889 
9890   movq(op1, Address(in, len, Address::times_4,  8));
9891   rorq(op1, 32);
9892   movq(sum, Address(out, offset, Address::times_4,  8));
9893   rorq(sum, 32);
9894   if (UseBMI2Instructions) {
9895     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9896   }
9897   else {
9898     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9899   }
9900   // Store back in big endian from little endian
9901   rorq(sum, 0x20);
9902   movq(Address(out, offset, Address::times_4,  8), sum);
9903 
9904   movq(op1, Address(in, len, Address::times_4,  0));
9905   rorq(op1, 32);
9906   movq(sum, Address(out, offset, Address::times_4,  0));
9907   rorq(sum, 32);
9908   if (UseBMI2Instructions) {
9909     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9910   }
9911   else {
9912     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9913   }
9914   // Store back in big endian from little endian
9915   rorq(sum, 0x20);
9916   movq(Address(out, offset, Address::times_4,  0), sum);
9917 
9918   jmp(L_first_loop);
9919   bind(L_first_loop_exit);
9920 }
9921 
9922 /**
9923  * Code for BigInteger::mulAdd() intrinsic
9924  *
9925  * rdi: out
9926  * rsi: in
9927  * r11: offs (out.length - offset)
9928  * rcx: len
9929  * r8:  k
9930  * r12: tmp1
9931  * r13: tmp2
9932  * r14: tmp3
9933  * r15: tmp4
9934  * rbx: tmp5
9935  * Multiply the in[] by word k and add to out[], return the carry in rax
9936  */
9937 void MacroAssembler::mul_add(Register out, Register in, Register offs,
9938    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
9939    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9940 
9941   Label L_carry, L_last_in, L_done;
9942 
9943 // carry = 0;
9944 // for (int j=len-1; j >= 0; j--) {
9945 //    long product = (in[j] & LONG_MASK) * kLong +
9946 //                   (out[offs] & LONG_MASK) + carry;
9947 //    out[offs--] = (int)product;
9948 //    carry = product >>> 32;
9949 // }
9950 //
9951   push(tmp1);
9952   push(tmp2);
9953   push(tmp3);
9954   push(tmp4);
9955   push(tmp5);
9956 
9957   Register op2 = tmp2;
9958   const Register sum = tmp3;
9959   const Register op1 = tmp4;
9960   const Register carry =  tmp5;
9961 
9962   if (UseBMI2Instructions) {
9963     op2 = rdxReg;
9964     movl(op2, k);
9965   }
9966   else {
9967     movl(op2, k);
9968   }
9969 
9970   xorq(carry, carry);
9971 
9972   //First loop
9973 
9974   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
9975   //The carry is in tmp5
9976   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
9977 
9978   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
9979   decrementl(len);
9980   jccb(Assembler::negative, L_carry);
9981   decrementl(len);
9982   jccb(Assembler::negative, L_last_in);
9983 
9984   movq(op1, Address(in, len, Address::times_4,  0));
9985   rorq(op1, 32);
9986 
9987   subl(offs, 2);
9988   movq(sum, Address(out, offs, Address::times_4,  0));
9989   rorq(sum, 32);
9990 
9991   if (UseBMI2Instructions) {
9992     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9993   }
9994   else {
9995     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9996   }
9997 
9998   // Store back in big endian from little endian
9999   rorq(sum, 0x20);
10000   movq(Address(out, offs, Address::times_4,  0), sum);
10001 
10002   testl(len, len);
10003   jccb(Assembler::zero, L_carry);
10004 
10005   //Multiply the last in[] entry, if any
10006   bind(L_last_in);
10007   movl(op1, Address(in, 0));
10008   movl(sum, Address(out, offs, Address::times_4,  -4));
10009 
10010   movl(raxReg, k);
10011   mull(op1); //tmp4 * eax -> edx:eax
10012   addl(sum, carry);
10013   adcl(rdxReg, 0);
10014   addl(sum, raxReg);
10015   adcl(rdxReg, 0);
10016   movl(carry, rdxReg);
10017 
10018   movl(Address(out, offs, Address::times_4,  -4), sum);
10019 
10020   bind(L_carry);
10021   //return tmp5/carry as carry in rax
10022   movl(rax, carry);
10023 
10024   bind(L_done);
10025   pop(tmp5);
10026   pop(tmp4);
10027   pop(tmp3);
10028   pop(tmp2);
10029   pop(tmp1);
10030 }
10031 #endif
10032 
10033 /**
10034  * Emits code to update CRC-32 with a byte value according to constants in table
10035  *
10036  * @param [in,out]crc   Register containing the crc.
10037  * @param [in]val       Register containing the byte to fold into the CRC.
10038  * @param [in]table     Register containing the table of crc constants.
10039  *
10040  * uint32_t crc;
10041  * val = crc_table[(val ^ crc) & 0xFF];
10042  * crc = val ^ (crc >> 8);
10043  *
10044  */
10045 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
10046   xorl(val, crc);
10047   andl(val, 0xFF);
10048   shrl(crc, 8); // unsigned shift
10049   xorl(crc, Address(table, val, Address::times_4, 0));
10050 }
10051 
10052 /**
10053  * Fold 128-bit data chunk
10054  */
10055 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
10056   if (UseAVX > 0) {
10057     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
10058     vpclmulldq(xcrc, xK, xcrc); // [63:0]
10059     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
10060     pxor(xcrc, xtmp);
10061   } else {
10062     movdqa(xtmp, xcrc);
10063     pclmulhdq(xtmp, xK);   // [123:64]
10064     pclmulldq(xcrc, xK);   // [63:0]
10065     pxor(xcrc, xtmp);
10066     movdqu(xtmp, Address(buf, offset));
10067     pxor(xcrc, xtmp);
10068   }
10069 }
10070 
10071 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
10072   if (UseAVX > 0) {
10073     vpclmulhdq(xtmp, xK, xcrc);
10074     vpclmulldq(xcrc, xK, xcrc);
10075     pxor(xcrc, xbuf);
10076     pxor(xcrc, xtmp);
10077   } else {
10078     movdqa(xtmp, xcrc);
10079     pclmulhdq(xtmp, xK);
10080     pclmulldq(xcrc, xK);
10081     pxor(xcrc, xbuf);
10082     pxor(xcrc, xtmp);
10083   }
10084 }
10085 
10086 /**
10087  * 8-bit folds to compute 32-bit CRC
10088  *
10089  * uint64_t xcrc;
10090  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
10091  */
10092 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
10093   movdl(tmp, xcrc);
10094   andl(tmp, 0xFF);
10095   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
10096   psrldq(xcrc, 1); // unsigned shift one byte
10097   pxor(xcrc, xtmp);
10098 }
10099 
10100 /**
10101  * uint32_t crc;
10102  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
10103  */
10104 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
10105   movl(tmp, crc);
10106   andl(tmp, 0xFF);
10107   shrl(crc, 8);
10108   xorl(crc, Address(table, tmp, Address::times_4, 0));
10109 }
10110 
10111 /**
10112  * @param crc   register containing existing CRC (32-bit)
10113  * @param buf   register pointing to input byte buffer (byte*)
10114  * @param len   register containing number of bytes
10115  * @param table register that will contain address of CRC table
10116  * @param tmp   scratch register
10117  */
10118 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
10119   assert_different_registers(crc, buf, len, table, tmp, rax);
10120 
10121   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
10122   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
10123 
10124   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
10125   // context for the registers used, where all instructions below are using 128-bit mode
10126   // On EVEX without VL and BW, these instructions will all be AVX.
10127   if (VM_Version::supports_avx512vlbw()) {
10128     movl(tmp, 0xffff);
10129     kmovwl(k1, tmp);
10130   }
10131 
10132   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
10133   notl(crc); // ~crc
10134   cmpl(len, 16);
10135   jcc(Assembler::less, L_tail);
10136 
10137   // Align buffer to 16 bytes
10138   movl(tmp, buf);
10139   andl(tmp, 0xF);
10140   jccb(Assembler::zero, L_aligned);
10141   subl(tmp,  16);
10142   addl(len, tmp);
10143 
10144   align(4);
10145   BIND(L_align_loop);
10146   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10147   update_byte_crc32(crc, rax, table);
10148   increment(buf);
10149   incrementl(tmp);
10150   jccb(Assembler::less, L_align_loop);
10151 
10152   BIND(L_aligned);
10153   movl(tmp, len); // save
10154   shrl(len, 4);
10155   jcc(Assembler::zero, L_tail_restore);
10156 
10157   // Fold crc into first bytes of vector
10158   movdqa(xmm1, Address(buf, 0));
10159   movdl(rax, xmm1);
10160   xorl(crc, rax);
10161   pinsrd(xmm1, crc, 0);
10162   addptr(buf, 16);
10163   subl(len, 4); // len > 0
10164   jcc(Assembler::less, L_fold_tail);
10165 
10166   movdqa(xmm2, Address(buf,  0));
10167   movdqa(xmm3, Address(buf, 16));
10168   movdqa(xmm4, Address(buf, 32));
10169   addptr(buf, 48);
10170   subl(len, 3);
10171   jcc(Assembler::lessEqual, L_fold_512b);
10172 
10173   // Fold total 512 bits of polynomial on each iteration,
10174   // 128 bits per each of 4 parallel streams.
10175   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
10176 
10177   align(32);
10178   BIND(L_fold_512b_loop);
10179   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10180   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
10181   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
10182   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
10183   addptr(buf, 64);
10184   subl(len, 4);
10185   jcc(Assembler::greater, L_fold_512b_loop);
10186 
10187   // Fold 512 bits to 128 bits.
10188   BIND(L_fold_512b);
10189   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10190   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
10191   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
10192   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
10193 
10194   // Fold the rest of 128 bits data chunks
10195   BIND(L_fold_tail);
10196   addl(len, 3);
10197   jccb(Assembler::lessEqual, L_fold_128b);
10198   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10199 
10200   BIND(L_fold_tail_loop);
10201   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10202   addptr(buf, 16);
10203   decrementl(len);
10204   jccb(Assembler::greater, L_fold_tail_loop);
10205 
10206   // Fold 128 bits in xmm1 down into 32 bits in crc register.
10207   BIND(L_fold_128b);
10208   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
10209   if (UseAVX > 0) {
10210     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
10211     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
10212     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
10213   } else {
10214     movdqa(xmm2, xmm0);
10215     pclmulqdq(xmm2, xmm1, 0x1);
10216     movdqa(xmm3, xmm0);
10217     pand(xmm3, xmm2);
10218     pclmulqdq(xmm0, xmm3, 0x1);
10219   }
10220   psrldq(xmm1, 8);
10221   psrldq(xmm2, 4);
10222   pxor(xmm0, xmm1);
10223   pxor(xmm0, xmm2);
10224 
10225   // 8 8-bit folds to compute 32-bit CRC.
10226   for (int j = 0; j < 4; j++) {
10227     fold_8bit_crc32(xmm0, table, xmm1, rax);
10228   }
10229   movdl(crc, xmm0); // mov 32 bits to general register
10230   for (int j = 0; j < 4; j++) {
10231     fold_8bit_crc32(crc, table, rax);
10232   }
10233 
10234   BIND(L_tail_restore);
10235   movl(len, tmp); // restore
10236   BIND(L_tail);
10237   andl(len, 0xf);
10238   jccb(Assembler::zero, L_exit);
10239 
10240   // Fold the rest of bytes
10241   align(4);
10242   BIND(L_tail_loop);
10243   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10244   update_byte_crc32(crc, rax, table);
10245   increment(buf);
10246   decrementl(len);
10247   jccb(Assembler::greater, L_tail_loop);
10248 
10249   BIND(L_exit);
10250   notl(crc); // ~c
10251 }
10252 
10253 #ifdef _LP64
10254 // S. Gueron / Information Processing Letters 112 (2012) 184
10255 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
10256 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
10257 // Output: the 64-bit carry-less product of B * CONST
10258 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
10259                                      Register tmp1, Register tmp2, Register tmp3) {
10260   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10261   if (n > 0) {
10262     addq(tmp3, n * 256 * 8);
10263   }
10264   //    Q1 = TABLEExt[n][B & 0xFF];
10265   movl(tmp1, in);
10266   andl(tmp1, 0x000000FF);
10267   shll(tmp1, 3);
10268   addq(tmp1, tmp3);
10269   movq(tmp1, Address(tmp1, 0));
10270 
10271   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10272   movl(tmp2, in);
10273   shrl(tmp2, 8);
10274   andl(tmp2, 0x000000FF);
10275   shll(tmp2, 3);
10276   addq(tmp2, tmp3);
10277   movq(tmp2, Address(tmp2, 0));
10278 
10279   shlq(tmp2, 8);
10280   xorq(tmp1, tmp2);
10281 
10282   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10283   movl(tmp2, in);
10284   shrl(tmp2, 16);
10285   andl(tmp2, 0x000000FF);
10286   shll(tmp2, 3);
10287   addq(tmp2, tmp3);
10288   movq(tmp2, Address(tmp2, 0));
10289 
10290   shlq(tmp2, 16);
10291   xorq(tmp1, tmp2);
10292 
10293   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10294   shrl(in, 24);
10295   andl(in, 0x000000FF);
10296   shll(in, 3);
10297   addq(in, tmp3);
10298   movq(in, Address(in, 0));
10299 
10300   shlq(in, 24);
10301   xorq(in, tmp1);
10302   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10303 }
10304 
10305 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10306                                       Register in_out,
10307                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10308                                       XMMRegister w_xtmp2,
10309                                       Register tmp1,
10310                                       Register n_tmp2, Register n_tmp3) {
10311   if (is_pclmulqdq_supported) {
10312     movdl(w_xtmp1, in_out); // modified blindly
10313 
10314     movl(tmp1, const_or_pre_comp_const_index);
10315     movdl(w_xtmp2, tmp1);
10316     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10317 
10318     movdq(in_out, w_xtmp1);
10319   } else {
10320     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10321   }
10322 }
10323 
10324 // Recombination Alternative 2: No bit-reflections
10325 // T1 = (CRC_A * U1) << 1
10326 // T2 = (CRC_B * U2) << 1
10327 // C1 = T1 >> 32
10328 // C2 = T2 >> 32
10329 // T1 = T1 & 0xFFFFFFFF
10330 // T2 = T2 & 0xFFFFFFFF
10331 // T1 = CRC32(0, T1)
10332 // T2 = CRC32(0, T2)
10333 // C1 = C1 ^ T1
10334 // C2 = C2 ^ T2
10335 // CRC = C1 ^ C2 ^ CRC_C
10336 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10337                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10338                                      Register tmp1, Register tmp2,
10339                                      Register n_tmp3) {
10340   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10341   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10342   shlq(in_out, 1);
10343   movl(tmp1, in_out);
10344   shrq(in_out, 32);
10345   xorl(tmp2, tmp2);
10346   crc32(tmp2, tmp1, 4);
10347   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10348   shlq(in1, 1);
10349   movl(tmp1, in1);
10350   shrq(in1, 32);
10351   xorl(tmp2, tmp2);
10352   crc32(tmp2, tmp1, 4);
10353   xorl(in1, tmp2);
10354   xorl(in_out, in1);
10355   xorl(in_out, in2);
10356 }
10357 
10358 // Set N to predefined value
10359 // Subtract from a lenght of a buffer
10360 // execute in a loop:
10361 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10362 // for i = 1 to N do
10363 //  CRC_A = CRC32(CRC_A, A[i])
10364 //  CRC_B = CRC32(CRC_B, B[i])
10365 //  CRC_C = CRC32(CRC_C, C[i])
10366 // end for
10367 // Recombine
10368 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10369                                        Register in_out1, Register in_out2, Register in_out3,
10370                                        Register tmp1, Register tmp2, Register tmp3,
10371                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10372                                        Register tmp4, Register tmp5,
10373                                        Register n_tmp6) {
10374   Label L_processPartitions;
10375   Label L_processPartition;
10376   Label L_exit;
10377 
10378   bind(L_processPartitions);
10379   cmpl(in_out1, 3 * size);
10380   jcc(Assembler::less, L_exit);
10381     xorl(tmp1, tmp1);
10382     xorl(tmp2, tmp2);
10383     movq(tmp3, in_out2);
10384     addq(tmp3, size);
10385 
10386     bind(L_processPartition);
10387       crc32(in_out3, Address(in_out2, 0), 8);
10388       crc32(tmp1, Address(in_out2, size), 8);
10389       crc32(tmp2, Address(in_out2, size * 2), 8);
10390       addq(in_out2, 8);
10391       cmpq(in_out2, tmp3);
10392       jcc(Assembler::less, L_processPartition);
10393     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10394             w_xtmp1, w_xtmp2, w_xtmp3,
10395             tmp4, tmp5,
10396             n_tmp6);
10397     addq(in_out2, 2 * size);
10398     subl(in_out1, 3 * size);
10399     jmp(L_processPartitions);
10400 
10401   bind(L_exit);
10402 }
10403 #else
10404 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10405                                      Register tmp1, Register tmp2, Register tmp3,
10406                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10407   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10408   if (n > 0) {
10409     addl(tmp3, n * 256 * 8);
10410   }
10411   //    Q1 = TABLEExt[n][B & 0xFF];
10412   movl(tmp1, in_out);
10413   andl(tmp1, 0x000000FF);
10414   shll(tmp1, 3);
10415   addl(tmp1, tmp3);
10416   movq(xtmp1, Address(tmp1, 0));
10417 
10418   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10419   movl(tmp2, in_out);
10420   shrl(tmp2, 8);
10421   andl(tmp2, 0x000000FF);
10422   shll(tmp2, 3);
10423   addl(tmp2, tmp3);
10424   movq(xtmp2, Address(tmp2, 0));
10425 
10426   psllq(xtmp2, 8);
10427   pxor(xtmp1, xtmp2);
10428 
10429   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10430   movl(tmp2, in_out);
10431   shrl(tmp2, 16);
10432   andl(tmp2, 0x000000FF);
10433   shll(tmp2, 3);
10434   addl(tmp2, tmp3);
10435   movq(xtmp2, Address(tmp2, 0));
10436 
10437   psllq(xtmp2, 16);
10438   pxor(xtmp1, xtmp2);
10439 
10440   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10441   shrl(in_out, 24);
10442   andl(in_out, 0x000000FF);
10443   shll(in_out, 3);
10444   addl(in_out, tmp3);
10445   movq(xtmp2, Address(in_out, 0));
10446 
10447   psllq(xtmp2, 24);
10448   pxor(xtmp1, xtmp2); // Result in CXMM
10449   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10450 }
10451 
10452 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10453                                       Register in_out,
10454                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10455                                       XMMRegister w_xtmp2,
10456                                       Register tmp1,
10457                                       Register n_tmp2, Register n_tmp3) {
10458   if (is_pclmulqdq_supported) {
10459     movdl(w_xtmp1, in_out);
10460 
10461     movl(tmp1, const_or_pre_comp_const_index);
10462     movdl(w_xtmp2, tmp1);
10463     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10464     // Keep result in XMM since GPR is 32 bit in length
10465   } else {
10466     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10467   }
10468 }
10469 
10470 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10471                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10472                                      Register tmp1, Register tmp2,
10473                                      Register n_tmp3) {
10474   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10475   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10476 
10477   psllq(w_xtmp1, 1);
10478   movdl(tmp1, w_xtmp1);
10479   psrlq(w_xtmp1, 32);
10480   movdl(in_out, w_xtmp1);
10481 
10482   xorl(tmp2, tmp2);
10483   crc32(tmp2, tmp1, 4);
10484   xorl(in_out, tmp2);
10485 
10486   psllq(w_xtmp2, 1);
10487   movdl(tmp1, w_xtmp2);
10488   psrlq(w_xtmp2, 32);
10489   movdl(in1, w_xtmp2);
10490 
10491   xorl(tmp2, tmp2);
10492   crc32(tmp2, tmp1, 4);
10493   xorl(in1, tmp2);
10494   xorl(in_out, in1);
10495   xorl(in_out, in2);
10496 }
10497 
10498 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10499                                        Register in_out1, Register in_out2, Register in_out3,
10500                                        Register tmp1, Register tmp2, Register tmp3,
10501                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10502                                        Register tmp4, Register tmp5,
10503                                        Register n_tmp6) {
10504   Label L_processPartitions;
10505   Label L_processPartition;
10506   Label L_exit;
10507 
10508   bind(L_processPartitions);
10509   cmpl(in_out1, 3 * size);
10510   jcc(Assembler::less, L_exit);
10511     xorl(tmp1, tmp1);
10512     xorl(tmp2, tmp2);
10513     movl(tmp3, in_out2);
10514     addl(tmp3, size);
10515 
10516     bind(L_processPartition);
10517       crc32(in_out3, Address(in_out2, 0), 4);
10518       crc32(tmp1, Address(in_out2, size), 4);
10519       crc32(tmp2, Address(in_out2, size*2), 4);
10520       crc32(in_out3, Address(in_out2, 0+4), 4);
10521       crc32(tmp1, Address(in_out2, size+4), 4);
10522       crc32(tmp2, Address(in_out2, size*2+4), 4);
10523       addl(in_out2, 8);
10524       cmpl(in_out2, tmp3);
10525       jcc(Assembler::less, L_processPartition);
10526 
10527         push(tmp3);
10528         push(in_out1);
10529         push(in_out2);
10530         tmp4 = tmp3;
10531         tmp5 = in_out1;
10532         n_tmp6 = in_out2;
10533 
10534       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10535             w_xtmp1, w_xtmp2, w_xtmp3,
10536             tmp4, tmp5,
10537             n_tmp6);
10538 
10539         pop(in_out2);
10540         pop(in_out1);
10541         pop(tmp3);
10542 
10543     addl(in_out2, 2 * size);
10544     subl(in_out1, 3 * size);
10545     jmp(L_processPartitions);
10546 
10547   bind(L_exit);
10548 }
10549 #endif //LP64
10550 
10551 #ifdef _LP64
10552 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10553 // Input: A buffer I of L bytes.
10554 // Output: the CRC32C value of the buffer.
10555 // Notations:
10556 // Write L = 24N + r, with N = floor (L/24).
10557 // r = L mod 24 (0 <= r < 24).
10558 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10559 // N quadwords, and R consists of r bytes.
10560 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10561 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10562 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10563 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10564 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10565                                           Register tmp1, Register tmp2, Register tmp3,
10566                                           Register tmp4, Register tmp5, Register tmp6,
10567                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10568                                           bool is_pclmulqdq_supported) {
10569   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10570   Label L_wordByWord;
10571   Label L_byteByByteProlog;
10572   Label L_byteByByte;
10573   Label L_exit;
10574 
10575   if (is_pclmulqdq_supported ) {
10576     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10577     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10578 
10579     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10580     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10581 
10582     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10583     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10584     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10585   } else {
10586     const_or_pre_comp_const_index[0] = 1;
10587     const_or_pre_comp_const_index[1] = 0;
10588 
10589     const_or_pre_comp_const_index[2] = 3;
10590     const_or_pre_comp_const_index[3] = 2;
10591 
10592     const_or_pre_comp_const_index[4] = 5;
10593     const_or_pre_comp_const_index[5] = 4;
10594    }
10595   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10596                     in2, in1, in_out,
10597                     tmp1, tmp2, tmp3,
10598                     w_xtmp1, w_xtmp2, w_xtmp3,
10599                     tmp4, tmp5,
10600                     tmp6);
10601   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10602                     in2, in1, in_out,
10603                     tmp1, tmp2, tmp3,
10604                     w_xtmp1, w_xtmp2, w_xtmp3,
10605                     tmp4, tmp5,
10606                     tmp6);
10607   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10608                     in2, in1, in_out,
10609                     tmp1, tmp2, tmp3,
10610                     w_xtmp1, w_xtmp2, w_xtmp3,
10611                     tmp4, tmp5,
10612                     tmp6);
10613   movl(tmp1, in2);
10614   andl(tmp1, 0x00000007);
10615   negl(tmp1);
10616   addl(tmp1, in2);
10617   addq(tmp1, in1);
10618 
10619   BIND(L_wordByWord);
10620   cmpq(in1, tmp1);
10621   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10622     crc32(in_out, Address(in1, 0), 4);
10623     addq(in1, 4);
10624     jmp(L_wordByWord);
10625 
10626   BIND(L_byteByByteProlog);
10627   andl(in2, 0x00000007);
10628   movl(tmp2, 1);
10629 
10630   BIND(L_byteByByte);
10631   cmpl(tmp2, in2);
10632   jccb(Assembler::greater, L_exit);
10633     crc32(in_out, Address(in1, 0), 1);
10634     incq(in1);
10635     incl(tmp2);
10636     jmp(L_byteByByte);
10637 
10638   BIND(L_exit);
10639 }
10640 #else
10641 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10642                                           Register tmp1, Register  tmp2, Register tmp3,
10643                                           Register tmp4, Register  tmp5, Register tmp6,
10644                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10645                                           bool is_pclmulqdq_supported) {
10646   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10647   Label L_wordByWord;
10648   Label L_byteByByteProlog;
10649   Label L_byteByByte;
10650   Label L_exit;
10651 
10652   if (is_pclmulqdq_supported) {
10653     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10654     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10655 
10656     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10657     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10658 
10659     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10660     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10661   } else {
10662     const_or_pre_comp_const_index[0] = 1;
10663     const_or_pre_comp_const_index[1] = 0;
10664 
10665     const_or_pre_comp_const_index[2] = 3;
10666     const_or_pre_comp_const_index[3] = 2;
10667 
10668     const_or_pre_comp_const_index[4] = 5;
10669     const_or_pre_comp_const_index[5] = 4;
10670   }
10671   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10672                     in2, in1, in_out,
10673                     tmp1, tmp2, tmp3,
10674                     w_xtmp1, w_xtmp2, w_xtmp3,
10675                     tmp4, tmp5,
10676                     tmp6);
10677   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10678                     in2, in1, in_out,
10679                     tmp1, tmp2, tmp3,
10680                     w_xtmp1, w_xtmp2, w_xtmp3,
10681                     tmp4, tmp5,
10682                     tmp6);
10683   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10684                     in2, in1, in_out,
10685                     tmp1, tmp2, tmp3,
10686                     w_xtmp1, w_xtmp2, w_xtmp3,
10687                     tmp4, tmp5,
10688                     tmp6);
10689   movl(tmp1, in2);
10690   andl(tmp1, 0x00000007);
10691   negl(tmp1);
10692   addl(tmp1, in2);
10693   addl(tmp1, in1);
10694 
10695   BIND(L_wordByWord);
10696   cmpl(in1, tmp1);
10697   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10698     crc32(in_out, Address(in1,0), 4);
10699     addl(in1, 4);
10700     jmp(L_wordByWord);
10701 
10702   BIND(L_byteByByteProlog);
10703   andl(in2, 0x00000007);
10704   movl(tmp2, 1);
10705 
10706   BIND(L_byteByByte);
10707   cmpl(tmp2, in2);
10708   jccb(Assembler::greater, L_exit);
10709     movb(tmp1, Address(in1, 0));
10710     crc32(in_out, tmp1, 1);
10711     incl(in1);
10712     incl(tmp2);
10713     jmp(L_byteByByte);
10714 
10715   BIND(L_exit);
10716 }
10717 #endif // LP64
10718 #undef BIND
10719 #undef BLOCK_COMMENT
10720 
10721 // Compress char[] array to byte[].
10722 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
10723 //   @HotSpotIntrinsicCandidate
10724 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
10725 //     for (int i = 0; i < len; i++) {
10726 //       int c = src[srcOff++];
10727 //       if (c >>> 8 != 0) {
10728 //         return 0;
10729 //       }
10730 //       dst[dstOff++] = (byte)c;
10731 //     }
10732 //     return len;
10733 //   }
10734 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10735   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10736   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10737   Register tmp5, Register result) {
10738   Label copy_chars_loop, return_length, return_zero, done, below_threshold;
10739 
10740   // rsi: src
10741   // rdi: dst
10742   // rdx: len
10743   // rcx: tmp5
10744   // rax: result
10745 
10746   // rsi holds start addr of source char[] to be compressed
10747   // rdi holds start addr of destination byte[]
10748   // rdx holds length
10749 
10750   assert(len != result, "");
10751 
10752   // save length for return
10753   push(len);
10754 
10755   if ((UseAVX > 2) && // AVX512
10756     VM_Version::supports_avx512vlbw() &&
10757     VM_Version::supports_bmi2()) {
10758 
10759     set_vector_masking();  // opening of the stub context for programming mask registers
10760 
10761     Label copy_32_loop, copy_loop_tail, copy_just_portion_of_candidates;
10762 
10763     // alignement
10764     Label post_alignement;
10765 
10766     // if length of the string is less than 16, handle it in an old fashioned
10767     // way
10768     testl(len, -32);
10769     jcc(Assembler::zero, below_threshold);
10770 
10771     // First check whether a character is compressable ( <= 0xFF).
10772     // Create mask to test for Unicode chars inside zmm vector
10773     movl(result, 0x00FF);
10774     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
10775 
10776     testl(len, -64);
10777     jcc(Assembler::zero, post_alignement);
10778 
10779     // Save k1
10780     kmovql(k3, k1);
10781 
10782     movl(tmp5, dst);
10783     andl(tmp5, (64 - 1));
10784     negl(tmp5);
10785     andl(tmp5, (64 - 1));
10786 
10787     // bail out when there is nothing to be done
10788     testl(tmp5, 0xFFFFFFFF);
10789     jcc(Assembler::zero, post_alignement);
10790 
10791     // ~(~0 << len), where len is the # of remaining elements to process
10792     movl(result, 0xFFFFFFFF);
10793     shlxl(result, result, tmp5);
10794     notl(result);
10795 
10796     kmovdl(k1, result);
10797 
10798     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10799     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10800     ktestd(k2, k1);
10801     jcc(Assembler::carryClear, copy_just_portion_of_candidates);
10802 
10803     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10804 
10805     addptr(src, tmp5);
10806     addptr(src, tmp5);
10807     addptr(dst, tmp5);
10808     subl(len, tmp5);
10809 
10810     bind(post_alignement);
10811     // end of alignement
10812 
10813     movl(tmp5, len);
10814     andl(tmp5, (32 - 1));   // tail count (in chars)
10815     andl(len, ~(32 - 1));    // vector count (in chars)
10816     jcc(Assembler::zero, copy_loop_tail);
10817 
10818     lea(src, Address(src, len, Address::times_2));
10819     lea(dst, Address(dst, len, Address::times_1));
10820     negptr(len);
10821 
10822     bind(copy_32_loop);
10823     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
10824     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10825     kortestdl(k2, k2);
10826     jcc(Assembler::carryClear, copy_just_portion_of_candidates);
10827 
10828     // All elements in current processed chunk are valid candidates for
10829     // compression. Write a truncated byte elements to the memory.
10830     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
10831     addptr(len, 32);
10832     jcc(Assembler::notZero, copy_32_loop);
10833 
10834     bind(copy_loop_tail);
10835     // bail out when there is nothing to be done
10836     testl(tmp5, 0xFFFFFFFF);
10837     jcc(Assembler::zero, return_length);
10838 
10839     // Save k1
10840     kmovql(k3, k1);
10841 
10842     movl(len, tmp5);
10843 
10844     // ~(~0 << len), where len is the # of remaining elements to process
10845     movl(result, 0xFFFFFFFF);
10846     shlxl(result, result, len);
10847     notl(result);
10848 
10849     kmovdl(k1, result);
10850 
10851     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10852     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10853     ktestd(k2, k1);
10854     jcc(Assembler::carryClear, copy_just_portion_of_candidates);
10855 
10856     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10857     // Restore k1
10858     kmovql(k1, k3);
10859 
10860     jmp(return_length);
10861 
10862     bind(copy_just_portion_of_candidates);
10863     kmovdl(tmp5, k2);
10864     tzcntl(tmp5, tmp5);
10865 
10866     // ~(~0 << tmp5), where tmp5 is a number of elements in an array from the
10867     // result to the first element larger than 0xFF
10868     movl(result, 0xFFFFFFFF);
10869     shlxl(result, result, tmp5);
10870     notl(result);
10871 
10872     kmovdl(k1, result);
10873 
10874     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10875     // Restore k1
10876     kmovql(k1, k3);
10877 
10878     jmp(return_zero);
10879 
10880     clear_vector_masking();   // closing of the stub context for programming mask registers
10881   }
10882   if (UseSSE42Intrinsics) {
10883     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
10884     Label copy_32_loop, copy_16, copy_tail;
10885 
10886     bind(below_threshold);
10887 
10888     movl(result, len);
10889 
10890     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
10891 
10892     // vectored compression
10893     andl(len, 0xfffffff0);    // vector count (in chars)
10894     andl(result, 0x0000000f);    // tail count (in chars)
10895     testl(len, len);
10896     jccb(Assembler::zero, copy_16);
10897 
10898     // compress 16 chars per iter
10899     movdl(tmp1Reg, tmp5);
10900     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10901     pxor(tmp4Reg, tmp4Reg);
10902 
10903     lea(src, Address(src, len, Address::times_2));
10904     lea(dst, Address(dst, len, Address::times_1));
10905     negptr(len);
10906 
10907     bind(copy_32_loop);
10908     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
10909     por(tmp4Reg, tmp2Reg);
10910     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
10911     por(tmp4Reg, tmp3Reg);
10912     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
10913     jcc(Assembler::notZero, return_zero);
10914     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
10915     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
10916     addptr(len, 16);
10917     jcc(Assembler::notZero, copy_32_loop);
10918 
10919     // compress next vector of 8 chars (if any)
10920     bind(copy_16);
10921     movl(len, result);
10922     andl(len, 0xfffffff8);    // vector count (in chars)
10923     andl(result, 0x00000007);    // tail count (in chars)
10924     testl(len, len);
10925     jccb(Assembler::zero, copy_tail);
10926 
10927     movdl(tmp1Reg, tmp5);
10928     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10929     pxor(tmp3Reg, tmp3Reg);
10930 
10931     movdqu(tmp2Reg, Address(src, 0));
10932     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
10933     jccb(Assembler::notZero, return_zero);
10934     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
10935     movq(Address(dst, 0), tmp2Reg);
10936     addptr(src, 16);
10937     addptr(dst, 8);
10938 
10939     bind(copy_tail);
10940     movl(len, result);
10941   }
10942   // compress 1 char per iter
10943   testl(len, len);
10944   jccb(Assembler::zero, return_length);
10945   lea(src, Address(src, len, Address::times_2));
10946   lea(dst, Address(dst, len, Address::times_1));
10947   negptr(len);
10948 
10949   bind(copy_chars_loop);
10950   load_unsigned_short(result, Address(src, len, Address::times_2));
10951   testl(result, 0xff00);      // check if Unicode char
10952   jccb(Assembler::notZero, return_zero);
10953   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
10954   increment(len);
10955   jcc(Assembler::notZero, copy_chars_loop);
10956 
10957   // if compression succeeded, return length
10958   bind(return_length);
10959   pop(result);
10960   jmpb(done);
10961 
10962   // if compression failed, return 0
10963   bind(return_zero);
10964   xorl(result, result);
10965   addptr(rsp, wordSize);
10966 
10967   bind(done);
10968 }
10969 
10970 // Inflate byte[] array to char[].
10971 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
10972 //   @HotSpotIntrinsicCandidate
10973 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
10974 //     for (int i = 0; i < len; i++) {
10975 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
10976 //     }
10977 //   }
10978 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
10979   XMMRegister tmp1, Register tmp2) {
10980   Label copy_chars_loop, done, below_threshold;
10981   // rsi: src
10982   // rdi: dst
10983   // rdx: len
10984   // rcx: tmp2
10985 
10986   // rsi holds start addr of source byte[] to be inflated
10987   // rdi holds start addr of destination char[]
10988   // rdx holds length
10989   assert_different_registers(src, dst, len, tmp2);
10990 
10991   if ((UseAVX > 2) && // AVX512
10992     VM_Version::supports_avx512vlbw() &&
10993     VM_Version::supports_bmi2()) {
10994 
10995     set_vector_masking();  // opening of the stub context for programming mask registers
10996 
10997     Label copy_32_loop, copy_tail;
10998     Register tmp3_aliased = len;
10999 
11000     // if length of the string is less than 16, handle it in an old fashioned
11001     // way
11002     testl(len, -16);
11003     jcc(Assembler::zero, below_threshold);
11004 
11005     // In order to use only one arithmetic operation for the main loop we use
11006     // this pre-calculation
11007     movl(tmp2, len);
11008     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
11009     andl(len, -32);     // vector count
11010     jccb(Assembler::zero, copy_tail);
11011 
11012     lea(src, Address(src, len, Address::times_1));
11013     lea(dst, Address(dst, len, Address::times_2));
11014     negptr(len);
11015 
11016 
11017     // inflate 32 chars per iter
11018     bind(copy_32_loop);
11019     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
11020     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
11021     addptr(len, 32);
11022     jcc(Assembler::notZero, copy_32_loop);
11023 
11024     bind(copy_tail);
11025     // bail out when there is nothing to be done
11026     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
11027     jcc(Assembler::zero, done);
11028 
11029     // Save k1
11030     kmovql(k2, k1);
11031 
11032     // ~(~0 << length), where length is the # of remaining elements to process
11033     movl(tmp3_aliased, -1);
11034     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
11035     notl(tmp3_aliased);
11036     kmovdl(k1, tmp3_aliased);
11037     evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
11038     evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
11039 
11040     // Restore k1
11041     kmovql(k1, k2);
11042     jmp(done);
11043 
11044     clear_vector_masking();   // closing of the stub context for programming mask registers
11045   }
11046   if (UseSSE42Intrinsics) {
11047     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
11048     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
11049 
11050     movl(tmp2, len);
11051 
11052     if (UseAVX > 1) {
11053       andl(tmp2, (16 - 1));
11054       andl(len, -16);
11055       jccb(Assembler::zero, copy_new_tail);
11056     } else {
11057       andl(tmp2, 0x00000007);   // tail count (in chars)
11058       andl(len, 0xfffffff8);    // vector count (in chars)
11059       jccb(Assembler::zero, copy_tail);
11060     }
11061 
11062     // vectored inflation
11063     lea(src, Address(src, len, Address::times_1));
11064     lea(dst, Address(dst, len, Address::times_2));
11065     negptr(len);
11066 
11067     if (UseAVX > 1) {
11068       bind(copy_16_loop);
11069       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
11070       vmovdqu(Address(dst, len, Address::times_2), tmp1);
11071       addptr(len, 16);
11072       jcc(Assembler::notZero, copy_16_loop);
11073 
11074       bind(below_threshold);
11075       bind(copy_new_tail);
11076       if (UseAVX > 2) {
11077         movl(tmp2, len);
11078       }
11079       else {
11080         movl(len, tmp2);
11081       }
11082       andl(tmp2, 0x00000007);
11083       andl(len, 0xFFFFFFF8);
11084       jccb(Assembler::zero, copy_tail);
11085 
11086       pmovzxbw(tmp1, Address(src, 0));
11087       movdqu(Address(dst, 0), tmp1);
11088       addptr(src, 8);
11089       addptr(dst, 2 * 8);
11090 
11091       jmp(copy_tail, true);
11092     }
11093 
11094     // inflate 8 chars per iter
11095     bind(copy_8_loop);
11096     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
11097     movdqu(Address(dst, len, Address::times_2), tmp1);
11098     addptr(len, 8);
11099     jcc(Assembler::notZero, copy_8_loop);
11100 
11101     bind(copy_tail);
11102     movl(len, tmp2);
11103 
11104     cmpl(len, 4);
11105     jccb(Assembler::less, copy_bytes);
11106 
11107     movdl(tmp1, Address(src, 0));  // load 4 byte chars
11108     pmovzxbw(tmp1, tmp1);
11109     movq(Address(dst, 0), tmp1);
11110     subptr(len, 4);
11111     addptr(src, 4);
11112     addptr(dst, 8);
11113 
11114     bind(copy_bytes);
11115   }
11116   testl(len, len);
11117   jccb(Assembler::zero, done);
11118   lea(src, Address(src, len, Address::times_1));
11119   lea(dst, Address(dst, len, Address::times_2));
11120   negptr(len);
11121 
11122   // inflate 1 char per iter
11123   bind(copy_chars_loop);
11124   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
11125   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
11126   increment(len);
11127   jcc(Assembler::notZero, copy_chars_loop);
11128 
11129   bind(done);
11130 }
11131 
11132 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
11133   switch (cond) {
11134     // Note some conditions are synonyms for others
11135     case Assembler::zero:         return Assembler::notZero;
11136     case Assembler::notZero:      return Assembler::zero;
11137     case Assembler::less:         return Assembler::greaterEqual;
11138     case Assembler::lessEqual:    return Assembler::greater;
11139     case Assembler::greater:      return Assembler::lessEqual;
11140     case Assembler::greaterEqual: return Assembler::less;
11141     case Assembler::below:        return Assembler::aboveEqual;
11142     case Assembler::belowEqual:   return Assembler::above;
11143     case Assembler::above:        return Assembler::belowEqual;
11144     case Assembler::aboveEqual:   return Assembler::below;
11145     case Assembler::overflow:     return Assembler::noOverflow;
11146     case Assembler::noOverflow:   return Assembler::overflow;
11147     case Assembler::negative:     return Assembler::positive;
11148     case Assembler::positive:     return Assembler::negative;
11149     case Assembler::parity:       return Assembler::noParity;
11150     case Assembler::noParity:     return Assembler::parity;
11151   }
11152   ShouldNotReachHere(); return Assembler::overflow;
11153 }
11154 
11155 SkipIfEqual::SkipIfEqual(
11156     MacroAssembler* masm, const bool* flag_addr, bool value) {
11157   _masm = masm;
11158   _masm->cmp8(ExternalAddress((address)flag_addr), value);
11159   _masm->jcc(Assembler::equal, _label);
11160 }
11161 
11162 SkipIfEqual::~SkipIfEqual() {
11163   _masm->bind(_label);
11164 }
11165 
11166 // 32-bit Windows has its own fast-path implementation
11167 // of get_thread
11168 #if !defined(WIN32) || defined(_LP64)
11169 
11170 // This is simply a call to Thread::current()
11171 void MacroAssembler::get_thread(Register thread) {
11172   if (thread != rax) {
11173     push(rax);
11174   }
11175   LP64_ONLY(push(rdi);)
11176   LP64_ONLY(push(rsi);)
11177   push(rdx);
11178   push(rcx);
11179 #ifdef _LP64
11180   push(r8);
11181   push(r9);
11182   push(r10);
11183   push(r11);
11184 #endif
11185 
11186   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
11187 
11188 #ifdef _LP64
11189   pop(r11);
11190   pop(r10);
11191   pop(r9);
11192   pop(r8);
11193 #endif
11194   pop(rcx);
11195   pop(rdx);
11196   LP64_ONLY(pop(rsi);)
11197   LP64_ONLY(pop(rdi);)
11198   if (thread != rax) {
11199     mov(thread, rax);
11200     pop(rax);
11201   }
11202 }
11203 
11204 #endif