1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  75   // The implementation is only non-empty for the InterpreterMacroAssembler,
  76   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  77   virtual void check_and_handle_popframe(Register java_thread);
  78   virtual void check_and_handle_earlyret(Register java_thread);
  79 
  80   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  81 
  82   // helpers for FPU flag access
  83   // tmp is a temporary register, if none is available use noreg
  84   void save_rax   (Register tmp);
  85   void restore_rax(Register tmp);
  86 
  87  public:
  88   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf(address entry_point,
 263                     int number_of_arguments = 0);
 264   void call_VM_leaf(address entry_point,
 265                     Register arg_1);
 266   void call_VM_leaf(address entry_point,
 267                     Register arg_1, Register arg_2);
 268   void call_VM_leaf(address entry_point,
 269                     Register arg_1, Register arg_2, Register arg_3);
 270 
 271   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 272   // bypassing the virtual implementation
 273   void super_call_VM_leaf(address entry_point);
 274   void super_call_VM_leaf(address entry_point, Register arg_1);
 275   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 278 
 279   // last Java Frame (fills frame anchor)
 280   void set_last_Java_frame(Register thread,
 281                            Register last_java_sp,
 282                            Register last_java_fp,
 283                            address last_java_pc);
 284 
 285   // thread in the default location (r15_thread on 64bit)
 286   void set_last_Java_frame(Register last_java_sp,
 287                            Register last_java_fp,
 288                            address last_java_pc);
 289 
 290   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
 291 
 292   // thread in the default location (r15_thread on 64bit)
 293   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
 294 
 295   // Stores
 296   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 297   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 298 
 299 #if INCLUDE_ALL_GCS
 300 
 301   void g1_write_barrier_pre(Register obj,
 302                             Register pre_val,
 303                             Register thread,
 304                             Register tmp,
 305                             bool tosca_live,
 306                             bool expand_call);
 307 
 308   void g1_write_barrier_post(Register store_addr,
 309                              Register new_val,
 310                              Register thread,
 311                              Register tmp,
 312                              Register tmp2);
 313 
 314 #endif // INCLUDE_ALL_GCS
 315 
 316   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 317   void c2bool(Register x);
 318 
 319   // C++ bool manipulation
 320 
 321   void movbool(Register dst, Address src);
 322   void movbool(Address dst, bool boolconst);
 323   void movbool(Address dst, Register src);
 324   void testbool(Register dst);
 325 
 326   void load_mirror(Register mirror, Register method);
 327 
 328   // oop manipulations
 329   void load_klass(Register dst, Register src);
 330   void store_klass(Register dst, Register src);
 331 
 332   void load_heap_oop(Register dst, Address src);
 333   void load_heap_oop_not_null(Register dst, Address src);
 334   void store_heap_oop(Address dst, Register src);
 335   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 336 
 337   // Used for storing NULL. All other oop constants should be
 338   // stored using routines that take a jobject.
 339   void store_heap_oop_null(Address dst);
 340 
 341   void load_prototype_header(Register dst, Register src);
 342 
 343 #ifdef _LP64
 344   void store_klass_gap(Register dst, Register src);
 345 
 346   // This dummy is to prevent a call to store_heap_oop from
 347   // converting a zero (like NULL) into a Register by giving
 348   // the compiler two choices it can't resolve
 349 
 350   void store_heap_oop(Address dst, void* dummy);
 351 
 352   void encode_heap_oop(Register r);
 353   void decode_heap_oop(Register r);
 354   void encode_heap_oop_not_null(Register r);
 355   void decode_heap_oop_not_null(Register r);
 356   void encode_heap_oop_not_null(Register dst, Register src);
 357   void decode_heap_oop_not_null(Register dst, Register src);
 358 
 359   void set_narrow_oop(Register dst, jobject obj);
 360   void set_narrow_oop(Address dst, jobject obj);
 361   void cmp_narrow_oop(Register dst, jobject obj);
 362   void cmp_narrow_oop(Address dst, jobject obj);
 363 
 364   void encode_klass_not_null(Register r);
 365   void decode_klass_not_null(Register r);
 366   void encode_klass_not_null(Register dst, Register src);
 367   void decode_klass_not_null(Register dst, Register src);
 368   void set_narrow_klass(Register dst, Klass* k);
 369   void set_narrow_klass(Address dst, Klass* k);
 370   void cmp_narrow_klass(Register dst, Klass* k);
 371   void cmp_narrow_klass(Address dst, Klass* k);
 372 
 373   // Returns the byte size of the instructions generated by decode_klass_not_null()
 374   // when compressed klass pointers are being used.
 375   static int instr_size_for_decode_klass_not_null();
 376 
 377   // if heap base register is used - reinit it with the correct value
 378   void reinit_heapbase();
 379 
 380   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 381 
 382 #endif // _LP64
 383 
 384   // Int division/remainder for Java
 385   // (as idivl, but checks for special case as described in JVM spec.)
 386   // returns idivl instruction offset for implicit exception handling
 387   int corrected_idivl(Register reg);
 388 
 389   // Long division/remainder for Java
 390   // (as idivq, but checks for special case as described in JVM spec.)
 391   // returns idivq instruction offset for implicit exception handling
 392   int corrected_idivq(Register reg);
 393 
 394   void int3();
 395 
 396   // Long operation macros for a 32bit cpu
 397   // Long negation for Java
 398   void lneg(Register hi, Register lo);
 399 
 400   // Long multiplication for Java
 401   // (destroys contents of eax, ebx, ecx and edx)
 402   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 403 
 404   // Long shifts for Java
 405   // (semantics as described in JVM spec.)
 406   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 407   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 408 
 409   // Long compare for Java
 410   // (semantics as described in JVM spec.)
 411   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 412 
 413 
 414   // misc
 415 
 416   // Sign extension
 417   void sign_extend_short(Register reg);
 418   void sign_extend_byte(Register reg);
 419 
 420   // Division by power of 2, rounding towards 0
 421   void division_with_shift(Register reg, int shift_value);
 422 
 423   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 424   //
 425   // CF (corresponds to C0) if x < y
 426   // PF (corresponds to C2) if unordered
 427   // ZF (corresponds to C3) if x = y
 428   //
 429   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 430   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 431   void fcmp(Register tmp);
 432   // Variant of the above which allows y to be further down the stack
 433   // and which only pops x and y if specified. If pop_right is
 434   // specified then pop_left must also be specified.
 435   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 436 
 437   // Floating-point comparison for Java
 438   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 439   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 440   // (semantics as described in JVM spec.)
 441   void fcmp2int(Register dst, bool unordered_is_less);
 442   // Variant of the above which allows y to be further down the stack
 443   // and which only pops x and y if specified. If pop_right is
 444   // specified then pop_left must also be specified.
 445   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 446 
 447   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 448   // tmp is a temporary register, if none is available use noreg
 449   void fremr(Register tmp);
 450 
 451 
 452   // same as fcmp2int, but using SSE2
 453   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 454   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 455 
 456   // Inlined sin/cos generator for Java; must not use CPU instruction
 457   // directly on Intel as it does not have high enough precision
 458   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
 459   // number of FPU stack slots in use; all but the topmost will
 460   // require saving if a slow case is necessary. Assumes argument is
 461   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
 462   // this code.
 463   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
 464 
 465   // branch to L if FPU flag C2 is set/not set
 466   // tmp is a temporary register, if none is available use noreg
 467   void jC2 (Register tmp, Label& L);
 468   void jnC2(Register tmp, Label& L);
 469 
 470   // Pop ST (ffree & fincstp combined)
 471   void fpop();
 472 
 473   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 474   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 475   void load_float(Address src);
 476 
 477   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 478   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 479   void store_float(Address dst);
 480 
 481   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 482   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 483   void load_double(Address src);
 484 
 485   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 486   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 487   void store_double(Address dst);
 488 
 489   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 490   void push_fTOS();
 491 
 492   // pops double TOS element from CPU stack and pushes on FPU stack
 493   void pop_fTOS();
 494 
 495   void empty_FPU_stack();
 496 
 497   void push_IU_state();
 498   void pop_IU_state();
 499 
 500   void push_FPU_state();
 501   void pop_FPU_state();
 502 
 503   void push_CPU_state();
 504   void pop_CPU_state();
 505 
 506   // Round up to a power of two
 507   void round_to(Register reg, int modulus);
 508 
 509   // Callee saved registers handling
 510   void push_callee_saved_registers();
 511   void pop_callee_saved_registers();
 512 
 513   // allocation
 514   void eden_allocate(
 515     Register obj,                      // result: pointer to object after successful allocation
 516     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 517     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 518     Register t1,                       // temp register
 519     Label&   slow_case                 // continuation point if fast allocation fails
 520   );
 521   void tlab_allocate(
 522     Register obj,                      // result: pointer to object after successful allocation
 523     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 524     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 525     Register t1,                       // temp register
 526     Register t2,                       // temp register
 527     Label&   slow_case                 // continuation point if fast allocation fails
 528   );
 529   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 530   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 531 
 532   void incr_allocated_bytes(Register thread,
 533                             Register var_size_in_bytes, int con_size_in_bytes,
 534                             Register t1 = noreg);
 535 
 536   // interface method calling
 537   void lookup_interface_method(Register recv_klass,
 538                                Register intf_klass,
 539                                RegisterOrConstant itable_index,
 540                                Register method_result,
 541                                Register scan_temp,
 542                                Label& no_such_interface);
 543 
 544   // virtual method calling
 545   void lookup_virtual_method(Register recv_klass,
 546                              RegisterOrConstant vtable_index,
 547                              Register method_result);
 548 
 549   // Test sub_klass against super_klass, with fast and slow paths.
 550 
 551   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 552   // One of the three labels can be NULL, meaning take the fall-through.
 553   // If super_check_offset is -1, the value is loaded up from super_klass.
 554   // No registers are killed, except temp_reg.
 555   void check_klass_subtype_fast_path(Register sub_klass,
 556                                      Register super_klass,
 557                                      Register temp_reg,
 558                                      Label* L_success,
 559                                      Label* L_failure,
 560                                      Label* L_slow_path,
 561                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 562 
 563   // The rest of the type check; must be wired to a corresponding fast path.
 564   // It does not repeat the fast path logic, so don't use it standalone.
 565   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 566   // Updates the sub's secondary super cache as necessary.
 567   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 568   void check_klass_subtype_slow_path(Register sub_klass,
 569                                      Register super_klass,
 570                                      Register temp_reg,
 571                                      Register temp2_reg,
 572                                      Label* L_success,
 573                                      Label* L_failure,
 574                                      bool set_cond_codes = false);
 575 
 576   // Simplified, combined version, good for typical uses.
 577   // Falls through on failure.
 578   void check_klass_subtype(Register sub_klass,
 579                            Register super_klass,
 580                            Register temp_reg,
 581                            Label& L_success);
 582 
 583   // method handles (JSR 292)
 584   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 585 
 586   //----
 587   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 588 
 589   // Debugging
 590 
 591   // only if +VerifyOops
 592   // TODO: Make these macros with file and line like sparc version!
 593   void verify_oop(Register reg, const char* s = "broken oop");
 594   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 595 
 596   // TODO: verify method and klass metadata (compare against vptr?)
 597   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 598   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 599 
 600 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 601 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 602 
 603   // only if +VerifyFPU
 604   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 605 
 606   // Verify or restore cpu control state after JNI call
 607   void restore_cpu_control_state_after_jni();
 608 
 609   // prints msg, dumps registers and stops execution
 610   void stop(const char* msg);
 611 
 612   // prints msg and continues
 613   void warn(const char* msg);
 614 
 615   // dumps registers and other state
 616   void print_state();
 617 
 618   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 619   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 620   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 621   static void print_state64(int64_t pc, int64_t regs[]);
 622 
 623   void os_breakpoint();
 624 
 625   void untested()                                { stop("untested"); }
 626 
 627   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 628 
 629   void should_not_reach_here()                   { stop("should not reach here"); }
 630 
 631   void print_CPU_state();
 632 
 633   // Stack overflow checking
 634   void bang_stack_with_offset(int offset) {
 635     // stack grows down, caller passes positive offset
 636     assert(offset > 0, "must bang with negative offset");
 637     movl(Address(rsp, (-offset)), rax);
 638   }
 639 
 640   // Writes to stack successive pages until offset reached to check for
 641   // stack overflow + shadow pages.  Also, clobbers tmp
 642   void bang_stack_size(Register size, Register tmp);
 643 
 644   // Check for reserved stack access in method being exited (for JIT)
 645   void reserved_stack_check();
 646 
 647   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 648                                                 Register tmp,
 649                                                 int offset);
 650 
 651   // Support for serializing memory accesses between threads
 652   void serialize_memory(Register thread, Register tmp);
 653 
 654   void verify_tlab();
 655 
 656   // Biased locking support
 657   // lock_reg and obj_reg must be loaded up with the appropriate values.
 658   // swap_reg must be rax, and is killed.
 659   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 660   // be killed; if not supplied, push/pop will be used internally to
 661   // allocate a temporary (inefficient, avoid if possible).
 662   // Optional slow case is for implementations (interpreter and C1) which branch to
 663   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 664   // Returns offset of first potentially-faulting instruction for null
 665   // check info (currently consumed only by C1). If
 666   // swap_reg_contains_mark is true then returns -1 as it is assumed
 667   // the calling code has already passed any potential faults.
 668   int biased_locking_enter(Register lock_reg, Register obj_reg,
 669                            Register swap_reg, Register tmp_reg,
 670                            bool swap_reg_contains_mark,
 671                            Label& done, Label* slow_case = NULL,
 672                            BiasedLockingCounters* counters = NULL);
 673   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 674 #ifdef COMPILER2
 675   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 676   // See full desription in macroAssembler_x86.cpp.
 677   void fast_lock(Register obj, Register box, Register tmp,
 678                  Register scr, Register cx1, Register cx2,
 679                  BiasedLockingCounters* counters,
 680                  RTMLockingCounters* rtm_counters,
 681                  RTMLockingCounters* stack_rtm_counters,
 682                  Metadata* method_data,
 683                  bool use_rtm, bool profile_rtm);
 684   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 685 #if INCLUDE_RTM_OPT
 686   void rtm_counters_update(Register abort_status, Register rtm_counters);
 687   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 688   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 689                                    RTMLockingCounters* rtm_counters,
 690                                    Metadata* method_data);
 691   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 692                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 693   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 694   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 695   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 696                          Register retry_on_abort_count,
 697                          RTMLockingCounters* stack_rtm_counters,
 698                          Metadata* method_data, bool profile_rtm,
 699                          Label& DONE_LABEL, Label& IsInflated);
 700   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 701                             Register scr, Register retry_on_busy_count,
 702                             Register retry_on_abort_count,
 703                             RTMLockingCounters* rtm_counters,
 704                             Metadata* method_data, bool profile_rtm,
 705                             Label& DONE_LABEL);
 706 #endif
 707 #endif
 708 
 709   Condition negate_condition(Condition cond);
 710 
 711   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 712   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 713   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 714   // here in MacroAssembler. The major exception to this rule is call
 715 
 716   // Arithmetics
 717 
 718 
 719   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 720   void addptr(Address dst, Register src);
 721 
 722   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 723   void addptr(Register dst, int32_t src);
 724   void addptr(Register dst, Register src);
 725   void addptr(Register dst, RegisterOrConstant src) {
 726     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 727     else                   addptr(dst,       src.as_register());
 728   }
 729 
 730   void andptr(Register dst, int32_t src);
 731   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 732 
 733   void cmp8(AddressLiteral src1, int imm);
 734 
 735   // renamed to drag out the casting of address to int32_t/intptr_t
 736   void cmp32(Register src1, int32_t imm);
 737 
 738   void cmp32(AddressLiteral src1, int32_t imm);
 739   // compare reg - mem, or reg - &mem
 740   void cmp32(Register src1, AddressLiteral src2);
 741 
 742   void cmp32(Register src1, Address src2);
 743 
 744 #ifndef _LP64
 745   void cmpklass(Address dst, Metadata* obj);
 746   void cmpklass(Register dst, Metadata* obj);
 747   void cmpoop(Address dst, jobject obj);
 748   void cmpoop(Register dst, jobject obj);
 749 #endif // _LP64
 750 
 751   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 752   void cmpptr(Address src1, AddressLiteral src2);
 753 
 754   void cmpptr(Register src1, AddressLiteral src2);
 755 
 756   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 757   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 758   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 759 
 760   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 761   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 762 
 763   // cmp64 to avoild hiding cmpq
 764   void cmp64(Register src1, AddressLiteral src);
 765 
 766   void cmpxchgptr(Register reg, Address adr);
 767 
 768   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 769 
 770 
 771   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 772   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 773 
 774 
 775   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 776 
 777   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 778 
 779   void shlptr(Register dst, int32_t shift);
 780   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 781 
 782   void shrptr(Register dst, int32_t shift);
 783   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 784 
 785   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 786   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 787 
 788   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 789 
 790   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 791   void subptr(Register dst, int32_t src);
 792   // Force generation of a 4 byte immediate value even if it fits into 8bit
 793   void subptr_imm32(Register dst, int32_t src);
 794   void subptr(Register dst, Register src);
 795   void subptr(Register dst, RegisterOrConstant src) {
 796     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 797     else                   subptr(dst,       src.as_register());
 798   }
 799 
 800   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 801   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 802 
 803   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 804   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 805 
 806   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 807 
 808 
 809 
 810   // Helper functions for statistics gathering.
 811   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 812   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 813   // Unconditional atomic increment.
 814   void atomic_incl(Address counter_addr);
 815   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 816 #ifdef _LP64
 817   void atomic_incq(Address counter_addr);
 818   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 819 #endif
 820   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 821   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 822 
 823   void lea(Register dst, AddressLiteral adr);
 824   void lea(Address dst, AddressLiteral adr);
 825   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 826 
 827   void leal32(Register dst, Address src) { leal(dst, src); }
 828 
 829   // Import other testl() methods from the parent class or else
 830   // they will be hidden by the following overriding declaration.
 831   using Assembler::testl;
 832   void testl(Register dst, AddressLiteral src);
 833 
 834   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 835   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 836   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 837   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 838 
 839   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 840   void testptr(Register src1, Register src2);
 841 
 842   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 843   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 844 
 845   // Calls
 846 
 847   void call(Label& L, relocInfo::relocType rtype);
 848   void call(Register entry);
 849 
 850   // NOTE: this call transfers to the effective address of entry NOT
 851   // the address contained by entry. This is because this is more natural
 852   // for jumps/calls.
 853   void call(AddressLiteral entry);
 854 
 855   // Emit the CompiledIC call idiom
 856   void ic_call(address entry, jint method_index = 0);
 857 
 858   // Jumps
 859 
 860   // NOTE: these jumps tranfer to the effective address of dst NOT
 861   // the address contained by dst. This is because this is more natural
 862   // for jumps/calls.
 863   void jump(AddressLiteral dst);
 864   void jump_cc(Condition cc, AddressLiteral dst);
 865 
 866   // 32bit can do a case table jump in one instruction but we no longer allow the base
 867   // to be installed in the Address class. This jump will tranfers to the address
 868   // contained in the location described by entry (not the address of entry)
 869   void jump(ArrayAddress entry);
 870 
 871   // Floating
 872 
 873   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 874   void andpd(XMMRegister dst, AddressLiteral src);
 875   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 876 
 877   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 878   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 879   void andps(XMMRegister dst, AddressLiteral src);
 880 
 881   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 882   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 883   void comiss(XMMRegister dst, AddressLiteral src);
 884 
 885   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 886   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 887   void comisd(XMMRegister dst, AddressLiteral src);
 888 
 889   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 890   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 891 
 892   void fldcw(Address src) { Assembler::fldcw(src); }
 893   void fldcw(AddressLiteral src);
 894 
 895   void fld_s(int index)   { Assembler::fld_s(index); }
 896   void fld_s(Address src) { Assembler::fld_s(src); }
 897   void fld_s(AddressLiteral src);
 898 
 899   void fld_d(Address src) { Assembler::fld_d(src); }
 900   void fld_d(AddressLiteral src);
 901 
 902   void fld_x(Address src) { Assembler::fld_x(src); }
 903   void fld_x(AddressLiteral src);
 904 
 905   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 906   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 907 
 908   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 909   void ldmxcsr(AddressLiteral src);
 910 
 911 #ifdef _LP64
 912  private:
 913   void sha256_AVX2_one_round_compute(
 914     Register  reg_old_h,
 915     Register  reg_a,
 916     Register  reg_b,
 917     Register  reg_c,
 918     Register  reg_d,
 919     Register  reg_e,
 920     Register  reg_f,
 921     Register  reg_g,
 922     Register  reg_h,
 923     int iter);
 924   void sha256_AVX2_four_rounds_compute_first(int start);
 925   void sha256_AVX2_four_rounds_compute_last(int start);
 926   void sha256_AVX2_one_round_and_sched(
 927         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 928         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 929         XMMRegister xmm_2,     /* ymm6 */
 930         XMMRegister xmm_3,     /* ymm7 */
 931         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 932         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 933         Register    reg_c,      /* edi */
 934         Register    reg_d,      /* esi */
 935         Register    reg_e,      /* r8d */
 936         Register    reg_f,      /* r9d */
 937         Register    reg_g,      /* r10d */
 938         Register    reg_h,      /* r11d */
 939         int iter);
 940 
 941   void addm(int disp, Register r1, Register r2);
 942 
 943  public:
 944   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 945                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 946                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 947                    bool multi_block, XMMRegister shuf_mask);
 948 #endif
 949 
 950   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 951                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 952                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 953                  bool multi_block);
 954 
 955 #ifdef _LP64
 956   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 957                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 958                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 959                    bool multi_block, XMMRegister shuf_mask);
 960 #else
 961   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 962                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 963                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 964                    bool multi_block);
 965 #endif
 966 
 967   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 968                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 969                 Register rax, Register rcx, Register rdx, Register tmp);
 970 
 971 #ifdef _LP64
 972   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 973                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 974                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 975 
 976   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 977                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 978                   Register rax, Register rcx, Register rdx, Register r11);
 979 
 980   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
 981                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
 982                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
 983 
 984   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 985                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 986                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
 987                 Register tmp3, Register tmp4);
 988 
 989   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 990                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 991                 Register rax, Register rcx, Register rdx, Register tmp1,
 992                 Register tmp2, Register tmp3, Register tmp4);
 993   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 994                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 995                 Register rax, Register rcx, Register rdx, Register tmp1,
 996                 Register tmp2, Register tmp3, Register tmp4);
 997 #else
 998   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 999                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1000                 Register rax, Register rcx, Register rdx, Register tmp1);
1001 
1002   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1003                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1004                 Register rax, Register rcx, Register rdx, Register tmp);
1005 
1006   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1007                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1008                 Register rdx, Register tmp);
1009 
1010   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1011                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1012                 Register rax, Register rbx, Register rdx);
1013 
1014   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1015                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1016                 Register rax, Register rcx, Register rdx, Register tmp);
1017 
1018   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1019                         Register edx, Register ebx, Register esi, Register edi,
1020                         Register ebp, Register esp);
1021 
1022   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1023                          Register esi, Register edi, Register ebp, Register esp);
1024 
1025   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1026                         Register edx, Register ebx, Register esi, Register edi,
1027                         Register ebp, Register esp);
1028 
1029   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1030                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1031                 Register rax, Register rcx, Register rdx, Register tmp);
1032 #endif
1033 
1034   void increase_precision();
1035   void restore_precision();
1036 
1037 private:
1038 
1039   // call runtime as a fallback for trig functions and pow/exp.
1040   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
1041 
1042   // these are private because users should be doing movflt/movdbl
1043 
1044   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1045   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1046   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1047   void movss(XMMRegister dst, AddressLiteral src);
1048 
1049   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1050   void movlpd(XMMRegister dst, AddressLiteral src);
1051 
1052 public:
1053 
1054   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1055   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1056   void addsd(XMMRegister dst, AddressLiteral src);
1057 
1058   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1059   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1060   void addss(XMMRegister dst, AddressLiteral src);
1061 
1062   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1063   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1064   void addpd(XMMRegister dst, AddressLiteral src);
1065 
1066   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1067   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1068   void divsd(XMMRegister dst, AddressLiteral src);
1069 
1070   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1071   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1072   void divss(XMMRegister dst, AddressLiteral src);
1073 
1074   // Move Unaligned Double Quadword
1075   void movdqu(Address     dst, XMMRegister src);
1076   void movdqu(XMMRegister dst, Address src);
1077   void movdqu(XMMRegister dst, XMMRegister src);
1078   void movdqu(XMMRegister dst, AddressLiteral src);
1079   // AVX Unaligned forms
1080   void vmovdqu(Address     dst, XMMRegister src);
1081   void vmovdqu(XMMRegister dst, Address src);
1082   void vmovdqu(XMMRegister dst, XMMRegister src);
1083   void vmovdqu(XMMRegister dst, AddressLiteral src);
1084 
1085   // Move Aligned Double Quadword
1086   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1087   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1088   void movdqa(XMMRegister dst, AddressLiteral src);
1089 
1090   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1091   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1092   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1093   void movsd(XMMRegister dst, AddressLiteral src);
1094 
1095   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1096   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1097   void mulpd(XMMRegister dst, AddressLiteral src);
1098 
1099   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1100   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1101   void mulsd(XMMRegister dst, AddressLiteral src);
1102 
1103   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1104   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1105   void mulss(XMMRegister dst, AddressLiteral src);
1106 
1107   // Carry-Less Multiplication Quadword
1108   void pclmulldq(XMMRegister dst, XMMRegister src) {
1109     // 0x00 - multiply lower 64 bits [0:63]
1110     Assembler::pclmulqdq(dst, src, 0x00);
1111   }
1112   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1113     // 0x11 - multiply upper 64 bits [64:127]
1114     Assembler::pclmulqdq(dst, src, 0x11);
1115   }
1116 
1117   void pcmpeqb(XMMRegister dst, XMMRegister src);
1118   void pcmpeqw(XMMRegister dst, XMMRegister src);
1119 
1120   void pcmpestri(XMMRegister dst, Address src, int imm8);
1121   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1122 
1123   void pmovzxbw(XMMRegister dst, XMMRegister src);
1124   void pmovzxbw(XMMRegister dst, Address src);
1125 
1126   void pmovmskb(Register dst, XMMRegister src);
1127 
1128   void ptest(XMMRegister dst, XMMRegister src);
1129 
1130   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1131   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1132   void sqrtsd(XMMRegister dst, AddressLiteral src);
1133 
1134   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1135   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1136   void sqrtss(XMMRegister dst, AddressLiteral src);
1137 
1138   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1139   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1140   void subsd(XMMRegister dst, AddressLiteral src);
1141 
1142   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1143   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1144   void subss(XMMRegister dst, AddressLiteral src);
1145 
1146   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1147   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1148   void ucomiss(XMMRegister dst, AddressLiteral src);
1149 
1150   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1151   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1152   void ucomisd(XMMRegister dst, AddressLiteral src);
1153 
1154   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1155   void xorpd(XMMRegister dst, XMMRegister src);
1156   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1157   void xorpd(XMMRegister dst, AddressLiteral src);
1158 
1159   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1160   void xorps(XMMRegister dst, XMMRegister src);
1161   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1162   void xorps(XMMRegister dst, AddressLiteral src);
1163 
1164   // Shuffle Bytes
1165   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1166   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1167   void pshufb(XMMRegister dst, AddressLiteral src);
1168   // AVX 3-operands instructions
1169 
1170   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1171   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1172   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1173 
1174   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1175   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1176   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1177 
1178   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1179   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1180 
1181   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1182   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1183 
1184   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1185   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1186 
1187   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1188 
1189   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1190   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1191 
1192   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1193   void vpmovmskb(Register dst, XMMRegister src);
1194 
1195   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1196   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1197 
1198   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1199   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1200 
1201   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1202   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1203 
1204   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1205   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1206 
1207   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1208   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1209 
1210   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1211   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1212 
1213   void vptest(XMMRegister dst, XMMRegister src);
1214 
1215   void punpcklbw(XMMRegister dst, XMMRegister src);
1216   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1217 
1218   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1219   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1220 
1221   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1222   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1223   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1224 
1225   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1226   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1227   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1228 
1229   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1230   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1231   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1232 
1233   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1234   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1235   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1236 
1237   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1238   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1239   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1240 
1241   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1242   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1243   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1244 
1245   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1246   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1247   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1248 
1249   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1250   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1251   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1252 
1253   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1254   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1255 
1256   // AVX Vector instructions
1257 
1258   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1259   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1260   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1261 
1262   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1263   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1264   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1265 
1266   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1267     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1268       Assembler::vpxor(dst, nds, src, vector_len);
1269     else
1270       Assembler::vxorpd(dst, nds, src, vector_len);
1271   }
1272   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1273     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1274       Assembler::vpxor(dst, nds, src, vector_len);
1275     else
1276       Assembler::vxorpd(dst, nds, src, vector_len);
1277   }
1278 
1279   // Simple version for AVX2 256bit vectors
1280   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1281   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1282 
1283   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1284     if (UseAVX > 2) {
1285       Assembler::vinserti32x4(dst, dst, src, imm8);
1286     } else if (UseAVX > 1) {
1287       // vinserti128 is available only in AVX2
1288       Assembler::vinserti128(dst, nds, src, imm8);
1289     } else {
1290       Assembler::vinsertf128(dst, nds, src, imm8);
1291     }
1292   }
1293 
1294   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1295     if (UseAVX > 2) {
1296       Assembler::vinserti32x4(dst, dst, src, imm8);
1297     } else if (UseAVX > 1) {
1298       // vinserti128 is available only in AVX2
1299       Assembler::vinserti128(dst, nds, src, imm8);
1300     } else {
1301       Assembler::vinsertf128(dst, nds, src, imm8);
1302     }
1303   }
1304 
1305   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1306     if (UseAVX > 2) {
1307       Assembler::vextracti32x4(dst, src, imm8);
1308     } else if (UseAVX > 1) {
1309       // vextracti128 is available only in AVX2
1310       Assembler::vextracti128(dst, src, imm8);
1311     } else {
1312       Assembler::vextractf128(dst, src, imm8);
1313     }
1314   }
1315 
1316   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1317     if (UseAVX > 2) {
1318       Assembler::vextracti32x4(dst, src, imm8);
1319     } else if (UseAVX > 1) {
1320       // vextracti128 is available only in AVX2
1321       Assembler::vextracti128(dst, src, imm8);
1322     } else {
1323       Assembler::vextractf128(dst, src, imm8);
1324     }
1325   }
1326 
1327   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1328   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1329     vinserti128(dst, dst, src, 1);
1330   }
1331   void vinserti128_high(XMMRegister dst, Address src) {
1332     vinserti128(dst, dst, src, 1);
1333   }
1334   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1335     vextracti128(dst, src, 1);
1336   }
1337   void vextracti128_high(Address dst, XMMRegister src) {
1338     vextracti128(dst, src, 1);
1339   }
1340 
1341   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1342     if (UseAVX > 2) {
1343       Assembler::vinsertf32x4(dst, dst, src, 1);
1344     } else {
1345       Assembler::vinsertf128(dst, dst, src, 1);
1346     }
1347   }
1348 
1349   void vinsertf128_high(XMMRegister dst, Address src) {
1350     if (UseAVX > 2) {
1351       Assembler::vinsertf32x4(dst, dst, src, 1);
1352     } else {
1353       Assembler::vinsertf128(dst, dst, src, 1);
1354     }
1355   }
1356 
1357   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1358     if (UseAVX > 2) {
1359       Assembler::vextractf32x4(dst, src, 1);
1360     } else {
1361       Assembler::vextractf128(dst, src, 1);
1362     }
1363   }
1364 
1365   void vextractf128_high(Address dst, XMMRegister src) {
1366     if (UseAVX > 2) {
1367       Assembler::vextractf32x4(dst, src, 1);
1368     } else {
1369       Assembler::vextractf128(dst, src, 1);
1370     }
1371   }
1372 
1373   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1374   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1375     Assembler::vinserti64x4(dst, dst, src, 1);
1376   }
1377   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1378     Assembler::vinsertf64x4(dst, dst, src, 1);
1379   }
1380   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1381     Assembler::vextracti64x4(dst, src, 1);
1382   }
1383   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1384     Assembler::vextractf64x4(dst, src, 1);
1385   }
1386   void vextractf64x4_high(Address dst, XMMRegister src) {
1387     Assembler::vextractf64x4(dst, src, 1);
1388   }
1389   void vinsertf64x4_high(XMMRegister dst, Address src) {
1390     Assembler::vinsertf64x4(dst, dst, src, 1);
1391   }
1392 
1393   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1394   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1395     vinserti128(dst, dst, src, 0);
1396   }
1397   void vinserti128_low(XMMRegister dst, Address src) {
1398     vinserti128(dst, dst, src, 0);
1399   }
1400   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1401     vextracti128(dst, src, 0);
1402   }
1403   void vextracti128_low(Address dst, XMMRegister src) {
1404     vextracti128(dst, src, 0);
1405   }
1406 
1407   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1408     if (UseAVX > 2) {
1409       Assembler::vinsertf32x4(dst, dst, src, 0);
1410     } else {
1411       Assembler::vinsertf128(dst, dst, src, 0);
1412     }
1413   }
1414 
1415   void vinsertf128_low(XMMRegister dst, Address src) {
1416     if (UseAVX > 2) {
1417       Assembler::vinsertf32x4(dst, dst, src, 0);
1418     } else {
1419       Assembler::vinsertf128(dst, dst, src, 0);
1420     }
1421   }
1422 
1423   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1424     if (UseAVX > 2) {
1425       Assembler::vextractf32x4(dst, src, 0);
1426     } else {
1427       Assembler::vextractf128(dst, src, 0);
1428     }
1429   }
1430 
1431   void vextractf128_low(Address dst, XMMRegister src) {
1432     if (UseAVX > 2) {
1433       Assembler::vextractf32x4(dst, src, 0);
1434     } else {
1435       Assembler::vextractf128(dst, src, 0);
1436     }
1437   }
1438 
1439   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1440   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1441     Assembler::vinserti64x4(dst, dst, src, 0);
1442   }
1443   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1444     Assembler::vinsertf64x4(dst, dst, src, 0);
1445   }
1446   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1447     Assembler::vextracti64x4(dst, src, 0);
1448   }
1449   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1450     Assembler::vextractf64x4(dst, src, 0);
1451   }
1452   void vextractf64x4_low(Address dst, XMMRegister src) {
1453     Assembler::vextractf64x4(dst, src, 0);
1454   }
1455   void vinsertf64x4_low(XMMRegister dst, Address src) {
1456     Assembler::vinsertf64x4(dst, dst, src, 0);
1457   }
1458 
1459   // Carry-Less Multiplication Quadword
1460   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1461     // 0x00 - multiply lower 64 bits [0:63]
1462     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1463   }
1464   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1465     // 0x11 - multiply upper 64 bits [64:127]
1466     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1467   }
1468 
1469   // Data
1470 
1471   void cmov32( Condition cc, Register dst, Address  src);
1472   void cmov32( Condition cc, Register dst, Register src);
1473 
1474   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1475 
1476   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1477   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1478 
1479   void movoop(Register dst, jobject obj);
1480   void movoop(Address dst, jobject obj);
1481 
1482   void mov_metadata(Register dst, Metadata* obj);
1483   void mov_metadata(Address dst, Metadata* obj);
1484 
1485   void movptr(ArrayAddress dst, Register src);
1486   // can this do an lea?
1487   void movptr(Register dst, ArrayAddress src);
1488 
1489   void movptr(Register dst, Address src);
1490 
1491 #ifdef _LP64
1492   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1493 #else
1494   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1495 #endif
1496 
1497   void movptr(Register dst, intptr_t src);
1498   void movptr(Register dst, Register src);
1499   void movptr(Address dst, intptr_t src);
1500 
1501   void movptr(Address dst, Register src);
1502 
1503   void movptr(Register dst, RegisterOrConstant src) {
1504     if (src.is_constant()) movptr(dst, src.as_constant());
1505     else                   movptr(dst, src.as_register());
1506   }
1507 
1508 #ifdef _LP64
1509   // Generally the next two are only used for moving NULL
1510   // Although there are situations in initializing the mark word where
1511   // they could be used. They are dangerous.
1512 
1513   // They only exist on LP64 so that int32_t and intptr_t are not the same
1514   // and we have ambiguous declarations.
1515 
1516   void movptr(Address dst, int32_t imm32);
1517   void movptr(Register dst, int32_t imm32);
1518 #endif // _LP64
1519 
1520   // to avoid hiding movl
1521   void mov32(AddressLiteral dst, Register src);
1522   void mov32(Register dst, AddressLiteral src);
1523 
1524   // to avoid hiding movb
1525   void movbyte(ArrayAddress dst, int src);
1526 
1527   // Import other mov() methods from the parent class or else
1528   // they will be hidden by the following overriding declaration.
1529   using Assembler::movdl;
1530   using Assembler::movq;
1531   void movdl(XMMRegister dst, AddressLiteral src);
1532   void movq(XMMRegister dst, AddressLiteral src);
1533 
1534   // Can push value or effective address
1535   void pushptr(AddressLiteral src);
1536 
1537   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1538   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1539 
1540   void pushoop(jobject obj);
1541   void pushklass(Metadata* obj);
1542 
1543   // sign extend as need a l to ptr sized element
1544   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1545   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1546 
1547   // C2 compiled method's prolog code.
1548   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1549 
1550   // clear memory of size 'cnt' qwords, starting at 'base';
1551   // if 'is_large' is set, do not try to produce short loop
1552   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1553 
1554 #ifdef COMPILER2
1555   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1556                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1557 
1558   // IndexOf strings.
1559   // Small strings are loaded through stack if they cross page boundary.
1560   void string_indexof(Register str1, Register str2,
1561                       Register cnt1, Register cnt2,
1562                       int int_cnt2,  Register result,
1563                       XMMRegister vec, Register tmp,
1564                       int ae);
1565 
1566   // IndexOf for constant substrings with size >= 8 elements
1567   // which don't need to be loaded through stack.
1568   void string_indexofC8(Register str1, Register str2,
1569                       Register cnt1, Register cnt2,
1570                       int int_cnt2,  Register result,
1571                       XMMRegister vec, Register tmp,
1572                       int ae);
1573 
1574     // Smallest code: we don't need to load through stack,
1575     // check string tail.
1576 
1577   // helper function for string_compare
1578   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1579                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1580                           Address::ScaleFactor scale2, Register index, int ae);
1581   // Compare strings.
1582   void string_compare(Register str1, Register str2,
1583                       Register cnt1, Register cnt2, Register result,
1584                       XMMRegister vec1, int ae);
1585 
1586   // Search for Non-ASCII character (Negative byte value) in a byte array,
1587   // return true if it has any and false otherwise.
1588   void has_negatives(Register ary1, Register len,
1589                      Register result, Register tmp1,
1590                      XMMRegister vec1, XMMRegister vec2);
1591 
1592   // Compare char[] or byte[] arrays.
1593   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1594                      Register limit, Register result, Register chr,
1595                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1596 
1597 #endif
1598 
1599   // Fill primitive arrays
1600   void generate_fill(BasicType t, bool aligned,
1601                      Register to, Register value, Register count,
1602                      Register rtmp, XMMRegister xtmp);
1603 
1604   void encode_iso_array(Register src, Register dst, Register len,
1605                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1606                         XMMRegister tmp4, Register tmp5, Register result);
1607 
1608 #ifdef _LP64
1609   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1610   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1611                              Register y, Register y_idx, Register z,
1612                              Register carry, Register product,
1613                              Register idx, Register kdx);
1614   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1615                               Register yz_idx, Register idx,
1616                               Register carry, Register product, int offset);
1617   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1618                                     Register carry, Register carry2,
1619                                     Register idx, Register jdx,
1620                                     Register yz_idx1, Register yz_idx2,
1621                                     Register tmp, Register tmp3, Register tmp4);
1622   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1623                                Register yz_idx, Register idx, Register jdx,
1624                                Register carry, Register product,
1625                                Register carry2);
1626   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1627                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1628   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1629                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1630   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1631                             Register tmp2);
1632   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1633                        Register rdxReg, Register raxReg);
1634   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1635   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1636                        Register tmp3, Register tmp4);
1637   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1638                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1639 
1640   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1641                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1642                Register raxReg);
1643   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1644                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1645                Register raxReg);
1646   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1647                            Register result, Register tmp1, Register tmp2,
1648                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1649 #endif
1650 
1651   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1652   void update_byte_crc32(Register crc, Register val, Register table);
1653   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1654   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1655   // Note on a naming convention:
1656   // Prefix w = register only used on a Westmere+ architecture
1657   // Prefix n = register only used on a Nehalem architecture
1658 #ifdef _LP64
1659   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1660                        Register tmp1, Register tmp2, Register tmp3);
1661 #else
1662   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1663                        Register tmp1, Register tmp2, Register tmp3,
1664                        XMMRegister xtmp1, XMMRegister xtmp2);
1665 #endif
1666   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1667                         Register in_out,
1668                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1669                         XMMRegister w_xtmp2,
1670                         Register tmp1,
1671                         Register n_tmp2, Register n_tmp3);
1672   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1673                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1674                        Register tmp1, Register tmp2,
1675                        Register n_tmp3);
1676   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1677                          Register in_out1, Register in_out2, Register in_out3,
1678                          Register tmp1, Register tmp2, Register tmp3,
1679                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1680                          Register tmp4, Register tmp5,
1681                          Register n_tmp6);
1682   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1683                             Register tmp1, Register tmp2, Register tmp3,
1684                             Register tmp4, Register tmp5, Register tmp6,
1685                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1686                             bool is_pclmulqdq_supported);
1687   // Fold 128-bit data chunk
1688   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1689   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1690   // Fold 8-bit data
1691   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1692   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1693 
1694   // Compress char[] array to byte[].
1695   void char_array_compress(Register src, Register dst, Register len,
1696                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1697                            XMMRegister tmp4, Register tmp5, Register result);
1698 
1699   // Inflate byte[] array to char[].
1700   void byte_array_inflate(Register src, Register dst, Register len,
1701                           XMMRegister tmp1, Register tmp2);
1702 
1703 };
1704 
1705 /**
1706  * class SkipIfEqual:
1707  *
1708  * Instantiating this class will result in assembly code being output that will
1709  * jump around any code emitted between the creation of the instance and it's
1710  * automatic destruction at the end of a scope block, depending on the value of
1711  * the flag passed to the constructor, which will be checked at run-time.
1712  */
1713 class SkipIfEqual {
1714  private:
1715   MacroAssembler* _masm;
1716   Label _label;
1717 
1718  public:
1719    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1720    ~SkipIfEqual();
1721 };
1722 
1723 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP