1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableBarrierSet.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/os.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "utilities/macros.hpp"
  39 
  40 #ifdef PRODUCT
  41 #define BLOCK_COMMENT(str) /* nothing */
  42 #define STOP(error) stop(error)
  43 #else
  44 #define BLOCK_COMMENT(str) block_comment(str)
  45 #define STOP(error) block_comment(error); stop(error)
  46 #endif
  47 
  48 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  49 // Implementation of AddressLiteral
  50 
  51 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  52 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  53   // -----------------Table 4.5 -------------------- //
  54   16, 32, 64,  // EVEX_FV(0)
  55   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  56   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  57   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  58   8,  16, 32,  // EVEX_HV(0)
  59   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  60   // -----------------Table 4.6 -------------------- //
  61   16, 32, 64,  // EVEX_FVM(0)
  62   1,  1,  1,   // EVEX_T1S(0)
  63   2,  2,  2,   // EVEX_T1S(1)
  64   4,  4,  4,   // EVEX_T1S(2)
  65   8,  8,  8,   // EVEX_T1S(3)
  66   4,  4,  4,   // EVEX_T1F(0)
  67   8,  8,  8,   // EVEX_T1F(1)
  68   8,  8,  8,   // EVEX_T2(0)
  69   0,  16, 16,  // EVEX_T2(1)
  70   0,  16, 16,  // EVEX_T4(0)
  71   0,  0,  32,  // EVEX_T4(1)
  72   0,  0,  32,  // EVEX_T8(0)
  73   8,  16, 32,  // EVEX_HVM(0)
  74   4,  8,  16,  // EVEX_QVM(0)
  75   2,  4,  8,   // EVEX_OVM(0)
  76   16, 16, 16,  // EVEX_M128(0)
  77   8,  32, 64,  // EVEX_DUP(0)
  78   0,  0,  0    // EVEX_NTUP
  79 };
  80 
  81 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  82   _is_lval = false;
  83   _target = target;
  84   switch (rtype) {
  85   case relocInfo::oop_type:
  86   case relocInfo::metadata_type:
  87     // Oops are a special case. Normally they would be their own section
  88     // but in cases like icBuffer they are literals in the code stream that
  89     // we don't have a section for. We use none so that we get a literal address
  90     // which is always patchable.
  91     break;
  92   case relocInfo::external_word_type:
  93     _rspec = external_word_Relocation::spec(target);
  94     break;
  95   case relocInfo::internal_word_type:
  96     _rspec = internal_word_Relocation::spec(target);
  97     break;
  98   case relocInfo::opt_virtual_call_type:
  99     _rspec = opt_virtual_call_Relocation::spec();
 100     break;
 101   case relocInfo::static_call_type:
 102     _rspec = static_call_Relocation::spec();
 103     break;
 104   case relocInfo::runtime_call_type:
 105     _rspec = runtime_call_Relocation::spec();
 106     break;
 107   case relocInfo::poll_type:
 108   case relocInfo::poll_return_type:
 109     _rspec = Relocation::spec_simple(rtype);
 110     break;
 111   case relocInfo::none:
 112     break;
 113   default:
 114     ShouldNotReachHere();
 115     break;
 116   }
 117 }
 118 
 119 // Implementation of Address
 120 
 121 #ifdef _LP64
 122 
 123 Address Address::make_array(ArrayAddress adr) {
 124   // Not implementable on 64bit machines
 125   // Should have been handled higher up the call chain.
 126   ShouldNotReachHere();
 127   return Address();
 128 }
 129 
 130 // exceedingly dangerous constructor
 131 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 132   _base  = noreg;
 133   _index = noreg;
 134   _scale = no_scale;
 135   _disp  = disp;
 136   _xmmindex = xnoreg;
 137   _isxmmindex = false;
 138   switch (rtype) {
 139     case relocInfo::external_word_type:
 140       _rspec = external_word_Relocation::spec(loc);
 141       break;
 142     case relocInfo::internal_word_type:
 143       _rspec = internal_word_Relocation::spec(loc);
 144       break;
 145     case relocInfo::runtime_call_type:
 146       // HMM
 147       _rspec = runtime_call_Relocation::spec();
 148       break;
 149     case relocInfo::poll_type:
 150     case relocInfo::poll_return_type:
 151       _rspec = Relocation::spec_simple(rtype);
 152       break;
 153     case relocInfo::none:
 154       break;
 155     default:
 156       ShouldNotReachHere();
 157   }
 158 }
 159 #else // LP64
 160 
 161 Address Address::make_array(ArrayAddress adr) {
 162   AddressLiteral base = adr.base();
 163   Address index = adr.index();
 164   assert(index._disp == 0, "must not have disp"); // maybe it can?
 165   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 166   array._rspec = base._rspec;
 167   return array;
 168 }
 169 
 170 // exceedingly dangerous constructor
 171 Address::Address(address loc, RelocationHolder spec) {
 172   _base  = noreg;
 173   _index = noreg;
 174   _scale = no_scale;
 175   _disp  = (intptr_t) loc;
 176   _rspec = spec;
 177   _xmmindex = xnoreg;
 178   _isxmmindex = false;
 179 }
 180 
 181 #endif // _LP64
 182 
 183 
 184 
 185 // Convert the raw encoding form into the form expected by the constructor for
 186 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 187 // that to noreg for the Address constructor.
 188 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 189   RelocationHolder rspec;
 190   if (disp_reloc != relocInfo::none) {
 191     rspec = Relocation::spec_simple(disp_reloc);
 192   }
 193   bool valid_index = index != rsp->encoding();
 194   if (valid_index) {
 195     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 196     madr._rspec = rspec;
 197     return madr;
 198   } else {
 199     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 200     madr._rspec = rspec;
 201     return madr;
 202   }
 203 }
 204 
 205 // Implementation of Assembler
 206 
 207 int AbstractAssembler::code_fill_byte() {
 208   return (u_char)'\xF4'; // hlt
 209 }
 210 
 211 // make this go away someday
 212 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 213   if (rtype == relocInfo::none)
 214     emit_int32(data);
 215   else
 216     emit_data(data, Relocation::spec_simple(rtype), format);
 217 }
 218 
 219 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 220   assert(imm_operand == 0, "default format must be immediate in this file");
 221   assert(inst_mark() != NULL, "must be inside InstructionMark");
 222   if (rspec.type() !=  relocInfo::none) {
 223     #ifdef ASSERT
 224       check_relocation(rspec, format);
 225     #endif
 226     // Do not use AbstractAssembler::relocate, which is not intended for
 227     // embedded words.  Instead, relocate to the enclosing instruction.
 228 
 229     // hack. call32 is too wide for mask so use disp32
 230     if (format == call32_operand)
 231       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 232     else
 233       code_section()->relocate(inst_mark(), rspec, format);
 234   }
 235   emit_int32(data);
 236 }
 237 
 238 static int encode(Register r) {
 239   int enc = r->encoding();
 240   if (enc >= 8) {
 241     enc -= 8;
 242   }
 243   return enc;
 244 }
 245 
 246 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 247   assert(dst->has_byte_register(), "must have byte register");
 248   assert(isByte(op1) && isByte(op2), "wrong opcode");
 249   assert(isByte(imm8), "not a byte");
 250   assert((op1 & 0x01) == 0, "should be 8bit operation");
 251   emit_int8(op1);
 252   emit_int8(op2 | encode(dst));
 253   emit_int8(imm8);
 254 }
 255 
 256 
 257 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 258   assert(isByte(op1) && isByte(op2), "wrong opcode");
 259   assert((op1 & 0x01) == 1, "should be 32bit operation");
 260   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 261   if (is8bit(imm32)) {
 262     emit_int8(op1 | 0x02); // set sign bit
 263     emit_int8(op2 | encode(dst));
 264     emit_int8(imm32 & 0xFF);
 265   } else {
 266     emit_int8(op1);
 267     emit_int8(op2 | encode(dst));
 268     emit_int32(imm32);
 269   }
 270 }
 271 
 272 // Force generation of a 4 byte immediate value even if it fits into 8bit
 273 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 274   assert(isByte(op1) && isByte(op2), "wrong opcode");
 275   assert((op1 & 0x01) == 1, "should be 32bit operation");
 276   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 277   emit_int8(op1);
 278   emit_int8(op2 | encode(dst));
 279   emit_int32(imm32);
 280 }
 281 
 282 // immediate-to-memory forms
 283 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 284   assert((op1 & 0x01) == 1, "should be 32bit operation");
 285   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 286   if (is8bit(imm32)) {
 287     emit_int8(op1 | 0x02); // set sign bit
 288     emit_operand(rm, adr, 1);
 289     emit_int8(imm32 & 0xFF);
 290   } else {
 291     emit_int8(op1);
 292     emit_operand(rm, adr, 4);
 293     emit_int32(imm32);
 294   }
 295 }
 296 
 297 
 298 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 299   assert(isByte(op1) && isByte(op2), "wrong opcode");
 300   emit_int8(op1);
 301   emit_int8(op2 | encode(dst) << 3 | encode(src));
 302 }
 303 
 304 
 305 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 306                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 307   int mod_idx = 0;
 308   // We will test if the displacement fits the compressed format and if so
 309   // apply the compression to the displacment iff the result is8bit.
 310   if (VM_Version::supports_evex() && is_evex_inst) {
 311     switch (cur_tuple_type) {
 312     case EVEX_FV:
 313       if ((cur_encoding & VEX_W) == VEX_W) {
 314         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 315       } else {
 316         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       }
 318       break;
 319 
 320     case EVEX_HV:
 321       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 322       break;
 323 
 324     case EVEX_FVM:
 325       break;
 326 
 327     case EVEX_T1S:
 328       switch (in_size_in_bits) {
 329       case EVEX_8bit:
 330         break;
 331 
 332       case EVEX_16bit:
 333         mod_idx = 1;
 334         break;
 335 
 336       case EVEX_32bit:
 337         mod_idx = 2;
 338         break;
 339 
 340       case EVEX_64bit:
 341         mod_idx = 3;
 342         break;
 343       }
 344       break;
 345 
 346     case EVEX_T1F:
 347     case EVEX_T2:
 348     case EVEX_T4:
 349       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 350       break;
 351 
 352     case EVEX_T8:
 353       break;
 354 
 355     case EVEX_HVM:
 356       break;
 357 
 358     case EVEX_QVM:
 359       break;
 360 
 361     case EVEX_OVM:
 362       break;
 363 
 364     case EVEX_M128:
 365       break;
 366 
 367     case EVEX_DUP:
 368       break;
 369 
 370     default:
 371       assert(0, "no valid evex tuple_table entry");
 372       break;
 373     }
 374 
 375     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 376       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 377       if ((disp % disp_factor) == 0) {
 378         int new_disp = disp / disp_factor;
 379         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 380           disp = new_disp;
 381         }
 382       } else {
 383         return false;
 384       }
 385     }
 386   }
 387   return (-0x80 <= disp && disp < 0x80);
 388 }
 389 
 390 
 391 bool Assembler::emit_compressed_disp_byte(int &disp) {
 392   int mod_idx = 0;
 393   // We will test if the displacement fits the compressed format and if so
 394   // apply the compression to the displacment iff the result is8bit.
 395   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 396     int evex_encoding = _attributes->get_evex_encoding();
 397     int tuple_type = _attributes->get_tuple_type();
 398     switch (tuple_type) {
 399     case EVEX_FV:
 400       if ((evex_encoding & VEX_W) == VEX_W) {
 401         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 402       } else {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       }
 405       break;
 406 
 407     case EVEX_HV:
 408       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 409       break;
 410 
 411     case EVEX_FVM:
 412       break;
 413 
 414     case EVEX_T1S:
 415       switch (_attributes->get_input_size()) {
 416       case EVEX_8bit:
 417         break;
 418 
 419       case EVEX_16bit:
 420         mod_idx = 1;
 421         break;
 422 
 423       case EVEX_32bit:
 424         mod_idx = 2;
 425         break;
 426 
 427       case EVEX_64bit:
 428         mod_idx = 3;
 429         break;
 430       }
 431       break;
 432 
 433     case EVEX_T1F:
 434     case EVEX_T2:
 435     case EVEX_T4:
 436       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 437       break;
 438 
 439     case EVEX_T8:
 440       break;
 441 
 442     case EVEX_HVM:
 443       break;
 444 
 445     case EVEX_QVM:
 446       break;
 447 
 448     case EVEX_OVM:
 449       break;
 450 
 451     case EVEX_M128:
 452       break;
 453 
 454     case EVEX_DUP:
 455       break;
 456 
 457     default:
 458       assert(0, "no valid evex tuple_table entry");
 459       break;
 460     }
 461 
 462     int vector_len = _attributes->get_vector_len();
 463     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 464       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 465       if ((disp % disp_factor) == 0) {
 466         int new_disp = disp / disp_factor;
 467         if (is8bit(new_disp)) {
 468           disp = new_disp;
 469         }
 470       } else {
 471         return false;
 472       }
 473     }
 474   }
 475   return is8bit(disp);
 476 }
 477 
 478 
 479 void Assembler::emit_operand(Register reg, Register base, Register index,
 480                              Address::ScaleFactor scale, int disp,
 481                              RelocationHolder const& rspec,
 482                              int rip_relative_correction) {
 483   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 484 
 485   // Encode the registers as needed in the fields they are used in
 486 
 487   int regenc = encode(reg) << 3;
 488   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 489   int baseenc = base->is_valid() ? encode(base) : 0;
 490 
 491   if (base->is_valid()) {
 492     if (index->is_valid()) {
 493       assert(scale != Address::no_scale, "inconsistent address");
 494       // [base + index*scale + disp]
 495       if (disp == 0 && rtype == relocInfo::none  &&
 496           base != rbp LP64_ONLY(&& base != r13)) {
 497         // [base + index*scale]
 498         // [00 reg 100][ss index base]
 499         assert(index != rsp, "illegal addressing mode");
 500         emit_int8(0x04 | regenc);
 501         emit_int8(scale << 6 | indexenc | baseenc);
 502       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 503         // [base + index*scale + imm8]
 504         // [01 reg 100][ss index base] imm8
 505         assert(index != rsp, "illegal addressing mode");
 506         emit_int8(0x44 | regenc);
 507         emit_int8(scale << 6 | indexenc | baseenc);
 508         emit_int8(disp & 0xFF);
 509       } else {
 510         // [base + index*scale + disp32]
 511         // [10 reg 100][ss index base] disp32
 512         assert(index != rsp, "illegal addressing mode");
 513         emit_int8(0x84 | regenc);
 514         emit_int8(scale << 6 | indexenc | baseenc);
 515         emit_data(disp, rspec, disp32_operand);
 516       }
 517     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 518       // [rsp + disp]
 519       if (disp == 0 && rtype == relocInfo::none) {
 520         // [rsp]
 521         // [00 reg 100][00 100 100]
 522         emit_int8(0x04 | regenc);
 523         emit_int8(0x24);
 524       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 525         // [rsp + imm8]
 526         // [01 reg 100][00 100 100] disp8
 527         emit_int8(0x44 | regenc);
 528         emit_int8(0x24);
 529         emit_int8(disp & 0xFF);
 530       } else {
 531         // [rsp + imm32]
 532         // [10 reg 100][00 100 100] disp32
 533         emit_int8(0x84 | regenc);
 534         emit_int8(0x24);
 535         emit_data(disp, rspec, disp32_operand);
 536       }
 537     } else {
 538       // [base + disp]
 539       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 540       if (disp == 0 && rtype == relocInfo::none &&
 541           base != rbp LP64_ONLY(&& base != r13)) {
 542         // [base]
 543         // [00 reg base]
 544         emit_int8(0x00 | regenc | baseenc);
 545       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 546         // [base + disp8]
 547         // [01 reg base] disp8
 548         emit_int8(0x40 | regenc | baseenc);
 549         emit_int8(disp & 0xFF);
 550       } else {
 551         // [base + disp32]
 552         // [10 reg base] disp32
 553         emit_int8(0x80 | regenc | baseenc);
 554         emit_data(disp, rspec, disp32_operand);
 555       }
 556     }
 557   } else {
 558     if (index->is_valid()) {
 559       assert(scale != Address::no_scale, "inconsistent address");
 560       // [index*scale + disp]
 561       // [00 reg 100][ss index 101] disp32
 562       assert(index != rsp, "illegal addressing mode");
 563       emit_int8(0x04 | regenc);
 564       emit_int8(scale << 6 | indexenc | 0x05);
 565       emit_data(disp, rspec, disp32_operand);
 566     } else if (rtype != relocInfo::none ) {
 567       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 568       // [00 000 101] disp32
 569 
 570       emit_int8(0x05 | regenc);
 571       // Note that the RIP-rel. correction applies to the generated
 572       // disp field, but _not_ to the target address in the rspec.
 573 
 574       // disp was created by converting the target address minus the pc
 575       // at the start of the instruction. That needs more correction here.
 576       // intptr_t disp = target - next_ip;
 577       assert(inst_mark() != NULL, "must be inside InstructionMark");
 578       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 579       int64_t adjusted = disp;
 580       // Do rip-rel adjustment for 64bit
 581       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 582       assert(is_simm32(adjusted),
 583              "must be 32bit offset (RIP relative address)");
 584       emit_data((int32_t) adjusted, rspec, disp32_operand);
 585 
 586     } else {
 587       // 32bit never did this, did everything as the rip-rel/disp code above
 588       // [disp] ABSOLUTE
 589       // [00 reg 100][00 100 101] disp32
 590       emit_int8(0x04 | regenc);
 591       emit_int8(0x25);
 592       emit_data(disp, rspec, disp32_operand);
 593     }
 594   }
 595 }
 596 
 597 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 598                              Address::ScaleFactor scale, int disp,
 599                              RelocationHolder const& rspec) {
 600   if (UseAVX > 2) {
 601     int xreg_enc = reg->encoding();
 602     if (xreg_enc > 15) {
 603       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 604       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 605       return;
 606     }
 607   }
 608   emit_operand((Register)reg, base, index, scale, disp, rspec);
 609 }
 610 
 611 void Assembler::emit_operand(XMMRegister reg, Register base, XMMRegister index,
 612                              Address::ScaleFactor scale, int disp,
 613                              RelocationHolder const& rspec) {
 614   if (UseAVX > 2) {
 615     int xreg_enc = reg->encoding();
 616     int xmmindex_enc = index->encoding();
 617     XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 618     XMMRegister new_index = as_XMMRegister(xmmindex_enc & 0xf);
 619     emit_operand((Register)new_reg, base, (Register)new_index, scale, disp, rspec);
 620   } else {
 621     emit_operand((Register)reg, base, (Register)index, scale, disp, rspec);
 622   }
 623 }
 624 
 625 
 626 // Secret local extension to Assembler::WhichOperand:
 627 #define end_pc_operand (_WhichOperand_limit)
 628 
 629 address Assembler::locate_operand(address inst, WhichOperand which) {
 630   // Decode the given instruction, and return the address of
 631   // an embedded 32-bit operand word.
 632 
 633   // If "which" is disp32_operand, selects the displacement portion
 634   // of an effective address specifier.
 635   // If "which" is imm64_operand, selects the trailing immediate constant.
 636   // If "which" is call32_operand, selects the displacement of a call or jump.
 637   // Caller is responsible for ensuring that there is such an operand,
 638   // and that it is 32/64 bits wide.
 639 
 640   // If "which" is end_pc_operand, find the end of the instruction.
 641 
 642   address ip = inst;
 643   bool is_64bit = false;
 644 
 645   debug_only(bool has_disp32 = false);
 646   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 647 
 648   again_after_prefix:
 649   switch (0xFF & *ip++) {
 650 
 651   // These convenience macros generate groups of "case" labels for the switch.
 652 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 653 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 654              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 655 #define REP16(x) REP8((x)+0): \
 656               case REP8((x)+8)
 657 
 658   case CS_segment:
 659   case SS_segment:
 660   case DS_segment:
 661   case ES_segment:
 662   case FS_segment:
 663   case GS_segment:
 664     // Seems dubious
 665     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 666     assert(ip == inst+1, "only one prefix allowed");
 667     goto again_after_prefix;
 668 
 669   case 0x67:
 670   case REX:
 671   case REX_B:
 672   case REX_X:
 673   case REX_XB:
 674   case REX_R:
 675   case REX_RB:
 676   case REX_RX:
 677   case REX_RXB:
 678     NOT_LP64(assert(false, "64bit prefixes"));
 679     goto again_after_prefix;
 680 
 681   case REX_W:
 682   case REX_WB:
 683   case REX_WX:
 684   case REX_WXB:
 685   case REX_WR:
 686   case REX_WRB:
 687   case REX_WRX:
 688   case REX_WRXB:
 689     NOT_LP64(assert(false, "64bit prefixes"));
 690     is_64bit = true;
 691     goto again_after_prefix;
 692 
 693   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 694   case 0x88: // movb a, r
 695   case 0x89: // movl a, r
 696   case 0x8A: // movb r, a
 697   case 0x8B: // movl r, a
 698   case 0x8F: // popl a
 699     debug_only(has_disp32 = true);
 700     break;
 701 
 702   case 0x68: // pushq #32
 703     if (which == end_pc_operand) {
 704       return ip + 4;
 705     }
 706     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 707     return ip;                  // not produced by emit_operand
 708 
 709   case 0x66: // movw ... (size prefix)
 710     again_after_size_prefix2:
 711     switch (0xFF & *ip++) {
 712     case REX:
 713     case REX_B:
 714     case REX_X:
 715     case REX_XB:
 716     case REX_R:
 717     case REX_RB:
 718     case REX_RX:
 719     case REX_RXB:
 720     case REX_W:
 721     case REX_WB:
 722     case REX_WX:
 723     case REX_WXB:
 724     case REX_WR:
 725     case REX_WRB:
 726     case REX_WRX:
 727     case REX_WRXB:
 728       NOT_LP64(assert(false, "64bit prefix found"));
 729       goto again_after_size_prefix2;
 730     case 0x8B: // movw r, a
 731     case 0x89: // movw a, r
 732       debug_only(has_disp32 = true);
 733       break;
 734     case 0xC7: // movw a, #16
 735       debug_only(has_disp32 = true);
 736       tail_size = 2;  // the imm16
 737       break;
 738     case 0x0F: // several SSE/SSE2 variants
 739       ip--;    // reparse the 0x0F
 740       goto again_after_prefix;
 741     default:
 742       ShouldNotReachHere();
 743     }
 744     break;
 745 
 746   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 747     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 748     // these asserts are somewhat nonsensical
 749 #ifndef _LP64
 750     assert(which == imm_operand || which == disp32_operand,
 751            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 752 #else
 753     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 754            which == narrow_oop_operand && !is_64bit,
 755            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 756 #endif // _LP64
 757     return ip;
 758 
 759   case 0x69: // imul r, a, #32
 760   case 0xC7: // movl a, #32(oop?)
 761     tail_size = 4;
 762     debug_only(has_disp32 = true); // has both kinds of operands!
 763     break;
 764 
 765   case 0x0F: // movx..., etc.
 766     switch (0xFF & *ip++) {
 767     case 0x3A: // pcmpestri
 768       tail_size = 1;
 769     case 0x38: // ptest, pmovzxbw
 770       ip++; // skip opcode
 771       debug_only(has_disp32 = true); // has both kinds of operands!
 772       break;
 773 
 774     case 0x70: // pshufd r, r/a, #8
 775       debug_only(has_disp32 = true); // has both kinds of operands!
 776     case 0x73: // psrldq r, #8
 777       tail_size = 1;
 778       break;
 779 
 780     case 0x12: // movlps
 781     case 0x28: // movaps
 782     case 0x2E: // ucomiss
 783     case 0x2F: // comiss
 784     case 0x54: // andps
 785     case 0x55: // andnps
 786     case 0x56: // orps
 787     case 0x57: // xorps
 788     case 0x58: // addpd
 789     case 0x59: // mulpd
 790     case 0x6E: // movd
 791     case 0x7E: // movd
 792     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 793     case 0xFE: // paddd
 794       debug_only(has_disp32 = true);
 795       break;
 796 
 797     case 0xAD: // shrd r, a, %cl
 798     case 0xAF: // imul r, a
 799     case 0xBE: // movsbl r, a (movsxb)
 800     case 0xBF: // movswl r, a (movsxw)
 801     case 0xB6: // movzbl r, a (movzxb)
 802     case 0xB7: // movzwl r, a (movzxw)
 803     case REP16(0x40): // cmovl cc, r, a
 804     case 0xB0: // cmpxchgb
 805     case 0xB1: // cmpxchg
 806     case 0xC1: // xaddl
 807     case 0xC7: // cmpxchg8
 808     case REP16(0x90): // setcc a
 809       debug_only(has_disp32 = true);
 810       // fall out of the switch to decode the address
 811       break;
 812 
 813     case 0xC4: // pinsrw r, a, #8
 814       debug_only(has_disp32 = true);
 815     case 0xC5: // pextrw r, r, #8
 816       tail_size = 1;  // the imm8
 817       break;
 818 
 819     case 0xAC: // shrd r, a, #8
 820       debug_only(has_disp32 = true);
 821       tail_size = 1;  // the imm8
 822       break;
 823 
 824     case REP16(0x80): // jcc rdisp32
 825       if (which == end_pc_operand)  return ip + 4;
 826       assert(which == call32_operand, "jcc has no disp32 or imm");
 827       return ip;
 828     default:
 829       ShouldNotReachHere();
 830     }
 831     break;
 832 
 833   case 0x81: // addl a, #32; addl r, #32
 834     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 835     // on 32bit in the case of cmpl, the imm might be an oop
 836     tail_size = 4;
 837     debug_only(has_disp32 = true); // has both kinds of operands!
 838     break;
 839 
 840   case 0x83: // addl a, #8; addl r, #8
 841     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 842     debug_only(has_disp32 = true); // has both kinds of operands!
 843     tail_size = 1;
 844     break;
 845 
 846   case 0x9B:
 847     switch (0xFF & *ip++) {
 848     case 0xD9: // fnstcw a
 849       debug_only(has_disp32 = true);
 850       break;
 851     default:
 852       ShouldNotReachHere();
 853     }
 854     break;
 855 
 856   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 857   case REP4(0x10): // adc...
 858   case REP4(0x20): // and...
 859   case REP4(0x30): // xor...
 860   case REP4(0x08): // or...
 861   case REP4(0x18): // sbb...
 862   case REP4(0x28): // sub...
 863   case 0xF7: // mull a
 864   case 0x8D: // lea r, a
 865   case 0x87: // xchg r, a
 866   case REP4(0x38): // cmp...
 867   case 0x85: // test r, a
 868     debug_only(has_disp32 = true); // has both kinds of operands!
 869     break;
 870 
 871   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 872   case 0xC6: // movb a, #8
 873   case 0x80: // cmpb a, #8
 874   case 0x6B: // imul r, a, #8
 875     debug_only(has_disp32 = true); // has both kinds of operands!
 876     tail_size = 1; // the imm8
 877     break;
 878 
 879   case 0xC4: // VEX_3bytes
 880   case 0xC5: // VEX_2bytes
 881     assert((UseAVX > 0), "shouldn't have VEX prefix");
 882     assert(ip == inst+1, "no prefixes allowed");
 883     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 884     // but they have prefix 0x0F and processed when 0x0F processed above.
 885     //
 886     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 887     // instructions (these instructions are not supported in 64-bit mode).
 888     // To distinguish them bits [7:6] are set in the VEX second byte since
 889     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 890     // those VEX bits REX and vvvv bits are inverted.
 891     //
 892     // Fortunately C2 doesn't generate these instructions so we don't need
 893     // to check for them in product version.
 894 
 895     // Check second byte
 896     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 897 
 898     int vex_opcode;
 899     // First byte
 900     if ((0xFF & *inst) == VEX_3bytes) {
 901       vex_opcode = VEX_OPCODE_MASK & *ip;
 902       ip++; // third byte
 903       is_64bit = ((VEX_W & *ip) == VEX_W);
 904     } else {
 905       vex_opcode = VEX_OPCODE_0F;
 906     }
 907     ip++; // opcode
 908     // To find the end of instruction (which == end_pc_operand).
 909     switch (vex_opcode) {
 910       case VEX_OPCODE_0F:
 911         switch (0xFF & *ip) {
 912         case 0x70: // pshufd r, r/a, #8
 913         case 0x71: // ps[rl|ra|ll]w r, #8
 914         case 0x72: // ps[rl|ra|ll]d r, #8
 915         case 0x73: // ps[rl|ra|ll]q r, #8
 916         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 917         case 0xC4: // pinsrw r, r, r/a, #8
 918         case 0xC5: // pextrw r/a, r, #8
 919         case 0xC6: // shufp[s|d] r, r, r/a, #8
 920           tail_size = 1;  // the imm8
 921           break;
 922         }
 923         break;
 924       case VEX_OPCODE_0F_3A:
 925         tail_size = 1;
 926         break;
 927     }
 928     ip++; // skip opcode
 929     debug_only(has_disp32 = true); // has both kinds of operands!
 930     break;
 931 
 932   case 0x62: // EVEX_4bytes
 933     assert(VM_Version::supports_evex(), "shouldn't have EVEX prefix");
 934     assert(ip == inst+1, "no prefixes allowed");
 935     // no EVEX collisions, all instructions that have 0x62 opcodes
 936     // have EVEX versions and are subopcodes of 0x66
 937     ip++; // skip P0 and exmaine W in P1
 938     is_64bit = ((VEX_W & *ip) == VEX_W);
 939     ip++; // move to P2
 940     ip++; // skip P2, move to opcode
 941     // To find the end of instruction (which == end_pc_operand).
 942     switch (0xFF & *ip) {
 943     case 0x22: // pinsrd r, r/a, #8
 944     case 0x61: // pcmpestri r, r/a, #8
 945     case 0x70: // pshufd r, r/a, #8
 946     case 0x73: // psrldq r, #8
 947     case 0x1f: // evpcmpd/evpcmpq
 948     case 0x3f: // evpcmpb/evpcmpw
 949       tail_size = 1;  // the imm8
 950       break;
 951     default:
 952       break;
 953     }
 954     ip++; // skip opcode
 955     debug_only(has_disp32 = true); // has both kinds of operands!
 956     break;
 957 
 958   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 959   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 960   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 961   case 0xDD: // fld_d a; fst_d a; fstp_d a
 962   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 963   case 0xDF: // fild_d a; fistp_d a
 964   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 965   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 966   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 967     debug_only(has_disp32 = true);
 968     break;
 969 
 970   case 0xE8: // call rdisp32
 971   case 0xE9: // jmp  rdisp32
 972     if (which == end_pc_operand)  return ip + 4;
 973     assert(which == call32_operand, "call has no disp32 or imm");
 974     return ip;
 975 
 976   case 0xF0:                    // Lock
 977     assert(os::is_MP(), "only on MP");
 978     goto again_after_prefix;
 979 
 980   case 0xF3:                    // For SSE
 981   case 0xF2:                    // For SSE2
 982     switch (0xFF & *ip++) {
 983     case REX:
 984     case REX_B:
 985     case REX_X:
 986     case REX_XB:
 987     case REX_R:
 988     case REX_RB:
 989     case REX_RX:
 990     case REX_RXB:
 991     case REX_W:
 992     case REX_WB:
 993     case REX_WX:
 994     case REX_WXB:
 995     case REX_WR:
 996     case REX_WRB:
 997     case REX_WRX:
 998     case REX_WRXB:
 999       NOT_LP64(assert(false, "found 64bit prefix"));
1000       ip++;
1001     default:
1002       ip++;
1003     }
1004     debug_only(has_disp32 = true); // has both kinds of operands!
1005     break;
1006 
1007   default:
1008     ShouldNotReachHere();
1009 
1010 #undef REP8
1011 #undef REP16
1012   }
1013 
1014   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
1015 #ifdef _LP64
1016   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1017 #else
1018   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1019   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1020 #endif // LP64
1021   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1022 
1023   // parse the output of emit_operand
1024   int op2 = 0xFF & *ip++;
1025   int base = op2 & 0x07;
1026   int op3 = -1;
1027   const int b100 = 4;
1028   const int b101 = 5;
1029   if (base == b100 && (op2 >> 6) != 3) {
1030     op3 = 0xFF & *ip++;
1031     base = op3 & 0x07;   // refetch the base
1032   }
1033   // now ip points at the disp (if any)
1034 
1035   switch (op2 >> 6) {
1036   case 0:
1037     // [00 reg  100][ss index base]
1038     // [00 reg  100][00   100  esp]
1039     // [00 reg base]
1040     // [00 reg  100][ss index  101][disp32]
1041     // [00 reg  101]               [disp32]
1042 
1043     if (base == b101) {
1044       if (which == disp32_operand)
1045         return ip;              // caller wants the disp32
1046       ip += 4;                  // skip the disp32
1047     }
1048     break;
1049 
1050   case 1:
1051     // [01 reg  100][ss index base][disp8]
1052     // [01 reg  100][00   100  esp][disp8]
1053     // [01 reg base]               [disp8]
1054     ip += 1;                    // skip the disp8
1055     break;
1056 
1057   case 2:
1058     // [10 reg  100][ss index base][disp32]
1059     // [10 reg  100][00   100  esp][disp32]
1060     // [10 reg base]               [disp32]
1061     if (which == disp32_operand)
1062       return ip;                // caller wants the disp32
1063     ip += 4;                    // skip the disp32
1064     break;
1065 
1066   case 3:
1067     // [11 reg base]  (not a memory addressing mode)
1068     break;
1069   }
1070 
1071   if (which == end_pc_operand) {
1072     return ip + tail_size;
1073   }
1074 
1075 #ifdef _LP64
1076   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1077 #else
1078   assert(which == imm_operand, "instruction has only an imm field");
1079 #endif // LP64
1080   return ip;
1081 }
1082 
1083 address Assembler::locate_next_instruction(address inst) {
1084   // Secretly share code with locate_operand:
1085   return locate_operand(inst, end_pc_operand);
1086 }
1087 
1088 
1089 #ifdef ASSERT
1090 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1091   address inst = inst_mark();
1092   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1093   address opnd;
1094 
1095   Relocation* r = rspec.reloc();
1096   if (r->type() == relocInfo::none) {
1097     return;
1098   } else if (r->is_call() || format == call32_operand) {
1099     // assert(format == imm32_operand, "cannot specify a nonzero format");
1100     opnd = locate_operand(inst, call32_operand);
1101   } else if (r->is_data()) {
1102     assert(format == imm_operand || format == disp32_operand
1103            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1104     opnd = locate_operand(inst, (WhichOperand)format);
1105   } else {
1106     assert(format == imm_operand, "cannot specify a format");
1107     return;
1108   }
1109   assert(opnd == pc(), "must put operand where relocs can find it");
1110 }
1111 #endif // ASSERT
1112 
1113 void Assembler::emit_operand32(Register reg, Address adr) {
1114   assert(reg->encoding() < 8, "no extended registers");
1115   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1116   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1117                adr._rspec);
1118 }
1119 
1120 void Assembler::emit_operand(Register reg, Address adr,
1121                              int rip_relative_correction) {
1122   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1123                adr._rspec,
1124                rip_relative_correction);
1125 }
1126 
1127 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1128     if (adr.isxmmindex()) {
1129        emit_operand(reg, adr._base, adr._xmmindex, adr._scale, adr._disp, adr._rspec);
1130     } else {
1131        emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1132        adr._rspec);
1133     }
1134 }
1135 
1136 // MMX operations
1137 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1138   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1139   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1140 }
1141 
1142 // work around gcc (3.2.1-7a) bug
1143 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1144   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1145   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1146 }
1147 
1148 
1149 void Assembler::emit_farith(int b1, int b2, int i) {
1150   assert(isByte(b1) && isByte(b2), "wrong opcode");
1151   assert(0 <= i &&  i < 8, "illegal stack offset");
1152   emit_int8(b1);
1153   emit_int8(b2 + i);
1154 }
1155 
1156 
1157 // Now the Assembler instructions (identical for 32/64 bits)
1158 
1159 void Assembler::adcl(Address dst, int32_t imm32) {
1160   InstructionMark im(this);
1161   prefix(dst);
1162   emit_arith_operand(0x81, rdx, dst, imm32);
1163 }
1164 
1165 void Assembler::adcl(Address dst, Register src) {
1166   InstructionMark im(this);
1167   prefix(dst, src);
1168   emit_int8(0x11);
1169   emit_operand(src, dst);
1170 }
1171 
1172 void Assembler::adcl(Register dst, int32_t imm32) {
1173   prefix(dst);
1174   emit_arith(0x81, 0xD0, dst, imm32);
1175 }
1176 
1177 void Assembler::adcl(Register dst, Address src) {
1178   InstructionMark im(this);
1179   prefix(src, dst);
1180   emit_int8(0x13);
1181   emit_operand(dst, src);
1182 }
1183 
1184 void Assembler::adcl(Register dst, Register src) {
1185   (void) prefix_and_encode(dst->encoding(), src->encoding());
1186   emit_arith(0x13, 0xC0, dst, src);
1187 }
1188 
1189 void Assembler::addl(Address dst, int32_t imm32) {
1190   InstructionMark im(this);
1191   prefix(dst);
1192   emit_arith_operand(0x81, rax, dst, imm32);
1193 }
1194 
1195 void Assembler::addb(Address dst, int imm8) {
1196   InstructionMark im(this);
1197   prefix(dst);
1198   emit_int8((unsigned char)0x80);
1199   emit_operand(rax, dst, 1);
1200   emit_int8(imm8);
1201 }
1202 
1203 void Assembler::addw(Register dst, Register src) {
1204   (void)prefix_and_encode(dst->encoding(), src->encoding());
1205   emit_arith(0x03, 0xC0, dst, src);
1206 }
1207 
1208 void Assembler::addw(Address dst, int imm16) {
1209   InstructionMark im(this);
1210   emit_int8(0x66);
1211   prefix(dst);
1212   emit_int8((unsigned char)0x81);
1213   emit_operand(rax, dst, 2);
1214   emit_int16(imm16);
1215 }
1216 
1217 void Assembler::addl(Address dst, Register src) {
1218   InstructionMark im(this);
1219   prefix(dst, src);
1220   emit_int8(0x01);
1221   emit_operand(src, dst);
1222 }
1223 
1224 void Assembler::addl(Register dst, int32_t imm32) {
1225   prefix(dst);
1226   emit_arith(0x81, 0xC0, dst, imm32);
1227 }
1228 
1229 void Assembler::addl(Register dst, Address src) {
1230   InstructionMark im(this);
1231   prefix(src, dst);
1232   emit_int8(0x03);
1233   emit_operand(dst, src);
1234 }
1235 
1236 void Assembler::addl(Register dst, Register src) {
1237   (void) prefix_and_encode(dst->encoding(), src->encoding());
1238   emit_arith(0x03, 0xC0, dst, src);
1239 }
1240 
1241 void Assembler::addr_nop_4() {
1242   assert(UseAddressNop, "no CPU support");
1243   // 4 bytes: NOP DWORD PTR [EAX+0]
1244   emit_int8(0x0F);
1245   emit_int8(0x1F);
1246   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1247   emit_int8(0);    // 8-bits offset (1 byte)
1248 }
1249 
1250 void Assembler::addr_nop_5() {
1251   assert(UseAddressNop, "no CPU support");
1252   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1253   emit_int8(0x0F);
1254   emit_int8(0x1F);
1255   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1256   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1257   emit_int8(0);    // 8-bits offset (1 byte)
1258 }
1259 
1260 void Assembler::addr_nop_7() {
1261   assert(UseAddressNop, "no CPU support");
1262   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1263   emit_int8(0x0F);
1264   emit_int8(0x1F);
1265   emit_int8((unsigned char)0x80);
1266                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1267   emit_int32(0);   // 32-bits offset (4 bytes)
1268 }
1269 
1270 void Assembler::addr_nop_8() {
1271   assert(UseAddressNop, "no CPU support");
1272   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1273   emit_int8(0x0F);
1274   emit_int8(0x1F);
1275   emit_int8((unsigned char)0x84);
1276                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1277   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1278   emit_int32(0);   // 32-bits offset (4 bytes)
1279 }
1280 
1281 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1282   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1283   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1284   attributes.set_rex_vex_w_reverted();
1285   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1286   emit_int8(0x58);
1287   emit_int8((unsigned char)(0xC0 | encode));
1288 }
1289 
1290 void Assembler::addsd(XMMRegister dst, Address src) {
1291   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1292   InstructionMark im(this);
1293   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1294   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1295   attributes.set_rex_vex_w_reverted();
1296   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1297   emit_int8(0x58);
1298   emit_operand(dst, src);
1299 }
1300 
1301 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1302   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1303   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1304   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1305   emit_int8(0x58);
1306   emit_int8((unsigned char)(0xC0 | encode));
1307 }
1308 
1309 void Assembler::addss(XMMRegister dst, Address src) {
1310   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1311   InstructionMark im(this);
1312   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1313   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1314   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1315   emit_int8(0x58);
1316   emit_operand(dst, src);
1317 }
1318 
1319 void Assembler::aesdec(XMMRegister dst, Address src) {
1320   assert(VM_Version::supports_aes(), "");
1321   InstructionMark im(this);
1322   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1323   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1324   emit_int8((unsigned char)0xDE);
1325   emit_operand(dst, src);
1326 }
1327 
1328 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1329   assert(VM_Version::supports_aes(), "");
1330   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1331   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1332   emit_int8((unsigned char)0xDE);
1333   emit_int8(0xC0 | encode);
1334 }
1335 
1336 void Assembler::vaesdec(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1337   assert(VM_Version::supports_vaes(), "");
1338   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1339   attributes.set_is_evex_instruction();
1340   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1341   emit_int8((unsigned char)0xDE);
1342   emit_int8((unsigned char)(0xC0 | encode));
1343 }
1344 
1345 
1346 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1347   assert(VM_Version::supports_aes(), "");
1348   InstructionMark im(this);
1349   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1350   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1351   emit_int8((unsigned char)0xDF);
1352   emit_operand(dst, src);
1353 }
1354 
1355 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1356   assert(VM_Version::supports_aes(), "");
1357   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1358   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1359   emit_int8((unsigned char)0xDF);
1360   emit_int8((unsigned char)(0xC0 | encode));
1361 }
1362 
1363 void Assembler::vaesdeclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1364   assert(VM_Version::supports_vaes(), "");
1365   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1366   attributes.set_is_evex_instruction();
1367   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1368   emit_int8((unsigned char)0xDF);
1369   emit_int8((unsigned char)(0xC0 | encode));
1370 }
1371 
1372 void Assembler::aesenc(XMMRegister dst, Address src) {
1373   assert(VM_Version::supports_aes(), "");
1374   InstructionMark im(this);
1375   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1376   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1377   emit_int8((unsigned char)0xDC);
1378   emit_operand(dst, src);
1379 }
1380 
1381 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1382   assert(VM_Version::supports_aes(), "");
1383   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1384   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1385   emit_int8((unsigned char)0xDC);
1386   emit_int8(0xC0 | encode);
1387 }
1388 
1389 void Assembler::aesenclast(XMMRegister dst, Address src) {
1390   assert(VM_Version::supports_aes(), "");
1391   InstructionMark im(this);
1392   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1393   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1394   emit_int8((unsigned char)0xDD);
1395   emit_operand(dst, src);
1396 }
1397 
1398 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1399   assert(VM_Version::supports_aes(), "");
1400   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1401   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1402   emit_int8((unsigned char)0xDD);
1403   emit_int8((unsigned char)(0xC0 | encode));
1404 }
1405 
1406 void Assembler::andw(Register dst, Register src) {
1407   (void)prefix_and_encode(dst->encoding(), src->encoding());
1408   emit_arith(0x23, 0xC0, dst, src);
1409 }
1410 
1411 void Assembler::andl(Address dst, int32_t imm32) {
1412   InstructionMark im(this);
1413   prefix(dst);
1414   emit_int8((unsigned char)0x81);
1415   emit_operand(rsp, dst, 4);
1416   emit_int32(imm32);
1417 }
1418 
1419 void Assembler::andl(Register dst, int32_t imm32) {
1420   prefix(dst);
1421   emit_arith(0x81, 0xE0, dst, imm32);
1422 }
1423 
1424 void Assembler::andl(Register dst, Address src) {
1425   InstructionMark im(this);
1426   prefix(src, dst);
1427   emit_int8(0x23);
1428   emit_operand(dst, src);
1429 }
1430 
1431 void Assembler::andl(Register dst, Register src) {
1432   (void) prefix_and_encode(dst->encoding(), src->encoding());
1433   emit_arith(0x23, 0xC0, dst, src);
1434 }
1435 
1436 void Assembler::andnl(Register dst, Register src1, Register src2) {
1437   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1438   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1439   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1440   emit_int8((unsigned char)0xF2);
1441   emit_int8((unsigned char)(0xC0 | encode));
1442 }
1443 
1444 void Assembler::andnl(Register dst, Register src1, Address src2) {
1445   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1446   InstructionMark im(this);
1447   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1448   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1449   emit_int8((unsigned char)0xF2);
1450   emit_operand(dst, src2);
1451 }
1452 
1453 void Assembler::bsfl(Register dst, Register src) {
1454   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1455   emit_int8(0x0F);
1456   emit_int8((unsigned char)0xBC);
1457   emit_int8((unsigned char)(0xC0 | encode));
1458 }
1459 
1460 void Assembler::bsrl(Register dst, Register src) {
1461   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1462   emit_int8(0x0F);
1463   emit_int8((unsigned char)0xBD);
1464   emit_int8((unsigned char)(0xC0 | encode));
1465 }
1466 
1467 void Assembler::bswapl(Register reg) { // bswap
1468   int encode = prefix_and_encode(reg->encoding());
1469   emit_int8(0x0F);
1470   emit_int8((unsigned char)(0xC8 | encode));
1471 }
1472 
1473 void Assembler::blsil(Register dst, Register src) {
1474   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1475   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1476   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1477   emit_int8((unsigned char)0xF3);
1478   emit_int8((unsigned char)(0xC0 | encode));
1479 }
1480 
1481 void Assembler::blsil(Register dst, Address src) {
1482   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1483   InstructionMark im(this);
1484   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1485   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1486   emit_int8((unsigned char)0xF3);
1487   emit_operand(rbx, src);
1488 }
1489 
1490 void Assembler::blsmskl(Register dst, Register src) {
1491   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1492   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1493   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1494   emit_int8((unsigned char)0xF3);
1495   emit_int8((unsigned char)(0xC0 | encode));
1496 }
1497 
1498 void Assembler::blsmskl(Register dst, Address src) {
1499   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1500   InstructionMark im(this);
1501   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1502   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1503   emit_int8((unsigned char)0xF3);
1504   emit_operand(rdx, src);
1505 }
1506 
1507 void Assembler::blsrl(Register dst, Register src) {
1508   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1509   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1510   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1511   emit_int8((unsigned char)0xF3);
1512   emit_int8((unsigned char)(0xC0 | encode));
1513 }
1514 
1515 void Assembler::blsrl(Register dst, Address src) {
1516   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1517   InstructionMark im(this);
1518   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1519   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1520   emit_int8((unsigned char)0xF3);
1521   emit_operand(rcx, src);
1522 }
1523 
1524 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1525   // suspect disp32 is always good
1526   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1527 
1528   if (L.is_bound()) {
1529     const int long_size = 5;
1530     int offs = (int)( target(L) - pc() );
1531     assert(offs <= 0, "assembler error");
1532     InstructionMark im(this);
1533     // 1110 1000 #32-bit disp
1534     emit_int8((unsigned char)0xE8);
1535     emit_data(offs - long_size, rtype, operand);
1536   } else {
1537     InstructionMark im(this);
1538     // 1110 1000 #32-bit disp
1539     L.add_patch_at(code(), locator());
1540 
1541     emit_int8((unsigned char)0xE8);
1542     emit_data(int(0), rtype, operand);
1543   }
1544 }
1545 
1546 void Assembler::call(Register dst) {
1547   int encode = prefix_and_encode(dst->encoding());
1548   emit_int8((unsigned char)0xFF);
1549   emit_int8((unsigned char)(0xD0 | encode));
1550 }
1551 
1552 
1553 void Assembler::call(Address adr) {
1554   InstructionMark im(this);
1555   prefix(adr);
1556   emit_int8((unsigned char)0xFF);
1557   emit_operand(rdx, adr);
1558 }
1559 
1560 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1561   InstructionMark im(this);
1562   emit_int8((unsigned char)0xE8);
1563   intptr_t disp = entry - (pc() + sizeof(int32_t));
1564   // Entry is NULL in case of a scratch emit.
1565   assert(entry == NULL || is_simm32(disp), "disp=" INTPTR_FORMAT " must be 32bit offset (call2)", disp);
1566   // Technically, should use call32_operand, but this format is
1567   // implied by the fact that we're emitting a call instruction.
1568 
1569   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1570   emit_data((int) disp, rspec, operand);
1571 }
1572 
1573 void Assembler::cdql() {
1574   emit_int8((unsigned char)0x99);
1575 }
1576 
1577 void Assembler::cld() {
1578   emit_int8((unsigned char)0xFC);
1579 }
1580 
1581 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1582   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1583   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1584   emit_int8(0x0F);
1585   emit_int8(0x40 | cc);
1586   emit_int8((unsigned char)(0xC0 | encode));
1587 }
1588 
1589 
1590 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1591   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1592   prefix(src, dst);
1593   emit_int8(0x0F);
1594   emit_int8(0x40 | cc);
1595   emit_operand(dst, src);
1596 }
1597 
1598 void Assembler::cmpb(Address dst, int imm8) {
1599   InstructionMark im(this);
1600   prefix(dst);
1601   emit_int8((unsigned char)0x80);
1602   emit_operand(rdi, dst, 1);
1603   emit_int8(imm8);
1604 }
1605 
1606 void Assembler::cmpl(Address dst, int32_t imm32) {
1607   InstructionMark im(this);
1608   prefix(dst);
1609   emit_int8((unsigned char)0x81);
1610   emit_operand(rdi, dst, 4);
1611   emit_int32(imm32);
1612 }
1613 
1614 void Assembler::cmpl(Register dst, int32_t imm32) {
1615   prefix(dst);
1616   emit_arith(0x81, 0xF8, dst, imm32);
1617 }
1618 
1619 void Assembler::cmpl(Register dst, Register src) {
1620   (void) prefix_and_encode(dst->encoding(), src->encoding());
1621   emit_arith(0x3B, 0xC0, dst, src);
1622 }
1623 
1624 void Assembler::cmpl(Register dst, Address  src) {
1625   InstructionMark im(this);
1626   prefix(src, dst);
1627   emit_int8((unsigned char)0x3B);
1628   emit_operand(dst, src);
1629 }
1630 
1631 void Assembler::cmpw(Address dst, int imm16) {
1632   InstructionMark im(this);
1633   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1634   emit_int8(0x66);
1635   emit_int8((unsigned char)0x81);
1636   emit_operand(rdi, dst, 2);
1637   emit_int16(imm16);
1638 }
1639 
1640 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1641 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1642 // The ZF is set if the compared values were equal, and cleared otherwise.
1643 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1644   InstructionMark im(this);
1645   prefix(adr, reg);
1646   emit_int8(0x0F);
1647   emit_int8((unsigned char)0xB1);
1648   emit_operand(reg, adr);
1649 }
1650 
1651 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1652 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1653 // The ZF is set if the compared values were equal, and cleared otherwise.
1654 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1655   InstructionMark im(this);
1656   prefix(adr, reg, true);
1657   emit_int8(0x0F);
1658   emit_int8((unsigned char)0xB0);
1659   emit_operand(reg, adr);
1660 }
1661 
1662 void Assembler::comisd(XMMRegister dst, Address src) {
1663   // NOTE: dbx seems to decode this as comiss even though the
1664   // 0x66 is there. Strangly ucomisd comes out correct
1665   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1666   InstructionMark im(this);
1667   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1668   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1669   attributes.set_rex_vex_w_reverted();
1670   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1671   emit_int8(0x2F);
1672   emit_operand(dst, src);
1673 }
1674 
1675 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1676   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1677   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1678   attributes.set_rex_vex_w_reverted();
1679   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1680   emit_int8(0x2F);
1681   emit_int8((unsigned char)(0xC0 | encode));
1682 }
1683 
1684 void Assembler::comiss(XMMRegister dst, Address src) {
1685   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1686   InstructionMark im(this);
1687   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1688   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1689   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1690   emit_int8(0x2F);
1691   emit_operand(dst, src);
1692 }
1693 
1694 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1695   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1696   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1697   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1698   emit_int8(0x2F);
1699   emit_int8((unsigned char)(0xC0 | encode));
1700 }
1701 
1702 void Assembler::cpuid() {
1703   emit_int8(0x0F);
1704   emit_int8((unsigned char)0xA2);
1705 }
1706 
1707 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1708 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1709 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1710 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1711 //
1712 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1713 //
1714 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1715 //
1716 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1717 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1718   assert(VM_Version::supports_sse4_2(), "");
1719   int8_t w = 0x01;
1720   Prefix p = Prefix_EMPTY;
1721 
1722   emit_int8((int8_t)0xF2);
1723   switch (sizeInBytes) {
1724   case 1:
1725     w = 0;
1726     break;
1727   case 2:
1728   case 4:
1729     break;
1730   LP64_ONLY(case 8:)
1731     // This instruction is not valid in 32 bits
1732     // Note:
1733     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1734     //
1735     // Page B - 72   Vol. 2C says
1736     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1737     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1738     //                                                                            F0!!!
1739     // while 3 - 208 Vol. 2A
1740     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1741     //
1742     // the 0 on a last bit is reserved for a different flavor of this instruction :
1743     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1744     p = REX_W;
1745     break;
1746   default:
1747     assert(0, "Unsupported value for a sizeInBytes argument");
1748     break;
1749   }
1750   LP64_ONLY(prefix(crc, v, p);)
1751   emit_int8((int8_t)0x0F);
1752   emit_int8(0x38);
1753   emit_int8((int8_t)(0xF0 | w));
1754   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1755 }
1756 
1757 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1758   assert(VM_Version::supports_sse4_2(), "");
1759   InstructionMark im(this);
1760   int8_t w = 0x01;
1761   Prefix p = Prefix_EMPTY;
1762 
1763   emit_int8((int8_t)0xF2);
1764   switch (sizeInBytes) {
1765   case 1:
1766     w = 0;
1767     break;
1768   case 2:
1769   case 4:
1770     break;
1771   LP64_ONLY(case 8:)
1772     // This instruction is not valid in 32 bits
1773     p = REX_W;
1774     break;
1775   default:
1776     assert(0, "Unsupported value for a sizeInBytes argument");
1777     break;
1778   }
1779   LP64_ONLY(prefix(crc, adr, p);)
1780   emit_int8((int8_t)0x0F);
1781   emit_int8(0x38);
1782   emit_int8((int8_t)(0xF0 | w));
1783   emit_operand(crc, adr);
1784 }
1785 
1786 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1787   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1788   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1789   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1790   emit_int8((unsigned char)0xE6);
1791   emit_int8((unsigned char)(0xC0 | encode));
1792 }
1793 
1794 void Assembler::vcvtdq2pd(XMMRegister dst, XMMRegister src, int vector_len) {
1795   assert(vector_len <= AVX_256bit ? VM_Version::supports_avx() : VM_Version::supports_evex(), "");
1796   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1797   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1798   emit_int8((unsigned char)0xE6);
1799   emit_int8((unsigned char)(0xC0 | encode));
1800 }
1801 
1802 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1803   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1804   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1805   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1806   emit_int8(0x5B);
1807   emit_int8((unsigned char)(0xC0 | encode));
1808 }
1809 
1810 void Assembler::vcvtdq2ps(XMMRegister dst, XMMRegister src, int vector_len) {
1811   assert(vector_len <= AVX_256bit ? VM_Version::supports_avx() : VM_Version::supports_evex(), "");
1812   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
1813   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1814   emit_int8(0x5B);
1815   emit_int8((unsigned char)(0xC0 | encode));
1816 }
1817 
1818 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1819   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1820   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1821   attributes.set_rex_vex_w_reverted();
1822   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1823   emit_int8(0x5A);
1824   emit_int8((unsigned char)(0xC0 | encode));
1825 }
1826 
1827 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1828   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1829   InstructionMark im(this);
1830   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1831   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1832   attributes.set_rex_vex_w_reverted();
1833   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1834   emit_int8(0x5A);
1835   emit_operand(dst, src);
1836 }
1837 
1838 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1839   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1840   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1841   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1842   emit_int8(0x2A);
1843   emit_int8((unsigned char)(0xC0 | encode));
1844 }
1845 
1846 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1847   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1848   InstructionMark im(this);
1849   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1850   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1851   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1852   emit_int8(0x2A);
1853   emit_operand(dst, src);
1854 }
1855 
1856 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1857   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1858   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1859   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1860   emit_int8(0x2A);
1861   emit_int8((unsigned char)(0xC0 | encode));
1862 }
1863 
1864 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1865   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1866   InstructionMark im(this);
1867   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1868   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1869   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1870   emit_int8(0x2A);
1871   emit_operand(dst, src);
1872 }
1873 
1874 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1875   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1876   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1877   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1878   emit_int8(0x2A);
1879   emit_int8((unsigned char)(0xC0 | encode));
1880 }
1881 
1882 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1883   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1884   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1885   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1886   emit_int8(0x5A);
1887   emit_int8((unsigned char)(0xC0 | encode));
1888 }
1889 
1890 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1891   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1892   InstructionMark im(this);
1893   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1894   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1895   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1896   emit_int8(0x5A);
1897   emit_operand(dst, src);
1898 }
1899 
1900 
1901 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1902   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1903   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1904   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1905   emit_int8(0x2C);
1906   emit_int8((unsigned char)(0xC0 | encode));
1907 }
1908 
1909 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1910   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1911   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1912   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1913   emit_int8(0x2C);
1914   emit_int8((unsigned char)(0xC0 | encode));
1915 }
1916 
1917 void Assembler::cvttpd2dq(XMMRegister dst, XMMRegister src) {
1918   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1919   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
1920   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1921   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1922   emit_int8((unsigned char)0xE6);
1923   emit_int8((unsigned char)(0xC0 | encode));
1924 }
1925 
1926 void Assembler::vcvtps2pd(XMMRegister dst, XMMRegister src, int vector_len) {
1927   assert(UseAVX > 0 && (vector_len == AVX_128bit || vector_len == AVX_256bit), "");
1928   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1929   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1930   emit_int8((unsigned char)0x5A);
1931   emit_int8((unsigned char)(0xC0 | encode));
1932 }
1933 
1934 void Assembler::evcvtps2pd(XMMRegister dst, XMMRegister src, int vector_len) {
1935   assert(UseAVX > 2, "");
1936   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1937   attributes.set_is_evex_instruction();
1938   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1939   emit_int8((unsigned char)0x5A);
1940   emit_int8((unsigned char)(0xC0 | encode));
1941 }
1942 
1943 void Assembler::pabsb(XMMRegister dst, XMMRegister src) {
1944   assert(VM_Version::supports_ssse3(), "");
1945   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1946   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1947   emit_int8(0x1C);
1948   emit_int8((unsigned char)(0xC0 | encode));
1949 }
1950 
1951 void Assembler::pabsw(XMMRegister dst, XMMRegister src) {
1952   assert(VM_Version::supports_ssse3(), "");
1953   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1954   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1955   emit_int8(0x1D);
1956   emit_int8((unsigned char)(0xC0 | encode));
1957 }
1958 
1959 void Assembler::vcvtpd2ps(XMMRegister dst, XMMRegister src, int vector_len) {
1960   assert(UseAVX > 0 && (vector_len == AVX_128bit || vector_len == AVX_256bit), "");
1961   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1962   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1963   emit_int8((unsigned char)0x5A);
1964   emit_int8((unsigned char)(0xC0 | encode));
1965 }
1966 
1967 void Assembler::evcvtpd2ps(XMMRegister dst, XMMRegister src, int vector_len) {
1968   assert(UseAVX > 2, "");
1969   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1970   attributes.set_is_evex_instruction();
1971   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1972   emit_int8((unsigned char)0x5A);
1973   emit_int8((unsigned char)(0xC0 | encode));
1974 }
1975 
1976 void Assembler::evcvtqq2ps(XMMRegister dst, XMMRegister src, int vector_len) {
1977   assert(UseAVX > 2 && VM_Version::supports_avx512dq(), "");
1978   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1979   attributes.set_is_evex_instruction();
1980   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1981   emit_int8((unsigned char)0x5B);
1982   emit_int8((unsigned char)(0xC0 | encode));
1983 }
1984 
1985 void Assembler::evcvtqq2pd(XMMRegister dst, XMMRegister src, int vector_len) {
1986   assert(UseAVX > 2 && VM_Version::supports_avx512dq(), "");
1987   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1988   attributes.set_is_evex_instruction();
1989   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1990   emit_int8((unsigned char)0xE6);
1991   emit_int8((unsigned char)(0xC0 | encode));
1992 }
1993 
1994 void Assembler::evpmovwb(XMMRegister dst, XMMRegister src, int vector_len) {
1995   assert(UseAVX > 2, "");
1996   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1997   attributes.set_is_evex_instruction();
1998   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
1999   emit_int8((unsigned char)0x30);
2000   emit_int8((unsigned char)(0xC0 | encode));
2001 }
2002 
2003 void Assembler::evpmovdw(XMMRegister dst, XMMRegister src, int vector_len) {
2004   assert(UseAVX > 2, "");
2005   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2006   attributes.set_is_evex_instruction();
2007   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
2008   emit_int8((unsigned char)0x33);
2009   emit_int8((unsigned char)(0xC0 | encode));
2010 }
2011 
2012 void Assembler::evpmovdb(XMMRegister dst, XMMRegister src, int vector_len) {
2013   assert(UseAVX > 2, "");
2014   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2015   attributes.set_is_evex_instruction();
2016   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
2017   emit_int8((unsigned char)0x31);
2018   emit_int8((unsigned char)(0xC0 | encode));
2019 }
2020 
2021 void Assembler::evpmovqd(XMMRegister dst, XMMRegister src, int vector_len) {
2022   assert(UseAVX > 2, "");
2023   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2024   attributes.set_is_evex_instruction();
2025   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
2026   emit_int8((unsigned char)0x35);
2027   emit_int8((unsigned char)(0xC0 | encode));
2028 }
2029 
2030 void Assembler::evpmovqb(XMMRegister dst, XMMRegister src, int vector_len) {
2031   assert(UseAVX > 2, "");
2032   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2033   attributes.set_is_evex_instruction();
2034   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
2035   emit_int8((unsigned char)0x32);
2036   emit_int8((unsigned char)(0xC0 | encode));
2037 }
2038 
2039 void Assembler::evpmovqw(XMMRegister dst, XMMRegister src, int vector_len) {
2040   assert(UseAVX > 2, "");
2041   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2042   attributes.set_is_evex_instruction();
2043   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
2044   emit_int8((unsigned char)0x34);
2045   emit_int8((unsigned char)(0xC0 | encode));
2046 }
2047 
2048 void Assembler::pabsd(XMMRegister dst, XMMRegister src) {
2049   assert(VM_Version::supports_ssse3(), "");
2050   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2051   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
2052   emit_int8(0x1E);
2053   emit_int8((unsigned char)(0xC0 | encode));
2054 }
2055 
2056 void Assembler::vpabsb(XMMRegister dst, XMMRegister src, int vector_len) {
2057   assert(UseAVX > 0 && (vector_len == AVX_128bit || vector_len == AVX_256bit), "");
2058   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2059   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
2060   emit_int8((unsigned char)0x1C);
2061   emit_int8((unsigned char)(0xC0 | encode));
2062 }
2063 
2064 void Assembler::vpabsw(XMMRegister dst, XMMRegister src, int vector_len) {
2065   assert(UseAVX > 0 && (vector_len == AVX_128bit || vector_len == AVX_256bit), "");
2066   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2067   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
2068   emit_int8((unsigned char)0x1D);
2069   emit_int8((unsigned char)(0xC0 | encode));
2070 }
2071 
2072 void Assembler::vpabsd(XMMRegister dst, XMMRegister src, int vector_len) {
2073   assert(UseAVX > 0 && (vector_len == AVX_128bit || vector_len == AVX_256bit), "");
2074   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2075   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
2076   emit_int8((unsigned char)0x1E);
2077   emit_int8((unsigned char)(0xC0 | encode));
2078 }
2079 
2080 void Assembler::evpabsb(XMMRegister dst, XMMRegister src, int vector_len) {
2081   assert(UseAVX > 2, "");
2082   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2083   attributes.set_is_evex_instruction();
2084   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
2085   emit_int8((unsigned char)0x1C);
2086   emit_int8((unsigned char)(0xC0 | encode));
2087 }
2088 
2089 void Assembler::evpabsw(XMMRegister dst, XMMRegister src, int vector_len) {
2090   assert(UseAVX > 2, "");
2091   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2092   attributes.set_is_evex_instruction();
2093   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
2094   emit_int8((unsigned char)0x1D);
2095   emit_int8((unsigned char)(0xC0 | encode));
2096 }
2097 
2098 void Assembler::evpabsd(XMMRegister dst, XMMRegister src, int vector_len) {
2099   assert(UseAVX > 2, "");
2100   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2101   attributes.set_is_evex_instruction();
2102   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
2103   emit_int8((unsigned char)0x1E);
2104   emit_int8((unsigned char)(0xC0 | encode));
2105 }
2106 
2107 void Assembler::evpabsq(XMMRegister dst, XMMRegister src, int vector_len) {
2108   assert(UseAVX > 2, "");
2109   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2110   attributes.set_is_evex_instruction();
2111   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
2112   emit_int8((unsigned char)0x1F);
2113   emit_int8((unsigned char)(0xC0 | encode));
2114 }
2115 
2116 void Assembler::decl(Address dst) {
2117   // Don't use it directly. Use MacroAssembler::decrement() instead.
2118   InstructionMark im(this);
2119   prefix(dst);
2120   emit_int8((unsigned char)0xFF);
2121   emit_operand(rcx, dst);
2122 }
2123 
2124 void Assembler::divsd(XMMRegister dst, Address src) {
2125   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2126   InstructionMark im(this);
2127   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2128   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2129   attributes.set_rex_vex_w_reverted();
2130   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2131   emit_int8(0x5E);
2132   emit_operand(dst, src);
2133 }
2134 
2135 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
2136   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2137   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2138   attributes.set_rex_vex_w_reverted();
2139   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2140   emit_int8(0x5E);
2141   emit_int8((unsigned char)(0xC0 | encode));
2142 }
2143 
2144 void Assembler::divss(XMMRegister dst, Address src) {
2145   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2146   InstructionMark im(this);
2147   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2148   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2149   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2150   emit_int8(0x5E);
2151   emit_operand(dst, src);
2152 }
2153 
2154 void Assembler::divss(XMMRegister dst, XMMRegister src) {
2155   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2156   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2157   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2158   emit_int8(0x5E);
2159   emit_int8((unsigned char)(0xC0 | encode));
2160 }
2161 
2162 void Assembler::emms() {
2163   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
2164   emit_int8(0x0F);
2165   emit_int8(0x77);
2166 }
2167 
2168 void Assembler::hlt() {
2169   emit_int8((unsigned char)0xF4);
2170 }
2171 
2172 void Assembler::idivl(Register src) {
2173   int encode = prefix_and_encode(src->encoding());
2174   emit_int8((unsigned char)0xF7);
2175   emit_int8((unsigned char)(0xF8 | encode));
2176 }
2177 
2178 void Assembler::divl(Register src) { // Unsigned
2179   int encode = prefix_and_encode(src->encoding());
2180   emit_int8((unsigned char)0xF7);
2181   emit_int8((unsigned char)(0xF0 | encode));
2182 }
2183 
2184 void Assembler::imull(Register src) {
2185   int encode = prefix_and_encode(src->encoding());
2186   emit_int8((unsigned char)0xF7);
2187   emit_int8((unsigned char)(0xE8 | encode));
2188 }
2189 
2190 void Assembler::imull(Register dst, Register src) {
2191   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2192   emit_int8(0x0F);
2193   emit_int8((unsigned char)0xAF);
2194   emit_int8((unsigned char)(0xC0 | encode));
2195 }
2196 
2197 
2198 void Assembler::imull(Register dst, Register src, int value) {
2199   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2200   if (is8bit(value)) {
2201     emit_int8(0x6B);
2202     emit_int8((unsigned char)(0xC0 | encode));
2203     emit_int8(value & 0xFF);
2204   } else {
2205     emit_int8(0x69);
2206     emit_int8((unsigned char)(0xC0 | encode));
2207     emit_int32(value);
2208   }
2209 }
2210 
2211 void Assembler::imull(Register dst, Address src) {
2212   InstructionMark im(this);
2213   prefix(src, dst);
2214   emit_int8(0x0F);
2215   emit_int8((unsigned char) 0xAF);
2216   emit_operand(dst, src);
2217 }
2218 
2219 
2220 void Assembler::incl(Address dst) {
2221   // Don't use it directly. Use MacroAssembler::increment() instead.
2222   InstructionMark im(this);
2223   prefix(dst);
2224   emit_int8((unsigned char)0xFF);
2225   emit_operand(rax, dst);
2226 }
2227 
2228 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
2229   InstructionMark im(this);
2230   assert((0 <= cc) && (cc < 16), "illegal cc");
2231   if (L.is_bound()) {
2232     address dst = target(L);
2233     assert(dst != NULL, "jcc most probably wrong");
2234 
2235     const int short_size = 2;
2236     const int long_size = 6;
2237     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
2238     if (maybe_short && is8bit(offs - short_size)) {
2239       // 0111 tttn #8-bit disp
2240       emit_int8(0x70 | cc);
2241       emit_int8((offs - short_size) & 0xFF);
2242     } else {
2243       // 0000 1111 1000 tttn #32-bit disp
2244       assert(is_simm32(offs - long_size),
2245              "must be 32bit offset (call4)");
2246       emit_int8(0x0F);
2247       emit_int8((unsigned char)(0x80 | cc));
2248       emit_int32(offs - long_size);
2249     }
2250   } else {
2251     // Note: could eliminate cond. jumps to this jump if condition
2252     //       is the same however, seems to be rather unlikely case.
2253     // Note: use jccb() if label to be bound is very close to get
2254     //       an 8-bit displacement
2255     L.add_patch_at(code(), locator());
2256     emit_int8(0x0F);
2257     emit_int8((unsigned char)(0x80 | cc));
2258     emit_int32(0);
2259   }
2260 }
2261 
2262 void Assembler::jccb_0(Condition cc, Label& L, const char* file, int line) {
2263   if (L.is_bound()) {
2264     const int short_size = 2;
2265     address entry = target(L);
2266 #ifdef ASSERT
2267     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2268     intptr_t delta = short_branch_delta();
2269     if (delta != 0) {
2270       dist += (dist < 0 ? (-delta) :delta);
2271     }
2272     assert(is8bit(dist), "Dispacement too large for a short jmp at %s:%d", file, line);
2273 #endif
2274     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
2275     // 0111 tttn #8-bit disp
2276     emit_int8(0x70 | cc);
2277     emit_int8((offs - short_size) & 0xFF);
2278   } else {
2279     InstructionMark im(this);
2280     L.add_patch_at(code(), locator(), file, line);
2281     emit_int8(0x70 | cc);
2282     emit_int8(0);
2283   }
2284 }
2285 
2286 void Assembler::jmp(Address adr) {
2287   InstructionMark im(this);
2288   prefix(adr);
2289   emit_int8((unsigned char)0xFF);
2290   emit_operand(rsp, adr);
2291 }
2292 
2293 void Assembler::jmp(Label& L, bool maybe_short) {
2294   if (L.is_bound()) {
2295     address entry = target(L);
2296     assert(entry != NULL, "jmp most probably wrong");
2297     InstructionMark im(this);
2298     const int short_size = 2;
2299     const int long_size = 5;
2300     intptr_t offs = entry - pc();
2301     if (maybe_short && is8bit(offs - short_size)) {
2302       emit_int8((unsigned char)0xEB);
2303       emit_int8((offs - short_size) & 0xFF);
2304     } else {
2305       emit_int8((unsigned char)0xE9);
2306       emit_int32(offs - long_size);
2307     }
2308   } else {
2309     // By default, forward jumps are always 32-bit displacements, since
2310     // we can't yet know where the label will be bound.  If you're sure that
2311     // the forward jump will not run beyond 256 bytes, use jmpb to
2312     // force an 8-bit displacement.
2313     InstructionMark im(this);
2314     L.add_patch_at(code(), locator());
2315     emit_int8((unsigned char)0xE9);
2316     emit_int32(0);
2317   }
2318 }
2319 
2320 void Assembler::jmp(Register entry) {
2321   int encode = prefix_and_encode(entry->encoding());
2322   emit_int8((unsigned char)0xFF);
2323   emit_int8((unsigned char)(0xE0 | encode));
2324 }
2325 
2326 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2327   InstructionMark im(this);
2328   emit_int8((unsigned char)0xE9);
2329   assert(dest != NULL, "must have a target");
2330   intptr_t disp = dest - (pc() + sizeof(int32_t));
2331   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2332   emit_data(disp, rspec.reloc(), call32_operand);
2333 }
2334 
2335 void Assembler::jmpb_0(Label& L, const char* file, int line) {
2336   if (L.is_bound()) {
2337     const int short_size = 2;
2338     address entry = target(L);
2339     assert(entry != NULL, "jmp most probably wrong");
2340 #ifdef ASSERT
2341     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2342     intptr_t delta = short_branch_delta();
2343     if (delta != 0) {
2344       dist += (dist < 0 ? (-delta) :delta);
2345     }
2346     assert(is8bit(dist), "Dispacement too large for a short jmp at %s:%d", file, line);
2347 #endif
2348     intptr_t offs = entry - pc();
2349     emit_int8((unsigned char)0xEB);
2350     emit_int8((offs - short_size) & 0xFF);
2351   } else {
2352     InstructionMark im(this);
2353     L.add_patch_at(code(), locator(), file, line);
2354     emit_int8((unsigned char)0xEB);
2355     emit_int8(0);
2356   }
2357 }
2358 
2359 void Assembler::ldmxcsr( Address src) {
2360   if (UseAVX > 0 ) {
2361     InstructionMark im(this);
2362     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2363     vex_prefix(src, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2364     emit_int8((unsigned char)0xAE);
2365     emit_operand(as_Register(2), src);
2366   } else {
2367     NOT_LP64(assert(VM_Version::supports_sse(), ""));
2368     InstructionMark im(this);
2369     prefix(src);
2370     emit_int8(0x0F);
2371     emit_int8((unsigned char)0xAE);
2372     emit_operand(as_Register(2), src);
2373   }
2374 }
2375 
2376 void Assembler::leal(Register dst, Address src) {
2377   InstructionMark im(this);
2378 #ifdef _LP64
2379   emit_int8(0x67); // addr32
2380   prefix(src, dst);
2381 #endif // LP64
2382   emit_int8((unsigned char)0x8D);
2383   emit_operand(dst, src);
2384 }
2385 
2386 void Assembler::lfence() {
2387   emit_int8(0x0F);
2388   emit_int8((unsigned char)0xAE);
2389   emit_int8((unsigned char)0xE8);
2390 }
2391 
2392 void Assembler::lock() {
2393   emit_int8((unsigned char)0xF0);
2394 }
2395 
2396 void Assembler::lzcntl(Register dst, Register src) {
2397   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2398   emit_int8((unsigned char)0xF3);
2399   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2400   emit_int8(0x0F);
2401   emit_int8((unsigned char)0xBD);
2402   emit_int8((unsigned char)(0xC0 | encode));
2403 }
2404 
2405 // Emit mfence instruction
2406 void Assembler::mfence() {
2407   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2408   emit_int8(0x0F);
2409   emit_int8((unsigned char)0xAE);
2410   emit_int8((unsigned char)0xF0);
2411 }
2412 
2413 void Assembler::mov(Register dst, Register src) {
2414   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2415 }
2416 
2417 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2418   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2419   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2420   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2421   attributes.set_rex_vex_w_reverted();
2422   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2423   emit_int8(0x28);
2424   emit_int8((unsigned char)(0xC0 | encode));
2425 }
2426 
2427 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2428   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2429   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2430   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2431   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2432   emit_int8(0x28);
2433   emit_int8((unsigned char)(0xC0 | encode));
2434 }
2435 
2436 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2437   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2438   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2439   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2440   emit_int8(0x16);
2441   emit_int8((unsigned char)(0xC0 | encode));
2442 }
2443 
2444 void Assembler::movb(Register dst, Address src) {
2445   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2446   InstructionMark im(this);
2447   prefix(src, dst, true);
2448   emit_int8((unsigned char)0x8A);
2449   emit_operand(dst, src);
2450 }
2451 
2452 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2453   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2454   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2455   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2456   attributes.set_rex_vex_w_reverted();
2457   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2458   emit_int8(0x12);
2459   emit_int8(0xC0 | encode);
2460 }
2461 
2462 void Assembler::kmovbl(KRegister dst, Register src) {
2463   assert(VM_Version::supports_avx512dq(), "");
2464   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2465   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2466   emit_int8((unsigned char)0x92);
2467   emit_int8((unsigned char)(0xC0 | encode));
2468 }
2469 
2470 void Assembler::kmovbl(Register dst, KRegister src) {
2471   assert(VM_Version::supports_avx512dq(), "");
2472   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2473   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2474   emit_int8((unsigned char)0x93);
2475   emit_int8((unsigned char)(0xC0 | encode));
2476 }
2477 
2478 void Assembler::kmovwl(KRegister dst, Register src) {
2479   assert(VM_Version::supports_evex(), "");
2480   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2481   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2482   emit_int8((unsigned char)0x92);
2483   emit_int8((unsigned char)(0xC0 | encode));
2484 }
2485 
2486 void Assembler::kmovwl(Register dst, KRegister src) {
2487   assert(VM_Version::supports_evex(), "");
2488   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2489   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2490   emit_int8((unsigned char)0x93);
2491   emit_int8((unsigned char)(0xC0 | encode));
2492 }
2493 
2494 void Assembler::kmovwl(KRegister dst, Address src) {
2495   assert(VM_Version::supports_evex(), "");
2496   InstructionMark im(this);
2497   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2498   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2499   emit_int8((unsigned char)0x90);
2500   emit_operand((Register)dst, src);
2501 }
2502 
2503 void Assembler::kmovdl(KRegister dst, Register src) {
2504   assert(VM_Version::supports_avx512bw(), "");
2505   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2506   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2507   emit_int8((unsigned char)0x92);
2508   emit_int8((unsigned char)(0xC0 | encode));
2509 }
2510 
2511 void Assembler::kmovdl(Register dst, KRegister src) {
2512   assert(VM_Version::supports_avx512bw(), "");
2513   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2514   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2515   emit_int8((unsigned char)0x93);
2516   emit_int8((unsigned char)(0xC0 | encode));
2517 }
2518 
2519 void Assembler::kmovql(KRegister dst, KRegister src) {
2520   assert(VM_Version::supports_avx512bw(), "");
2521   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2522   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2523   emit_int8((unsigned char)0x90);
2524   emit_int8((unsigned char)(0xC0 | encode));
2525 }
2526 
2527 void Assembler::kmovql(KRegister dst, Address src) {
2528   assert(VM_Version::supports_avx512bw(), "");
2529   InstructionMark im(this);
2530   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2531   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2532   emit_int8((unsigned char)0x90);
2533   emit_operand((Register)dst, src);
2534 }
2535 
2536 void Assembler::kmovql(Address dst, KRegister src) {
2537   assert(VM_Version::supports_avx512bw(), "");
2538   InstructionMark im(this);
2539   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2540   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2541   emit_int8((unsigned char)0x90);
2542   emit_operand((Register)src, dst);
2543 }
2544 
2545 void Assembler::kmovql(KRegister dst, Register src) {
2546   assert(VM_Version::supports_avx512bw(), "");
2547   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2548   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2549   emit_int8((unsigned char)0x92);
2550   emit_int8((unsigned char)(0xC0 | encode));
2551 }
2552 
2553 void Assembler::kmovql(Register dst, KRegister src) {
2554   assert(VM_Version::supports_avx512bw(), "");
2555   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2556   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2557   emit_int8((unsigned char)0x93);
2558   emit_int8((unsigned char)(0xC0 | encode));
2559 }
2560 
2561 void Assembler::knotwl(KRegister dst, KRegister src) {
2562   assert(VM_Version::supports_evex(), "");
2563   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2564   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2565   emit_int8((unsigned char)0x44);
2566   emit_int8((unsigned char)(0xC0 | encode));
2567 }
2568 
2569 // This instruction produces ZF or CF flags
2570 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2571   assert(VM_Version::supports_avx512dq(), "");
2572   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2573   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2574   emit_int8((unsigned char)0x98);
2575   emit_int8((unsigned char)(0xC0 | encode));
2576 }
2577 
2578 // This instruction produces ZF or CF flags
2579 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2580   assert(VM_Version::supports_evex(), "");
2581   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2582   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2583   emit_int8((unsigned char)0x98);
2584   emit_int8((unsigned char)(0xC0 | encode));
2585 }
2586 
2587 // This instruction produces ZF or CF flags
2588 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2589   assert(VM_Version::supports_avx512bw(), "");
2590   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2591   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2592   emit_int8((unsigned char)0x98);
2593   emit_int8((unsigned char)(0xC0 | encode));
2594 }
2595 
2596 // This instruction produces ZF or CF flags
2597 void Assembler::kortestql(KRegister src1, KRegister src2) {
2598   assert(VM_Version::supports_avx512bw(), "");
2599   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2600   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2601   emit_int8((unsigned char)0x98);
2602   emit_int8((unsigned char)(0xC0 | encode));
2603 }
2604 
2605 // This instruction produces ZF or CF flags
2606 void Assembler::ktestql(KRegister src1, KRegister src2) {
2607   assert(VM_Version::supports_avx512bw(), "");
2608   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2609   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2610   emit_int8((unsigned char)0x99);
2611   emit_int8((unsigned char)(0xC0 | encode));
2612 }
2613 
2614 void Assembler::ktestq(KRegister src1, KRegister src2) {
2615   assert(VM_Version::supports_avx512bw(), "");
2616   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2617   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2618   emit_int8((unsigned char)0x99);
2619   emit_int8((unsigned char)(0xC0 | encode));
2620 }
2621 
2622 void Assembler::ktestd(KRegister src1, KRegister src2) {
2623   assert(VM_Version::supports_avx512bw(), "");
2624   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2625   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2626   emit_int8((unsigned char)0x99);
2627   emit_int8((unsigned char)(0xC0 | encode));
2628 }
2629 
2630 void Assembler::movb(Address dst, int imm8) {
2631   InstructionMark im(this);
2632    prefix(dst);
2633   emit_int8((unsigned char)0xC6);
2634   emit_operand(rax, dst, 1);
2635   emit_int8(imm8);
2636 }
2637 
2638 
2639 void Assembler::movb(Address dst, Register src) {
2640   assert(src->has_byte_register(), "must have byte register");
2641   InstructionMark im(this);
2642   prefix(dst, src, true);
2643   emit_int8((unsigned char)0x88);
2644   emit_operand(src, dst);
2645 }
2646 
2647 void Assembler::movdl(XMMRegister dst, Register src) {
2648   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2649   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2650   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2651   emit_int8(0x6E);
2652   emit_int8((unsigned char)(0xC0 | encode));
2653 }
2654 
2655 void Assembler::movdl(Register dst, XMMRegister src) {
2656   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2657   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2658   // swap src/dst to get correct prefix
2659   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2660   emit_int8(0x7E);
2661   emit_int8((unsigned char)(0xC0 | encode));
2662 }
2663 
2664 void Assembler::movdl(XMMRegister dst, Address src) {
2665   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2666   InstructionMark im(this);
2667   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2668   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2669   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2670   emit_int8(0x6E);
2671   emit_operand(dst, src);
2672 }
2673 
2674 void Assembler::movdl(Address dst, XMMRegister src) {
2675   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2676   InstructionMark im(this);
2677   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2678   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2679   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2680   emit_int8(0x7E);
2681   emit_operand(src, dst);
2682 }
2683 
2684 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2685   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2686   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2687   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2688   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2689   emit_int8(0x6F);
2690   emit_int8((unsigned char)(0xC0 | encode));
2691 }
2692 
2693 void Assembler::movdqa(XMMRegister dst, Address src) {
2694   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2695   InstructionMark im(this);
2696   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2697   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2698   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2699   emit_int8(0x6F);
2700   emit_operand(dst, src);
2701 }
2702 
2703 void Assembler::movdqu(XMMRegister dst, Address src) {
2704   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2705   InstructionMark im(this);
2706   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2707   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2708   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2709   emit_int8(0x6F);
2710   emit_operand(dst, src);
2711 }
2712 
2713 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2714   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2715   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2716   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2717   emit_int8(0x6F);
2718   emit_int8((unsigned char)(0xC0 | encode));
2719 }
2720 
2721 void Assembler::movdqu(Address dst, XMMRegister src) {
2722   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2723   InstructionMark im(this);
2724   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2725   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2726   attributes.reset_is_clear_context();
2727   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2728   emit_int8(0x7F);
2729   emit_operand(src, dst);
2730 }
2731 
2732 // Move Unaligned 256bit Vector
2733 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2734   assert(UseAVX > 0, "");
2735   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2736   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2737   emit_int8(0x6F);
2738   emit_int8((unsigned char)(0xC0 | encode));
2739 }
2740 
2741 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2742   assert(UseAVX > 0, "");
2743   InstructionMark im(this);
2744   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2745   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2746   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2747   emit_int8(0x6F);
2748   emit_operand(dst, src);
2749 }
2750 
2751 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2752   assert(UseAVX > 0, "");
2753   InstructionMark im(this);
2754   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2755   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2756   attributes.reset_is_clear_context();
2757   // swap src<->dst for encoding
2758   assert(src != xnoreg, "sanity");
2759   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2760   emit_int8(0x7F);
2761   emit_operand(src, dst);
2762 }
2763 
2764 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2765 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, bool merge, int vector_len) {
2766   assert(VM_Version::supports_evex(), "");
2767   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2768   attributes.set_is_evex_instruction();
2769   if (merge) {
2770     attributes.reset_is_clear_context();
2771   }
2772   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2773   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2774   emit_int8(0x6F);
2775   emit_int8((unsigned char)(0xC0 | encode));
2776 }
2777 
2778 void Assembler::evmovdqub(XMMRegister dst, Address src, bool merge, int vector_len) {
2779   assert(VM_Version::supports_evex(), "");
2780   InstructionMark im(this);
2781   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2782   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2783   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2784   attributes.set_is_evex_instruction();
2785   if (merge) {
2786     attributes.reset_is_clear_context();
2787   }
2788   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2789   emit_int8(0x6F);
2790   emit_operand(dst, src);
2791 }
2792 
2793 void Assembler::evmovdqub(Address dst, XMMRegister src, bool merge, int vector_len) {
2794   assert(VM_Version::supports_evex(), "");
2795   assert(src != xnoreg, "sanity");
2796   InstructionMark im(this);
2797   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2798   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2799   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2800   attributes.set_is_evex_instruction();
2801   if (merge) {
2802     attributes.reset_is_clear_context();
2803   }
2804   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2805   emit_int8(0x7F);
2806   emit_operand(src, dst);
2807 }
2808 
2809 void Assembler::evmovdqub(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) {
2810   assert(VM_Version::supports_avx512vlbw(), "");
2811   InstructionMark im(this);
2812   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2813   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2814   attributes.set_embedded_opmask_register_specifier(mask);
2815   attributes.set_is_evex_instruction();
2816   if (merge) {
2817     attributes.reset_is_clear_context();
2818   }
2819   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2820   emit_int8(0x6F);
2821   emit_operand(dst, src);
2822 }
2823 
2824 void Assembler::evmovdquw(XMMRegister dst, Address src, bool merge, int vector_len) {
2825   assert(VM_Version::supports_evex(), "");
2826   InstructionMark im(this);
2827   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2828   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2829   attributes.set_is_evex_instruction();
2830   if (merge) {
2831     attributes.reset_is_clear_context();
2832   }
2833   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2834   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2835   emit_int8(0x6F);
2836   emit_operand(dst, src);
2837 }
2838 
2839 void Assembler::evmovdquw(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) {
2840   assert(VM_Version::supports_avx512vlbw(), "");
2841   InstructionMark im(this);
2842   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2843   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2844   attributes.set_embedded_opmask_register_specifier(mask);
2845   attributes.set_is_evex_instruction();
2846   if (merge) {
2847     attributes.reset_is_clear_context();
2848   }
2849   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2850   emit_int8(0x6F);
2851   emit_operand(dst, src);
2852 }
2853 
2854 void Assembler::evmovdquw(Address dst, XMMRegister src, bool merge, int vector_len) {
2855   assert(VM_Version::supports_evex(), "");
2856   assert(src != xnoreg, "sanity");
2857   InstructionMark im(this);
2858   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2859   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2860   attributes.set_is_evex_instruction();
2861   if (merge) {
2862     attributes.reset_is_clear_context();
2863   }
2864   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2865   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2866   emit_int8(0x7F);
2867   emit_operand(src, dst);
2868 }
2869 
2870 void Assembler::evmovdquw(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
2871   assert(VM_Version::supports_avx512vlbw(), "");
2872   assert(src != xnoreg, "sanity");
2873   InstructionMark im(this);
2874   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2875   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2876   attributes.set_embedded_opmask_register_specifier(mask);
2877   attributes.set_is_evex_instruction();
2878   if (merge) {
2879     attributes.reset_is_clear_context();
2880   }
2881   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2882   emit_int8(0x7F);
2883   emit_operand(src, dst);
2884 }
2885 
2886 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2887   // Users of this routine assume k1 usage.
2888   evmovdqul(dst, k1, src, /*merge*/ false, vector_len);
2889 }
2890 
2891 void Assembler::evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
2892   assert(VM_Version::supports_evex(), "");
2893   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2894   attributes.set_embedded_opmask_register_specifier(mask);
2895   attributes.set_is_evex_instruction();
2896   if (merge) {
2897     attributes.reset_is_clear_context();
2898   }
2899   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2900   emit_int8(0x6F);
2901   emit_int8((unsigned char)(0xC0 | encode));
2902 }
2903 
2904 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2905   // Users of this routine assume k1 usage.
2906   evmovdqul(dst, k1, src, /*merge*/ false, vector_len);
2907 }
2908 
2909 void Assembler::evmovdqul(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) {
2910   assert(VM_Version::supports_evex(), "");
2911   InstructionMark im(this);
2912   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ true);
2913   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2914   attributes.set_embedded_opmask_register_specifier(mask);
2915   attributes.set_is_evex_instruction();
2916   if (merge) {
2917     attributes.reset_is_clear_context();
2918   }
2919   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2920   emit_int8(0x6F);
2921   emit_operand(dst, src);
2922 }
2923 
2924 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2925   // Users of this routine assume k1 usage.
2926   evmovdqul(dst, k1, src, /*merge*/ true, vector_len);
2927 }
2928 
2929 void Assembler::evmovdqul(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
2930   assert(VM_Version::supports_evex(), "");
2931   assert(src != xnoreg, "sanity");
2932   InstructionMark im(this);
2933   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2934   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2935   attributes.set_embedded_opmask_register_specifier(mask);
2936   attributes.set_is_evex_instruction();
2937   if (merge) {
2938     attributes.reset_is_clear_context();
2939   }
2940   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2941   emit_int8(0x7F);
2942   emit_operand(src, dst);
2943 }
2944 
2945 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2946   // Users of this routine assume k1 usage.
2947   evmovdquq(dst, k1, src, /*merge*/ false, vector_len);
2948 }
2949 
2950 void Assembler::evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
2951   assert(VM_Version::supports_evex(), "");
2952   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2953   attributes.set_embedded_opmask_register_specifier(mask);
2954   attributes.set_is_evex_instruction();
2955   if (merge) {
2956     attributes.reset_is_clear_context();
2957   }
2958   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2959   emit_int8(0x6F);
2960   emit_int8((unsigned char)(0xC0 | encode));
2961 }
2962 
2963 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2964   // Users of this routine assume k1 usage.
2965   evmovdquq(dst, k1, src, /*merge*/ false, vector_len);
2966 }
2967 
2968 void Assembler::evmovdquq(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) {
2969   assert(VM_Version::supports_evex(), "");
2970   InstructionMark im(this);
2971   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2972   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2973   attributes.set_embedded_opmask_register_specifier(mask);
2974   attributes.set_is_evex_instruction();
2975   if (merge) {
2976     attributes.reset_is_clear_context();
2977   }
2978   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2979   emit_int8(0x6F);
2980   emit_operand(dst, src);
2981 }
2982 
2983 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2984   // Users of this routine assume k1 usage.
2985   evmovdquq(dst, k1, src, /*merge*/ true, vector_len);
2986 }
2987 
2988 void Assembler::evmovdquq(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
2989   assert(VM_Version::supports_evex(), "");
2990   assert(src != xnoreg, "sanity");
2991   InstructionMark im(this);
2992   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2993   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2994   attributes.set_embedded_opmask_register_specifier(mask);
2995   if (merge) {
2996     attributes.reset_is_clear_context();
2997   }
2998   attributes.set_is_evex_instruction();
2999   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3000   emit_int8(0x7F);
3001   emit_operand(src, dst);
3002 }
3003 
3004 // Uses zero extension on 64bit
3005 
3006 void Assembler::movl(Register dst, int32_t imm32) {
3007   int encode = prefix_and_encode(dst->encoding());
3008   emit_int8((unsigned char)(0xB8 | encode));
3009   emit_int32(imm32);
3010 }
3011 
3012 void Assembler::movl(Register dst, Register src) {
3013   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3014   emit_int8((unsigned char)0x8B);
3015   emit_int8((unsigned char)(0xC0 | encode));
3016 }
3017 
3018 void Assembler::movl(Register dst, Address src) {
3019   InstructionMark im(this);
3020   prefix(src, dst);
3021   emit_int8((unsigned char)0x8B);
3022   emit_operand(dst, src);
3023 }
3024 
3025 void Assembler::movl(Address dst, int32_t imm32) {
3026   InstructionMark im(this);
3027   prefix(dst);
3028   emit_int8((unsigned char)0xC7);
3029   emit_operand(rax, dst, 4);
3030   emit_int32(imm32);
3031 }
3032 
3033 void Assembler::movl(Address dst, Register src) {
3034   InstructionMark im(this);
3035   prefix(dst, src);
3036   emit_int8((unsigned char)0x89);
3037   emit_operand(src, dst);
3038 }
3039 
3040 // New cpus require to use movsd and movss to avoid partial register stall
3041 // when loading from memory. But for old Opteron use movlpd instead of movsd.
3042 // The selection is done in MacroAssembler::movdbl() and movflt().
3043 void Assembler::movlpd(XMMRegister dst, Address src) {
3044   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3045   InstructionMark im(this);
3046   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3047   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3048   attributes.set_rex_vex_w_reverted();
3049   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3050   emit_int8(0x12);
3051   emit_operand(dst, src);
3052 }
3053 
3054 void Assembler::movq( MMXRegister dst, Address src ) {
3055   assert( VM_Version::supports_mmx(), "" );
3056   emit_int8(0x0F);
3057   emit_int8(0x6F);
3058   emit_operand(dst, src);
3059 }
3060 
3061 void Assembler::movq( Address dst, MMXRegister src ) {
3062   assert( VM_Version::supports_mmx(), "" );
3063   emit_int8(0x0F);
3064   emit_int8(0x7F);
3065   // workaround gcc (3.2.1-7a) bug
3066   // In that version of gcc with only an emit_operand(MMX, Address)
3067   // gcc will tail jump and try and reverse the parameters completely
3068   // obliterating dst in the process. By having a version available
3069   // that doesn't need to swap the args at the tail jump the bug is
3070   // avoided.
3071   emit_operand(dst, src);
3072 }
3073 
3074 void Assembler::movq(XMMRegister dst, Address src) {
3075   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3076   InstructionMark im(this);
3077   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3078   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3079   attributes.set_rex_vex_w_reverted();
3080   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3081   emit_int8(0x7E);
3082   emit_operand(dst, src);
3083 }
3084 
3085 void Assembler::movq(Address dst, XMMRegister src) {
3086   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3087   InstructionMark im(this);
3088   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3089   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3090   attributes.set_rex_vex_w_reverted();
3091   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3092   emit_int8((unsigned char)0xD6);
3093   emit_operand(src, dst);
3094 }
3095 
3096 void Assembler::movq(Register dst, XMMRegister src) {
3097   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3098   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3099   // swap src/dst to get correct prefix
3100   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3101   emit_int8(0x7E);
3102   emit_int8((unsigned char)(0xC0 | encode));
3103 }
3104 
3105 void Assembler::movq(XMMRegister dst, Register src) {
3106   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3107   InstructionAttr attributes(AVX_128bit, /* rex_w */true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3108   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3109   emit_int8(0x6E);
3110   emit_int8((unsigned char)(0xC0 | encode));
3111 }
3112 
3113 void Assembler::movsbl(Register dst, Address src) { // movsxb
3114   InstructionMark im(this);
3115   prefix(src, dst);
3116   emit_int8(0x0F);
3117   emit_int8((unsigned char)0xBE);
3118   emit_operand(dst, src);
3119 }
3120 
3121 void Assembler::movsbl(Register dst, Register src) { // movsxb
3122   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
3123   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
3124   emit_int8(0x0F);
3125   emit_int8((unsigned char)0xBE);
3126   emit_int8((unsigned char)(0xC0 | encode));
3127 }
3128 
3129 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
3130   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3131   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3132   attributes.set_rex_vex_w_reverted();
3133   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3134   emit_int8(0x10);
3135   emit_int8((unsigned char)(0xC0 | encode));
3136 }
3137 
3138 void Assembler::movsd(XMMRegister dst, Address src) {
3139   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3140   InstructionMark im(this);
3141   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3142   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3143   attributes.set_rex_vex_w_reverted();
3144   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3145   emit_int8(0x10);
3146   emit_operand(dst, src);
3147 }
3148 
3149 void Assembler::movsd(Address dst, XMMRegister src) {
3150   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3151   InstructionMark im(this);
3152   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3153   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3154   attributes.reset_is_clear_context();
3155   attributes.set_rex_vex_w_reverted();
3156   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3157   emit_int8(0x11);
3158   emit_operand(src, dst);
3159 }
3160 
3161 void Assembler::movss(XMMRegister dst, XMMRegister src) {
3162   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3163   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3164   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3165   emit_int8(0x10);
3166   emit_int8((unsigned char)(0xC0 | encode));
3167 }
3168 
3169 void Assembler::movss(XMMRegister dst, Address src) {
3170   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3171   InstructionMark im(this);
3172   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3173   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3174   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3175   emit_int8(0x10);
3176   emit_operand(dst, src);
3177 }
3178 
3179 void Assembler::movss(Address dst, XMMRegister src) {
3180   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3181   InstructionMark im(this);
3182   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3183   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3184   attributes.reset_is_clear_context();
3185   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3186   emit_int8(0x11);
3187   emit_operand(src, dst);
3188 }
3189 
3190 void Assembler::movswl(Register dst, Address src) { // movsxw
3191   InstructionMark im(this);
3192   prefix(src, dst);
3193   emit_int8(0x0F);
3194   emit_int8((unsigned char)0xBF);
3195   emit_operand(dst, src);
3196 }
3197 
3198 void Assembler::movswl(Register dst, Register src) { // movsxw
3199   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3200   emit_int8(0x0F);
3201   emit_int8((unsigned char)0xBF);
3202   emit_int8((unsigned char)(0xC0 | encode));
3203 }
3204 
3205 void Assembler::movw(Address dst, int imm16) {
3206   InstructionMark im(this);
3207 
3208   emit_int8(0x66); // switch to 16-bit mode
3209   prefix(dst);
3210   emit_int8((unsigned char)0xC7);
3211   emit_operand(rax, dst, 2);
3212   emit_int16(imm16);
3213 }
3214 
3215 void Assembler::movw(Register dst, Address src) {
3216   InstructionMark im(this);
3217   emit_int8(0x66);
3218   prefix(src, dst);
3219   emit_int8((unsigned char)0x8B);
3220   emit_operand(dst, src);
3221 }
3222 
3223 void Assembler::movw(Address dst, Register src) {
3224   InstructionMark im(this);
3225   emit_int8(0x66);
3226   prefix(dst, src);
3227   emit_int8((unsigned char)0x89);
3228   emit_operand(src, dst);
3229 }
3230 
3231 void Assembler::movzbl(Register dst, Address src) { // movzxb
3232   InstructionMark im(this);
3233   prefix(src, dst);
3234   emit_int8(0x0F);
3235   emit_int8((unsigned char)0xB6);
3236   emit_operand(dst, src);
3237 }
3238 
3239 void Assembler::movzbl(Register dst, Register src) { // movzxb
3240   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
3241   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
3242   emit_int8(0x0F);
3243   emit_int8((unsigned char)0xB6);
3244   emit_int8(0xC0 | encode);
3245 }
3246 
3247 void Assembler::movzwl(Register dst, Address src) { // movzxw
3248   InstructionMark im(this);
3249   prefix(src, dst);
3250   emit_int8(0x0F);
3251   emit_int8((unsigned char)0xB7);
3252   emit_operand(dst, src);
3253 }
3254 
3255 void Assembler::movzwl(Register dst, Register src) { // movzxw
3256   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3257   emit_int8(0x0F);
3258   emit_int8((unsigned char)0xB7);
3259   emit_int8(0xC0 | encode);
3260 }
3261 
3262 void Assembler::mull(Address src) {
3263   InstructionMark im(this);
3264   prefix(src);
3265   emit_int8((unsigned char)0xF7);
3266   emit_operand(rsp, src);
3267 }
3268 
3269 void Assembler::mull(Register src) {
3270   int encode = prefix_and_encode(src->encoding());
3271   emit_int8((unsigned char)0xF7);
3272   emit_int8((unsigned char)(0xE0 | encode));
3273 }
3274 
3275 void Assembler::mulsd(XMMRegister dst, Address src) {
3276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3277   InstructionMark im(this);
3278   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3279   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3280   attributes.set_rex_vex_w_reverted();
3281   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3282   emit_int8(0x59);
3283   emit_operand(dst, src);
3284 }
3285 
3286 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
3287   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3288   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3289   attributes.set_rex_vex_w_reverted();
3290   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3291   emit_int8(0x59);
3292   emit_int8((unsigned char)(0xC0 | encode));
3293 }
3294 
3295 void Assembler::mulss(XMMRegister dst, Address src) {
3296   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3297   InstructionMark im(this);
3298   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3299   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3300   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3301   emit_int8(0x59);
3302   emit_operand(dst, src);
3303 }
3304 
3305 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
3306   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3307   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3308   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3309   emit_int8(0x59);
3310   emit_int8((unsigned char)(0xC0 | encode));
3311 }
3312 
3313 void Assembler::negl(Register dst) {
3314   int encode = prefix_and_encode(dst->encoding());
3315   emit_int8((unsigned char)0xF7);
3316   emit_int8((unsigned char)(0xD8 | encode));
3317 }
3318 
3319 void Assembler::nop(int i) {
3320 #ifdef ASSERT
3321   assert(i > 0, " ");
3322   // The fancy nops aren't currently recognized by debuggers making it a
3323   // pain to disassemble code while debugging. If asserts are on clearly
3324   // speed is not an issue so simply use the single byte traditional nop
3325   // to do alignment.
3326 
3327   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
3328   return;
3329 
3330 #endif // ASSERT
3331 
3332   if (UseAddressNop && VM_Version::is_intel()) {
3333     //
3334     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
3335     //  1: 0x90
3336     //  2: 0x66 0x90
3337     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3338     //  4: 0x0F 0x1F 0x40 0x00
3339     //  5: 0x0F 0x1F 0x44 0x00 0x00
3340     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3341     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3342     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3343     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3344     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3345     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3346 
3347     // The rest coding is Intel specific - don't use consecutive address nops
3348 
3349     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3350     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3351     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3352     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3353 
3354     while(i >= 15) {
3355       // For Intel don't generate consecutive addess nops (mix with regular nops)
3356       i -= 15;
3357       emit_int8(0x66);   // size prefix
3358       emit_int8(0x66);   // size prefix
3359       emit_int8(0x66);   // size prefix
3360       addr_nop_8();
3361       emit_int8(0x66);   // size prefix
3362       emit_int8(0x66);   // size prefix
3363       emit_int8(0x66);   // size prefix
3364       emit_int8((unsigned char)0x90);
3365                          // nop
3366     }
3367     switch (i) {
3368       case 14:
3369         emit_int8(0x66); // size prefix
3370       case 13:
3371         emit_int8(0x66); // size prefix
3372       case 12:
3373         addr_nop_8();
3374         emit_int8(0x66); // size prefix
3375         emit_int8(0x66); // size prefix
3376         emit_int8(0x66); // size prefix
3377         emit_int8((unsigned char)0x90);
3378                          // nop
3379         break;
3380       case 11:
3381         emit_int8(0x66); // size prefix
3382       case 10:
3383         emit_int8(0x66); // size prefix
3384       case 9:
3385         emit_int8(0x66); // size prefix
3386       case 8:
3387         addr_nop_8();
3388         break;
3389       case 7:
3390         addr_nop_7();
3391         break;
3392       case 6:
3393         emit_int8(0x66); // size prefix
3394       case 5:
3395         addr_nop_5();
3396         break;
3397       case 4:
3398         addr_nop_4();
3399         break;
3400       case 3:
3401         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3402         emit_int8(0x66); // size prefix
3403       case 2:
3404         emit_int8(0x66); // size prefix
3405       case 1:
3406         emit_int8((unsigned char)0x90);
3407                          // nop
3408         break;
3409       default:
3410         assert(i == 0, " ");
3411     }
3412     return;
3413   }
3414   if (UseAddressNop && VM_Version::is_amd()) {
3415     //
3416     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
3417     //  1: 0x90
3418     //  2: 0x66 0x90
3419     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3420     //  4: 0x0F 0x1F 0x40 0x00
3421     //  5: 0x0F 0x1F 0x44 0x00 0x00
3422     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3423     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3424     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3425     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3426     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3427     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3428 
3429     // The rest coding is AMD specific - use consecutive address nops
3430 
3431     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3432     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3433     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3434     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3435     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3436     //     Size prefixes (0x66) are added for larger sizes
3437 
3438     while(i >= 22) {
3439       i -= 11;
3440       emit_int8(0x66); // size prefix
3441       emit_int8(0x66); // size prefix
3442       emit_int8(0x66); // size prefix
3443       addr_nop_8();
3444     }
3445     // Generate first nop for size between 21-12
3446     switch (i) {
3447       case 21:
3448         i -= 1;
3449         emit_int8(0x66); // size prefix
3450       case 20:
3451       case 19:
3452         i -= 1;
3453         emit_int8(0x66); // size prefix
3454       case 18:
3455       case 17:
3456         i -= 1;
3457         emit_int8(0x66); // size prefix
3458       case 16:
3459       case 15:
3460         i -= 8;
3461         addr_nop_8();
3462         break;
3463       case 14:
3464       case 13:
3465         i -= 7;
3466         addr_nop_7();
3467         break;
3468       case 12:
3469         i -= 6;
3470         emit_int8(0x66); // size prefix
3471         addr_nop_5();
3472         break;
3473       default:
3474         assert(i < 12, " ");
3475     }
3476 
3477     // Generate second nop for size between 11-1
3478     switch (i) {
3479       case 11:
3480         emit_int8(0x66); // size prefix
3481       case 10:
3482         emit_int8(0x66); // size prefix
3483       case 9:
3484         emit_int8(0x66); // size prefix
3485       case 8:
3486         addr_nop_8();
3487         break;
3488       case 7:
3489         addr_nop_7();
3490         break;
3491       case 6:
3492         emit_int8(0x66); // size prefix
3493       case 5:
3494         addr_nop_5();
3495         break;
3496       case 4:
3497         addr_nop_4();
3498         break;
3499       case 3:
3500         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3501         emit_int8(0x66); // size prefix
3502       case 2:
3503         emit_int8(0x66); // size prefix
3504       case 1:
3505         emit_int8((unsigned char)0x90);
3506                          // nop
3507         break;
3508       default:
3509         assert(i == 0, " ");
3510     }
3511     return;
3512   }
3513 
3514   if (UseAddressNop && VM_Version::is_zx()) {
3515     //
3516     // Using multi-bytes nops "0x0F 0x1F [address]" for ZX
3517     //  1: 0x90
3518     //  2: 0x66 0x90
3519     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3520     //  4: 0x0F 0x1F 0x40 0x00
3521     //  5: 0x0F 0x1F 0x44 0x00 0x00
3522     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3523     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3524     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3525     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3526     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3527     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3528 
3529     // The rest coding is ZX specific - don't use consecutive address nops
3530 
3531     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3532     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3533     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3534     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3535 
3536     while (i >= 15) {
3537       // For ZX don't generate consecutive addess nops (mix with regular nops)
3538       i -= 15;
3539       emit_int8(0x66);   // size prefix
3540       emit_int8(0x66);   // size prefix
3541       emit_int8(0x66);   // size prefix
3542       addr_nop_8();
3543       emit_int8(0x66);   // size prefix
3544       emit_int8(0x66);   // size prefix
3545       emit_int8(0x66);   // size prefix
3546       emit_int8((unsigned char)0x90);
3547                          // nop
3548     }
3549     switch (i) {
3550       case 14:
3551         emit_int8(0x66); // size prefix
3552       case 13:
3553         emit_int8(0x66); // size prefix
3554       case 12:
3555         addr_nop_8();
3556         emit_int8(0x66); // size prefix
3557         emit_int8(0x66); // size prefix
3558         emit_int8(0x66); // size prefix
3559         emit_int8((unsigned char)0x90);
3560                          // nop
3561         break;
3562       case 11:
3563         emit_int8(0x66); // size prefix
3564       case 10:
3565         emit_int8(0x66); // size prefix
3566       case 9:
3567         emit_int8(0x66); // size prefix
3568       case 8:
3569         addr_nop_8();
3570         break;
3571       case 7:
3572         addr_nop_7();
3573         break;
3574       case 6:
3575         emit_int8(0x66); // size prefix
3576       case 5:
3577         addr_nop_5();
3578         break;
3579       case 4:
3580         addr_nop_4();
3581         break;
3582       case 3:
3583         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3584         emit_int8(0x66); // size prefix
3585       case 2:
3586         emit_int8(0x66); // size prefix
3587       case 1:
3588         emit_int8((unsigned char)0x90);
3589                          // nop
3590         break;
3591       default:
3592         assert(i == 0, " ");
3593     }
3594     return;
3595   }
3596 
3597   // Using nops with size prefixes "0x66 0x90".
3598   // From AMD Optimization Guide:
3599   //  1: 0x90
3600   //  2: 0x66 0x90
3601   //  3: 0x66 0x66 0x90
3602   //  4: 0x66 0x66 0x66 0x90
3603   //  5: 0x66 0x66 0x90 0x66 0x90
3604   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3605   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3606   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3607   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3608   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3609   //
3610   while(i > 12) {
3611     i -= 4;
3612     emit_int8(0x66); // size prefix
3613     emit_int8(0x66);
3614     emit_int8(0x66);
3615     emit_int8((unsigned char)0x90);
3616                      // nop
3617   }
3618   // 1 - 12 nops
3619   if(i > 8) {
3620     if(i > 9) {
3621       i -= 1;
3622       emit_int8(0x66);
3623     }
3624     i -= 3;
3625     emit_int8(0x66);
3626     emit_int8(0x66);
3627     emit_int8((unsigned char)0x90);
3628   }
3629   // 1 - 8 nops
3630   if(i > 4) {
3631     if(i > 6) {
3632       i -= 1;
3633       emit_int8(0x66);
3634     }
3635     i -= 3;
3636     emit_int8(0x66);
3637     emit_int8(0x66);
3638     emit_int8((unsigned char)0x90);
3639   }
3640   switch (i) {
3641     case 4:
3642       emit_int8(0x66);
3643     case 3:
3644       emit_int8(0x66);
3645     case 2:
3646       emit_int8(0x66);
3647     case 1:
3648       emit_int8((unsigned char)0x90);
3649       break;
3650     default:
3651       assert(i == 0, " ");
3652   }
3653 }
3654 
3655 void Assembler::notl(Register dst) {
3656   int encode = prefix_and_encode(dst->encoding());
3657   emit_int8((unsigned char)0xF7);
3658   emit_int8((unsigned char)(0xD0 | encode));
3659 }
3660 
3661 void Assembler::orw(Register dst, Register src) {
3662   (void)prefix_and_encode(dst->encoding(), src->encoding());
3663   emit_arith(0x0B, 0xC0, dst, src);
3664 }
3665 
3666 void Assembler::orl(Address dst, int32_t imm32) {
3667   InstructionMark im(this);
3668   prefix(dst);
3669   emit_arith_operand(0x81, rcx, dst, imm32);
3670 }
3671 
3672 void Assembler::orl(Register dst, int32_t imm32) {
3673   prefix(dst);
3674   emit_arith(0x81, 0xC8, dst, imm32);
3675 }
3676 
3677 void Assembler::orl(Register dst, Address src) {
3678   InstructionMark im(this);
3679   prefix(src, dst);
3680   emit_int8(0x0B);
3681   emit_operand(dst, src);
3682 }
3683 
3684 void Assembler::orl(Register dst, Register src) {
3685   (void) prefix_and_encode(dst->encoding(), src->encoding());
3686   emit_arith(0x0B, 0xC0, dst, src);
3687 }
3688 
3689 void Assembler::orl(Address dst, Register src) {
3690   InstructionMark im(this);
3691   prefix(dst, src);
3692   emit_int8(0x09);
3693   emit_operand(src, dst);
3694 }
3695 
3696 void Assembler::orb(Address dst, int imm8) {
3697   InstructionMark im(this);
3698   prefix(dst);
3699   emit_int8((unsigned char)0x80);
3700   emit_operand(rcx, dst, 1);
3701   emit_int8(imm8);
3702 }
3703 
3704 void Assembler::packuswb(XMMRegister dst, Address src) {
3705   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3706   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3707   InstructionMark im(this);
3708   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3709   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3710   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3711   emit_int8(0x67);
3712   emit_operand(dst, src);
3713 }
3714 
3715 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3716   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3717   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3718   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3719   emit_int8(0x67);
3720   emit_int8((unsigned char)(0xC0 | encode));
3721 }
3722 
3723 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3724   assert(UseAVX > 0, "some form of AVX must be enabled");
3725   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3726   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3727   emit_int8(0x67);
3728   emit_int8((unsigned char)(0xC0 | encode));
3729 }
3730 
3731 void Assembler::vpackusdw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3732   assert(UseAVX > 0, "some form of AVX must be enabled");
3733   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3734   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3735   emit_int8(0x2B);
3736   emit_int8((unsigned char)(0xC0 | encode));
3737 }
3738 
3739 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3740   assert(VM_Version::supports_avx2(), "");
3741   // VEX.256.66.0F3A.W1 00 /r ib
3742   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3743   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3744   emit_int8(0x00);
3745   emit_int8(0xC0 | encode);
3746   emit_int8(imm8);
3747 }
3748 
3749 void Assembler::vpermb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3750   assert(VM_Version::supports_avx512vbmi(), "");
3751   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3752   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3753   emit_int8((unsigned char)0x8D);
3754   emit_int8((unsigned char)(0xC0 | encode));
3755 }
3756 
3757 void Assembler::vpermw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
3758   assert(VM_Version::supports_avx512vlbw(), "");
3759   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3760   attributes.set_embedded_opmask_register_specifier(mask);
3761   attributes.set_is_evex_instruction();
3762   if (merge) {
3763     attributes.reset_is_clear_context();
3764   }
3765   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3766   emit_int8((unsigned char)0x8D);
3767   emit_int8((unsigned char)(0xC0 | encode));
3768 }
3769 
3770 void Assembler::vpermd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3771   assert(VM_Version::supports_avx2(), "");
3772   // VEX.NDS.256.66.0F38.W0 36 /r
3773   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3774   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3775   emit_int8(0x36);
3776   emit_int8(0xC0 | encode);
3777 }
3778 
3779 void Assembler::vpermd(XMMRegister dst, XMMRegister nds, Address src) {
3780   assert(VM_Version::supports_avx2(), "");
3781   // VEX.NDS.256.66.0F38.W0 36 /r
3782   InstructionMark im(this);
3783   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3784   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3785   emit_int8(0x36);
3786   emit_operand(dst, src);
3787 }
3788 
3789 void Assembler::evpermd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3790   assert(VM_Version::supports_evex(), "");
3791   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3792   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3793   emit_int8(0x36);
3794   emit_int8((unsigned char)(0xC0 | encode));
3795 }
3796 
3797 void Assembler::vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8) {
3798   assert(VM_Version::supports_avx2(), "");
3799   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3800   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3801   emit_int8(0x46);
3802   emit_int8(0xC0 | encode);
3803   emit_int8(imm8);
3804 }
3805 
3806 void Assembler::vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8) {
3807   assert(VM_Version::supports_avx(), "");
3808   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3809   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3810   emit_int8(0x06);
3811   emit_int8(0xC0 | encode);
3812   emit_int8(imm8);
3813 }
3814 
3815 void Assembler::vpermilps(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3816   assert(VM_Version::supports_avx(), "");
3817   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
3818   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3819   emit_int8(0x04);
3820   emit_int8(0xC0 | encode);
3821   emit_int8(imm8);
3822 }
3823 
3824 void Assembler::vpermpd(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3825   assert(VM_Version::supports_avx2(), "");
3826   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
3827   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3828   emit_int8(0x01);
3829   emit_int8(0xC0 | encode);
3830   emit_int8(imm8);
3831 }
3832 
3833 void Assembler::evpermi2q(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3834   assert(VM_Version::supports_evex(), "");
3835   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3836   attributes.set_is_evex_instruction();
3837   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3838   emit_int8(0x76);
3839   emit_int8((unsigned char)(0xC0 | encode));
3840 }
3841 
3842 void Assembler::pause() {
3843   emit_int8((unsigned char)0xF3);
3844   emit_int8((unsigned char)0x90);
3845 }
3846 
3847 void Assembler::ud2() {
3848   emit_int8(0x0F);
3849   emit_int8(0x0B);
3850 }
3851 
3852 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3853   assert(VM_Version::supports_sse4_2(), "");
3854   InstructionMark im(this);
3855   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3856   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3857   emit_int8(0x61);
3858   emit_operand(dst, src);
3859   emit_int8(imm8);
3860 }
3861 
3862 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3863   assert(VM_Version::supports_sse4_2(), "");
3864   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3865   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3866   emit_int8(0x61);
3867   emit_int8((unsigned char)(0xC0 | encode));
3868   emit_int8(imm8);
3869 }
3870 
3871 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3872 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3873   assert(VM_Version::supports_sse2(), "");
3874   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3875   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3876   emit_int8(0x74);
3877   emit_int8((unsigned char)(0xC0 | encode));
3878 }
3879 
3880 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3881 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3882   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() : VM_Version::supports_avx2(), "");
3883   assert(vector_len <= AVX_256bit, "evex encoding is different - has k register as dest");
3884   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3885   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3886   emit_int8(0x74);
3887   emit_int8((unsigned char)(0xC0 | encode));
3888 }
3889 
3890 // In this context, kdst is written the mask used to process the equal components
3891 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3892   assert(VM_Version::supports_avx512bw(), "");
3893   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3894   attributes.set_is_evex_instruction();
3895   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3896   emit_int8(0x74);
3897   emit_int8((unsigned char)(0xC0 | encode));
3898 }
3899 
3900 void Assembler::evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3901   assert(VM_Version::supports_avx512vlbw(), "");
3902   InstructionMark im(this);
3903   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3904   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3905   attributes.set_is_evex_instruction();
3906   int dst_enc = kdst->encoding();
3907   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3908   emit_int8(0x64);
3909   emit_operand(as_Register(dst_enc), src);
3910 }
3911 
3912 void Assembler::evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3913   assert(is_vector_masking(), "");
3914   assert(VM_Version::supports_avx512vlbw(), "");
3915   InstructionMark im(this);
3916   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3917   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3918   attributes.reset_is_clear_context();
3919   attributes.set_embedded_opmask_register_specifier(mask);
3920   attributes.set_is_evex_instruction();
3921   int dst_enc = kdst->encoding();
3922   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3923   emit_int8(0x64);
3924   emit_operand(as_Register(dst_enc), src);
3925 }
3926 
3927 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3928   assert(VM_Version::supports_avx512vlbw(), "");
3929   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3930   attributes.set_is_evex_instruction();
3931   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3932   emit_int8(0x3E);
3933   emit_int8((unsigned char)(0xC0 | encode));
3934   emit_int8(vcc);
3935 }
3936 
3937 void Assembler::evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3938   assert(is_vector_masking(), "");
3939   assert(VM_Version::supports_avx512vlbw(), "");
3940   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3941   attributes.reset_is_clear_context();
3942   attributes.set_embedded_opmask_register_specifier(mask);
3943   attributes.set_is_evex_instruction();
3944   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3945   emit_int8(0x3E);
3946   emit_int8((unsigned char)(0xC0 | encode));
3947   emit_int8(vcc);
3948 }
3949 
3950 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len) {
3951   assert(VM_Version::supports_avx512vlbw(), "");
3952   InstructionMark im(this);
3953   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3954   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3955   attributes.set_is_evex_instruction();
3956   int dst_enc = kdst->encoding();
3957   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3958   emit_int8(0x3E);
3959   emit_operand(as_Register(dst_enc), src);
3960   emit_int8(vcc);
3961 }
3962 
3963 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3964   assert(VM_Version::supports_avx512bw(), "");
3965   InstructionMark im(this);
3966   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3967   attributes.set_is_evex_instruction();
3968   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3969   int dst_enc = kdst->encoding();
3970   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3971   emit_int8(0x74);
3972   emit_operand(as_Register(dst_enc), src);
3973 }
3974 
3975 void Assembler::evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3976   assert(VM_Version::supports_avx512vlbw(), "");
3977   assert(is_vector_masking(), "");    // For stub code use only
3978   InstructionMark im(this);
3979   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_reg_mask */ false, /* uses_vl */ false);
3980   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3981   attributes.reset_is_clear_context();
3982   attributes.set_embedded_opmask_register_specifier(mask);
3983   attributes.set_is_evex_instruction();
3984   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3985   emit_int8(0x74);
3986   emit_operand(as_Register(kdst->encoding()), src);
3987 }
3988 
3989 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3990 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3991   assert(VM_Version::supports_sse2(), "");
3992   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3993   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3994   emit_int8(0x75);
3995   emit_int8((unsigned char)(0xC0 | encode));
3996 }
3997 
3998 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3999 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4000   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() : VM_Version::supports_avx2(), "");
4001   assert(vector_len <= AVX_256bit, "evex encoding is different - has k register as dest");
4002   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4003   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4004   emit_int8(0x75);
4005   emit_int8((unsigned char)(0xC0 | encode));
4006 }
4007 
4008 // In this context, kdst is written the mask used to process the equal components
4009 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
4010   assert(VM_Version::supports_avx512bw(), "");
4011   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4012   attributes.set_is_evex_instruction();
4013   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4014   emit_int8(0x75);
4015   emit_int8((unsigned char)(0xC0 | encode));
4016 }
4017 
4018 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
4019   assert(VM_Version::supports_avx512bw(), "");
4020   InstructionMark im(this);
4021   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4022   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4023   attributes.set_is_evex_instruction();
4024   int dst_enc = kdst->encoding();
4025   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4026   emit_int8(0x75);
4027   emit_operand(as_Register(dst_enc), src);
4028 }
4029 
4030 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
4031 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
4032   assert(VM_Version::supports_sse2(), "");
4033   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4034   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4035   emit_int8(0x76);
4036   emit_int8((unsigned char)(0xC0 | encode));
4037 }
4038 
4039 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
4040 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4041   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() : VM_Version::supports_avx2(), "");
4042   assert(vector_len <= AVX_256bit, "evex encoding is different - has k register as dest");
4043   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4044   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4045   emit_int8((unsigned char)0x76);
4046   emit_int8((unsigned char)(0xC0 | encode));
4047 }
4048 
4049 // In this context, kdst is written the mask used to process the equal components
4050 void Assembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int vector_len) {
4051   assert(VM_Version::supports_evex(), "");
4052   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4053   attributes.set_is_evex_instruction();
4054   attributes.reset_is_clear_context();
4055   attributes.set_embedded_opmask_register_specifier(mask);
4056   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4057   emit_int8(0x76);
4058   emit_int8((unsigned char)(0xC0 | encode));
4059 }
4060 
4061 void Assembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
4062   assert(VM_Version::supports_evex(), "");
4063   InstructionMark im(this);
4064   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4065   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4066   attributes.set_is_evex_instruction();
4067   attributes.reset_is_clear_context();
4068   attributes.set_embedded_opmask_register_specifier(mask);
4069   int dst_enc = kdst->encoding();
4070   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4071   emit_int8(0x76);
4072   emit_operand(as_Register(dst_enc), src);
4073 }
4074 
4075 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
4076 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
4077   assert(VM_Version::supports_sse4_1(), "");
4078   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4079   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4080   emit_int8(0x29);
4081   emit_int8((unsigned char)(0xC0 | encode));
4082 }
4083 
4084 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
4085 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4086   assert(VM_Version::supports_avx(), "");
4087   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4088   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4089   emit_int8(0x29);
4090   emit_int8((unsigned char)(0xC0 | encode));
4091 }
4092 
4093 // In this context, kdst is written the mask used to process the equal components
4094 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
4095   assert(VM_Version::supports_evex(), "");
4096   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4097   attributes.reset_is_clear_context();
4098   attributes.set_is_evex_instruction();
4099   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4100   emit_int8(0x29);
4101   emit_int8((unsigned char)(0xC0 | encode));
4102 }
4103 
4104 // In this context, kdst is written the mask used to process the equal components
4105 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
4106   assert(VM_Version::supports_evex(), "");
4107   InstructionMark im(this);
4108   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4109   attributes.reset_is_clear_context();
4110   attributes.set_is_evex_instruction();
4111   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4112   int dst_enc = kdst->encoding();
4113   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4114   emit_int8(0x29);
4115   emit_operand(as_Register(dst_enc), src);
4116 }
4117 
4118 void Assembler::pcmpgtq(XMMRegister dst, XMMRegister src) {
4119   assert(VM_Version::supports_sse4_1(), "");
4120   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4121   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4122   emit_int8(0x37);
4123   emit_int8((unsigned char)(0xC0 | encode));
4124 }
4125 
4126 void Assembler::pmovmskb(Register dst, XMMRegister src) {
4127   assert(VM_Version::supports_sse2(), "");
4128   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4129   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4130   emit_int8((unsigned char)0xD7);
4131   emit_int8((unsigned char)(0xC0 | encode));
4132 }
4133 
4134 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
4135   assert(VM_Version::supports_avx2(), "");
4136   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4137   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4138   emit_int8((unsigned char)0xD7);
4139   emit_int8((unsigned char)(0xC0 | encode));
4140 }
4141 
4142 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
4143   assert(VM_Version::supports_sse4_1(), "");
4144   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
4145   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4146   emit_int8(0x16);
4147   emit_int8((unsigned char)(0xC0 | encode));
4148   emit_int8(imm8);
4149 }
4150 
4151 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
4152   assert(VM_Version::supports_sse4_1(), "");
4153   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
4154   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4155   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4156   emit_int8(0x16);
4157   emit_operand(src, dst);
4158   emit_int8(imm8);
4159 }
4160 
4161 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
4162   assert(VM_Version::supports_sse4_1(), "");
4163   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
4164   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4165   emit_int8(0x16);
4166   emit_int8((unsigned char)(0xC0 | encode));
4167   emit_int8(imm8);
4168 }
4169 
4170 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
4171   assert(VM_Version::supports_sse4_1(), "");
4172   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
4173   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4174   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4175   emit_int8(0x16);
4176   emit_operand(src, dst);
4177   emit_int8(imm8);
4178 }
4179 
4180 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
4181   assert(VM_Version::supports_sse2(), "");
4182   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4183   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4184   emit_int8((unsigned char)0xC5);
4185   emit_int8((unsigned char)(0xC0 | encode));
4186   emit_int8(imm8);
4187 }
4188 
4189 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
4190   assert(VM_Version::supports_sse4_1(), "");
4191   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4192   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
4193   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4194   emit_int8((unsigned char)0x15);
4195   emit_operand(src, dst);
4196   emit_int8(imm8);
4197 }
4198 
4199 void Assembler::pextrb(Register dst, XMMRegister src, int imm8) {
4200   assert(VM_Version::supports_sse4_1(), "");
4201   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
4202   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4203   emit_int8(0x14);
4204   emit_int8((unsigned char)(0xC0 | encode));
4205   emit_int8(imm8);
4206 }
4207 
4208 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
4209   assert(VM_Version::supports_sse4_1(), "");
4210   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4211   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
4212   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4213   emit_int8(0x14);
4214   emit_operand(src, dst);
4215   emit_int8(imm8);
4216 }
4217 
4218 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
4219   assert(VM_Version::supports_sse4_1(), "");
4220   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
4221   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4222   emit_int8(0x22);
4223   emit_int8((unsigned char)(0xC0 | encode));
4224   emit_int8(imm8);
4225 }
4226 
4227 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
4228   assert(VM_Version::supports_sse4_1(), "");
4229   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
4230   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4231   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4232   emit_int8(0x22);
4233   emit_operand(dst,src);
4234   emit_int8(imm8);
4235 }
4236 
4237 void Assembler::vpinsrd(XMMRegister dst, XMMRegister nds, Register src, int imm8) {
4238   assert(VM_Version::supports_avx(), "");
4239   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4240   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4241   emit_int8((unsigned char)0x22);
4242   emit_int8((unsigned char)(0xC0 | encode));
4243   emit_int8((unsigned char)imm8);
4244 }
4245 
4246 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
4247   assert(VM_Version::supports_sse4_1(), "");
4248   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
4249   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4250   emit_int8(0x22);
4251   emit_int8((unsigned char)(0xC0 | encode));
4252   emit_int8(imm8);
4253 }
4254 
4255 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
4256   assert(VM_Version::supports_sse4_1(), "");
4257   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
4258   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4259   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4260   emit_int8(0x22);
4261   emit_operand(dst, src);
4262   emit_int8(imm8);
4263 }
4264 
4265 void Assembler::vpinsrq(XMMRegister dst, XMMRegister nds, Register src, int imm8) {
4266   assert(VM_Version::supports_avx(), "");
4267   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4268   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4269   emit_int8((unsigned char)0x22);
4270   emit_int8((unsigned char)(0xC0 | encode));
4271   emit_int8((unsigned char)imm8);
4272 }
4273 
4274 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
4275   assert(VM_Version::supports_sse2(), "");
4276   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4277   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4278   emit_int8((unsigned char)0xC4);
4279   emit_int8((unsigned char)(0xC0 | encode));
4280   emit_int8(imm8);
4281 }
4282 
4283 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
4284   assert(VM_Version::supports_sse2(), "");
4285   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4286   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
4287   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4288   emit_int8((unsigned char)0xC4);
4289   emit_operand(dst, src);
4290   emit_int8(imm8);
4291 }
4292 
4293 void Assembler::vpinsrw(XMMRegister dst, XMMRegister nds, Register src, int imm8) {
4294   assert(VM_Version::supports_avx(), "");
4295   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4296   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4297   emit_int8((unsigned char)0xC4);
4298   emit_int8((unsigned char)(0xC0 | encode));
4299   emit_int8((unsigned char)imm8);
4300 }
4301 
4302 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
4303   assert(VM_Version::supports_sse4_1(), "");
4304   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4305   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
4306   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4307   emit_int8(0x20);
4308   emit_operand(dst, src);
4309   emit_int8(imm8);
4310 }
4311 
4312 void Assembler::pinsrb(XMMRegister dst, Register src, int imm8) {
4313   assert(VM_Version::supports_sse4_1(), "");
4314   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
4315   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4316   emit_int8(0x20);
4317   emit_int8((unsigned char)(0xC0 | encode));
4318   emit_int8(imm8);
4319 }
4320 
4321 void Assembler::vpinsrb(XMMRegister dst, XMMRegister nds, Register src, int imm8) {
4322   assert(VM_Version::supports_avx(), "");
4323   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4324   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4325   emit_int8((unsigned char)0x20);
4326   emit_int8((unsigned char)(0xC0 | encode));
4327   emit_int8((unsigned char)imm8);
4328 }
4329 
4330 void Assembler::insertps(XMMRegister dst, XMMRegister src, int imm8) {
4331   assert(VM_Version::supports_sse4_1(), "");
4332   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4333   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4334   emit_int8(0x21);
4335   emit_int8((unsigned char)(0xC0 | encode));
4336   emit_int8(imm8);
4337 }
4338 
4339 void Assembler::vinsertps(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8) {
4340   assert(VM_Version::supports_avx(), "");
4341   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4342   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4343   emit_int8(0x21);
4344   emit_int8((unsigned char)(0xC0 | encode));
4345   emit_int8(imm8);
4346 }
4347 
4348 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
4349   assert(VM_Version::supports_sse4_1(), "");
4350   InstructionMark im(this);
4351   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4352   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
4353   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4354   emit_int8(0x30);
4355   emit_operand(dst, src);
4356 }
4357 
4358 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
4359   assert(VM_Version::supports_sse4_1(), "");
4360   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4361   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4362   emit_int8(0x30);
4363   emit_int8((unsigned char)(0xC0 | encode));
4364 }
4365 
4366 void Assembler::pmovzxdq(XMMRegister dst, XMMRegister src) {
4367   assert(VM_Version::supports_sse4_1(), "");
4368   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4369   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4370   emit_int8(0x35);
4371   emit_int8((unsigned char)(0xC0 | encode));
4372 }
4373 
4374 void Assembler::pmovsxbw(XMMRegister dst, XMMRegister src) {
4375   assert(VM_Version::supports_sse4_1(), "");
4376   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4377   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4378   emit_int8(0x20);
4379   emit_int8((unsigned char)(0xC0 | encode));
4380 }
4381 
4382 void Assembler::pmovsxbd(XMMRegister dst, XMMRegister src) {
4383   assert(VM_Version::supports_sse4_1(), "");
4384   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4385   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4386   emit_int8(0x21);
4387   emit_int8((unsigned char)(0xC0 | encode));
4388 }
4389 
4390 void Assembler::pmovsxbq(XMMRegister dst, XMMRegister src) {
4391   assert(VM_Version::supports_sse4_1(), "");
4392   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4393   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4394   emit_int8(0x22);
4395   emit_int8((unsigned char)(0xC0 | encode));
4396 }
4397 
4398 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4399   assert(VM_Version::supports_avx(), "");
4400   InstructionMark im(this);
4401   assert(dst != xnoreg, "sanity");
4402   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4403   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
4404   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4405   emit_int8(0x30);
4406   emit_operand(dst, src);
4407 }
4408 
4409 void Assembler::vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) {
4410   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4411   vector_len == AVX_256bit? VM_Version::supports_avx2() :
4412   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
4413   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4414   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4415   emit_int8(0x30);
4416   emit_int8((unsigned char) (0xC0 | encode));
4417 }
4418 
4419 void Assembler::evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
4420   assert(is_vector_masking(), "");
4421   assert(VM_Version::supports_avx512vlbw(), "");
4422   assert(dst != xnoreg, "sanity");
4423   InstructionMark im(this);
4424   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4425   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
4426   attributes.set_embedded_opmask_register_specifier(mask);
4427   attributes.set_is_evex_instruction();
4428   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4429   emit_int8(0x30);
4430   emit_operand(dst, src);
4431 }
4432 void Assembler::vpmovzxdq(XMMRegister dst, XMMRegister src, int vector_len) {
4433   assert(vector_len > AVX_128bit ? VM_Version::supports_avx2() : VM_Version::supports_avx(), "");
4434   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4435   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4436   emit_int8(0x35);
4437   emit_int8((unsigned char)(0xC0 | encode));
4438 }
4439 
4440 void Assembler::vpmovzxbd(XMMRegister dst, XMMRegister src, int vector_len) {
4441   assert(vector_len > AVX_128bit ? VM_Version::supports_avx2() : VM_Version::supports_avx(), "");
4442   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4443   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4444   emit_int8(0x31);
4445   emit_int8((unsigned char)(0xC0 | encode));
4446 }
4447 
4448 void Assembler::vpmovzxbq(XMMRegister dst, XMMRegister src, int vector_len) {
4449   assert(vector_len > AVX_128bit ? VM_Version::supports_avx2() : VM_Version::supports_avx(), "");
4450   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4451   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4452   emit_int8(0x32);
4453   emit_int8((unsigned char)(0xC0 | encode));
4454 }
4455 
4456 void Assembler::vpmovsxbd(XMMRegister dst, XMMRegister src, int vector_len) {
4457   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4458          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4459              VM_Version::supports_evex(), "");
4460   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4461   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4462   emit_int8(0x21);
4463   emit_int8((unsigned char)(0xC0 | encode));
4464 }
4465 
4466 void Assembler::vpmovsxbq(XMMRegister dst, XMMRegister src, int vector_len) {
4467   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4468          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4469              VM_Version::supports_evex(), "");
4470   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4471   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4472   emit_int8(0x22);
4473   emit_int8((unsigned char)(0xC0 | encode));
4474 }
4475 
4476 void Assembler::vpmovsxbw(XMMRegister dst, XMMRegister src, int vector_len) {
4477   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4478          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4479              VM_Version::supports_evex(), "");
4480   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4481   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4482   emit_int8(0x20);
4483   emit_int8((unsigned char)(0xC0 | encode));
4484 }
4485 
4486 void Assembler::vpmovsxwd(XMMRegister dst, XMMRegister src, int vector_len) {
4487   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4488          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4489              VM_Version::supports_evex(), "");
4490   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4491   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4492   emit_int8(0x23);
4493   emit_int8((unsigned char)(0xC0 | encode));
4494 }
4495 
4496 void Assembler::vpmovsxwq(XMMRegister dst, XMMRegister src, int vector_len) {
4497   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4498          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4499              VM_Version::supports_evex(), "");
4500   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4501   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4502   emit_int8(0x24);
4503   emit_int8((unsigned char)(0xC0 | encode));
4504 }
4505 
4506 void Assembler::vpmovsxdq(XMMRegister dst, XMMRegister src, int vector_len) {
4507   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4508          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4509              VM_Version::supports_evex(), "");
4510   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4511   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4512   emit_int8(0x25);
4513   emit_int8((unsigned char)(0xC0 | encode));
4514 }
4515 
4516 void Assembler::evpmovwb(Address dst, XMMRegister src, int vector_len) {
4517   assert(VM_Version::supports_avx512vlbw(), "");
4518   assert(src != xnoreg, "sanity");
4519   InstructionMark im(this);
4520   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4521   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
4522   attributes.set_is_evex_instruction();
4523   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
4524   emit_int8(0x30);
4525   emit_operand(src, dst);
4526 }
4527 
4528 void Assembler::evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len) {
4529   assert(is_vector_masking(), "");
4530   assert(VM_Version::supports_avx512vlbw(), "");
4531   assert(src != xnoreg, "sanity");
4532   InstructionMark im(this);
4533   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4534   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
4535   attributes.reset_is_clear_context();
4536   attributes.set_embedded_opmask_register_specifier(mask);
4537   attributes.set_is_evex_instruction();
4538   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
4539   emit_int8(0x30);
4540   emit_operand(src, dst);
4541 }
4542 
4543 void Assembler::evpmovdb(Address dst, XMMRegister src, int vector_len) {
4544   assert(VM_Version::supports_evex(), "");
4545   assert(src != xnoreg, "sanity");
4546   InstructionMark im(this);
4547   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4548   attributes.set_address_attributes(/* tuple_type */ EVEX_QVM, /* input_size_in_bits */ EVEX_NObit);
4549   attributes.set_is_evex_instruction();
4550   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
4551   emit_int8(0x31);
4552   emit_operand(src, dst);
4553 }
4554 
4555 void Assembler::vpmovzxwd(XMMRegister dst, XMMRegister src, int vector_len) {
4556   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4557   vector_len == AVX_256bit? VM_Version::supports_avx2() :
4558   vector_len == AVX_512bit? VM_Version::supports_evex() : 0, " ");
4559   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4560   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4561   emit_int8(0x33);
4562   emit_int8((unsigned char)(0xC0 | encode));
4563 }
4564 
4565 // generic
4566 void Assembler::pop(Register dst) {
4567   int encode = prefix_and_encode(dst->encoding());
4568   emit_int8(0x58 | encode);
4569 }
4570 
4571 void Assembler::popcntl(Register dst, Address src) {
4572   assert(VM_Version::supports_popcnt(), "must support");
4573   InstructionMark im(this);
4574   emit_int8((unsigned char)0xF3);
4575   prefix(src, dst);
4576   emit_int8(0x0F);
4577   emit_int8((unsigned char)0xB8);
4578   emit_operand(dst, src);
4579 }
4580 
4581 void Assembler::popcntl(Register dst, Register src) {
4582   assert(VM_Version::supports_popcnt(), "must support");
4583   emit_int8((unsigned char)0xF3);
4584   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4585   emit_int8(0x0F);
4586   emit_int8((unsigned char)0xB8);
4587   emit_int8((unsigned char)(0xC0 | encode));
4588 }
4589 
4590 void Assembler::vpopcntd(XMMRegister dst, XMMRegister src, int vector_len) {
4591   assert(VM_Version::supports_vpopcntdq(), "must support vpopcntdq feature");
4592   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4593   attributes.set_is_evex_instruction();
4594   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4595   emit_int8(0x55);
4596   emit_int8((unsigned char)(0xC0 | encode));
4597 }
4598 
4599 void Assembler::popf() {
4600   emit_int8((unsigned char)0x9D);
4601 }
4602 
4603 #ifndef _LP64 // no 32bit push/pop on amd64
4604 void Assembler::popl(Address dst) {
4605   // NOTE: this will adjust stack by 8byte on 64bits
4606   InstructionMark im(this);
4607   prefix(dst);
4608   emit_int8((unsigned char)0x8F);
4609   emit_operand(rax, dst);
4610 }
4611 #endif
4612 
4613 void Assembler::prefetch_prefix(Address src) {
4614   prefix(src);
4615   emit_int8(0x0F);
4616 }
4617 
4618 void Assembler::prefetchnta(Address src) {
4619   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4620   InstructionMark im(this);
4621   prefetch_prefix(src);
4622   emit_int8(0x18);
4623   emit_operand(rax, src); // 0, src
4624 }
4625 
4626 void Assembler::prefetchr(Address src) {
4627   assert(VM_Version::supports_3dnow_prefetch(), "must support");
4628   InstructionMark im(this);
4629   prefetch_prefix(src);
4630   emit_int8(0x0D);
4631   emit_operand(rax, src); // 0, src
4632 }
4633 
4634 void Assembler::prefetcht0(Address src) {
4635   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4636   InstructionMark im(this);
4637   prefetch_prefix(src);
4638   emit_int8(0x18);
4639   emit_operand(rcx, src); // 1, src
4640 }
4641 
4642 void Assembler::prefetcht1(Address src) {
4643   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4644   InstructionMark im(this);
4645   prefetch_prefix(src);
4646   emit_int8(0x18);
4647   emit_operand(rdx, src); // 2, src
4648 }
4649 
4650 void Assembler::prefetcht2(Address src) {
4651   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4652   InstructionMark im(this);
4653   prefetch_prefix(src);
4654   emit_int8(0x18);
4655   emit_operand(rbx, src); // 3, src
4656 }
4657 
4658 void Assembler::prefetchw(Address src) {
4659   assert(VM_Version::supports_3dnow_prefetch(), "must support");
4660   InstructionMark im(this);
4661   prefetch_prefix(src);
4662   emit_int8(0x0D);
4663   emit_operand(rcx, src); // 1, src
4664 }
4665 
4666 void Assembler::prefix(Prefix p) {
4667   emit_int8(p);
4668 }
4669 
4670 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
4671   assert(VM_Version::supports_ssse3(), "");
4672   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4673   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4674   emit_int8(0x00);
4675   emit_int8((unsigned char)(0xC0 | encode));
4676 }
4677 
4678 void Assembler::vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4679   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4680          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4681          0, "");
4682   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4683   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4684   emit_int8(0x00);
4685   emit_int8((unsigned char)(0xC0 | encode));
4686 }
4687 
4688 void Assembler::pshufb(XMMRegister dst, Address src) {
4689   assert(VM_Version::supports_ssse3(), "");
4690   InstructionMark im(this);
4691   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4692   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4693   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4694   emit_int8(0x00);
4695   emit_operand(dst, src);
4696 }
4697 
4698 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
4699   assert(isByte(mode), "invalid value");
4700   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4701   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
4702   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4703   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4704   emit_int8(0x70);
4705   emit_int8((unsigned char)(0xC0 | encode));
4706   emit_int8(mode & 0xFF);
4707 }
4708 
4709 void Assembler::vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len) {
4710   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4711          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4712          0, "");
4713   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4714   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4715   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4716   emit_int8(0x70);
4717   emit_int8((unsigned char)(0xC0 | encode));
4718   emit_int8(mode & 0xFF);
4719 }
4720 
4721 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
4722   assert(isByte(mode), "invalid value");
4723   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4724   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4725   InstructionMark im(this);
4726   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4727   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4728   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4729   emit_int8(0x70);
4730   emit_operand(dst, src);
4731   emit_int8(mode & 0xFF);
4732 }
4733 
4734 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4735   assert(isByte(mode), "invalid value");
4736   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4737   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4738   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4739   emit_int8(0x70);
4740   emit_int8((unsigned char)(0xC0 | encode));
4741   emit_int8(mode & 0xFF);
4742 }
4743 
4744 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
4745   assert(isByte(mode), "invalid value");
4746   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4747   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4748   InstructionMark im(this);
4749   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4750   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4751   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4752   emit_int8(0x70);
4753   emit_operand(dst, src);
4754   emit_int8(mode & 0xFF);
4755 }
4756 void Assembler::evshufi64x2(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4757   assert(VM_Version::supports_evex(), "requires EVEX support");
4758   assert(vector_len == Assembler::AVX_256bit || vector_len == Assembler::AVX_512bit, "");
4759   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4760   attributes.set_is_evex_instruction();
4761   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4762   emit_int8(0x43);
4763   emit_int8((unsigned char)(0xC0 | encode));
4764   emit_int8(imm8 & 0xFF);
4765 }
4766 void Assembler::vpshufpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4767   assert(vector_len == Assembler::AVX_128bit || Assembler::AVX_256bit || vector_len == Assembler::AVX_512bit, "");
4768   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4769   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4770   emit_int8(0xC6);
4771   emit_int8((unsigned char)(0xC0 | encode));
4772   emit_int8(imm8 & 0xFF);
4773 } 
4774 
4775 void Assembler::vpshufps(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4776   assert(vector_len == Assembler::AVX_128bit || Assembler::AVX_256bit || vector_len == Assembler::AVX_512bit, "");
4777   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4778   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4779   emit_int8(0xC6);
4780   emit_int8((unsigned char)(0xC0 | encode));
4781   emit_int8(imm8 & 0xFF);
4782 }
4783 void Assembler::psrldq(XMMRegister dst, int shift) {
4784   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4785   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4786   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4787   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4788   emit_int8(0x73);
4789   emit_int8((unsigned char)(0xC0 | encode));
4790   emit_int8(shift);
4791 }
4792 
4793 void Assembler::pslldq(XMMRegister dst, int shift) {
4794   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4795   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4796   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4797   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
4798   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4799   emit_int8(0x73);
4800   emit_int8((unsigned char)(0xC0 | encode));
4801   emit_int8(shift);
4802 }
4803 
4804 void Assembler::ptest(XMMRegister dst, Address src) {
4805   assert(VM_Version::supports_sse4_1(), "");
4806   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4807   InstructionMark im(this);
4808   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4809   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4810   emit_int8(0x17);
4811   emit_operand(dst, src);
4812 }
4813 
4814 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
4815   assert(VM_Version::supports_sse4_1(), "");
4816   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4817   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4818   emit_int8(0x17);
4819   emit_int8((unsigned char)(0xC0 | encode));
4820 }
4821 
4822 void Assembler::vptest(XMMRegister dst, Address src) {
4823   assert(VM_Version::supports_avx(), "");
4824   InstructionMark im(this);
4825   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4826   assert(dst != xnoreg, "sanity");
4827   // swap src<->dst for encoding
4828   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4829   emit_int8(0x17);
4830   emit_operand(dst, src);
4831 }
4832 
4833 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
4834   assert(VM_Version::supports_avx(), "");
4835   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4836   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4837   emit_int8(0x17);
4838   emit_int8((unsigned char)(0xC0 | encode));
4839 }
4840 
4841 void Assembler::vptest(XMMRegister dst, XMMRegister src, int vector_len) {
4842   assert(VM_Version::supports_avx(), "");
4843   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4844   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4845   emit_int8(0x17);
4846   emit_int8((unsigned char)(0xC0 | encode));
4847 }
4848 
4849 void Assembler::punpcklbw(XMMRegister dst, Address src) {
4850   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4851   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4852   InstructionMark im(this);
4853   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ true, /* uses_vl */ true);
4854   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4855   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4856   emit_int8(0x60);
4857   emit_operand(dst, src);
4858 }
4859 
4860 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4861   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4862   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ true, /* uses_vl */ true);
4863   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4864   emit_int8(0x60);
4865   emit_int8((unsigned char)(0xC0 | encode));
4866 }
4867 
4868 void Assembler::punpckldq(XMMRegister dst, Address src) {
4869   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4870   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4871   InstructionMark im(this);
4872   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4873   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4874   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4875   emit_int8(0x62);
4876   emit_operand(dst, src);
4877 }
4878 
4879 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
4880   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4881   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4882   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4883   emit_int8(0x62);
4884   emit_int8((unsigned char)(0xC0 | encode));
4885 }
4886 
4887 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
4888   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4889   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4890   attributes.set_rex_vex_w_reverted();
4891   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4892   emit_int8(0x6C);
4893   emit_int8((unsigned char)(0xC0 | encode));
4894 }
4895 
4896 void Assembler::push(int32_t imm32) {
4897   // in 64bits we push 64bits onto the stack but only
4898   // take a 32bit immediate
4899   emit_int8(0x68);
4900   emit_int32(imm32);
4901 }
4902 
4903 void Assembler::push(Register src) {
4904   int encode = prefix_and_encode(src->encoding());
4905 
4906   emit_int8(0x50 | encode);
4907 }
4908 
4909 void Assembler::pushf() {
4910   emit_int8((unsigned char)0x9C);
4911 }
4912 
4913 #ifndef _LP64 // no 32bit push/pop on amd64
4914 void Assembler::pushl(Address src) {
4915   // Note this will push 64bit on 64bit
4916   InstructionMark im(this);
4917   prefix(src);
4918   emit_int8((unsigned char)0xFF);
4919   emit_operand(rsi, src);
4920 }
4921 #endif
4922 
4923 void Assembler::rcll(Register dst, int imm8) {
4924   assert(isShiftCount(imm8), "illegal shift count");
4925   int encode = prefix_and_encode(dst->encoding());
4926   if (imm8 == 1) {
4927     emit_int8((unsigned char)0xD1);
4928     emit_int8((unsigned char)(0xD0 | encode));
4929   } else {
4930     emit_int8((unsigned char)0xC1);
4931     emit_int8((unsigned char)0xD0 | encode);
4932     emit_int8(imm8);
4933   }
4934 }
4935 
4936 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
4937   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4938   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4939   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4940   emit_int8(0x53);
4941   emit_int8((unsigned char)(0xC0 | encode));
4942 }
4943 
4944 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
4945   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4946   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4947   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4948   emit_int8(0x53);
4949   emit_int8((unsigned char)(0xC0 | encode));
4950 }
4951 
4952 void Assembler::rdtsc() {
4953   emit_int8((unsigned char)0x0F);
4954   emit_int8((unsigned char)0x31);
4955 }
4956 
4957 // copies data from [esi] to [edi] using rcx pointer sized words
4958 // generic
4959 void Assembler::rep_mov() {
4960   emit_int8((unsigned char)0xF3);
4961   // MOVSQ
4962   LP64_ONLY(prefix(REX_W));
4963   emit_int8((unsigned char)0xA5);
4964 }
4965 
4966 // sets rcx bytes with rax, value at [edi]
4967 void Assembler::rep_stosb() {
4968   emit_int8((unsigned char)0xF3); // REP
4969   LP64_ONLY(prefix(REX_W));
4970   emit_int8((unsigned char)0xAA); // STOSB
4971 }
4972 
4973 // sets rcx pointer sized words with rax, value at [edi]
4974 // generic
4975 void Assembler::rep_stos() {
4976   emit_int8((unsigned char)0xF3); // REP
4977   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
4978   emit_int8((unsigned char)0xAB);
4979 }
4980 
4981 // scans rcx pointer sized words at [edi] for occurance of rax,
4982 // generic
4983 void Assembler::repne_scan() { // repne_scan
4984   emit_int8((unsigned char)0xF2);
4985   // SCASQ
4986   LP64_ONLY(prefix(REX_W));
4987   emit_int8((unsigned char)0xAF);
4988 }
4989 
4990 #ifdef _LP64
4991 // scans rcx 4 byte words at [edi] for occurance of rax,
4992 // generic
4993 void Assembler::repne_scanl() { // repne_scan
4994   emit_int8((unsigned char)0xF2);
4995   // SCASL
4996   emit_int8((unsigned char)0xAF);
4997 }
4998 #endif
4999 
5000 void Assembler::ret(int imm16) {
5001   if (imm16 == 0) {
5002     emit_int8((unsigned char)0xC3);
5003   } else {
5004     emit_int8((unsigned char)0xC2);
5005     emit_int16(imm16);
5006   }
5007 }
5008 
5009 void Assembler::sahf() {
5010 #ifdef _LP64
5011   // Not supported in 64bit mode
5012   ShouldNotReachHere();
5013 #endif
5014   emit_int8((unsigned char)0x9E);
5015 }
5016 
5017 void Assembler::sarl(Register dst, int imm8) {
5018   int encode = prefix_and_encode(dst->encoding());
5019   assert(isShiftCount(imm8), "illegal shift count");
5020   if (imm8 == 1) {
5021     emit_int8((unsigned char)0xD1);
5022     emit_int8((unsigned char)(0xF8 | encode));
5023   } else {
5024     emit_int8((unsigned char)0xC1);
5025     emit_int8((unsigned char)(0xF8 | encode));
5026     emit_int8(imm8);
5027   }
5028 }
5029 
5030 void Assembler::sarl(Register dst) {
5031   int encode = prefix_and_encode(dst->encoding());
5032   emit_int8((unsigned char)0xD3);
5033   emit_int8((unsigned char)(0xF8 | encode));
5034 }
5035 
5036 void Assembler::sbbl(Address dst, int32_t imm32) {
5037   InstructionMark im(this);
5038   prefix(dst);
5039   emit_arith_operand(0x81, rbx, dst, imm32);
5040 }
5041 
5042 void Assembler::sbbl(Register dst, int32_t imm32) {
5043   prefix(dst);
5044   emit_arith(0x81, 0xD8, dst, imm32);
5045 }
5046 
5047 
5048 void Assembler::sbbl(Register dst, Address src) {
5049   InstructionMark im(this);
5050   prefix(src, dst);
5051   emit_int8(0x1B);
5052   emit_operand(dst, src);
5053 }
5054 
5055 void Assembler::sbbl(Register dst, Register src) {
5056   (void) prefix_and_encode(dst->encoding(), src->encoding());
5057   emit_arith(0x1B, 0xC0, dst, src);
5058 }
5059 
5060 void Assembler::setb(Condition cc, Register dst) {
5061   assert(0 <= cc && cc < 16, "illegal cc");
5062   int encode = prefix_and_encode(dst->encoding(), true);
5063   emit_int8(0x0F);
5064   emit_int8((unsigned char)0x90 | cc);
5065   emit_int8((unsigned char)(0xC0 | encode));
5066 }
5067 
5068 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
5069   assert(VM_Version::supports_ssse3(), "");
5070   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
5071   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5072   emit_int8((unsigned char)0x0F);
5073   emit_int8((unsigned char)(0xC0 | encode));
5074   emit_int8(imm8);
5075 }
5076 
5077 void Assembler::vpalignr(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
5078   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
5079          vector_len == AVX_256bit? VM_Version::supports_avx2() :
5080          0, "");
5081   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5082   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5083   emit_int8((unsigned char)0x0F);
5084   emit_int8((unsigned char)(0xC0 | encode));
5085   emit_int8(imm8);
5086 }
5087 
5088 void Assembler::evalignq(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5089   assert(VM_Version::supports_evex(), "");
5090   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5091   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5092   emit_int8(0x3);
5093   emit_int8((unsigned char)(0xC0 | encode));
5094   emit_int8(imm8);
5095 }
5096 
5097 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
5098   assert(VM_Version::supports_sse4_1(), "");
5099   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
5100   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5101   emit_int8((unsigned char)0x0E);
5102   emit_int8((unsigned char)(0xC0 | encode));
5103   emit_int8(imm8);
5104 }
5105 
5106 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
5107   assert(VM_Version::supports_sha(), "");
5108   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_3A, /* rex_w */ false);
5109   emit_int8((unsigned char)0xCC);
5110   emit_int8((unsigned char)(0xC0 | encode));
5111   emit_int8((unsigned char)imm8);
5112 }
5113 
5114 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
5115   assert(VM_Version::supports_sha(), "");
5116   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
5117   emit_int8((unsigned char)0xC8);
5118   emit_int8((unsigned char)(0xC0 | encode));
5119 }
5120 
5121 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
5122   assert(VM_Version::supports_sha(), "");
5123   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
5124   emit_int8((unsigned char)0xC9);
5125   emit_int8((unsigned char)(0xC0 | encode));
5126 }
5127 
5128 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
5129   assert(VM_Version::supports_sha(), "");
5130   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
5131   emit_int8((unsigned char)0xCA);
5132   emit_int8((unsigned char)(0xC0 | encode));
5133 }
5134 
5135 // xmm0 is implicit additional source to this instruction.
5136 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
5137   assert(VM_Version::supports_sha(), "");
5138   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
5139   emit_int8((unsigned char)0xCB);
5140   emit_int8((unsigned char)(0xC0 | encode));
5141 }
5142 
5143 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
5144   assert(VM_Version::supports_sha(), "");
5145   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
5146   emit_int8((unsigned char)0xCC);
5147   emit_int8((unsigned char)(0xC0 | encode));
5148 }
5149 
5150 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
5151   assert(VM_Version::supports_sha(), "");
5152   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
5153   emit_int8((unsigned char)0xCD);
5154   emit_int8((unsigned char)(0xC0 | encode));
5155 }
5156 
5157 
5158 void Assembler::shll(Register dst, int imm8) {
5159   assert(isShiftCount(imm8), "illegal shift count");
5160   int encode = prefix_and_encode(dst->encoding());
5161   if (imm8 == 1 ) {
5162     emit_int8((unsigned char)0xD1);
5163     emit_int8((unsigned char)(0xE0 | encode));
5164   } else {
5165     emit_int8((unsigned char)0xC1);
5166     emit_int8((unsigned char)(0xE0 | encode));
5167     emit_int8(imm8);
5168   }
5169 }
5170 
5171 void Assembler::shll(Register dst) {
5172   int encode = prefix_and_encode(dst->encoding());
5173   emit_int8((unsigned char)0xD3);
5174   emit_int8((unsigned char)(0xE0 | encode));
5175 }
5176 
5177 void Assembler::shrl(Register dst, int imm8) {
5178   assert(isShiftCount(imm8), "illegal shift count");
5179   int encode = prefix_and_encode(dst->encoding());
5180   emit_int8((unsigned char)0xC1);
5181   emit_int8((unsigned char)(0xE8 | encode));
5182   emit_int8(imm8);
5183 }
5184 
5185 void Assembler::shrl(Register dst) {
5186   int encode = prefix_and_encode(dst->encoding());
5187   emit_int8((unsigned char)0xD3);
5188   emit_int8((unsigned char)(0xE8 | encode));
5189 }
5190 
5191 // copies a single word from [esi] to [edi]
5192 void Assembler::smovl() {
5193   emit_int8((unsigned char)0xA5);
5194 }
5195 
5196 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
5197   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5198   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5199   attributes.set_rex_vex_w_reverted();
5200   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5201   emit_int8(0x51);
5202   emit_int8((unsigned char)(0xC0 | encode));
5203 }
5204 
5205 void Assembler::sqrtsd(XMMRegister dst, Address src) {
5206   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5207   InstructionMark im(this);
5208   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5209   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5210   attributes.set_rex_vex_w_reverted();
5211   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5212   emit_int8(0x51);
5213   emit_operand(dst, src);
5214 }
5215 
5216 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
5217   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5218   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5219   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5220   emit_int8(0x51);
5221   emit_int8((unsigned char)(0xC0 | encode));
5222 }
5223 
5224 void Assembler::std() {
5225   emit_int8((unsigned char)0xFD);
5226 }
5227 
5228 void Assembler::sqrtss(XMMRegister dst, Address src) {
5229   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5230   InstructionMark im(this);
5231   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5232   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5233   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5234   emit_int8(0x51);
5235   emit_operand(dst, src);
5236 }
5237 
5238 void Assembler::stmxcsr( Address dst) {
5239   if (UseAVX > 0 ) {
5240     assert(VM_Version::supports_avx(), "");
5241     InstructionMark im(this);
5242     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5243     vex_prefix(dst, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5244     emit_int8((unsigned char)0xAE);
5245     emit_operand(as_Register(3), dst);
5246   } else {
5247     NOT_LP64(assert(VM_Version::supports_sse(), ""));
5248     InstructionMark im(this);
5249     prefix(dst);
5250     emit_int8(0x0F);
5251     emit_int8((unsigned char)0xAE);
5252     emit_operand(as_Register(3), dst);
5253   }
5254 }
5255 
5256 void Assembler::subl(Address dst, int32_t imm32) {
5257   InstructionMark im(this);
5258   prefix(dst);
5259   emit_arith_operand(0x81, rbp, dst, imm32);
5260 }
5261 
5262 void Assembler::subl(Address dst, Register src) {
5263   InstructionMark im(this);
5264   prefix(dst, src);
5265   emit_int8(0x29);
5266   emit_operand(src, dst);
5267 }
5268 
5269 void Assembler::subl(Register dst, int32_t imm32) {
5270   prefix(dst);
5271   emit_arith(0x81, 0xE8, dst, imm32);
5272 }
5273 
5274 // Force generation of a 4 byte immediate value even if it fits into 8bit
5275 void Assembler::subl_imm32(Register dst, int32_t imm32) {
5276   prefix(dst);
5277   emit_arith_imm32(0x81, 0xE8, dst, imm32);
5278 }
5279 
5280 void Assembler::subl(Register dst, Address src) {
5281   InstructionMark im(this);
5282   prefix(src, dst);
5283   emit_int8(0x2B);
5284   emit_operand(dst, src);
5285 }
5286 
5287 void Assembler::subl(Register dst, Register src) {
5288   (void) prefix_and_encode(dst->encoding(), src->encoding());
5289   emit_arith(0x2B, 0xC0, dst, src);
5290 }
5291 
5292 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
5293   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5294   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5295   attributes.set_rex_vex_w_reverted();
5296   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5297   emit_int8(0x5C);
5298   emit_int8((unsigned char)(0xC0 | encode));
5299 }
5300 
5301 void Assembler::subsd(XMMRegister dst, Address src) {
5302   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5303   InstructionMark im(this);
5304   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5305   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5306   attributes.set_rex_vex_w_reverted();
5307   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5308   emit_int8(0x5C);
5309   emit_operand(dst, src);
5310 }
5311 
5312 void Assembler::subss(XMMRegister dst, XMMRegister src) {
5313   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5314   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true , /* uses_vl */ false);
5315   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5316   emit_int8(0x5C);
5317   emit_int8((unsigned char)(0xC0 | encode));
5318 }
5319 
5320 void Assembler::subss(XMMRegister dst, Address src) {
5321   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5322   InstructionMark im(this);
5323   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5324   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5325   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5326   emit_int8(0x5C);
5327   emit_operand(dst, src);
5328 }
5329 
5330 void Assembler::testb(Register dst, int imm8) {
5331   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
5332   (void) prefix_and_encode(dst->encoding(), true);
5333   emit_arith_b(0xF6, 0xC0, dst, imm8);
5334 }
5335 
5336 void Assembler::testb(Address dst, int imm8) {
5337   InstructionMark im(this);
5338   prefix(dst);
5339   emit_int8((unsigned char)0xF6);
5340   emit_operand(rax, dst, 1);
5341   emit_int8(imm8);
5342 }
5343 
5344 void Assembler::testl(Register dst, int32_t imm32) {
5345   // not using emit_arith because test
5346   // doesn't support sign-extension of
5347   // 8bit operands
5348   int encode = dst->encoding();
5349   if (encode == 0) {
5350     emit_int8((unsigned char)0xA9);
5351   } else {
5352     encode = prefix_and_encode(encode);
5353     emit_int8((unsigned char)0xF7);
5354     emit_int8((unsigned char)(0xC0 | encode));
5355   }
5356   emit_int32(imm32);
5357 }
5358 
5359 void Assembler::testl(Register dst, Register src) {
5360   (void) prefix_and_encode(dst->encoding(), src->encoding());
5361   emit_arith(0x85, 0xC0, dst, src);
5362 }
5363 
5364 void Assembler::testl(Register dst, Address src) {
5365   InstructionMark im(this);
5366   prefix(src, dst);
5367   emit_int8((unsigned char)0x85);
5368   emit_operand(dst, src);
5369 }
5370 
5371 void Assembler::tzcntl(Register dst, Register src) {
5372   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
5373   emit_int8((unsigned char)0xF3);
5374   int encode = prefix_and_encode(dst->encoding(), src->encoding());
5375   emit_int8(0x0F);
5376   emit_int8((unsigned char)0xBC);
5377   emit_int8((unsigned char)0xC0 | encode);
5378 }
5379 
5380 void Assembler::tzcntq(Register dst, Register src) {
5381   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
5382   emit_int8((unsigned char)0xF3);
5383   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5384   emit_int8(0x0F);
5385   emit_int8((unsigned char)0xBC);
5386   emit_int8((unsigned char)(0xC0 | encode));
5387 }
5388 
5389 void Assembler::ucomisd(XMMRegister dst, Address src) {
5390   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5391   InstructionMark im(this);
5392   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5393   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5394   attributes.set_rex_vex_w_reverted();
5395   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5396   emit_int8(0x2E);
5397   emit_operand(dst, src);
5398 }
5399 
5400 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
5401   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5402   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5403   attributes.set_rex_vex_w_reverted();
5404   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5405   emit_int8(0x2E);
5406   emit_int8((unsigned char)(0xC0 | encode));
5407 }
5408 
5409 void Assembler::ucomiss(XMMRegister dst, Address src) {
5410   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5411   InstructionMark im(this);
5412   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5413   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5414   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5415   emit_int8(0x2E);
5416   emit_operand(dst, src);
5417 }
5418 
5419 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
5420   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5421   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5422   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5423   emit_int8(0x2E);
5424   emit_int8((unsigned char)(0xC0 | encode));
5425 }
5426 
5427 void Assembler::xabort(int8_t imm8) {
5428   emit_int8((unsigned char)0xC6);
5429   emit_int8((unsigned char)0xF8);
5430   emit_int8((unsigned char)(imm8 & 0xFF));
5431 }
5432 
5433 void Assembler::xaddb(Address dst, Register src) {
5434   InstructionMark im(this);
5435   prefix(dst, src, true);
5436   emit_int8(0x0F);
5437   emit_int8((unsigned char)0xC0);
5438   emit_operand(src, dst);
5439 }
5440 
5441 void Assembler::xaddw(Address dst, Register src) {
5442   InstructionMark im(this);
5443   emit_int8(0x66);
5444   prefix(dst, src);
5445   emit_int8(0x0F);
5446   emit_int8((unsigned char)0xC1);
5447   emit_operand(src, dst);
5448 }
5449 
5450 void Assembler::xaddl(Address dst, Register src) {
5451   InstructionMark im(this);
5452   prefix(dst, src);
5453   emit_int8(0x0F);
5454   emit_int8((unsigned char)0xC1);
5455   emit_operand(src, dst);
5456 }
5457 
5458 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
5459   InstructionMark im(this);
5460   relocate(rtype);
5461   if (abort.is_bound()) {
5462     address entry = target(abort);
5463     assert(entry != NULL, "abort entry NULL");
5464     intptr_t offset = entry - pc();
5465     emit_int8((unsigned char)0xC7);
5466     emit_int8((unsigned char)0xF8);
5467     emit_int32(offset - 6); // 2 opcode + 4 address
5468   } else {
5469     abort.add_patch_at(code(), locator());
5470     emit_int8((unsigned char)0xC7);
5471     emit_int8((unsigned char)0xF8);
5472     emit_int32(0);
5473   }
5474 }
5475 
5476 void Assembler::xchgb(Register dst, Address src) { // xchg
5477   InstructionMark im(this);
5478   prefix(src, dst, true);
5479   emit_int8((unsigned char)0x86);
5480   emit_operand(dst, src);
5481 }
5482 
5483 void Assembler::xchgw(Register dst, Address src) { // xchg
5484   InstructionMark im(this);
5485   emit_int8(0x66);
5486   prefix(src, dst);
5487   emit_int8((unsigned char)0x87);
5488   emit_operand(dst, src);
5489 }
5490 
5491 void Assembler::xchgl(Register dst, Address src) { // xchg
5492   InstructionMark im(this);
5493   prefix(src, dst);
5494   emit_int8((unsigned char)0x87);
5495   emit_operand(dst, src);
5496 }
5497 
5498 void Assembler::xchgl(Register dst, Register src) {
5499   int encode = prefix_and_encode(dst->encoding(), src->encoding());
5500   emit_int8((unsigned char)0x87);
5501   emit_int8((unsigned char)(0xC0 | encode));
5502 }
5503 
5504 void Assembler::xend() {
5505   emit_int8((unsigned char)0x0F);
5506   emit_int8((unsigned char)0x01);
5507   emit_int8((unsigned char)0xD5);
5508 }
5509 
5510 void Assembler::xgetbv() {
5511   emit_int8(0x0F);
5512   emit_int8(0x01);
5513   emit_int8((unsigned char)0xD0);
5514 }
5515 
5516 void Assembler::xorl(Register dst, int32_t imm32) {
5517   prefix(dst);
5518   emit_arith(0x81, 0xF0, dst, imm32);
5519 }
5520 
5521 void Assembler::xorl(Register dst, Address src) {
5522   InstructionMark im(this);
5523   prefix(src, dst);
5524   emit_int8(0x33);
5525   emit_operand(dst, src);
5526 }
5527 
5528 void Assembler::xorl(Register dst, Register src) {
5529   (void) prefix_and_encode(dst->encoding(), src->encoding());
5530   emit_arith(0x33, 0xC0, dst, src);
5531 }
5532 
5533 void Assembler::xorb(Register dst, Address src) {
5534   InstructionMark im(this);
5535   prefix(src, dst);
5536   emit_int8(0x32);
5537   emit_operand(dst, src);
5538 }
5539 
5540 void Assembler::xorw(Register dst, Register src) {
5541   (void)prefix_and_encode(dst->encoding(), src->encoding());
5542   emit_arith(0x33, 0xC0, dst, src);
5543 }
5544 
5545 // AVX 3-operands scalar float-point arithmetic instructions
5546 
5547 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
5548   assert(VM_Version::supports_avx(), "");
5549   InstructionMark im(this);
5550   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5551   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5552   attributes.set_rex_vex_w_reverted();
5553   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5554   emit_int8(0x58);
5555   emit_operand(dst, src);
5556 }
5557 
5558 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5559   assert(VM_Version::supports_avx(), "");
5560   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5561   attributes.set_rex_vex_w_reverted();
5562   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5563   emit_int8(0x58);
5564   emit_int8((unsigned char)(0xC0 | encode));
5565 }
5566 
5567 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
5568   assert(VM_Version::supports_avx(), "");
5569   InstructionMark im(this);
5570   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5571   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5572   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5573   emit_int8(0x58);
5574   emit_operand(dst, src);
5575 }
5576 
5577 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5578   assert(VM_Version::supports_avx(), "");
5579   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5580   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5581   emit_int8(0x58);
5582   emit_int8((unsigned char)(0xC0 | encode));
5583 }
5584 
5585 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
5586   assert(VM_Version::supports_avx(), "");
5587   InstructionMark im(this);
5588   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5589   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5590   attributes.set_rex_vex_w_reverted();
5591   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5592   emit_int8(0x5E);
5593   emit_operand(dst, src);
5594 }
5595 
5596 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5597   assert(VM_Version::supports_avx(), "");
5598   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5599   attributes.set_rex_vex_w_reverted();
5600   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5601   emit_int8(0x5E);
5602   emit_int8((unsigned char)(0xC0 | encode));
5603 }
5604 
5605 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
5606   assert(VM_Version::supports_avx(), "");
5607   InstructionMark im(this);
5608   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5609   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5610   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5611   emit_int8(0x5E);
5612   emit_operand(dst, src);
5613 }
5614 
5615 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5616   assert(VM_Version::supports_avx(), "");
5617   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5618   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5619   emit_int8(0x5E);
5620   emit_int8((unsigned char)(0xC0 | encode));
5621 }
5622 
5623 void Assembler::vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
5624   assert(VM_Version::supports_fma(), "");
5625   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5626   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5627   emit_int8((unsigned char)0xB9);
5628   emit_int8((unsigned char)(0xC0 | encode));
5629 }
5630 
5631 void Assembler::vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
5632   assert(VM_Version::supports_fma(), "");
5633   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5634   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5635   emit_int8((unsigned char)0xB9);
5636   emit_int8((unsigned char)(0xC0 | encode));
5637 }
5638 
5639 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
5640   assert(VM_Version::supports_avx(), "");
5641   InstructionMark im(this);
5642   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5643   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5644   attributes.set_rex_vex_w_reverted();
5645   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5646   emit_int8(0x59);
5647   emit_operand(dst, src);
5648 }
5649 
5650 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5651   assert(VM_Version::supports_avx(), "");
5652   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5653   attributes.set_rex_vex_w_reverted();
5654   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5655   emit_int8(0x59);
5656   emit_int8((unsigned char)(0xC0 | encode));
5657 }
5658 
5659 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
5660   assert(VM_Version::supports_avx(), "");
5661   InstructionMark im(this);
5662   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5663   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5664   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5665   emit_int8(0x59);
5666   emit_operand(dst, src);
5667 }
5668 
5669 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5670   assert(VM_Version::supports_avx(), "");
5671   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5672   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5673   emit_int8(0x59);
5674   emit_int8((unsigned char)(0xC0 | encode));
5675 }
5676 
5677 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
5678   assert(VM_Version::supports_avx(), "");
5679   InstructionMark im(this);
5680   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5681   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5682   attributes.set_rex_vex_w_reverted();
5683   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5684   emit_int8(0x5C);
5685   emit_operand(dst, src);
5686 }
5687 
5688 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5689   assert(VM_Version::supports_avx(), "");
5690   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5691   attributes.set_rex_vex_w_reverted();
5692   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5693   emit_int8(0x5C);
5694   emit_int8((unsigned char)(0xC0 | encode));
5695 }
5696 
5697 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
5698   assert(VM_Version::supports_avx(), "");
5699   InstructionMark im(this);
5700   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5701   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5702   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5703   emit_int8(0x5C);
5704   emit_operand(dst, src);
5705 }
5706 
5707 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5708   assert(VM_Version::supports_avx(), "");
5709   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5710   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5711   emit_int8(0x5C);
5712   emit_int8((unsigned char)(0xC0 | encode));
5713 }
5714 
5715 //====================VECTOR ARITHMETIC=====================================
5716 
5717 // Float-point vector arithmetic
5718 
5719 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
5720   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5721   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5722   attributes.set_rex_vex_w_reverted();
5723   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5724   emit_int8(0x58);
5725   emit_int8((unsigned char)(0xC0 | encode));
5726 }
5727 
5728 void Assembler::addpd(XMMRegister dst, Address src) {
5729   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5730   InstructionMark im(this);
5731   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5732   attributes.set_rex_vex_w_reverted();
5733   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5734   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5735   emit_int8(0x58);
5736   emit_operand(dst, src);
5737 }
5738 
5739 
5740 void Assembler::addps(XMMRegister dst, XMMRegister src) {
5741   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5742   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5743   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5744   emit_int8(0x58);
5745   emit_int8((unsigned char)(0xC0 | encode));
5746 }
5747 
5748 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5749   assert(VM_Version::supports_avx(), "");
5750   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5751   attributes.set_rex_vex_w_reverted();
5752   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5753   emit_int8(0x58);
5754   emit_int8((unsigned char)(0xC0 | encode));
5755 }
5756 
5757 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5758   assert(VM_Version::supports_avx(), "");
5759   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5760   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5761   emit_int8(0x58);
5762   emit_int8((unsigned char)(0xC0 | encode));
5763 }
5764 
5765 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5766   assert(VM_Version::supports_avx(), "");
5767   InstructionMark im(this);
5768   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5769   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5770   attributes.set_rex_vex_w_reverted();
5771   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5772   emit_int8(0x58);
5773   emit_operand(dst, src);
5774 }
5775 
5776 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5777   assert(VM_Version::supports_avx(), "");
5778   InstructionMark im(this);
5779   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5780   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5781   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5782   emit_int8(0x58);
5783   emit_operand(dst, src);
5784 }
5785 
5786 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
5787   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5788   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5789   attributes.set_rex_vex_w_reverted();
5790   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5791   emit_int8(0x5C);
5792   emit_int8((unsigned char)(0xC0 | encode));
5793 }
5794 
5795 void Assembler::subps(XMMRegister dst, XMMRegister src) {
5796   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5797   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5798   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5799   emit_int8(0x5C);
5800   emit_int8((unsigned char)(0xC0 | encode));
5801 }
5802 
5803 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5804   assert(VM_Version::supports_avx(), "");
5805   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5806   attributes.set_rex_vex_w_reverted();
5807   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5808   emit_int8(0x5C);
5809   emit_int8((unsigned char)(0xC0 | encode));
5810 }
5811 
5812 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5813   assert(VM_Version::supports_avx(), "");
5814   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5815   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5816   emit_int8(0x5C);
5817   emit_int8((unsigned char)(0xC0 | encode));
5818 }
5819 
5820 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5821   assert(VM_Version::supports_avx(), "");
5822   InstructionMark im(this);
5823   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5824   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5825   attributes.set_rex_vex_w_reverted();
5826   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5827   emit_int8(0x5C);
5828   emit_operand(dst, src);
5829 }
5830 
5831 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5832   assert(VM_Version::supports_avx(), "");
5833   InstructionMark im(this);
5834   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5835   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5836   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5837   emit_int8(0x5C);
5838   emit_operand(dst, src);
5839 }
5840 
5841 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
5842   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5843   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5844   attributes.set_rex_vex_w_reverted();
5845   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5846   emit_int8(0x59);
5847   emit_int8((unsigned char)(0xC0 | encode));
5848 }
5849 
5850 void Assembler::mulpd(XMMRegister dst, Address src) {
5851   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5852   InstructionMark im(this);
5853   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5854   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5855   attributes.set_rex_vex_w_reverted();
5856   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5857   emit_int8(0x59);
5858   emit_operand(dst, src);
5859 }
5860 
5861 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
5862   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5863   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5864   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5865   emit_int8(0x59);
5866   emit_int8((unsigned char)(0xC0 | encode));
5867 }
5868 
5869 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5870   assert(VM_Version::supports_avx(), "");
5871   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5872   attributes.set_rex_vex_w_reverted();
5873   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5874   emit_int8(0x59);
5875   emit_int8((unsigned char)(0xC0 | encode));
5876 }
5877 
5878 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5879   assert(VM_Version::supports_avx(), "");
5880   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5881   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5882   emit_int8(0x59);
5883   emit_int8((unsigned char)(0xC0 | encode));
5884 }
5885 
5886 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5887   assert(VM_Version::supports_avx(), "");
5888   InstructionMark im(this);
5889   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5890   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5891   attributes.set_rex_vex_w_reverted();
5892   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5893   emit_int8(0x59);
5894   emit_operand(dst, src);
5895 }
5896 
5897 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5898   assert(VM_Version::supports_avx(), "");
5899   InstructionMark im(this);
5900   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5901   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5902   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5903   emit_int8(0x59);
5904   emit_operand(dst, src);
5905 }
5906 
5907 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5908   assert(VM_Version::supports_fma(), "");
5909   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5910   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5911   emit_int8((unsigned char)0xB8);
5912   emit_int8((unsigned char)(0xC0 | encode));
5913 }
5914 
5915 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5916   assert(VM_Version::supports_fma(), "");
5917   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5918   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5919   emit_int8((unsigned char)0xB8);
5920   emit_int8((unsigned char)(0xC0 | encode));
5921 }
5922 
5923 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5924   assert(VM_Version::supports_fma(), "");
5925   InstructionMark im(this);
5926   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5927   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5928   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5929   emit_int8((unsigned char)0xB8);
5930   emit_operand(dst, src2);
5931 }
5932 
5933 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5934   assert(VM_Version::supports_fma(), "");
5935   InstructionMark im(this);
5936   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5937   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5938   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5939   emit_int8((unsigned char)0xB8);
5940   emit_operand(dst, src2);
5941 }
5942 
5943 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
5944   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5945   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5946   attributes.set_rex_vex_w_reverted();
5947   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5948   emit_int8(0x5E);
5949   emit_int8((unsigned char)(0xC0 | encode));
5950 }
5951 
5952 void Assembler::divps(XMMRegister dst, XMMRegister src) {
5953   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5954   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5955   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5956   emit_int8(0x5E);
5957   emit_int8((unsigned char)(0xC0 | encode));
5958 }
5959 
5960 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5961   assert(VM_Version::supports_avx(), "");
5962   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5963   attributes.set_rex_vex_w_reverted();
5964   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5965   emit_int8(0x5E);
5966   emit_int8((unsigned char)(0xC0 | encode));
5967 }
5968 
5969 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5970   assert(VM_Version::supports_avx(), "");
5971   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5972   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5973   emit_int8(0x5E);
5974   emit_int8((unsigned char)(0xC0 | encode));
5975 }
5976 
5977 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5978   assert(VM_Version::supports_avx(), "");
5979   InstructionMark im(this);
5980   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5981   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5982   attributes.set_rex_vex_w_reverted();
5983   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5984   emit_int8(0x5E);
5985   emit_operand(dst, src);
5986 }
5987 
5988 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5989   assert(VM_Version::supports_avx(), "");
5990   InstructionMark im(this);
5991   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5992   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5993   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5994   emit_int8(0x5E);
5995   emit_operand(dst, src);
5996 }
5997 
5998 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
5999   assert(VM_Version::supports_avx(), "");
6000   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6001   attributes.set_rex_vex_w_reverted();
6002   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6003   emit_int8(0x51);
6004   emit_int8((unsigned char)(0xC0 | encode));
6005 }
6006 
6007 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
6008   assert(VM_Version::supports_avx(), "");
6009   InstructionMark im(this);
6010   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6011   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6012   attributes.set_rex_vex_w_reverted();
6013   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6014   emit_int8(0x51);
6015   emit_operand(dst, src);
6016 }
6017 
6018 void Assembler::vsqrtps(XMMRegister dst, XMMRegister src, int vector_len) {
6019   assert(VM_Version::supports_avx(), "");
6020   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6021   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6022   emit_int8(0x51);
6023   emit_int8((unsigned char)(0xC0 | encode));
6024 }
6025 
6026 void Assembler::vsqrtps(XMMRegister dst, Address src, int vector_len) {
6027   assert(VM_Version::supports_avx(), "");
6028   InstructionMark im(this);
6029   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6030   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6031   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6032   emit_int8(0x51);
6033   emit_operand(dst, src);
6034 }
6035 
6036 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
6037   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6038   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6039   attributes.set_rex_vex_w_reverted();
6040   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6041   emit_int8(0x54);
6042   emit_int8((unsigned char)(0xC0 | encode));
6043 }
6044 
6045 void Assembler::andps(XMMRegister dst, XMMRegister src) {
6046   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6047   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6048   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6049   emit_int8(0x54);
6050   emit_int8((unsigned char)(0xC0 | encode));
6051 }
6052 
6053 void Assembler::andps(XMMRegister dst, Address src) {
6054   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6055   InstructionMark im(this);
6056   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6057   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6058   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6059   emit_int8(0x54);
6060   emit_operand(dst, src);
6061 }
6062 
6063 void Assembler::andpd(XMMRegister dst, Address src) {
6064   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6065   InstructionMark im(this);
6066   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6067   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6068   attributes.set_rex_vex_w_reverted();
6069   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6070   emit_int8(0x54);
6071   emit_operand(dst, src);
6072 }
6073 
6074 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6075   assert(VM_Version::supports_avx(), "");
6076   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6077   attributes.set_rex_vex_w_reverted();
6078   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6079   emit_int8(0x54);
6080   emit_int8((unsigned char)(0xC0 | encode));
6081 }
6082 
6083 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6084   assert(VM_Version::supports_avx(), "");
6085   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6086   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6087   emit_int8(0x54);
6088   emit_int8((unsigned char)(0xC0 | encode));
6089 }
6090 
6091 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6092   assert(VM_Version::supports_avx(), "");
6093   InstructionMark im(this);
6094   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6095   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6096   attributes.set_rex_vex_w_reverted();
6097   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6098   emit_int8(0x54);
6099   emit_operand(dst, src);
6100 }
6101 
6102 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6103   assert(VM_Version::supports_avx(), "");
6104   InstructionMark im(this);
6105   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6106   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6107   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6108   emit_int8(0x54);
6109   emit_operand(dst, src);
6110 }
6111 
6112 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
6113   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6114   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6115   attributes.set_rex_vex_w_reverted();
6116   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6117   emit_int8(0x15);
6118   emit_int8((unsigned char)(0xC0 | encode));
6119 }
6120 
6121 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
6122   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6123   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6124   attributes.set_rex_vex_w_reverted();
6125   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6126   emit_int8(0x14);
6127   emit_int8((unsigned char)(0xC0 | encode));
6128 }
6129 
6130 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
6131   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6132   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6133   attributes.set_rex_vex_w_reverted();
6134   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6135   emit_int8(0x57);
6136   emit_int8((unsigned char)(0xC0 | encode));
6137 }
6138 
6139 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
6140   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6141   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6142   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6143   emit_int8(0x57);
6144   emit_int8((unsigned char)(0xC0 | encode));
6145 }
6146 
6147 void Assembler::xorpd(XMMRegister dst, Address src) {
6148   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6149   InstructionMark im(this);
6150   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6151   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6152   attributes.set_rex_vex_w_reverted();
6153   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6154   emit_int8(0x57);
6155   emit_operand(dst, src);
6156 }
6157 
6158 void Assembler::xorps(XMMRegister dst, Address src) {
6159   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6160   InstructionMark im(this);
6161   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6162   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6163   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6164   emit_int8(0x57);
6165   emit_operand(dst, src);
6166 }
6167 
6168 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6169   assert(VM_Version::supports_avx(), "");
6170   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6171   attributes.set_rex_vex_w_reverted();
6172   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6173   emit_int8(0x57);
6174   emit_int8((unsigned char)(0xC0 | encode));
6175 }
6176 
6177 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6178   assert(VM_Version::supports_avx(), "");
6179   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6180   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6181   emit_int8(0x57);
6182   emit_int8((unsigned char)(0xC0 | encode));
6183 }
6184 
6185 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6186   assert(VM_Version::supports_avx(), "");
6187   InstructionMark im(this);
6188   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6189   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6190   attributes.set_rex_vex_w_reverted();
6191   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6192   emit_int8(0x57);
6193   emit_operand(dst, src);
6194 }
6195 
6196 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6197   assert(VM_Version::supports_avx(), "");
6198   InstructionMark im(this);
6199   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6200   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6201   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6202   emit_int8(0x57);
6203   emit_operand(dst, src);
6204 }
6205 
6206 // Integer vector arithmetic
6207 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6208   assert(VM_Version::supports_avx() && (vector_len == 0) ||
6209          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
6210   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
6211   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6212   emit_int8(0x01);
6213   emit_int8((unsigned char)(0xC0 | encode));
6214 }
6215 
6216 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6217   assert(VM_Version::supports_avx() && (vector_len == 0) ||
6218          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
6219   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6220   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6221   emit_int8(0x02);
6222   emit_int8((unsigned char)(0xC0 | encode));
6223 }
6224 
6225 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
6226   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6227   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6228   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6229   emit_int8((unsigned char)0xFC);
6230   emit_int8((unsigned char)(0xC0 | encode));
6231 }
6232 
6233 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
6234   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6235   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6236   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6237   emit_int8((unsigned char)0xFD);
6238   emit_int8((unsigned char)(0xC0 | encode));
6239 }
6240 
6241 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
6242   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6243   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6244   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6245   emit_int8((unsigned char)0xFE);
6246   emit_int8((unsigned char)(0xC0 | encode));
6247 }
6248 
6249 void Assembler::paddd(XMMRegister dst, Address src) {
6250   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6251   InstructionMark im(this);
6252   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6253   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6254   emit_int8((unsigned char)0xFE);
6255   emit_operand(dst, src);
6256 }
6257 
6258 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
6259   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6260   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6261   attributes.set_rex_vex_w_reverted();
6262   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6263   emit_int8((unsigned char)0xD4);
6264   emit_int8((unsigned char)(0xC0 | encode));
6265 }
6266 
6267 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
6268   assert(VM_Version::supports_sse3(), "");
6269   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
6270   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6271   emit_int8(0x01);
6272   emit_int8((unsigned char)(0xC0 | encode));
6273 }
6274 
6275 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
6276   assert(VM_Version::supports_sse3(), "");
6277   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6278   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6279   emit_int8(0x02);
6280   emit_int8((unsigned char)(0xC0 | encode));
6281 }
6282 
6283 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6284   assert(UseAVX > 0, "requires some form of AVX");
6285   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6286   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6287   emit_int8((unsigned char)0xFC);
6288   emit_int8((unsigned char)(0xC0 | encode));
6289 }
6290 
6291 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6292   assert(UseAVX > 0, "requires some form of AVX");
6293   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6294   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6295   emit_int8((unsigned char)0xFD);
6296   emit_int8((unsigned char)(0xC0 | encode));
6297 }
6298 
6299 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6300   assert(UseAVX > 0, "requires some form of AVX");
6301   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6302   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6303   emit_int8((unsigned char)0xFE);
6304   emit_int8((unsigned char)(0xC0 | encode));
6305 }
6306 
6307 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6308   assert(UseAVX > 0, "requires some form of AVX");
6309   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6310   attributes.set_rex_vex_w_reverted();
6311   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6312   emit_int8((unsigned char)0xD4);
6313   emit_int8((unsigned char)(0xC0 | encode));
6314 }
6315 
6316 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6317   assert(UseAVX > 0, "requires some form of AVX");
6318   InstructionMark im(this);
6319   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6320   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
6321   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6322   emit_int8((unsigned char)0xFC);
6323   emit_operand(dst, src);
6324 }
6325 
6326 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6327   assert(UseAVX > 0, "requires some form of AVX");
6328   InstructionMark im(this);
6329   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6330   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
6331   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6332   emit_int8((unsigned char)0xFD);
6333   emit_operand(dst, src);
6334 }
6335 
6336 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6337   assert(UseAVX > 0, "requires some form of AVX");
6338   InstructionMark im(this);
6339   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6340   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6341   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6342   emit_int8((unsigned char)0xFE);
6343   emit_operand(dst, src);
6344 }
6345 
6346 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6347   assert(UseAVX > 0, "requires some form of AVX");
6348   InstructionMark im(this);
6349   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6350   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6351   attributes.set_rex_vex_w_reverted();
6352   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6353   emit_int8((unsigned char)0xD4);
6354   emit_operand(dst, src);
6355 }
6356 
6357 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
6358   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6359   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6360   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6361   emit_int8((unsigned char)0xF8);
6362   emit_int8((unsigned char)(0xC0 | encode));
6363 }
6364 
6365 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
6366   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6367   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6368   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6369   emit_int8((unsigned char)0xF9);
6370   emit_int8((unsigned char)(0xC0 | encode));
6371 }
6372 
6373 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
6374   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6375   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6376   emit_int8((unsigned char)0xFA);
6377   emit_int8((unsigned char)(0xC0 | encode));
6378 }
6379 
6380 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
6381   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6382   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6383   attributes.set_rex_vex_w_reverted();
6384   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6385   emit_int8((unsigned char)0xFB);
6386   emit_int8((unsigned char)(0xC0 | encode));
6387 }
6388 
6389 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6390   assert(UseAVX > 0, "requires some form of AVX");
6391   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6392   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6393   emit_int8((unsigned char)0xF8);
6394   emit_int8((unsigned char)(0xC0 | encode));
6395 }
6396 
6397 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6398   assert(UseAVX > 0, "requires some form of AVX");
6399   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6400   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6401   emit_int8((unsigned char)0xF9);
6402   emit_int8((unsigned char)(0xC0 | encode));
6403 }
6404 
6405 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6406   assert(UseAVX > 0, "requires some form of AVX");
6407   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6408   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6409   emit_int8((unsigned char)0xFA);
6410   emit_int8((unsigned char)(0xC0 | encode));
6411 }
6412 
6413 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6414   assert(UseAVX > 0, "requires some form of AVX");
6415   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6416   attributes.set_rex_vex_w_reverted();
6417   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6418   emit_int8((unsigned char)0xFB);
6419   emit_int8((unsigned char)(0xC0 | encode));
6420 }
6421 
6422 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6423   assert(UseAVX > 0, "requires some form of AVX");
6424   InstructionMark im(this);
6425   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6426   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
6427   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6428   emit_int8((unsigned char)0xF8);
6429   emit_operand(dst, src);
6430 }
6431 
6432 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6433   assert(UseAVX > 0, "requires some form of AVX");
6434   InstructionMark im(this);
6435   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6436   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
6437   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6438   emit_int8((unsigned char)0xF9);
6439   emit_operand(dst, src);
6440 }
6441 
6442 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6443   assert(UseAVX > 0, "requires some form of AVX");
6444   InstructionMark im(this);
6445   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6446   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6447   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6448   emit_int8((unsigned char)0xFA);
6449   emit_operand(dst, src);
6450 }
6451 
6452 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6453   assert(UseAVX > 0, "requires some form of AVX");
6454   InstructionMark im(this);
6455   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6456   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6457   attributes.set_rex_vex_w_reverted();
6458   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6459   emit_int8((unsigned char)0xFB);
6460   emit_operand(dst, src);
6461 }
6462 
6463 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
6464   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6465   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6466   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6467   emit_int8((unsigned char)0xD5);
6468   emit_int8((unsigned char)(0xC0 | encode));
6469 }
6470 
6471 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
6472   assert(VM_Version::supports_sse4_1(), "");
6473   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6474   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6475   emit_int8(0x40);
6476   emit_int8((unsigned char)(0xC0 | encode));
6477 }
6478 
6479 void Assembler::pmuludq(XMMRegister dst, XMMRegister src) {
6480   assert(VM_Version::supports_sse2(), "");
6481   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6482   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6483   emit_int8((unsigned char)(0xF4));
6484   emit_int8((unsigned char)(0xC0 | encode));
6485 }
6486 
6487 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6488   assert(UseAVX > 0, "requires some form of AVX");
6489   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6490   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6491   emit_int8((unsigned char)0xD5);
6492   emit_int8((unsigned char)(0xC0 | encode));
6493 }
6494 
6495 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6496   assert(UseAVX > 0, "requires some form of AVX");
6497   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6498   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6499   emit_int8(0x40);
6500   emit_int8((unsigned char)(0xC0 | encode));
6501 }
6502 
6503 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6504   assert(UseAVX > 2, "requires some form of EVEX");
6505   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6506   attributes.set_is_evex_instruction();
6507   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6508   emit_int8(0x40);
6509   emit_int8((unsigned char)(0xC0 | encode));
6510 }
6511 
6512 void Assembler::vpmuludq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6513   assert(UseAVX > 0, "requires some form of AVX");
6514   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6515   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6516   emit_int8((unsigned char)(0xF4));
6517   emit_int8((unsigned char)(0xC0 | encode));
6518 }
6519 
6520 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6521   assert(UseAVX > 0, "requires some form of AVX");
6522   InstructionMark im(this);
6523   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6524   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
6525   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6526   emit_int8((unsigned char)0xD5);
6527   emit_operand(dst, src);
6528 }
6529 
6530 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6531   assert(UseAVX > 0, "requires some form of AVX");
6532   InstructionMark im(this);
6533   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6534   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6535   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6536   emit_int8(0x40);
6537   emit_operand(dst, src);
6538 }
6539 
6540 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6541   assert(UseAVX > 2, "requires some form of EVEX");
6542   InstructionMark im(this);
6543   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
6544   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6545   attributes.set_is_evex_instruction();
6546   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6547   emit_int8(0x40);
6548   emit_operand(dst, src);
6549 }
6550 
6551 // Min, max
6552 void Assembler::pminsb(XMMRegister dst, XMMRegister src) {
6553   assert(VM_Version::supports_sse4_1(), "");
6554   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
6555   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6556   emit_int8(0x38);
6557   emit_int8((unsigned char)(0xC0 | encode));
6558 }
6559 
6560 void Assembler::vpminsb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6561   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
6562         (vector_len == AVX_256bit ? VM_Version::supports_avx2() : VM_Version::supports_avx512bw()), "");
6563   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6564   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6565   emit_int8(0x38);
6566   emit_int8((unsigned char)(0xC0 | encode));
6567 }
6568 
6569 void Assembler::pminsw(XMMRegister dst, XMMRegister src) {
6570   assert(VM_Version::supports_sse2(), "");
6571   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
6572   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6573   emit_int8((unsigned char)0xEA);
6574   emit_int8((unsigned char)(0xC0 | encode));
6575 }
6576 
6577 void Assembler::vpminsw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6578   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
6579         (vector_len == AVX_256bit ? VM_Version::supports_avx2() : VM_Version::supports_avx512bw()), "");
6580   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6581   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6582   emit_int8((unsigned char)0xEA);
6583   emit_int8((unsigned char)(0xC0 | encode));
6584 }
6585 
6586 void Assembler::pminsd(XMMRegister dst, XMMRegister src) {
6587   assert(VM_Version::supports_sse4_1(), "");
6588   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
6589   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6590   emit_int8(0x39);
6591   emit_int8((unsigned char)(0xC0 | encode));
6592 }
6593 
6594 void Assembler::vpminsd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6595   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
6596         (vector_len == AVX_256bit ? VM_Version::supports_avx2() : VM_Version::supports_evex()), "");
6597   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
6598   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6599   emit_int8(0x39);
6600   emit_int8((unsigned char)(0xC0 | encode));
6601 }
6602 
6603 void Assembler::vpminsq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6604   assert(UseAVX > 2, "requires AVX512F");
6605   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6606   attributes.set_is_evex_instruction();
6607   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6608   emit_int8(0x39);
6609   emit_int8((unsigned char)(0xC0 | encode));
6610 }
6611 
6612 void Assembler::minps(XMMRegister dst, XMMRegister src) {
6613   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6614   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6615   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6616   emit_int8(0x5D);
6617   emit_int8((unsigned char)(0xC0 | encode));
6618 }
6619 void Assembler::vminps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6620   assert(vector_len >= AVX_512bit ? VM_Version::supports_evex() : VM_Version::supports_avx(), "");
6621   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6622   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6623   emit_int8(0x5D);
6624   emit_int8((unsigned char)(0xC0 | encode));
6625 }
6626 
6627 void Assembler::minpd(XMMRegister dst, XMMRegister src) {
6628   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6629   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6630   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6631   emit_int8(0x5D);
6632   emit_int8((unsigned char)(0xC0 | encode));
6633 }
6634 void Assembler::vminpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6635   assert(vector_len >= AVX_512bit ? VM_Version::supports_evex() : VM_Version::supports_avx(), "");
6636   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6637   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6638   emit_int8(0x5D);
6639   emit_int8((unsigned char)(0xC0 | encode));
6640 }
6641 
6642 void Assembler::pmaxsb(XMMRegister dst, XMMRegister src) {
6643   assert(VM_Version::supports_sse4_1(), "");
6644   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
6645   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6646   emit_int8(0x3C);
6647   emit_int8((unsigned char)(0xC0 | encode));
6648 }
6649 
6650 void Assembler::vpmaxsb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6651   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
6652         (vector_len == AVX_256bit ? VM_Version::supports_avx2() : VM_Version::supports_avx512bw()), "");
6653   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6654   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6655   emit_int8(0x3C);
6656   emit_int8((unsigned char)(0xC0 | encode));
6657 }
6658 
6659 void Assembler::pmaxsw(XMMRegister dst, XMMRegister src) {
6660   assert(VM_Version::supports_sse2(), "");
6661   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
6662   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6663   emit_int8((unsigned char)0xEE);
6664   emit_int8((unsigned char)(0xC0 | encode));
6665 }
6666 
6667 void Assembler::vpmaxsw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6668   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
6669         (vector_len == AVX_256bit ? VM_Version::supports_avx2() : VM_Version::supports_avx512bw()), "");
6670   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6671   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6672   emit_int8((unsigned char)0xEE);
6673   emit_int8((unsigned char)(0xC0 | encode));
6674 }
6675 
6676 void Assembler::pmaxsd(XMMRegister dst, XMMRegister src) {
6677   assert(VM_Version::supports_sse4_1(), "");
6678   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
6679   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6680   emit_int8(0x3D);
6681   emit_int8((unsigned char)(0xC0 | encode));
6682 }
6683 
6684 void Assembler::vpmaxsd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6685   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
6686         (vector_len == AVX_256bit ? VM_Version::supports_avx2() : VM_Version::supports_evex()), "");
6687   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
6688   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6689   emit_int8(0x3D);
6690   emit_int8((unsigned char)(0xC0 | encode));
6691 }
6692 
6693 void Assembler::vpmaxsq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6694   assert(UseAVX > 2, "requires AVX512F");
6695   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6696   attributes.set_is_evex_instruction();
6697   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6698   emit_int8(0x3D);
6699   emit_int8((unsigned char)(0xC0 | encode));
6700 }
6701 
6702 void Assembler::maxps(XMMRegister dst, XMMRegister src) {
6703   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6704   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6705   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6706   emit_int8(0x5F);
6707   emit_int8((unsigned char)(0xC0 | encode));
6708 }
6709 
6710 void Assembler::vmaxps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6711   assert(vector_len >= AVX_512bit ? VM_Version::supports_evex() : VM_Version::supports_avx(), "");
6712   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6713   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6714   emit_int8(0x5F);
6715   emit_int8((unsigned char)(0xC0 | encode));
6716 }
6717 
6718 void Assembler::maxpd(XMMRegister dst, XMMRegister src) {
6719   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6720   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6721   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6722   emit_int8(0x5F);
6723   emit_int8((unsigned char)(0xC0 | encode));
6724 }
6725 
6726 void Assembler::vmaxpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6727   assert(vector_len >= AVX_512bit ? VM_Version::supports_evex() : VM_Version::supports_avx(), "");
6728   InstructionAttr attributes(vector_len, /* vex_w */true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6729   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6730   emit_int8(0x5F);
6731   emit_int8((unsigned char)(0xC0 | encode));
6732 }
6733 
6734 // Shift packed integers left by specified number of bits.
6735 void Assembler::psllw(XMMRegister dst, int shift) {
6736   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6737   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6738   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
6739   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6740   emit_int8(0x71);
6741   emit_int8((unsigned char)(0xC0 | encode));
6742   emit_int8(shift & 0xFF);
6743 }
6744 
6745 void Assembler::pslld(XMMRegister dst, int shift) {
6746   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6747   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6748   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
6749   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6750   emit_int8(0x72);
6751   emit_int8((unsigned char)(0xC0 | encode));
6752   emit_int8(shift & 0xFF);
6753 }
6754 
6755 void Assembler::psllq(XMMRegister dst, int shift) {
6756   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6757   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6758   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
6759   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6760   emit_int8(0x73);
6761   emit_int8((unsigned char)(0xC0 | encode));
6762   emit_int8(shift & 0xFF);
6763 }
6764 
6765 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
6766   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6767   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6768   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6769   emit_int8((unsigned char)0xF1);
6770   emit_int8((unsigned char)(0xC0 | encode));
6771 }
6772 
6773 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
6774   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6775   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6776   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6777   emit_int8((unsigned char)0xF2);
6778   emit_int8((unsigned char)(0xC0 | encode));
6779 }
6780 
6781 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
6782   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6783   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6784   attributes.set_rex_vex_w_reverted();
6785   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6786   emit_int8((unsigned char)0xF3);
6787   emit_int8((unsigned char)(0xC0 | encode));
6788 }
6789 
6790 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6791   assert(UseAVX > 0, "requires some form of AVX");
6792   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6793   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
6794   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6795   emit_int8(0x71);
6796   emit_int8((unsigned char)(0xC0 | encode));
6797   emit_int8(shift & 0xFF);
6798 }
6799 
6800 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6801   assert(UseAVX > 0, "requires some form of AVX");
6802   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6803   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6804   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
6805   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6806   emit_int8(0x72);
6807   emit_int8((unsigned char)(0xC0 | encode));
6808   emit_int8(shift & 0xFF);
6809 }
6810 
6811 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6812   assert(UseAVX > 0, "requires some form of AVX");
6813   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6814   attributes.set_rex_vex_w_reverted();
6815   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
6816   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6817   emit_int8(0x73);
6818   emit_int8((unsigned char)(0xC0 | encode));
6819   emit_int8(shift & 0xFF);
6820 }
6821 
6822 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6823   assert(UseAVX > 0, "requires some form of AVX");
6824   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6825   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6826   emit_int8((unsigned char)0xF1);
6827   emit_int8((unsigned char)(0xC0 | encode));
6828 }
6829 
6830 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6831   assert(UseAVX > 0, "requires some form of AVX");
6832   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6833   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6834   emit_int8((unsigned char)0xF2);
6835   emit_int8((unsigned char)(0xC0 | encode));
6836 }
6837 
6838 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6839   assert(UseAVX > 0, "requires some form of AVX");
6840   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6841   attributes.set_rex_vex_w_reverted();
6842   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6843   emit_int8((unsigned char)0xF3);
6844   emit_int8((unsigned char)(0xC0 | encode));
6845 }
6846 
6847 // Shift packed integers logically right by specified number of bits.
6848 void Assembler::psrlw(XMMRegister dst, int shift) {
6849   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6850   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6851   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
6852   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6853   emit_int8(0x71);
6854   emit_int8((unsigned char)(0xC0 | encode));
6855   emit_int8(shift & 0xFF);
6856 }
6857 
6858 void Assembler::psrld(XMMRegister dst, int shift) {
6859   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6860   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6861   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
6862   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6863   emit_int8(0x72);
6864   emit_int8((unsigned char)(0xC0 | encode));
6865   emit_int8(shift & 0xFF);
6866 }
6867 
6868 void Assembler::psrlq(XMMRegister dst, int shift) {
6869   // Do not confuse it with psrldq SSE2 instruction which
6870   // shifts 128 bit value in xmm register by number of bytes.
6871   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6872   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6873   attributes.set_rex_vex_w_reverted();
6874   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
6875   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6876   emit_int8(0x73);
6877   emit_int8((unsigned char)(0xC0 | encode));
6878   emit_int8(shift & 0xFF);
6879 }
6880 
6881 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
6882   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6883   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6884   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6885   emit_int8((unsigned char)0xD1);
6886   emit_int8((unsigned char)(0xC0 | encode));
6887 }
6888 
6889 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
6890   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6891   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6892   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6893   emit_int8((unsigned char)0xD2);
6894   emit_int8((unsigned char)(0xC0 | encode));
6895 }
6896 
6897 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
6898   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6899   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6900   attributes.set_rex_vex_w_reverted();
6901   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6902   emit_int8((unsigned char)0xD3);
6903   emit_int8((unsigned char)(0xC0 | encode));
6904 }
6905 
6906 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6907   assert(UseAVX > 0, "requires some form of AVX");
6908   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6909   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
6910   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6911   emit_int8(0x71);
6912   emit_int8((unsigned char)(0xC0 | encode));
6913   emit_int8(shift & 0xFF);
6914 }
6915 
6916 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6917   assert(UseAVX > 0, "requires some form of AVX");
6918   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6919   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
6920   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6921   emit_int8(0x72);
6922   emit_int8((unsigned char)(0xC0 | encode));
6923   emit_int8(shift & 0xFF);
6924 }
6925 
6926 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6927   assert(UseAVX > 0, "requires some form of AVX");
6928   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6929   attributes.set_rex_vex_w_reverted();
6930   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
6931   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6932   emit_int8(0x73);
6933   emit_int8((unsigned char)(0xC0 | encode));
6934   emit_int8(shift & 0xFF);
6935 }
6936 
6937 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6938   assert(UseAVX > 0, "requires some form of AVX");
6939   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6940   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6941   emit_int8((unsigned char)0xD1);
6942   emit_int8((unsigned char)(0xC0 | encode));
6943 }
6944 
6945 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6946   assert(UseAVX > 0, "requires some form of AVX");
6947   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6948   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6949   emit_int8((unsigned char)0xD2);
6950   emit_int8((unsigned char)(0xC0 | encode));
6951 }
6952 
6953 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6954   assert(UseAVX > 0, "requires some form of AVX");
6955   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6956   attributes.set_rex_vex_w_reverted();
6957   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6958   emit_int8((unsigned char)0xD3);
6959   emit_int8((unsigned char)(0xC0 | encode));
6960 }
6961 
6962 void Assembler::evpsrlvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6963   assert(VM_Version::supports_avx512bw(), "");
6964   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6965   attributes.set_is_evex_instruction();
6966   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6967   emit_int8(0x10);
6968   emit_int8((unsigned char)(0xC0 | encode));
6969 }
6970 
6971 void Assembler::evpsllvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6972   assert(VM_Version::supports_avx512bw(), "");
6973   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6974   attributes.set_is_evex_instruction();
6975   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6976   emit_int8(0x12);
6977   emit_int8((unsigned char)(0xC0 | encode));
6978 }
6979 
6980 // Shift packed integers arithmetically right by specified number of bits.
6981 void Assembler::psraw(XMMRegister dst, int shift) {
6982   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6983   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6984   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6985   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6986   emit_int8(0x71);
6987   emit_int8((unsigned char)(0xC0 | encode));
6988   emit_int8(shift & 0xFF);
6989 }
6990 
6991 void Assembler::psrad(XMMRegister dst, int shift) {
6992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6993   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6994   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
6995   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6996   emit_int8(0x72);
6997   emit_int8((unsigned char)(0xC0 | encode));
6998   emit_int8(shift & 0xFF);
6999 }
7000 
7001 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
7002   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7003   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
7004   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7005   emit_int8((unsigned char)0xE1);
7006   emit_int8((unsigned char)(0xC0 | encode));
7007 }
7008 
7009 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
7010   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7011   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7012   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7013   emit_int8((unsigned char)0xE2);
7014   emit_int8((unsigned char)(0xC0 | encode));
7015 }
7016 
7017 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
7018   assert(UseAVX > 0, "requires some form of AVX");
7019   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
7020   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
7021   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7022   emit_int8(0x71);
7023   emit_int8((unsigned char)(0xC0 | encode));
7024   emit_int8(shift & 0xFF);
7025 }
7026 
7027 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
7028   assert(UseAVX > 0, "requires some form of AVX");
7029   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7030   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
7031   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7032   emit_int8(0x72);
7033   emit_int8((unsigned char)(0xC0 | encode));
7034   emit_int8(shift & 0xFF);
7035 }
7036 
7037 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
7038   assert(UseAVX > 0, "requires some form of AVX");
7039   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
7040   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7041   emit_int8((unsigned char)0xE1);
7042   emit_int8((unsigned char)(0xC0 | encode));
7043 }
7044 
7045 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
7046   assert(UseAVX > 0, "requires some form of AVX");
7047   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7048   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7049   emit_int8((unsigned char)0xE2);
7050   emit_int8((unsigned char)(0xC0 | encode));
7051 }
7052 
7053 void Assembler::evpsraq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
7054   assert(UseAVX > 2, "requires AVX512");
7055   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7056   attributes.set_is_evex_instruction();
7057   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7058   emit_int8((unsigned char)0x72);
7059   emit_int8((unsigned char)(0xC0 | encode));
7060   emit_int8(shift & 0xFF);
7061 }
7062 
7063 void Assembler::evpsraq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
7064   assert(UseAVX > 2, "requires AVX512");
7065   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7066   attributes.set_is_evex_instruction();
7067   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7068   emit_int8((unsigned char)0xE2);
7069   emit_int8((unsigned char)(0xC0 | encode));
7070 }
7071 
7072 //Variable Shift packed integers logically left.
7073 void Assembler::vpsllvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
7074   assert(UseAVX > 1, "requires AVX2");
7075   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7076   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7077   emit_int8(0x47);
7078   emit_int8((unsigned char)(0xC0 | encode));
7079 }
7080 
7081 void Assembler::vpsllvq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
7082   assert(UseAVX > 1, "requires AVX2");
7083   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7084   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7085   emit_int8(0x47);
7086   emit_int8((unsigned char)(0xC0 | encode));
7087 }
7088 
7089 //Variable Shift packed integers logically right.
7090 void Assembler::vpsrlvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
7091   assert(UseAVX > 1, "requires AVX2");
7092   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7093   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7094   emit_int8(0x45);
7095   emit_int8((unsigned char)(0xC0 | encode));
7096 }
7097 
7098 void Assembler::vpsrlvq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
7099   assert(UseAVX > 1, "requires AVX2");
7100   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7101   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7102   emit_int8(0x45);
7103   emit_int8((unsigned char)(0xC0 | encode));
7104 }
7105 
7106 //Variable right Shift arithmetic packed integers .
7107 void Assembler::vpsravd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
7108   assert(UseAVX > 1, "requires AVX2");
7109   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7110   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7111   emit_int8(0x46);
7112   emit_int8((unsigned char)(0xC0 | encode));
7113 }
7114 
7115 void Assembler::evpsravq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
7116   assert(UseAVX > 2, "requires AVX512");
7117   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7118   attributes.set_is_evex_instruction();
7119   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7120   emit_int8(0x46);
7121   emit_int8((unsigned char)(0xC0 | encode));
7122 }
7123 
7124 // logical operations packed integers
7125 void Assembler::pand(XMMRegister dst, XMMRegister src) {
7126   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7127   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7128   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7129   emit_int8((unsigned char)0xDB);
7130   emit_int8((unsigned char)(0xC0 | encode));
7131 }
7132 
7133 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
7134   assert(UseAVX > 0, "requires some form of AVX");
7135   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7136   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7137   emit_int8((unsigned char)0xDB);
7138   emit_int8((unsigned char)(0xC0 | encode));
7139 }
7140 
7141 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
7142   assert(UseAVX > 0, "requires some form of AVX");
7143   InstructionMark im(this);
7144   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7145   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
7146   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7147   emit_int8((unsigned char)0xDB);
7148   emit_operand(dst, src);
7149 }
7150 
7151 void Assembler::evpandd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
7152   assert(VM_Version::supports_evex(), "");
7153   // Encoding: EVEX.NDS.XXX.66.0F.W0 DB /r
7154   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7155   attributes.set_is_evex_instruction();
7156   attributes.set_embedded_opmask_register_specifier(mask);
7157   if (merge) {
7158     attributes.reset_is_clear_context();
7159   }
7160   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7161   emit_int8((unsigned char)0xDB);
7162   emit_int8((unsigned char)(0xC0 | encode));
7163 }
7164 
7165 void Assembler::vpandq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
7166   assert(VM_Version::supports_evex(), "");
7167   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7168   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7169   emit_int8((unsigned char)0xDB);
7170   emit_int8((unsigned char)(0xC0 | encode));
7171 }
7172 
7173 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
7174   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7175   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7176   attributes.set_rex_vex_w_reverted();
7177   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7178   emit_int8((unsigned char)0xDF);
7179   emit_int8((unsigned char)(0xC0 | encode));
7180 }
7181 
7182 void Assembler::por(XMMRegister dst, XMMRegister src) {
7183   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7184   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7185   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7186   emit_int8((unsigned char)0xEB);
7187   emit_int8((unsigned char)(0xC0 | encode));
7188 }
7189 
7190 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
7191   assert(UseAVX > 0, "requires some form of AVX");
7192   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7193   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7194   emit_int8((unsigned char)0xEB);
7195   emit_int8((unsigned char)(0xC0 | encode));
7196 }
7197 
7198 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
7199   assert(UseAVX > 0, "requires some form of AVX");
7200   InstructionMark im(this);
7201   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7202   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
7203   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7204   emit_int8((unsigned char)0xEB);
7205   emit_operand(dst, src);
7206 }
7207 
7208 void Assembler::vporq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
7209   assert(VM_Version::supports_evex(), "");
7210   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7211   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7212   emit_int8((unsigned char)0xEB);
7213   emit_int8((unsigned char)(0xC0 | encode));
7214 }
7215 
7216 
7217 void Assembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
7218   assert(VM_Version::supports_evex(), "");
7219   // Encoding: EVEX.NDS.XXX.66.0F.W0 EB /r
7220   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7221   attributes.set_is_evex_instruction();
7222   attributes.set_embedded_opmask_register_specifier(mask);
7223   if (merge) {
7224     attributes.reset_is_clear_context();
7225   }
7226   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7227   emit_int8((unsigned char)0xEB);
7228   emit_int8((unsigned char)(0xC0 | encode));
7229 }
7230 
7231 void Assembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
7232   assert(VM_Version::supports_evex(), "");
7233   // Encoding: EVEX.NDS.XXX.66.0F.W0 EB /r
7234   InstructionMark im(this);
7235   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7236   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_NObit);
7237   attributes.set_is_evex_instruction();
7238   attributes.set_embedded_opmask_register_specifier(mask);
7239   if (merge) {
7240     attributes.reset_is_clear_context();
7241   }
7242   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7243   emit_int8((unsigned char)0xEB);
7244   emit_operand(dst, src);
7245 }
7246 
7247 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
7248   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7249   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7250   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7251   emit_int8((unsigned char)0xEF);
7252   emit_int8((unsigned char)(0xC0 | encode));
7253 }
7254 
7255 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
7256   assert(UseAVX > 0, "requires some form of AVX");
7257   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7258   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7259   emit_int8((unsigned char)0xEF);
7260   emit_int8((unsigned char)(0xC0 | encode));
7261 }
7262 
7263 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
7264   assert(UseAVX > 0, "requires some form of AVX");
7265   InstructionMark im(this);
7266   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7267   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
7268   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7269   emit_int8((unsigned char)0xEF);
7270   emit_operand(dst, src);
7271 }
7272 
7273 void Assembler::vpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
7274   assert(UseAVX > 2, "requires some form of EVEX");
7275   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7276   attributes.set_rex_vex_w_reverted();
7277   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7278   emit_int8((unsigned char)0xEF);
7279   emit_int8((unsigned char)(0xC0 | encode));
7280 }
7281 
7282 void Assembler::evpxord(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
7283   assert(VM_Version::supports_evex(), "");
7284   // Encoding: EVEX.NDS.XXX.66.0F.W0 EF /r
7285   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7286   attributes.set_is_evex_instruction();
7287   attributes.set_embedded_opmask_register_specifier(mask);
7288   if (merge) {
7289     attributes.reset_is_clear_context();
7290   }
7291   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7292   emit_int8((unsigned char)0xEF);
7293   emit_int8((unsigned char)(0xC0 | encode));
7294 }
7295 
7296 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
7297   assert(VM_Version::supports_evex(), "requires EVEX support");
7298   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
7299   attributes.set_is_evex_instruction();
7300   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7301   emit_int8((unsigned char)0xEF);
7302   emit_int8((unsigned char)(0xC0 | encode));
7303 }
7304 
7305 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
7306   assert(VM_Version::supports_evex(), "requires EVEX support");
7307   assert(dst != xnoreg, "sanity");
7308   InstructionMark im(this);
7309   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
7310   attributes.set_is_evex_instruction();
7311   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
7312   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7313   emit_int8((unsigned char)0xEF);
7314   emit_operand(dst, src);
7315 }
7316 
7317 // vinserti forms
7318 
7319 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
7320   assert(VM_Version::supports_avx2(), "");
7321   assert(imm8 <= 0x01, "imm8: %u", imm8);
7322   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
7323   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7324   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7325   emit_int8(0x38);
7326   emit_int8((unsigned char)(0xC0 | encode));
7327   // 0x00 - insert into lower 128 bits
7328   // 0x01 - insert into upper 128 bits
7329   emit_int8(imm8 & 0x01);
7330 }
7331 
7332 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
7333   assert(VM_Version::supports_avx2(), "");
7334   assert(dst != xnoreg, "sanity");
7335   assert(imm8 <= 0x01, "imm8: %u", imm8);
7336   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
7337   InstructionMark im(this);
7338   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7339   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
7340   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7341   emit_int8(0x38);
7342   emit_operand(dst, src);
7343   // 0x00 - insert into lower 128 bits
7344   // 0x01 - insert into upper 128 bits
7345   emit_int8(imm8 & 0x01);
7346 }
7347 
7348 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
7349   assert(VM_Version::supports_evex(), "");
7350   assert(imm8 <= 0x03, "imm8: %u", imm8);
7351   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7352   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7353   emit_int8(0x38);
7354   emit_int8((unsigned char)(0xC0 | encode));
7355   // 0x00 - insert into q0 128 bits (0..127)
7356   // 0x01 - insert into q1 128 bits (128..255)
7357   // 0x02 - insert into q2 128 bits (256..383)
7358   // 0x03 - insert into q3 128 bits (384..511)
7359   emit_int8(imm8 & 0x03);
7360 }
7361 
7362 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
7363   assert(VM_Version::supports_avx(), "");
7364   assert(dst != xnoreg, "sanity");
7365   assert(imm8 <= 0x03, "imm8: %u", imm8);
7366   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
7367   InstructionMark im(this);
7368   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7369   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
7370   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7371   emit_int8(0x18);
7372   emit_operand(dst, src);
7373   // 0x00 - insert into q0 128 bits (0..127)
7374   // 0x01 - insert into q1 128 bits (128..255)
7375   // 0x02 - insert into q2 128 bits (256..383)
7376   // 0x03 - insert into q3 128 bits (384..511)
7377   emit_int8(imm8 & 0x03);
7378 }
7379 
7380 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
7381   assert(VM_Version::supports_evex(), "");
7382   assert(imm8 <= 0x01, "imm8: %u", imm8);
7383   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7384   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7385   emit_int8(0x3A);
7386   emit_int8((unsigned char)(0xC0 | encode));
7387   // 0x00 - insert into lower 256 bits
7388   // 0x01 - insert into upper 256 bits
7389   emit_int8(imm8 & 0x01);
7390 }
7391 
7392 
7393 // vinsertf forms
7394 
7395 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
7396   assert(VM_Version::supports_avx(), "");
7397   assert(imm8 <= 0x01, "imm8: %u", imm8);
7398   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
7399   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7400   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7401   emit_int8(0x18);
7402   emit_int8((unsigned char)(0xC0 | encode));
7403   // 0x00 - insert into lower 128 bits
7404   // 0x01 - insert into upper 128 bits
7405   emit_int8(imm8 & 0x01);
7406 }
7407 
7408 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
7409   assert(VM_Version::supports_avx(), "");
7410   assert(dst != xnoreg, "sanity");
7411   assert(imm8 <= 0x01, "imm8: %u", imm8);
7412   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
7413   InstructionMark im(this);
7414   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7415   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
7416   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7417   emit_int8(0x18);
7418   emit_operand(dst, src);
7419   // 0x00 - insert into lower 128 bits
7420   // 0x01 - insert into upper 128 bits
7421   emit_int8(imm8 & 0x01);
7422 }
7423 
7424 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
7425   assert(VM_Version::supports_evex(), "");
7426   assert(imm8 <= 0x03, "imm8: %u", imm8);
7427   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7428   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7429   emit_int8(0x18);
7430   emit_int8((unsigned char)(0xC0 | encode));
7431   // 0x00 - insert into q0 128 bits (0..127)
7432   // 0x01 - insert into q1 128 bits (128..255)
7433   // 0x02 - insert into q2 128 bits (256..383)
7434   // 0x03 - insert into q3 128 bits (384..511)
7435   emit_int8(imm8 & 0x03);
7436 }
7437 
7438 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
7439   assert(VM_Version::supports_avx(), "");
7440   assert(dst != xnoreg, "sanity");
7441   assert(imm8 <= 0x03, "imm8: %u", imm8);
7442   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
7443   InstructionMark im(this);
7444   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7445   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
7446   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7447   emit_int8(0x18);
7448   emit_operand(dst, src);
7449   // 0x00 - insert into q0 128 bits (0..127)
7450   // 0x01 - insert into q1 128 bits (128..255)
7451   // 0x02 - insert into q2 128 bits (256..383)
7452   // 0x03 - insert into q3 128 bits (384..511)
7453   emit_int8(imm8 & 0x03);
7454 }
7455 
7456 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
7457   assert(VM_Version::supports_evex(), "");
7458   assert(imm8 <= 0x01, "imm8: %u", imm8);
7459   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7460   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7461   emit_int8(0x1A);
7462   emit_int8((unsigned char)(0xC0 | encode));
7463   // 0x00 - insert into lower 256 bits
7464   // 0x01 - insert into upper 256 bits
7465   emit_int8(imm8 & 0x01);
7466 }
7467 
7468 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
7469   assert(VM_Version::supports_evex(), "");
7470   assert(dst != xnoreg, "sanity");
7471   assert(imm8 <= 0x01, "imm8: %u", imm8);
7472   InstructionMark im(this);
7473   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7474   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
7475   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7476   emit_int8(0x1A);
7477   emit_operand(dst, src);
7478   // 0x00 - insert into lower 256 bits
7479   // 0x01 - insert into upper 256 bits
7480   emit_int8(imm8 & 0x01);
7481 }
7482 
7483 
7484 // vextracti forms
7485 
7486 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
7487   assert(VM_Version::supports_avx(), "");
7488   assert(imm8 <= 0x01, "imm8: %u", imm8);
7489   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
7490   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7491   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7492   emit_int8(0x39);
7493   emit_int8((unsigned char)(0xC0 | encode));
7494   // 0x00 - extract from lower 128 bits
7495   // 0x01 - extract from upper 128 bits
7496   emit_int8(imm8 & 0x01);
7497 }
7498 
7499 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
7500   assert(VM_Version::supports_avx2(), "");
7501   assert(src != xnoreg, "sanity");
7502   assert(imm8 <= 0x01, "imm8: %u", imm8);
7503   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
7504   InstructionMark im(this);
7505   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7506   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
7507   attributes.reset_is_clear_context();
7508   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7509   emit_int8(0x39);
7510   emit_operand(src, dst);
7511   // 0x00 - extract from lower 128 bits
7512   // 0x01 - extract from upper 128 bits
7513   emit_int8(imm8 & 0x01);
7514 }
7515 
7516 void Assembler::vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
7517   assert(VM_Version::supports_avx(), "");
7518   assert(imm8 <= 0x03, "imm8: %u", imm8);
7519   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
7520   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7521   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7522   emit_int8(0x39);
7523   emit_int8((unsigned char)(0xC0 | encode));
7524   // 0x00 - extract from bits 127:0
7525   // 0x01 - extract from bits 255:128
7526   // 0x02 - extract from bits 383:256
7527   // 0x03 - extract from bits 511:384
7528   emit_int8(imm8 & 0x03);
7529 }
7530 
7531 void Assembler::vextracti32x4(Address dst, XMMRegister src, uint8_t imm8) {
7532   assert(VM_Version::supports_evex(), "");
7533   assert(src != xnoreg, "sanity");
7534   assert(imm8 <= 0x03, "imm8: %u", imm8);
7535   InstructionMark im(this);
7536   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7537   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
7538   attributes.reset_is_clear_context();
7539   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7540   emit_int8(0x39);
7541   emit_operand(src, dst);
7542   // 0x00 - extract from bits 127:0
7543   // 0x01 - extract from bits 255:128
7544   // 0x02 - extract from bits 383:256
7545   // 0x03 - extract from bits 511:384
7546   emit_int8(imm8 & 0x03);
7547 }
7548 
7549 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
7550   assert(VM_Version::supports_avx512dq(), "");
7551   assert(imm8 <= 0x03, "imm8: %u", imm8);
7552   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7553   attributes.set_is_evex_instruction();
7554   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7555   emit_int8(0x39);
7556   emit_int8((unsigned char)(0xC0 | encode));
7557   // 0x00 - extract from bits 127:0
7558   // 0x01 - extract from bits 255:128
7559   // 0x02 - extract from bits 383:256
7560   // 0x03 - extract from bits 511:384
7561   emit_int8(imm8 & 0x03);
7562 }
7563 
7564 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
7565   assert(VM_Version::supports_evex(), "");
7566   assert(imm8 <= 0x01, "imm8: %u", imm8);
7567   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7568   attributes.set_is_evex_instruction();
7569   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7570   emit_int8(0x3B);
7571   emit_int8((unsigned char)(0xC0 | encode));
7572   // 0x00 - extract from lower 256 bits
7573   // 0x01 - extract from upper 256 bits
7574   emit_int8(imm8 & 0x01);
7575 }
7576 
7577 
7578 // vextractf forms
7579 
7580 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
7581   assert(VM_Version::supports_avx(), "");
7582   assert(imm8 <= 0x01, "imm8: %u", imm8);
7583   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
7584   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7585   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7586   emit_int8(0x19);
7587   emit_int8((unsigned char)(0xC0 | encode));
7588   // 0x00 - extract from lower 128 bits
7589   // 0x01 - extract from upper 128 bits
7590   emit_int8(imm8 & 0x01);
7591 }
7592 
7593 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
7594   assert(VM_Version::supports_avx(), "");
7595   assert(src != xnoreg, "sanity");
7596   assert(imm8 <= 0x01, "imm8: %u", imm8);
7597   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
7598   InstructionMark im(this);
7599   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7600   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
7601   attributes.reset_is_clear_context();
7602   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7603   emit_int8(0x19);
7604   emit_operand(src, dst);
7605   // 0x00 - extract from lower 128 bits
7606   // 0x01 - extract from upper 128 bits
7607   emit_int8(imm8 & 0x01);
7608 }
7609 
7610 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
7611   assert(VM_Version::supports_avx(), "");
7612   assert(imm8 <= 0x03, "imm8: %u", imm8);
7613   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
7614   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7615   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7616   emit_int8(0x19);
7617   emit_int8((unsigned char)(0xC0 | encode));
7618   // 0x00 - extract from bits 127:0
7619   // 0x01 - extract from bits 255:128
7620   // 0x02 - extract from bits 383:256
7621   // 0x03 - extract from bits 511:384
7622   emit_int8(imm8 & 0x03);
7623 }
7624 
7625 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
7626   assert(VM_Version::supports_evex(), "");
7627   assert(src != xnoreg, "sanity");
7628   assert(imm8 <= 0x03, "imm8: %u", imm8);
7629   InstructionMark im(this);
7630   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7631   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
7632   attributes.reset_is_clear_context();
7633   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7634   emit_int8(0x19);
7635   emit_operand(src, dst);
7636   // 0x00 - extract from bits 127:0
7637   // 0x01 - extract from bits 255:128
7638   // 0x02 - extract from bits 383:256
7639   // 0x03 - extract from bits 511:384
7640   emit_int8(imm8 & 0x03);
7641 }
7642 
7643 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
7644   assert(VM_Version::supports_avx512dq(), "");
7645   assert(imm8 <= 0x03, "imm8: %u", imm8);
7646   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7647   attributes.set_is_evex_instruction();
7648   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7649   emit_int8(0x19);
7650   emit_int8((unsigned char)(0xC0 | encode));
7651   // 0x00 - extract from bits 127:0
7652   // 0x01 - extract from bits 255:128
7653   // 0x02 - extract from bits 383:256
7654   // 0x03 - extract from bits 511:384
7655   emit_int8(imm8 & 0x03);
7656 }
7657 
7658 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
7659   assert(VM_Version::supports_evex(), "");
7660   assert(imm8 <= 0x01, "imm8: %u", imm8);
7661   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7662   attributes.set_is_evex_instruction();
7663   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7664   emit_int8(0x1B);
7665   emit_int8((unsigned char)(0xC0 | encode));
7666   // 0x00 - extract from lower 256 bits
7667   // 0x01 - extract from upper 256 bits
7668   emit_int8(imm8 & 0x01);
7669 }
7670 
7671 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
7672   assert(VM_Version::supports_evex(), "");
7673   assert(src != xnoreg, "sanity");
7674   assert(imm8 <= 0x01, "imm8: %u", imm8);
7675   InstructionMark im(this);
7676   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
7677   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
7678   attributes.reset_is_clear_context();
7679   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7680   emit_int8(0x1B);
7681   emit_operand(src, dst);
7682   // 0x00 - extract from lower 256 bits
7683   // 0x01 - extract from upper 256 bits
7684   emit_int8(imm8 & 0x01);
7685 }
7686 
7687 
7688 // legacy word/dword replicate
7689 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
7690   assert(VM_Version::supports_avx2(), "");
7691   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
7692   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7693   emit_int8(0x79);
7694   emit_int8((unsigned char)(0xC0 | encode));
7695 }
7696 
7697 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
7698   assert(VM_Version::supports_avx2(), "");
7699   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7700   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7701   emit_int8(0x58);
7702   emit_int8((unsigned char)(0xC0 | encode));
7703 }
7704 
7705 
7706 // xmm/mem sourced byte/word/dword/qword replicate
7707 
7708 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
7709 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
7710   assert(VM_Version::supports_evex(), "");
7711   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
7712   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7713   emit_int8(0x78);
7714   emit_int8((unsigned char)(0xC0 | encode));
7715 }
7716 
7717 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
7718   assert(VM_Version::supports_evex(), "");
7719   assert(dst != xnoreg, "sanity");
7720   InstructionMark im(this);
7721   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
7722   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
7723   // swap src<->dst for encoding
7724   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7725   emit_int8(0x78);
7726   emit_operand(dst, src);
7727 }
7728 
7729 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
7730 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
7731   assert(VM_Version::supports_evex(), "");
7732   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
7733   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7734   emit_int8(0x79);
7735   emit_int8((unsigned char)(0xC0 | encode));
7736 }
7737 
7738 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
7739   assert(VM_Version::supports_evex(), "");
7740   assert(dst != xnoreg, "sanity");
7741   InstructionMark im(this);
7742   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
7743   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
7744   // swap src<->dst for encoding
7745   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7746   emit_int8(0x79);
7747   emit_operand(dst, src);
7748 }
7749 
7750 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
7751 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
7752   assert(VM_Version::supports_evex(), "");
7753   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7754   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7755   emit_int8(0x58);
7756   emit_int8((unsigned char)(0xC0 | encode));
7757 }
7758 
7759 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
7760   assert(VM_Version::supports_evex(), "");
7761   assert(dst != xnoreg, "sanity");
7762   InstructionMark im(this);
7763   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7764   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
7765   // swap src<->dst for encoding
7766   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7767   emit_int8(0x58);
7768   emit_operand(dst, src);
7769 }
7770 
7771 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
7772 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
7773   assert(VM_Version::supports_evex(), "");
7774   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7775   attributes.set_rex_vex_w_reverted();
7776   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7777   emit_int8(0x59);
7778   emit_int8((unsigned char)(0xC0 | encode));
7779 }
7780 
7781 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
7782   assert(VM_Version::supports_evex(), "");
7783   assert(dst != xnoreg, "sanity");
7784   InstructionMark im(this);
7785   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7786   attributes.set_rex_vex_w_reverted();
7787   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7788   // swap src<->dst for encoding
7789   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7790   emit_int8(0x59);
7791   emit_operand(dst, src);
7792 }
7793 void Assembler::evbroadcasti64x2(XMMRegister dst, XMMRegister src, int vector_len) {
7794   assert(vector_len != Assembler::AVX_128bit, "");
7795   assert(VM_Version::supports_avx512dq(), "");
7796   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7797   attributes.set_rex_vex_w_reverted();
7798   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7799   emit_int8(0x5A);
7800   emit_int8((unsigned char)(0xC0 | encode));
7801 }
7802 
7803 void Assembler::evbroadcasti64x2(XMMRegister dst, Address src, int vector_len) {
7804   assert(vector_len != Assembler::AVX_128bit, "");
7805   assert(VM_Version::supports_avx512dq(), "");
7806   assert(dst != xnoreg, "sanity");
7807   InstructionMark im(this);
7808   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7809   attributes.set_rex_vex_w_reverted();
7810   attributes.set_address_attributes(/* tuple_type */ EVEX_T2, /* input_size_in_bits */ EVEX_64bit);
7811   // swap src<->dst for encoding
7812   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7813   emit_int8(0x5A);
7814   emit_operand(dst, src);
7815 }
7816 
7817 // scalar single/double precision replicate
7818 
7819 // duplicate single precision data from src into programmed locations in dest : requires AVX512VL
7820 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
7821   assert(VM_Version::supports_evex(), "");
7822   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7823   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7824   emit_int8(0x18);
7825   emit_int8((unsigned char)(0xC0 | encode));
7826 }
7827 
7828 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
7829   assert(VM_Version::supports_evex(), "");
7830   assert(dst != xnoreg, "sanity");
7831   InstructionMark im(this);
7832   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7833   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
7834   // swap src<->dst for encoding
7835   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7836   emit_int8(0x18);
7837   emit_operand(dst, src);
7838 }
7839 
7840 // duplicate double precision data from src into programmed locations in dest : requires AVX512VL
7841 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
7842   assert(VM_Version::supports_evex(), "");
7843   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7844   attributes.set_rex_vex_w_reverted();
7845   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7846   emit_int8(0x19);
7847   emit_int8((unsigned char)(0xC0 | encode));
7848 }
7849 
7850 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
7851   assert(VM_Version::supports_evex(), "");
7852   assert(dst != xnoreg, "sanity");
7853   InstructionMark im(this);
7854   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7855   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7856   attributes.set_rex_vex_w_reverted();
7857   // swap src<->dst for encoding
7858   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7859   emit_int8(0x19);
7860   emit_operand(dst, src);
7861 }
7862 
7863 
7864 // gpr source broadcast forms
7865 
7866 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
7867 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
7868   assert(VM_Version::supports_evex(), "");
7869   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
7870   attributes.set_is_evex_instruction();
7871   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7872   emit_int8(0x7A);
7873   emit_int8((unsigned char)(0xC0 | encode));
7874 }
7875 
7876 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
7877 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
7878   assert(VM_Version::supports_evex(), "");
7879   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
7880   attributes.set_is_evex_instruction();
7881   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7882   emit_int8(0x7B);
7883   emit_int8((unsigned char)(0xC0 | encode));
7884 }
7885 
7886 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
7887 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
7888   assert(VM_Version::supports_evex(), "");
7889   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7890   attributes.set_is_evex_instruction();
7891   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7892   emit_int8(0x7C);
7893   emit_int8((unsigned char)(0xC0 | encode));
7894 }
7895 
7896 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
7897 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
7898   assert(VM_Version::supports_evex(), "");
7899   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7900   attributes.set_is_evex_instruction();
7901   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7902   emit_int8(0x7C);
7903   emit_int8((unsigned char)(0xC0 | encode));
7904 }
7905 
7906 void Assembler::evpgatherdd(XMMRegister dst, KRegister mask, Address src, int vector_len) {
7907   assert(VM_Version::supports_evex(), "");
7908   assert(dst != xnoreg, "sanity");
7909   InstructionMark im(this);
7910   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
7911   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7912   attributes.reset_is_clear_context();
7913   attributes.set_embedded_opmask_register_specifier(mask);
7914   attributes.set_is_evex_instruction();
7915   // swap src<->dst for encoding
7916   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7917   emit_int8((unsigned char)0x90);
7918   emit_operand(dst, src);
7919 }
7920 
7921 // Carry-Less Multiplication Quadword
7922 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
7923   assert(VM_Version::supports_clmul(), "");
7924   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7925   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7926   emit_int8(0x44);
7927   emit_int8((unsigned char)(0xC0 | encode));
7928   emit_int8((unsigned char)mask);
7929 }
7930 
7931 // Carry-Less Multiplication Quadword
7932 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
7933   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
7934   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7935   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7936   emit_int8(0x44);
7937   emit_int8((unsigned char)(0xC0 | encode));
7938   emit_int8((unsigned char)mask);
7939 }
7940 
7941 void Assembler::evpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask, int vector_len) {
7942   assert(VM_Version::supports_vpclmulqdq(), "Requires vector carryless multiplication support");
7943   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
7944   attributes.set_is_evex_instruction();
7945   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7946   emit_int8(0x44);
7947   emit_int8((unsigned char)(0xC0 | encode));
7948   emit_int8((unsigned char)mask);
7949 }
7950 
7951 void Assembler::vzeroupper() {
7952   if (VM_Version::supports_vzeroupper()) {
7953     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
7954     (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
7955     emit_int8(0x77);
7956   }
7957 }
7958 
7959 #ifndef _LP64
7960 // 32bit only pieces of the assembler
7961 
7962 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
7963   // NO PREFIX AS NEVER 64BIT
7964   InstructionMark im(this);
7965   emit_int8((unsigned char)0x81);
7966   emit_int8((unsigned char)(0xF8 | src1->encoding()));
7967   emit_data(imm32, rspec, 0);
7968 }
7969 
7970 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
7971   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
7972   InstructionMark im(this);
7973   emit_int8((unsigned char)0x81);
7974   emit_operand(rdi, src1);
7975   emit_data(imm32, rspec, 0);
7976 }
7977 
7978 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
7979 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
7980 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
7981 void Assembler::cmpxchg8(Address adr) {
7982   InstructionMark im(this);
7983   emit_int8(0x0F);
7984   emit_int8((unsigned char)0xC7);
7985   emit_operand(rcx, adr);
7986 }
7987 
7988 void Assembler::decl(Register dst) {
7989   // Don't use it directly. Use MacroAssembler::decrementl() instead.
7990  emit_int8(0x48 | dst->encoding());
7991 }
7992 
7993 #endif // _LP64
7994 
7995 // 64bit typically doesn't use the x87 but needs to for the trig funcs
7996 
7997 void Assembler::fabs() {
7998   emit_int8((unsigned char)0xD9);
7999   emit_int8((unsigned char)0xE1);
8000 }
8001 
8002 void Assembler::fadd(int i) {
8003   emit_farith(0xD8, 0xC0, i);
8004 }
8005 
8006 void Assembler::fadd_d(Address src) {
8007   InstructionMark im(this);
8008   emit_int8((unsigned char)0xDC);
8009   emit_operand32(rax, src);
8010 }
8011 
8012 void Assembler::fadd_s(Address src) {
8013   InstructionMark im(this);
8014   emit_int8((unsigned char)0xD8);
8015   emit_operand32(rax, src);
8016 }
8017 
8018 void Assembler::fadda(int i) {
8019   emit_farith(0xDC, 0xC0, i);
8020 }
8021 
8022 void Assembler::faddp(int i) {
8023   emit_farith(0xDE, 0xC0, i);
8024 }
8025 
8026 void Assembler::fchs() {
8027   emit_int8((unsigned char)0xD9);
8028   emit_int8((unsigned char)0xE0);
8029 }
8030 
8031 void Assembler::fcom(int i) {
8032   emit_farith(0xD8, 0xD0, i);
8033 }
8034 
8035 void Assembler::fcomp(int i) {
8036   emit_farith(0xD8, 0xD8, i);
8037 }
8038 
8039 void Assembler::fcomp_d(Address src) {
8040   InstructionMark im(this);
8041   emit_int8((unsigned char)0xDC);
8042   emit_operand32(rbx, src);
8043 }
8044 
8045 void Assembler::fcomp_s(Address src) {
8046   InstructionMark im(this);
8047   emit_int8((unsigned char)0xD8);
8048   emit_operand32(rbx, src);
8049 }
8050 
8051 void Assembler::fcompp() {
8052   emit_int8((unsigned char)0xDE);
8053   emit_int8((unsigned char)0xD9);
8054 }
8055 
8056 void Assembler::fcos() {
8057   emit_int8((unsigned char)0xD9);
8058   emit_int8((unsigned char)0xFF);
8059 }
8060 
8061 void Assembler::fdecstp() {
8062   emit_int8((unsigned char)0xD9);
8063   emit_int8((unsigned char)0xF6);
8064 }
8065 
8066 void Assembler::fdiv(int i) {
8067   emit_farith(0xD8, 0xF0, i);
8068 }
8069 
8070 void Assembler::fdiv_d(Address src) {
8071   InstructionMark im(this);
8072   emit_int8((unsigned char)0xDC);
8073   emit_operand32(rsi, src);
8074 }
8075 
8076 void Assembler::fdiv_s(Address src) {
8077   InstructionMark im(this);
8078   emit_int8((unsigned char)0xD8);
8079   emit_operand32(rsi, src);
8080 }
8081 
8082 void Assembler::fdiva(int i) {
8083   emit_farith(0xDC, 0xF8, i);
8084 }
8085 
8086 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
8087 //       is erroneous for some of the floating-point instructions below.
8088 
8089 void Assembler::fdivp(int i) {
8090   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
8091 }
8092 
8093 void Assembler::fdivr(int i) {
8094   emit_farith(0xD8, 0xF8, i);
8095 }
8096 
8097 void Assembler::fdivr_d(Address src) {
8098   InstructionMark im(this);
8099   emit_int8((unsigned char)0xDC);
8100   emit_operand32(rdi, src);
8101 }
8102 
8103 void Assembler::fdivr_s(Address src) {
8104   InstructionMark im(this);
8105   emit_int8((unsigned char)0xD8);
8106   emit_operand32(rdi, src);
8107 }
8108 
8109 void Assembler::fdivra(int i) {
8110   emit_farith(0xDC, 0xF0, i);
8111 }
8112 
8113 void Assembler::fdivrp(int i) {
8114   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
8115 }
8116 
8117 void Assembler::ffree(int i) {
8118   emit_farith(0xDD, 0xC0, i);
8119 }
8120 
8121 void Assembler::fild_d(Address adr) {
8122   InstructionMark im(this);
8123   emit_int8((unsigned char)0xDF);
8124   emit_operand32(rbp, adr);
8125 }
8126 
8127 void Assembler::fild_s(Address adr) {
8128   InstructionMark im(this);
8129   emit_int8((unsigned char)0xDB);
8130   emit_operand32(rax, adr);
8131 }
8132 
8133 void Assembler::fincstp() {
8134   emit_int8((unsigned char)0xD9);
8135   emit_int8((unsigned char)0xF7);
8136 }
8137 
8138 void Assembler::finit() {
8139   emit_int8((unsigned char)0x9B);
8140   emit_int8((unsigned char)0xDB);
8141   emit_int8((unsigned char)0xE3);
8142 }
8143 
8144 void Assembler::fist_s(Address adr) {
8145   InstructionMark im(this);
8146   emit_int8((unsigned char)0xDB);
8147   emit_operand32(rdx, adr);
8148 }
8149 
8150 void Assembler::fistp_d(Address adr) {
8151   InstructionMark im(this);
8152   emit_int8((unsigned char)0xDF);
8153   emit_operand32(rdi, adr);
8154 }
8155 
8156 void Assembler::fistp_s(Address adr) {
8157   InstructionMark im(this);
8158   emit_int8((unsigned char)0xDB);
8159   emit_operand32(rbx, adr);
8160 }
8161 
8162 void Assembler::fld1() {
8163   emit_int8((unsigned char)0xD9);
8164   emit_int8((unsigned char)0xE8);
8165 }
8166 
8167 void Assembler::fld_d(Address adr) {
8168   InstructionMark im(this);
8169   emit_int8((unsigned char)0xDD);
8170   emit_operand32(rax, adr);
8171 }
8172 
8173 void Assembler::fld_s(Address adr) {
8174   InstructionMark im(this);
8175   emit_int8((unsigned char)0xD9);
8176   emit_operand32(rax, adr);
8177 }
8178 
8179 
8180 void Assembler::fld_s(int index) {
8181   emit_farith(0xD9, 0xC0, index);
8182 }
8183 
8184 void Assembler::fld_x(Address adr) {
8185   InstructionMark im(this);
8186   emit_int8((unsigned char)0xDB);
8187   emit_operand32(rbp, adr);
8188 }
8189 
8190 void Assembler::fldcw(Address src) {
8191   InstructionMark im(this);
8192   emit_int8((unsigned char)0xD9);
8193   emit_operand32(rbp, src);
8194 }
8195 
8196 void Assembler::fldenv(Address src) {
8197   InstructionMark im(this);
8198   emit_int8((unsigned char)0xD9);
8199   emit_operand32(rsp, src);
8200 }
8201 
8202 void Assembler::fldlg2() {
8203   emit_int8((unsigned char)0xD9);
8204   emit_int8((unsigned char)0xEC);
8205 }
8206 
8207 void Assembler::fldln2() {
8208   emit_int8((unsigned char)0xD9);
8209   emit_int8((unsigned char)0xED);
8210 }
8211 
8212 void Assembler::fldz() {
8213   emit_int8((unsigned char)0xD9);
8214   emit_int8((unsigned char)0xEE);
8215 }
8216 
8217 void Assembler::flog() {
8218   fldln2();
8219   fxch();
8220   fyl2x();
8221 }
8222 
8223 void Assembler::flog10() {
8224   fldlg2();
8225   fxch();
8226   fyl2x();
8227 }
8228 
8229 void Assembler::fmul(int i) {
8230   emit_farith(0xD8, 0xC8, i);
8231 }
8232 
8233 void Assembler::fmul_d(Address src) {
8234   InstructionMark im(this);
8235   emit_int8((unsigned char)0xDC);
8236   emit_operand32(rcx, src);
8237 }
8238 
8239 void Assembler::fmul_s(Address src) {
8240   InstructionMark im(this);
8241   emit_int8((unsigned char)0xD8);
8242   emit_operand32(rcx, src);
8243 }
8244 
8245 void Assembler::fmula(int i) {
8246   emit_farith(0xDC, 0xC8, i);
8247 }
8248 
8249 void Assembler::fmulp(int i) {
8250   emit_farith(0xDE, 0xC8, i);
8251 }
8252 
8253 void Assembler::fnsave(Address dst) {
8254   InstructionMark im(this);
8255   emit_int8((unsigned char)0xDD);
8256   emit_operand32(rsi, dst);
8257 }
8258 
8259 void Assembler::fnstcw(Address src) {
8260   InstructionMark im(this);
8261   emit_int8((unsigned char)0x9B);
8262   emit_int8((unsigned char)0xD9);
8263   emit_operand32(rdi, src);
8264 }
8265 
8266 void Assembler::fnstsw_ax() {
8267   emit_int8((unsigned char)0xDF);
8268   emit_int8((unsigned char)0xE0);
8269 }
8270 
8271 void Assembler::fprem() {
8272   emit_int8((unsigned char)0xD9);
8273   emit_int8((unsigned char)0xF8);
8274 }
8275 
8276 void Assembler::fprem1() {
8277   emit_int8((unsigned char)0xD9);
8278   emit_int8((unsigned char)0xF5);
8279 }
8280 
8281 void Assembler::frstor(Address src) {
8282   InstructionMark im(this);
8283   emit_int8((unsigned char)0xDD);
8284   emit_operand32(rsp, src);
8285 }
8286 
8287 void Assembler::fsin() {
8288   emit_int8((unsigned char)0xD9);
8289   emit_int8((unsigned char)0xFE);
8290 }
8291 
8292 void Assembler::fsqrt() {
8293   emit_int8((unsigned char)0xD9);
8294   emit_int8((unsigned char)0xFA);
8295 }
8296 
8297 void Assembler::fst_d(Address adr) {
8298   InstructionMark im(this);
8299   emit_int8((unsigned char)0xDD);
8300   emit_operand32(rdx, adr);
8301 }
8302 
8303 void Assembler::fst_s(Address adr) {
8304   InstructionMark im(this);
8305   emit_int8((unsigned char)0xD9);
8306   emit_operand32(rdx, adr);
8307 }
8308 
8309 void Assembler::fstp_d(Address adr) {
8310   InstructionMark im(this);
8311   emit_int8((unsigned char)0xDD);
8312   emit_operand32(rbx, adr);
8313 }
8314 
8315 void Assembler::fstp_d(int index) {
8316   emit_farith(0xDD, 0xD8, index);
8317 }
8318 
8319 void Assembler::fstp_s(Address adr) {
8320   InstructionMark im(this);
8321   emit_int8((unsigned char)0xD9);
8322   emit_operand32(rbx, adr);
8323 }
8324 
8325 void Assembler::fstp_x(Address adr) {
8326   InstructionMark im(this);
8327   emit_int8((unsigned char)0xDB);
8328   emit_operand32(rdi, adr);
8329 }
8330 
8331 void Assembler::fsub(int i) {
8332   emit_farith(0xD8, 0xE0, i);
8333 }
8334 
8335 void Assembler::fsub_d(Address src) {
8336   InstructionMark im(this);
8337   emit_int8((unsigned char)0xDC);
8338   emit_operand32(rsp, src);
8339 }
8340 
8341 void Assembler::fsub_s(Address src) {
8342   InstructionMark im(this);
8343   emit_int8((unsigned char)0xD8);
8344   emit_operand32(rsp, src);
8345 }
8346 
8347 void Assembler::fsuba(int i) {
8348   emit_farith(0xDC, 0xE8, i);
8349 }
8350 
8351 void Assembler::fsubp(int i) {
8352   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
8353 }
8354 
8355 void Assembler::fsubr(int i) {
8356   emit_farith(0xD8, 0xE8, i);
8357 }
8358 
8359 void Assembler::fsubr_d(Address src) {
8360   InstructionMark im(this);
8361   emit_int8((unsigned char)0xDC);
8362   emit_operand32(rbp, src);
8363 }
8364 
8365 void Assembler::fsubr_s(Address src) {
8366   InstructionMark im(this);
8367   emit_int8((unsigned char)0xD8);
8368   emit_operand32(rbp, src);
8369 }
8370 
8371 void Assembler::fsubra(int i) {
8372   emit_farith(0xDC, 0xE0, i);
8373 }
8374 
8375 void Assembler::fsubrp(int i) {
8376   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
8377 }
8378 
8379 void Assembler::ftan() {
8380   emit_int8((unsigned char)0xD9);
8381   emit_int8((unsigned char)0xF2);
8382   emit_int8((unsigned char)0xDD);
8383   emit_int8((unsigned char)0xD8);
8384 }
8385 
8386 void Assembler::ftst() {
8387   emit_int8((unsigned char)0xD9);
8388   emit_int8((unsigned char)0xE4);
8389 }
8390 
8391 void Assembler::fucomi(int i) {
8392   // make sure the instruction is supported (introduced for P6, together with cmov)
8393   guarantee(VM_Version::supports_cmov(), "illegal instruction");
8394   emit_farith(0xDB, 0xE8, i);
8395 }
8396 
8397 void Assembler::fucomip(int i) {
8398   // make sure the instruction is supported (introduced for P6, together with cmov)
8399   guarantee(VM_Version::supports_cmov(), "illegal instruction");
8400   emit_farith(0xDF, 0xE8, i);
8401 }
8402 
8403 void Assembler::fwait() {
8404   emit_int8((unsigned char)0x9B);
8405 }
8406 
8407 void Assembler::fxch(int i) {
8408   emit_farith(0xD9, 0xC8, i);
8409 }
8410 
8411 void Assembler::fyl2x() {
8412   emit_int8((unsigned char)0xD9);
8413   emit_int8((unsigned char)0xF1);
8414 }
8415 
8416 void Assembler::frndint() {
8417   emit_int8((unsigned char)0xD9);
8418   emit_int8((unsigned char)0xFC);
8419 }
8420 
8421 void Assembler::f2xm1() {
8422   emit_int8((unsigned char)0xD9);
8423   emit_int8((unsigned char)0xF0);
8424 }
8425 
8426 void Assembler::fldl2e() {
8427   emit_int8((unsigned char)0xD9);
8428   emit_int8((unsigned char)0xEA);
8429 }
8430 
8431 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
8432 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
8433 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
8434 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
8435 
8436 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
8437 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
8438   if (pre > 0) {
8439     emit_int8(simd_pre[pre]);
8440   }
8441   if (rex_w) {
8442     prefixq(adr, xreg);
8443   } else {
8444     prefix(adr, xreg);
8445   }
8446   if (opc > 0) {
8447     emit_int8(0x0F);
8448     int opc2 = simd_opc[opc];
8449     if (opc2 > 0) {
8450       emit_int8(opc2);
8451     }
8452   }
8453 }
8454 
8455 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
8456   if (pre > 0) {
8457     emit_int8(simd_pre[pre]);
8458   }
8459   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
8460   if (opc > 0) {
8461     emit_int8(0x0F);
8462     int opc2 = simd_opc[opc];
8463     if (opc2 > 0) {
8464       emit_int8(opc2);
8465     }
8466   }
8467   return encode;
8468 }
8469 
8470 
8471 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
8472   int vector_len = _attributes->get_vector_len();
8473   bool vex_w = _attributes->is_rex_vex_w();
8474   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
8475     prefix(VEX_3bytes);
8476 
8477     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
8478     byte1 = (~byte1) & 0xE0;
8479     byte1 |= opc;
8480     emit_int8(byte1);
8481 
8482     int byte2 = ((~nds_enc) & 0xf) << 3;
8483     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
8484     emit_int8(byte2);
8485   } else {
8486     prefix(VEX_2bytes);
8487 
8488     int byte1 = vex_r ? VEX_R : 0;
8489     byte1 = (~byte1) & 0x80;
8490     byte1 |= ((~nds_enc) & 0xf) << 3;
8491     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
8492     emit_int8(byte1);
8493   }
8494 }
8495 
8496 // This is a 4 byte encoding
8497 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
8498   // EVEX 0x62 prefix
8499   prefix(EVEX_4bytes);
8500   bool vex_w = _attributes->is_rex_vex_w();
8501   int evex_encoding = (vex_w ? VEX_W : 0);
8502   // EVEX.b is not currently used for broadcast of single element or data rounding modes
8503   _attributes->set_evex_encoding(evex_encoding);
8504 
8505   // P0: byte 2, initialized to RXBR`00mm
8506   // instead of not'd
8507   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
8508   byte2 = (~byte2) & 0xF0;
8509   // confine opc opcode extensions in mm bits to lower two bits
8510   // of form {0F, 0F_38, 0F_3A}
8511   byte2 |= opc;
8512   emit_int8(byte2);
8513 
8514   // P1: byte 3 as Wvvvv1pp
8515   int byte3 = ((~nds_enc) & 0xf) << 3;
8516   // p[10] is always 1
8517   byte3 |= EVEX_F;
8518   byte3 |= (vex_w & 1) << 7;
8519   // confine pre opcode extensions in pp bits to lower two bits
8520   // of form {66, F3, F2}
8521   byte3 |= pre;
8522   emit_int8(byte3);
8523 
8524   // P2: byte 4 as zL'Lbv'aaa
8525   // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
8526   int byte4 = (_attributes->is_no_reg_mask()) ?
8527               0 :
8528               _attributes->get_embedded_opmask_register_specifier();
8529   // EVEX.v` for extending EVEX.vvvv or VIDX
8530   byte4 |= (evex_v ? 0: EVEX_V);
8531   // third EXEC.b for broadcast actions
8532   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
8533   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
8534   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
8535   // last is EVEX.z for zero/merge actions
8536   if (_attributes->is_no_reg_mask() == false) {
8537     byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
8538   }
8539   emit_int8(byte4);
8540 }
8541 
8542 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
8543   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
8544   bool vex_b = adr.base_needs_rex();
8545   bool vex_x;
8546   if (adr.isxmmindex()) {
8547     vex_x = adr.xmmindex_needs_rex();
8548   } else {
8549     vex_x = adr.index_needs_rex();
8550   }
8551   set_attributes(attributes);
8552   attributes->set_current_assembler(this);
8553 
8554   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
8555   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
8556     switch (attributes->get_vector_len()) {
8557     case AVX_128bit:
8558     case AVX_256bit:
8559       attributes->set_is_legacy_mode();
8560       break;
8561     }
8562   }
8563 
8564   // For pure EVEX check and see if this instruction
8565   // is allowed in legacy mode and has resources which will
8566   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
8567   // else that field is set when we encode to EVEX
8568   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
8569       !_is_managed && !attributes->is_evex_instruction()) {
8570     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
8571       bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
8572       if (check_register_bank) {
8573         // check nds_enc and xreg_enc for upper bank usage
8574         if (nds_enc < 16 && xreg_enc < 16) {
8575           attributes->set_is_legacy_mode();
8576         }
8577       } else {
8578         attributes->set_is_legacy_mode();
8579       }
8580     }
8581   }
8582 
8583   _is_managed = false;
8584   if (UseAVX > 2 && !attributes->is_legacy_mode())
8585   {
8586     bool evex_r = (xreg_enc >= 16);
8587     bool evex_v;
8588     // EVEX.V' is set to true when VSIB is used as we may need to use higher order XMM registers (16-31)
8589     if (adr.isxmmindex())  {
8590       evex_v = ((adr._xmmindex->encoding() > 15) ? true : false);
8591     } else {
8592       evex_v = (nds_enc >= 16);
8593     }
8594     attributes->set_is_evex_instruction();
8595     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
8596   } else {
8597     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
8598       attributes->set_rex_vex_w(false);
8599     }
8600     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
8601   }
8602 }
8603 
8604 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
8605   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
8606   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
8607   bool vex_x = false;
8608   set_attributes(attributes);
8609   attributes->set_current_assembler(this);
8610   bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
8611 
8612   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
8613   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
8614     switch (attributes->get_vector_len()) {
8615     case AVX_128bit:
8616     case AVX_256bit:
8617       if (check_register_bank) {
8618         if (dst_enc >= 16 || nds_enc >= 16 || src_enc >= 16) {
8619           // up propagate arithmetic instructions to meet RA requirements
8620           attributes->set_vector_len(AVX_512bit);
8621         } else {
8622           attributes->set_is_legacy_mode();
8623         }
8624       } else {
8625         attributes->set_is_legacy_mode();
8626       }
8627       break;
8628     }
8629   }
8630 
8631   // For pure EVEX check and see if this instruction
8632   // is allowed in legacy mode and has resources which will
8633   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
8634   // else that field is set when we encode to EVEX
8635   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
8636       !_is_managed && !attributes->is_evex_instruction()) {
8637     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
8638       if (check_register_bank) {
8639         // check dst_enc, nds_enc and src_enc for upper bank usage
8640         if (dst_enc < 16 && nds_enc < 16 && src_enc < 16) {
8641           attributes->set_is_legacy_mode();
8642         }
8643       } else {
8644         attributes->set_is_legacy_mode();
8645       }
8646     }
8647   }
8648 
8649   _is_managed = false;
8650   if (UseAVX > 2 && !attributes->is_legacy_mode())
8651   {
8652     bool evex_r = (dst_enc >= 16);
8653     bool evex_v = (nds_enc >= 16);
8654     // can use vex_x as bank extender on rm encoding
8655     vex_x = (src_enc >= 16);
8656     attributes->set_is_evex_instruction();
8657     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
8658   } else {
8659     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
8660       attributes->set_rex_vex_w(false);
8661     }
8662     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
8663   }
8664 
8665   // return modrm byte components for operands
8666   return (((dst_enc & 7) << 3) | (src_enc & 7));
8667 }
8668 
8669 
8670 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
8671                             VexOpcode opc, InstructionAttr *attributes) {
8672   if (UseAVX > 0) {
8673     int xreg_enc = xreg->encoding();
8674     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
8675     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
8676   } else {
8677     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
8678     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
8679   }
8680 }
8681 
8682 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
8683                                       VexOpcode opc, InstructionAttr *attributes) {
8684   int dst_enc = dst->encoding();
8685   int src_enc = src->encoding();
8686   if (UseAVX > 0) {
8687     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
8688     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
8689   } else {
8690     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
8691     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
8692   }
8693 }
8694 
8695 void Assembler::vcmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
8696   // This encoding is upto AVX2
8697   assert(VM_Version::supports_avx(), "");
8698   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8699   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8700   emit_int8((unsigned char)0xC2);
8701   emit_int8((unsigned char)(0xC0 | encode));
8702   emit_int8((unsigned char)(0xF & cop));
8703 }
8704 
8705 void Assembler::vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
8706   assert(UseAVX > 0 && (vector_len == AVX_128bit || vector_len == AVX_256bit), "");
8707   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8708   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
8709   emit_int8((unsigned char)0x4B);
8710   emit_int8((unsigned char)(0xC0 | encode));
8711   int src2_enc = src2->encoding();
8712   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
8713 }
8714 
8715 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
8716   assert(VM_Version::supports_avx2(), "");
8717   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8718   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
8719   emit_int8((unsigned char)0x02);
8720   emit_int8((unsigned char)(0xC0 | encode));
8721   emit_int8((unsigned char)imm8);
8722 }
8723 
8724 void Assembler::vcmpps(XMMRegister dst, XMMRegister nds, XMMRegister src, int comparison, int vector_len) {
8725   assert(VM_Version::supports_avx(), "");
8726   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8727   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
8728   emit_int8((unsigned char)0xC2);
8729   emit_int8((unsigned char)(0xC0 | encode));
8730   emit_int8((unsigned char)comparison);
8731 }
8732 
8733 void Assembler::evcmpps(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
8734                         ComparisonPredicateFP comparison, int vector_len) {
8735   assert(VM_Version::supports_evex(), "");
8736   // Encoding: EVEX.NDS.XXX.0F.W0 C2 /r ib
8737   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
8738   attributes.set_is_evex_instruction();
8739   attributes.set_embedded_opmask_register_specifier(mask);
8740   attributes.reset_is_clear_context();
8741   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
8742   emit_int8((unsigned char)0xC2);
8743   emit_int8((unsigned char)(0xC0 | encode));
8744   emit_int8((unsigned char)comparison);
8745 }
8746 
8747 void Assembler::evcmppd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
8748                         ComparisonPredicateFP comparison, int vector_len) {
8749   assert(VM_Version::supports_evex(), "");
8750   // Encoding: EVEX.NDS.XXX.66.0F.W1 C2 /r ib
8751   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
8752   attributes.set_is_evex_instruction();
8753   attributes.set_embedded_opmask_register_specifier(mask);
8754   attributes.reset_is_clear_context();
8755   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8756   emit_int8((unsigned char)0xC2);
8757   emit_int8((unsigned char)(0xC0 | encode));
8758   emit_int8((unsigned char)comparison);
8759 }
8760 
8761 void Assembler::blendvps(XMMRegister dst, XMMRegister src) {
8762   assert(VM_Version::supports_sse4_1(), "");
8763   assert(UseAVX <= 0, "sse encoding is inconsistent with avx encoding");
8764   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8765   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
8766   emit_int8(0x14);
8767   emit_int8((unsigned char)(0xC0 | encode));
8768 }
8769 
8770 void Assembler::blendvpd(XMMRegister dst, XMMRegister src) {
8771   assert(VM_Version::supports_sse4_1(), "");
8772   assert(UseAVX <= 0, "sse encoding is inconsistent with avx encoding");
8773   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8774   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
8775   emit_int8(0x15);
8776   emit_int8((unsigned char)(0xC0 | encode));
8777 }
8778 
8779 void Assembler::pblendvb(XMMRegister dst, XMMRegister src) {
8780   assert(VM_Version::supports_sse4_1(), "");
8781   assert(UseAVX <= 0, "sse encoding is inconsistent with avx encoding");
8782   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8783   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
8784   emit_int8(0x10);
8785   emit_int8((unsigned char)(0xC0 | encode));
8786 }
8787 
8788 void Assembler::vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len) {
8789   assert(UseAVX > 0 && (vector_len == AVX_128bit || vector_len == AVX_256bit), "");
8790   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8791   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
8792   emit_int8((unsigned char)0x4A);
8793   emit_int8((unsigned char)(0xC0 | encode));
8794   int mask_enc = mask->encoding();
8795   emit_int8((unsigned char)(0xF0 & mask_enc<<4));
8796 }
8797 
8798 void Assembler::vpcmpgtb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
8799   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() : VM_Version::supports_avx2(), "");
8800   assert(vector_len <= AVX_256bit, "evex encoding is different - has k register as dest");
8801   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
8802   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8803   emit_int8((unsigned char)0x64);
8804   emit_int8((unsigned char)(0xC0 | encode));
8805 }
8806 
8807 void Assembler::vpcmpgtw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
8808   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() : VM_Version::supports_avx2(), "");
8809   assert(vector_len <= AVX_256bit, "evex encoding is different - has k register as dest");
8810   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
8811   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8812   emit_int8((unsigned char)0x65);
8813   emit_int8((unsigned char)(0xC0 | encode));
8814 }
8815 
8816 void Assembler::vpcmpgtd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
8817   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() : VM_Version::supports_avx2(), "");
8818   assert(vector_len <= AVX_256bit, "evex encoding is different - has k register as dest");
8819   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
8820   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8821   emit_int8((unsigned char)0x66);
8822   emit_int8((unsigned char)(0xC0 | encode));
8823 }
8824 
8825 void Assembler::vpcmpgtq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
8826   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() : VM_Version::supports_avx2(), "");
8827   assert(vector_len <= AVX_256bit, "evex encoding is different - has k register as dest");
8828   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
8829   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
8830   emit_int8((unsigned char)0x37);
8831   emit_int8((unsigned char)(0xC0 | encode));
8832 }
8833 
8834 void Assembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
8835                         int comparison, int vector_len) {
8836   assert(VM_Version::supports_evex(), "");
8837   assert(comparison >= Assembler::eq && comparison <= Assembler::_true, "");
8838   // Encoding: EVEX.NDS.XXX.66.0F3A.W0 1F /r ib
8839   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
8840   attributes.set_is_evex_instruction();
8841   attributes.set_embedded_opmask_register_specifier(mask);
8842   attributes.reset_is_clear_context();
8843   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
8844   emit_int8((unsigned char)0x1F);
8845   emit_int8((unsigned char)(0xC0 | encode));
8846   emit_int8((unsigned char)comparison);
8847 }
8848 
8849 void Assembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, Address src,
8850                         int comparison, int vector_len) {
8851   assert(VM_Version::supports_evex(), "");
8852   assert(comparison >= Assembler::eq && comparison <= Assembler::_true, "");
8853   // Encoding: EVEX.NDS.XXX.66.0F3A.W0 1F /r ib
8854   InstructionMark im(this);
8855   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
8856   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_NObit);
8857   attributes.set_is_evex_instruction();
8858   attributes.set_embedded_opmask_register_specifier(mask);
8859   attributes.reset_is_clear_context();
8860   int dst_enc = kdst->encoding();
8861   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
8862   emit_int8((unsigned char)0x1F);
8863   emit_operand(as_Register(dst_enc), src);
8864   emit_int8((unsigned char)comparison);
8865 }
8866 
8867 void Assembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
8868                         int comparison, int vector_len) {
8869   assert(VM_Version::supports_evex(), "");
8870   assert(comparison >= Assembler::eq && comparison <= Assembler::_true, "");
8871   // Encoding: EVEX.NDS.XXX.66.0F3A.W1 1F /r ib
8872   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
8873   attributes.set_is_evex_instruction();
8874   attributes.set_embedded_opmask_register_specifier(mask);
8875   attributes.reset_is_clear_context();
8876   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
8877   emit_int8((unsigned char)0x1F);
8878   emit_int8((unsigned char)(0xC0 | encode));
8879   emit_int8((unsigned char)comparison);
8880 }
8881 
8882 void Assembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, Address src,
8883                         int comparison, int vector_len) {
8884   assert(VM_Version::supports_evex(), "");
8885   assert(comparison >= Assembler::eq && comparison <= Assembler::_true, "");
8886   // Encoding: EVEX.NDS.XXX.66.0F3A.W1 1F /r ib
8887   InstructionMark im(this);
8888   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
8889   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_NObit);
8890   attributes.set_is_evex_instruction();
8891   attributes.set_embedded_opmask_register_specifier(mask);
8892   attributes.reset_is_clear_context();
8893   int dst_enc = kdst->encoding();
8894   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
8895   emit_int8((unsigned char)0x1F);
8896   emit_operand(as_Register(dst_enc), src);
8897   emit_int8((unsigned char)comparison);
8898 }
8899 
8900 void Assembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
8901                         int comparison, int vector_len) {
8902   assert(VM_Version::supports_evex(), "");
8903   assert(VM_Version::supports_avx512bw(), "");
8904   assert(comparison >= Assembler::eq && comparison <= Assembler::_true, "");
8905   // Encoding: EVEX.NDS.XXX.66.0F3A.W0 3F /r ib
8906   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
8907   attributes.set_is_evex_instruction();
8908   attributes.set_embedded_opmask_register_specifier(mask);
8909   attributes.reset_is_clear_context();
8910   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
8911   emit_int8((unsigned char)0x3F);
8912   emit_int8((unsigned char)(0xC0 | encode));
8913   emit_int8((unsigned char)comparison);
8914 }
8915 
8916 void Assembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, Address src,
8917                         int comparison, int vector_len) {
8918   assert(VM_Version::supports_evex(), "");
8919   assert(VM_Version::supports_avx512bw(), "");
8920   assert(comparison >= Assembler::eq && comparison <= Assembler::_true, "");
8921   // Encoding: EVEX.NDS.XXX.66.0F3A.W0 3F /r ib
8922   InstructionMark im(this);
8923   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
8924   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
8925   attributes.set_is_evex_instruction();
8926   attributes.set_embedded_opmask_register_specifier(mask);
8927   attributes.reset_is_clear_context();
8928   int dst_enc = kdst->encoding();
8929   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
8930   emit_int8((unsigned char)0x3F);
8931   emit_operand(as_Register(dst_enc), src);
8932   emit_int8((unsigned char)comparison);
8933 }
8934 
8935 void Assembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
8936                         int comparison, int vector_len) {
8937   assert(VM_Version::supports_evex(), "");
8938   assert(VM_Version::supports_avx512bw(), "");
8939   assert(comparison >= Assembler::eq && comparison <= Assembler::_true, "");
8940   // Encoding: EVEX.NDS.XXX.66.0F3A.W1 3F /r ib
8941   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
8942   attributes.set_is_evex_instruction();
8943   attributes.set_embedded_opmask_register_specifier(mask);
8944   attributes.reset_is_clear_context();
8945   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
8946   emit_int8((unsigned char)0x3F);
8947   emit_int8((unsigned char)(0xC0 | encode));
8948   emit_int8((unsigned char)comparison);
8949 }
8950 
8951 void Assembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, Address src,
8952                         int comparison, int vector_len) {
8953   assert(VM_Version::supports_evex(), "");
8954   assert(VM_Version::supports_avx512bw(), "");
8955   assert(comparison >= Assembler::eq && comparison <= Assembler::_true, "");
8956   // Encoding: EVEX.NDS.XXX.66.0F3A.W1 3F /r ib
8957   InstructionMark im(this);
8958   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
8959   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
8960   attributes.set_is_evex_instruction();
8961   attributes.set_embedded_opmask_register_specifier(mask);
8962   attributes.reset_is_clear_context();
8963   int dst_enc = kdst->encoding();
8964   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
8965   emit_int8((unsigned char)0x3F);
8966   emit_operand(as_Register(dst_enc), src);
8967   emit_int8((unsigned char)comparison);
8968 }
8969 
8970 void Assembler::vpblendvb(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len) {
8971   assert(VM_Version::supports_avx(), "");
8972   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8973   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
8974   emit_int8((unsigned char)0x4C);
8975   emit_int8((unsigned char)(0xC0 | encode));
8976   int mask_enc = mask->encoding();
8977   emit_int8((unsigned char)(0xF0 & mask_enc << 4));
8978 }
8979 
8980 void Assembler::evblendmpd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
8981   assert(VM_Version::supports_evex(), "");
8982   // Encoding: EVEX.NDS.XXX.66.0F38.W1 65 /r
8983   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
8984   attributes.set_is_evex_instruction();
8985   attributes.set_embedded_opmask_register_specifier(mask);
8986   if (merge) {
8987     attributes.reset_is_clear_context();
8988   }
8989   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
8990   emit_int8((unsigned char)0x65);
8991   emit_int8((unsigned char)(0xC0 | encode));
8992 }
8993 
8994 void Assembler::evblendmps(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
8995   assert(VM_Version::supports_evex(), "");
8996   // Encoding: EVEX.NDS.XXX.66.0F38.W0 65 /r
8997   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
8998   attributes.set_is_evex_instruction();
8999   attributes.set_embedded_opmask_register_specifier(mask);
9000   if (merge) {
9001     attributes.reset_is_clear_context();
9002   }
9003   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
9004   emit_int8((unsigned char)0x65);
9005   emit_int8((unsigned char)(0xC0 | encode));
9006 }
9007 
9008 void Assembler::evpblendmb (XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
9009   assert(VM_Version::supports_evex(), "");
9010   assert(VM_Version::supports_avx512bw(), "");
9011   // Encoding: EVEX.NDS.512.66.0F38.W0 66 /r
9012   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
9013   attributes.set_is_evex_instruction();
9014   attributes.set_embedded_opmask_register_specifier(mask);
9015   if (merge) {
9016     attributes.reset_is_clear_context();
9017   }
9018   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);       
9019   emit_int8((unsigned char)0x66);
9020   emit_int8((unsigned char)(0xC0 | encode));
9021 }
9022 
9023 void Assembler::evpblendmw (XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
9024   assert(VM_Version::supports_evex(), "");
9025   assert(VM_Version::supports_avx512bw(), "");
9026   // Encoding: EVEX.NDS.512.66.0F38.W1 66 /r
9027   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
9028   attributes.set_is_evex_instruction();
9029   attributes.set_embedded_opmask_register_specifier(mask);
9030   if (merge) {
9031     attributes.reset_is_clear_context();
9032   }
9033   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);       
9034   emit_int8((unsigned char)0x66);
9035   emit_int8((unsigned char)(0xC0 | encode));    
9036 }
9037 
9038 void Assembler::evpblendmd (XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
9039   assert(VM_Version::supports_evex(), "");
9040   //Encoding: EVEX.NDS.512.66.0F38.W0 64 /r
9041   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
9042   attributes.set_is_evex_instruction();
9043   attributes.set_embedded_opmask_register_specifier(mask);
9044   if (merge) {
9045     attributes.reset_is_clear_context();
9046   }
9047   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);       
9048   emit_int8((unsigned char)0x64);
9049   emit_int8((unsigned char)(0xC0 | encode));
9050 }
9051 
9052 void Assembler::evpblendmq (XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
9053   assert(VM_Version::supports_evex(), "");      
9054   //Encoding: EVEX.NDS.512.66.0F38.W1 64 /r
9055   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
9056   attributes.set_is_evex_instruction();
9057   attributes.set_embedded_opmask_register_specifier(mask);
9058   if (merge) {
9059     attributes.reset_is_clear_context();
9060   }     
9061   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);       
9062   emit_int8((unsigned char)0x64);
9063   emit_int8((unsigned char)(0xC0 | encode));    
9064 }
9065 
9066 void Assembler::shlxl(Register dst, Register src1, Register src2) {
9067   assert(VM_Version::supports_bmi2(), "");
9068   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9069   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
9070   emit_int8((unsigned char)0xF7);
9071   emit_int8((unsigned char)(0xC0 | encode));
9072 }
9073 
9074 void Assembler::shlxq(Register dst, Register src1, Register src2) {
9075   assert(VM_Version::supports_bmi2(), "");
9076   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9077   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
9078   emit_int8((unsigned char)0xF7);
9079   emit_int8((unsigned char)(0xC0 | encode));
9080 }
9081 
9082 #ifndef _LP64
9083 
9084 void Assembler::incl(Register dst) {
9085   // Don't use it directly. Use MacroAssembler::incrementl() instead.
9086   emit_int8(0x40 | dst->encoding());
9087 }
9088 
9089 void Assembler::lea(Register dst, Address src) {
9090   leal(dst, src);
9091 }
9092 
9093 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
9094   InstructionMark im(this);
9095   emit_int8((unsigned char)0xC7);
9096   emit_operand(rax, dst);
9097   emit_data((int)imm32, rspec, 0);
9098 }
9099 
9100 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
9101   InstructionMark im(this);
9102   int encode = prefix_and_encode(dst->encoding());
9103   emit_int8((unsigned char)(0xB8 | encode));
9104   emit_data((int)imm32, rspec, 0);
9105 }
9106 
9107 void Assembler::popa() { // 32bit
9108   emit_int8(0x61);
9109 }
9110 
9111 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
9112   InstructionMark im(this);
9113   emit_int8(0x68);
9114   emit_data(imm32, rspec, 0);
9115 }
9116 
9117 void Assembler::pusha() { // 32bit
9118   emit_int8(0x60);
9119 }
9120 
9121 void Assembler::set_byte_if_not_zero(Register dst) {
9122   emit_int8(0x0F);
9123   emit_int8((unsigned char)0x95);
9124   emit_int8((unsigned char)(0xE0 | dst->encoding()));
9125 }
9126 
9127 void Assembler::shldl(Register dst, Register src) {
9128   emit_int8(0x0F);
9129   emit_int8((unsigned char)0xA5);
9130   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
9131 }
9132 
9133 // 0F A4 / r ib
9134 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
9135   emit_int8(0x0F);
9136   emit_int8((unsigned char)0xA4);
9137   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
9138   emit_int8(imm8);
9139 }
9140 
9141 void Assembler::shrdl(Register dst, Register src) {
9142   emit_int8(0x0F);
9143   emit_int8((unsigned char)0xAD);
9144   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
9145 }
9146 
9147 #else // LP64
9148 
9149 void Assembler::set_byte_if_not_zero(Register dst) {
9150   int enc = prefix_and_encode(dst->encoding(), true);
9151   emit_int8(0x0F);
9152   emit_int8((unsigned char)0x95);
9153   emit_int8((unsigned char)(0xE0 | enc));
9154 }
9155 
9156 // 64bit only pieces of the assembler
9157 // This should only be used by 64bit instructions that can use rip-relative
9158 // it cannot be used by instructions that want an immediate value.
9159 
9160 bool Assembler::reachable(AddressLiteral adr) {
9161   int64_t disp;
9162   // None will force a 64bit literal to the code stream. Likely a placeholder
9163   // for something that will be patched later and we need to certain it will
9164   // always be reachable.
9165   if (adr.reloc() == relocInfo::none) {
9166     return false;
9167   }
9168   if (adr.reloc() == relocInfo::internal_word_type) {
9169     // This should be rip relative and easily reachable.
9170     return true;
9171   }
9172   if (adr.reloc() == relocInfo::virtual_call_type ||
9173       adr.reloc() == relocInfo::opt_virtual_call_type ||
9174       adr.reloc() == relocInfo::static_call_type ||
9175       adr.reloc() == relocInfo::static_stub_type ) {
9176     // This should be rip relative within the code cache and easily
9177     // reachable until we get huge code caches. (At which point
9178     // ic code is going to have issues).
9179     return true;
9180   }
9181   if (adr.reloc() != relocInfo::external_word_type &&
9182       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
9183       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
9184       adr.reloc() != relocInfo::runtime_call_type ) {
9185     return false;
9186   }
9187 
9188   // Stress the correction code
9189   if (ForceUnreachable) {
9190     // Must be runtimecall reloc, see if it is in the codecache
9191     // Flipping stuff in the codecache to be unreachable causes issues
9192     // with things like inline caches where the additional instructions
9193     // are not handled.
9194     if (CodeCache::find_blob(adr._target) == NULL) {
9195       return false;
9196     }
9197   }
9198   // For external_word_type/runtime_call_type if it is reachable from where we
9199   // are now (possibly a temp buffer) and where we might end up
9200   // anywhere in the codeCache then we are always reachable.
9201   // This would have to change if we ever save/restore shared code
9202   // to be more pessimistic.
9203   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
9204   if (!is_simm32(disp)) return false;
9205   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
9206   if (!is_simm32(disp)) return false;
9207 
9208   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
9209 
9210   // Because rip relative is a disp + address_of_next_instruction and we
9211   // don't know the value of address_of_next_instruction we apply a fudge factor
9212   // to make sure we will be ok no matter the size of the instruction we get placed into.
9213   // We don't have to fudge the checks above here because they are already worst case.
9214 
9215   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
9216   // + 4 because better safe than sorry.
9217   const int fudge = 12 + 4;
9218   if (disp < 0) {
9219     disp -= fudge;
9220   } else {
9221     disp += fudge;
9222   }
9223   return is_simm32(disp);
9224 }
9225 
9226 // Check if the polling page is not reachable from the code cache using rip-relative
9227 // addressing.
9228 bool Assembler::is_polling_page_far() {
9229   intptr_t addr = (intptr_t)os::get_polling_page();
9230   return ForceUnreachable ||
9231          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
9232          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
9233 }
9234 
9235 void Assembler::emit_data64(jlong data,
9236                             relocInfo::relocType rtype,
9237                             int format) {
9238   if (rtype == relocInfo::none) {
9239     emit_int64(data);
9240   } else {
9241     emit_data64(data, Relocation::spec_simple(rtype), format);
9242   }
9243 }
9244 
9245 void Assembler::emit_data64(jlong data,
9246                             RelocationHolder const& rspec,
9247                             int format) {
9248   assert(imm_operand == 0, "default format must be immediate in this file");
9249   assert(imm_operand == format, "must be immediate");
9250   assert(inst_mark() != NULL, "must be inside InstructionMark");
9251   // Do not use AbstractAssembler::relocate, which is not intended for
9252   // embedded words.  Instead, relocate to the enclosing instruction.
9253   code_section()->relocate(inst_mark(), rspec, format);
9254 #ifdef ASSERT
9255   check_relocation(rspec, format);
9256 #endif
9257   emit_int64(data);
9258 }
9259 
9260 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
9261   if (reg_enc >= 8) {
9262     prefix(REX_B);
9263     reg_enc -= 8;
9264   } else if (byteinst && reg_enc >= 4) {
9265     prefix(REX);
9266   }
9267   return reg_enc;
9268 }
9269 
9270 int Assembler::prefixq_and_encode(int reg_enc) {
9271   if (reg_enc < 8) {
9272     prefix(REX_W);
9273   } else {
9274     prefix(REX_WB);
9275     reg_enc -= 8;
9276   }
9277   return reg_enc;
9278 }
9279 
9280 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
9281   if (dst_enc < 8) {
9282     if (src_enc >= 8) {
9283       prefix(REX_B);
9284       src_enc -= 8;
9285     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
9286       prefix(REX);
9287     }
9288   } else {
9289     if (src_enc < 8) {
9290       prefix(REX_R);
9291     } else {
9292       prefix(REX_RB);
9293       src_enc -= 8;
9294     }
9295     dst_enc -= 8;
9296   }
9297   return dst_enc << 3 | src_enc;
9298 }
9299 
9300 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
9301   if (dst_enc < 8) {
9302     if (src_enc < 8) {
9303       prefix(REX_W);
9304     } else {
9305       prefix(REX_WB);
9306       src_enc -= 8;
9307     }
9308   } else {
9309     if (src_enc < 8) {
9310       prefix(REX_WR);
9311     } else {
9312       prefix(REX_WRB);
9313       src_enc -= 8;
9314     }
9315     dst_enc -= 8;
9316   }
9317   return dst_enc << 3 | src_enc;
9318 }
9319 
9320 void Assembler::prefix(Register reg) {
9321   if (reg->encoding() >= 8) {
9322     prefix(REX_B);
9323   }
9324 }
9325 
9326 void Assembler::prefix(Register dst, Register src, Prefix p) {
9327   if (src->encoding() >= 8) {
9328     p = (Prefix)(p | REX_B);
9329   }
9330   if (dst->encoding() >= 8) {
9331     p = (Prefix)( p | REX_R);
9332   }
9333   if (p != Prefix_EMPTY) {
9334     // do not generate an empty prefix
9335     prefix(p);
9336   }
9337 }
9338 
9339 void Assembler::prefix(Register dst, Address adr, Prefix p) {
9340   if (adr.base_needs_rex()) {
9341     if (adr.index_needs_rex()) {
9342       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
9343     } else {
9344       prefix(REX_B);
9345     }
9346   } else {
9347     if (adr.index_needs_rex()) {
9348       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
9349     }
9350   }
9351   if (dst->encoding() >= 8) {
9352     p = (Prefix)(p | REX_R);
9353   }
9354   if (p != Prefix_EMPTY) {
9355     // do not generate an empty prefix
9356     prefix(p);
9357   }
9358 }
9359 
9360 void Assembler::prefix(Address adr) {
9361   if (adr.base_needs_rex()) {
9362     if (adr.index_needs_rex()) {
9363       prefix(REX_XB);
9364     } else {
9365       prefix(REX_B);
9366     }
9367   } else {
9368     if (adr.index_needs_rex()) {
9369       prefix(REX_X);
9370     }
9371   }
9372 }
9373 
9374 void Assembler::prefixq(Address adr) {
9375   if (adr.base_needs_rex()) {
9376     if (adr.index_needs_rex()) {
9377       prefix(REX_WXB);
9378     } else {
9379       prefix(REX_WB);
9380     }
9381   } else {
9382     if (adr.index_needs_rex()) {
9383       prefix(REX_WX);
9384     } else {
9385       prefix(REX_W);
9386     }
9387   }
9388 }
9389 
9390 
9391 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
9392   if (reg->encoding() < 8) {
9393     if (adr.base_needs_rex()) {
9394       if (adr.index_needs_rex()) {
9395         prefix(REX_XB);
9396       } else {
9397         prefix(REX_B);
9398       }
9399     } else {
9400       if (adr.index_needs_rex()) {
9401         prefix(REX_X);
9402       } else if (byteinst && reg->encoding() >= 4 ) {
9403         prefix(REX);
9404       }
9405     }
9406   } else {
9407     if (adr.base_needs_rex()) {
9408       if (adr.index_needs_rex()) {
9409         prefix(REX_RXB);
9410       } else {
9411         prefix(REX_RB);
9412       }
9413     } else {
9414       if (adr.index_needs_rex()) {
9415         prefix(REX_RX);
9416       } else {
9417         prefix(REX_R);
9418       }
9419     }
9420   }
9421 }
9422 
9423 void Assembler::prefixq(Address adr, Register src) {
9424   if (src->encoding() < 8) {
9425     if (adr.base_needs_rex()) {
9426       if (adr.index_needs_rex()) {
9427         prefix(REX_WXB);
9428       } else {
9429         prefix(REX_WB);
9430       }
9431     } else {
9432       if (adr.index_needs_rex()) {
9433         prefix(REX_WX);
9434       } else {
9435         prefix(REX_W);
9436       }
9437     }
9438   } else {
9439     if (adr.base_needs_rex()) {
9440       if (adr.index_needs_rex()) {
9441         prefix(REX_WRXB);
9442       } else {
9443         prefix(REX_WRB);
9444       }
9445     } else {
9446       if (adr.index_needs_rex()) {
9447         prefix(REX_WRX);
9448       } else {
9449         prefix(REX_WR);
9450       }
9451     }
9452   }
9453 }
9454 
9455 void Assembler::prefix(Address adr, XMMRegister reg) {
9456   if (reg->encoding() < 8) {
9457     if (adr.base_needs_rex()) {
9458       if (adr.index_needs_rex()) {
9459         prefix(REX_XB);
9460       } else {
9461         prefix(REX_B);
9462       }
9463     } else {
9464       if (adr.index_needs_rex()) {
9465         prefix(REX_X);
9466       }
9467     }
9468   } else {
9469     if (adr.base_needs_rex()) {
9470       if (adr.index_needs_rex()) {
9471         prefix(REX_RXB);
9472       } else {
9473         prefix(REX_RB);
9474       }
9475     } else {
9476       if (adr.index_needs_rex()) {
9477         prefix(REX_RX);
9478       } else {
9479         prefix(REX_R);
9480       }
9481     }
9482   }
9483 }
9484 
9485 void Assembler::prefixq(Address adr, XMMRegister src) {
9486   if (src->encoding() < 8) {
9487     if (adr.base_needs_rex()) {
9488       if (adr.index_needs_rex()) {
9489         prefix(REX_WXB);
9490       } else {
9491         prefix(REX_WB);
9492       }
9493     } else {
9494       if (adr.index_needs_rex()) {
9495         prefix(REX_WX);
9496       } else {
9497         prefix(REX_W);
9498       }
9499     }
9500   } else {
9501     if (adr.base_needs_rex()) {
9502       if (adr.index_needs_rex()) {
9503         prefix(REX_WRXB);
9504       } else {
9505         prefix(REX_WRB);
9506       }
9507     } else {
9508       if (adr.index_needs_rex()) {
9509         prefix(REX_WRX);
9510       } else {
9511         prefix(REX_WR);
9512       }
9513     }
9514   }
9515 }
9516 
9517 void Assembler::adcq(Register dst, int32_t imm32) {
9518   (void) prefixq_and_encode(dst->encoding());
9519   emit_arith(0x81, 0xD0, dst, imm32);
9520 }
9521 
9522 void Assembler::adcq(Register dst, Address src) {
9523   InstructionMark im(this);
9524   prefixq(src, dst);
9525   emit_int8(0x13);
9526   emit_operand(dst, src);
9527 }
9528 
9529 void Assembler::adcq(Register dst, Register src) {
9530   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9531   emit_arith(0x13, 0xC0, dst, src);
9532 }
9533 
9534 void Assembler::addq(Address dst, int32_t imm32) {
9535   InstructionMark im(this);
9536   prefixq(dst);
9537   emit_arith_operand(0x81, rax, dst,imm32);
9538 }
9539 
9540 void Assembler::addq(Address dst, Register src) {
9541   InstructionMark im(this);
9542   prefixq(dst, src);
9543   emit_int8(0x01);
9544   emit_operand(src, dst);
9545 }
9546 
9547 void Assembler::addq(Register dst, int32_t imm32) {
9548   (void) prefixq_and_encode(dst->encoding());
9549   emit_arith(0x81, 0xC0, dst, imm32);
9550 }
9551 
9552 void Assembler::addq(Register dst, Address src) {
9553   InstructionMark im(this);
9554   prefixq(src, dst);
9555   emit_int8(0x03);
9556   emit_operand(dst, src);
9557 }
9558 
9559 void Assembler::addq(Register dst, Register src) {
9560   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9561   emit_arith(0x03, 0xC0, dst, src);
9562 }
9563 
9564 void Assembler::adcxq(Register dst, Register src) {
9565   //assert(VM_Version::supports_adx(), "adx instructions not supported");
9566   emit_int8((unsigned char)0x66);
9567   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
9568   emit_int8(0x0F);
9569   emit_int8(0x38);
9570   emit_int8((unsigned char)0xF6);
9571   emit_int8((unsigned char)(0xC0 | encode));
9572 }
9573 
9574 void Assembler::adoxq(Register dst, Register src) {
9575   //assert(VM_Version::supports_adx(), "adx instructions not supported");
9576   emit_int8((unsigned char)0xF3);
9577   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
9578   emit_int8(0x0F);
9579   emit_int8(0x38);
9580   emit_int8((unsigned char)0xF6);
9581   emit_int8((unsigned char)(0xC0 | encode));
9582 }
9583 
9584 void Assembler::andq(Address dst, int32_t imm32) {
9585   InstructionMark im(this);
9586   prefixq(dst);
9587   emit_int8((unsigned char)0x81);
9588   emit_operand(rsp, dst, 4);
9589   emit_int32(imm32);
9590 }
9591 
9592 void Assembler::andq(Register dst, int32_t imm32) {
9593   (void) prefixq_and_encode(dst->encoding());
9594   emit_arith(0x81, 0xE0, dst, imm32);
9595 }
9596 
9597 void Assembler::andq(Register dst, Address src) {
9598   InstructionMark im(this);
9599   prefixq(src, dst);
9600   emit_int8(0x23);
9601   emit_operand(dst, src);
9602 }
9603 
9604 void Assembler::andq(Register dst, Register src) {
9605   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9606   emit_arith(0x23, 0xC0, dst, src);
9607 }
9608 
9609 void Assembler::andnq(Register dst, Register src1, Register src2) {
9610   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
9611   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9612   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
9613   emit_int8((unsigned char)0xF2);
9614   emit_int8((unsigned char)(0xC0 | encode));
9615 }
9616 
9617 void Assembler::andnq(Register dst, Register src1, Address src2) {
9618   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
9619   InstructionMark im(this);
9620   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9621   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
9622   emit_int8((unsigned char)0xF2);
9623   emit_operand(dst, src2);
9624 }
9625 
9626 void Assembler::bsfq(Register dst, Register src) {
9627   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
9628   emit_int8(0x0F);
9629   emit_int8((unsigned char)0xBC);
9630   emit_int8((unsigned char)(0xC0 | encode));
9631 }
9632 
9633 void Assembler::bsrq(Register dst, Register src) {
9634   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
9635   emit_int8(0x0F);
9636   emit_int8((unsigned char)0xBD);
9637   emit_int8((unsigned char)(0xC0 | encode));
9638 }
9639 
9640 void Assembler::bswapq(Register reg) {
9641   int encode = prefixq_and_encode(reg->encoding());
9642   emit_int8(0x0F);
9643   emit_int8((unsigned char)(0xC8 | encode));
9644 }
9645 
9646 void Assembler::blsiq(Register dst, Register src) {
9647   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
9648   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9649   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
9650   emit_int8((unsigned char)0xF3);
9651   emit_int8((unsigned char)(0xC0 | encode));
9652 }
9653 
9654 void Assembler::blsiq(Register dst, Address src) {
9655   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
9656   InstructionMark im(this);
9657   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9658   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
9659   emit_int8((unsigned char)0xF3);
9660   emit_operand(rbx, src);
9661 }
9662 
9663 void Assembler::blsmskq(Register dst, Register src) {
9664   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
9665   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9666   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
9667   emit_int8((unsigned char)0xF3);
9668   emit_int8((unsigned char)(0xC0 | encode));
9669 }
9670 
9671 void Assembler::blsmskq(Register dst, Address src) {
9672   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
9673   InstructionMark im(this);
9674   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9675   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
9676   emit_int8((unsigned char)0xF3);
9677   emit_operand(rdx, src);
9678 }
9679 
9680 void Assembler::blsrq(Register dst, Register src) {
9681   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
9682   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9683   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
9684   emit_int8((unsigned char)0xF3);
9685   emit_int8((unsigned char)(0xC0 | encode));
9686 }
9687 
9688 void Assembler::blsrq(Register dst, Address src) {
9689   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
9690   InstructionMark im(this);
9691   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9692   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
9693   emit_int8((unsigned char)0xF3);
9694   emit_operand(rcx, src);
9695 }
9696 
9697 void Assembler::cdqq() {
9698   prefix(REX_W);
9699   emit_int8((unsigned char)0x99);
9700 }
9701 
9702 void Assembler::clflush(Address adr) {
9703   prefix(adr);
9704   emit_int8(0x0F);
9705   emit_int8((unsigned char)0xAE);
9706   emit_operand(rdi, adr);
9707 }
9708 
9709 void Assembler::cmovq(Condition cc, Register dst, Register src) {
9710   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
9711   emit_int8(0x0F);
9712   emit_int8(0x40 | cc);
9713   emit_int8((unsigned char)(0xC0 | encode));
9714 }
9715 
9716 void Assembler::cmovq(Condition cc, Register dst, Address src) {
9717   InstructionMark im(this);
9718   prefixq(src, dst);
9719   emit_int8(0x0F);
9720   emit_int8(0x40 | cc);
9721   emit_operand(dst, src);
9722 }
9723 
9724 void Assembler::cmpq(Address dst, int32_t imm32) {
9725   InstructionMark im(this);
9726   prefixq(dst);
9727   emit_int8((unsigned char)0x81);
9728   emit_operand(rdi, dst, 4);
9729   emit_int32(imm32);
9730 }
9731 
9732 void Assembler::cmpq(Register dst, int32_t imm32) {
9733   (void) prefixq_and_encode(dst->encoding());
9734   emit_arith(0x81, 0xF8, dst, imm32);
9735 }
9736 
9737 void Assembler::cmpq(Address dst, Register src) {
9738   InstructionMark im(this);
9739   prefixq(dst, src);
9740   emit_int8(0x3B);
9741   emit_operand(src, dst);
9742 }
9743 
9744 void Assembler::cmpq(Register dst, Register src) {
9745   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9746   emit_arith(0x3B, 0xC0, dst, src);
9747 }
9748 
9749 void Assembler::cmpq(Register dst, Address  src) {
9750   InstructionMark im(this);
9751   prefixq(src, dst);
9752   emit_int8(0x3B);
9753   emit_operand(dst, src);
9754 }
9755 
9756 void Assembler::cmpxchgq(Register reg, Address adr) {
9757   InstructionMark im(this);
9758   prefixq(adr, reg);
9759   emit_int8(0x0F);
9760   emit_int8((unsigned char)0xB1);
9761   emit_operand(reg, adr);
9762 }
9763 
9764 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
9765   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
9766   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
9767   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
9768   emit_int8(0x2A);
9769   emit_int8((unsigned char)(0xC0 | encode));
9770 }
9771 
9772 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
9773   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
9774   InstructionMark im(this);
9775   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
9776   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
9777   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
9778   emit_int8(0x2A);
9779   emit_operand(dst, src);
9780 }
9781 
9782 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
9783   NOT_LP64(assert(VM_Version::supports_sse(), ""));
9784   InstructionMark im(this);
9785   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
9786   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
9787   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
9788   emit_int8(0x2A);
9789   emit_operand(dst, src);
9790 }
9791 
9792 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
9793   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
9794   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
9795   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
9796   emit_int8(0x2C);
9797   emit_int8((unsigned char)(0xC0 | encode));
9798 }
9799 
9800 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
9801   NOT_LP64(assert(VM_Version::supports_sse(), ""));
9802   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
9803   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
9804   emit_int8(0x2C);
9805   emit_int8((unsigned char)(0xC0 | encode));
9806 }
9807 
9808 void Assembler::decl(Register dst) {
9809   // Don't use it directly. Use MacroAssembler::decrementl() instead.
9810   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
9811   int encode = prefix_and_encode(dst->encoding());
9812   emit_int8((unsigned char)0xFF);
9813   emit_int8((unsigned char)(0xC8 | encode));
9814 }
9815 
9816 void Assembler::decq(Register dst) {
9817   // Don't use it directly. Use MacroAssembler::decrementq() instead.
9818   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
9819   int encode = prefixq_and_encode(dst->encoding());
9820   emit_int8((unsigned char)0xFF);
9821   emit_int8(0xC8 | encode);
9822 }
9823 
9824 void Assembler::decq(Address dst) {
9825   // Don't use it directly. Use MacroAssembler::decrementq() instead.
9826   InstructionMark im(this);
9827   prefixq(dst);
9828   emit_int8((unsigned char)0xFF);
9829   emit_operand(rcx, dst);
9830 }
9831 
9832 void Assembler::fxrstor(Address src) {
9833   prefixq(src);
9834   emit_int8(0x0F);
9835   emit_int8((unsigned char)0xAE);
9836   emit_operand(as_Register(1), src);
9837 }
9838 
9839 void Assembler::xrstor(Address src) {
9840   prefixq(src);
9841   emit_int8(0x0F);
9842   emit_int8((unsigned char)0xAE);
9843   emit_operand(as_Register(5), src);
9844 }
9845 
9846 void Assembler::fxsave(Address dst) {
9847   prefixq(dst);
9848   emit_int8(0x0F);
9849   emit_int8((unsigned char)0xAE);
9850   emit_operand(as_Register(0), dst);
9851 }
9852 
9853 void Assembler::xsave(Address dst) {
9854   prefixq(dst);
9855   emit_int8(0x0F);
9856   emit_int8((unsigned char)0xAE);
9857   emit_operand(as_Register(4), dst);
9858 }
9859 
9860 void Assembler::idivq(Register src) {
9861   int encode = prefixq_and_encode(src->encoding());
9862   emit_int8((unsigned char)0xF7);
9863   emit_int8((unsigned char)(0xF8 | encode));
9864 }
9865 
9866 void Assembler::imulq(Register dst, Register src) {
9867   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
9868   emit_int8(0x0F);
9869   emit_int8((unsigned char)0xAF);
9870   emit_int8((unsigned char)(0xC0 | encode));
9871 }
9872 
9873 void Assembler::imulq(Register dst, Register src, int value) {
9874   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
9875   if (is8bit(value)) {
9876     emit_int8(0x6B);
9877     emit_int8((unsigned char)(0xC0 | encode));
9878     emit_int8(value & 0xFF);
9879   } else {
9880     emit_int8(0x69);
9881     emit_int8((unsigned char)(0xC0 | encode));
9882     emit_int32(value);
9883   }
9884 }
9885 
9886 void Assembler::imulq(Register dst, Address src) {
9887   InstructionMark im(this);
9888   prefixq(src, dst);
9889   emit_int8(0x0F);
9890   emit_int8((unsigned char) 0xAF);
9891   emit_operand(dst, src);
9892 }
9893 
9894 void Assembler::incl(Register dst) {
9895   // Don't use it directly. Use MacroAssembler::incrementl() instead.
9896   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
9897   int encode = prefix_and_encode(dst->encoding());
9898   emit_int8((unsigned char)0xFF);
9899   emit_int8((unsigned char)(0xC0 | encode));
9900 }
9901 
9902 void Assembler::incq(Register dst) {
9903   // Don't use it directly. Use MacroAssembler::incrementq() instead.
9904   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
9905   int encode = prefixq_and_encode(dst->encoding());
9906   emit_int8((unsigned char)0xFF);
9907   emit_int8((unsigned char)(0xC0 | encode));
9908 }
9909 
9910 void Assembler::incq(Address dst) {
9911   // Don't use it directly. Use MacroAssembler::incrementq() instead.
9912   InstructionMark im(this);
9913   prefixq(dst);
9914   emit_int8((unsigned char)0xFF);
9915   emit_operand(rax, dst);
9916 }
9917 
9918 void Assembler::lea(Register dst, Address src) {
9919   leaq(dst, src);
9920 }
9921 
9922 void Assembler::leaq(Register dst, Address src) {
9923   InstructionMark im(this);
9924   prefixq(src, dst);
9925   emit_int8((unsigned char)0x8D);
9926   emit_operand(dst, src);
9927 }
9928 
9929 void Assembler::mov64(Register dst, int64_t imm64) {
9930   InstructionMark im(this);
9931   int encode = prefixq_and_encode(dst->encoding());
9932   emit_int8((unsigned char)(0xB8 | encode));
9933   emit_int64(imm64);
9934 }
9935 
9936 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
9937   InstructionMark im(this);
9938   int encode = prefixq_and_encode(dst->encoding());
9939   emit_int8(0xB8 | encode);
9940   emit_data64(imm64, rspec);
9941 }
9942 
9943 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
9944   InstructionMark im(this);
9945   int encode = prefix_and_encode(dst->encoding());
9946   emit_int8((unsigned char)(0xB8 | encode));
9947   emit_data((int)imm32, rspec, narrow_oop_operand);
9948 }
9949 
9950 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
9951   InstructionMark im(this);
9952   prefix(dst);
9953   emit_int8((unsigned char)0xC7);
9954   emit_operand(rax, dst, 4);
9955   emit_data((int)imm32, rspec, narrow_oop_operand);
9956 }
9957 
9958 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
9959   InstructionMark im(this);
9960   int encode = prefix_and_encode(src1->encoding());
9961   emit_int8((unsigned char)0x81);
9962   emit_int8((unsigned char)(0xF8 | encode));
9963   emit_data((int)imm32, rspec, narrow_oop_operand);
9964 }
9965 
9966 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
9967   InstructionMark im(this);
9968   prefix(src1);
9969   emit_int8((unsigned char)0x81);
9970   emit_operand(rax, src1, 4);
9971   emit_data((int)imm32, rspec, narrow_oop_operand);
9972 }
9973 
9974 void Assembler::lzcntq(Register dst, Register src) {
9975   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
9976   emit_int8((unsigned char)0xF3);
9977   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
9978   emit_int8(0x0F);
9979   emit_int8((unsigned char)0xBD);
9980   emit_int8((unsigned char)(0xC0 | encode));
9981 }
9982 
9983 void Assembler::movdq(XMMRegister dst, Register src) {
9984   // table D-1 says MMX/SSE2
9985   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
9986   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
9987   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
9988   emit_int8(0x6E);
9989   emit_int8((unsigned char)(0xC0 | encode));
9990 }
9991 
9992 void Assembler::movdq(Register dst, XMMRegister src) {
9993   // table D-1 says MMX/SSE2
9994   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
9995   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
9996   // swap src/dst to get correct prefix
9997   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
9998   emit_int8(0x7E);
9999   emit_int8((unsigned char)(0xC0 | encode));
10000 }
10001 
10002 void Assembler::movq(Register dst, Register src) {
10003   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
10004   emit_int8((unsigned char)0x8B);
10005   emit_int8((unsigned char)(0xC0 | encode));
10006 }
10007 
10008 void Assembler::movq(Register dst, Address src) {
10009   InstructionMark im(this);
10010   prefixq(src, dst);
10011   emit_int8((unsigned char)0x8B);
10012   emit_operand(dst, src);
10013 }
10014 
10015 void Assembler::movq(Address dst, Register src) {
10016   InstructionMark im(this);
10017   prefixq(dst, src);
10018   emit_int8((unsigned char)0x89);
10019   emit_operand(src, dst);
10020 }
10021 
10022 void Assembler::movsbq(Register dst, Address src) {
10023   InstructionMark im(this);
10024   prefixq(src, dst);
10025   emit_int8(0x0F);
10026   emit_int8((unsigned char)0xBE);
10027   emit_operand(dst, src);
10028 }
10029 
10030 void Assembler::movsbq(Register dst, Register src) {
10031   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
10032   emit_int8(0x0F);
10033   emit_int8((unsigned char)0xBE);
10034   emit_int8((unsigned char)(0xC0 | encode));
10035 }
10036 
10037 void Assembler::movslq(Register dst, int32_t imm32) {
10038   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
10039   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
10040   // as a result we shouldn't use until tested at runtime...
10041   ShouldNotReachHere();
10042   InstructionMark im(this);
10043   int encode = prefixq_and_encode(dst->encoding());
10044   emit_int8((unsigned char)(0xC7 | encode));
10045   emit_int32(imm32);
10046 }
10047 
10048 void Assembler::movslq(Address dst, int32_t imm32) {
10049   assert(is_simm32(imm32), "lost bits");
10050   InstructionMark im(this);
10051   prefixq(dst);
10052   emit_int8((unsigned char)0xC7);
10053   emit_operand(rax, dst, 4);
10054   emit_int32(imm32);
10055 }
10056 
10057 void Assembler::movslq(Register dst, Address src) {
10058   InstructionMark im(this);
10059   prefixq(src, dst);
10060   emit_int8(0x63);
10061   emit_operand(dst, src);
10062 }
10063 
10064 void Assembler::movslq(Register dst, Register src) {
10065   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
10066   emit_int8(0x63);
10067   emit_int8((unsigned char)(0xC0 | encode));
10068 }
10069 
10070 void Assembler::movswq(Register dst, Address src) {
10071   InstructionMark im(this);
10072   prefixq(src, dst);
10073   emit_int8(0x0F);
10074   emit_int8((unsigned char)0xBF);
10075   emit_operand(dst, src);
10076 }
10077 
10078 void Assembler::movswq(Register dst, Register src) {
10079   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
10080   emit_int8((unsigned char)0x0F);
10081   emit_int8((unsigned char)0xBF);
10082   emit_int8((unsigned char)(0xC0 | encode));
10083 }
10084 
10085 void Assembler::movzbq(Register dst, Address src) {
10086   InstructionMark im(this);
10087   prefixq(src, dst);
10088   emit_int8((unsigned char)0x0F);
10089   emit_int8((unsigned char)0xB6);
10090   emit_operand(dst, src);
10091 }
10092 
10093 void Assembler::movzbq(Register dst, Register src) {
10094   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
10095   emit_int8(0x0F);
10096   emit_int8((unsigned char)0xB6);
10097   emit_int8(0xC0 | encode);
10098 }
10099 
10100 void Assembler::movzwq(Register dst, Address src) {
10101   InstructionMark im(this);
10102   prefixq(src, dst);
10103   emit_int8((unsigned char)0x0F);
10104   emit_int8((unsigned char)0xB7);
10105   emit_operand(dst, src);
10106 }
10107 
10108 void Assembler::movzwq(Register dst, Register src) {
10109   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
10110   emit_int8((unsigned char)0x0F);
10111   emit_int8((unsigned char)0xB7);
10112   emit_int8((unsigned char)(0xC0 | encode));
10113 }
10114 
10115 void Assembler::mulq(Address src) {
10116   InstructionMark im(this);
10117   prefixq(src);
10118   emit_int8((unsigned char)0xF7);
10119   emit_operand(rsp, src);
10120 }
10121 
10122 void Assembler::mulq(Register src) {
10123   int encode = prefixq_and_encode(src->encoding());
10124   emit_int8((unsigned char)0xF7);
10125   emit_int8((unsigned char)(0xE0 | encode));
10126 }
10127 
10128 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
10129   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
10130   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
10131   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
10132   emit_int8((unsigned char)0xF6);
10133   emit_int8((unsigned char)(0xC0 | encode));
10134 }
10135 
10136 void Assembler::negq(Register dst) {
10137   int encode = prefixq_and_encode(dst->encoding());
10138   emit_int8((unsigned char)0xF7);
10139   emit_int8((unsigned char)(0xD8 | encode));
10140 }
10141 
10142 void Assembler::notq(Register dst) {
10143   int encode = prefixq_and_encode(dst->encoding());
10144   emit_int8((unsigned char)0xF7);
10145   emit_int8((unsigned char)(0xD0 | encode));
10146 }
10147 
10148 void Assembler::orq(Address dst, int32_t imm32) {
10149   InstructionMark im(this);
10150   prefixq(dst);
10151   emit_int8((unsigned char)0x81);
10152   emit_operand(rcx, dst, 4);
10153   emit_int32(imm32);
10154 }
10155 
10156 void Assembler::orq(Register dst, int32_t imm32) {
10157   (void) prefixq_and_encode(dst->encoding());
10158   emit_arith(0x81, 0xC8, dst, imm32);
10159 }
10160 
10161 void Assembler::orq(Register dst, Address src) {
10162   InstructionMark im(this);
10163   prefixq(src, dst);
10164   emit_int8(0x0B);
10165   emit_operand(dst, src);
10166 }
10167 
10168 void Assembler::orq(Register dst, Register src) {
10169   (void) prefixq_and_encode(dst->encoding(), src->encoding());
10170   emit_arith(0x0B, 0xC0, dst, src);
10171 }
10172 
10173 void Assembler::popa() { // 64bit
10174   movq(r15, Address(rsp, 0));
10175   movq(r14, Address(rsp, wordSize));
10176   movq(r13, Address(rsp, 2 * wordSize));
10177   movq(r12, Address(rsp, 3 * wordSize));
10178   movq(r11, Address(rsp, 4 * wordSize));
10179   movq(r10, Address(rsp, 5 * wordSize));
10180   movq(r9,  Address(rsp, 6 * wordSize));
10181   movq(r8,  Address(rsp, 7 * wordSize));
10182   movq(rdi, Address(rsp, 8 * wordSize));
10183   movq(rsi, Address(rsp, 9 * wordSize));
10184   movq(rbp, Address(rsp, 10 * wordSize));
10185   // skip rsp
10186   movq(rbx, Address(rsp, 12 * wordSize));
10187   movq(rdx, Address(rsp, 13 * wordSize));
10188   movq(rcx, Address(rsp, 14 * wordSize));
10189   movq(rax, Address(rsp, 15 * wordSize));
10190 
10191   addq(rsp, 16 * wordSize);
10192 }
10193 
10194 void Assembler::popcntq(Register dst, Address src) {
10195   assert(VM_Version::supports_popcnt(), "must support");
10196   InstructionMark im(this);
10197   emit_int8((unsigned char)0xF3);
10198   prefixq(src, dst);
10199   emit_int8((unsigned char)0x0F);
10200   emit_int8((unsigned char)0xB8);
10201   emit_operand(dst, src);
10202 }
10203 
10204 void Assembler::popcntq(Register dst, Register src) {
10205   assert(VM_Version::supports_popcnt(), "must support");
10206   emit_int8((unsigned char)0xF3);
10207   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
10208   emit_int8((unsigned char)0x0F);
10209   emit_int8((unsigned char)0xB8);
10210   emit_int8((unsigned char)(0xC0 | encode));
10211 }
10212 
10213 void Assembler::popq(Address dst) {
10214   InstructionMark im(this);
10215   prefixq(dst);
10216   emit_int8((unsigned char)0x8F);
10217   emit_operand(rax, dst);
10218 }
10219 
10220 void Assembler::pusha() { // 64bit
10221   // we have to store original rsp.  ABI says that 128 bytes
10222   // below rsp are local scratch.
10223   movq(Address(rsp, -5 * wordSize), rsp);
10224 
10225   subq(rsp, 16 * wordSize);
10226 
10227   movq(Address(rsp, 15 * wordSize), rax);
10228   movq(Address(rsp, 14 * wordSize), rcx);
10229   movq(Address(rsp, 13 * wordSize), rdx);
10230   movq(Address(rsp, 12 * wordSize), rbx);
10231   // skip rsp
10232   movq(Address(rsp, 10 * wordSize), rbp);
10233   movq(Address(rsp, 9 * wordSize), rsi);
10234   movq(Address(rsp, 8 * wordSize), rdi);
10235   movq(Address(rsp, 7 * wordSize), r8);
10236   movq(Address(rsp, 6 * wordSize), r9);
10237   movq(Address(rsp, 5 * wordSize), r10);
10238   movq(Address(rsp, 4 * wordSize), r11);
10239   movq(Address(rsp, 3 * wordSize), r12);
10240   movq(Address(rsp, 2 * wordSize), r13);
10241   movq(Address(rsp, wordSize), r14);
10242   movq(Address(rsp, 0), r15);
10243 }
10244 
10245 void Assembler::pushq(Address src) {
10246   InstructionMark im(this);
10247   prefixq(src);
10248   emit_int8((unsigned char)0xFF);
10249   emit_operand(rsi, src);
10250 }
10251 
10252 void Assembler::rclq(Register dst, int imm8) {
10253   assert(isShiftCount(imm8 >> 1), "illegal shift count");
10254   int encode = prefixq_and_encode(dst->encoding());
10255   if (imm8 == 1) {
10256     emit_int8((unsigned char)0xD1);
10257     emit_int8((unsigned char)(0xD0 | encode));
10258   } else {
10259     emit_int8((unsigned char)0xC1);
10260     emit_int8((unsigned char)(0xD0 | encode));
10261     emit_int8(imm8);
10262   }
10263 }
10264 
10265 void Assembler::rcrq(Register dst, int imm8) {
10266   assert(isShiftCount(imm8 >> 1), "illegal shift count");
10267   int encode = prefixq_and_encode(dst->encoding());
10268   if (imm8 == 1) {
10269     emit_int8((unsigned char)0xD1);
10270     emit_int8((unsigned char)(0xD8 | encode));
10271   } else {
10272     emit_int8((unsigned char)0xC1);
10273     emit_int8((unsigned char)(0xD8 | encode));
10274     emit_int8(imm8);
10275   }
10276 }
10277 
10278 void Assembler::rorq(Register dst, int imm8) {
10279   assert(isShiftCount(imm8 >> 1), "illegal shift count");
10280   int encode = prefixq_and_encode(dst->encoding());
10281   if (imm8 == 1) {
10282     emit_int8((unsigned char)0xD1);
10283     emit_int8((unsigned char)(0xC8 | encode));
10284   } else {
10285     emit_int8((unsigned char)0xC1);
10286     emit_int8((unsigned char)(0xc8 | encode));
10287     emit_int8(imm8);
10288   }
10289 }
10290 
10291 void Assembler::rorxq(Register dst, Register src, int imm8) {
10292   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
10293   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
10294   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
10295   emit_int8((unsigned char)0xF0);
10296   emit_int8((unsigned char)(0xC0 | encode));
10297   emit_int8(imm8);
10298 }
10299 
10300 void Assembler::rorxd(Register dst, Register src, int imm8) {
10301   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
10302   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
10303   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
10304   emit_int8((unsigned char)0xF0);
10305   emit_int8((unsigned char)(0xC0 | encode));
10306   emit_int8(imm8);
10307 }
10308 
10309 void Assembler::sarq(Register dst, int imm8) {
10310   assert(isShiftCount(imm8 >> 1), "illegal shift count");
10311   int encode = prefixq_and_encode(dst->encoding());
10312   if (imm8 == 1) {
10313     emit_int8((unsigned char)0xD1);
10314     emit_int8((unsigned char)(0xF8 | encode));
10315   } else {
10316     emit_int8((unsigned char)0xC1);
10317     emit_int8((unsigned char)(0xF8 | encode));
10318     emit_int8(imm8);
10319   }
10320 }
10321 
10322 void Assembler::sarq(Register dst) {
10323   int encode = prefixq_and_encode(dst->encoding());
10324   emit_int8((unsigned char)0xD3);
10325   emit_int8((unsigned char)(0xF8 | encode));
10326 }
10327 
10328 void Assembler::sbbq(Address dst, int32_t imm32) {
10329   InstructionMark im(this);
10330   prefixq(dst);
10331   emit_arith_operand(0x81, rbx, dst, imm32);
10332 }
10333 
10334 void Assembler::sbbq(Register dst, int32_t imm32) {
10335   (void) prefixq_and_encode(dst->encoding());
10336   emit_arith(0x81, 0xD8, dst, imm32);
10337 }
10338 
10339 void Assembler::sbbq(Register dst, Address src) {
10340   InstructionMark im(this);
10341   prefixq(src, dst);
10342   emit_int8(0x1B);
10343   emit_operand(dst, src);
10344 }
10345 
10346 void Assembler::sbbq(Register dst, Register src) {
10347   (void) prefixq_and_encode(dst->encoding(), src->encoding());
10348   emit_arith(0x1B, 0xC0, dst, src);
10349 }
10350 
10351 void Assembler::shlq(Register dst, int imm8) {
10352   assert(isShiftCount(imm8 >> 1), "illegal shift count");
10353   int encode = prefixq_and_encode(dst->encoding());
10354   if (imm8 == 1) {
10355     emit_int8((unsigned char)0xD1);
10356     emit_int8((unsigned char)(0xE0 | encode));
10357   } else {
10358     emit_int8((unsigned char)0xC1);
10359     emit_int8((unsigned char)(0xE0 | encode));
10360     emit_int8(imm8);
10361   }
10362 }
10363 
10364 void Assembler::shlq(Register dst) {
10365   int encode = prefixq_and_encode(dst->encoding());
10366   emit_int8((unsigned char)0xD3);
10367   emit_int8((unsigned char)(0xE0 | encode));
10368 }
10369 
10370 void Assembler::shrq(Register dst, int imm8) {
10371   assert(isShiftCount(imm8 >> 1), "illegal shift count");
10372   int encode = prefixq_and_encode(dst->encoding());
10373   emit_int8((unsigned char)0xC1);
10374   emit_int8((unsigned char)(0xE8 | encode));
10375   emit_int8(imm8);
10376 }
10377 
10378 void Assembler::shrq(Register dst) {
10379   int encode = prefixq_and_encode(dst->encoding());
10380   emit_int8((unsigned char)0xD3);
10381   emit_int8(0xE8 | encode);
10382 }
10383 
10384 void Assembler::subq(Address dst, int32_t imm32) {
10385   InstructionMark im(this);
10386   prefixq(dst);
10387   emit_arith_operand(0x81, rbp, dst, imm32);
10388 }
10389 
10390 void Assembler::subq(Address dst, Register src) {
10391   InstructionMark im(this);
10392   prefixq(dst, src);
10393   emit_int8(0x29);
10394   emit_operand(src, dst);
10395 }
10396 
10397 void Assembler::subq(Register dst, int32_t imm32) {
10398   (void) prefixq_and_encode(dst->encoding());
10399   emit_arith(0x81, 0xE8, dst, imm32);
10400 }
10401 
10402 // Force generation of a 4 byte immediate value even if it fits into 8bit
10403 void Assembler::subq_imm32(Register dst, int32_t imm32) {
10404   (void) prefixq_and_encode(dst->encoding());
10405   emit_arith_imm32(0x81, 0xE8, dst, imm32);
10406 }
10407 
10408 void Assembler::subq(Register dst, Address src) {
10409   InstructionMark im(this);
10410   prefixq(src, dst);
10411   emit_int8(0x2B);
10412   emit_operand(dst, src);
10413 }
10414 
10415 void Assembler::subq(Register dst, Register src) {
10416   (void) prefixq_and_encode(dst->encoding(), src->encoding());
10417   emit_arith(0x2B, 0xC0, dst, src);
10418 }
10419 
10420 void Assembler::testq(Register dst, int32_t imm32) {
10421   // not using emit_arith because test
10422   // doesn't support sign-extension of
10423   // 8bit operands
10424   int encode = dst->encoding();
10425   if (encode == 0) {
10426     prefix(REX_W);
10427     emit_int8((unsigned char)0xA9);
10428   } else {
10429     encode = prefixq_and_encode(encode);
10430     emit_int8((unsigned char)0xF7);
10431     emit_int8((unsigned char)(0xC0 | encode));
10432   }
10433   emit_int32(imm32);
10434 }
10435 
10436 void Assembler::testq(Register dst, Register src) {
10437   (void) prefixq_and_encode(dst->encoding(), src->encoding());
10438   emit_arith(0x85, 0xC0, dst, src);
10439 }
10440 
10441 void Assembler::testq(Register dst, Address src) {
10442   InstructionMark im(this);
10443   prefixq(src, dst);
10444   emit_int8((unsigned char)0x85);
10445   emit_operand(dst, src);
10446 }
10447 
10448 void Assembler::xaddq(Address dst, Register src) {
10449   InstructionMark im(this);
10450   prefixq(dst, src);
10451   emit_int8(0x0F);
10452   emit_int8((unsigned char)0xC1);
10453   emit_operand(src, dst);
10454 }
10455 
10456 void Assembler::xchgq(Register dst, Address src) {
10457   InstructionMark im(this);
10458   prefixq(src, dst);
10459   emit_int8((unsigned char)0x87);
10460   emit_operand(dst, src);
10461 }
10462 
10463 void Assembler::xchgq(Register dst, Register src) {
10464   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
10465   emit_int8((unsigned char)0x87);
10466   emit_int8((unsigned char)(0xc0 | encode));
10467 }
10468 
10469 void Assembler::xorq(Register dst, Register src) {
10470   (void) prefixq_and_encode(dst->encoding(), src->encoding());
10471   emit_arith(0x33, 0xC0, dst, src);
10472 }
10473 
10474 void Assembler::xorq(Register dst, Address src) {
10475   InstructionMark im(this);
10476   prefixq(src, dst);
10477   emit_int8(0x33);
10478   emit_operand(dst, src);
10479 }
10480 
10481 #endif // !LP64