1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 #define COMMA ,
  52 
  53   virtual void call_VM_leaf_base(
  54     address entry_point,               // the entry point
  55     int     number_of_arguments        // the number of arguments to pop after the call
  56   );
  57 
  58   // This is the base routine called by the different versions of call_VM. The interpreter
  59   // may customize this version by overriding it for its purposes (e.g., to save/restore
  60   // additional registers when doing a VM call).
  61   //
  62   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  63   // returns the register which contains the thread upon return. If a thread register has been
  64   // specified, the return value will correspond to that register. If no last_java_sp is specified
  65   // (noreg) than rsp will be used instead.
  66   virtual void call_VM_base(           // returns the register containing the thread upon return
  67     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  68     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  69     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  70     address  entry_point,              // the entry point
  71     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  72     bool     check_exceptions          // whether to check for pending exceptions after return
  73   );
  74 
  75   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  76   // The implementation is only non-empty for the InterpreterMacroAssembler,
  77   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  78   virtual void check_and_handle_popframe(Register java_thread);
  79   virtual void check_and_handle_earlyret(Register java_thread);
  80 
  81   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  82 
  83   // helpers for FPU flag access
  84   // tmp is a temporary register, if none is available use noreg
  85   void save_rax   (Register tmp);
  86   void restore_rax(Register tmp);
  87 
  88  public:
  89   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  90 
  91   // Support for NULL-checks
  92   //
  93   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  94   // If the accessed location is M[reg + offset] and the offset is known, provide the
  95   // offset. No explicit code generation is needed if the offset is within a certain
  96   // range (0 <= offset <= page_size).
  97 
  98   void null_check(Register reg, int offset = -1);
  99   static bool needs_explicit_null_check(intptr_t offset);
 100 
 101   // Required platform-specific helpers for Label::patch_instructions.
 102   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 103   void pd_patch_instruction(address branch, address target) {
 104     unsigned char op = branch[0];
 105     assert(op == 0xE8 /* call */ ||
 106         op == 0xE9 /* jmp */ ||
 107         op == 0xEB /* short jmp */ ||
 108         (op & 0xF0) == 0x70 /* short jcc */ ||
 109         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 110         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 111         "Invalid opcode at patch point");
 112 
 113     if (op == 0xEB || (op & 0xF0) == 0x70) {
 114       // short offset operators (jmp and jcc)
 115       char* disp = (char*) &branch[1];
 116       int imm8 = target - (address) &disp[1];
 117       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 118       *disp = imm8;
 119     } else {
 120       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 121       int imm32 = target - (address) &disp[1];
 122       *disp = imm32;
 123     }
 124   }
 125 
 126   // The following 4 methods return the offset of the appropriate move instruction
 127 
 128   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 129   int load_unsigned_byte(Register dst, Address src);
 130   int load_unsigned_short(Register dst, Address src);
 131 
 132   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 133   int load_signed_byte(Register dst, Address src);
 134   int load_signed_short(Register dst, Address src);
 135 
 136   // Support for sign-extension (hi:lo = extend_sign(lo))
 137   void extend_sign(Register hi, Register lo);
 138 
 139   // Load and store values by size and signed-ness
 140   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 141   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 142 
 143   // Support for inc/dec with optimal instruction selection depending on value
 144 
 145   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 146   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 147 
 148   void decrementl(Address dst, int value = 1);
 149   void decrementl(Register reg, int value = 1);
 150 
 151   void decrementq(Register reg, int value = 1);
 152   void decrementq(Address dst, int value = 1);
 153 
 154   void incrementl(Address dst, int value = 1);
 155   void incrementl(Register reg, int value = 1);
 156 
 157   void incrementq(Register reg, int value = 1);
 158   void incrementq(Address dst, int value = 1);
 159 
 160   // Support optimal SSE move instructions.
 161   void movflt(XMMRegister dst, XMMRegister src) {
 162     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 163     else                       { movss (dst, src); return; }
 164   }
 165   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 166   void movflt(XMMRegister dst, AddressLiteral src);
 167   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 168 
 169   void movdbl(XMMRegister dst, XMMRegister src) {
 170     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 171     else                       { movsd (dst, src); return; }
 172   }
 173 
 174   void movdbl(XMMRegister dst, AddressLiteral src);
 175 
 176   void movdbl(XMMRegister dst, Address src) {
 177     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 178     else                         { movlpd(dst, src); return; }
 179   }
 180   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 181 
 182   void incrementl(AddressLiteral dst);
 183   void incrementl(ArrayAddress dst);
 184 
 185   void incrementq(AddressLiteral dst);
 186 
 187   // Alignment
 188   void align(int modulus);
 189   void align(int modulus, int target);
 190 
 191   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 192   void fat_nop();
 193 
 194   // Stack frame creation/removal
 195   void enter();
 196   void leave();
 197 
 198   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 199   // The pointer will be loaded into the thread register.
 200   void get_thread(Register thread);
 201 
 202 
 203   // Support for VM calls
 204   //
 205   // It is imperative that all calls into the VM are handled via the call_VM macros.
 206   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 207   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 208 
 209 
 210   void call_VM(Register oop_result,
 211                address entry_point,
 212                bool check_exceptions = true);
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                Register arg_1,
 216                bool check_exceptions = true);
 217   void call_VM(Register oop_result,
 218                address entry_point,
 219                Register arg_1, Register arg_2,
 220                bool check_exceptions = true);
 221   void call_VM(Register oop_result,
 222                address entry_point,
 223                Register arg_1, Register arg_2, Register arg_3,
 224                bool check_exceptions = true);
 225 
 226   // Overloadings with last_Java_sp
 227   void call_VM(Register oop_result,
 228                Register last_java_sp,
 229                address entry_point,
 230                int number_of_arguments = 0,
 231                bool check_exceptions = true);
 232   void call_VM(Register oop_result,
 233                Register last_java_sp,
 234                address entry_point,
 235                Register arg_1, bool
 236                check_exceptions = true);
 237   void call_VM(Register oop_result,
 238                Register last_java_sp,
 239                address entry_point,
 240                Register arg_1, Register arg_2,
 241                bool check_exceptions = true);
 242   void call_VM(Register oop_result,
 243                Register last_java_sp,
 244                address entry_point,
 245                Register arg_1, Register arg_2, Register arg_3,
 246                bool check_exceptions = true);
 247 
 248   void get_vm_result  (Register oop_result, Register thread);
 249   void get_vm_result_2(Register metadata_result, Register thread);
 250 
 251   // These always tightly bind to MacroAssembler::call_VM_base
 252   // bypassing the virtual implementation
 253   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 254   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 255   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 258 
 259   void call_VM_leaf(address entry_point,
 260                     int number_of_arguments = 0);
 261   void call_VM_leaf(address entry_point,
 262                     Register arg_1);
 263   void call_VM_leaf(address entry_point,
 264                     Register arg_1, Register arg_2);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1, Register arg_2, Register arg_3);
 267 
 268   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 269   // bypassing the virtual implementation
 270   void super_call_VM_leaf(address entry_point);
 271   void super_call_VM_leaf(address entry_point, Register arg_1);
 272   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 273   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 274   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 275 
 276   // last Java Frame (fills frame anchor)
 277   void set_last_Java_frame(Register thread,
 278                            Register last_java_sp,
 279                            Register last_java_fp,
 280                            address last_java_pc);
 281 
 282   // thread in the default location (r15_thread on 64bit)
 283   void set_last_Java_frame(Register last_java_sp,
 284                            Register last_java_fp,
 285                            address last_java_pc);
 286 
 287   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
 288 
 289   // thread in the default location (r15_thread on 64bit)
 290   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
 291 
 292   // Stores
 293   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 294   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 295 
 296 #if INCLUDE_ALL_GCS
 297 
 298   void g1_write_barrier_pre(Register obj,
 299                             Register pre_val,
 300                             Register thread,
 301                             Register tmp,
 302                             bool tosca_live,
 303                             bool expand_call);
 304 
 305   void g1_write_barrier_post(Register store_addr,
 306                              Register new_val,
 307                              Register thread,
 308                              Register tmp,
 309                              Register tmp2);
 310 
 311 #endif // INCLUDE_ALL_GCS
 312 
 313   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 314   void c2bool(Register x);
 315 
 316   // C++ bool manipulation
 317 
 318   void movbool(Register dst, Address src);
 319   void movbool(Address dst, bool boolconst);
 320   void movbool(Address dst, Register src);
 321   void testbool(Register dst);
 322 
 323   // oop manipulations
 324   void load_klass(Register dst, Register src);
 325   void store_klass(Register dst, Register src);
 326 
 327   void load_heap_oop(Register dst, Address src);
 328   void load_heap_oop_not_null(Register dst, Address src);
 329   void store_heap_oop(Address dst, Register src);
 330   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 331 
 332   // Used for storing NULL. All other oop constants should be
 333   // stored using routines that take a jobject.
 334   void store_heap_oop_null(Address dst);
 335 
 336   void load_prototype_header(Register dst, Register src);
 337 
 338 #ifdef _LP64
 339   void store_klass_gap(Register dst, Register src);
 340 
 341   // This dummy is to prevent a call to store_heap_oop from
 342   // converting a zero (like NULL) into a Register by giving
 343   // the compiler two choices it can't resolve
 344 
 345   void store_heap_oop(Address dst, void* dummy);
 346 
 347   void encode_heap_oop(Register r);
 348   void decode_heap_oop(Register r);
 349   void encode_heap_oop_not_null(Register r);
 350   void decode_heap_oop_not_null(Register r);
 351   void encode_heap_oop_not_null(Register dst, Register src);
 352   void decode_heap_oop_not_null(Register dst, Register src);
 353 
 354   void set_narrow_oop(Register dst, jobject obj);
 355   void set_narrow_oop(Address dst, jobject obj);
 356   void cmp_narrow_oop(Register dst, jobject obj);
 357   void cmp_narrow_oop(Address dst, jobject obj);
 358 
 359   void encode_klass_not_null(Register r);
 360   void decode_klass_not_null(Register r);
 361   void encode_klass_not_null(Register dst, Register src);
 362   void decode_klass_not_null(Register dst, Register src);
 363   void set_narrow_klass(Register dst, Klass* k);
 364   void set_narrow_klass(Address dst, Klass* k);
 365   void cmp_narrow_klass(Register dst, Klass* k);
 366   void cmp_narrow_klass(Address dst, Klass* k);
 367 
 368   // Returns the byte size of the instructions generated by decode_klass_not_null()
 369   // when compressed klass pointers are being used.
 370   static int instr_size_for_decode_klass_not_null();
 371 
 372   // if heap base register is used - reinit it with the correct value
 373   void reinit_heapbase();
 374 
 375   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 376 
 377 #endif // _LP64
 378 
 379   // Int division/remainder for Java
 380   // (as idivl, but checks for special case as described in JVM spec.)
 381   // returns idivl instruction offset for implicit exception handling
 382   int corrected_idivl(Register reg);
 383 
 384   // Long division/remainder for Java
 385   // (as idivq, but checks for special case as described in JVM spec.)
 386   // returns idivq instruction offset for implicit exception handling
 387   int corrected_idivq(Register reg);
 388 
 389   void int3();
 390 
 391   // Long operation macros for a 32bit cpu
 392   // Long negation for Java
 393   void lneg(Register hi, Register lo);
 394 
 395   // Long multiplication for Java
 396   // (destroys contents of eax, ebx, ecx and edx)
 397   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 398 
 399   // Long shifts for Java
 400   // (semantics as described in JVM spec.)
 401   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 402   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 403 
 404   // Long compare for Java
 405   // (semantics as described in JVM spec.)
 406   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 407 
 408 
 409   // misc
 410 
 411   // Sign extension
 412   void sign_extend_short(Register reg);
 413   void sign_extend_byte(Register reg);
 414 
 415   // Division by power of 2, rounding towards 0
 416   void division_with_shift(Register reg, int shift_value);
 417 
 418   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 419   //
 420   // CF (corresponds to C0) if x < y
 421   // PF (corresponds to C2) if unordered
 422   // ZF (corresponds to C3) if x = y
 423   //
 424   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 425   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 426   void fcmp(Register tmp);
 427   // Variant of the above which allows y to be further down the stack
 428   // and which only pops x and y if specified. If pop_right is
 429   // specified then pop_left must also be specified.
 430   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 431 
 432   // Floating-point comparison for Java
 433   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 434   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 435   // (semantics as described in JVM spec.)
 436   void fcmp2int(Register dst, bool unordered_is_less);
 437   // Variant of the above which allows y to be further down the stack
 438   // and which only pops x and y if specified. If pop_right is
 439   // specified then pop_left must also be specified.
 440   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 441 
 442   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 443   // tmp is a temporary register, if none is available use noreg
 444   void fremr(Register tmp);
 445 
 446 
 447   // same as fcmp2int, but using SSE2
 448   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 449   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 450 
 451   // Inlined sin/cos generator for Java; must not use CPU instruction
 452   // directly on Intel as it does not have high enough precision
 453   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
 454   // number of FPU stack slots in use; all but the topmost will
 455   // require saving if a slow case is necessary. Assumes argument is
 456   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
 457   // this code.
 458   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
 459 
 460   // branch to L if FPU flag C2 is set/not set
 461   // tmp is a temporary register, if none is available use noreg
 462   void jC2 (Register tmp, Label& L);
 463   void jnC2(Register tmp, Label& L);
 464 
 465   // Pop ST (ffree & fincstp combined)
 466   void fpop();
 467 
 468   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 469   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 470   void load_float(Address src);
 471 
 472   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 473   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 474   void store_float(Address dst);
 475 
 476   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 477   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 478   void load_double(Address src);
 479 
 480   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 481   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 482   void store_double(Address dst);
 483 
 484   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 485   void push_fTOS();
 486 
 487   // pops double TOS element from CPU stack and pushes on FPU stack
 488   void pop_fTOS();
 489 
 490   void empty_FPU_stack();
 491 
 492   void push_IU_state();
 493   void pop_IU_state();
 494 
 495   void push_FPU_state();
 496   void pop_FPU_state();
 497 
 498   void push_CPU_state();
 499   void pop_CPU_state();
 500 
 501   // Round up to a power of two
 502   void round_to(Register reg, int modulus);
 503 
 504   // Callee saved registers handling
 505   void push_callee_saved_registers();
 506   void pop_callee_saved_registers();
 507 
 508   // allocation
 509   void eden_allocate(
 510     Register obj,                      // result: pointer to object after successful allocation
 511     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 512     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 513     Register t1,                       // temp register
 514     Label&   slow_case                 // continuation point if fast allocation fails
 515   );
 516   void tlab_allocate(
 517     Register obj,                      // result: pointer to object after successful allocation
 518     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 519     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 520     Register t1,                       // temp register
 521     Register t2,                       // temp register
 522     Label&   slow_case                 // continuation point if fast allocation fails
 523   );
 524   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 525   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 526 
 527   void incr_allocated_bytes(Register thread,
 528                             Register var_size_in_bytes, int con_size_in_bytes,
 529                             Register t1 = noreg);
 530 
 531   // interface method calling
 532   void lookup_interface_method(Register recv_klass,
 533                                Register intf_klass,
 534                                RegisterOrConstant itable_index,
 535                                Register method_result,
 536                                Register scan_temp,
 537                                Label& no_such_interface);
 538 
 539   // virtual method calling
 540   void lookup_virtual_method(Register recv_klass,
 541                              RegisterOrConstant vtable_index,
 542                              Register method_result);
 543 
 544   // Test sub_klass against super_klass, with fast and slow paths.
 545 
 546   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 547   // One of the three labels can be NULL, meaning take the fall-through.
 548   // If super_check_offset is -1, the value is loaded up from super_klass.
 549   // No registers are killed, except temp_reg.
 550   void check_klass_subtype_fast_path(Register sub_klass,
 551                                      Register super_klass,
 552                                      Register temp_reg,
 553                                      Label* L_success,
 554                                      Label* L_failure,
 555                                      Label* L_slow_path,
 556                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 557 
 558   // The rest of the type check; must be wired to a corresponding fast path.
 559   // It does not repeat the fast path logic, so don't use it standalone.
 560   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 561   // Updates the sub's secondary super cache as necessary.
 562   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 563   void check_klass_subtype_slow_path(Register sub_klass,
 564                                      Register super_klass,
 565                                      Register temp_reg,
 566                                      Register temp2_reg,
 567                                      Label* L_success,
 568                                      Label* L_failure,
 569                                      bool set_cond_codes = false);
 570 
 571   // Simplified, combined version, good for typical uses.
 572   // Falls through on failure.
 573   void check_klass_subtype(Register sub_klass,
 574                            Register super_klass,
 575                            Register temp_reg,
 576                            Label& L_success);
 577 
 578   // method handles (JSR 292)
 579   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 580 
 581   //----
 582   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 583 
 584   // Debugging
 585 
 586   // only if +VerifyOops
 587   // TODO: Make these macros with file and line like sparc version!
 588   void verify_oop(Register reg, const char* s = "broken oop");
 589   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 590 
 591   // TODO: verify method and klass metadata (compare against vptr?)
 592   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 593   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 594 
 595 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 596 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 597 
 598   // only if +VerifyFPU
 599   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 600 
 601   // Verify or restore cpu control state after JNI call
 602   void restore_cpu_control_state_after_jni();
 603 
 604   // prints msg, dumps registers and stops execution
 605   void stop(const char* msg);
 606 
 607   // prints msg and continues
 608   void warn(const char* msg);
 609 
 610   // dumps registers and other state
 611   void print_state();
 612 
 613   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 614   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 615   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 616   static void print_state64(int64_t pc, int64_t regs[]);
 617 
 618   void os_breakpoint();
 619 
 620   void untested()                                { stop("untested"); }
 621 
 622   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 623 
 624   void should_not_reach_here()                   { stop("should not reach here"); }
 625 
 626   void print_CPU_state();
 627 
 628   // Stack overflow checking
 629   void bang_stack_with_offset(int offset) {
 630     // stack grows down, caller passes positive offset
 631     assert(offset > 0, "must bang with negative offset");
 632     movl(Address(rsp, (-offset)), rax);
 633   }
 634 
 635   // Writes to stack successive pages until offset reached to check for
 636   // stack overflow + shadow pages.  Also, clobbers tmp
 637   void bang_stack_size(Register size, Register tmp);
 638 
 639   // Check for reserved stack access in method being exited (for JIT)
 640   void reserved_stack_check();
 641 
 642   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 643                                                 Register tmp,
 644                                                 int offset);
 645 
 646   // Support for serializing memory accesses between threads
 647   void serialize_memory(Register thread, Register tmp);
 648 
 649   void verify_tlab();
 650 
 651   // Biased locking support
 652   // lock_reg and obj_reg must be loaded up with the appropriate values.
 653   // swap_reg must be rax, and is killed.
 654   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 655   // be killed; if not supplied, push/pop will be used internally to
 656   // allocate a temporary (inefficient, avoid if possible).
 657   // Optional slow case is for implementations (interpreter and C1) which branch to
 658   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 659   // Returns offset of first potentially-faulting instruction for null
 660   // check info (currently consumed only by C1). If
 661   // swap_reg_contains_mark is true then returns -1 as it is assumed
 662   // the calling code has already passed any potential faults.
 663   int biased_locking_enter(Register lock_reg, Register obj_reg,
 664                            Register swap_reg, Register tmp_reg,
 665                            bool swap_reg_contains_mark,
 666                            Label& done, Label* slow_case = NULL,
 667                            BiasedLockingCounters* counters = NULL);
 668   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 669 #ifdef COMPILER2
 670   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 671   // See full desription in macroAssembler_x86.cpp.
 672   void fast_lock(Register obj, Register box, Register tmp,
 673                  Register scr, Register cx1, Register cx2,
 674                  BiasedLockingCounters* counters,
 675                  RTMLockingCounters* rtm_counters,
 676                  RTMLockingCounters* stack_rtm_counters,
 677                  Metadata* method_data,
 678                  bool use_rtm, bool profile_rtm);
 679   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 680 #if INCLUDE_RTM_OPT
 681   void rtm_counters_update(Register abort_status, Register rtm_counters);
 682   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 683   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 684                                    RTMLockingCounters* rtm_counters,
 685                                    Metadata* method_data);
 686   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 687                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 688   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 689   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 690   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 691                          Register retry_on_abort_count,
 692                          RTMLockingCounters* stack_rtm_counters,
 693                          Metadata* method_data, bool profile_rtm,
 694                          Label& DONE_LABEL, Label& IsInflated);
 695   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 696                             Register scr, Register retry_on_busy_count,
 697                             Register retry_on_abort_count,
 698                             RTMLockingCounters* rtm_counters,
 699                             Metadata* method_data, bool profile_rtm,
 700                             Label& DONE_LABEL);
 701 #endif
 702 #endif
 703 
 704   Condition negate_condition(Condition cond);
 705 
 706   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 707   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 708   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 709   // here in MacroAssembler. The major exception to this rule is call
 710 
 711   // Arithmetics
 712 
 713 
 714   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 715   void addptr(Address dst, Register src);
 716 
 717   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 718   void addptr(Register dst, int32_t src);
 719   void addptr(Register dst, Register src);
 720   void addptr(Register dst, RegisterOrConstant src) {
 721     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 722     else                   addptr(dst,       src.as_register());
 723   }
 724 
 725   void andptr(Register dst, int32_t src);
 726   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 727 
 728   void cmp8(AddressLiteral src1, int imm);
 729 
 730   // renamed to drag out the casting of address to int32_t/intptr_t
 731   void cmp32(Register src1, int32_t imm);
 732 
 733   void cmp32(AddressLiteral src1, int32_t imm);
 734   // compare reg - mem, or reg - &mem
 735   void cmp32(Register src1, AddressLiteral src2);
 736 
 737   void cmp32(Register src1, Address src2);
 738 
 739 #ifndef _LP64
 740   void cmpklass(Address dst, Metadata* obj);
 741   void cmpklass(Register dst, Metadata* obj);
 742   void cmpoop(Address dst, jobject obj);
 743   void cmpoop(Register dst, jobject obj);
 744 #endif // _LP64
 745 
 746   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 747   void cmpptr(Address src1, AddressLiteral src2);
 748 
 749   void cmpptr(Register src1, AddressLiteral src2);
 750 
 751   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 752   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 753   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 754 
 755   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 756   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 757 
 758   // cmp64 to avoild hiding cmpq
 759   void cmp64(Register src1, AddressLiteral src);
 760 
 761   void cmpxchgptr(Register reg, Address adr);
 762 
 763   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 764 
 765 
 766   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 767   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 768 
 769 
 770   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 771 
 772   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 773 
 774   void shlptr(Register dst, int32_t shift);
 775   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 776 
 777   void shrptr(Register dst, int32_t shift);
 778   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 779 
 780   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 781   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 782 
 783   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 784 
 785   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 786   void subptr(Register dst, int32_t src);
 787   // Force generation of a 4 byte immediate value even if it fits into 8bit
 788   void subptr_imm32(Register dst, int32_t src);
 789   void subptr(Register dst, Register src);
 790   void subptr(Register dst, RegisterOrConstant src) {
 791     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 792     else                   subptr(dst,       src.as_register());
 793   }
 794 
 795   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 796   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 797 
 798   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 799   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 800 
 801   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 802 
 803 
 804 
 805   // Helper functions for statistics gathering.
 806   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 807   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 808   // Unconditional atomic increment.
 809   void atomic_incl(Address counter_addr);
 810   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 811 #ifdef _LP64
 812   void atomic_incq(Address counter_addr);
 813   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 814 #endif
 815   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 816   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 817 
 818   void lea(Register dst, AddressLiteral adr);
 819   void lea(Address dst, AddressLiteral adr);
 820   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 821 
 822   void leal32(Register dst, Address src) { leal(dst, src); }
 823 
 824   // Import other testl() methods from the parent class or else
 825   // they will be hidden by the following overriding declaration.
 826   using Assembler::testl;
 827   void testl(Register dst, AddressLiteral src);
 828 
 829   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 830   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 831   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 832   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 833 
 834   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 835   void testptr(Register src1, Register src2);
 836 
 837   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 838   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 839 
 840   // Calls
 841 
 842   void call(Label& L, relocInfo::relocType rtype);
 843   void call(Register entry);
 844 
 845   // NOTE: this call tranfers to the effective address of entry NOT
 846   // the address contained by entry. This is because this is more natural
 847   // for jumps/calls.
 848   void call(AddressLiteral entry);
 849 
 850   // Emit the CompiledIC call idiom
 851   void ic_call(address entry, jint method_index = 0);
 852 
 853   // Jumps
 854 
 855   // NOTE: these jumps tranfer to the effective address of dst NOT
 856   // the address contained by dst. This is because this is more natural
 857   // for jumps/calls.
 858   void jump(AddressLiteral dst);
 859   void jump_cc(Condition cc, AddressLiteral dst);
 860 
 861   // 32bit can do a case table jump in one instruction but we no longer allow the base
 862   // to be installed in the Address class. This jump will tranfers to the address
 863   // contained in the location described by entry (not the address of entry)
 864   void jump(ArrayAddress entry);
 865 
 866   // Floating
 867 
 868   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 869   void andpd(XMMRegister dst, AddressLiteral src);
 870   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 871 
 872   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 873   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 874   void andps(XMMRegister dst, AddressLiteral src);
 875 
 876   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 877   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 878   void comiss(XMMRegister dst, AddressLiteral src);
 879 
 880   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 881   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 882   void comisd(XMMRegister dst, AddressLiteral src);
 883 
 884   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 885   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 886 
 887   void fldcw(Address src) { Assembler::fldcw(src); }
 888   void fldcw(AddressLiteral src);
 889 
 890   void fld_s(int index)   { Assembler::fld_s(index); }
 891   void fld_s(Address src) { Assembler::fld_s(src); }
 892   void fld_s(AddressLiteral src);
 893 
 894   void fld_d(Address src) { Assembler::fld_d(src); }
 895   void fld_d(AddressLiteral src);
 896 
 897   void fld_x(Address src) { Assembler::fld_x(src); }
 898   void fld_x(AddressLiteral src);
 899 
 900   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 901   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 902 
 903   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 904   void ldmxcsr(AddressLiteral src);
 905 
 906   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 907                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 908                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 909                  bool multi_block);
 910 
 911   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 912                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 913                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 914                    bool multi_block LP64_ONLY(COMMA XMMRegister shuf_mask));
 915 
 916   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 917                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 918                 Register rax, Register rcx, Register rdx, Register tmp);
 919 
 920   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 921                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 922                 Register rax, Register rcx, Register rdx, Register tmp1 LP64_ONLY(COMMA Register tmp2));
 923 
 924   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
 925                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
 926                 Register rdx NOT_LP64(COMMA  Register tmp) LP64_ONLY(COMMA  Register tmp1)
 927                 LP64_ONLY(COMMA  Register tmp2) LP64_ONLY(COMMA  Register tmp3) LP64_ONLY(COMMA  Register tmp4));
 928 
 929   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 930                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 931                 Register rax, Register rbx LP64_ONLY(COMMA  Register rcx), Register rdx
 932                 LP64_ONLY(COMMA Register tmp1) LP64_ONLY(COMMA Register tmp2)
 933                 LP64_ONLY(COMMA Register tmp3) LP64_ONLY(COMMA Register tmp4));
 934 
 935   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 936                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 937                 Register rax, Register rcx, Register rdx NOT_LP64(COMMA Register tmp)
 938                 LP64_ONLY(COMMA Register r8) LP64_ONLY(COMMA Register r9)
 939                 LP64_ONLY(COMMA Register r10) LP64_ONLY(COMMA Register r11));
 940 
 941 #ifndef _LP64
 942   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
 943                         Register edx, Register ebx, Register esi, Register edi,
 944                         Register ebp, Register esp);
 945   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
 946                          Register esi, Register edi, Register ebp, Register esp);
 947 #endif
 948 
 949   void increase_precision();
 950   void restore_precision();
 951 
 952 private:
 953 
 954   // call runtime as a fallback for trig functions and pow/exp.
 955   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
 956 
 957   // these are private because users should be doing movflt/movdbl
 958 
 959   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
 960   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
 961   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
 962   void movss(XMMRegister dst, AddressLiteral src);
 963 
 964   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
 965   void movlpd(XMMRegister dst, AddressLiteral src);
 966 
 967 public:
 968 
 969   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
 970   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
 971   void addsd(XMMRegister dst, AddressLiteral src);
 972 
 973   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
 974   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
 975   void addss(XMMRegister dst, AddressLiteral src);
 976 
 977   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
 978   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
 979   void addpd(XMMRegister dst, AddressLiteral src);
 980 
 981   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
 982   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
 983   void divsd(XMMRegister dst, AddressLiteral src);
 984 
 985   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
 986   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
 987   void divss(XMMRegister dst, AddressLiteral src);
 988 
 989   // Move Unaligned Double Quadword
 990   void movdqu(Address     dst, XMMRegister src);
 991   void movdqu(XMMRegister dst, Address src);
 992   void movdqu(XMMRegister dst, XMMRegister src);
 993   void movdqu(XMMRegister dst, AddressLiteral src);
 994   // AVX Unaligned forms
 995   void vmovdqu(Address     dst, XMMRegister src);
 996   void vmovdqu(XMMRegister dst, Address src);
 997   void vmovdqu(XMMRegister dst, XMMRegister src);
 998   void vmovdqu(XMMRegister dst, AddressLiteral src);
 999 
1000   // Move Aligned Double Quadword
1001   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1002   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1003   void movdqa(XMMRegister dst, AddressLiteral src);
1004 
1005   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1006   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1007   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1008   void movsd(XMMRegister dst, AddressLiteral src);
1009 
1010   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1011   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1012   void mulpd(XMMRegister dst, AddressLiteral src);
1013 
1014   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1015   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1016   void mulsd(XMMRegister dst, AddressLiteral src);
1017 
1018   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1019   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1020   void mulss(XMMRegister dst, AddressLiteral src);
1021 
1022   // Carry-Less Multiplication Quadword
1023   void pclmulldq(XMMRegister dst, XMMRegister src) {
1024     // 0x00 - multiply lower 64 bits [0:63]
1025     Assembler::pclmulqdq(dst, src, 0x00);
1026   }
1027   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1028     // 0x11 - multiply upper 64 bits [64:127]
1029     Assembler::pclmulqdq(dst, src, 0x11);
1030   }
1031 
1032   void pcmpeqb(XMMRegister dst, XMMRegister src);
1033   void pcmpeqw(XMMRegister dst, XMMRegister src);
1034 
1035   void pcmpestri(XMMRegister dst, Address src, int imm8);
1036   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1037 
1038   void pmovzxbw(XMMRegister dst, XMMRegister src);
1039   void pmovzxbw(XMMRegister dst, Address src);
1040 
1041   void pmovmskb(Register dst, XMMRegister src);
1042 
1043   void ptest(XMMRegister dst, XMMRegister src);
1044 
1045   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1046   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1047   void sqrtsd(XMMRegister dst, AddressLiteral src);
1048 
1049   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1050   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1051   void sqrtss(XMMRegister dst, AddressLiteral src);
1052 
1053   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1054   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1055   void subsd(XMMRegister dst, AddressLiteral src);
1056 
1057   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1058   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1059   void subss(XMMRegister dst, AddressLiteral src);
1060 
1061   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1062   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1063   void ucomiss(XMMRegister dst, AddressLiteral src);
1064 
1065   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1066   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1067   void ucomisd(XMMRegister dst, AddressLiteral src);
1068 
1069   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1070   void xorpd(XMMRegister dst, XMMRegister src);
1071   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1072   void xorpd(XMMRegister dst, AddressLiteral src);
1073 
1074   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1075   void xorps(XMMRegister dst, XMMRegister src);
1076   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1077   void xorps(XMMRegister dst, AddressLiteral src);
1078 
1079   // Shuffle Bytes
1080   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1081   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1082   void pshufb(XMMRegister dst, AddressLiteral src);
1083   // AVX 3-operands instructions
1084 
1085   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1086   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1087   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1088 
1089   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1090   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1091   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1092 
1093   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1094   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1095 
1096   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1097   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1098 
1099   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1100   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1101 
1102   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1103 
1104   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1105   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1106 
1107   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1108   void vpmovmskb(Register dst, XMMRegister src);
1109 
1110   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1111   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1112 
1113   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1114   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1115 
1116   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1117   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1118 
1119   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1120   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1121 
1122   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1123   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1124 
1125   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1126   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1127 
1128   void vptest(XMMRegister dst, XMMRegister src);
1129 
1130   void punpcklbw(XMMRegister dst, XMMRegister src);
1131   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1132 
1133   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1134   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1135 
1136   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1137   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1138   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1139 
1140   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1141   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1142   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1143 
1144   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1145   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1146   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1147 
1148   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1149   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1150   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1151 
1152   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1153   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1154   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1155 
1156   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1157   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1158   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1159 
1160   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1161   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1162   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1163 
1164   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1165   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1166   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1167 
1168   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1169   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1170 
1171   // AVX Vector instructions
1172 
1173   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1174   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1175   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1176 
1177   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1178   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1179   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1180 
1181   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1182     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1183       Assembler::vpxor(dst, nds, src, vector_len);
1184     else
1185       Assembler::vxorpd(dst, nds, src, vector_len);
1186   }
1187   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1188     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1189       Assembler::vpxor(dst, nds, src, vector_len);
1190     else
1191       Assembler::vxorpd(dst, nds, src, vector_len);
1192   }
1193 
1194   // Simple version for AVX2 256bit vectors
1195   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1196   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1197 
1198   // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
1199   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1200     if (UseAVX > 1) // vinserti128h is available only in AVX2
1201       Assembler::vinserti128h(dst, nds, src);
1202     else
1203       Assembler::vinsertf128h(dst, nds, src);
1204   }
1205 
1206   // Carry-Less Multiplication Quadword
1207   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1208     // 0x00 - multiply lower 64 bits [0:63]
1209     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1210   }
1211   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1212     // 0x11 - multiply upper 64 bits [64:127]
1213     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1214   }
1215 
1216   // Data
1217 
1218   void cmov32( Condition cc, Register dst, Address  src);
1219   void cmov32( Condition cc, Register dst, Register src);
1220 
1221   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1222 
1223   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1224   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1225 
1226   void movoop(Register dst, jobject obj);
1227   void movoop(Address dst, jobject obj);
1228 
1229   void mov_metadata(Register dst, Metadata* obj);
1230   void mov_metadata(Address dst, Metadata* obj);
1231 
1232   void movptr(ArrayAddress dst, Register src);
1233   // can this do an lea?
1234   void movptr(Register dst, ArrayAddress src);
1235 
1236   void movptr(Register dst, Address src);
1237 
1238 #ifdef _LP64
1239   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1240 #else
1241   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1242 #endif
1243 
1244   void movptr(Register dst, intptr_t src);
1245   void movptr(Register dst, Register src);
1246   void movptr(Address dst, intptr_t src);
1247 
1248   void movptr(Address dst, Register src);
1249 
1250   void movptr(Register dst, RegisterOrConstant src) {
1251     if (src.is_constant()) movptr(dst, src.as_constant());
1252     else                   movptr(dst, src.as_register());
1253   }
1254 
1255 #ifdef _LP64
1256   // Generally the next two are only used for moving NULL
1257   // Although there are situations in initializing the mark word where
1258   // they could be used. They are dangerous.
1259 
1260   // They only exist on LP64 so that int32_t and intptr_t are not the same
1261   // and we have ambiguous declarations.
1262 
1263   void movptr(Address dst, int32_t imm32);
1264   void movptr(Register dst, int32_t imm32);
1265 #endif // _LP64
1266 
1267   // to avoid hiding movl
1268   void mov32(AddressLiteral dst, Register src);
1269   void mov32(Register dst, AddressLiteral src);
1270 
1271   // to avoid hiding movb
1272   void movbyte(ArrayAddress dst, int src);
1273 
1274   // Import other mov() methods from the parent class or else
1275   // they will be hidden by the following overriding declaration.
1276   using Assembler::movdl;
1277   using Assembler::movq;
1278   void movdl(XMMRegister dst, AddressLiteral src);
1279   void movq(XMMRegister dst, AddressLiteral src);
1280 
1281   // Can push value or effective address
1282   void pushptr(AddressLiteral src);
1283 
1284   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1285   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1286 
1287   void pushoop(jobject obj);
1288   void pushklass(Metadata* obj);
1289 
1290   // sign extend as need a l to ptr sized element
1291   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1292   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1293 
1294   // C2 compiled method's prolog code.
1295   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1296 
1297   // clear memory of size 'cnt' qwords, starting at 'base'.
1298   void clear_mem(Register base, Register cnt, Register rtmp);
1299 
1300 #ifdef COMPILER2
1301   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1302                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1303 
1304   // IndexOf strings.
1305   // Small strings are loaded through stack if they cross page boundary.
1306   void string_indexof(Register str1, Register str2,
1307                       Register cnt1, Register cnt2,
1308                       int int_cnt2,  Register result,
1309                       XMMRegister vec, Register tmp,
1310                       int ae);
1311 
1312   // IndexOf for constant substrings with size >= 8 elements
1313   // which don't need to be loaded through stack.
1314   void string_indexofC8(Register str1, Register str2,
1315                       Register cnt1, Register cnt2,
1316                       int int_cnt2,  Register result,
1317                       XMMRegister vec, Register tmp,
1318                       int ae);
1319 
1320     // Smallest code: we don't need to load through stack,
1321     // check string tail.
1322 
1323   // helper function for string_compare
1324   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1325                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1326                           Address::ScaleFactor scale2, Register index, int ae);
1327   // Compare strings.
1328   void string_compare(Register str1, Register str2,
1329                       Register cnt1, Register cnt2, Register result,
1330                       XMMRegister vec1, int ae);
1331 
1332   // Search for Non-ASCII character (Negative byte value) in a byte array,
1333   // return true if it has any and false otherwise.
1334   void has_negatives(Register ary1, Register len,
1335                      Register result, Register tmp1,
1336                      XMMRegister vec1, XMMRegister vec2);
1337 
1338   // Compare char[] or byte[] arrays.
1339   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1340                      Register limit, Register result, Register chr,
1341                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1342 
1343 #endif
1344 
1345   // Fill primitive arrays
1346   void generate_fill(BasicType t, bool aligned,
1347                      Register to, Register value, Register count,
1348                      Register rtmp, XMMRegister xtmp);
1349 
1350   void encode_iso_array(Register src, Register dst, Register len,
1351                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1352                         XMMRegister tmp4, Register tmp5, Register result);
1353 
1354 #ifdef _LP64
1355   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1356   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1357                              Register y, Register y_idx, Register z,
1358                              Register carry, Register product,
1359                              Register idx, Register kdx);
1360   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1361                               Register yz_idx, Register idx,
1362                               Register carry, Register product, int offset);
1363   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1364                                     Register carry, Register carry2,
1365                                     Register idx, Register jdx,
1366                                     Register yz_idx1, Register yz_idx2,
1367                                     Register tmp, Register tmp3, Register tmp4);
1368   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1369                                Register yz_idx, Register idx, Register jdx,
1370                                Register carry, Register product,
1371                                Register carry2);
1372   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1373                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1374   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1375                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1376   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1377                             Register tmp2);
1378   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1379                        Register rdxReg, Register raxReg);
1380   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1381   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1382                        Register tmp3, Register tmp4);
1383   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1384                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1385 
1386   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1387                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1388                Register raxReg);
1389   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1390                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1391                Register raxReg);
1392   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1393                            Register result, Register tmp1, Register tmp2,
1394                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1395 #endif
1396 
1397   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1398   void update_byte_crc32(Register crc, Register val, Register table);
1399   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1400   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1401   // Note on a naming convention:
1402   // Prefix w = register only used on a Westmere+ architecture
1403   // Prefix n = register only used on a Nehalem architecture
1404 #ifdef _LP64
1405   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1406                        Register tmp1, Register tmp2, Register tmp3);
1407 #else
1408   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1409                        Register tmp1, Register tmp2, Register tmp3,
1410                        XMMRegister xtmp1, XMMRegister xtmp2);
1411 #endif
1412   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1413                         Register in_out,
1414                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1415                         XMMRegister w_xtmp2,
1416                         Register tmp1,
1417                         Register n_tmp2, Register n_tmp3);
1418   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1419                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1420                        Register tmp1, Register tmp2,
1421                        Register n_tmp3);
1422   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1423                          Register in_out1, Register in_out2, Register in_out3,
1424                          Register tmp1, Register tmp2, Register tmp3,
1425                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1426                          Register tmp4, Register tmp5,
1427                          Register n_tmp6);
1428   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1429                             Register tmp1, Register tmp2, Register tmp3,
1430                             Register tmp4, Register tmp5, Register tmp6,
1431                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1432                             bool is_pclmulqdq_supported);
1433   // Fold 128-bit data chunk
1434   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1435   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1436   // Fold 8-bit data
1437   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1438   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1439 
1440   // Compress char[] array to byte[].
1441   void char_array_compress(Register src, Register dst, Register len,
1442                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1443                            XMMRegister tmp4, Register tmp5, Register result);
1444 
1445   // Inflate byte[] array to char[].
1446   void byte_array_inflate(Register src, Register dst, Register len,
1447                           XMMRegister tmp1, Register tmp2);
1448 
1449 };
1450 
1451 /**
1452  * class SkipIfEqual:
1453  *
1454  * Instantiating this class will result in assembly code being output that will
1455  * jump around any code emitted between the creation of the instance and it's
1456  * automatic destruction at the end of a scope block, depending on the value of
1457  * the flag passed to the constructor, which will be checked at run-time.
1458  */
1459 class SkipIfEqual {
1460  private:
1461   MacroAssembler* _masm;
1462   Label _label;
1463 
1464  public:
1465    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1466    ~SkipIfEqual();
1467 };
1468 
1469 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP