1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/vm_version.hpp"
  41 #include "utilities/bitMap.inline.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc/g1/heapRegion.hpp"
  45 #endif // INCLUDE_ALL_GCS
  46 #ifdef TRACE_HAVE_INTRINSICS
  47 #include "trace/traceMacros.hpp"
  48 #endif
  49 
  50 #ifdef ASSERT
  51 #define __ gen()->lir(__FILE__, __LINE__)->
  52 #else
  53 #define __ gen()->lir()->
  54 #endif
  55 
  56 #ifndef PATCHED_ADDR
  57 #define PATCHED_ADDR  (max_jint)
  58 #endif
  59 
  60 void PhiResolverState::reset(int max_vregs) {
  61   // Initialize array sizes
  62   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _virtual_operands.trunc_to(0);
  64   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _other_operands.trunc_to(0);
  66   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  67   _vreg_table.trunc_to(0);
  68 }
  69 
  70 
  71 
  72 //--------------------------------------------------------------
  73 // PhiResolver
  74 
  75 // Resolves cycles:
  76 //
  77 //  r1 := r2  becomes  temp := r1
  78 //  r2 := r1           r1 := r2
  79 //                     r2 := temp
  80 // and orders moves:
  81 //
  82 //  r2 := r3  becomes  r1 := r2
  83 //  r1 := r2           r2 := r3
  84 
  85 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  86  : _gen(gen)
  87  , _state(gen->resolver_state())
  88  , _temp(LIR_OprFact::illegalOpr)
  89 {
  90   // reinitialize the shared state arrays
  91   _state.reset(max_vregs);
  92 }
  93 
  94 
  95 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  96   assert(src->is_valid(), "");
  97   assert(dest->is_valid(), "");
  98   __ move(src, dest);
  99 }
 100 
 101 
 102 void PhiResolver::move_temp_to(LIR_Opr dest) {
 103   assert(_temp->is_valid(), "");
 104   emit_move(_temp, dest);
 105   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 106 }
 107 
 108 
 109 void PhiResolver::move_to_temp(LIR_Opr src) {
 110   assert(_temp->is_illegal(), "");
 111   _temp = _gen->new_register(src->type());
 112   emit_move(src, _temp);
 113 }
 114 
 115 
 116 // Traverse assignment graph in depth first order and generate moves in post order
 117 // ie. two assignments: b := c, a := b start with node c:
 118 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 119 // Generates moves in this order: move b to a and move c to b
 120 // ie. cycle a := b, b := a start with node a
 121 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 122 // Generates moves in this order: move b to temp, move a to b, move temp to a
 123 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 124   if (!dest->visited()) {
 125     dest->set_visited();
 126     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 127       move(dest, dest->destination_at(i));
 128     }
 129   } else if (!dest->start_node()) {
 130     // cylce in graph detected
 131     assert(_loop == NULL, "only one loop valid!");
 132     _loop = dest;
 133     move_to_temp(src->operand());
 134     return;
 135   } // else dest is a start node
 136 
 137   if (!dest->assigned()) {
 138     if (_loop == dest) {
 139       move_temp_to(dest->operand());
 140       dest->set_assigned();
 141     } else if (src != NULL) {
 142       emit_move(src->operand(), dest->operand());
 143       dest->set_assigned();
 144     }
 145   }
 146 }
 147 
 148 
 149 PhiResolver::~PhiResolver() {
 150   int i;
 151   // resolve any cycles in moves from and to virtual registers
 152   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 153     ResolveNode* node = virtual_operands().at(i);
 154     if (!node->visited()) {
 155       _loop = NULL;
 156       move(NULL, node);
 157       node->set_start_node();
 158       assert(_temp->is_illegal(), "move_temp_to() call missing");
 159     }
 160   }
 161 
 162   // generate move for move from non virtual register to abitrary destination
 163   for (i = other_operands().length() - 1; i >= 0; i --) {
 164     ResolveNode* node = other_operands().at(i);
 165     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 166       emit_move(node->operand(), node->destination_at(j)->operand());
 167     }
 168   }
 169 }
 170 
 171 
 172 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 173   ResolveNode* node;
 174   if (opr->is_virtual()) {
 175     int vreg_num = opr->vreg_number();
 176     node = vreg_table().at_grow(vreg_num, NULL);
 177     assert(node == NULL || node->operand() == opr, "");
 178     if (node == NULL) {
 179       node = new ResolveNode(opr);
 180       vreg_table().at_put(vreg_num, node);
 181     }
 182     // Make sure that all virtual operands show up in the list when
 183     // they are used as the source of a move.
 184     if (source && !virtual_operands().contains(node)) {
 185       virtual_operands().append(node);
 186     }
 187   } else {
 188     assert(source, "");
 189     node = new ResolveNode(opr);
 190     other_operands().append(node);
 191   }
 192   return node;
 193 }
 194 
 195 
 196 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 197   assert(dest->is_virtual(), "");
 198   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 199   assert(src->is_valid(), "");
 200   assert(dest->is_valid(), "");
 201   ResolveNode* source = source_node(src);
 202   source->append(destination_node(dest));
 203 }
 204 
 205 
 206 //--------------------------------------------------------------
 207 // LIRItem
 208 
 209 void LIRItem::set_result(LIR_Opr opr) {
 210   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 211   value()->set_operand(opr);
 212 
 213   if (opr->is_virtual()) {
 214     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 215   }
 216 
 217   _result = opr;
 218 }
 219 
 220 void LIRItem::load_item() {
 221   if (result()->is_illegal()) {
 222     // update the items result
 223     _result = value()->operand();
 224   }
 225   if (!result()->is_register()) {
 226     LIR_Opr reg = _gen->new_register(value()->type());
 227     __ move(result(), reg);
 228     if (result()->is_constant()) {
 229       _result = reg;
 230     } else {
 231       set_result(reg);
 232     }
 233   }
 234 }
 235 
 236 
 237 void LIRItem::load_for_store(BasicType type) {
 238   if (_gen->can_store_as_constant(value(), type)) {
 239     _result = value()->operand();
 240     if (!_result->is_constant()) {
 241       _result = LIR_OprFact::value_type(value()->type());
 242     }
 243   } else if (type == T_BYTE || type == T_BOOLEAN) {
 244     load_byte_item();
 245   } else {
 246     load_item();
 247   }
 248 }
 249 
 250 void LIRItem::load_item_force(LIR_Opr reg) {
 251   LIR_Opr r = result();
 252   if (r != reg) {
 253 #if !defined(ARM) && !defined(E500V2)
 254     if (r->type() != reg->type()) {
 255       // moves between different types need an intervening spill slot
 256       r = _gen->force_to_spill(r, reg->type());
 257     }
 258 #endif
 259     __ move(r, reg);
 260     _result = reg;
 261   }
 262 }
 263 
 264 ciObject* LIRItem::get_jobject_constant() const {
 265   ObjectType* oc = type()->as_ObjectType();
 266   if (oc) {
 267     return oc->constant_value();
 268   }
 269   return NULL;
 270 }
 271 
 272 
 273 jint LIRItem::get_jint_constant() const {
 274   assert(is_constant() && value() != NULL, "");
 275   assert(type()->as_IntConstant() != NULL, "type check");
 276   return type()->as_IntConstant()->value();
 277 }
 278 
 279 
 280 jint LIRItem::get_address_constant() const {
 281   assert(is_constant() && value() != NULL, "");
 282   assert(type()->as_AddressConstant() != NULL, "type check");
 283   return type()->as_AddressConstant()->value();
 284 }
 285 
 286 
 287 jfloat LIRItem::get_jfloat_constant() const {
 288   assert(is_constant() && value() != NULL, "");
 289   assert(type()->as_FloatConstant() != NULL, "type check");
 290   return type()->as_FloatConstant()->value();
 291 }
 292 
 293 
 294 jdouble LIRItem::get_jdouble_constant() const {
 295   assert(is_constant() && value() != NULL, "");
 296   assert(type()->as_DoubleConstant() != NULL, "type check");
 297   return type()->as_DoubleConstant()->value();
 298 }
 299 
 300 
 301 jlong LIRItem::get_jlong_constant() const {
 302   assert(is_constant() && value() != NULL, "");
 303   assert(type()->as_LongConstant() != NULL, "type check");
 304   return type()->as_LongConstant()->value();
 305 }
 306 
 307 
 308 
 309 //--------------------------------------------------------------
 310 
 311 
 312 void LIRGenerator::init() {
 313   _bs = Universe::heap()->barrier_set();
 314 }
 315 
 316 
 317 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 318 #ifndef PRODUCT
 319   if (PrintIRWithLIR) {
 320     block->print();
 321   }
 322 #endif
 323 
 324   // set up the list of LIR instructions
 325   assert(block->lir() == NULL, "LIR list already computed for this block");
 326   _lir = new LIR_List(compilation(), block);
 327   block->set_lir(_lir);
 328 
 329   __ branch_destination(block->label());
 330 
 331   if (LIRTraceExecution &&
 332       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 333       !block->is_set(BlockBegin::exception_entry_flag)) {
 334     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 335     trace_block_entry(block);
 336   }
 337 }
 338 
 339 
 340 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 341 #ifndef PRODUCT
 342   if (PrintIRWithLIR) {
 343     tty->cr();
 344   }
 345 #endif
 346 
 347   // LIR_Opr for unpinned constants shouldn't be referenced by other
 348   // blocks so clear them out after processing the block.
 349   for (int i = 0; i < _unpinned_constants.length(); i++) {
 350     _unpinned_constants.at(i)->clear_operand();
 351   }
 352   _unpinned_constants.trunc_to(0);
 353 
 354   // clear our any registers for other local constants
 355   _constants.trunc_to(0);
 356   _reg_for_constants.trunc_to(0);
 357 }
 358 
 359 
 360 void LIRGenerator::block_do(BlockBegin* block) {
 361   CHECK_BAILOUT();
 362 
 363   block_do_prolog(block);
 364   set_block(block);
 365 
 366   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 367     if (instr->is_pinned()) do_root(instr);
 368   }
 369 
 370   set_block(NULL);
 371   block_do_epilog(block);
 372 }
 373 
 374 
 375 //-------------------------LIRGenerator-----------------------------
 376 
 377 // This is where the tree-walk starts; instr must be root;
 378 void LIRGenerator::do_root(Value instr) {
 379   CHECK_BAILOUT();
 380 
 381   InstructionMark im(compilation(), instr);
 382 
 383   assert(instr->is_pinned(), "use only with roots");
 384   assert(instr->subst() == instr, "shouldn't have missed substitution");
 385 
 386   instr->visit(this);
 387 
 388   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 389          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 390 }
 391 
 392 
 393 // This is called for each node in tree; the walk stops if a root is reached
 394 void LIRGenerator::walk(Value instr) {
 395   InstructionMark im(compilation(), instr);
 396   //stop walk when encounter a root
 397   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 398     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 399   } else {
 400     assert(instr->subst() == instr, "shouldn't have missed substitution");
 401     instr->visit(this);
 402     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 403   }
 404 }
 405 
 406 
 407 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 408   assert(state != NULL, "state must be defined");
 409 
 410 #ifndef PRODUCT
 411   state->verify();
 412 #endif
 413 
 414   ValueStack* s = state;
 415   for_each_state(s) {
 416     if (s->kind() == ValueStack::EmptyExceptionState) {
 417       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 418       continue;
 419     }
 420 
 421     int index;
 422     Value value;
 423     for_each_stack_value(s, index, value) {
 424       assert(value->subst() == value, "missed substitution");
 425       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 426         walk(value);
 427         assert(value->operand()->is_valid(), "must be evaluated now");
 428       }
 429     }
 430 
 431     int bci = s->bci();
 432     IRScope* scope = s->scope();
 433     ciMethod* method = scope->method();
 434 
 435     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 436     if (bci == SynchronizationEntryBCI) {
 437       if (x->as_ExceptionObject() || x->as_Throw()) {
 438         // all locals are dead on exit from the synthetic unlocker
 439         liveness.clear();
 440       } else {
 441         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 442       }
 443     }
 444     if (!liveness.is_valid()) {
 445       // Degenerate or breakpointed method.
 446       bailout("Degenerate or breakpointed method");
 447     } else {
 448       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 449       for_each_local_value(s, index, value) {
 450         assert(value->subst() == value, "missed substition");
 451         if (liveness.at(index) && !value->type()->is_illegal()) {
 452           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 453             walk(value);
 454             assert(value->operand()->is_valid(), "must be evaluated now");
 455           }
 456         } else {
 457           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 458           s->invalidate_local(index);
 459         }
 460       }
 461     }
 462   }
 463 
 464   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 465 }
 466 
 467 
 468 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 469   return state_for(x, x->exception_state());
 470 }
 471 
 472 
 473 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 474   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 475    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 476    * the class. */
 477   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 478     assert(info != NULL, "info must be set if class is not loaded");
 479     __ klass2reg_patch(NULL, r, info);
 480   } else {
 481     // no patching needed
 482     __ metadata2reg(obj->constant_encoding(), r);
 483   }
 484 }
 485 
 486 
 487 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 488                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 489   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 490   if (index->is_constant()) {
 491     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 492                 index->as_jint(), null_check_info);
 493     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 494   } else {
 495     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 496                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 497     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 498   }
 499 }
 500 
 501 
 502 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 503   CodeStub* stub = new RangeCheckStub(info, index, true);
 504   if (index->is_constant()) {
 505     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 506     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 507   } else {
 508     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 509                 java_nio_Buffer::limit_offset(), T_INT, info);
 510     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 511   }
 512   __ move(index, result);
 513 }
 514 
 515 
 516 
 517 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 518   LIR_Opr result_op = result;
 519   LIR_Opr left_op   = left;
 520   LIR_Opr right_op  = right;
 521 
 522   if (TwoOperandLIRForm && left_op != result_op) {
 523     assert(right_op != result_op, "malformed");
 524     __ move(left_op, result_op);
 525     left_op = result_op;
 526   }
 527 
 528   switch(code) {
 529     case Bytecodes::_dadd:
 530     case Bytecodes::_fadd:
 531     case Bytecodes::_ladd:
 532     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 533     case Bytecodes::_fmul:
 534     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 535 
 536     case Bytecodes::_dmul:
 537       {
 538         if (is_strictfp) {
 539           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 540         } else {
 541           __ mul(left_op, right_op, result_op); break;
 542         }
 543       }
 544       break;
 545 
 546     case Bytecodes::_imul:
 547       {
 548         bool    did_strength_reduce = false;
 549 
 550         if (right->is_constant()) {
 551           int c = right->as_jint();
 552           if (is_power_of_2(c)) {
 553             // do not need tmp here
 554             __ shift_left(left_op, exact_log2(c), result_op);
 555             did_strength_reduce = true;
 556           } else {
 557             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 558           }
 559         }
 560         // we couldn't strength reduce so just emit the multiply
 561         if (!did_strength_reduce) {
 562           __ mul(left_op, right_op, result_op);
 563         }
 564       }
 565       break;
 566 
 567     case Bytecodes::_dsub:
 568     case Bytecodes::_fsub:
 569     case Bytecodes::_lsub:
 570     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 571 
 572     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 573     // ldiv and lrem are implemented with a direct runtime call
 574 
 575     case Bytecodes::_ddiv:
 576       {
 577         if (is_strictfp) {
 578           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 579         } else {
 580           __ div (left_op, right_op, result_op); break;
 581         }
 582       }
 583       break;
 584 
 585     case Bytecodes::_drem:
 586     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 587 
 588     default: ShouldNotReachHere();
 589   }
 590 }
 591 
 592 
 593 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 594   arithmetic_op(code, result, left, right, false, tmp);
 595 }
 596 
 597 
 598 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 599   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 600 }
 601 
 602 
 603 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 604   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 605 }
 606 
 607 
 608 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 609   if (TwoOperandLIRForm && value != result_op) {
 610     assert(count != result_op, "malformed");
 611     __ move(value, result_op);
 612     value = result_op;
 613   }
 614 
 615   assert(count->is_constant() || count->is_register(), "must be");
 616   switch(code) {
 617   case Bytecodes::_ishl:
 618   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 619   case Bytecodes::_ishr:
 620   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 621   case Bytecodes::_iushr:
 622   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 623   default: ShouldNotReachHere();
 624   }
 625 }
 626 
 627 
 628 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 629   if (TwoOperandLIRForm && left_op != result_op) {
 630     assert(right_op != result_op, "malformed");
 631     __ move(left_op, result_op);
 632     left_op = result_op;
 633   }
 634 
 635   switch(code) {
 636     case Bytecodes::_iand:
 637     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 638 
 639     case Bytecodes::_ior:
 640     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 641 
 642     case Bytecodes::_ixor:
 643     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 644 
 645     default: ShouldNotReachHere();
 646   }
 647 }
 648 
 649 
 650 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 651   if (!GenerateSynchronizationCode) return;
 652   // for slow path, use debug info for state after successful locking
 653   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 654   __ load_stack_address_monitor(monitor_no, lock);
 655   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 656   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 657 }
 658 
 659 
 660 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 661   if (!GenerateSynchronizationCode) return;
 662   // setup registers
 663   LIR_Opr hdr = lock;
 664   lock = new_hdr;
 665   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 666   __ load_stack_address_monitor(monitor_no, lock);
 667   __ unlock_object(hdr, object, lock, scratch, slow_path);
 668 }
 669 
 670 #ifndef PRODUCT
 671 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 672   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 673     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 674   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 675     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 676   }
 677 }
 678 #endif
 679 
 680 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 681   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 682   // If klass is not loaded we do not know if the klass has finalizers:
 683   if (UseFastNewInstance && klass->is_loaded()
 684       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 685 
 686     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 687 
 688     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 689 
 690     assert(klass->is_loaded(), "must be loaded");
 691     // allocate space for instance
 692     assert(klass->size_helper() >= 0, "illegal instance size");
 693     const int instance_size = align_object_size(klass->size_helper());
 694     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 695                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 696   } else {
 697     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 698     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 699     __ branch_destination(slow_path->continuation());
 700   }
 701 }
 702 
 703 
 704 static bool is_constant_zero(Instruction* inst) {
 705   IntConstant* c = inst->type()->as_IntConstant();
 706   if (c) {
 707     return (c->value() == 0);
 708   }
 709   return false;
 710 }
 711 
 712 
 713 static bool positive_constant(Instruction* inst) {
 714   IntConstant* c = inst->type()->as_IntConstant();
 715   if (c) {
 716     return (c->value() >= 0);
 717   }
 718   return false;
 719 }
 720 
 721 
 722 static ciArrayKlass* as_array_klass(ciType* type) {
 723   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 724     return (ciArrayKlass*)type;
 725   } else {
 726     return NULL;
 727   }
 728 }
 729 
 730 static ciType* phi_declared_type(Phi* phi) {
 731   ciType* t = phi->operand_at(0)->declared_type();
 732   if (t == NULL) {
 733     return NULL;
 734   }
 735   for(int i = 1; i < phi->operand_count(); i++) {
 736     if (t != phi->operand_at(i)->declared_type()) {
 737       return NULL;
 738     }
 739   }
 740   return t;
 741 }
 742 
 743 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 744   Instruction* src     = x->argument_at(0);
 745   Instruction* src_pos = x->argument_at(1);
 746   Instruction* dst     = x->argument_at(2);
 747   Instruction* dst_pos = x->argument_at(3);
 748   Instruction* length  = x->argument_at(4);
 749 
 750   // first try to identify the likely type of the arrays involved
 751   ciArrayKlass* expected_type = NULL;
 752   bool is_exact = false, src_objarray = false, dst_objarray = false;
 753   {
 754     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 755     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 756     Phi* phi;
 757     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 758       src_declared_type = as_array_klass(phi_declared_type(phi));
 759     }
 760     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 761     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 762     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 763       dst_declared_type = as_array_klass(phi_declared_type(phi));
 764     }
 765 
 766     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 767       // the types exactly match so the type is fully known
 768       is_exact = true;
 769       expected_type = src_exact_type;
 770     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 771       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 772       ciArrayKlass* src_type = NULL;
 773       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 774         src_type = (ciArrayKlass*) src_exact_type;
 775       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 776         src_type = (ciArrayKlass*) src_declared_type;
 777       }
 778       if (src_type != NULL) {
 779         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 780           is_exact = true;
 781           expected_type = dst_type;
 782         }
 783       }
 784     }
 785     // at least pass along a good guess
 786     if (expected_type == NULL) expected_type = dst_exact_type;
 787     if (expected_type == NULL) expected_type = src_declared_type;
 788     if (expected_type == NULL) expected_type = dst_declared_type;
 789 
 790     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 791     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 792   }
 793 
 794   // if a probable array type has been identified, figure out if any
 795   // of the required checks for a fast case can be elided.
 796   int flags = LIR_OpArrayCopy::all_flags;
 797 
 798   if (!src_objarray)
 799     flags &= ~LIR_OpArrayCopy::src_objarray;
 800   if (!dst_objarray)
 801     flags &= ~LIR_OpArrayCopy::dst_objarray;
 802 
 803   if (!x->arg_needs_null_check(0))
 804     flags &= ~LIR_OpArrayCopy::src_null_check;
 805   if (!x->arg_needs_null_check(2))
 806     flags &= ~LIR_OpArrayCopy::dst_null_check;
 807 
 808 
 809   if (expected_type != NULL) {
 810     Value length_limit = NULL;
 811 
 812     IfOp* ifop = length->as_IfOp();
 813     if (ifop != NULL) {
 814       // look for expressions like min(v, a.length) which ends up as
 815       //   x > y ? y : x  or  x >= y ? y : x
 816       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 817           ifop->x() == ifop->fval() &&
 818           ifop->y() == ifop->tval()) {
 819         length_limit = ifop->y();
 820       }
 821     }
 822 
 823     // try to skip null checks and range checks
 824     NewArray* src_array = src->as_NewArray();
 825     if (src_array != NULL) {
 826       flags &= ~LIR_OpArrayCopy::src_null_check;
 827       if (length_limit != NULL &&
 828           src_array->length() == length_limit &&
 829           is_constant_zero(src_pos)) {
 830         flags &= ~LIR_OpArrayCopy::src_range_check;
 831       }
 832     }
 833 
 834     NewArray* dst_array = dst->as_NewArray();
 835     if (dst_array != NULL) {
 836       flags &= ~LIR_OpArrayCopy::dst_null_check;
 837       if (length_limit != NULL &&
 838           dst_array->length() == length_limit &&
 839           is_constant_zero(dst_pos)) {
 840         flags &= ~LIR_OpArrayCopy::dst_range_check;
 841       }
 842     }
 843 
 844     // check from incoming constant values
 845     if (positive_constant(src_pos))
 846       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 847     if (positive_constant(dst_pos))
 848       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 849     if (positive_constant(length))
 850       flags &= ~LIR_OpArrayCopy::length_positive_check;
 851 
 852     // see if the range check can be elided, which might also imply
 853     // that src or dst is non-null.
 854     ArrayLength* al = length->as_ArrayLength();
 855     if (al != NULL) {
 856       if (al->array() == src) {
 857         // it's the length of the source array
 858         flags &= ~LIR_OpArrayCopy::length_positive_check;
 859         flags &= ~LIR_OpArrayCopy::src_null_check;
 860         if (is_constant_zero(src_pos))
 861           flags &= ~LIR_OpArrayCopy::src_range_check;
 862       }
 863       if (al->array() == dst) {
 864         // it's the length of the destination array
 865         flags &= ~LIR_OpArrayCopy::length_positive_check;
 866         flags &= ~LIR_OpArrayCopy::dst_null_check;
 867         if (is_constant_zero(dst_pos))
 868           flags &= ~LIR_OpArrayCopy::dst_range_check;
 869       }
 870     }
 871     if (is_exact) {
 872       flags &= ~LIR_OpArrayCopy::type_check;
 873     }
 874   }
 875 
 876   IntConstant* src_int = src_pos->type()->as_IntConstant();
 877   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 878   if (src_int && dst_int) {
 879     int s_offs = src_int->value();
 880     int d_offs = dst_int->value();
 881     if (src_int->value() >= dst_int->value()) {
 882       flags &= ~LIR_OpArrayCopy::overlapping;
 883     }
 884     if (expected_type != NULL) {
 885       BasicType t = expected_type->element_type()->basic_type();
 886       int element_size = type2aelembytes(t);
 887       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 888           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 889         flags &= ~LIR_OpArrayCopy::unaligned;
 890       }
 891     }
 892   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 893     // src and dest positions are the same, or dst is zero so assume
 894     // nonoverlapping copy.
 895     flags &= ~LIR_OpArrayCopy::overlapping;
 896   }
 897 
 898   if (src == dst) {
 899     // moving within a single array so no type checks are needed
 900     if (flags & LIR_OpArrayCopy::type_check) {
 901       flags &= ~LIR_OpArrayCopy::type_check;
 902     }
 903   }
 904   *flagsp = flags;
 905   *expected_typep = (ciArrayKlass*)expected_type;
 906 }
 907 
 908 
 909 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 910   assert(opr->is_register(), "why spill if item is not register?");
 911 
 912   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 913     LIR_Opr result = new_register(T_FLOAT);
 914     set_vreg_flag(result, must_start_in_memory);
 915     assert(opr->is_register(), "only a register can be spilled");
 916     assert(opr->value_type()->is_float(), "rounding only for floats available");
 917     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 918     return result;
 919   }
 920   return opr;
 921 }
 922 
 923 
 924 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 925   assert(type2size[t] == type2size[value->type()],
 926          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 927   if (!value->is_register()) {
 928     // force into a register
 929     LIR_Opr r = new_register(value->type());
 930     __ move(value, r);
 931     value = r;
 932   }
 933 
 934   // create a spill location
 935   LIR_Opr tmp = new_register(t);
 936   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 937 
 938   // move from register to spill
 939   __ move(value, tmp);
 940   return tmp;
 941 }
 942 
 943 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 944   if (if_instr->should_profile()) {
 945     ciMethod* method = if_instr->profiled_method();
 946     assert(method != NULL, "method should be set if branch is profiled");
 947     ciMethodData* md = method->method_data_or_null();
 948     assert(md != NULL, "Sanity");
 949     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 950     assert(data != NULL, "must have profiling data");
 951     assert(data->is_BranchData(), "need BranchData for two-way branches");
 952     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 953     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 954     if (if_instr->is_swapped()) {
 955       int t = taken_count_offset;
 956       taken_count_offset = not_taken_count_offset;
 957       not_taken_count_offset = t;
 958     }
 959 
 960     LIR_Opr md_reg = new_register(T_METADATA);
 961     __ metadata2reg(md->constant_encoding(), md_reg);
 962 
 963     LIR_Opr data_offset_reg = new_pointer_register();
 964     __ cmove(lir_cond(cond),
 965              LIR_OprFact::intptrConst(taken_count_offset),
 966              LIR_OprFact::intptrConst(not_taken_count_offset),
 967              data_offset_reg, as_BasicType(if_instr->x()->type()));
 968 
 969     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 970     LIR_Opr data_reg = new_pointer_register();
 971     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 972     __ move(data_addr, data_reg);
 973     // Use leal instead of add to avoid destroying condition codes on x86
 974     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 975     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 976     __ move(data_reg, data_addr);
 977   }
 978 }
 979 
 980 // Phi technique:
 981 // This is about passing live values from one basic block to the other.
 982 // In code generated with Java it is rather rare that more than one
 983 // value is on the stack from one basic block to the other.
 984 // We optimize our technique for efficient passing of one value
 985 // (of type long, int, double..) but it can be extended.
 986 // When entering or leaving a basic block, all registers and all spill
 987 // slots are release and empty. We use the released registers
 988 // and spill slots to pass the live values from one block
 989 // to the other. The topmost value, i.e., the value on TOS of expression
 990 // stack is passed in registers. All other values are stored in spilling
 991 // area. Every Phi has an index which designates its spill slot
 992 // At exit of a basic block, we fill the register(s) and spill slots.
 993 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 994 // and locks necessary registers and spilling slots.
 995 
 996 
 997 // move current value to referenced phi function
 998 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 999   Phi* phi = sux_val->as_Phi();
1000   // cur_val can be null without phi being null in conjunction with inlining
1001   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1002     Phi* cur_phi = cur_val->as_Phi();
1003     if (cur_phi != NULL && cur_phi->is_illegal()) {
1004       // Phi and local would need to get invalidated
1005       // (which is unexpected for Linear Scan).
1006       // But this case is very rare so we simply bail out.
1007       bailout("propagation of illegal phi");
1008       return;
1009     }
1010     LIR_Opr operand = cur_val->operand();
1011     if (operand->is_illegal()) {
1012       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1013              "these can be produced lazily");
1014       operand = operand_for_instruction(cur_val);
1015     }
1016     resolver->move(operand, operand_for_instruction(phi));
1017   }
1018 }
1019 
1020 
1021 // Moves all stack values into their PHI position
1022 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1023   BlockBegin* bb = block();
1024   if (bb->number_of_sux() == 1) {
1025     BlockBegin* sux = bb->sux_at(0);
1026     assert(sux->number_of_preds() > 0, "invalid CFG");
1027 
1028     // a block with only one predecessor never has phi functions
1029     if (sux->number_of_preds() > 1) {
1030       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1031       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1032 
1033       ValueStack* sux_state = sux->state();
1034       Value sux_value;
1035       int index;
1036 
1037       assert(cur_state->scope() == sux_state->scope(), "not matching");
1038       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1039       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1040 
1041       for_each_stack_value(sux_state, index, sux_value) {
1042         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1043       }
1044 
1045       for_each_local_value(sux_state, index, sux_value) {
1046         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1047       }
1048 
1049       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1050     }
1051   }
1052 }
1053 
1054 
1055 LIR_Opr LIRGenerator::new_register(BasicType type) {
1056   int vreg = _virtual_register_number;
1057   // add a little fudge factor for the bailout, since the bailout is
1058   // only checked periodically.  This gives a few extra registers to
1059   // hand out before we really run out, which helps us keep from
1060   // tripping over assertions.
1061   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1062     bailout("out of virtual registers");
1063     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1064       // wrap it around
1065       _virtual_register_number = LIR_OprDesc::vreg_base;
1066     }
1067   }
1068   _virtual_register_number += 1;
1069   return LIR_OprFact::virtual_register(vreg, type);
1070 }
1071 
1072 
1073 // Try to lock using register in hint
1074 LIR_Opr LIRGenerator::rlock(Value instr) {
1075   return new_register(instr->type());
1076 }
1077 
1078 
1079 // does an rlock and sets result
1080 LIR_Opr LIRGenerator::rlock_result(Value x) {
1081   LIR_Opr reg = rlock(x);
1082   set_result(x, reg);
1083   return reg;
1084 }
1085 
1086 
1087 // does an rlock and sets result
1088 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1089   LIR_Opr reg;
1090   switch (type) {
1091   case T_BYTE:
1092   case T_BOOLEAN:
1093     reg = rlock_byte(type);
1094     break;
1095   default:
1096     reg = rlock(x);
1097     break;
1098   }
1099 
1100   set_result(x, reg);
1101   return reg;
1102 }
1103 
1104 
1105 //---------------------------------------------------------------------
1106 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1107   ObjectType* oc = value->type()->as_ObjectType();
1108   if (oc) {
1109     return oc->constant_value();
1110   }
1111   return NULL;
1112 }
1113 
1114 
1115 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1116   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1117   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1118 
1119   // no moves are created for phi functions at the begin of exception
1120   // handlers, so assign operands manually here
1121   for_each_phi_fun(block(), phi,
1122                    operand_for_instruction(phi));
1123 
1124   LIR_Opr thread_reg = getThreadPointer();
1125   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1126                exceptionOopOpr());
1127   __ move_wide(LIR_OprFact::oopConst(NULL),
1128                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1129   __ move_wide(LIR_OprFact::oopConst(NULL),
1130                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1131 
1132   LIR_Opr result = new_register(T_OBJECT);
1133   __ move(exceptionOopOpr(), result);
1134   set_result(x, result);
1135 }
1136 
1137 
1138 //----------------------------------------------------------------------
1139 //----------------------------------------------------------------------
1140 //----------------------------------------------------------------------
1141 //----------------------------------------------------------------------
1142 //                        visitor functions
1143 //----------------------------------------------------------------------
1144 //----------------------------------------------------------------------
1145 //----------------------------------------------------------------------
1146 //----------------------------------------------------------------------
1147 
1148 void LIRGenerator::do_Phi(Phi* x) {
1149   // phi functions are never visited directly
1150   ShouldNotReachHere();
1151 }
1152 
1153 
1154 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1155 void LIRGenerator::do_Constant(Constant* x) {
1156   if (x->state_before() != NULL) {
1157     // Any constant with a ValueStack requires patching so emit the patch here
1158     LIR_Opr reg = rlock_result(x);
1159     CodeEmitInfo* info = state_for(x, x->state_before());
1160     __ oop2reg_patch(NULL, reg, info);
1161   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1162     if (!x->is_pinned()) {
1163       // unpinned constants are handled specially so that they can be
1164       // put into registers when they are used multiple times within a
1165       // block.  After the block completes their operand will be
1166       // cleared so that other blocks can't refer to that register.
1167       set_result(x, load_constant(x));
1168     } else {
1169       LIR_Opr res = x->operand();
1170       if (!res->is_valid()) {
1171         res = LIR_OprFact::value_type(x->type());
1172       }
1173       if (res->is_constant()) {
1174         LIR_Opr reg = rlock_result(x);
1175         __ move(res, reg);
1176       } else {
1177         set_result(x, res);
1178       }
1179     }
1180   } else {
1181     set_result(x, LIR_OprFact::value_type(x->type()));
1182   }
1183 }
1184 
1185 
1186 void LIRGenerator::do_Local(Local* x) {
1187   // operand_for_instruction has the side effect of setting the result
1188   // so there's no need to do it here.
1189   operand_for_instruction(x);
1190 }
1191 
1192 
1193 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1194   Unimplemented();
1195 }
1196 
1197 
1198 void LIRGenerator::do_Return(Return* x) {
1199   if (compilation()->env()->dtrace_method_probes()) {
1200     BasicTypeList signature;
1201     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1202     signature.append(T_METADATA); // Method*
1203     LIR_OprList* args = new LIR_OprList();
1204     args->append(getThreadPointer());
1205     LIR_Opr meth = new_register(T_METADATA);
1206     __ metadata2reg(method()->constant_encoding(), meth);
1207     args->append(meth);
1208     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1209   }
1210 
1211   if (x->type()->is_void()) {
1212     __ return_op(LIR_OprFact::illegalOpr);
1213   } else {
1214     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1215     LIRItem result(x->result(), this);
1216 
1217     result.load_item_force(reg);
1218     __ return_op(result.result());
1219   }
1220   set_no_result(x);
1221 }
1222 
1223 // Examble: ref.get()
1224 // Combination of LoadField and g1 pre-write barrier
1225 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1226 
1227   const int referent_offset = java_lang_ref_Reference::referent_offset;
1228   guarantee(referent_offset > 0, "referent offset not initialized");
1229 
1230   assert(x->number_of_arguments() == 1, "wrong type");
1231 
1232   LIRItem reference(x->argument_at(0), this);
1233   reference.load_item();
1234 
1235   // need to perform the null check on the reference objecy
1236   CodeEmitInfo* info = NULL;
1237   if (x->needs_null_check()) {
1238     info = state_for(x);
1239   }
1240 
1241   LIR_Address* referent_field_adr =
1242     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1243 
1244   LIR_Opr result = rlock_result(x);
1245 
1246   __ load(referent_field_adr, result, info);
1247 
1248   // Register the value in the referent field with the pre-barrier
1249   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1250               result /* pre_val */,
1251               false  /* do_load */,
1252               false  /* patch */,
1253               NULL   /* info */);
1254 }
1255 
1256 // Example: clazz.isInstance(object)
1257 void LIRGenerator::do_isInstance(Intrinsic* x) {
1258   assert(x->number_of_arguments() == 2, "wrong type");
1259 
1260   // TODO could try to substitute this node with an equivalent InstanceOf
1261   // if clazz is known to be a constant Class. This will pick up newly found
1262   // constants after HIR construction. I'll leave this to a future change.
1263 
1264   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1265   // could follow the aastore example in a future change.
1266 
1267   LIRItem clazz(x->argument_at(0), this);
1268   LIRItem object(x->argument_at(1), this);
1269   clazz.load_item();
1270   object.load_item();
1271   LIR_Opr result = rlock_result(x);
1272 
1273   // need to perform null check on clazz
1274   if (x->needs_null_check()) {
1275     CodeEmitInfo* info = state_for(x);
1276     __ null_check(clazz.result(), info);
1277   }
1278 
1279   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1280                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1281                                      x->type(),
1282                                      NULL); // NULL CodeEmitInfo results in a leaf call
1283   __ move(call_result, result);
1284 }
1285 
1286 // Example: object.getClass ()
1287 void LIRGenerator::do_getClass(Intrinsic* x) {
1288   assert(x->number_of_arguments() == 1, "wrong type");
1289 
1290   LIRItem rcvr(x->argument_at(0), this);
1291   rcvr.load_item();
1292   LIR_Opr temp = new_register(T_METADATA);
1293   LIR_Opr result = rlock_result(x);
1294 
1295   // need to perform the null check on the rcvr
1296   CodeEmitInfo* info = NULL;
1297   if (x->needs_null_check()) {
1298     info = state_for(x);
1299   }
1300 
1301   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1302   // meaning of these two is mixed up (see JDK-8026837).
1303   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1304   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1305 }
1306 
1307 // java.lang.Class::isPrimitive()
1308 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1309   assert(x->number_of_arguments() == 1, "wrong type");
1310 
1311   LIRItem rcvr(x->argument_at(0), this);
1312   rcvr.load_item();
1313   LIR_Opr temp = new_register(T_METADATA);
1314   LIR_Opr result = rlock_result(x);
1315 
1316   CodeEmitInfo* info = NULL;
1317   if (x->needs_null_check()) {
1318     info = state_for(x);
1319   }
1320 
1321   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1322   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1323   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1324 }
1325 
1326 
1327 // Example: Thread.currentThread()
1328 void LIRGenerator::do_currentThread(Intrinsic* x) {
1329   assert(x->number_of_arguments() == 0, "wrong type");
1330   LIR_Opr reg = rlock_result(x);
1331   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1332 }
1333 
1334 
1335 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1336   assert(x->number_of_arguments() == 1, "wrong type");
1337   LIRItem receiver(x->argument_at(0), this);
1338 
1339   receiver.load_item();
1340   BasicTypeList signature;
1341   signature.append(T_OBJECT); // receiver
1342   LIR_OprList* args = new LIR_OprList();
1343   args->append(receiver.result());
1344   CodeEmitInfo* info = state_for(x, x->state());
1345   call_runtime(&signature, args,
1346                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1347                voidType, info);
1348 
1349   set_no_result(x);
1350 }
1351 
1352 
1353 //------------------------local access--------------------------------------
1354 
1355 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1356   if (x->operand()->is_illegal()) {
1357     Constant* c = x->as_Constant();
1358     if (c != NULL) {
1359       x->set_operand(LIR_OprFact::value_type(c->type()));
1360     } else {
1361       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1362       // allocate a virtual register for this local or phi
1363       x->set_operand(rlock(x));
1364       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1365     }
1366   }
1367   return x->operand();
1368 }
1369 
1370 
1371 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1372   if (opr->is_virtual()) {
1373     return instruction_for_vreg(opr->vreg_number());
1374   }
1375   return NULL;
1376 }
1377 
1378 
1379 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1380   if (reg_num < _instruction_for_operand.length()) {
1381     return _instruction_for_operand.at(reg_num);
1382   }
1383   return NULL;
1384 }
1385 
1386 
1387 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1388   if (_vreg_flags.size_in_bits() == 0) {
1389     BitMap2D temp(100, num_vreg_flags);
1390     _vreg_flags = temp;
1391   }
1392   _vreg_flags.at_put_grow(vreg_num, f, true);
1393 }
1394 
1395 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1396   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1397     return false;
1398   }
1399   return _vreg_flags.at(vreg_num, f);
1400 }
1401 
1402 
1403 // Block local constant handling.  This code is useful for keeping
1404 // unpinned constants and constants which aren't exposed in the IR in
1405 // registers.  Unpinned Constant instructions have their operands
1406 // cleared when the block is finished so that other blocks can't end
1407 // up referring to their registers.
1408 
1409 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1410   assert(!x->is_pinned(), "only for unpinned constants");
1411   _unpinned_constants.append(x);
1412   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1413 }
1414 
1415 
1416 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1417   BasicType t = c->type();
1418   for (int i = 0; i < _constants.length(); i++) {
1419     LIR_Const* other = _constants.at(i);
1420     if (t == other->type()) {
1421       switch (t) {
1422       case T_INT:
1423       case T_FLOAT:
1424         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1425         break;
1426       case T_LONG:
1427       case T_DOUBLE:
1428         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1429         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1430         break;
1431       case T_OBJECT:
1432         if (c->as_jobject() != other->as_jobject()) continue;
1433         break;
1434       }
1435       return _reg_for_constants.at(i);
1436     }
1437   }
1438 
1439   LIR_Opr result = new_register(t);
1440   __ move((LIR_Opr)c, result);
1441   _constants.append(c);
1442   _reg_for_constants.append(result);
1443   return result;
1444 }
1445 
1446 // Various barriers
1447 
1448 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1449                                bool do_load, bool patch, CodeEmitInfo* info) {
1450   // Do the pre-write barrier, if any.
1451   switch (_bs->kind()) {
1452 #if INCLUDE_ALL_GCS
1453     case BarrierSet::G1SATBCTLogging:
1454       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1455       break;
1456 #endif // INCLUDE_ALL_GCS
1457     case BarrierSet::CardTableForRS:
1458     case BarrierSet::CardTableExtension:
1459       // No pre barriers
1460       break;
1461     case BarrierSet::ModRef:
1462       // No pre barriers
1463       break;
1464     default      :
1465       ShouldNotReachHere();
1466 
1467   }
1468 }
1469 
1470 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1471   switch (_bs->kind()) {
1472 #if INCLUDE_ALL_GCS
1473     case BarrierSet::G1SATBCTLogging:
1474       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1475       break;
1476 #endif // INCLUDE_ALL_GCS
1477     case BarrierSet::CardTableForRS:
1478     case BarrierSet::CardTableExtension:
1479       CardTableModRef_post_barrier(addr,  new_val);
1480       break;
1481     case BarrierSet::ModRef:
1482       // No post barriers
1483       break;
1484     default      :
1485       ShouldNotReachHere();
1486     }
1487 }
1488 
1489 ////////////////////////////////////////////////////////////////////////
1490 #if INCLUDE_ALL_GCS
1491 
1492 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1493                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1494   // First we test whether marking is in progress.
1495   BasicType flag_type;
1496   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1497     flag_type = T_INT;
1498   } else {
1499     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
1500               "Assumption");
1501     // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1502     // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1503     flag_type = T_BOOLEAN;
1504   }
1505   LIR_Opr thrd = getThreadPointer();
1506   LIR_Address* mark_active_flag_addr =
1507     new LIR_Address(thrd,
1508                     in_bytes(JavaThread::satb_mark_queue_offset() +
1509                              SATBMarkQueue::byte_offset_of_active()),
1510                     flag_type);
1511   // Read the marking-in-progress flag.
1512   LIR_Opr flag_val = new_register(T_INT);
1513   __ load(mark_active_flag_addr, flag_val);
1514   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1515 
1516   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1517 
1518   CodeStub* slow;
1519 
1520   if (do_load) {
1521     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1522     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1523 
1524     if (patch)
1525       pre_val_patch_code = lir_patch_normal;
1526 
1527     pre_val = new_register(T_OBJECT);
1528 
1529     if (!addr_opr->is_address()) {
1530       assert(addr_opr->is_register(), "must be");
1531       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1532     }
1533     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1534   } else {
1535     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1536     assert(pre_val->is_register(), "must be");
1537     assert(pre_val->type() == T_OBJECT, "must be an object");
1538     assert(info == NULL, "sanity");
1539 
1540     slow = new G1PreBarrierStub(pre_val);
1541   }
1542 
1543   __ branch(lir_cond_notEqual, T_INT, slow);
1544   __ branch_destination(slow->continuation());
1545 }
1546 
1547 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1548   // If the "new_val" is a constant NULL, no barrier is necessary.
1549   if (new_val->is_constant() &&
1550       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1551 
1552   if (!new_val->is_register()) {
1553     LIR_Opr new_val_reg = new_register(T_OBJECT);
1554     if (new_val->is_constant()) {
1555       __ move(new_val, new_val_reg);
1556     } else {
1557       __ leal(new_val, new_val_reg);
1558     }
1559     new_val = new_val_reg;
1560   }
1561   assert(new_val->is_register(), "must be a register at this point");
1562 
1563   if (addr->is_address()) {
1564     LIR_Address* address = addr->as_address_ptr();
1565     LIR_Opr ptr = new_pointer_register();
1566     if (!address->index()->is_valid() && address->disp() == 0) {
1567       __ move(address->base(), ptr);
1568     } else {
1569       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1570       __ leal(addr, ptr);
1571     }
1572     addr = ptr;
1573   }
1574   assert(addr->is_register(), "must be a register at this point");
1575 
1576   LIR_Opr xor_res = new_pointer_register();
1577   LIR_Opr xor_shift_res = new_pointer_register();
1578   if (TwoOperandLIRForm ) {
1579     __ move(addr, xor_res);
1580     __ logical_xor(xor_res, new_val, xor_res);
1581     __ move(xor_res, xor_shift_res);
1582     __ unsigned_shift_right(xor_shift_res,
1583                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1584                             xor_shift_res,
1585                             LIR_OprDesc::illegalOpr());
1586   } else {
1587     __ logical_xor(addr, new_val, xor_res);
1588     __ unsigned_shift_right(xor_res,
1589                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1590                             xor_shift_res,
1591                             LIR_OprDesc::illegalOpr());
1592   }
1593 
1594   if (!new_val->is_register()) {
1595     LIR_Opr new_val_reg = new_register(T_OBJECT);
1596     __ leal(new_val, new_val_reg);
1597     new_val = new_val_reg;
1598   }
1599   assert(new_val->is_register(), "must be a register at this point");
1600 
1601   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1602 
1603   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1604   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1605   __ branch_destination(slow->continuation());
1606 }
1607 
1608 #endif // INCLUDE_ALL_GCS
1609 ////////////////////////////////////////////////////////////////////////
1610 
1611 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1612   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
1613   assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
1614   LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
1615   if (addr->is_address()) {
1616     LIR_Address* address = addr->as_address_ptr();
1617     // ptr cannot be an object because we use this barrier for array card marks
1618     // and addr can point in the middle of an array.
1619     LIR_Opr ptr = new_pointer_register();
1620     if (!address->index()->is_valid() && address->disp() == 0) {
1621       __ move(address->base(), ptr);
1622     } else {
1623       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1624       __ leal(addr, ptr);
1625     }
1626     addr = ptr;
1627   }
1628   assert(addr->is_register(), "must be a register at this point");
1629 
1630 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1631   CardTableModRef_post_barrier_helper(addr, card_table_base);
1632 #else
1633   LIR_Opr tmp = new_pointer_register();
1634   if (TwoOperandLIRForm) {
1635     __ move(addr, tmp);
1636     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1637   } else {
1638     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1639   }
1640 
1641   LIR_Address* card_addr;
1642   if (can_inline_as_constant(card_table_base)) {
1643     card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1644   } else {
1645     card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1646   }
1647 
1648   LIR_Opr dirty = LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val());
1649   if (UseCondCardMark) {
1650     LIR_Opr cur_value = new_register(T_INT);
1651     if (UseConcMarkSweepGC) {
1652       __ membar_storeload();
1653     }
1654     __ move(card_addr, cur_value);
1655 
1656     LabelObj* L_already_dirty = new LabelObj();
1657     __ cmp(lir_cond_equal, cur_value, dirty);
1658     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1659     __ move(dirty, card_addr);
1660     __ branch_destination(L_already_dirty->label());
1661   } else {
1662     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1663       __ membar_storestore();
1664     }
1665     __ move(dirty, card_addr);
1666   }
1667 #endif
1668 }
1669 
1670 
1671 //------------------------field access--------------------------------------
1672 
1673 // Comment copied form templateTable_i486.cpp
1674 // ----------------------------------------------------------------------------
1675 // Volatile variables demand their effects be made known to all CPU's in
1676 // order.  Store buffers on most chips allow reads & writes to reorder; the
1677 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1678 // memory barrier (i.e., it's not sufficient that the interpreter does not
1679 // reorder volatile references, the hardware also must not reorder them).
1680 //
1681 // According to the new Java Memory Model (JMM):
1682 // (1) All volatiles are serialized wrt to each other.
1683 // ALSO reads & writes act as aquire & release, so:
1684 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1685 // the read float up to before the read.  It's OK for non-volatile memory refs
1686 // that happen before the volatile read to float down below it.
1687 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1688 // that happen BEFORE the write float down to after the write.  It's OK for
1689 // non-volatile memory refs that happen after the volatile write to float up
1690 // before it.
1691 //
1692 // We only put in barriers around volatile refs (they are expensive), not
1693 // _between_ memory refs (that would require us to track the flavor of the
1694 // previous memory refs).  Requirements (2) and (3) require some barriers
1695 // before volatile stores and after volatile loads.  These nearly cover
1696 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1697 // case is placed after volatile-stores although it could just as well go
1698 // before volatile-loads.
1699 
1700 
1701 void LIRGenerator::do_StoreField(StoreField* x) {
1702   bool needs_patching = x->needs_patching();
1703   bool is_volatile = x->field()->is_volatile();
1704   BasicType field_type = x->field_type();
1705   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1706 
1707   CodeEmitInfo* info = NULL;
1708   if (needs_patching) {
1709     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1710     info = state_for(x, x->state_before());
1711   } else if (x->needs_null_check()) {
1712     NullCheck* nc = x->explicit_null_check();
1713     if (nc == NULL) {
1714       info = state_for(x);
1715     } else {
1716       info = state_for(nc);
1717     }
1718   }
1719 
1720 
1721   LIRItem object(x->obj(), this);
1722   LIRItem value(x->value(),  this);
1723 
1724   object.load_item();
1725 
1726   if (is_volatile || needs_patching) {
1727     // load item if field is volatile (fewer special cases for volatiles)
1728     // load item if field not initialized
1729     // load item if field not constant
1730     // because of code patching we cannot inline constants
1731     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1732       value.load_byte_item();
1733     } else  {
1734       value.load_item();
1735     }
1736   } else {
1737     value.load_for_store(field_type);
1738   }
1739 
1740   set_no_result(x);
1741 
1742 #ifndef PRODUCT
1743   if (PrintNotLoaded && needs_patching) {
1744     tty->print_cr("   ###class not loaded at store_%s bci %d",
1745                   x->is_static() ?  "static" : "field", x->printable_bci());
1746   }
1747 #endif
1748 
1749   if (x->needs_null_check() &&
1750       (needs_patching ||
1751        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1752     // emit an explicit null check because the offset is too large
1753     __ null_check(object.result(), new CodeEmitInfo(info));
1754   }
1755 
1756   LIR_Address* address;
1757   if (needs_patching) {
1758     // we need to patch the offset in the instruction so don't allow
1759     // generate_address to try to be smart about emitting the -1.
1760     // Otherwise the patching code won't know how to find the
1761     // instruction to patch.
1762     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1763   } else {
1764     address = generate_address(object.result(), x->offset(), field_type);
1765   }
1766 
1767   if (is_volatile && os::is_MP()) {
1768     __ membar_release();
1769   }
1770 
1771   if (is_oop) {
1772     // Do the pre-write barrier, if any.
1773     pre_barrier(LIR_OprFact::address(address),
1774                 LIR_OprFact::illegalOpr /* pre_val */,
1775                 true /* do_load*/,
1776                 needs_patching,
1777                 (info ? new CodeEmitInfo(info) : NULL));
1778   }
1779 
1780   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1781   if (needs_atomic_access && !needs_patching) {
1782     volatile_field_store(value.result(), address, info);
1783   } else {
1784     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1785     __ store(value.result(), address, info, patch_code);
1786   }
1787 
1788   if (is_oop) {
1789     // Store to object so mark the card of the header
1790     post_barrier(object.result(), value.result());
1791   }
1792 
1793   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1794     __ membar();
1795   }
1796 }
1797 
1798 
1799 void LIRGenerator::do_LoadField(LoadField* x) {
1800   bool needs_patching = x->needs_patching();
1801   bool is_volatile = x->field()->is_volatile();
1802   BasicType field_type = x->field_type();
1803 
1804   CodeEmitInfo* info = NULL;
1805   if (needs_patching) {
1806     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1807     info = state_for(x, x->state_before());
1808   } else if (x->needs_null_check()) {
1809     NullCheck* nc = x->explicit_null_check();
1810     if (nc == NULL) {
1811       info = state_for(x);
1812     } else {
1813       info = state_for(nc);
1814     }
1815   }
1816 
1817   LIRItem object(x->obj(), this);
1818 
1819   object.load_item();
1820 
1821 #ifndef PRODUCT
1822   if (PrintNotLoaded && needs_patching) {
1823     tty->print_cr("   ###class not loaded at load_%s bci %d",
1824                   x->is_static() ?  "static" : "field", x->printable_bci());
1825   }
1826 #endif
1827 
1828   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1829   if (x->needs_null_check() &&
1830       (needs_patching ||
1831        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1832        stress_deopt)) {
1833     LIR_Opr obj = object.result();
1834     if (stress_deopt) {
1835       obj = new_register(T_OBJECT);
1836       __ move(LIR_OprFact::oopConst(NULL), obj);
1837     }
1838     // emit an explicit null check because the offset is too large
1839     __ null_check(obj, new CodeEmitInfo(info));
1840   }
1841 
1842   LIR_Opr reg = rlock_result(x, field_type);
1843   LIR_Address* address;
1844   if (needs_patching) {
1845     // we need to patch the offset in the instruction so don't allow
1846     // generate_address to try to be smart about emitting the -1.
1847     // Otherwise the patching code won't know how to find the
1848     // instruction to patch.
1849     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1850   } else {
1851     address = generate_address(object.result(), x->offset(), field_type);
1852   }
1853 
1854   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1855     __ membar();
1856   }
1857 
1858   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1859   if (needs_atomic_access && !needs_patching) {
1860     volatile_field_load(address, reg, info);
1861   } else {
1862     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1863     __ load(address, reg, info, patch_code);
1864   }
1865 
1866   if (is_volatile && os::is_MP()) {
1867     __ membar_acquire();
1868   }
1869 }
1870 
1871 
1872 //------------------------java.nio.Buffer.checkIndex------------------------
1873 
1874 // int java.nio.Buffer.checkIndex(int)
1875 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1876   // NOTE: by the time we are in checkIndex() we are guaranteed that
1877   // the buffer is non-null (because checkIndex is package-private and
1878   // only called from within other methods in the buffer).
1879   assert(x->number_of_arguments() == 2, "wrong type");
1880   LIRItem buf  (x->argument_at(0), this);
1881   LIRItem index(x->argument_at(1), this);
1882   buf.load_item();
1883   index.load_item();
1884 
1885   LIR_Opr result = rlock_result(x);
1886   if (GenerateRangeChecks) {
1887     CodeEmitInfo* info = state_for(x);
1888     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1889     if (index.result()->is_constant()) {
1890       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1891       __ branch(lir_cond_belowEqual, T_INT, stub);
1892     } else {
1893       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1894                   java_nio_Buffer::limit_offset(), T_INT, info);
1895       __ branch(lir_cond_aboveEqual, T_INT, stub);
1896     }
1897     __ move(index.result(), result);
1898   } else {
1899     // Just load the index into the result register
1900     __ move(index.result(), result);
1901   }
1902 }
1903 
1904 
1905 //------------------------array access--------------------------------------
1906 
1907 
1908 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1909   LIRItem array(x->array(), this);
1910   array.load_item();
1911   LIR_Opr reg = rlock_result(x);
1912 
1913   CodeEmitInfo* info = NULL;
1914   if (x->needs_null_check()) {
1915     NullCheck* nc = x->explicit_null_check();
1916     if (nc == NULL) {
1917       info = state_for(x);
1918     } else {
1919       info = state_for(nc);
1920     }
1921     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1922       LIR_Opr obj = new_register(T_OBJECT);
1923       __ move(LIR_OprFact::oopConst(NULL), obj);
1924       __ null_check(obj, new CodeEmitInfo(info));
1925     }
1926   }
1927   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1928 }
1929 
1930 
1931 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1932   bool use_length = x->length() != NULL;
1933   LIRItem array(x->array(), this);
1934   LIRItem index(x->index(), this);
1935   LIRItem length(this);
1936   bool needs_range_check = x->compute_needs_range_check();
1937 
1938   if (use_length && needs_range_check) {
1939     length.set_instruction(x->length());
1940     length.load_item();
1941   }
1942 
1943   array.load_item();
1944   if (index.is_constant() && can_inline_as_constant(x->index())) {
1945     // let it be a constant
1946     index.dont_load_item();
1947   } else {
1948     index.load_item();
1949   }
1950 
1951   CodeEmitInfo* range_check_info = state_for(x);
1952   CodeEmitInfo* null_check_info = NULL;
1953   if (x->needs_null_check()) {
1954     NullCheck* nc = x->explicit_null_check();
1955     if (nc != NULL) {
1956       null_check_info = state_for(nc);
1957     } else {
1958       null_check_info = range_check_info;
1959     }
1960     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1961       LIR_Opr obj = new_register(T_OBJECT);
1962       __ move(LIR_OprFact::oopConst(NULL), obj);
1963       __ null_check(obj, new CodeEmitInfo(null_check_info));
1964     }
1965   }
1966 
1967   // emit array address setup early so it schedules better
1968   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1969 
1970   if (GenerateRangeChecks && needs_range_check) {
1971     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1972       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1973     } else if (use_length) {
1974       // TODO: use a (modified) version of array_range_check that does not require a
1975       //       constant length to be loaded to a register
1976       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1977       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1978     } else {
1979       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1980       // The range check performs the null check, so clear it out for the load
1981       null_check_info = NULL;
1982     }
1983   }
1984 
1985   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1986 }
1987 
1988 
1989 void LIRGenerator::do_NullCheck(NullCheck* x) {
1990   if (x->can_trap()) {
1991     LIRItem value(x->obj(), this);
1992     value.load_item();
1993     CodeEmitInfo* info = state_for(x);
1994     __ null_check(value.result(), info);
1995   }
1996 }
1997 
1998 
1999 void LIRGenerator::do_TypeCast(TypeCast* x) {
2000   LIRItem value(x->obj(), this);
2001   value.load_item();
2002   // the result is the same as from the node we are casting
2003   set_result(x, value.result());
2004 }
2005 
2006 
2007 void LIRGenerator::do_Throw(Throw* x) {
2008   LIRItem exception(x->exception(), this);
2009   exception.load_item();
2010   set_no_result(x);
2011   LIR_Opr exception_opr = exception.result();
2012   CodeEmitInfo* info = state_for(x, x->state());
2013 
2014 #ifndef PRODUCT
2015   if (PrintC1Statistics) {
2016     increment_counter(Runtime1::throw_count_address(), T_INT);
2017   }
2018 #endif
2019 
2020   // check if the instruction has an xhandler in any of the nested scopes
2021   bool unwind = false;
2022   if (info->exception_handlers()->length() == 0) {
2023     // this throw is not inside an xhandler
2024     unwind = true;
2025   } else {
2026     // get some idea of the throw type
2027     bool type_is_exact = true;
2028     ciType* throw_type = x->exception()->exact_type();
2029     if (throw_type == NULL) {
2030       type_is_exact = false;
2031       throw_type = x->exception()->declared_type();
2032     }
2033     if (throw_type != NULL && throw_type->is_instance_klass()) {
2034       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2035       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2036     }
2037   }
2038 
2039   // do null check before moving exception oop into fixed register
2040   // to avoid a fixed interval with an oop during the null check.
2041   // Use a copy of the CodeEmitInfo because debug information is
2042   // different for null_check and throw.
2043   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2044     // if the exception object wasn't created using new then it might be null.
2045     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2046   }
2047 
2048   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2049     // we need to go through the exception lookup path to get JVMTI
2050     // notification done
2051     unwind = false;
2052   }
2053 
2054   // move exception oop into fixed register
2055   __ move(exception_opr, exceptionOopOpr());
2056 
2057   if (unwind) {
2058     __ unwind_exception(exceptionOopOpr());
2059   } else {
2060     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2061   }
2062 }
2063 
2064 
2065 void LIRGenerator::do_RoundFP(RoundFP* x) {
2066   LIRItem input(x->input(), this);
2067   input.load_item();
2068   LIR_Opr input_opr = input.result();
2069   assert(input_opr->is_register(), "why round if value is not in a register?");
2070   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2071   if (input_opr->is_single_fpu()) {
2072     set_result(x, round_item(input_opr)); // This code path not currently taken
2073   } else {
2074     LIR_Opr result = new_register(T_DOUBLE);
2075     set_vreg_flag(result, must_start_in_memory);
2076     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2077     set_result(x, result);
2078   }
2079 }
2080 
2081 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2082 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2083 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2084   LIRItem base(x->base(), this);
2085   LIRItem idx(this);
2086 
2087   base.load_item();
2088   if (x->has_index()) {
2089     idx.set_instruction(x->index());
2090     idx.load_nonconstant();
2091   }
2092 
2093   LIR_Opr reg = rlock_result(x, x->basic_type());
2094 
2095   int   log2_scale = 0;
2096   if (x->has_index()) {
2097     log2_scale = x->log2_scale();
2098   }
2099 
2100   assert(!x->has_index() || idx.value() == x->index(), "should match");
2101 
2102   LIR_Opr base_op = base.result();
2103   LIR_Opr index_op = idx.result();
2104 #ifndef _LP64
2105   if (base_op->type() == T_LONG) {
2106     base_op = new_register(T_INT);
2107     __ convert(Bytecodes::_l2i, base.result(), base_op);
2108   }
2109   if (x->has_index()) {
2110     if (index_op->type() == T_LONG) {
2111       LIR_Opr long_index_op = index_op;
2112       if (index_op->is_constant()) {
2113         long_index_op = new_register(T_LONG);
2114         __ move(index_op, long_index_op);
2115       }
2116       index_op = new_register(T_INT);
2117       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2118     } else {
2119       assert(x->index()->type()->tag() == intTag, "must be");
2120     }
2121   }
2122   // At this point base and index should be all ints.
2123   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2124   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2125 #else
2126   if (x->has_index()) {
2127     if (index_op->type() == T_INT) {
2128       if (!index_op->is_constant()) {
2129         index_op = new_register(T_LONG);
2130         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2131       }
2132     } else {
2133       assert(index_op->type() == T_LONG, "must be");
2134       if (index_op->is_constant()) {
2135         index_op = new_register(T_LONG);
2136         __ move(idx.result(), index_op);
2137       }
2138     }
2139   }
2140   // At this point base is a long non-constant
2141   // Index is a long register or a int constant.
2142   // We allow the constant to stay an int because that would allow us a more compact encoding by
2143   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2144   // move it into a register first.
2145   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2146   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2147                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2148 #endif
2149 
2150   BasicType dst_type = x->basic_type();
2151 
2152   LIR_Address* addr;
2153   if (index_op->is_constant()) {
2154     assert(log2_scale == 0, "must not have a scale");
2155     assert(index_op->type() == T_INT, "only int constants supported");
2156     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2157   } else {
2158 #ifdef X86
2159     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2160 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2161     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2162 #else
2163     if (index_op->is_illegal() || log2_scale == 0) {
2164       addr = new LIR_Address(base_op, index_op, dst_type);
2165     } else {
2166       LIR_Opr tmp = new_pointer_register();
2167       __ shift_left(index_op, log2_scale, tmp);
2168       addr = new LIR_Address(base_op, tmp, dst_type);
2169     }
2170 #endif
2171   }
2172 
2173   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2174     __ unaligned_move(addr, reg);
2175   } else {
2176     if (dst_type == T_OBJECT && x->is_wide()) {
2177       __ move_wide(addr, reg);
2178     } else {
2179       __ move(addr, reg);
2180     }
2181   }
2182 }
2183 
2184 
2185 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2186   int  log2_scale = 0;
2187   BasicType type = x->basic_type();
2188 
2189   if (x->has_index()) {
2190     log2_scale = x->log2_scale();
2191   }
2192 
2193   LIRItem base(x->base(), this);
2194   LIRItem value(x->value(), this);
2195   LIRItem idx(this);
2196 
2197   base.load_item();
2198   if (x->has_index()) {
2199     idx.set_instruction(x->index());
2200     idx.load_item();
2201   }
2202 
2203   if (type == T_BYTE || type == T_BOOLEAN) {
2204     value.load_byte_item();
2205   } else {
2206     value.load_item();
2207   }
2208 
2209   set_no_result(x);
2210 
2211   LIR_Opr base_op = base.result();
2212   LIR_Opr index_op = idx.result();
2213 
2214 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2215   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2216 #else
2217 #ifndef _LP64
2218   if (base_op->type() == T_LONG) {
2219     base_op = new_register(T_INT);
2220     __ convert(Bytecodes::_l2i, base.result(), base_op);
2221   }
2222   if (x->has_index()) {
2223     if (index_op->type() == T_LONG) {
2224       index_op = new_register(T_INT);
2225       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2226     }
2227   }
2228   // At this point base and index should be all ints and not constants
2229   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2230   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2231 #else
2232   if (x->has_index()) {
2233     if (index_op->type() == T_INT) {
2234       index_op = new_register(T_LONG);
2235       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2236     }
2237   }
2238   // At this point base and index are long and non-constant
2239   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2240   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2241 #endif
2242 
2243   if (log2_scale != 0) {
2244     // temporary fix (platform dependent code without shift on Intel would be better)
2245     // TODO: ARM also allows embedded shift in the address
2246     LIR_Opr tmp = new_pointer_register();
2247     if (TwoOperandLIRForm) {
2248       __ move(index_op, tmp);
2249       index_op = tmp;
2250     }
2251     __ shift_left(index_op, log2_scale, tmp);
2252     if (!TwoOperandLIRForm) {
2253       index_op = tmp;
2254     }
2255   }
2256 
2257   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2258 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2259   __ move(value.result(), addr);
2260 }
2261 
2262 
2263 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2264   BasicType type = x->basic_type();
2265   LIRItem src(x->object(), this);
2266   LIRItem off(x->offset(), this);
2267 
2268   off.load_item();
2269   src.load_item();
2270 
2271   LIR_Opr value = rlock_result(x, x->basic_type());
2272 
2273   if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
2274     __ membar();
2275   }
2276 
2277   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2278 
2279 #if INCLUDE_ALL_GCS
2280   // We might be reading the value of the referent field of a
2281   // Reference object in order to attach it back to the live
2282   // object graph. If G1 is enabled then we need to record
2283   // the value that is being returned in an SATB log buffer.
2284   //
2285   // We need to generate code similar to the following...
2286   //
2287   // if (offset == java_lang_ref_Reference::referent_offset) {
2288   //   if (src != NULL) {
2289   //     if (klass(src)->reference_type() != REF_NONE) {
2290   //       pre_barrier(..., value, ...);
2291   //     }
2292   //   }
2293   // }
2294 
2295   if (UseG1GC && type == T_OBJECT) {
2296     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2297     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2298     bool gen_source_check = true;    // Assume we need to check the src object for null.
2299     bool gen_type_check = true;      // Assume we need to check the reference_type.
2300 
2301     if (off.is_constant()) {
2302       jlong off_con = (off.type()->is_int() ?
2303                         (jlong) off.get_jint_constant() :
2304                         off.get_jlong_constant());
2305 
2306 
2307       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2308         // The constant offset is something other than referent_offset.
2309         // We can skip generating/checking the remaining guards and
2310         // skip generation of the code stub.
2311         gen_pre_barrier = false;
2312       } else {
2313         // The constant offset is the same as referent_offset -
2314         // we do not need to generate a runtime offset check.
2315         gen_offset_check = false;
2316       }
2317     }
2318 
2319     // We don't need to generate stub if the source object is an array
2320     if (gen_pre_barrier && src.type()->is_array()) {
2321       gen_pre_barrier = false;
2322     }
2323 
2324     if (gen_pre_barrier) {
2325       // We still need to continue with the checks.
2326       if (src.is_constant()) {
2327         ciObject* src_con = src.get_jobject_constant();
2328         guarantee(src_con != NULL, "no source constant");
2329 
2330         if (src_con->is_null_object()) {
2331           // The constant src object is null - We can skip
2332           // generating the code stub.
2333           gen_pre_barrier = false;
2334         } else {
2335           // Non-null constant source object. We still have to generate
2336           // the slow stub - but we don't need to generate the runtime
2337           // null object check.
2338           gen_source_check = false;
2339         }
2340       }
2341     }
2342     if (gen_pre_barrier && !PatchALot) {
2343       // Can the klass of object be statically determined to be
2344       // a sub-class of Reference?
2345       ciType* type = src.value()->declared_type();
2346       if ((type != NULL) && type->is_loaded()) {
2347         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2348           gen_type_check = false;
2349         } else if (type->is_klass() &&
2350                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2351           // Not Reference and not Object klass.
2352           gen_pre_barrier = false;
2353         }
2354       }
2355     }
2356 
2357     if (gen_pre_barrier) {
2358       LabelObj* Lcont = new LabelObj();
2359 
2360       // We can have generate one runtime check here. Let's start with
2361       // the offset check.
2362       if (gen_offset_check) {
2363         // if (offset != referent_offset) -> continue
2364         // If offset is an int then we can do the comparison with the
2365         // referent_offset constant; otherwise we need to move
2366         // referent_offset into a temporary register and generate
2367         // a reg-reg compare.
2368 
2369         LIR_Opr referent_off;
2370 
2371         if (off.type()->is_int()) {
2372           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2373         } else {
2374           assert(off.type()->is_long(), "what else?");
2375           referent_off = new_register(T_LONG);
2376           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2377         }
2378         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2379         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2380       }
2381       if (gen_source_check) {
2382         // offset is a const and equals referent offset
2383         // if (source == null) -> continue
2384         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2385         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2386       }
2387       LIR_Opr src_klass = new_register(T_OBJECT);
2388       if (gen_type_check) {
2389         // We have determined that offset == referent_offset && src != null.
2390         // if (src->_klass->_reference_type == REF_NONE) -> continue
2391         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2392         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2393         LIR_Opr reference_type = new_register(T_INT);
2394         __ move(reference_type_addr, reference_type);
2395         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2396         __ branch(lir_cond_equal, T_INT, Lcont->label());
2397       }
2398       {
2399         // We have determined that src->_klass->_reference_type != REF_NONE
2400         // so register the value in the referent field with the pre-barrier.
2401         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2402                     value  /* pre_val */,
2403                     false  /* do_load */,
2404                     false  /* patch */,
2405                     NULL   /* info */);
2406       }
2407       __ branch_destination(Lcont->label());
2408     }
2409   }
2410 #endif // INCLUDE_ALL_GCS
2411 
2412   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2413 }
2414 
2415 
2416 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2417   BasicType type = x->basic_type();
2418   LIRItem src(x->object(), this);
2419   LIRItem off(x->offset(), this);
2420   LIRItem data(x->value(), this);
2421 
2422   src.load_item();
2423   if (type == T_BOOLEAN || type == T_BYTE) {
2424     data.load_byte_item();
2425   } else {
2426     data.load_item();
2427   }
2428   off.load_item();
2429 
2430   set_no_result(x);
2431 
2432   if (x->is_volatile() && os::is_MP()) __ membar_release();
2433   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2434   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
2435 }
2436 
2437 
2438 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2439   int lng = x->length();
2440 
2441   for (int i = 0; i < lng; i++) {
2442     SwitchRange* one_range = x->at(i);
2443     int low_key = one_range->low_key();
2444     int high_key = one_range->high_key();
2445     BlockBegin* dest = one_range->sux();
2446     if (low_key == high_key) {
2447       __ cmp(lir_cond_equal, value, low_key);
2448       __ branch(lir_cond_equal, T_INT, dest);
2449     } else if (high_key - low_key == 1) {
2450       __ cmp(lir_cond_equal, value, low_key);
2451       __ branch(lir_cond_equal, T_INT, dest);
2452       __ cmp(lir_cond_equal, value, high_key);
2453       __ branch(lir_cond_equal, T_INT, dest);
2454     } else {
2455       LabelObj* L = new LabelObj();
2456       __ cmp(lir_cond_less, value, low_key);
2457       __ branch(lir_cond_less, T_INT, L->label());
2458       __ cmp(lir_cond_lessEqual, value, high_key);
2459       __ branch(lir_cond_lessEqual, T_INT, dest);
2460       __ branch_destination(L->label());
2461     }
2462   }
2463   __ jump(default_sux);
2464 }
2465 
2466 
2467 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2468   SwitchRangeList* res = new SwitchRangeList();
2469   int len = x->length();
2470   if (len > 0) {
2471     BlockBegin* sux = x->sux_at(0);
2472     int key = x->lo_key();
2473     BlockBegin* default_sux = x->default_sux();
2474     SwitchRange* range = new SwitchRange(key, sux);
2475     for (int i = 0; i < len; i++, key++) {
2476       BlockBegin* new_sux = x->sux_at(i);
2477       if (sux == new_sux) {
2478         // still in same range
2479         range->set_high_key(key);
2480       } else {
2481         // skip tests which explicitly dispatch to the default
2482         if (sux != default_sux) {
2483           res->append(range);
2484         }
2485         range = new SwitchRange(key, new_sux);
2486       }
2487       sux = new_sux;
2488     }
2489     if (res->length() == 0 || res->last() != range)  res->append(range);
2490   }
2491   return res;
2492 }
2493 
2494 
2495 // we expect the keys to be sorted by increasing value
2496 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2497   SwitchRangeList* res = new SwitchRangeList();
2498   int len = x->length();
2499   if (len > 0) {
2500     BlockBegin* default_sux = x->default_sux();
2501     int key = x->key_at(0);
2502     BlockBegin* sux = x->sux_at(0);
2503     SwitchRange* range = new SwitchRange(key, sux);
2504     for (int i = 1; i < len; i++) {
2505       int new_key = x->key_at(i);
2506       BlockBegin* new_sux = x->sux_at(i);
2507       if (key+1 == new_key && sux == new_sux) {
2508         // still in same range
2509         range->set_high_key(new_key);
2510       } else {
2511         // skip tests which explicitly dispatch to the default
2512         if (range->sux() != default_sux) {
2513           res->append(range);
2514         }
2515         range = new SwitchRange(new_key, new_sux);
2516       }
2517       key = new_key;
2518       sux = new_sux;
2519     }
2520     if (res->length() == 0 || res->last() != range)  res->append(range);
2521   }
2522   return res;
2523 }
2524 
2525 
2526 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2527   LIRItem tag(x->tag(), this);
2528   tag.load_item();
2529   set_no_result(x);
2530 
2531   if (x->is_safepoint()) {
2532     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2533   }
2534 
2535   // move values into phi locations
2536   move_to_phi(x->state());
2537 
2538   int lo_key = x->lo_key();
2539   int hi_key = x->hi_key();
2540   int len = x->length();
2541   LIR_Opr value = tag.result();
2542   if (UseTableRanges) {
2543     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2544   } else {
2545     for (int i = 0; i < len; i++) {
2546       __ cmp(lir_cond_equal, value, i + lo_key);
2547       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2548     }
2549     __ jump(x->default_sux());
2550   }
2551 }
2552 
2553 
2554 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2555   LIRItem tag(x->tag(), this);
2556   tag.load_item();
2557   set_no_result(x);
2558 
2559   if (x->is_safepoint()) {
2560     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2561   }
2562 
2563   // move values into phi locations
2564   move_to_phi(x->state());
2565 
2566   LIR_Opr value = tag.result();
2567   if (UseTableRanges) {
2568     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2569   } else {
2570     int len = x->length();
2571     for (int i = 0; i < len; i++) {
2572       __ cmp(lir_cond_equal, value, x->key_at(i));
2573       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2574     }
2575     __ jump(x->default_sux());
2576   }
2577 }
2578 
2579 
2580 void LIRGenerator::do_Goto(Goto* x) {
2581   set_no_result(x);
2582 
2583   if (block()->next()->as_OsrEntry()) {
2584     // need to free up storage used for OSR entry point
2585     LIR_Opr osrBuffer = block()->next()->operand();
2586     BasicTypeList signature;
2587     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2588     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2589     __ move(osrBuffer, cc->args()->at(0));
2590     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2591                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2592   }
2593 
2594   if (x->is_safepoint()) {
2595     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2596 
2597     // increment backedge counter if needed
2598     CodeEmitInfo* info = state_for(x, state);
2599     increment_backedge_counter(info, x->profiled_bci());
2600     CodeEmitInfo* safepoint_info = state_for(x, state);
2601     __ safepoint(safepoint_poll_register(), safepoint_info);
2602   }
2603 
2604   // Gotos can be folded Ifs, handle this case.
2605   if (x->should_profile()) {
2606     ciMethod* method = x->profiled_method();
2607     assert(method != NULL, "method should be set if branch is profiled");
2608     ciMethodData* md = method->method_data_or_null();
2609     assert(md != NULL, "Sanity");
2610     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2611     assert(data != NULL, "must have profiling data");
2612     int offset;
2613     if (x->direction() == Goto::taken) {
2614       assert(data->is_BranchData(), "need BranchData for two-way branches");
2615       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2616     } else if (x->direction() == Goto::not_taken) {
2617       assert(data->is_BranchData(), "need BranchData for two-way branches");
2618       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2619     } else {
2620       assert(data->is_JumpData(), "need JumpData for branches");
2621       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2622     }
2623     LIR_Opr md_reg = new_register(T_METADATA);
2624     __ metadata2reg(md->constant_encoding(), md_reg);
2625 
2626     increment_counter(new LIR_Address(md_reg, offset,
2627                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2628   }
2629 
2630   // emit phi-instruction move after safepoint since this simplifies
2631   // describing the state as the safepoint.
2632   move_to_phi(x->state());
2633 
2634   __ jump(x->default_sux());
2635 }
2636 
2637 /**
2638  * Emit profiling code if needed for arguments, parameters, return value types
2639  *
2640  * @param md                    MDO the code will update at runtime
2641  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2642  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2643  * @param profiled_k            current profile
2644  * @param obj                   IR node for the object to be profiled
2645  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2646  *                              Set once we find an update to make and use for next ones.
2647  * @param not_null              true if we know obj cannot be null
2648  * @param signature_at_call_k   signature at call for obj
2649  * @param callee_signature_k    signature of callee for obj
2650  *                              at call and callee signatures differ at method handle call
2651  * @return                      the only klass we know will ever be seen at this profile point
2652  */
2653 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2654                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2655                                     ciKlass* callee_signature_k) {
2656   ciKlass* result = NULL;
2657   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2658   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2659   // known not to be null or null bit already set and already set to
2660   // unknown: nothing we can do to improve profiling
2661   if (!do_null && !do_update) {
2662     return result;
2663   }
2664 
2665   ciKlass* exact_klass = NULL;
2666   Compilation* comp = Compilation::current();
2667   if (do_update) {
2668     // try to find exact type, using CHA if possible, so that loading
2669     // the klass from the object can be avoided
2670     ciType* type = obj->exact_type();
2671     if (type == NULL) {
2672       type = obj->declared_type();
2673       type = comp->cha_exact_type(type);
2674     }
2675     assert(type == NULL || type->is_klass(), "type should be class");
2676     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2677 
2678     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2679   }
2680 
2681   if (!do_null && !do_update) {
2682     return result;
2683   }
2684 
2685   ciKlass* exact_signature_k = NULL;
2686   if (do_update) {
2687     // Is the type from the signature exact (the only one possible)?
2688     exact_signature_k = signature_at_call_k->exact_klass();
2689     if (exact_signature_k == NULL) {
2690       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2691     } else {
2692       result = exact_signature_k;
2693       // Known statically. No need to emit any code: prevent
2694       // LIR_Assembler::emit_profile_type() from emitting useless code
2695       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2696     }
2697     // exact_klass and exact_signature_k can be both non NULL but
2698     // different if exact_klass is loaded after the ciObject for
2699     // exact_signature_k is created.
2700     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2701       // sometimes the type of the signature is better than the best type
2702       // the compiler has
2703       exact_klass = exact_signature_k;
2704     }
2705     if (callee_signature_k != NULL &&
2706         callee_signature_k != signature_at_call_k) {
2707       ciKlass* improved_klass = callee_signature_k->exact_klass();
2708       if (improved_klass == NULL) {
2709         improved_klass = comp->cha_exact_type(callee_signature_k);
2710       }
2711       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2712         exact_klass = exact_signature_k;
2713       }
2714     }
2715     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2716   }
2717 
2718   if (!do_null && !do_update) {
2719     return result;
2720   }
2721 
2722   if (mdp == LIR_OprFact::illegalOpr) {
2723     mdp = new_register(T_METADATA);
2724     __ metadata2reg(md->constant_encoding(), mdp);
2725     if (md_base_offset != 0) {
2726       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2727       mdp = new_pointer_register();
2728       __ leal(LIR_OprFact::address(base_type_address), mdp);
2729     }
2730   }
2731   LIRItem value(obj, this);
2732   value.load_item();
2733   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2734                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2735   return result;
2736 }
2737 
2738 // profile parameters on entry to the root of the compilation
2739 void LIRGenerator::profile_parameters(Base* x) {
2740   if (compilation()->profile_parameters()) {
2741     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2742     ciMethodData* md = scope()->method()->method_data_or_null();
2743     assert(md != NULL, "Sanity");
2744 
2745     if (md->parameters_type_data() != NULL) {
2746       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2747       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2748       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2749       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2750         LIR_Opr src = args->at(i);
2751         assert(!src->is_illegal(), "check");
2752         BasicType t = src->type();
2753         if (t == T_OBJECT || t == T_ARRAY) {
2754           intptr_t profiled_k = parameters->type(j);
2755           Local* local = x->state()->local_at(java_index)->as_Local();
2756           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2757                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2758                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2759           // If the profile is known statically set it once for all and do not emit any code
2760           if (exact != NULL) {
2761             md->set_parameter_type(j, exact);
2762           }
2763           j++;
2764         }
2765         java_index += type2size[t];
2766       }
2767     }
2768   }
2769 }
2770 
2771 void LIRGenerator::do_Base(Base* x) {
2772   __ std_entry(LIR_OprFact::illegalOpr);
2773   // Emit moves from physical registers / stack slots to virtual registers
2774   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2775   IRScope* irScope = compilation()->hir()->top_scope();
2776   int java_index = 0;
2777   for (int i = 0; i < args->length(); i++) {
2778     LIR_Opr src = args->at(i);
2779     assert(!src->is_illegal(), "check");
2780     BasicType t = src->type();
2781 
2782     // Types which are smaller than int are passed as int, so
2783     // correct the type which passed.
2784     switch (t) {
2785     case T_BYTE:
2786     case T_BOOLEAN:
2787     case T_SHORT:
2788     case T_CHAR:
2789       t = T_INT;
2790       break;
2791     }
2792 
2793     LIR_Opr dest = new_register(t);
2794     __ move(src, dest);
2795 
2796     // Assign new location to Local instruction for this local
2797     Local* local = x->state()->local_at(java_index)->as_Local();
2798     assert(local != NULL, "Locals for incoming arguments must have been created");
2799 #ifndef __SOFTFP__
2800     // The java calling convention passes double as long and float as int.
2801     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2802 #endif // __SOFTFP__
2803     local->set_operand(dest);
2804     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2805     java_index += type2size[t];
2806   }
2807 
2808   if (compilation()->env()->dtrace_method_probes()) {
2809     BasicTypeList signature;
2810     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2811     signature.append(T_METADATA); // Method*
2812     LIR_OprList* args = new LIR_OprList();
2813     args->append(getThreadPointer());
2814     LIR_Opr meth = new_register(T_METADATA);
2815     __ metadata2reg(method()->constant_encoding(), meth);
2816     args->append(meth);
2817     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2818   }
2819 
2820   if (method()->is_synchronized()) {
2821     LIR_Opr obj;
2822     if (method()->is_static()) {
2823       obj = new_register(T_OBJECT);
2824       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2825     } else {
2826       Local* receiver = x->state()->local_at(0)->as_Local();
2827       assert(receiver != NULL, "must already exist");
2828       obj = receiver->operand();
2829     }
2830     assert(obj->is_valid(), "must be valid");
2831 
2832     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2833       LIR_Opr lock = syncLockOpr();
2834       __ load_stack_address_monitor(0, lock);
2835 
2836       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2837       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2838 
2839       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2840       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2841     }
2842   }
2843   if (compilation()->age_code()) {
2844     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2845     decrement_age(info);
2846   }
2847   // increment invocation counters if needed
2848   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2849     profile_parameters(x);
2850     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2851     increment_invocation_counter(info);
2852   }
2853 
2854   // all blocks with a successor must end with an unconditional jump
2855   // to the successor even if they are consecutive
2856   __ jump(x->default_sux());
2857 }
2858 
2859 
2860 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2861   // construct our frame and model the production of incoming pointer
2862   // to the OSR buffer.
2863   __ osr_entry(LIR_Assembler::osrBufferPointer());
2864   LIR_Opr result = rlock_result(x);
2865   __ move(LIR_Assembler::osrBufferPointer(), result);
2866 }
2867 
2868 
2869 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2870   assert(args->length() == arg_list->length(),
2871          "args=%d, arg_list=%d", args->length(), arg_list->length());
2872   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2873     LIRItem* param = args->at(i);
2874     LIR_Opr loc = arg_list->at(i);
2875     if (loc->is_register()) {
2876       param->load_item_force(loc);
2877     } else {
2878       LIR_Address* addr = loc->as_address_ptr();
2879       param->load_for_store(addr->type());
2880       if (addr->type() == T_OBJECT) {
2881         __ move_wide(param->result(), addr);
2882       } else
2883         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2884           __ unaligned_move(param->result(), addr);
2885         } else {
2886           __ move(param->result(), addr);
2887         }
2888     }
2889   }
2890 
2891   if (x->has_receiver()) {
2892     LIRItem* receiver = args->at(0);
2893     LIR_Opr loc = arg_list->at(0);
2894     if (loc->is_register()) {
2895       receiver->load_item_force(loc);
2896     } else {
2897       assert(loc->is_address(), "just checking");
2898       receiver->load_for_store(T_OBJECT);
2899       __ move_wide(receiver->result(), loc->as_address_ptr());
2900     }
2901   }
2902 }
2903 
2904 
2905 // Visits all arguments, returns appropriate items without loading them
2906 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2907   LIRItemList* argument_items = new LIRItemList();
2908   if (x->has_receiver()) {
2909     LIRItem* receiver = new LIRItem(x->receiver(), this);
2910     argument_items->append(receiver);
2911   }
2912   for (int i = 0; i < x->number_of_arguments(); i++) {
2913     LIRItem* param = new LIRItem(x->argument_at(i), this);
2914     argument_items->append(param);
2915   }
2916   return argument_items;
2917 }
2918 
2919 
2920 // The invoke with receiver has following phases:
2921 //   a) traverse and load/lock receiver;
2922 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2923 //   c) push receiver on stack
2924 //   d) load each of the items and push on stack
2925 //   e) unlock receiver
2926 //   f) move receiver into receiver-register %o0
2927 //   g) lock result registers and emit call operation
2928 //
2929 // Before issuing a call, we must spill-save all values on stack
2930 // that are in caller-save register. "spill-save" moves those registers
2931 // either in a free callee-save register or spills them if no free
2932 // callee save register is available.
2933 //
2934 // The problem is where to invoke spill-save.
2935 // - if invoked between e) and f), we may lock callee save
2936 //   register in "spill-save" that destroys the receiver register
2937 //   before f) is executed
2938 // - if we rearrange f) to be earlier (by loading %o0) it
2939 //   may destroy a value on the stack that is currently in %o0
2940 //   and is waiting to be spilled
2941 // - if we keep the receiver locked while doing spill-save,
2942 //   we cannot spill it as it is spill-locked
2943 //
2944 void LIRGenerator::do_Invoke(Invoke* x) {
2945   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2946 
2947   LIR_OprList* arg_list = cc->args();
2948   LIRItemList* args = invoke_visit_arguments(x);
2949   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2950 
2951   // setup result register
2952   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2953   if (x->type() != voidType) {
2954     result_register = result_register_for(x->type());
2955   }
2956 
2957   CodeEmitInfo* info = state_for(x, x->state());
2958 
2959   invoke_load_arguments(x, args, arg_list);
2960 
2961   if (x->has_receiver()) {
2962     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2963     receiver = args->at(0)->result();
2964   }
2965 
2966   // emit invoke code
2967   bool optimized = x->target_is_loaded() && x->target_is_final();
2968   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2969 
2970   // JSR 292
2971   // Preserve the SP over MethodHandle call sites, if needed.
2972   ciMethod* target = x->target();
2973   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2974                                   target->is_method_handle_intrinsic() ||
2975                                   target->is_compiled_lambda_form());
2976   if (is_method_handle_invoke) {
2977     info->set_is_method_handle_invoke(true);
2978     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2979         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2980     }
2981   }
2982 
2983   switch (x->code()) {
2984     case Bytecodes::_invokestatic:
2985       __ call_static(target, result_register,
2986                      SharedRuntime::get_resolve_static_call_stub(),
2987                      arg_list, info);
2988       break;
2989     case Bytecodes::_invokespecial:
2990     case Bytecodes::_invokevirtual:
2991     case Bytecodes::_invokeinterface:
2992       // for final target we still produce an inline cache, in order
2993       // to be able to call mixed mode
2994       if (x->code() == Bytecodes::_invokespecial || optimized) {
2995         __ call_opt_virtual(target, receiver, result_register,
2996                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2997                             arg_list, info);
2998       } else if (x->vtable_index() < 0) {
2999         __ call_icvirtual(target, receiver, result_register,
3000                           SharedRuntime::get_resolve_virtual_call_stub(),
3001                           arg_list, info);
3002       } else {
3003         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3004         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3005         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3006       }
3007       break;
3008     case Bytecodes::_invokedynamic: {
3009       __ call_dynamic(target, receiver, result_register,
3010                       SharedRuntime::get_resolve_static_call_stub(),
3011                       arg_list, info);
3012       break;
3013     }
3014     default:
3015       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3016       break;
3017   }
3018 
3019   // JSR 292
3020   // Restore the SP after MethodHandle call sites, if needed.
3021   if (is_method_handle_invoke
3022       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3023     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3024   }
3025 
3026   if (x->type()->is_float() || x->type()->is_double()) {
3027     // Force rounding of results from non-strictfp when in strictfp
3028     // scope (or when we don't know the strictness of the callee, to
3029     // be safe.)
3030     if (method()->is_strict()) {
3031       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3032         result_register = round_item(result_register);
3033       }
3034     }
3035   }
3036 
3037   if (result_register->is_valid()) {
3038     LIR_Opr result = rlock_result(x);
3039     __ move(result_register, result);
3040   }
3041 }
3042 
3043 
3044 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3045   assert(x->number_of_arguments() == 1, "wrong type");
3046   LIRItem value       (x->argument_at(0), this);
3047   LIR_Opr reg = rlock_result(x);
3048   value.load_item();
3049   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3050   __ move(tmp, reg);
3051 }
3052 
3053 
3054 
3055 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3056 void LIRGenerator::do_IfOp(IfOp* x) {
3057 #ifdef ASSERT
3058   {
3059     ValueTag xtag = x->x()->type()->tag();
3060     ValueTag ttag = x->tval()->type()->tag();
3061     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3062     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3063     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3064   }
3065 #endif
3066 
3067   LIRItem left(x->x(), this);
3068   LIRItem right(x->y(), this);
3069   left.load_item();
3070   if (can_inline_as_constant(right.value())) {
3071     right.dont_load_item();
3072   } else {
3073     right.load_item();
3074   }
3075 
3076   LIRItem t_val(x->tval(), this);
3077   LIRItem f_val(x->fval(), this);
3078   t_val.dont_load_item();
3079   f_val.dont_load_item();
3080   LIR_Opr reg = rlock_result(x);
3081 
3082   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3083   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3084 }
3085 
3086 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3087   assert(x->number_of_arguments() == 0, "wrong type");
3088   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3089   BasicTypeList signature;
3090   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3091   LIR_Opr reg = result_register_for(x->type());
3092   __ call_runtime_leaf(routine, getThreadTemp(),
3093                        reg, new LIR_OprList());
3094   LIR_Opr result = rlock_result(x);
3095   __ move(reg, result);
3096 }
3097 
3098 
3099 
3100 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3101   switch (x->id()) {
3102   case vmIntrinsics::_intBitsToFloat      :
3103   case vmIntrinsics::_doubleToRawLongBits :
3104   case vmIntrinsics::_longBitsToDouble    :
3105   case vmIntrinsics::_floatToRawIntBits   : {
3106     do_FPIntrinsics(x);
3107     break;
3108   }
3109 
3110 #ifdef TRACE_HAVE_INTRINSICS
3111   case vmIntrinsics::_counterTime:
3112     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
3113     break;
3114 #endif
3115 
3116   case vmIntrinsics::_currentTimeMillis:
3117     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3118     break;
3119 
3120   case vmIntrinsics::_nanoTime:
3121     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3122     break;
3123 
3124   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3125   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3126   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3127   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3128   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3129 
3130   case vmIntrinsics::_dlog:           // fall through
3131   case vmIntrinsics::_dlog10:         // fall through
3132   case vmIntrinsics::_dabs:           // fall through
3133   case vmIntrinsics::_dsqrt:          // fall through
3134   case vmIntrinsics::_dtan:           // fall through
3135   case vmIntrinsics::_dsin :          // fall through
3136   case vmIntrinsics::_dcos :          // fall through
3137   case vmIntrinsics::_dexp :          // fall through
3138   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3139   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3140 
3141   // java.nio.Buffer.checkIndex
3142   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3143 
3144   case vmIntrinsics::_compareAndSwapObject:
3145     do_CompareAndSwap(x, objectType);
3146     break;
3147   case vmIntrinsics::_compareAndSwapInt:
3148     do_CompareAndSwap(x, intType);
3149     break;
3150   case vmIntrinsics::_compareAndSwapLong:
3151     do_CompareAndSwap(x, longType);
3152     break;
3153 
3154   case vmIntrinsics::_loadFence :
3155     if (os::is_MP()) __ membar_acquire();
3156     break;
3157   case vmIntrinsics::_storeFence:
3158     if (os::is_MP()) __ membar_release();
3159     break;
3160   case vmIntrinsics::_fullFence :
3161     if (os::is_MP()) __ membar();
3162     break;
3163   case vmIntrinsics::_onSpinWait:
3164     __ on_spin_wait();
3165     break;
3166   case vmIntrinsics::_Reference_get:
3167     do_Reference_get(x);
3168     break;
3169 
3170   case vmIntrinsics::_updateCRC32:
3171   case vmIntrinsics::_updateBytesCRC32:
3172   case vmIntrinsics::_updateByteBufferCRC32:
3173     do_update_CRC32(x);
3174     break;
3175 
3176   case vmIntrinsics::_updateBytesCRC32C:
3177   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3178     do_update_CRC32C(x);
3179     break;
3180 
3181   case vmIntrinsics::_vectorizedMismatch:
3182     do_vectorizedMismatch(x);
3183     break;
3184 
3185   default: ShouldNotReachHere(); break;
3186   }
3187 }
3188 
3189 void LIRGenerator::profile_arguments(ProfileCall* x) {
3190   if (compilation()->profile_arguments()) {
3191     int bci = x->bci_of_invoke();
3192     ciMethodData* md = x->method()->method_data_or_null();
3193     ciProfileData* data = md->bci_to_data(bci);
3194     if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3195         (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3196       ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3197       int base_offset = md->byte_offset_of_slot(data, extra);
3198       LIR_Opr mdp = LIR_OprFact::illegalOpr;
3199       ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3200 
3201       Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3202       int start = 0;
3203       int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3204       if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3205         // first argument is not profiled at call (method handle invoke)
3206         assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3207         start = 1;
3208       }
3209       ciSignature* callee_signature = x->callee()->signature();
3210       // method handle call to virtual method
3211       bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3212       ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3213 
3214       bool ignored_will_link;
3215       ciSignature* signature_at_call = NULL;
3216       x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3217       ciSignatureStream signature_at_call_stream(signature_at_call);
3218 
3219       // if called through method handle invoke, some arguments may have been popped
3220       for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3221         int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3222         ciKlass* exact = profile_type(md, base_offset, off,
3223                                       args->type(i), x->profiled_arg_at(i+start), mdp,
3224                                       !x->arg_needs_null_check(i+start),
3225                                       signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3226         if (exact != NULL) {
3227           md->set_argument_type(bci, i, exact);
3228         }
3229       }
3230     } else {
3231 #ifdef ASSERT
3232       Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3233       int n = x->nb_profiled_args();
3234       assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3235                                                   (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3236              "only at JSR292 bytecodes");
3237 #endif
3238     }
3239   }
3240 }
3241 
3242 // profile parameters on entry to an inlined method
3243 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3244   if (compilation()->profile_parameters() && x->inlined()) {
3245     ciMethodData* md = x->callee()->method_data_or_null();
3246     if (md != NULL) {
3247       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3248       if (parameters_type_data != NULL) {
3249         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3250         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3251         bool has_receiver = !x->callee()->is_static();
3252         ciSignature* sig = x->callee()->signature();
3253         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3254         int i = 0; // to iterate on the Instructions
3255         Value arg = x->recv();
3256         bool not_null = false;
3257         int bci = x->bci_of_invoke();
3258         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3259         // The first parameter is the receiver so that's what we start
3260         // with if it exists. One exception is method handle call to
3261         // virtual method: the receiver is in the args list
3262         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3263           i = 1;
3264           arg = x->profiled_arg_at(0);
3265           not_null = !x->arg_needs_null_check(0);
3266         }
3267         int k = 0; // to iterate on the profile data
3268         for (;;) {
3269           intptr_t profiled_k = parameters->type(k);
3270           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3271                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3272                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3273           // If the profile is known statically set it once for all and do not emit any code
3274           if (exact != NULL) {
3275             md->set_parameter_type(k, exact);
3276           }
3277           k++;
3278           if (k >= parameters_type_data->number_of_parameters()) {
3279 #ifdef ASSERT
3280             int extra = 0;
3281             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3282                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3283                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3284               extra += 1;
3285             }
3286             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3287 #endif
3288             break;
3289           }
3290           arg = x->profiled_arg_at(i);
3291           not_null = !x->arg_needs_null_check(i);
3292           i++;
3293         }
3294       }
3295     }
3296   }
3297 }
3298 
3299 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3300   // Need recv in a temporary register so it interferes with the other temporaries
3301   LIR_Opr recv = LIR_OprFact::illegalOpr;
3302   LIR_Opr mdo = new_register(T_OBJECT);
3303   // tmp is used to hold the counters on SPARC
3304   LIR_Opr tmp = new_pointer_register();
3305 
3306   if (x->nb_profiled_args() > 0) {
3307     profile_arguments(x);
3308   }
3309 
3310   // profile parameters on inlined method entry including receiver
3311   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3312     profile_parameters_at_call(x);
3313   }
3314 
3315   if (x->recv() != NULL) {
3316     LIRItem value(x->recv(), this);
3317     value.load_item();
3318     recv = new_register(T_OBJECT);
3319     __ move(value.result(), recv);
3320   }
3321   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3322 }
3323 
3324 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3325   int bci = x->bci_of_invoke();
3326   ciMethodData* md = x->method()->method_data_or_null();
3327   ciProfileData* data = md->bci_to_data(bci);
3328   assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3329   ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3330   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3331 
3332   bool ignored_will_link;
3333   ciSignature* signature_at_call = NULL;
3334   x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3335 
3336   // The offset within the MDO of the entry to update may be too large
3337   // to be used in load/store instructions on some platforms. So have
3338   // profile_type() compute the address of the profile in a register.
3339   ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3340                                 ret->type(), x->ret(), mdp,
3341                                 !x->needs_null_check(),
3342                                 signature_at_call->return_type()->as_klass(),
3343                                 x->callee()->signature()->return_type()->as_klass());
3344   if (exact != NULL) {
3345     md->set_return_type(bci, exact);
3346   }
3347 }
3348 
3349 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3350   // We can safely ignore accessors here, since c2 will inline them anyway,
3351   // accessors are also always mature.
3352   if (!x->inlinee()->is_accessor()) {
3353     CodeEmitInfo* info = state_for(x, x->state(), true);
3354     // Notify the runtime very infrequently only to take care of counter overflows
3355     int freq_log = Tier23InlineeNotifyFreqLog;
3356     double scale;
3357     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3358       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3359     }
3360     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3361   }
3362 }
3363 
3364 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3365   int freq_log = 0;
3366   int level = compilation()->env()->comp_level();
3367   if (level == CompLevel_limited_profile) {
3368     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3369   } else if (level == CompLevel_full_profile) {
3370     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3371   } else {
3372     ShouldNotReachHere();
3373   }
3374   // Increment the appropriate invocation/backedge counter and notify the runtime.
3375   double scale;
3376   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3377     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3378   }
3379   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3380 }
3381 
3382 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3383   ciMethod* method = info->scope()->method();
3384   MethodCounters* mc_adr = method->ensure_method_counters();
3385   if (mc_adr != NULL) {
3386     LIR_Opr mc = new_pointer_register();
3387     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3388     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3389     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3390     LIR_Opr result = new_register(T_INT);
3391     __ load(counter, result);
3392     __ sub(result, LIR_OprFact::intConst(1), result);
3393     __ store(result, counter);
3394     // DeoptimizeStub will reexecute from the current state in code info.
3395     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3396                                          Deoptimization::Action_make_not_entrant);
3397     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3398     __ branch(lir_cond_lessEqual, T_INT, deopt);
3399   }
3400 }
3401 
3402 
3403 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3404                                                 ciMethod *method, int frequency,
3405                                                 int bci, bool backedge, bool notify) {
3406   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3407   int level = _compilation->env()->comp_level();
3408   assert(level > CompLevel_simple, "Shouldn't be here");
3409 
3410   int offset = -1;
3411   LIR_Opr counter_holder = NULL;
3412   if (level == CompLevel_limited_profile) {
3413     MethodCounters* counters_adr = method->ensure_method_counters();
3414     if (counters_adr == NULL) {
3415       bailout("method counters allocation failed");
3416       return;
3417     }
3418     counter_holder = new_pointer_register();
3419     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3420     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3421                                  MethodCounters::invocation_counter_offset());
3422   } else if (level == CompLevel_full_profile) {
3423     counter_holder = new_register(T_METADATA);
3424     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3425                                  MethodData::invocation_counter_offset());
3426     ciMethodData* md = method->method_data_or_null();
3427     assert(md != NULL, "Sanity");
3428     __ metadata2reg(md->constant_encoding(), counter_holder);
3429   } else {
3430     ShouldNotReachHere();
3431   }
3432   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3433   LIR_Opr result = new_register(T_INT);
3434   __ load(counter, result);
3435   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3436   __ store(result, counter);
3437   if (notify && (!backedge || UseOnStackReplacement)) {
3438     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3439     // The bci for info can point to cmp for if's we want the if bci
3440     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3441     int freq = frequency << InvocationCounter::count_shift;
3442     if (freq == 0) {
3443       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3444     } else {
3445       LIR_Opr mask = load_immediate(freq, T_INT);
3446       __ logical_and(result, mask, result);
3447       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3448       __ branch(lir_cond_equal, T_INT, overflow);
3449     }
3450     __ branch_destination(overflow->continuation());
3451   }
3452 }
3453 
3454 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3455   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3456   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3457 
3458   if (x->pass_thread()) {
3459     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3460     args->append(getThreadPointer());
3461   }
3462 
3463   for (int i = 0; i < x->number_of_arguments(); i++) {
3464     Value a = x->argument_at(i);
3465     LIRItem* item = new LIRItem(a, this);
3466     item->load_item();
3467     args->append(item->result());
3468     signature->append(as_BasicType(a->type()));
3469   }
3470 
3471   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3472   if (x->type() == voidType) {
3473     set_no_result(x);
3474   } else {
3475     __ move(result, rlock_result(x));
3476   }
3477 }
3478 
3479 #ifdef ASSERT
3480 void LIRGenerator::do_Assert(Assert *x) {
3481   ValueTag tag = x->x()->type()->tag();
3482   If::Condition cond = x->cond();
3483 
3484   LIRItem xitem(x->x(), this);
3485   LIRItem yitem(x->y(), this);
3486   LIRItem* xin = &xitem;
3487   LIRItem* yin = &yitem;
3488 
3489   assert(tag == intTag, "Only integer assertions are valid!");
3490 
3491   xin->load_item();
3492   yin->dont_load_item();
3493 
3494   set_no_result(x);
3495 
3496   LIR_Opr left = xin->result();
3497   LIR_Opr right = yin->result();
3498 
3499   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3500 }
3501 #endif
3502 
3503 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3504 
3505 
3506   Instruction *a = x->x();
3507   Instruction *b = x->y();
3508   if (!a || StressRangeCheckElimination) {
3509     assert(!b || StressRangeCheckElimination, "B must also be null");
3510 
3511     CodeEmitInfo *info = state_for(x, x->state());
3512     CodeStub* stub = new PredicateFailedStub(info);
3513 
3514     __ jump(stub);
3515   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3516     int a_int = a->type()->as_IntConstant()->value();
3517     int b_int = b->type()->as_IntConstant()->value();
3518 
3519     bool ok = false;
3520 
3521     switch(x->cond()) {
3522       case Instruction::eql: ok = (a_int == b_int); break;
3523       case Instruction::neq: ok = (a_int != b_int); break;
3524       case Instruction::lss: ok = (a_int < b_int); break;
3525       case Instruction::leq: ok = (a_int <= b_int); break;
3526       case Instruction::gtr: ok = (a_int > b_int); break;
3527       case Instruction::geq: ok = (a_int >= b_int); break;
3528       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3529       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3530       default: ShouldNotReachHere();
3531     }
3532 
3533     if (ok) {
3534 
3535       CodeEmitInfo *info = state_for(x, x->state());
3536       CodeStub* stub = new PredicateFailedStub(info);
3537 
3538       __ jump(stub);
3539     }
3540   } else {
3541 
3542     ValueTag tag = x->x()->type()->tag();
3543     If::Condition cond = x->cond();
3544     LIRItem xitem(x->x(), this);
3545     LIRItem yitem(x->y(), this);
3546     LIRItem* xin = &xitem;
3547     LIRItem* yin = &yitem;
3548 
3549     assert(tag == intTag, "Only integer deoptimizations are valid!");
3550 
3551     xin->load_item();
3552     yin->dont_load_item();
3553     set_no_result(x);
3554 
3555     LIR_Opr left = xin->result();
3556     LIR_Opr right = yin->result();
3557 
3558     CodeEmitInfo *info = state_for(x, x->state());
3559     CodeStub* stub = new PredicateFailedStub(info);
3560 
3561     __ cmp(lir_cond(cond), left, right);
3562     __ branch(lir_cond(cond), right->type(), stub);
3563   }
3564 }
3565 
3566 
3567 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3568   LIRItemList args(1);
3569   LIRItem value(arg1, this);
3570   args.append(&value);
3571   BasicTypeList signature;
3572   signature.append(as_BasicType(arg1->type()));
3573 
3574   return call_runtime(&signature, &args, entry, result_type, info);
3575 }
3576 
3577 
3578 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3579   LIRItemList args(2);
3580   LIRItem value1(arg1, this);
3581   LIRItem value2(arg2, this);
3582   args.append(&value1);
3583   args.append(&value2);
3584   BasicTypeList signature;
3585   signature.append(as_BasicType(arg1->type()));
3586   signature.append(as_BasicType(arg2->type()));
3587 
3588   return call_runtime(&signature, &args, entry, result_type, info);
3589 }
3590 
3591 
3592 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3593                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3594   // get a result register
3595   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3596   LIR_Opr result = LIR_OprFact::illegalOpr;
3597   if (result_type->tag() != voidTag) {
3598     result = new_register(result_type);
3599     phys_reg = result_register_for(result_type);
3600   }
3601 
3602   // move the arguments into the correct location
3603   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3604   assert(cc->length() == args->length(), "argument mismatch");
3605   for (int i = 0; i < args->length(); i++) {
3606     LIR_Opr arg = args->at(i);
3607     LIR_Opr loc = cc->at(i);
3608     if (loc->is_register()) {
3609       __ move(arg, loc);
3610     } else {
3611       LIR_Address* addr = loc->as_address_ptr();
3612 //           if (!can_store_as_constant(arg)) {
3613 //             LIR_Opr tmp = new_register(arg->type());
3614 //             __ move(arg, tmp);
3615 //             arg = tmp;
3616 //           }
3617       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3618         __ unaligned_move(arg, addr);
3619       } else {
3620         __ move(arg, addr);
3621       }
3622     }
3623   }
3624 
3625   if (info) {
3626     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3627   } else {
3628     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3629   }
3630   if (result->is_valid()) {
3631     __ move(phys_reg, result);
3632   }
3633   return result;
3634 }
3635 
3636 
3637 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3638                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3639   // get a result register
3640   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3641   LIR_Opr result = LIR_OprFact::illegalOpr;
3642   if (result_type->tag() != voidTag) {
3643     result = new_register(result_type);
3644     phys_reg = result_register_for(result_type);
3645   }
3646 
3647   // move the arguments into the correct location
3648   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3649 
3650   assert(cc->length() == args->length(), "argument mismatch");
3651   for (int i = 0; i < args->length(); i++) {
3652     LIRItem* arg = args->at(i);
3653     LIR_Opr loc = cc->at(i);
3654     if (loc->is_register()) {
3655       arg->load_item_force(loc);
3656     } else {
3657       LIR_Address* addr = loc->as_address_ptr();
3658       arg->load_for_store(addr->type());
3659       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3660         __ unaligned_move(arg->result(), addr);
3661       } else {
3662         __ move(arg->result(), addr);
3663       }
3664     }
3665   }
3666 
3667   if (info) {
3668     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3669   } else {
3670     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3671   }
3672   if (result->is_valid()) {
3673     __ move(phys_reg, result);
3674   }
3675   return result;
3676 }
3677 
3678 void LIRGenerator::do_MemBar(MemBar* x) {
3679   if (os::is_MP()) {
3680     LIR_Code code = x->code();
3681     switch(code) {
3682       case lir_membar_acquire   : __ membar_acquire(); break;
3683       case lir_membar_release   : __ membar_release(); break;
3684       case lir_membar           : __ membar(); break;
3685       case lir_membar_loadload  : __ membar_loadload(); break;
3686       case lir_membar_storestore: __ membar_storestore(); break;
3687       case lir_membar_loadstore : __ membar_loadstore(); break;
3688       case lir_membar_storeload : __ membar_storeload(); break;
3689       default                   : ShouldNotReachHere(); break;
3690     }
3691   }
3692 }
3693 
3694 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3695   if (x->check_boolean()) {
3696     LIR_Opr value_fixed = rlock_byte(T_BYTE);
3697     if (TwoOperandLIRForm) {
3698       __ move(value, value_fixed);
3699       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3700     } else {
3701       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3702     }
3703     LIR_Opr klass = new_register(T_METADATA);
3704     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3705     null_check_info = NULL;
3706     LIR_Opr layout = new_register(T_INT);
3707     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3708     int diffbit = Klass::layout_helper_boolean_diffbit();
3709     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3710     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3711     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3712     value = value_fixed;
3713   }
3714   return value;
3715 }