1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_InstructionPrinter.hpp"
  27 #include "c1/c1_LIR.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_ValueStack.hpp"
  30 #include "ci/ciInstance.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 Register LIR_OprDesc::as_register() const {
  34   return FrameMap::cpu_rnr2reg(cpu_regnr());
  35 }
  36 
  37 Register LIR_OprDesc::as_register_lo() const {
  38   return FrameMap::cpu_rnr2reg(cpu_regnrLo());
  39 }
  40 
  41 Register LIR_OprDesc::as_register_hi() const {
  42   return FrameMap::cpu_rnr2reg(cpu_regnrHi());
  43 }
  44 
  45 #if defined(X86)
  46 
  47 XMMRegister LIR_OprDesc::as_xmm_float_reg() const {
  48   return FrameMap::nr2xmmreg(xmm_regnr());
  49 }
  50 
  51 XMMRegister LIR_OprDesc::as_xmm_double_reg() const {
  52   assert(xmm_regnrLo() == xmm_regnrHi(), "assumed in calculation");
  53   return FrameMap::nr2xmmreg(xmm_regnrLo());
  54 }
  55 
  56 #endif // X86
  57 
  58 #if defined(SPARC) || defined(PPC32)
  59 
  60 FloatRegister LIR_OprDesc::as_float_reg() const {
  61   return FrameMap::nr2floatreg(fpu_regnr());
  62 }
  63 
  64 FloatRegister LIR_OprDesc::as_double_reg() const {
  65   return FrameMap::nr2floatreg(fpu_regnrHi());
  66 }
  67 
  68 #endif
  69 
  70 #if defined(ARM) || defined(AARCH64) || defined(PPC64)
  71 
  72 FloatRegister LIR_OprDesc::as_float_reg() const {
  73   return as_FloatRegister(fpu_regnr());
  74 }
  75 
  76 FloatRegister LIR_OprDesc::as_double_reg() const {
  77   return as_FloatRegister(fpu_regnrLo());
  78 }
  79 
  80 #endif
  81 
  82 
  83 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
  84 
  85 LIR_Opr LIR_OprFact::value_type(ValueType* type) {
  86   ValueTag tag = type->tag();
  87   switch (tag) {
  88   case metaDataTag : {
  89     ClassConstant* c = type->as_ClassConstant();
  90     if (c != NULL && !c->value()->is_loaded()) {
  91       return LIR_OprFact::metadataConst(NULL);
  92     } else if (c != NULL) {
  93       return LIR_OprFact::metadataConst(c->value()->constant_encoding());
  94     } else {
  95       MethodConstant* m = type->as_MethodConstant();
  96       assert (m != NULL, "not a class or a method?");
  97       return LIR_OprFact::metadataConst(m->value()->constant_encoding());
  98     }
  99   }
 100   case objectTag : {
 101       return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
 102     }
 103   case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
 104   case intTag    : return LIR_OprFact::intConst(type->as_IntConstant()->value());
 105   case floatTag  : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
 106   case longTag   : return LIR_OprFact::longConst(type->as_LongConstant()->value());
 107   case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
 108   default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 109   }
 110 }
 111 
 112 
 113 LIR_Opr LIR_OprFact::dummy_value_type(ValueType* type) {
 114   switch (type->tag()) {
 115     case objectTag: return LIR_OprFact::oopConst(NULL);
 116     case addressTag:return LIR_OprFact::addressConst(0);
 117     case intTag:    return LIR_OprFact::intConst(0);
 118     case floatTag:  return LIR_OprFact::floatConst(0.0);
 119     case longTag:   return LIR_OprFact::longConst(0);
 120     case doubleTag: return LIR_OprFact::doubleConst(0.0);
 121     default:        ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 122   }
 123   return illegalOpr;
 124 }
 125 
 126 
 127 
 128 //---------------------------------------------------
 129 
 130 
 131 LIR_Address::Scale LIR_Address::scale(BasicType type) {
 132   int elem_size = type2aelembytes(type);
 133   switch (elem_size) {
 134   case 1: return LIR_Address::times_1;
 135   case 2: return LIR_Address::times_2;
 136   case 4: return LIR_Address::times_4;
 137   case 8: return LIR_Address::times_8;
 138   }
 139   ShouldNotReachHere();
 140   return LIR_Address::times_1;
 141 }
 142 
 143 
 144 #ifndef PRODUCT
 145 void LIR_Address::verify0() const {
 146 #if defined(SPARC) || defined(PPC)
 147   assert(scale() == times_1, "Scaled addressing mode not available on SPARC/PPC and should not be used");
 148   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 149 #endif
 150 #ifdef _LP64
 151   assert(base()->is_cpu_register(), "wrong base operand");
 152 #ifndef AARCH64
 153   assert(index()->is_illegal() || index()->is_double_cpu(), "wrong index operand");
 154 #else
 155   assert(index()->is_illegal() || index()->is_double_cpu() || index()->is_single_cpu(), "wrong index operand");
 156 #endif
 157   assert(base()->type() == T_OBJECT || base()->type() == T_LONG || base()->type() == T_METADATA,
 158          "wrong type for addresses");
 159 #else
 160   assert(base()->is_single_cpu(), "wrong base operand");
 161   assert(index()->is_illegal() || index()->is_single_cpu(), "wrong index operand");
 162   assert(base()->type() == T_OBJECT || base()->type() == T_INT || base()->type() == T_METADATA,
 163          "wrong type for addresses");
 164 #endif
 165 }
 166 #endif
 167 
 168 
 169 //---------------------------------------------------
 170 
 171 char LIR_OprDesc::type_char(BasicType t) {
 172   switch (t) {
 173     case T_ARRAY:
 174       t = T_OBJECT;
 175     case T_BOOLEAN:
 176     case T_CHAR:
 177     case T_FLOAT:
 178     case T_DOUBLE:
 179     case T_BYTE:
 180     case T_SHORT:
 181     case T_INT:
 182     case T_LONG:
 183     case T_OBJECT:
 184     case T_ADDRESS:
 185     case T_VOID:
 186       return ::type2char(t);
 187     case T_METADATA:
 188       return 'M';
 189     case T_ILLEGAL:
 190       return '?';
 191 
 192     default:
 193       ShouldNotReachHere();
 194       return '?';
 195   }
 196 }
 197 
 198 #ifndef PRODUCT
 199 void LIR_OprDesc::validate_type() const {
 200 
 201 #ifdef ASSERT
 202   if (!is_pointer() && !is_illegal()) {
 203     OprKind kindfield = kind_field(); // Factored out because of compiler bug, see 8002160
 204     switch (as_BasicType(type_field())) {
 205     case T_LONG:
 206       assert((kindfield == cpu_register || kindfield == stack_value) &&
 207              size_field() == double_size, "must match");
 208       break;
 209     case T_FLOAT:
 210       // FP return values can be also in CPU registers on ARM and PPC32 (softfp ABI)
 211       assert((kindfield == fpu_register || kindfield == stack_value
 212              ARM_ONLY(|| kindfield == cpu_register)
 213              PPC32_ONLY(|| kindfield == cpu_register) ) &&
 214              size_field() == single_size, "must match");
 215       break;
 216     case T_DOUBLE:
 217       // FP return values can be also in CPU registers on ARM and PPC32 (softfp ABI)
 218       assert((kindfield == fpu_register || kindfield == stack_value
 219              ARM_ONLY(|| kindfield == cpu_register)
 220              PPC32_ONLY(|| kindfield == cpu_register) ) &&
 221              size_field() == double_size, "must match");
 222       break;
 223     case T_BOOLEAN:
 224     case T_CHAR:
 225     case T_BYTE:
 226     case T_SHORT:
 227     case T_INT:
 228     case T_ADDRESS:
 229     case T_OBJECT:
 230     case T_METADATA:
 231     case T_ARRAY:
 232       assert((kindfield == cpu_register || kindfield == stack_value) &&
 233              size_field() == single_size, "must match");
 234       break;
 235 
 236     case T_ILLEGAL:
 237       // XXX TKR also means unknown right now
 238       // assert(is_illegal(), "must match");
 239       break;
 240 
 241     default:
 242       ShouldNotReachHere();
 243     }
 244   }
 245 #endif
 246 
 247 }
 248 #endif // PRODUCT
 249 
 250 
 251 bool LIR_OprDesc::is_oop() const {
 252   if (is_pointer()) {
 253     return pointer()->is_oop_pointer();
 254   } else {
 255     OprType t= type_field();
 256     assert(t != unknown_type, "not set");
 257     return t == object_type;
 258   }
 259 }
 260 
 261 
 262 
 263 void LIR_Op2::verify() const {
 264 #ifdef ASSERT
 265   switch (code()) {
 266     case lir_cmove:
 267     case lir_xchg:
 268       break;
 269 
 270     default:
 271       assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
 272              "can't produce oops from arith");
 273   }
 274 
 275   if (TwoOperandLIRForm) {
 276     switch (code()) {
 277     case lir_add:
 278     case lir_sub:
 279     case lir_mul:
 280     case lir_mul_strictfp:
 281     case lir_div:
 282     case lir_div_strictfp:
 283     case lir_rem:
 284     case lir_logic_and:
 285     case lir_logic_or:
 286     case lir_logic_xor:
 287     case lir_shl:
 288     case lir_shr:
 289       assert(in_opr1() == result_opr(), "opr1 and result must match");
 290       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 291       break;
 292 
 293     // special handling for lir_ushr because of write barriers
 294     case lir_ushr:
 295       assert(in_opr1() == result_opr() || in_opr2()->is_constant(), "opr1 and result must match or shift count is constant");
 296       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 297       break;
 298 
 299     }
 300   }
 301 #endif
 302 }
 303 
 304 
 305 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block)
 306   : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 307   , _cond(cond)
 308   , _type(type)
 309   , _label(block->label())
 310   , _block(block)
 311   , _ublock(NULL)
 312   , _stub(NULL) {
 313 }
 314 
 315 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub) :
 316   LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 317   , _cond(cond)
 318   , _type(type)
 319   , _label(stub->entry())
 320   , _block(NULL)
 321   , _ublock(NULL)
 322   , _stub(stub) {
 323 }
 324 
 325 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock)
 326   : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 327   , _cond(cond)
 328   , _type(type)
 329   , _label(block->label())
 330   , _block(block)
 331   , _ublock(ublock)
 332   , _stub(NULL)
 333 {
 334 }
 335 
 336 void LIR_OpBranch::change_block(BlockBegin* b) {
 337   assert(_block != NULL, "must have old block");
 338   assert(_block->label() == label(), "must be equal");
 339 
 340   _block = b;
 341   _label = b->label();
 342 }
 343 
 344 void LIR_OpBranch::change_ublock(BlockBegin* b) {
 345   assert(_ublock != NULL, "must have old block");
 346   _ublock = b;
 347 }
 348 
 349 void LIR_OpBranch::negate_cond() {
 350   switch (_cond) {
 351     case lir_cond_equal:        _cond = lir_cond_notEqual;     break;
 352     case lir_cond_notEqual:     _cond = lir_cond_equal;        break;
 353     case lir_cond_less:         _cond = lir_cond_greaterEqual; break;
 354     case lir_cond_lessEqual:    _cond = lir_cond_greater;      break;
 355     case lir_cond_greaterEqual: _cond = lir_cond_less;         break;
 356     case lir_cond_greater:      _cond = lir_cond_lessEqual;    break;
 357     default: ShouldNotReachHere();
 358   }
 359 }
 360 
 361 
 362 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
 363                                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
 364                                  bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch,
 365                                  CodeStub* stub)
 366 
 367   : LIR_Op(code, result, NULL)
 368   , _object(object)
 369   , _array(LIR_OprFact::illegalOpr)
 370   , _klass(klass)
 371   , _tmp1(tmp1)
 372   , _tmp2(tmp2)
 373   , _tmp3(tmp3)
 374   , _fast_check(fast_check)
 375   , _stub(stub)
 376   , _info_for_patch(info_for_patch)
 377   , _info_for_exception(info_for_exception)
 378   , _profiled_method(NULL)
 379   , _profiled_bci(-1)
 380   , _should_profile(false)
 381 {
 382   if (code == lir_checkcast) {
 383     assert(info_for_exception != NULL, "checkcast throws exceptions");
 384   } else if (code == lir_instanceof) {
 385     assert(info_for_exception == NULL, "instanceof throws no exceptions");
 386   } else {
 387     ShouldNotReachHere();
 388   }
 389 }
 390 
 391 
 392 
 393 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
 394   : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
 395   , _object(object)
 396   , _array(array)
 397   , _klass(NULL)
 398   , _tmp1(tmp1)
 399   , _tmp2(tmp2)
 400   , _tmp3(tmp3)
 401   , _fast_check(false)
 402   , _stub(NULL)
 403   , _info_for_patch(NULL)
 404   , _info_for_exception(info_for_exception)
 405   , _profiled_method(NULL)
 406   , _profiled_bci(-1)
 407   , _should_profile(false)
 408 {
 409   if (code == lir_store_check) {
 410     _stub = new ArrayStoreExceptionStub(object, info_for_exception);
 411     assert(info_for_exception != NULL, "store_check throws exceptions");
 412   } else {
 413     ShouldNotReachHere();
 414   }
 415 }
 416 
 417 
 418 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
 419                                  LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
 420   : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
 421   , _tmp(tmp)
 422   , _src(src)
 423   , _src_pos(src_pos)
 424   , _dst(dst)
 425   , _dst_pos(dst_pos)
 426   , _flags(flags)
 427   , _expected_type(expected_type)
 428   , _length(length) {
 429   _stub = new ArrayCopyStub(this);
 430 }
 431 
 432 LIR_OpUpdateCRC32::LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)
 433   : LIR_Op(lir_updatecrc32, res, NULL)
 434   , _crc(crc)
 435   , _val(val) {
 436 }
 437 
 438 //-------------------verify--------------------------
 439 
 440 void LIR_Op1::verify() const {
 441   switch(code()) {
 442   case lir_move:
 443     assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
 444     break;
 445   case lir_null_check:
 446     assert(in_opr()->is_register(), "must be");
 447     break;
 448   case lir_return:
 449     assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
 450     break;
 451   }
 452 }
 453 
 454 void LIR_OpRTCall::verify() const {
 455   assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
 456 }
 457 
 458 //-------------------visits--------------------------
 459 
 460 // complete rework of LIR instruction visitor.
 461 // The virtual call for each instruction type is replaced by a big
 462 // switch that adds the operands for each instruction
 463 
 464 void LIR_OpVisitState::visit(LIR_Op* op) {
 465   // copy information from the LIR_Op
 466   reset();
 467   set_op(op);
 468 
 469   switch (op->code()) {
 470 
 471 // LIR_Op0
 472     case lir_word_align:               // result and info always invalid
 473     case lir_backwardbranch_target:    // result and info always invalid
 474     case lir_build_frame:              // result and info always invalid
 475     case lir_fpop_raw:                 // result and info always invalid
 476     case lir_24bit_FPU:                // result and info always invalid
 477     case lir_reset_FPU:                // result and info always invalid
 478     case lir_breakpoint:               // result and info always invalid
 479     case lir_membar:                   // result and info always invalid
 480     case lir_membar_acquire:           // result and info always invalid
 481     case lir_membar_release:           // result and info always invalid
 482     case lir_membar_loadload:          // result and info always invalid
 483     case lir_membar_storestore:        // result and info always invalid
 484     case lir_membar_loadstore:         // result and info always invalid
 485     case lir_membar_storeload:         // result and info always invalid
 486     case lir_on_spin_wait:
 487     {
 488       assert(op->as_Op0() != NULL, "must be");
 489       assert(op->_info == NULL, "info not used by this instruction");
 490       assert(op->_result->is_illegal(), "not used");
 491       break;
 492     }
 493 
 494     case lir_nop:                      // may have info, result always invalid
 495     case lir_std_entry:                // may have result, info always invalid
 496     case lir_osr_entry:                // may have result, info always invalid
 497     case lir_get_thread:               // may have result, info always invalid
 498     {
 499       assert(op->as_Op0() != NULL, "must be");
 500       if (op->_info != NULL)           do_info(op->_info);
 501       if (op->_result->is_valid())     do_output(op->_result);
 502       break;
 503     }
 504 
 505 
 506 // LIR_OpLabel
 507     case lir_label:                    // result and info always invalid
 508     {
 509       assert(op->as_OpLabel() != NULL, "must be");
 510       assert(op->_info == NULL, "info not used by this instruction");
 511       assert(op->_result->is_illegal(), "not used");
 512       break;
 513     }
 514 
 515 
 516 // LIR_Op1
 517     case lir_fxch:           // input always valid, result and info always invalid
 518     case lir_fld:            // input always valid, result and info always invalid
 519     case lir_ffree:          // input always valid, result and info always invalid
 520     case lir_push:           // input always valid, result and info always invalid
 521     case lir_pop:            // input always valid, result and info always invalid
 522     case lir_return:         // input always valid, result and info always invalid
 523     case lir_leal:           // input and result always valid, info always invalid
 524     case lir_neg:            // input and result always valid, info always invalid
 525     case lir_monaddr:        // input and result always valid, info always invalid
 526     case lir_null_check:     // input and info always valid, result always invalid
 527     case lir_move:           // input and result always valid, may have info
 528     case lir_pack64:         // input and result always valid
 529     case lir_unpack64:       // input and result always valid
 530     {
 531       assert(op->as_Op1() != NULL, "must be");
 532       LIR_Op1* op1 = (LIR_Op1*)op;
 533 
 534       if (op1->_info)                  do_info(op1->_info);
 535       if (op1->_opr->is_valid())       do_input(op1->_opr);
 536       if (op1->_result->is_valid())    do_output(op1->_result);
 537 
 538       break;
 539     }
 540 
 541     case lir_safepoint:
 542     {
 543       assert(op->as_Op1() != NULL, "must be");
 544       LIR_Op1* op1 = (LIR_Op1*)op;
 545 
 546       assert(op1->_info != NULL, "");  do_info(op1->_info);
 547       if (op1->_opr->is_valid())       do_temp(op1->_opr); // safepoints on SPARC need temporary register
 548       assert(op1->_result->is_illegal(), "safepoint does not produce value");
 549 
 550       break;
 551     }
 552 
 553 // LIR_OpConvert;
 554     case lir_convert:        // input and result always valid, info always invalid
 555     {
 556       assert(op->as_OpConvert() != NULL, "must be");
 557       LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
 558 
 559       assert(opConvert->_info == NULL, "must be");
 560       if (opConvert->_opr->is_valid())       do_input(opConvert->_opr);
 561       if (opConvert->_result->is_valid())    do_output(opConvert->_result);
 562 #ifdef PPC32
 563       if (opConvert->_tmp1->is_valid())      do_temp(opConvert->_tmp1);
 564       if (opConvert->_tmp2->is_valid())      do_temp(opConvert->_tmp2);
 565 #endif
 566       do_stub(opConvert->_stub);
 567 
 568       break;
 569     }
 570 
 571 // LIR_OpBranch;
 572     case lir_branch:                   // may have info, input and result register always invalid
 573     case lir_cond_float_branch:        // may have info, input and result register always invalid
 574     {
 575       assert(op->as_OpBranch() != NULL, "must be");
 576       LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
 577 
 578       if (opBranch->_info != NULL)     do_info(opBranch->_info);
 579       assert(opBranch->_result->is_illegal(), "not used");
 580       if (opBranch->_stub != NULL)     opBranch->stub()->visit(this);
 581 
 582       break;
 583     }
 584 
 585 
 586 // LIR_OpAllocObj
 587     case lir_alloc_object:
 588     {
 589       assert(op->as_OpAllocObj() != NULL, "must be");
 590       LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
 591 
 592       if (opAllocObj->_info)                     do_info(opAllocObj->_info);
 593       if (opAllocObj->_opr->is_valid()) {        do_input(opAllocObj->_opr);
 594                                                  do_temp(opAllocObj->_opr);
 595                                         }
 596       if (opAllocObj->_tmp1->is_valid())         do_temp(opAllocObj->_tmp1);
 597       if (opAllocObj->_tmp2->is_valid())         do_temp(opAllocObj->_tmp2);
 598       if (opAllocObj->_tmp3->is_valid())         do_temp(opAllocObj->_tmp3);
 599       if (opAllocObj->_tmp4->is_valid())         do_temp(opAllocObj->_tmp4);
 600       if (opAllocObj->_result->is_valid())       do_output(opAllocObj->_result);
 601                                                  do_stub(opAllocObj->_stub);
 602       break;
 603     }
 604 
 605 
 606 // LIR_OpRoundFP;
 607     case lir_roundfp: {
 608       assert(op->as_OpRoundFP() != NULL, "must be");
 609       LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
 610 
 611       assert(op->_info == NULL, "info not used by this instruction");
 612       assert(opRoundFP->_tmp->is_illegal(), "not used");
 613       do_input(opRoundFP->_opr);
 614       do_output(opRoundFP->_result);
 615 
 616       break;
 617     }
 618 
 619 
 620 // LIR_Op2
 621     case lir_cmp:
 622     case lir_cmp_l2i:
 623     case lir_ucmp_fd2i:
 624     case lir_cmp_fd2i:
 625     case lir_add:
 626     case lir_sub:
 627     case lir_mul:
 628     case lir_div:
 629     case lir_rem:
 630     case lir_sqrt:
 631     case lir_abs:
 632     case lir_logic_and:
 633     case lir_logic_or:
 634     case lir_logic_xor:
 635     case lir_shl:
 636     case lir_shr:
 637     case lir_ushr:
 638     case lir_xadd:
 639     case lir_xchg:
 640     case lir_assert:
 641     {
 642       assert(op->as_Op2() != NULL, "must be");
 643       LIR_Op2* op2 = (LIR_Op2*)op;
 644       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 645              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 646 
 647       if (op2->_info)                     do_info(op2->_info);
 648       if (op2->_opr1->is_valid())         do_input(op2->_opr1);
 649       if (op2->_opr2->is_valid())         do_input(op2->_opr2);
 650       if (op2->_tmp1->is_valid())         do_temp(op2->_tmp1);
 651       if (op2->_result->is_valid())       do_output(op2->_result);
 652       if (op->code() == lir_xchg || op->code() == lir_xadd) {
 653         // on ARM and PPC, return value is loaded first so could
 654         // destroy inputs. On other platforms that implement those
 655         // (x86, sparc), the extra constrainsts are harmless.
 656         if (op2->_opr1->is_valid())       do_temp(op2->_opr1);
 657         if (op2->_opr2->is_valid())       do_temp(op2->_opr2);
 658       }
 659 
 660       break;
 661     }
 662 
 663     // special handling for cmove: right input operand must not be equal
 664     // to the result operand, otherwise the backend fails
 665     case lir_cmove:
 666     {
 667       assert(op->as_Op2() != NULL, "must be");
 668       LIR_Op2* op2 = (LIR_Op2*)op;
 669 
 670       assert(op2->_info == NULL && op2->_tmp1->is_illegal() && op2->_tmp2->is_illegal() &&
 671              op2->_tmp3->is_illegal() && op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 672       assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used");
 673 
 674       do_input(op2->_opr1);
 675       do_input(op2->_opr2);
 676       do_temp(op2->_opr2);
 677       do_output(op2->_result);
 678 
 679       break;
 680     }
 681 
 682     // vspecial handling for strict operations: register input operands
 683     // as temp to guarantee that they do not overlap with other
 684     // registers
 685     case lir_mul_strictfp:
 686     case lir_div_strictfp:
 687     {
 688       assert(op->as_Op2() != NULL, "must be");
 689       LIR_Op2* op2 = (LIR_Op2*)op;
 690 
 691       assert(op2->_info == NULL, "not used");
 692       assert(op2->_opr1->is_valid(), "used");
 693       assert(op2->_opr2->is_valid(), "used");
 694       assert(op2->_result->is_valid(), "used");
 695       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 696              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 697 
 698       do_input(op2->_opr1); do_temp(op2->_opr1);
 699       do_input(op2->_opr2); do_temp(op2->_opr2);
 700       if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1);
 701       do_output(op2->_result);
 702 
 703       break;
 704     }
 705 
 706     case lir_throw: {
 707       assert(op->as_Op2() != NULL, "must be");
 708       LIR_Op2* op2 = (LIR_Op2*)op;
 709 
 710       if (op2->_info)                     do_info(op2->_info);
 711       if (op2->_opr1->is_valid())         do_temp(op2->_opr1);
 712       if (op2->_opr2->is_valid())         do_input(op2->_opr2); // exception object is input parameter
 713       assert(op2->_result->is_illegal(), "no result");
 714       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 715              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 716 
 717       break;
 718     }
 719 
 720     case lir_unwind: {
 721       assert(op->as_Op1() != NULL, "must be");
 722       LIR_Op1* op1 = (LIR_Op1*)op;
 723 
 724       assert(op1->_info == NULL, "no info");
 725       assert(op1->_opr->is_valid(), "exception oop");         do_input(op1->_opr);
 726       assert(op1->_result->is_illegal(), "no result");
 727 
 728       break;
 729     }
 730 
 731 // LIR_Op3
 732     case lir_idiv:
 733     case lir_irem:
 734     case lir_fmad:
 735     case lir_fmaf: {
 736       assert(op->as_Op3() != NULL, "must be");
 737       LIR_Op3* op3= (LIR_Op3*)op;
 738 
 739       if (op3->_info)                     do_info(op3->_info);
 740       if (op3->_opr1->is_valid())         do_input(op3->_opr1);
 741 
 742       // second operand is input and temp, so ensure that second operand
 743       // and third operand get not the same register
 744       if (op3->_opr2->is_valid())         do_input(op3->_opr2);
 745       if (op3->_opr2->is_valid())         do_temp(op3->_opr2);
 746       if (op3->_opr3->is_valid())         do_temp(op3->_opr3);
 747 
 748       if (op3->_result->is_valid())       do_output(op3->_result);
 749 
 750       break;
 751     }
 752 
 753 
 754 // LIR_OpJavaCall
 755     case lir_static_call:
 756     case lir_optvirtual_call:
 757     case lir_icvirtual_call:
 758     case lir_virtual_call:
 759     case lir_dynamic_call: {
 760       LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
 761       assert(opJavaCall != NULL, "must be");
 762 
 763       if (opJavaCall->_receiver->is_valid())     do_input(opJavaCall->_receiver);
 764 
 765       // only visit register parameters
 766       int n = opJavaCall->_arguments->length();
 767       for (int i = opJavaCall->_receiver->is_valid() ? 1 : 0; i < n; i++) {
 768         if (!opJavaCall->_arguments->at(i)->is_pointer()) {
 769           do_input(*opJavaCall->_arguments->adr_at(i));
 770         }
 771       }
 772 
 773       if (opJavaCall->_info)                     do_info(opJavaCall->_info);
 774       if (FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr &&
 775           opJavaCall->is_method_handle_invoke()) {
 776         opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
 777         do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
 778       }
 779       do_call();
 780       if (opJavaCall->_result->is_valid())       do_output(opJavaCall->_result);
 781 
 782       break;
 783     }
 784 
 785 
 786 // LIR_OpRTCall
 787     case lir_rtcall: {
 788       assert(op->as_OpRTCall() != NULL, "must be");
 789       LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
 790 
 791       // only visit register parameters
 792       int n = opRTCall->_arguments->length();
 793       for (int i = 0; i < n; i++) {
 794         if (!opRTCall->_arguments->at(i)->is_pointer()) {
 795           do_input(*opRTCall->_arguments->adr_at(i));
 796         }
 797       }
 798       if (opRTCall->_info)                     do_info(opRTCall->_info);
 799       if (opRTCall->_tmp->is_valid())          do_temp(opRTCall->_tmp);
 800       do_call();
 801       if (opRTCall->_result->is_valid())       do_output(opRTCall->_result);
 802 
 803       break;
 804     }
 805 
 806 
 807 // LIR_OpArrayCopy
 808     case lir_arraycopy: {
 809       assert(op->as_OpArrayCopy() != NULL, "must be");
 810       LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
 811 
 812       assert(opArrayCopy->_result->is_illegal(), "unused");
 813       assert(opArrayCopy->_src->is_valid(), "used");          do_input(opArrayCopy->_src);     do_temp(opArrayCopy->_src);
 814       assert(opArrayCopy->_src_pos->is_valid(), "used");      do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
 815       assert(opArrayCopy->_dst->is_valid(), "used");          do_input(opArrayCopy->_dst);     do_temp(opArrayCopy->_dst);
 816       assert(opArrayCopy->_dst_pos->is_valid(), "used");      do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
 817       assert(opArrayCopy->_length->is_valid(), "used");       do_input(opArrayCopy->_length);  do_temp(opArrayCopy->_length);
 818       assert(opArrayCopy->_tmp->is_valid(), "used");          do_temp(opArrayCopy->_tmp);
 819       if (opArrayCopy->_info)                     do_info(opArrayCopy->_info);
 820 
 821       // the implementation of arraycopy always has a call into the runtime
 822       do_call();
 823 
 824       break;
 825     }
 826 
 827 
 828 // LIR_OpUpdateCRC32
 829     case lir_updatecrc32: {
 830       assert(op->as_OpUpdateCRC32() != NULL, "must be");
 831       LIR_OpUpdateCRC32* opUp = (LIR_OpUpdateCRC32*)op;
 832 
 833       assert(opUp->_crc->is_valid(), "used");          do_input(opUp->_crc);     do_temp(opUp->_crc);
 834       assert(opUp->_val->is_valid(), "used");          do_input(opUp->_val);     do_temp(opUp->_val);
 835       assert(opUp->_result->is_valid(), "used");       do_output(opUp->_result);
 836       assert(opUp->_info == NULL, "no info for LIR_OpUpdateCRC32");
 837 
 838       break;
 839     }
 840 
 841 
 842 // LIR_OpLock
 843     case lir_lock:
 844     case lir_unlock: {
 845       assert(op->as_OpLock() != NULL, "must be");
 846       LIR_OpLock* opLock = (LIR_OpLock*)op;
 847 
 848       if (opLock->_info)                          do_info(opLock->_info);
 849 
 850       // TODO: check if these operands really have to be temp
 851       // (or if input is sufficient). This may have influence on the oop map!
 852       assert(opLock->_lock->is_valid(), "used");  do_temp(opLock->_lock);
 853       assert(opLock->_hdr->is_valid(),  "used");  do_temp(opLock->_hdr);
 854       assert(opLock->_obj->is_valid(),  "used");  do_temp(opLock->_obj);
 855 
 856       if (opLock->_scratch->is_valid())           do_temp(opLock->_scratch);
 857       assert(opLock->_result->is_illegal(), "unused");
 858 
 859       do_stub(opLock->_stub);
 860 
 861       break;
 862     }
 863 
 864 
 865 // LIR_OpDelay
 866     case lir_delay_slot: {
 867       assert(op->as_OpDelay() != NULL, "must be");
 868       LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
 869 
 870       visit(opDelay->delay_op());
 871       break;
 872     }
 873 
 874 // LIR_OpTypeCheck
 875     case lir_instanceof:
 876     case lir_checkcast:
 877     case lir_store_check: {
 878       assert(op->as_OpTypeCheck() != NULL, "must be");
 879       LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
 880 
 881       if (opTypeCheck->_info_for_exception)       do_info(opTypeCheck->_info_for_exception);
 882       if (opTypeCheck->_info_for_patch)           do_info(opTypeCheck->_info_for_patch);
 883       if (opTypeCheck->_object->is_valid())       do_input(opTypeCheck->_object);
 884       if (op->code() == lir_store_check && opTypeCheck->_object->is_valid()) {
 885         do_temp(opTypeCheck->_object);
 886       }
 887       if (opTypeCheck->_array->is_valid())        do_input(opTypeCheck->_array);
 888       if (opTypeCheck->_tmp1->is_valid())         do_temp(opTypeCheck->_tmp1);
 889       if (opTypeCheck->_tmp2->is_valid())         do_temp(opTypeCheck->_tmp2);
 890       if (opTypeCheck->_tmp3->is_valid())         do_temp(opTypeCheck->_tmp3);
 891       if (opTypeCheck->_result->is_valid())       do_output(opTypeCheck->_result);
 892                                                   do_stub(opTypeCheck->_stub);
 893       break;
 894     }
 895 
 896 // LIR_OpCompareAndSwap
 897     case lir_cas_long:
 898     case lir_cas_obj:
 899     case lir_cas_int: {
 900       assert(op->as_OpCompareAndSwap() != NULL, "must be");
 901       LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op;
 902 
 903       assert(opCompareAndSwap->_addr->is_valid(),      "used");
 904       assert(opCompareAndSwap->_cmp_value->is_valid(), "used");
 905       assert(opCompareAndSwap->_new_value->is_valid(), "used");
 906       if (opCompareAndSwap->_info)                    do_info(opCompareAndSwap->_info);
 907                                                       do_input(opCompareAndSwap->_addr);
 908                                                       do_temp(opCompareAndSwap->_addr);
 909                                                       do_input(opCompareAndSwap->_cmp_value);
 910                                                       do_temp(opCompareAndSwap->_cmp_value);
 911                                                       do_input(opCompareAndSwap->_new_value);
 912                                                       do_temp(opCompareAndSwap->_new_value);
 913       if (opCompareAndSwap->_tmp1->is_valid())        do_temp(opCompareAndSwap->_tmp1);
 914       if (opCompareAndSwap->_tmp2->is_valid())        do_temp(opCompareAndSwap->_tmp2);
 915       if (opCompareAndSwap->_result->is_valid())      do_output(opCompareAndSwap->_result);
 916 
 917       break;
 918     }
 919 
 920 
 921 // LIR_OpAllocArray;
 922     case lir_alloc_array: {
 923       assert(op->as_OpAllocArray() != NULL, "must be");
 924       LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
 925 
 926       if (opAllocArray->_info)                        do_info(opAllocArray->_info);
 927       if (opAllocArray->_klass->is_valid())           do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass);
 928       if (opAllocArray->_len->is_valid())             do_input(opAllocArray->_len);   do_temp(opAllocArray->_len);
 929       if (opAllocArray->_tmp1->is_valid())            do_temp(opAllocArray->_tmp1);
 930       if (opAllocArray->_tmp2->is_valid())            do_temp(opAllocArray->_tmp2);
 931       if (opAllocArray->_tmp3->is_valid())            do_temp(opAllocArray->_tmp3);
 932       if (opAllocArray->_tmp4->is_valid())            do_temp(opAllocArray->_tmp4);
 933       if (opAllocArray->_result->is_valid())          do_output(opAllocArray->_result);
 934                                                       do_stub(opAllocArray->_stub);
 935       break;
 936     }
 937 
 938 // LIR_OpProfileCall:
 939     case lir_profile_call: {
 940       assert(op->as_OpProfileCall() != NULL, "must be");
 941       LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
 942 
 943       if (opProfileCall->_recv->is_valid())              do_temp(opProfileCall->_recv);
 944       assert(opProfileCall->_mdo->is_valid(), "used");   do_temp(opProfileCall->_mdo);
 945       assert(opProfileCall->_tmp1->is_valid(), "used");  do_temp(opProfileCall->_tmp1);
 946       break;
 947     }
 948 
 949 // LIR_OpProfileType:
 950     case lir_profile_type: {
 951       assert(op->as_OpProfileType() != NULL, "must be");
 952       LIR_OpProfileType* opProfileType = (LIR_OpProfileType*)op;
 953 
 954       do_input(opProfileType->_mdp); do_temp(opProfileType->_mdp);
 955       do_input(opProfileType->_obj);
 956       do_temp(opProfileType->_tmp);
 957       break;
 958     }
 959   default:
 960     ShouldNotReachHere();
 961   }
 962 }
 963 
 964 
 965 void LIR_OpVisitState::do_stub(CodeStub* stub) {
 966   if (stub != NULL) {
 967     stub->visit(this);
 968   }
 969 }
 970 
 971 XHandlers* LIR_OpVisitState::all_xhandler() {
 972   XHandlers* result = NULL;
 973 
 974   int i;
 975   for (i = 0; i < info_count(); i++) {
 976     if (info_at(i)->exception_handlers() != NULL) {
 977       result = info_at(i)->exception_handlers();
 978       break;
 979     }
 980   }
 981 
 982 #ifdef ASSERT
 983   for (i = 0; i < info_count(); i++) {
 984     assert(info_at(i)->exception_handlers() == NULL ||
 985            info_at(i)->exception_handlers() == result,
 986            "only one xhandler list allowed per LIR-operation");
 987   }
 988 #endif
 989 
 990   if (result != NULL) {
 991     return result;
 992   } else {
 993     return new XHandlers();
 994   }
 995 
 996   return result;
 997 }
 998 
 999 
1000 #ifdef ASSERT
1001 bool LIR_OpVisitState::no_operands(LIR_Op* op) {
1002   visit(op);
1003 
1004   return opr_count(inputMode) == 0 &&
1005          opr_count(outputMode) == 0 &&
1006          opr_count(tempMode) == 0 &&
1007          info_count() == 0 &&
1008          !has_call() &&
1009          !has_slow_case();
1010 }
1011 #endif
1012 
1013 //---------------------------------------------------
1014 
1015 
1016 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
1017   masm->emit_call(this);
1018 }
1019 
1020 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
1021   masm->emit_rtcall(this);
1022 }
1023 
1024 void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
1025   masm->emit_opLabel(this);
1026 }
1027 
1028 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
1029   masm->emit_arraycopy(this);
1030   masm->append_code_stub(stub());
1031 }
1032 
1033 void LIR_OpUpdateCRC32::emit_code(LIR_Assembler* masm) {
1034   masm->emit_updatecrc32(this);
1035 }
1036 
1037 void LIR_Op0::emit_code(LIR_Assembler* masm) {
1038   masm->emit_op0(this);
1039 }
1040 
1041 void LIR_Op1::emit_code(LIR_Assembler* masm) {
1042   masm->emit_op1(this);
1043 }
1044 
1045 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
1046   masm->emit_alloc_obj(this);
1047   masm->append_code_stub(stub());
1048 }
1049 
1050 void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
1051   masm->emit_opBranch(this);
1052   if (stub()) {
1053     masm->append_code_stub(stub());
1054   }
1055 }
1056 
1057 void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
1058   masm->emit_opConvert(this);
1059   if (stub() != NULL) {
1060     masm->append_code_stub(stub());
1061   }
1062 }
1063 
1064 void LIR_Op2::emit_code(LIR_Assembler* masm) {
1065   masm->emit_op2(this);
1066 }
1067 
1068 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
1069   masm->emit_alloc_array(this);
1070   masm->append_code_stub(stub());
1071 }
1072 
1073 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
1074   masm->emit_opTypeCheck(this);
1075   if (stub()) {
1076     masm->append_code_stub(stub());
1077   }
1078 }
1079 
1080 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
1081   masm->emit_compare_and_swap(this);
1082 }
1083 
1084 void LIR_Op3::emit_code(LIR_Assembler* masm) {
1085   masm->emit_op3(this);
1086 }
1087 
1088 void LIR_OpLock::emit_code(LIR_Assembler* masm) {
1089   masm->emit_lock(this);
1090   if (stub()) {
1091     masm->append_code_stub(stub());
1092   }
1093 }
1094 
1095 #ifdef ASSERT
1096 void LIR_OpAssert::emit_code(LIR_Assembler* masm) {
1097   masm->emit_assert(this);
1098 }
1099 #endif
1100 
1101 void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
1102   masm->emit_delay(this);
1103 }
1104 
1105 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
1106   masm->emit_profile_call(this);
1107 }
1108 
1109 void LIR_OpProfileType::emit_code(LIR_Assembler* masm) {
1110   masm->emit_profile_type(this);
1111 }
1112 
1113 // LIR_List
1114 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
1115   : _operations(8)
1116   , _compilation(compilation)
1117 #ifndef PRODUCT
1118   , _block(block)
1119 #endif
1120 #ifdef ASSERT
1121   , _file(NULL)
1122   , _line(0)
1123 #endif
1124 { }
1125 
1126 
1127 #ifdef ASSERT
1128 void LIR_List::set_file_and_line(const char * file, int line) {
1129   const char * f = strrchr(file, '/');
1130   if (f == NULL) f = strrchr(file, '\\');
1131   if (f == NULL) {
1132     f = file;
1133   } else {
1134     f++;
1135   }
1136   _file = f;
1137   _line = line;
1138 }
1139 #endif
1140 
1141 
1142 void LIR_List::append(LIR_InsertionBuffer* buffer) {
1143   assert(this == buffer->lir_list(), "wrong lir list");
1144   const int n = _operations.length();
1145 
1146   if (buffer->number_of_ops() > 0) {
1147     // increase size of instructions list
1148     _operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
1149     // insert ops from buffer into instructions list
1150     int op_index = buffer->number_of_ops() - 1;
1151     int ip_index = buffer->number_of_insertion_points() - 1;
1152     int from_index = n - 1;
1153     int to_index = _operations.length() - 1;
1154     for (; ip_index >= 0; ip_index --) {
1155       int index = buffer->index_at(ip_index);
1156       // make room after insertion point
1157       while (index < from_index) {
1158         _operations.at_put(to_index --, _operations.at(from_index --));
1159       }
1160       // insert ops from buffer
1161       for (int i = buffer->count_at(ip_index); i > 0; i --) {
1162         _operations.at_put(to_index --, buffer->op_at(op_index --));
1163       }
1164     }
1165   }
1166 
1167   buffer->finish();
1168 }
1169 
1170 
1171 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
1172   assert(reg->type() == T_OBJECT, "bad reg");
1173   append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),  reg, T_OBJECT, lir_patch_normal, info));
1174 }
1175 
1176 void LIR_List::klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info) {
1177   assert(reg->type() == T_METADATA, "bad reg");
1178   append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg, T_METADATA, lir_patch_normal, info));
1179 }
1180 
1181 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1182   append(new LIR_Op1(
1183             lir_move,
1184             LIR_OprFact::address(addr),
1185             src,
1186             addr->type(),
1187             patch_code,
1188             info));
1189 }
1190 
1191 
1192 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1193   append(new LIR_Op1(
1194             lir_move,
1195             LIR_OprFact::address(address),
1196             dst,
1197             address->type(),
1198             patch_code,
1199             info, lir_move_volatile));
1200 }
1201 
1202 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1203   append(new LIR_Op1(
1204             lir_move,
1205             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1206             dst,
1207             type,
1208             patch_code,
1209             info, lir_move_volatile));
1210 }
1211 
1212 
1213 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1214   append(new LIR_Op1(
1215             lir_move,
1216             LIR_OprFact::intConst(v),
1217             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1218             type,
1219             patch_code,
1220             info));
1221 }
1222 
1223 
1224 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1225   append(new LIR_Op1(
1226             lir_move,
1227             LIR_OprFact::oopConst(o),
1228             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1229             type,
1230             patch_code,
1231             info));
1232 }
1233 
1234 
1235 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1236   append(new LIR_Op1(
1237             lir_move,
1238             src,
1239             LIR_OprFact::address(addr),
1240             addr->type(),
1241             patch_code,
1242             info));
1243 }
1244 
1245 
1246 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1247   append(new LIR_Op1(
1248             lir_move,
1249             src,
1250             LIR_OprFact::address(addr),
1251             addr->type(),
1252             patch_code,
1253             info,
1254             lir_move_volatile));
1255 }
1256 
1257 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1258   append(new LIR_Op1(
1259             lir_move,
1260             src,
1261             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1262             type,
1263             patch_code,
1264             info, lir_move_volatile));
1265 }
1266 
1267 
1268 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1269   append(new LIR_Op3(
1270                     lir_idiv,
1271                     left,
1272                     right,
1273                     tmp,
1274                     res,
1275                     info));
1276 }
1277 
1278 
1279 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1280   append(new LIR_Op3(
1281                     lir_idiv,
1282                     left,
1283                     LIR_OprFact::intConst(right),
1284                     tmp,
1285                     res,
1286                     info));
1287 }
1288 
1289 
1290 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1291   append(new LIR_Op3(
1292                     lir_irem,
1293                     left,
1294                     right,
1295                     tmp,
1296                     res,
1297                     info));
1298 }
1299 
1300 
1301 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1302   append(new LIR_Op3(
1303                     lir_irem,
1304                     left,
1305                     LIR_OprFact::intConst(right),
1306                     tmp,
1307                     res,
1308                     info));
1309 }
1310 
1311 
1312 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
1313   append(new LIR_Op2(
1314                     lir_cmp,
1315                     condition,
1316                     LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
1317                     LIR_OprFact::intConst(c),
1318                     info));
1319 }
1320 
1321 
1322 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
1323   append(new LIR_Op2(
1324                     lir_cmp,
1325                     condition,
1326                     reg,
1327                     LIR_OprFact::address(addr),
1328                     info));
1329 }
1330 
1331 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1332                                int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
1333   append(new LIR_OpAllocObj(
1334                            klass,
1335                            dst,
1336                            t1,
1337                            t2,
1338                            t3,
1339                            t4,
1340                            header_size,
1341                            object_size,
1342                            init_check,
1343                            stub));
1344 }
1345 
1346 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
1347   append(new LIR_OpAllocArray(
1348                            klass,
1349                            len,
1350                            dst,
1351                            t1,
1352                            t2,
1353                            t3,
1354                            t4,
1355                            type,
1356                            stub));
1357 }
1358 
1359 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1360  append(new LIR_Op2(
1361                     lir_shl,
1362                     value,
1363                     count,
1364                     dst,
1365                     tmp));
1366 }
1367 
1368 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1369  append(new LIR_Op2(
1370                     lir_shr,
1371                     value,
1372                     count,
1373                     dst,
1374                     tmp));
1375 }
1376 
1377 
1378 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1379  append(new LIR_Op2(
1380                     lir_ushr,
1381                     value,
1382                     count,
1383                     dst,
1384                     tmp));
1385 }
1386 
1387 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
1388   append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
1389                      left,
1390                      right,
1391                      dst));
1392 }
1393 
1394 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) {
1395   append(new LIR_OpLock(
1396                     lir_lock,
1397                     hdr,
1398                     obj,
1399                     lock,
1400                     scratch,
1401                     stub,
1402                     info));
1403 }
1404 
1405 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
1406   append(new LIR_OpLock(
1407                     lir_unlock,
1408                     hdr,
1409                     obj,
1410                     lock,
1411                     scratch,
1412                     stub,
1413                     NULL));
1414 }
1415 
1416 
1417 void check_LIR() {
1418   // cannot do the proper checking as PRODUCT and other modes return different results
1419   // guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table");
1420 }
1421 
1422 
1423 
1424 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1425                           LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1426                           CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1427                           ciMethod* profiled_method, int profiled_bci) {
1428   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
1429                                            tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub);
1430   if (profiled_method != NULL) {
1431     c->set_profiled_method(profiled_method);
1432     c->set_profiled_bci(profiled_bci);
1433     c->set_should_profile(true);
1434   }
1435   append(c);
1436 }
1437 
1438 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
1439   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL);
1440   if (profiled_method != NULL) {
1441     c->set_profiled_method(profiled_method);
1442     c->set_profiled_bci(profiled_bci);
1443     c->set_should_profile(true);
1444   }
1445   append(c);
1446 }
1447 
1448 
1449 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
1450                            CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) {
1451   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception);
1452   if (profiled_method != NULL) {
1453     c->set_profiled_method(profiled_method);
1454     c->set_profiled_bci(profiled_bci);
1455     c->set_should_profile(true);
1456   }
1457   append(c);
1458 }
1459 
1460 
1461 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1462                         LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1463   append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
1464 }
1465 
1466 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1467                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1468   append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
1469 }
1470 
1471 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1472                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1473   append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
1474 }
1475 
1476 
1477 #ifdef PRODUCT
1478 
1479 void print_LIR(BlockList* blocks) {
1480 }
1481 
1482 #else
1483 // LIR_OprDesc
1484 void LIR_OprDesc::print() const {
1485   print(tty);
1486 }
1487 
1488 void LIR_OprDesc::print(outputStream* out) const {
1489   if (is_illegal()) {
1490     return;
1491   }
1492 
1493   out->print("[");
1494   if (is_pointer()) {
1495     pointer()->print_value_on(out);
1496   } else if (is_single_stack()) {
1497     out->print("stack:%d", single_stack_ix());
1498   } else if (is_double_stack()) {
1499     out->print("dbl_stack:%d",double_stack_ix());
1500   } else if (is_virtual()) {
1501     out->print("R%d", vreg_number());
1502   } else if (is_single_cpu()) {
1503     out->print("%s", as_register()->name());
1504   } else if (is_double_cpu()) {
1505     out->print("%s", as_register_hi()->name());
1506     out->print("%s", as_register_lo()->name());
1507 #if defined(X86)
1508   } else if (is_single_xmm()) {
1509     out->print("%s", as_xmm_float_reg()->name());
1510   } else if (is_double_xmm()) {
1511     out->print("%s", as_xmm_double_reg()->name());
1512   } else if (is_single_fpu()) {
1513     out->print("fpu%d", fpu_regnr());
1514   } else if (is_double_fpu()) {
1515     out->print("fpu%d", fpu_regnrLo());
1516 #elif defined(AARCH64)
1517   } else if (is_single_fpu()) {
1518     out->print("fpu%d", fpu_regnr());
1519   } else if (is_double_fpu()) {
1520     out->print("fpu%d", fpu_regnrLo());
1521 #elif defined(ARM)
1522   } else if (is_single_fpu()) {
1523     out->print("s%d", fpu_regnr());
1524   } else if (is_double_fpu()) {
1525     out->print("d%d", fpu_regnrLo() >> 1);
1526 #else
1527   } else if (is_single_fpu()) {
1528     out->print("%s", as_float_reg()->name());
1529   } else if (is_double_fpu()) {
1530     out->print("%s", as_double_reg()->name());
1531 #endif
1532 
1533   } else if (is_illegal()) {
1534     out->print("-");
1535   } else {
1536     out->print("Unknown Operand");
1537   }
1538   if (!is_illegal()) {
1539     out->print("|%c", type_char());
1540   }
1541   if (is_register() && is_last_use()) {
1542     out->print("(last_use)");
1543   }
1544   out->print("]");
1545 }
1546 
1547 
1548 // LIR_Address
1549 void LIR_Const::print_value_on(outputStream* out) const {
1550   switch (type()) {
1551     case T_ADDRESS:out->print("address:%d",as_jint());          break;
1552     case T_INT:    out->print("int:%d",   as_jint());           break;
1553     case T_LONG:   out->print("lng:" JLONG_FORMAT, as_jlong()); break;
1554     case T_FLOAT:  out->print("flt:%f",   as_jfloat());         break;
1555     case T_DOUBLE: out->print("dbl:%f",   as_jdouble());        break;
1556     case T_OBJECT: out->print("obj:" INTPTR_FORMAT, p2i(as_jobject()));        break;
1557     case T_METADATA: out->print("metadata:" INTPTR_FORMAT, p2i(as_metadata()));break;
1558     default:       out->print("%3d:0x" UINT64_FORMAT_X, type(), (uint64_t)as_jlong()); break;
1559   }
1560 }
1561 
1562 // LIR_Address
1563 void LIR_Address::print_value_on(outputStream* out) const {
1564   out->print("Base:"); _base->print(out);
1565   if (!_index->is_illegal()) {
1566     out->print(" Index:"); _index->print(out);
1567     switch (scale()) {
1568     case times_1: break;
1569     case times_2: out->print(" * 2"); break;
1570     case times_4: out->print(" * 4"); break;
1571     case times_8: out->print(" * 8"); break;
1572     }
1573   }
1574   out->print(" Disp: " INTX_FORMAT, _disp);
1575 }
1576 
1577 // debug output of block header without InstructionPrinter
1578 //       (because phi functions are not necessary for LIR)
1579 static void print_block(BlockBegin* x) {
1580   // print block id
1581   BlockEnd* end = x->end();
1582   tty->print("B%d ", x->block_id());
1583 
1584   // print flags
1585   if (x->is_set(BlockBegin::std_entry_flag))               tty->print("std ");
1586   if (x->is_set(BlockBegin::osr_entry_flag))               tty->print("osr ");
1587   if (x->is_set(BlockBegin::exception_entry_flag))         tty->print("ex ");
1588   if (x->is_set(BlockBegin::subroutine_entry_flag))        tty->print("jsr ");
1589   if (x->is_set(BlockBegin::backward_branch_target_flag))  tty->print("bb ");
1590   if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
1591   if (x->is_set(BlockBegin::linear_scan_loop_end_flag))    tty->print("le ");
1592 
1593   // print block bci range
1594   tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci()));
1595 
1596   // print predecessors and successors
1597   if (x->number_of_preds() > 0) {
1598     tty->print("preds: ");
1599     for (int i = 0; i < x->number_of_preds(); i ++) {
1600       tty->print("B%d ", x->pred_at(i)->block_id());
1601     }
1602   }
1603 
1604   if (x->number_of_sux() > 0) {
1605     tty->print("sux: ");
1606     for (int i = 0; i < x->number_of_sux(); i ++) {
1607       tty->print("B%d ", x->sux_at(i)->block_id());
1608     }
1609   }
1610 
1611   // print exception handlers
1612   if (x->number_of_exception_handlers() > 0) {
1613     tty->print("xhandler: ");
1614     for (int i = 0; i < x->number_of_exception_handlers();  i++) {
1615       tty->print("B%d ", x->exception_handler_at(i)->block_id());
1616     }
1617   }
1618 
1619   tty->cr();
1620 }
1621 
1622 void print_LIR(BlockList* blocks) {
1623   tty->print_cr("LIR:");
1624   int i;
1625   for (i = 0; i < blocks->length(); i++) {
1626     BlockBegin* bb = blocks->at(i);
1627     print_block(bb);
1628     tty->print("__id_Instruction___________________________________________"); tty->cr();
1629     bb->lir()->print_instructions();
1630   }
1631 }
1632 
1633 void LIR_List::print_instructions() {
1634   for (int i = 0; i < _operations.length(); i++) {
1635     _operations.at(i)->print(); tty->cr();
1636   }
1637   tty->cr();
1638 }
1639 
1640 // LIR_Ops printing routines
1641 // LIR_Op
1642 void LIR_Op::print_on(outputStream* out) const {
1643   if (id() != -1 || PrintCFGToFile) {
1644     out->print("%4d ", id());
1645   } else {
1646     out->print("     ");
1647   }
1648   out->print("%s ", name());
1649   print_instr(out);
1650   if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci());
1651 #ifdef ASSERT
1652   if (Verbose && _file != NULL) {
1653     out->print(" (%s:%d)", _file, _line);
1654   }
1655 #endif
1656 }
1657 
1658 const char * LIR_Op::name() const {
1659   const char* s = NULL;
1660   switch(code()) {
1661      // LIR_Op0
1662      case lir_membar:                s = "membar";        break;
1663      case lir_membar_acquire:        s = "membar_acquire"; break;
1664      case lir_membar_release:        s = "membar_release"; break;
1665      case lir_membar_loadload:       s = "membar_loadload";   break;
1666      case lir_membar_storestore:     s = "membar_storestore"; break;
1667      case lir_membar_loadstore:      s = "membar_loadstore";  break;
1668      case lir_membar_storeload:      s = "membar_storeload";  break;
1669      case lir_word_align:            s = "word_align";    break;
1670      case lir_label:                 s = "label";         break;
1671      case lir_nop:                   s = "nop";           break;
1672      case lir_on_spin_wait:          s = "on_spin_wait";  break;
1673      case lir_backwardbranch_target: s = "backbranch";    break;
1674      case lir_std_entry:             s = "std_entry";     break;
1675      case lir_osr_entry:             s = "osr_entry";     break;
1676      case lir_build_frame:           s = "build_frm";     break;
1677      case lir_fpop_raw:              s = "fpop_raw";      break;
1678      case lir_24bit_FPU:             s = "24bit_FPU";     break;
1679      case lir_reset_FPU:             s = "reset_FPU";     break;
1680      case lir_breakpoint:            s = "breakpoint";    break;
1681      case lir_get_thread:            s = "get_thread";    break;
1682      // LIR_Op1
1683      case lir_fxch:                  s = "fxch";          break;
1684      case lir_fld:                   s = "fld";           break;
1685      case lir_ffree:                 s = "ffree";         break;
1686      case lir_push:                  s = "push";          break;
1687      case lir_pop:                   s = "pop";           break;
1688      case lir_null_check:            s = "null_check";    break;
1689      case lir_return:                s = "return";        break;
1690      case lir_safepoint:             s = "safepoint";     break;
1691      case lir_neg:                   s = "neg";           break;
1692      case lir_leal:                  s = "leal";          break;
1693      case lir_branch:                s = "branch";        break;
1694      case lir_cond_float_branch:     s = "flt_cond_br";   break;
1695      case lir_move:                  s = "move";          break;
1696      case lir_roundfp:               s = "roundfp";       break;
1697      case lir_rtcall:                s = "rtcall";        break;
1698      case lir_throw:                 s = "throw";         break;
1699      case lir_unwind:                s = "unwind";        break;
1700      case lir_convert:               s = "convert";       break;
1701      case lir_alloc_object:          s = "alloc_obj";     break;
1702      case lir_monaddr:               s = "mon_addr";      break;
1703      case lir_pack64:                s = "pack64";        break;
1704      case lir_unpack64:              s = "unpack64";      break;
1705      // LIR_Op2
1706      case lir_cmp:                   s = "cmp";           break;
1707      case lir_cmp_l2i:               s = "cmp_l2i";       break;
1708      case lir_ucmp_fd2i:             s = "ucomp_fd2i";    break;
1709      case lir_cmp_fd2i:              s = "comp_fd2i";     break;
1710      case lir_cmove:                 s = "cmove";         break;
1711      case lir_add:                   s = "add";           break;
1712      case lir_sub:                   s = "sub";           break;
1713      case lir_mul:                   s = "mul";           break;
1714      case lir_mul_strictfp:          s = "mul_strictfp";  break;
1715      case lir_div:                   s = "div";           break;
1716      case lir_div_strictfp:          s = "div_strictfp";  break;
1717      case lir_rem:                   s = "rem";           break;
1718      case lir_abs:                   s = "abs";           break;
1719      case lir_sqrt:                  s = "sqrt";          break;
1720      case lir_logic_and:             s = "logic_and";     break;
1721      case lir_logic_or:              s = "logic_or";      break;
1722      case lir_logic_xor:             s = "logic_xor";     break;
1723      case lir_shl:                   s = "shift_left";    break;
1724      case lir_shr:                   s = "shift_right";   break;
1725      case lir_ushr:                  s = "ushift_right";  break;
1726      case lir_alloc_array:           s = "alloc_array";   break;
1727      case lir_xadd:                  s = "xadd";          break;
1728      case lir_xchg:                  s = "xchg";          break;
1729      // LIR_Op3
1730      case lir_idiv:                  s = "idiv";          break;
1731      case lir_irem:                  s = "irem";          break;
1732      case lir_fmad:                  s = "fmad";          break;
1733      case lir_fmaf:                  s = "fmaf";          break;
1734      // LIR_OpJavaCall
1735      case lir_static_call:           s = "static";        break;
1736      case lir_optvirtual_call:       s = "optvirtual";    break;
1737      case lir_icvirtual_call:        s = "icvirtual";     break;
1738      case lir_virtual_call:          s = "virtual";       break;
1739      case lir_dynamic_call:          s = "dynamic";       break;
1740      // LIR_OpArrayCopy
1741      case lir_arraycopy:             s = "arraycopy";     break;
1742      // LIR_OpUpdateCRC32
1743      case lir_updatecrc32:           s = "updatecrc32";   break;
1744      // LIR_OpLock
1745      case lir_lock:                  s = "lock";          break;
1746      case lir_unlock:                s = "unlock";        break;
1747      // LIR_OpDelay
1748      case lir_delay_slot:            s = "delay";         break;
1749      // LIR_OpTypeCheck
1750      case lir_instanceof:            s = "instanceof";    break;
1751      case lir_checkcast:             s = "checkcast";     break;
1752      case lir_store_check:           s = "store_check";   break;
1753      // LIR_OpCompareAndSwap
1754      case lir_cas_long:              s = "cas_long";      break;
1755      case lir_cas_obj:               s = "cas_obj";      break;
1756      case lir_cas_int:               s = "cas_int";      break;
1757      // LIR_OpProfileCall
1758      case lir_profile_call:          s = "profile_call";  break;
1759      // LIR_OpProfileType
1760      case lir_profile_type:          s = "profile_type";  break;
1761      // LIR_OpAssert
1762 #ifdef ASSERT
1763      case lir_assert:                s = "assert";        break;
1764 #endif
1765      case lir_none:                  ShouldNotReachHere();break;
1766     default:                         s = "illegal_op";    break;
1767   }
1768   return s;
1769 }
1770 
1771 // LIR_OpJavaCall
1772 void LIR_OpJavaCall::print_instr(outputStream* out) const {
1773   out->print("call: ");
1774   out->print("[addr: " INTPTR_FORMAT "]", p2i(address()));
1775   if (receiver()->is_valid()) {
1776     out->print(" [recv: ");   receiver()->print(out);   out->print("]");
1777   }
1778   if (result_opr()->is_valid()) {
1779     out->print(" [result: "); result_opr()->print(out); out->print("]");
1780   }
1781 }
1782 
1783 // LIR_OpLabel
1784 void LIR_OpLabel::print_instr(outputStream* out) const {
1785   out->print("[label:" INTPTR_FORMAT "]", p2i(_label));
1786 }
1787 
1788 // LIR_OpArrayCopy
1789 void LIR_OpArrayCopy::print_instr(outputStream* out) const {
1790   src()->print(out);     out->print(" ");
1791   src_pos()->print(out); out->print(" ");
1792   dst()->print(out);     out->print(" ");
1793   dst_pos()->print(out); out->print(" ");
1794   length()->print(out);  out->print(" ");
1795   tmp()->print(out);     out->print(" ");
1796 }
1797 
1798 // LIR_OpUpdateCRC32
1799 void LIR_OpUpdateCRC32::print_instr(outputStream* out) const {
1800   crc()->print(out);     out->print(" ");
1801   val()->print(out);     out->print(" ");
1802   result_opr()->print(out); out->print(" ");
1803 }
1804 
1805 // LIR_OpCompareAndSwap
1806 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
1807   addr()->print(out);      out->print(" ");
1808   cmp_value()->print(out); out->print(" ");
1809   new_value()->print(out); out->print(" ");
1810   tmp1()->print(out);      out->print(" ");
1811   tmp2()->print(out);      out->print(" ");
1812 
1813 }
1814 
1815 // LIR_Op0
1816 void LIR_Op0::print_instr(outputStream* out) const {
1817   result_opr()->print(out);
1818 }
1819 
1820 // LIR_Op1
1821 const char * LIR_Op1::name() const {
1822   if (code() == lir_move) {
1823     switch (move_kind()) {
1824     case lir_move_normal:
1825       return "move";
1826     case lir_move_unaligned:
1827       return "unaligned move";
1828     case lir_move_volatile:
1829       return "volatile_move";
1830     case lir_move_wide:
1831       return "wide_move";
1832     default:
1833       ShouldNotReachHere();
1834     return "illegal_op";
1835     }
1836   } else {
1837     return LIR_Op::name();
1838   }
1839 }
1840 
1841 
1842 void LIR_Op1::print_instr(outputStream* out) const {
1843   _opr->print(out);         out->print(" ");
1844   result_opr()->print(out); out->print(" ");
1845   print_patch_code(out, patch_code());
1846 }
1847 
1848 
1849 // LIR_Op1
1850 void LIR_OpRTCall::print_instr(outputStream* out) const {
1851   intx a = (intx)addr();
1852   out->print("%s", Runtime1::name_for_address(addr()));
1853   out->print(" ");
1854   tmp()->print(out);
1855 }
1856 
1857 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
1858   switch(code) {
1859     case lir_patch_none:                                 break;
1860     case lir_patch_low:    out->print("[patch_low]");    break;
1861     case lir_patch_high:   out->print("[patch_high]");   break;
1862     case lir_patch_normal: out->print("[patch_normal]"); break;
1863     default: ShouldNotReachHere();
1864   }
1865 }
1866 
1867 // LIR_OpBranch
1868 void LIR_OpBranch::print_instr(outputStream* out) const {
1869   print_condition(out, cond());             out->print(" ");
1870   if (block() != NULL) {
1871     out->print("[B%d] ", block()->block_id());
1872   } else if (stub() != NULL) {
1873     out->print("[");
1874     stub()->print_name(out);
1875     out->print(": " INTPTR_FORMAT "]", p2i(stub()));
1876     if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci());
1877   } else {
1878     out->print("[label:" INTPTR_FORMAT "] ", p2i(label()));
1879   }
1880   if (ublock() != NULL) {
1881     out->print("unordered: [B%d] ", ublock()->block_id());
1882   }
1883 }
1884 
1885 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
1886   switch(cond) {
1887     case lir_cond_equal:           out->print("[EQ]");      break;
1888     case lir_cond_notEqual:        out->print("[NE]");      break;
1889     case lir_cond_less:            out->print("[LT]");      break;
1890     case lir_cond_lessEqual:       out->print("[LE]");      break;
1891     case lir_cond_greaterEqual:    out->print("[GE]");      break;
1892     case lir_cond_greater:         out->print("[GT]");      break;
1893     case lir_cond_belowEqual:      out->print("[BE]");      break;
1894     case lir_cond_aboveEqual:      out->print("[AE]");      break;
1895     case lir_cond_always:          out->print("[AL]");      break;
1896     default:                       out->print("[%d]",cond); break;
1897   }
1898 }
1899 
1900 // LIR_OpConvert
1901 void LIR_OpConvert::print_instr(outputStream* out) const {
1902   print_bytecode(out, bytecode());
1903   in_opr()->print(out);                  out->print(" ");
1904   result_opr()->print(out);              out->print(" ");
1905 #ifdef PPC32
1906   if(tmp1()->is_valid()) {
1907     tmp1()->print(out); out->print(" ");
1908     tmp2()->print(out); out->print(" ");
1909   }
1910 #endif
1911 }
1912 
1913 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
1914   switch(code) {
1915     case Bytecodes::_d2f: out->print("[d2f] "); break;
1916     case Bytecodes::_d2i: out->print("[d2i] "); break;
1917     case Bytecodes::_d2l: out->print("[d2l] "); break;
1918     case Bytecodes::_f2d: out->print("[f2d] "); break;
1919     case Bytecodes::_f2i: out->print("[f2i] "); break;
1920     case Bytecodes::_f2l: out->print("[f2l] "); break;
1921     case Bytecodes::_i2b: out->print("[i2b] "); break;
1922     case Bytecodes::_i2c: out->print("[i2c] "); break;
1923     case Bytecodes::_i2d: out->print("[i2d] "); break;
1924     case Bytecodes::_i2f: out->print("[i2f] "); break;
1925     case Bytecodes::_i2l: out->print("[i2l] "); break;
1926     case Bytecodes::_i2s: out->print("[i2s] "); break;
1927     case Bytecodes::_l2i: out->print("[l2i] "); break;
1928     case Bytecodes::_l2f: out->print("[l2f] "); break;
1929     case Bytecodes::_l2d: out->print("[l2d] "); break;
1930     default:
1931       out->print("[?%d]",code);
1932     break;
1933   }
1934 }
1935 
1936 void LIR_OpAllocObj::print_instr(outputStream* out) const {
1937   klass()->print(out);                      out->print(" ");
1938   obj()->print(out);                        out->print(" ");
1939   tmp1()->print(out);                       out->print(" ");
1940   tmp2()->print(out);                       out->print(" ");
1941   tmp3()->print(out);                       out->print(" ");
1942   tmp4()->print(out);                       out->print(" ");
1943   out->print("[hdr:%d]", header_size()); out->print(" ");
1944   out->print("[obj:%d]", object_size()); out->print(" ");
1945   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
1946 }
1947 
1948 void LIR_OpRoundFP::print_instr(outputStream* out) const {
1949   _opr->print(out);         out->print(" ");
1950   tmp()->print(out);        out->print(" ");
1951   result_opr()->print(out); out->print(" ");
1952 }
1953 
1954 // LIR_Op2
1955 void LIR_Op2::print_instr(outputStream* out) const {
1956   if (code() == lir_cmove || code() == lir_cmp) {
1957     print_condition(out, condition());         out->print(" ");
1958   }
1959   in_opr1()->print(out);    out->print(" ");
1960   in_opr2()->print(out);    out->print(" ");
1961   if (tmp1_opr()->is_valid()) { tmp1_opr()->print(out);    out->print(" "); }
1962   if (tmp2_opr()->is_valid()) { tmp2_opr()->print(out);    out->print(" "); }
1963   if (tmp3_opr()->is_valid()) { tmp3_opr()->print(out);    out->print(" "); }
1964   if (tmp4_opr()->is_valid()) { tmp4_opr()->print(out);    out->print(" "); }
1965   if (tmp5_opr()->is_valid()) { tmp5_opr()->print(out);    out->print(" "); }
1966   result_opr()->print(out);
1967 }
1968 
1969 void LIR_OpAllocArray::print_instr(outputStream* out) const {
1970   klass()->print(out);                   out->print(" ");
1971   len()->print(out);                     out->print(" ");
1972   obj()->print(out);                     out->print(" ");
1973   tmp1()->print(out);                    out->print(" ");
1974   tmp2()->print(out);                    out->print(" ");
1975   tmp3()->print(out);                    out->print(" ");
1976   tmp4()->print(out);                    out->print(" ");
1977   out->print("[type:0x%x]", type());     out->print(" ");
1978   out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry()));
1979 }
1980 
1981 
1982 void LIR_OpTypeCheck::print_instr(outputStream* out) const {
1983   object()->print(out);                  out->print(" ");
1984   if (code() == lir_store_check) {
1985     array()->print(out);                 out->print(" ");
1986   }
1987   if (code() != lir_store_check) {
1988     klass()->print_name_on(out);         out->print(" ");
1989     if (fast_check())                 out->print("fast_check ");
1990   }
1991   tmp1()->print(out);                    out->print(" ");
1992   tmp2()->print(out);                    out->print(" ");
1993   tmp3()->print(out);                    out->print(" ");
1994   result_opr()->print(out);              out->print(" ");
1995   if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci());
1996 }
1997 
1998 
1999 // LIR_Op3
2000 void LIR_Op3::print_instr(outputStream* out) const {
2001   in_opr1()->print(out);    out->print(" ");
2002   in_opr2()->print(out);    out->print(" ");
2003   in_opr3()->print(out);    out->print(" ");
2004   result_opr()->print(out);
2005 }
2006 
2007 
2008 void LIR_OpLock::print_instr(outputStream* out) const {
2009   hdr_opr()->print(out);   out->print(" ");
2010   obj_opr()->print(out);   out->print(" ");
2011   lock_opr()->print(out);  out->print(" ");
2012   if (_scratch->is_valid()) {
2013     _scratch->print(out);  out->print(" ");
2014   }
2015   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2016 }
2017 
2018 #ifdef ASSERT
2019 void LIR_OpAssert::print_instr(outputStream* out) const {
2020   print_condition(out, condition()); out->print(" ");
2021   in_opr1()->print(out);             out->print(" ");
2022   in_opr2()->print(out);             out->print(", \"");
2023   out->print("%s", msg());          out->print("\"");
2024 }
2025 #endif
2026 
2027 
2028 void LIR_OpDelay::print_instr(outputStream* out) const {
2029   _op->print_on(out);
2030 }
2031 
2032 
2033 // LIR_OpProfileCall
2034 void LIR_OpProfileCall::print_instr(outputStream* out) const {
2035   profiled_method()->name()->print_symbol_on(out);
2036   out->print(".");
2037   profiled_method()->holder()->name()->print_symbol_on(out);
2038   out->print(" @ %d ", profiled_bci());
2039   mdo()->print(out);           out->print(" ");
2040   recv()->print(out);          out->print(" ");
2041   tmp1()->print(out);          out->print(" ");
2042 }
2043 
2044 // LIR_OpProfileType
2045 void LIR_OpProfileType::print_instr(outputStream* out) const {
2046   out->print("exact = ");
2047   if  (exact_klass() == NULL) {
2048     out->print("unknown");
2049   } else {
2050     exact_klass()->print_name_on(out);
2051   }
2052   out->print(" current = "); ciTypeEntries::print_ciklass(out, current_klass());
2053   out->print(" ");
2054   mdp()->print(out);          out->print(" ");
2055   obj()->print(out);          out->print(" ");
2056   tmp()->print(out);          out->print(" ");
2057 }
2058 
2059 #endif // PRODUCT
2060 
2061 // Implementation of LIR_InsertionBuffer
2062 
2063 void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
2064   assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
2065 
2066   int i = number_of_insertion_points() - 1;
2067   if (i < 0 || index_at(i) < index) {
2068     append_new(index, 1);
2069   } else {
2070     assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
2071     assert(count_at(i) > 0, "check");
2072     set_count_at(i, count_at(i) + 1);
2073   }
2074   _ops.push(op);
2075 
2076   DEBUG_ONLY(verify());
2077 }
2078 
2079 #ifdef ASSERT
2080 void LIR_InsertionBuffer::verify() {
2081   int sum = 0;
2082   int prev_idx = -1;
2083 
2084   for (int i = 0; i < number_of_insertion_points(); i++) {
2085     assert(prev_idx < index_at(i), "index must be ordered ascending");
2086     sum += count_at(i);
2087   }
2088   assert(sum == number_of_ops(), "wrong total sum");
2089 }
2090 #endif