1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_C1_C1_LIR_HPP
  26 #define SHARE_VM_C1_C1_LIR_HPP
  27 
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_ValueType.hpp"
  30 #include "oops/method.hpp"
  31 
  32 class BlockBegin;
  33 class BlockList;
  34 class LIR_Assembler;
  35 class CodeEmitInfo;
  36 class CodeStub;
  37 class CodeStubList;
  38 class ArrayCopyStub;
  39 class LIR_Op;
  40 class ciType;
  41 class ValueType;
  42 class LIR_OpVisitState;
  43 class FpuStackSim;
  44 
  45 //---------------------------------------------------------------------
  46 //                 LIR Operands
  47 //  LIR_OprDesc
  48 //    LIR_OprPtr
  49 //      LIR_Const
  50 //      LIR_Address
  51 //---------------------------------------------------------------------
  52 class LIR_OprDesc;
  53 class LIR_OprPtr;
  54 class LIR_Const;
  55 class LIR_Address;
  56 class LIR_OprVisitor;
  57 
  58 
  59 typedef LIR_OprDesc* LIR_Opr;
  60 typedef int          RegNr;
  61 
  62 typedef GrowableArray<LIR_Opr> LIR_OprList;
  63 typedef GrowableArray<LIR_Op*> LIR_OpArray;
  64 typedef GrowableArray<LIR_Op*> LIR_OpList;
  65 
  66 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  67 class LIR_OprPtr: public CompilationResourceObj {
  68  public:
  69   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  70   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  71 
  72   virtual LIR_Const*  as_constant()              { return NULL; }
  73   virtual LIR_Address* as_address()              { return NULL; }
  74   virtual BasicType type() const                 = 0;
  75   virtual void print_value_on(outputStream* out) const = 0;
  76 };
  77 
  78 
  79 
  80 // LIR constants
  81 class LIR_Const: public LIR_OprPtr {
  82  private:
  83   JavaValue _value;
  84 
  85   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  86   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  87   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  88 
  89  public:
  90   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  91   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
  92   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
  93   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
  94   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
  95   LIR_Const(void* p) {
  96 #ifdef _LP64
  97     assert(sizeof(jlong) >= sizeof(p), "too small");;
  98     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
  99 #else
 100     assert(sizeof(jint) >= sizeof(p), "too small");;
 101     _value.set_type(T_INT);     _value.set_jint((jint)p);
 102 #endif
 103   }
 104   LIR_Const(Metadata* m) {
 105     _value.set_type(T_METADATA);
 106 #ifdef _LP64
 107     _value.set_jlong((jlong)m);
 108 #else
 109     _value.set_jint((jint)m);
 110 #endif // _LP64
 111   }
 112 
 113   virtual BasicType type()       const { return _value.get_type(); }
 114   virtual LIR_Const* as_constant()     { return this; }
 115 
 116   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 117   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 118   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 119   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 120   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 121   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 122   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 123 
 124 #ifdef _LP64
 125   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 126   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
 127 #else
 128   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 129   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
 130 #endif
 131 
 132 
 133   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 134   jint      as_jint_lo_bits() const    {
 135     if (type() == T_DOUBLE) {
 136       return low(jlong_cast(_value.get_jdouble()));
 137     } else {
 138       return as_jint_lo();
 139     }
 140   }
 141   jint      as_jint_hi_bits() const    {
 142     if (type() == T_DOUBLE) {
 143       return high(jlong_cast(_value.get_jdouble()));
 144     } else {
 145       return as_jint_hi();
 146     }
 147   }
 148   jlong      as_jlong_bits() const    {
 149     if (type() == T_DOUBLE) {
 150       return jlong_cast(_value.get_jdouble());
 151     } else {
 152       return as_jlong();
 153     }
 154   }
 155 
 156   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 157 
 158 
 159   bool is_zero_float() {
 160     jfloat f = as_jfloat();
 161     jfloat ok = 0.0f;
 162     return jint_cast(f) == jint_cast(ok);
 163   }
 164 
 165   bool is_one_float() {
 166     jfloat f = as_jfloat();
 167     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 168   }
 169 
 170   bool is_zero_double() {
 171     jdouble d = as_jdouble();
 172     jdouble ok = 0.0;
 173     return jlong_cast(d) == jlong_cast(ok);
 174   }
 175 
 176   bool is_one_double() {
 177     jdouble d = as_jdouble();
 178     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 179   }
 180 };
 181 
 182 
 183 //---------------------LIR Operand descriptor------------------------------------
 184 //
 185 // The class LIR_OprDesc represents a LIR instruction operand;
 186 // it can be a register (ALU/FPU), stack location or a constant;
 187 // Constants and addresses are represented as resource area allocated
 188 // structures (see above).
 189 // Registers and stack locations are inlined into the this pointer
 190 // (see value function).
 191 
 192 class LIR_OprDesc: public CompilationResourceObj {
 193  public:
 194   // value structure:
 195   //     data       opr-type opr-kind
 196   // +--------------+-------+-------+
 197   // [max...........|7 6 5 4|3 2 1 0]
 198   //                             ^
 199   //                    is_pointer bit
 200   //
 201   // lowest bit cleared, means it is a structure pointer
 202   // we need  4 bits to represent types
 203 
 204  private:
 205   friend class LIR_OprFact;
 206 
 207   // Conversion
 208   intptr_t value() const                         { return (intptr_t) this; }
 209 
 210   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 211     return (value() & mask) == masked_value;
 212   }
 213 
 214   enum OprKind {
 215       pointer_value      = 0
 216     , stack_value        = 1
 217     , cpu_register       = 3
 218     , fpu_register       = 5
 219     , illegal_value      = 7
 220   };
 221 
 222   enum OprBits {
 223       pointer_bits   = 1
 224     , kind_bits      = 3
 225     , type_bits      = 4
 226     , size_bits      = 2
 227     , destroys_bits  = 1
 228     , virtual_bits   = 1
 229     , is_xmm_bits    = 1
 230     , last_use_bits  = 1
 231     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 232     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 233                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 234     , data_bits      = BitsPerInt - non_data_bits
 235     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 236   };
 237 
 238   enum OprShift {
 239       kind_shift     = 0
 240     , type_shift     = kind_shift     + kind_bits
 241     , size_shift     = type_shift     + type_bits
 242     , destroys_shift = size_shift     + size_bits
 243     , last_use_shift = destroys_shift + destroys_bits
 244     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 245     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 246     , is_xmm_shift   = virtual_shift + virtual_bits
 247     , data_shift     = is_xmm_shift + is_xmm_bits
 248     , reg1_shift = data_shift
 249     , reg2_shift = data_shift + reg_bits
 250 
 251   };
 252 
 253   enum OprSize {
 254       single_size = 0 << size_shift
 255     , double_size = 1 << size_shift
 256   };
 257 
 258   enum OprMask {
 259       kind_mask      = right_n_bits(kind_bits)
 260     , type_mask      = right_n_bits(type_bits) << type_shift
 261     , size_mask      = right_n_bits(size_bits) << size_shift
 262     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 263     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 264     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 265     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 266     , pointer_mask   = right_n_bits(pointer_bits)
 267     , lower_reg_mask = right_n_bits(reg_bits)
 268     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 269   };
 270 
 271   uintptr_t data() const                         { return value() >> data_shift; }
 272   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 273   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 274   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 275   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 276 
 277   static char type_char(BasicType t);
 278 
 279  public:
 280   enum {
 281     vreg_base = ConcreteRegisterImpl::number_of_registers,
 282     vreg_max = (1 << data_bits) - 1
 283   };
 284 
 285   static inline LIR_Opr illegalOpr();
 286 
 287   enum OprType {
 288       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 289     , int_type      = 1 << type_shift
 290     , long_type     = 2 << type_shift
 291     , object_type   = 3 << type_shift
 292     , address_type  = 4 << type_shift
 293     , float_type    = 5 << type_shift
 294     , double_type   = 6 << type_shift
 295     , metadata_type = 7 << type_shift
 296   };
 297   friend OprType as_OprType(BasicType t);
 298   friend BasicType as_BasicType(OprType t);
 299 
 300   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 301   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 302 
 303   static OprSize size_for(BasicType t) {
 304     switch (t) {
 305       case T_LONG:
 306       case T_DOUBLE:
 307         return double_size;
 308         break;
 309 
 310       case T_FLOAT:
 311       case T_BOOLEAN:
 312       case T_CHAR:
 313       case T_BYTE:
 314       case T_SHORT:
 315       case T_INT:
 316       case T_ADDRESS:
 317       case T_OBJECT:
 318       case T_ARRAY:
 319       case T_METADATA:
 320         return single_size;
 321         break;
 322 
 323       default:
 324         ShouldNotReachHere();
 325         return single_size;
 326       }
 327   }
 328 
 329 
 330   void validate_type() const PRODUCT_RETURN;
 331 
 332   BasicType type() const {
 333     if (is_pointer()) {
 334       return pointer()->type();
 335     }
 336     return as_BasicType(type_field());
 337   }
 338 
 339 
 340   ValueType* value_type() const                  { return as_ValueType(type()); }
 341 
 342   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 343 
 344   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 345   // checks whether types are same
 346   bool is_same_type(LIR_Opr opr) const     {
 347     assert(type_field() != unknown_type &&
 348            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 349     return type_field() == opr->type_field();
 350   }
 351   bool is_same_register(LIR_Opr opr) {
 352     return (is_register() && opr->is_register() &&
 353             kind_field() == opr->kind_field() &&
 354             (value() & no_type_mask) == (opr->value() & no_type_mask));
 355   }
 356 
 357   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 358   bool is_illegal() const      { return kind_field() == illegal_value; }
 359   bool is_valid() const        { return kind_field() != illegal_value; }
 360 
 361   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 362   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 363 
 364   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 365   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 366 
 367   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 368   bool is_oop() const;
 369 
 370   // semantic for fpu- and xmm-registers:
 371   // * is_float and is_double return true for xmm_registers
 372   //   (so is_single_fpu and is_single_xmm are true)
 373   // * So you must always check for is_???_xmm prior to is_???_fpu to
 374   //   distinguish between fpu- and xmm-registers
 375 
 376   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 377   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 378   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 379 
 380   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 381   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 382   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 383   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 384   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 385 
 386   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 387   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 388   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 389   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 390   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 391 
 392   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 393   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 394   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 395 
 396   // fast accessor functions for special bits that do not work for pointers
 397   // (in this functions, the check for is_pointer() is omitted)
 398   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 399   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 400   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 401   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 402   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 403 
 404   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 405   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 406   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 407   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 408 
 409 
 410   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 411   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 412   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 413   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 414   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 415   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 416   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 417   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 418   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 419   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 420   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 421   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 422 
 423   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 424   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 425   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 426 
 427   Register as_register()    const;
 428   Register as_register_lo() const;
 429   Register as_register_hi() const;
 430 
 431   Register as_pointer_register() {
 432 #ifdef _LP64
 433     if (is_double_cpu()) {
 434       assert(as_register_lo() == as_register_hi(), "should be a single register");
 435       return as_register_lo();
 436     }
 437 #endif
 438     return as_register();
 439   }
 440 
 441 #ifdef X86
 442   XMMRegister as_xmm_float_reg() const;
 443   XMMRegister as_xmm_double_reg() const;
 444   // for compatibility with RInfo
 445   int fpu () const                                  { return lo_reg_half(); }
 446 #endif
 447 #if defined(SPARC) || defined(ARM) || defined(PPC) || defined(AARCH64)
 448   FloatRegister as_float_reg   () const;
 449   FloatRegister as_double_reg  () const;
 450 #endif
 451 
 452   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 453   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 454   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 455   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 456   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 457 
 458   void print() const PRODUCT_RETURN;
 459   void print(outputStream* out) const PRODUCT_RETURN;
 460 };
 461 
 462 
 463 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 464   switch (type) {
 465   case T_INT:      return LIR_OprDesc::int_type;
 466   case T_LONG:     return LIR_OprDesc::long_type;
 467   case T_FLOAT:    return LIR_OprDesc::float_type;
 468   case T_DOUBLE:   return LIR_OprDesc::double_type;
 469   case T_OBJECT:
 470   case T_ARRAY:    return LIR_OprDesc::object_type;
 471   case T_ADDRESS:  return LIR_OprDesc::address_type;
 472   case T_METADATA: return LIR_OprDesc::metadata_type;
 473   case T_ILLEGAL:  // fall through
 474   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 475   }
 476 }
 477 
 478 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 479   switch (t) {
 480   case LIR_OprDesc::int_type:     return T_INT;
 481   case LIR_OprDesc::long_type:    return T_LONG;
 482   case LIR_OprDesc::float_type:   return T_FLOAT;
 483   case LIR_OprDesc::double_type:  return T_DOUBLE;
 484   case LIR_OprDesc::object_type:  return T_OBJECT;
 485   case LIR_OprDesc::address_type: return T_ADDRESS;
 486   case LIR_OprDesc::metadata_type:return T_METADATA;
 487   case LIR_OprDesc::unknown_type: // fall through
 488   default: ShouldNotReachHere();  return T_ILLEGAL;
 489   }
 490 }
 491 
 492 
 493 // LIR_Address
 494 class LIR_Address: public LIR_OprPtr {
 495  friend class LIR_OpVisitState;
 496 
 497  public:
 498   // NOTE: currently these must be the log2 of the scale factor (and
 499   // must also be equivalent to the ScaleFactor enum in
 500   // assembler_i486.hpp)
 501   enum Scale {
 502     times_1  =  0,
 503     times_2  =  1,
 504     times_4  =  2,
 505     times_8  =  3
 506   };
 507 
 508  private:
 509   LIR_Opr   _base;
 510   LIR_Opr   _index;
 511   Scale     _scale;
 512   intx      _disp;
 513   BasicType _type;
 514 
 515  public:
 516   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 517        _base(base)
 518      , _index(index)
 519      , _scale(times_1)
 520      , _type(type)
 521      , _disp(0) { verify(); }
 522 
 523   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 524        _base(base)
 525      , _index(LIR_OprDesc::illegalOpr())
 526      , _scale(times_1)
 527      , _type(type)
 528      , _disp(disp) { verify(); }
 529 
 530   LIR_Address(LIR_Opr base, BasicType type):
 531        _base(base)
 532      , _index(LIR_OprDesc::illegalOpr())
 533      , _scale(times_1)
 534      , _type(type)
 535      , _disp(0) { verify(); }
 536 
 537 #if defined(X86) || defined(ARM) || defined(AARCH64)
 538   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 539        _base(base)
 540      , _index(index)
 541      , _scale(scale)
 542      , _type(type)
 543      , _disp(disp) { verify(); }
 544 #endif // X86 || ARM
 545 
 546   LIR_Opr base()  const                          { return _base;  }
 547   LIR_Opr index() const                          { return _index; }
 548   Scale   scale() const                          { return _scale; }
 549   intx    disp()  const                          { return _disp;  }
 550 
 551   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 552 
 553   virtual LIR_Address* as_address()              { return this;   }
 554   virtual BasicType type() const                 { return _type; }
 555   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 556 
 557   void verify0() const PRODUCT_RETURN;
 558 #if defined(LIR_ADDRESS_PD_VERIFY) && !defined(PRODUCT)
 559   void pd_verify() const;
 560   void verify() const { pd_verify(); }
 561 #else
 562   void verify() const { verify0(); }
 563 #endif
 564 
 565   static Scale scale(BasicType type);
 566 };
 567 
 568 
 569 // operand factory
 570 class LIR_OprFact: public AllStatic {
 571  public:
 572 
 573   static LIR_Opr illegalOpr;
 574 
 575   static LIR_Opr single_cpu(int reg) {
 576     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 577                                LIR_OprDesc::int_type             |
 578                                LIR_OprDesc::cpu_register         |
 579                                LIR_OprDesc::single_size);
 580   }
 581   static LIR_Opr single_cpu_oop(int reg) {
 582     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 583                                LIR_OprDesc::object_type          |
 584                                LIR_OprDesc::cpu_register         |
 585                                LIR_OprDesc::single_size);
 586   }
 587   static LIR_Opr single_cpu_address(int reg) {
 588     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 589                                LIR_OprDesc::address_type         |
 590                                LIR_OprDesc::cpu_register         |
 591                                LIR_OprDesc::single_size);
 592   }
 593   static LIR_Opr single_cpu_metadata(int reg) {
 594     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 595                                LIR_OprDesc::metadata_type        |
 596                                LIR_OprDesc::cpu_register         |
 597                                LIR_OprDesc::single_size);
 598   }
 599   static LIR_Opr double_cpu(int reg1, int reg2) {
 600     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 601     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 602                                (reg2 << LIR_OprDesc::reg2_shift) |
 603                                LIR_OprDesc::long_type            |
 604                                LIR_OprDesc::cpu_register         |
 605                                LIR_OprDesc::double_size);
 606   }
 607 
 608   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 609                                                                              LIR_OprDesc::float_type           |
 610                                                                              LIR_OprDesc::fpu_register         |
 611                                                                              LIR_OprDesc::single_size); }
 612 #if defined(ARM32)
 613   static LIR_Opr double_fpu(int reg1, int reg2)    { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
 614   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::float_type  | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
 615   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
 616 #endif
 617 #ifdef SPARC
 618   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 619                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
 620                                                                              LIR_OprDesc::double_type          |
 621                                                                              LIR_OprDesc::fpu_register         |
 622                                                                              LIR_OprDesc::double_size); }
 623 #endif
 624 #if defined(X86) || defined(AARCH64)
 625   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 626                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 627                                                                              LIR_OprDesc::double_type          |
 628                                                                              LIR_OprDesc::fpu_register         |
 629                                                                              LIR_OprDesc::double_size); }
 630 
 631   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 632                                                                              LIR_OprDesc::float_type           |
 633                                                                              LIR_OprDesc::fpu_register         |
 634                                                                              LIR_OprDesc::single_size          |
 635                                                                              LIR_OprDesc::is_xmm_mask); }
 636   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 637                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 638                                                                              LIR_OprDesc::double_type          |
 639                                                                              LIR_OprDesc::fpu_register         |
 640                                                                              LIR_OprDesc::double_size          |
 641                                                                              LIR_OprDesc::is_xmm_mask); }
 642 #endif // X86
 643 #if defined(PPC)
 644   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 645                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 646                                                                              LIR_OprDesc::double_type          |
 647                                                                              LIR_OprDesc::fpu_register         |
 648                                                                              LIR_OprDesc::double_size); }
 649 #endif
 650 #ifdef PPC32
 651   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift)        |
 652                                                                              LIR_OprDesc::float_type           |
 653                                                                              LIR_OprDesc::cpu_register         |
 654                                                                              LIR_OprDesc::single_size); }
 655   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift)        |
 656                                                                              (reg1 << LIR_OprDesc::reg2_shift) |
 657                                                                              LIR_OprDesc::double_type          |
 658                                                                              LIR_OprDesc::cpu_register         |
 659                                                                              LIR_OprDesc::double_size); }
 660 #endif // PPC32
 661 
 662   static LIR_Opr virtual_register(int index, BasicType type) {
 663     LIR_Opr res;
 664     switch (type) {
 665       case T_OBJECT: // fall through
 666       case T_ARRAY:
 667         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 668                                             LIR_OprDesc::object_type  |
 669                                             LIR_OprDesc::cpu_register |
 670                                             LIR_OprDesc::single_size  |
 671                                             LIR_OprDesc::virtual_mask);
 672         break;
 673 
 674       case T_METADATA:
 675         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 676                                             LIR_OprDesc::metadata_type|
 677                                             LIR_OprDesc::cpu_register |
 678                                             LIR_OprDesc::single_size  |
 679                                             LIR_OprDesc::virtual_mask);
 680         break;
 681 
 682       case T_INT:
 683         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 684                                   LIR_OprDesc::int_type              |
 685                                   LIR_OprDesc::cpu_register          |
 686                                   LIR_OprDesc::single_size           |
 687                                   LIR_OprDesc::virtual_mask);
 688         break;
 689 
 690       case T_ADDRESS:
 691         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 692                                   LIR_OprDesc::address_type          |
 693                                   LIR_OprDesc::cpu_register          |
 694                                   LIR_OprDesc::single_size           |
 695                                   LIR_OprDesc::virtual_mask);
 696         break;
 697 
 698       case T_LONG:
 699         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 700                                   LIR_OprDesc::long_type             |
 701                                   LIR_OprDesc::cpu_register          |
 702                                   LIR_OprDesc::double_size           |
 703                                   LIR_OprDesc::virtual_mask);
 704         break;
 705 
 706 #ifdef __SOFTFP__
 707       case T_FLOAT:
 708         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 709                                   LIR_OprDesc::float_type  |
 710                                   LIR_OprDesc::cpu_register |
 711                                   LIR_OprDesc::single_size |
 712                                   LIR_OprDesc::virtual_mask);
 713         break;
 714       case T_DOUBLE:
 715         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 716                                   LIR_OprDesc::double_type |
 717                                   LIR_OprDesc::cpu_register |
 718                                   LIR_OprDesc::double_size |
 719                                   LIR_OprDesc::virtual_mask);
 720         break;
 721 #else // __SOFTFP__
 722       case T_FLOAT:
 723         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 724                                   LIR_OprDesc::float_type           |
 725                                   LIR_OprDesc::fpu_register         |
 726                                   LIR_OprDesc::single_size          |
 727                                   LIR_OprDesc::virtual_mask);
 728         break;
 729 
 730       case
 731         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 732                                             LIR_OprDesc::double_type           |
 733                                             LIR_OprDesc::fpu_register          |
 734                                             LIR_OprDesc::double_size           |
 735                                             LIR_OprDesc::virtual_mask);
 736         break;
 737 #endif // __SOFTFP__
 738       default:       ShouldNotReachHere(); res = illegalOpr;
 739     }
 740 
 741 #ifdef ASSERT
 742     res->validate_type();
 743     assert(res->vreg_number() == index, "conversion check");
 744     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 745     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 746 
 747     // old-style calculation; check if old and new method are equal
 748     LIR_OprDesc::OprType t = as_OprType(type);
 749 #ifdef __SOFTFP__
 750     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 751                                t |
 752                                LIR_OprDesc::cpu_register |
 753                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 754 #else // __SOFTFP__
 755     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 756                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 757                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 758     assert(res == old_res, "old and new method not equal");
 759 #endif // __SOFTFP__
 760 #endif // ASSERT
 761 
 762     return res;
 763   }
 764 
 765   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 766   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 767   // index 2.
 768   static LIR_Opr stack(int index, BasicType type) {
 769     LIR_Opr res;
 770     switch (type) {
 771       case T_OBJECT: // fall through
 772       case T_ARRAY:
 773         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 774                                   LIR_OprDesc::object_type           |
 775                                   LIR_OprDesc::stack_value           |
 776                                   LIR_OprDesc::single_size);
 777         break;
 778 
 779       case T_METADATA:
 780         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 781                                   LIR_OprDesc::metadata_type         |
 782                                   LIR_OprDesc::stack_value           |
 783                                   LIR_OprDesc::single_size);
 784         break;
 785       case T_INT:
 786         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 787                                   LIR_OprDesc::int_type              |
 788                                   LIR_OprDesc::stack_value           |
 789                                   LIR_OprDesc::single_size);
 790         break;
 791 
 792       case T_ADDRESS:
 793         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 794                                   LIR_OprDesc::address_type          |
 795                                   LIR_OprDesc::stack_value           |
 796                                   LIR_OprDesc::single_size);
 797         break;
 798 
 799       case T_LONG:
 800         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 801                                   LIR_OprDesc::long_type             |
 802                                   LIR_OprDesc::stack_value           |
 803                                   LIR_OprDesc::double_size);
 804         break;
 805 
 806       case T_FLOAT:
 807         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 808                                   LIR_OprDesc::float_type            |
 809                                   LIR_OprDesc::stack_value           |
 810                                   LIR_OprDesc::single_size);
 811         break;
 812       case T_DOUBLE:
 813         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 814                                   LIR_OprDesc::double_type           |
 815                                   LIR_OprDesc::stack_value           |
 816                                   LIR_OprDesc::double_size);
 817         break;
 818 
 819       default:       ShouldNotReachHere(); res = illegalOpr;
 820     }
 821 
 822 #ifdef ASSERT
 823     assert(index >= 0, "index must be positive");
 824     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 825 
 826     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 827                                           LIR_OprDesc::stack_value           |
 828                                           as_OprType(type)                   |
 829                                           LIR_OprDesc::size_for(type));
 830     assert(res == old_res, "old and new method not equal");
 831 #endif
 832 
 833     return res;
 834   }
 835 
 836   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 837   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 838   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 839   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 840   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 841   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 842   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 843   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 844   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 845   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 846   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
 847 
 848   static LIR_Opr value_type(ValueType* type);
 849   static LIR_Opr dummy_value_type(ValueType* type);
 850 };
 851 
 852 
 853 //-------------------------------------------------------------------------------
 854 //                   LIR Instructions
 855 //-------------------------------------------------------------------------------
 856 //
 857 // Note:
 858 //  - every instruction has a result operand
 859 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 860 //  - every instruction has a LIR_OpCode operand
 861 //  - LIR_OpN, means an instruction that has N input operands
 862 //
 863 // class hierarchy:
 864 //
 865 class  LIR_Op;
 866 class    LIR_Op0;
 867 class      LIR_OpLabel;
 868 class    LIR_Op1;
 869 class      LIR_OpBranch;
 870 class      LIR_OpConvert;
 871 class      LIR_OpAllocObj;
 872 class      LIR_OpRoundFP;
 873 class    LIR_Op2;
 874 class    LIR_OpDelay;
 875 class    LIR_Op3;
 876 class      LIR_OpAllocArray;
 877 class    LIR_OpCall;
 878 class      LIR_OpJavaCall;
 879 class      LIR_OpRTCall;
 880 class    LIR_OpArrayCopy;
 881 class    LIR_OpUpdateCRC32;
 882 class    LIR_OpLock;
 883 class    LIR_OpTypeCheck;
 884 class    LIR_OpCompareAndSwap;
 885 class    LIR_OpProfileCall;
 886 class    LIR_OpProfileType;
 887 #ifdef ASSERT
 888 class    LIR_OpAssert;
 889 #endif
 890 
 891 // LIR operation codes
 892 enum LIR_Code {
 893     lir_none
 894   , begin_op0
 895       , lir_word_align
 896       , lir_label
 897       , lir_nop
 898       , lir_backwardbranch_target
 899       , lir_std_entry
 900       , lir_osr_entry
 901       , lir_build_frame
 902       , lir_fpop_raw
 903       , lir_24bit_FPU
 904       , lir_reset_FPU
 905       , lir_breakpoint
 906       , lir_rtcall
 907       , lir_membar
 908       , lir_membar_acquire
 909       , lir_membar_release
 910       , lir_membar_loadload
 911       , lir_membar_storestore
 912       , lir_membar_loadstore
 913       , lir_membar_storeload
 914       , lir_get_thread
 915       , lir_on_spin_wait
 916   , end_op0
 917   , begin_op1
 918       , lir_fxch
 919       , lir_fld
 920       , lir_ffree
 921       , lir_push
 922       , lir_pop
 923       , lir_null_check
 924       , lir_return
 925       , lir_leal
 926       , lir_neg
 927       , lir_branch
 928       , lir_cond_float_branch
 929       , lir_move
 930       , lir_convert
 931       , lir_alloc_object
 932       , lir_monaddr
 933       , lir_roundfp
 934       , lir_safepoint
 935       , lir_pack64
 936       , lir_unpack64
 937       , lir_unwind
 938   , end_op1
 939   , begin_op2
 940       , lir_cmp
 941       , lir_cmp_l2i
 942       , lir_ucmp_fd2i
 943       , lir_cmp_fd2i
 944       , lir_cmove
 945       , lir_add
 946       , lir_sub
 947       , lir_mul
 948       , lir_mul_strictfp
 949       , lir_div
 950       , lir_div_strictfp
 951       , lir_rem
 952       , lir_sqrt
 953       , lir_abs
 954       , lir_tan
 955       , lir_log10
 956       , lir_logic_and
 957       , lir_logic_or
 958       , lir_logic_xor
 959       , lir_shl
 960       , lir_shr
 961       , lir_ushr
 962       , lir_alloc_array
 963       , lir_throw
 964       , lir_compare_to
 965       , lir_xadd
 966       , lir_xchg
 967   , end_op2
 968   , begin_op3
 969       , lir_idiv
 970       , lir_irem
 971       , lir_fmad
 972       , lir_fmaf
 973   , end_op3
 974   , begin_opJavaCall
 975       , lir_static_call
 976       , lir_optvirtual_call
 977       , lir_icvirtual_call
 978       , lir_virtual_call
 979       , lir_dynamic_call
 980   , end_opJavaCall
 981   , begin_opArrayCopy
 982       , lir_arraycopy
 983   , end_opArrayCopy
 984   , begin_opUpdateCRC32
 985       , lir_updatecrc32
 986   , end_opUpdateCRC32
 987   , begin_opLock
 988     , lir_lock
 989     , lir_unlock
 990   , end_opLock
 991   , begin_delay_slot
 992     , lir_delay_slot
 993   , end_delay_slot
 994   , begin_opTypeCheck
 995     , lir_instanceof
 996     , lir_checkcast
 997     , lir_store_check
 998   , end_opTypeCheck
 999   , begin_opCompareAndSwap
1000     , lir_cas_long
1001     , lir_cas_obj
1002     , lir_cas_int
1003   , end_opCompareAndSwap
1004   , begin_opMDOProfile
1005     , lir_profile_call
1006     , lir_profile_type
1007   , end_opMDOProfile
1008   , begin_opAssert
1009     , lir_assert
1010   , end_opAssert
1011 };
1012 
1013 
1014 enum LIR_Condition {
1015     lir_cond_equal
1016   , lir_cond_notEqual
1017   , lir_cond_less
1018   , lir_cond_lessEqual
1019   , lir_cond_greaterEqual
1020   , lir_cond_greater
1021   , lir_cond_belowEqual
1022   , lir_cond_aboveEqual
1023   , lir_cond_always
1024   , lir_cond_unknown = -1
1025 };
1026 
1027 
1028 enum LIR_PatchCode {
1029   lir_patch_none,
1030   lir_patch_low,
1031   lir_patch_high,
1032   lir_patch_normal
1033 };
1034 
1035 
1036 enum LIR_MoveKind {
1037   lir_move_normal,
1038   lir_move_volatile,
1039   lir_move_unaligned,
1040   lir_move_wide,
1041   lir_move_max_flag
1042 };
1043 
1044 
1045 // --------------------------------------------------
1046 // LIR_Op
1047 // --------------------------------------------------
1048 class LIR_Op: public CompilationResourceObj {
1049  friend class LIR_OpVisitState;
1050 
1051 #ifdef ASSERT
1052  private:
1053   const char *  _file;
1054   int           _line;
1055 #endif
1056 
1057  protected:
1058   LIR_Opr       _result;
1059   unsigned short _code;
1060   unsigned short _flags;
1061   CodeEmitInfo* _info;
1062   int           _id;     // value id for register allocation
1063   int           _fpu_pop_count;
1064   Instruction*  _source; // for debugging
1065 
1066   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1067 
1068  protected:
1069   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1070 
1071  public:
1072   LIR_Op()
1073     : _result(LIR_OprFact::illegalOpr)
1074     , _code(lir_none)
1075     , _flags(0)
1076     , _info(NULL)
1077 #ifdef ASSERT
1078     , _file(NULL)
1079     , _line(0)
1080 #endif
1081     , _fpu_pop_count(0)
1082     , _source(NULL)
1083     , _id(-1)                             {}
1084 
1085   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1086     : _result(result)
1087     , _code(code)
1088     , _flags(0)
1089     , _info(info)
1090 #ifdef ASSERT
1091     , _file(NULL)
1092     , _line(0)
1093 #endif
1094     , _fpu_pop_count(0)
1095     , _source(NULL)
1096     , _id(-1)                             {}
1097 
1098   CodeEmitInfo* info() const                  { return _info;   }
1099   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1100   LIR_Opr result_opr() const                  { return _result; }
1101   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1102 
1103 #ifdef ASSERT
1104   void set_file_and_line(const char * file, int line) {
1105     _file = file;
1106     _line = line;
1107   }
1108 #endif
1109 
1110   virtual const char * name() const PRODUCT_RETURN0;
1111 
1112   int id()             const                  { return _id;     }
1113   void set_id(int id)                         { _id = id; }
1114 
1115   // FPU stack simulation helpers -- only used on Intel
1116   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1117   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1118   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1119 
1120   Instruction* source() const                 { return _source; }
1121   void set_source(Instruction* ins)           { _source = ins; }
1122 
1123   virtual void emit_code(LIR_Assembler* masm) = 0;
1124   virtual void print_instr(outputStream* out) const   = 0;
1125   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1126 
1127   virtual bool is_patching() { return false; }
1128   virtual LIR_OpCall* as_OpCall() { return NULL; }
1129   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1130   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1131   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1132   virtual LIR_OpLock* as_OpLock() { return NULL; }
1133   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1134   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1135   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1136   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1137   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1138   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1139   virtual LIR_Op0* as_Op0() { return NULL; }
1140   virtual LIR_Op1* as_Op1() { return NULL; }
1141   virtual LIR_Op2* as_Op2() { return NULL; }
1142   virtual LIR_Op3* as_Op3() { return NULL; }
1143   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1144   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
1145   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1146   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1147   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1148   virtual LIR_OpProfileType* as_OpProfileType() { return NULL; }
1149 #ifdef ASSERT
1150   virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1151 #endif
1152 
1153   virtual void verify() const {}
1154 };
1155 
1156 // for calls
1157 class LIR_OpCall: public LIR_Op {
1158  friend class LIR_OpVisitState;
1159 
1160  protected:
1161   address      _addr;
1162   LIR_OprList* _arguments;
1163  protected:
1164   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1165              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1166     : LIR_Op(code, result, info)
1167     , _arguments(arguments)
1168     , _addr(addr) {}
1169 
1170  public:
1171   address addr() const                           { return _addr; }
1172   const LIR_OprList* arguments() const           { return _arguments; }
1173   virtual LIR_OpCall* as_OpCall()                { return this; }
1174 };
1175 
1176 
1177 // --------------------------------------------------
1178 // LIR_OpJavaCall
1179 // --------------------------------------------------
1180 class LIR_OpJavaCall: public LIR_OpCall {
1181  friend class LIR_OpVisitState;
1182 
1183  private:
1184   ciMethod* _method;
1185   LIR_Opr   _receiver;
1186   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1187 
1188  public:
1189   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1190                  LIR_Opr receiver, LIR_Opr result,
1191                  address addr, LIR_OprList* arguments,
1192                  CodeEmitInfo* info)
1193   : LIR_OpCall(code, addr, result, arguments, info)
1194   , _receiver(receiver)
1195   , _method(method)
1196   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1197   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1198 
1199   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1200                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1201                  LIR_OprList* arguments, CodeEmitInfo* info)
1202   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1203   , _receiver(receiver)
1204   , _method(method)
1205   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1206   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1207 
1208   LIR_Opr receiver() const                       { return _receiver; }
1209   ciMethod* method() const                       { return _method;   }
1210 
1211   // JSR 292 support.
1212   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1213   bool is_method_handle_invoke() const {
1214     return method()->is_compiled_lambda_form() ||   // Java-generated lambda form
1215            method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1216   }
1217 
1218   intptr_t vtable_offset() const {
1219     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1220     return (intptr_t) addr();
1221   }
1222 
1223   virtual void emit_code(LIR_Assembler* masm);
1224   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1225   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1226 };
1227 
1228 // --------------------------------------------------
1229 // LIR_OpLabel
1230 // --------------------------------------------------
1231 // Location where a branch can continue
1232 class LIR_OpLabel: public LIR_Op {
1233  friend class LIR_OpVisitState;
1234 
1235  private:
1236   Label* _label;
1237  public:
1238   LIR_OpLabel(Label* lbl)
1239    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1240    , _label(lbl)                                 {}
1241   Label* label() const                           { return _label; }
1242 
1243   virtual void emit_code(LIR_Assembler* masm);
1244   virtual LIR_OpLabel* as_OpLabel() { return this; }
1245   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1246 };
1247 
1248 // LIR_OpArrayCopy
1249 class LIR_OpArrayCopy: public LIR_Op {
1250  friend class LIR_OpVisitState;
1251 
1252  private:
1253   ArrayCopyStub*  _stub;
1254   LIR_Opr   _src;
1255   LIR_Opr   _src_pos;
1256   LIR_Opr   _dst;
1257   LIR_Opr   _dst_pos;
1258   LIR_Opr   _length;
1259   LIR_Opr   _tmp;
1260   ciArrayKlass* _expected_type;
1261   int       _flags;
1262 
1263 public:
1264   enum Flags {
1265     src_null_check         = 1 << 0,
1266     dst_null_check         = 1 << 1,
1267     src_pos_positive_check = 1 << 2,
1268     dst_pos_positive_check = 1 << 3,
1269     length_positive_check  = 1 << 4,
1270     src_range_check        = 1 << 5,
1271     dst_range_check        = 1 << 6,
1272     type_check             = 1 << 7,
1273     overlapping            = 1 << 8,
1274     unaligned              = 1 << 9,
1275     src_objarray           = 1 << 10,
1276     dst_objarray           = 1 << 11,
1277     all_flags              = (1 << 12) - 1
1278   };
1279 
1280   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1281                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1282 
1283   LIR_Opr src() const                            { return _src; }
1284   LIR_Opr src_pos() const                        { return _src_pos; }
1285   LIR_Opr dst() const                            { return _dst; }
1286   LIR_Opr dst_pos() const                        { return _dst_pos; }
1287   LIR_Opr length() const                         { return _length; }
1288   LIR_Opr tmp() const                            { return _tmp; }
1289   int flags() const                              { return _flags; }
1290   ciArrayKlass* expected_type() const            { return _expected_type; }
1291   ArrayCopyStub* stub() const                    { return _stub; }
1292 
1293   virtual void emit_code(LIR_Assembler* masm);
1294   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1295   void print_instr(outputStream* out) const PRODUCT_RETURN;
1296 };
1297 
1298 // LIR_OpUpdateCRC32
1299 class LIR_OpUpdateCRC32: public LIR_Op {
1300   friend class LIR_OpVisitState;
1301 
1302 private:
1303   LIR_Opr   _crc;
1304   LIR_Opr   _val;
1305 
1306 public:
1307 
1308   LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1309 
1310   LIR_Opr crc() const                            { return _crc; }
1311   LIR_Opr val() const                            { return _val; }
1312 
1313   virtual void emit_code(LIR_Assembler* masm);
1314   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32()  { return this; }
1315   void print_instr(outputStream* out) const PRODUCT_RETURN;
1316 };
1317 
1318 // --------------------------------------------------
1319 // LIR_Op0
1320 // --------------------------------------------------
1321 class LIR_Op0: public LIR_Op {
1322  friend class LIR_OpVisitState;
1323 
1324  public:
1325   LIR_Op0(LIR_Code code)
1326    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1327   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1328    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1329 
1330   virtual void emit_code(LIR_Assembler* masm);
1331   virtual LIR_Op0* as_Op0() { return this; }
1332   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1333 };
1334 
1335 
1336 // --------------------------------------------------
1337 // LIR_Op1
1338 // --------------------------------------------------
1339 
1340 class LIR_Op1: public LIR_Op {
1341  friend class LIR_OpVisitState;
1342 
1343  protected:
1344   LIR_Opr         _opr;   // input operand
1345   BasicType       _type;  // Operand types
1346   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1347 
1348   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1349 
1350   void set_kind(LIR_MoveKind kind) {
1351     assert(code() == lir_move, "must be");
1352     _flags = kind;
1353   }
1354 
1355  public:
1356   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1357     : LIR_Op(code, result, info)
1358     , _opr(opr)
1359     , _patch(patch)
1360     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1361 
1362   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1363     : LIR_Op(code, result, info)
1364     , _opr(opr)
1365     , _patch(patch)
1366     , _type(type)                      {
1367     assert(code == lir_move, "must be");
1368     set_kind(kind);
1369   }
1370 
1371   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1372     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1373     , _opr(opr)
1374     , _patch(lir_patch_none)
1375     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1376 
1377   LIR_Opr in_opr()           const               { return _opr;   }
1378   LIR_PatchCode patch_code() const               { return _patch; }
1379   BasicType type()           const               { return _type;  }
1380 
1381   LIR_MoveKind move_kind() const {
1382     assert(code() == lir_move, "must be");
1383     return (LIR_MoveKind)_flags;
1384   }
1385 
1386   virtual bool is_patching() { return _patch != lir_patch_none; }
1387   virtual void emit_code(LIR_Assembler* masm);
1388   virtual LIR_Op1* as_Op1() { return this; }
1389   virtual const char * name() const PRODUCT_RETURN0;
1390 
1391   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1392 
1393   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1394   virtual void verify() const;
1395 };
1396 
1397 
1398 // for runtime calls
1399 class LIR_OpRTCall: public LIR_OpCall {
1400  friend class LIR_OpVisitState;
1401 
1402  private:
1403   LIR_Opr _tmp;
1404  public:
1405   LIR_OpRTCall(address addr, LIR_Opr tmp,
1406                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1407     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1408     , _tmp(tmp) {}
1409 
1410   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1411   virtual void emit_code(LIR_Assembler* masm);
1412   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1413 
1414   LIR_Opr tmp() const                            { return _tmp; }
1415 
1416   virtual void verify() const;
1417 };
1418 
1419 
1420 class LIR_OpBranch: public LIR_Op {
1421  friend class LIR_OpVisitState;
1422 
1423  private:
1424   LIR_Condition _cond;
1425   BasicType     _type;
1426   Label*        _label;
1427   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1428   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1429   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1430 
1431  public:
1432   LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
1433     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1434     , _cond(cond)
1435     , _type(type)
1436     , _label(lbl)
1437     , _block(NULL)
1438     , _ublock(NULL)
1439     , _stub(NULL) { }
1440 
1441   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1442   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1443 
1444   // for unordered comparisons
1445   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1446 
1447   LIR_Condition cond()        const              { return _cond;        }
1448   BasicType     type()        const              { return _type;        }
1449   Label*        label()       const              { return _label;       }
1450   BlockBegin*   block()       const              { return _block;       }
1451   BlockBegin*   ublock()      const              { return _ublock;      }
1452   CodeStub*     stub()        const              { return _stub;       }
1453 
1454   void          change_block(BlockBegin* b);
1455   void          change_ublock(BlockBegin* b);
1456   void          negate_cond();
1457 
1458   virtual void emit_code(LIR_Assembler* masm);
1459   virtual LIR_OpBranch* as_OpBranch() { return this; }
1460   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1461 };
1462 
1463 
1464 class ConversionStub;
1465 
1466 class LIR_OpConvert: public LIR_Op1 {
1467  friend class LIR_OpVisitState;
1468 
1469  private:
1470    Bytecodes::Code _bytecode;
1471    ConversionStub* _stub;
1472 #ifdef PPC32
1473   LIR_Opr _tmp1;
1474   LIR_Opr _tmp2;
1475 #endif
1476 
1477  public:
1478    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1479      : LIR_Op1(lir_convert, opr, result)
1480      , _stub(stub)
1481 #ifdef PPC32
1482      , _tmp1(LIR_OprDesc::illegalOpr())
1483      , _tmp2(LIR_OprDesc::illegalOpr())
1484 #endif
1485      , _bytecode(code)                           {}
1486 
1487 #ifdef PPC32
1488    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
1489                  ,LIR_Opr tmp1, LIR_Opr tmp2)
1490      : LIR_Op1(lir_convert, opr, result)
1491      , _stub(stub)
1492      , _tmp1(tmp1)
1493      , _tmp2(tmp2)
1494      , _bytecode(code)                           {}
1495 #endif
1496 
1497   Bytecodes::Code bytecode() const               { return _bytecode; }
1498   ConversionStub* stub() const                   { return _stub; }
1499 #ifdef PPC32
1500   LIR_Opr tmp1() const                           { return _tmp1; }
1501   LIR_Opr tmp2() const                           { return _tmp2; }
1502 #endif
1503 
1504   virtual void emit_code(LIR_Assembler* masm);
1505   virtual LIR_OpConvert* as_OpConvert() { return this; }
1506   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1507 
1508   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1509 };
1510 
1511 
1512 // LIR_OpAllocObj
1513 class LIR_OpAllocObj : public LIR_Op1 {
1514  friend class LIR_OpVisitState;
1515 
1516  private:
1517   LIR_Opr _tmp1;
1518   LIR_Opr _tmp2;
1519   LIR_Opr _tmp3;
1520   LIR_Opr _tmp4;
1521   int     _hdr_size;
1522   int     _obj_size;
1523   CodeStub* _stub;
1524   bool    _init_check;
1525 
1526  public:
1527   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1528                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1529                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1530     : LIR_Op1(lir_alloc_object, klass, result)
1531     , _tmp1(t1)
1532     , _tmp2(t2)
1533     , _tmp3(t3)
1534     , _tmp4(t4)
1535     , _hdr_size(hdr_size)
1536     , _obj_size(obj_size)
1537     , _init_check(init_check)
1538     , _stub(stub)                                { }
1539 
1540   LIR_Opr klass()        const                   { return in_opr();     }
1541   LIR_Opr obj()          const                   { return result_opr(); }
1542   LIR_Opr tmp1()         const                   { return _tmp1;        }
1543   LIR_Opr tmp2()         const                   { return _tmp2;        }
1544   LIR_Opr tmp3()         const                   { return _tmp3;        }
1545   LIR_Opr tmp4()         const                   { return _tmp4;        }
1546   int     header_size()  const                   { return _hdr_size;    }
1547   int     object_size()  const                   { return _obj_size;    }
1548   bool    init_check()   const                   { return _init_check;  }
1549   CodeStub* stub()       const                   { return _stub;        }
1550 
1551   virtual void emit_code(LIR_Assembler* masm);
1552   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1553   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1554 };
1555 
1556 
1557 // LIR_OpRoundFP
1558 class LIR_OpRoundFP : public LIR_Op1 {
1559  friend class LIR_OpVisitState;
1560 
1561  private:
1562   LIR_Opr _tmp;
1563 
1564  public:
1565   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1566     : LIR_Op1(lir_roundfp, reg, result)
1567     , _tmp(stack_loc_temp) {}
1568 
1569   LIR_Opr tmp() const                            { return _tmp; }
1570   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1571   void print_instr(outputStream* out) const PRODUCT_RETURN;
1572 };
1573 
1574 // LIR_OpTypeCheck
1575 class LIR_OpTypeCheck: public LIR_Op {
1576  friend class LIR_OpVisitState;
1577 
1578  private:
1579   LIR_Opr       _object;
1580   LIR_Opr       _array;
1581   ciKlass*      _klass;
1582   LIR_Opr       _tmp1;
1583   LIR_Opr       _tmp2;
1584   LIR_Opr       _tmp3;
1585   bool          _fast_check;
1586   CodeEmitInfo* _info_for_patch;
1587   CodeEmitInfo* _info_for_exception;
1588   CodeStub*     _stub;
1589   ciMethod*     _profiled_method;
1590   int           _profiled_bci;
1591   bool          _should_profile;
1592 
1593 public:
1594   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1595                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1596                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1597   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1598                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1599 
1600   LIR_Opr object() const                         { return _object;         }
1601   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1602   LIR_Opr tmp1() const                           { return _tmp1;           }
1603   LIR_Opr tmp2() const                           { return _tmp2;           }
1604   LIR_Opr tmp3() const                           { return _tmp3;           }
1605   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1606   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1607   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1608   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1609   CodeStub* stub() const                         { return _stub;           }
1610 
1611   // MethodData* profiling
1612   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1613   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1614   void set_should_profile(bool b)                { _should_profile = b;       }
1615   ciMethod* profiled_method() const              { return _profiled_method;   }
1616   int       profiled_bci() const                 { return _profiled_bci;      }
1617   bool      should_profile() const               { return _should_profile;    }
1618 
1619   virtual bool is_patching() { return _info_for_patch != NULL; }
1620   virtual void emit_code(LIR_Assembler* masm);
1621   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1622   void print_instr(outputStream* out) const PRODUCT_RETURN;
1623 };
1624 
1625 // LIR_Op2
1626 class LIR_Op2: public LIR_Op {
1627  friend class LIR_OpVisitState;
1628 
1629   int  _fpu_stack_size; // for sin/cos implementation on Intel
1630 
1631  protected:
1632   LIR_Opr   _opr1;
1633   LIR_Opr   _opr2;
1634   BasicType _type;
1635   LIR_Opr   _tmp1;
1636   LIR_Opr   _tmp2;
1637   LIR_Opr   _tmp3;
1638   LIR_Opr   _tmp4;
1639   LIR_Opr   _tmp5;
1640   LIR_Condition _condition;
1641 
1642   void verify() const;
1643 
1644  public:
1645   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1646     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1647     , _opr1(opr1)
1648     , _opr2(opr2)
1649     , _type(T_ILLEGAL)
1650     , _condition(condition)
1651     , _fpu_stack_size(0)
1652     , _tmp1(LIR_OprFact::illegalOpr)
1653     , _tmp2(LIR_OprFact::illegalOpr)
1654     , _tmp3(LIR_OprFact::illegalOpr)
1655     , _tmp4(LIR_OprFact::illegalOpr)
1656     , _tmp5(LIR_OprFact::illegalOpr) {
1657     assert(code == lir_cmp || code == lir_assert, "code check");
1658   }
1659 
1660   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1661     : LIR_Op(code, result, NULL)
1662     , _opr1(opr1)
1663     , _opr2(opr2)
1664     , _type(type)
1665     , _condition(condition)
1666     , _fpu_stack_size(0)
1667     , _tmp1(LIR_OprFact::illegalOpr)
1668     , _tmp2(LIR_OprFact::illegalOpr)
1669     , _tmp3(LIR_OprFact::illegalOpr)
1670     , _tmp4(LIR_OprFact::illegalOpr)
1671     , _tmp5(LIR_OprFact::illegalOpr) {
1672     assert(code == lir_cmove, "code check");
1673     assert(type != T_ILLEGAL, "cmove should have type");
1674   }
1675 
1676   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1677           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1678     : LIR_Op(code, result, info)
1679     , _opr1(opr1)
1680     , _opr2(opr2)
1681     , _type(type)
1682     , _condition(lir_cond_unknown)
1683     , _fpu_stack_size(0)
1684     , _tmp1(LIR_OprFact::illegalOpr)
1685     , _tmp2(LIR_OprFact::illegalOpr)
1686     , _tmp3(LIR_OprFact::illegalOpr)
1687     , _tmp4(LIR_OprFact::illegalOpr)
1688     , _tmp5(LIR_OprFact::illegalOpr) {
1689     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1690   }
1691 
1692   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1693           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1694     : LIR_Op(code, result, NULL)
1695     , _opr1(opr1)
1696     , _opr2(opr2)
1697     , _type(T_ILLEGAL)
1698     , _condition(lir_cond_unknown)
1699     , _fpu_stack_size(0)
1700     , _tmp1(tmp1)
1701     , _tmp2(tmp2)
1702     , _tmp3(tmp3)
1703     , _tmp4(tmp4)
1704     , _tmp5(tmp5) {
1705     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1706   }
1707 
1708   LIR_Opr in_opr1() const                        { return _opr1; }
1709   LIR_Opr in_opr2() const                        { return _opr2; }
1710   BasicType type()  const                        { return _type; }
1711   LIR_Opr tmp1_opr() const                       { return _tmp1; }
1712   LIR_Opr tmp2_opr() const                       { return _tmp2; }
1713   LIR_Opr tmp3_opr() const                       { return _tmp3; }
1714   LIR_Opr tmp4_opr() const                       { return _tmp4; }
1715   LIR_Opr tmp5_opr() const                       { return _tmp5; }
1716   LIR_Condition condition() const  {
1717     assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
1718   }
1719   void set_condition(LIR_Condition condition) {
1720     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1721   }
1722 
1723   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1724   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1725 
1726   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1727   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1728 
1729   virtual void emit_code(LIR_Assembler* masm);
1730   virtual LIR_Op2* as_Op2() { return this; }
1731   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1732 };
1733 
1734 class LIR_OpAllocArray : public LIR_Op {
1735  friend class LIR_OpVisitState;
1736 
1737  private:
1738   LIR_Opr   _klass;
1739   LIR_Opr   _len;
1740   LIR_Opr   _tmp1;
1741   LIR_Opr   _tmp2;
1742   LIR_Opr   _tmp3;
1743   LIR_Opr   _tmp4;
1744   BasicType _type;
1745   CodeStub* _stub;
1746 
1747  public:
1748   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1749     : LIR_Op(lir_alloc_array, result, NULL)
1750     , _klass(klass)
1751     , _len(len)
1752     , _tmp1(t1)
1753     , _tmp2(t2)
1754     , _tmp3(t3)
1755     , _tmp4(t4)
1756     , _type(type)
1757     , _stub(stub) {}
1758 
1759   LIR_Opr   klass()   const                      { return _klass;       }
1760   LIR_Opr   len()     const                      { return _len;         }
1761   LIR_Opr   obj()     const                      { return result_opr(); }
1762   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1763   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1764   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1765   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1766   BasicType type()    const                      { return _type;        }
1767   CodeStub* stub()    const                      { return _stub;        }
1768 
1769   virtual void emit_code(LIR_Assembler* masm);
1770   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1771   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1772 };
1773 
1774 
1775 class LIR_Op3: public LIR_Op {
1776  friend class LIR_OpVisitState;
1777 
1778  private:
1779   LIR_Opr _opr1;
1780   LIR_Opr _opr2;
1781   LIR_Opr _opr3;
1782  public:
1783   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1784     : LIR_Op(code, result, info)
1785     , _opr1(opr1)
1786     , _opr2(opr2)
1787     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1788   LIR_Opr in_opr1() const                        { return _opr1; }
1789   LIR_Opr in_opr2() const                        { return _opr2; }
1790   LIR_Opr in_opr3() const                        { return _opr3; }
1791 
1792   virtual void emit_code(LIR_Assembler* masm);
1793   virtual LIR_Op3* as_Op3() { return this; }
1794   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1795 };
1796 
1797 
1798 //--------------------------------
1799 class LabelObj: public CompilationResourceObj {
1800  private:
1801   Label _label;
1802  public:
1803   LabelObj()                                     {}
1804   Label* label()                                 { return &_label; }
1805 };
1806 
1807 
1808 class LIR_OpLock: public LIR_Op {
1809  friend class LIR_OpVisitState;
1810 
1811  private:
1812   LIR_Opr _hdr;
1813   LIR_Opr _obj;
1814   LIR_Opr _lock;
1815   LIR_Opr _scratch;
1816   CodeStub* _stub;
1817  public:
1818   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1819     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1820     , _hdr(hdr)
1821     , _obj(obj)
1822     , _lock(lock)
1823     , _scratch(scratch)
1824     , _stub(stub)                      {}
1825 
1826   LIR_Opr hdr_opr() const                        { return _hdr; }
1827   LIR_Opr obj_opr() const                        { return _obj; }
1828   LIR_Opr lock_opr() const                       { return _lock; }
1829   LIR_Opr scratch_opr() const                    { return _scratch; }
1830   CodeStub* stub() const                         { return _stub; }
1831 
1832   virtual void emit_code(LIR_Assembler* masm);
1833   virtual LIR_OpLock* as_OpLock() { return this; }
1834   void print_instr(outputStream* out) const PRODUCT_RETURN;
1835 };
1836 
1837 
1838 class LIR_OpDelay: public LIR_Op {
1839  friend class LIR_OpVisitState;
1840 
1841  private:
1842   LIR_Op* _op;
1843 
1844  public:
1845   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1846     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1847     _op(op) {
1848     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1849   }
1850   virtual void emit_code(LIR_Assembler* masm);
1851   virtual LIR_OpDelay* as_OpDelay() { return this; }
1852   void print_instr(outputStream* out) const PRODUCT_RETURN;
1853   LIR_Op* delay_op() const { return _op; }
1854   CodeEmitInfo* call_info() const { return info(); }
1855 };
1856 
1857 #ifdef ASSERT
1858 // LIR_OpAssert
1859 class LIR_OpAssert : public LIR_Op2 {
1860  friend class LIR_OpVisitState;
1861 
1862  private:
1863   const char* _msg;
1864   bool        _halt;
1865 
1866  public:
1867   LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1868     : LIR_Op2(lir_assert, condition, opr1, opr2)
1869     , _halt(halt)
1870     , _msg(msg) {
1871   }
1872 
1873   const char* msg() const                        { return _msg; }
1874   bool        halt() const                       { return _halt; }
1875 
1876   virtual void emit_code(LIR_Assembler* masm);
1877   virtual LIR_OpAssert* as_OpAssert()            { return this; }
1878   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1879 };
1880 #endif
1881 
1882 // LIR_OpCompareAndSwap
1883 class LIR_OpCompareAndSwap : public LIR_Op {
1884  friend class LIR_OpVisitState;
1885 
1886  private:
1887   LIR_Opr _addr;
1888   LIR_Opr _cmp_value;
1889   LIR_Opr _new_value;
1890   LIR_Opr _tmp1;
1891   LIR_Opr _tmp2;
1892 
1893  public:
1894   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1895                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1896     : LIR_Op(code, result, NULL)  // no result, no info
1897     , _addr(addr)
1898     , _cmp_value(cmp_value)
1899     , _new_value(new_value)
1900     , _tmp1(t1)
1901     , _tmp2(t2)                                  { }
1902 
1903   LIR_Opr addr()        const                    { return _addr;  }
1904   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1905   LIR_Opr new_value()   const                    { return _new_value; }
1906   LIR_Opr tmp1()        const                    { return _tmp1;      }
1907   LIR_Opr tmp2()        const                    { return _tmp2;      }
1908 
1909   virtual void emit_code(LIR_Assembler* masm);
1910   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1911   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1912 };
1913 
1914 // LIR_OpProfileCall
1915 class LIR_OpProfileCall : public LIR_Op {
1916  friend class LIR_OpVisitState;
1917 
1918  private:
1919   ciMethod* _profiled_method;
1920   int       _profiled_bci;
1921   ciMethod* _profiled_callee;
1922   LIR_Opr   _mdo;
1923   LIR_Opr   _recv;
1924   LIR_Opr   _tmp1;
1925   ciKlass*  _known_holder;
1926 
1927  public:
1928   // Destroys recv
1929   LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1930     : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1931     , _profiled_method(profiled_method)
1932     , _profiled_bci(profiled_bci)
1933     , _profiled_callee(profiled_callee)
1934     , _mdo(mdo)
1935     , _recv(recv)
1936     , _tmp1(t1)
1937     , _known_holder(known_holder)                { }
1938 
1939   ciMethod* profiled_method() const              { return _profiled_method;  }
1940   int       profiled_bci()    const              { return _profiled_bci;     }
1941   ciMethod* profiled_callee() const              { return _profiled_callee;  }
1942   LIR_Opr   mdo()             const              { return _mdo;              }
1943   LIR_Opr   recv()            const              { return _recv;             }
1944   LIR_Opr   tmp1()            const              { return _tmp1;             }
1945   ciKlass*  known_holder()    const              { return _known_holder;     }
1946 
1947   virtual void emit_code(LIR_Assembler* masm);
1948   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1949   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1950 };
1951 
1952 // LIR_OpProfileType
1953 class LIR_OpProfileType : public LIR_Op {
1954  friend class LIR_OpVisitState;
1955 
1956  private:
1957   LIR_Opr      _mdp;
1958   LIR_Opr      _obj;
1959   LIR_Opr      _tmp;
1960   ciKlass*     _exact_klass;   // non NULL if we know the klass statically (no need to load it from _obj)
1961   intptr_t     _current_klass; // what the profiling currently reports
1962   bool         _not_null;      // true if we know statically that _obj cannot be null
1963   bool         _no_conflict;   // true if we're profling parameters, _exact_klass is not NULL and we know
1964                                // _exact_klass it the only possible type for this parameter in any context.
1965 
1966  public:
1967   // Destroys recv
1968   LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
1969     : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1970     , _mdp(mdp)
1971     , _obj(obj)
1972     , _exact_klass(exact_klass)
1973     , _current_klass(current_klass)
1974     , _tmp(tmp)
1975     , _not_null(not_null)
1976     , _no_conflict(no_conflict) { }
1977 
1978   LIR_Opr      mdp()              const             { return _mdp;              }
1979   LIR_Opr      obj()              const             { return _obj;              }
1980   LIR_Opr      tmp()              const             { return _tmp;              }
1981   ciKlass*     exact_klass()      const             { return _exact_klass;      }
1982   intptr_t     current_klass()    const             { return _current_klass;    }
1983   bool         not_null()         const             { return _not_null;         }
1984   bool         no_conflict()      const             { return _no_conflict;      }
1985 
1986   virtual void emit_code(LIR_Assembler* masm);
1987   virtual LIR_OpProfileType* as_OpProfileType() { return this; }
1988   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1989 };
1990 
1991 class LIR_InsertionBuffer;
1992 
1993 //--------------------------------LIR_List---------------------------------------------------
1994 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
1995 // The LIR instructions are appended by the LIR_List class itself;
1996 //
1997 // Notes:
1998 // - all offsets are(should be) in bytes
1999 // - local positions are specified with an offset, with offset 0 being local 0
2000 
2001 class LIR_List: public CompilationResourceObj {
2002  private:
2003   LIR_OpList  _operations;
2004 
2005   Compilation*  _compilation;
2006 #ifndef PRODUCT
2007   BlockBegin*   _block;
2008 #endif
2009 #ifdef ASSERT
2010   const char *  _file;
2011   int           _line;
2012 #endif
2013 
2014   void append(LIR_Op* op) {
2015     if (op->source() == NULL)
2016       op->set_source(_compilation->current_instruction());
2017 #ifndef PRODUCT
2018     if (PrintIRWithLIR) {
2019       _compilation->maybe_print_current_instruction();
2020       op->print(); tty->cr();
2021     }
2022 #endif // PRODUCT
2023 
2024     _operations.append(op);
2025 
2026 #ifdef ASSERT
2027     op->verify();
2028     op->set_file_and_line(_file, _line);
2029     _file = NULL;
2030     _line = 0;
2031 #endif
2032   }
2033 
2034  public:
2035   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
2036 
2037 #ifdef ASSERT
2038   void set_file_and_line(const char * file, int line);
2039 #endif
2040 
2041   //---------- accessors ---------------
2042   LIR_OpList* instructions_list()                { return &_operations; }
2043   int         length() const                     { return _operations.length(); }
2044   LIR_Op*     at(int i) const                    { return _operations.at(i); }
2045 
2046   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
2047 
2048   // insert LIR_Ops in buffer to right places in LIR_List
2049   void append(LIR_InsertionBuffer* buffer);
2050 
2051   //---------- mutators ---------------
2052   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
2053   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
2054   void remove_at(int i)                          { _operations.remove_at(i); }
2055 
2056   //---------- printing -------------
2057   void print_instructions() PRODUCT_RETURN;
2058 
2059 
2060   //---------- instructions -------------
2061   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2062                         address dest, LIR_OprList* arguments,
2063                         CodeEmitInfo* info) {
2064     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2065   }
2066   void call_static(ciMethod* method, LIR_Opr result,
2067                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2068     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2069   }
2070   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2071                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2072     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2073   }
2074   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2075                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
2076     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
2077   }
2078   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2079                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2080     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2081   }
2082 
2083   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
2084   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
2085   void membar()                                  { append(new LIR_Op0(lir_membar)); }
2086   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
2087   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
2088   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
2089   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
2090   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
2091   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
2092 
2093   void nop()                                     { append(new LIR_Op0(lir_nop)); }
2094   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
2095 
2096   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
2097   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2098 
2099   void on_spin_wait()                            { append(new LIR_Op0(lir_on_spin_wait)); }
2100 
2101   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2102 
2103   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
2104   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
2105 
2106   // result is a stack location for old backend and vreg for UseLinearScan
2107   // stack_loc_temp is an illegal register for old backend
2108   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2109   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2110   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2111   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2112   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2113   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2114   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2115   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2116     if (UseCompressedOops) {
2117       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2118     } else {
2119       move(src, dst, info);
2120     }
2121   }
2122   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2123     if (UseCompressedOops) {
2124       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2125     } else {
2126       move(src, dst, info);
2127     }
2128   }
2129   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2130 
2131   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2132   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2133 
2134   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2135   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2136 
2137   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
2138 
2139   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2140 
2141 #ifdef PPC32
2142   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
2143 #endif
2144   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2145 
2146   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
2147   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
2148   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2149 
2150   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
2151   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
2152 
2153   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
2154   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2155     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2156   }
2157   void unwind_exception(LIR_Opr exceptionOop) {
2158     append(new LIR_Op1(lir_unwind, exceptionOop));
2159   }
2160 
2161   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2162     append(new LIR_Op2(lir_compare_to,  left, right, dst));
2163   }
2164 
2165   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
2166   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2167 
2168   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2169     append(new LIR_Op2(lir_cmp, condition, left, right, info));
2170   }
2171   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2172     cmp(condition, left, LIR_OprFact::intConst(right), info);
2173   }
2174 
2175   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2176   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2177 
2178   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2179     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2180   }
2181 
2182   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2183                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2184   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2185                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2186   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2187                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2188 
2189   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2190   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2191   void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); }
2192   void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); }
2193   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2194   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2195 
2196   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2197   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2198   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2199   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
2200   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2201   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
2202   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2203 
2204   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2205   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2206 
2207   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2208 
2209   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2210   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2211   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2212   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2213   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2214 
2215   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2216   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2217   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2218   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2219 
2220   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2221   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2222 
2223   // jump is an unconditional branch
2224   void jump(BlockBegin* block) {
2225     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
2226   }
2227   void jump(CodeStub* stub) {
2228     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
2229   }
2230   void branch(LIR_Condition cond, BasicType type, Label* lbl)        { append(new LIR_OpBranch(cond, type, lbl)); }
2231   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
2232     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2233     append(new LIR_OpBranch(cond, type, block));
2234   }
2235   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
2236     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2237     append(new LIR_OpBranch(cond, type, stub));
2238   }
2239   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
2240     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
2241     append(new LIR_OpBranch(cond, type, block, unordered));
2242   }
2243 
2244   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2245   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2246   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2247 
2248   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2249   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2250   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2251 
2252   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2253   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2254 
2255   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2256     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2257   }
2258 
2259   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2260                     LIR_OprList* arguments, CodeEmitInfo* info) {
2261     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2262   }
2263 
2264   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2265   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2266   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2267 
2268   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
2269   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
2270   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2271 
2272   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2273 
2274   void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)  { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2275 
2276   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
2277 
2278   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2279   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2280 
2281   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2282                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2283                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2284                   ciMethod* profiled_method, int profiled_bci);
2285   // MethodData* profiling
2286   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2287     append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2288   }
2289   void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2290     append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2291   }
2292 
2293   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2294   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2295 #ifdef ASSERT
2296   void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2297 #endif
2298 };
2299 
2300 void print_LIR(BlockList* blocks);
2301 
2302 class LIR_InsertionBuffer : public CompilationResourceObj {
2303  private:
2304   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2305 
2306   // list of insertion points. index and count are stored alternately:
2307   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2308   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2309   intStack    _index_and_count;
2310 
2311   // the LIR_Ops to be inserted
2312   LIR_OpList  _ops;
2313 
2314   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2315   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2316   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2317 
2318 #ifdef ASSERT
2319   void verify();
2320 #endif
2321  public:
2322   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2323 
2324   // must be called before using the insertion buffer
2325   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2326   bool initialized() const  { return _lir != NULL; }
2327   // called automatically when the buffer is appended to the LIR_List
2328   void finish()             { _lir = NULL; }
2329 
2330   // accessors
2331   LIR_List*  lir_list() const             { return _lir; }
2332   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2333   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2334   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2335 
2336   int number_of_ops() const               { return _ops.length(); }
2337   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2338 
2339   // append an instruction to the buffer
2340   void append(int index, LIR_Op* op);
2341 
2342   // instruction
2343   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2344 };
2345 
2346 
2347 //
2348 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2349 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2350 // information about the input, output and temporaries used by the
2351 // op to be recorded.  It also records whether the op has call semantics
2352 // and also records all the CodeEmitInfos used by this op.
2353 //
2354 
2355 
2356 class LIR_OpVisitState: public StackObj {
2357  public:
2358   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2359 
2360   enum {
2361     maxNumberOfOperands = 20,
2362     maxNumberOfInfos = 4
2363   };
2364 
2365  private:
2366   LIR_Op*          _op;
2367 
2368   // optimization: the operands and infos are not stored in a variable-length
2369   //               list, but in a fixed-size array to save time of size checks and resizing
2370   int              _oprs_len[numModes];
2371   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2372   int _info_len;
2373   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2374 
2375   bool             _has_call;
2376   bool             _has_slow_case;
2377 
2378 
2379   // only include register operands
2380   // addresses are decomposed to the base and index registers
2381   // constants and stack operands are ignored
2382   void append(LIR_Opr& opr, OprMode mode) {
2383     assert(opr->is_valid(), "should not call this otherwise");
2384     assert(mode >= 0 && mode < numModes, "bad mode");
2385 
2386     if (opr->is_register()) {
2387        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2388       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2389 
2390     } else if (opr->is_pointer()) {
2391       LIR_Address* address = opr->as_address_ptr();
2392       if (address != NULL) {
2393         // special handling for addresses: add base and index register of the address
2394         // both are always input operands or temp if we want to extend
2395         // their liveness!
2396         if (mode == outputMode) {
2397           mode = inputMode;
2398         }
2399         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2400         if (address->_base->is_valid()) {
2401           assert(address->_base->is_register(), "must be");
2402           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2403           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2404         }
2405         if (address->_index->is_valid()) {
2406           assert(address->_index->is_register(), "must be");
2407           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2408           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2409         }
2410 
2411       } else {
2412         assert(opr->is_constant(), "constant operands are not processed");
2413       }
2414     } else {
2415       assert(opr->is_stack(), "stack operands are not processed");
2416     }
2417   }
2418 
2419   void append(CodeEmitInfo* info) {
2420     assert(info != NULL, "should not call this otherwise");
2421     assert(_info_len < maxNumberOfInfos, "array overflow");
2422     _info_new[_info_len++] = info;
2423   }
2424 
2425  public:
2426   LIR_OpVisitState()         { reset(); }
2427 
2428   LIR_Op* op() const         { return _op; }
2429   void set_op(LIR_Op* op)    { reset(); _op = op; }
2430 
2431   bool has_call() const      { return _has_call; }
2432   bool has_slow_case() const { return _has_slow_case; }
2433 
2434   void reset() {
2435     _op = NULL;
2436     _has_call = false;
2437     _has_slow_case = false;
2438 
2439     _oprs_len[inputMode] = 0;
2440     _oprs_len[tempMode] = 0;
2441     _oprs_len[outputMode] = 0;
2442     _info_len = 0;
2443   }
2444 
2445 
2446   int opr_count(OprMode mode) const {
2447     assert(mode >= 0 && mode < numModes, "bad mode");
2448     return _oprs_len[mode];
2449   }
2450 
2451   LIR_Opr opr_at(OprMode mode, int index) const {
2452     assert(mode >= 0 && mode < numModes, "bad mode");
2453     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2454     return *_oprs_new[mode][index];
2455   }
2456 
2457   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2458     assert(mode >= 0 && mode < numModes, "bad mode");
2459     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2460     *_oprs_new[mode][index] = opr;
2461   }
2462 
2463   int info_count() const {
2464     return _info_len;
2465   }
2466 
2467   CodeEmitInfo* info_at(int index) const {
2468     assert(index < _info_len, "index out of bounds");
2469     return _info_new[index];
2470   }
2471 
2472   XHandlers* all_xhandler();
2473 
2474   // collects all register operands of the instruction
2475   void visit(LIR_Op* op);
2476 
2477 #ifdef ASSERT
2478   // check that an operation has no operands
2479   bool no_operands(LIR_Op* op);
2480 #endif
2481 
2482   // LIR_Op visitor functions use these to fill in the state
2483   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2484   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2485   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2486   void do_info(CodeEmitInfo* info)        { append(info); }
2487 
2488   void do_stub(CodeStub* stub);
2489   void do_call()                          { _has_call = true; }
2490   void do_slow_case()                     { _has_slow_case = true; }
2491   void do_slow_case(CodeEmitInfo* info) {
2492     _has_slow_case = true;
2493     append(info);
2494   }
2495 };
2496 
2497 
2498 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2499 
2500 #endif // SHARE_VM_C1_C1_LIR_HPP