1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "nativeInst_x86.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "vmreg_x86.inline.hpp"
  42 
  43 
  44 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  45 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  46 // fast versions of NegF/NegD and AbsF/AbsD.
  47 
  48 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  49 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  50   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  51   // of 128-bits operands for SSE instructions.
  52   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  53   // Store the value to a 128-bits operand.
  54   operand[0] = lo;
  55   operand[1] = hi;
  56   return operand;
  57 }
  58 
  59 // Buffer for 128-bits masks used by SSE instructions.
  60 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  61 
  62 // Static initialization during VM startup.
  63 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  64 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  65 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  66 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  67 
  68 
  69 
  70 NEEDS_CLEANUP // remove this definitions ?
  71 const Register IC_Klass    = rax;   // where the IC klass is cached
  72 const Register SYNC_header = rax;   // synchronization header
  73 const Register SHIFT_count = rcx;   // where count for shift operations must be
  74 
  75 #define __ _masm->
  76 
  77 
  78 static void select_different_registers(Register preserve,
  79                                        Register extra,
  80                                        Register &tmp1,
  81                                        Register &tmp2) {
  82   if (tmp1 == preserve) {
  83     assert_different_registers(tmp1, tmp2, extra);
  84     tmp1 = extra;
  85   } else if (tmp2 == preserve) {
  86     assert_different_registers(tmp1, tmp2, extra);
  87     tmp2 = extra;
  88   }
  89   assert_different_registers(preserve, tmp1, tmp2);
  90 }
  91 
  92 
  93 
  94 static void select_different_registers(Register preserve,
  95                                        Register extra,
  96                                        Register &tmp1,
  97                                        Register &tmp2,
  98                                        Register &tmp3) {
  99   if (tmp1 == preserve) {
 100     assert_different_registers(tmp1, tmp2, tmp3, extra);
 101     tmp1 = extra;
 102   } else if (tmp2 == preserve) {
 103     assert_different_registers(tmp1, tmp2, tmp3, extra);
 104     tmp2 = extra;
 105   } else if (tmp3 == preserve) {
 106     assert_different_registers(tmp1, tmp2, tmp3, extra);
 107     tmp3 = extra;
 108   }
 109   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 110 }
 111 
 112 
 113 
 114 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 115   if (opr->is_constant()) {
 116     LIR_Const* constant = opr->as_constant_ptr();
 117     switch (constant->type()) {
 118       case T_INT: {
 119         return true;
 120       }
 121 
 122       default:
 123         return false;
 124     }
 125   }
 126   return false;
 127 }
 128 
 129 
 130 LIR_Opr LIR_Assembler::receiverOpr() {
 131   return FrameMap::receiver_opr;
 132 }
 133 
 134 LIR_Opr LIR_Assembler::osrBufferPointer() {
 135   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 136 }
 137 
 138 //--------------fpu register translations-----------------------
 139 
 140 
 141 address LIR_Assembler::float_constant(float f) {
 142   address const_addr = __ float_constant(f);
 143   if (const_addr == NULL) {
 144     bailout("const section overflow");
 145     return __ code()->consts()->start();
 146   } else {
 147     return const_addr;
 148   }
 149 }
 150 
 151 
 152 address LIR_Assembler::double_constant(double d) {
 153   address const_addr = __ double_constant(d);
 154   if (const_addr == NULL) {
 155     bailout("const section overflow");
 156     return __ code()->consts()->start();
 157   } else {
 158     return const_addr;
 159   }
 160 }
 161 
 162 
 163 void LIR_Assembler::set_24bit_FPU() {
 164   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 165 }
 166 
 167 void LIR_Assembler::reset_FPU() {
 168   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 169 }
 170 
 171 void LIR_Assembler::fpop() {
 172   __ fpop();
 173 }
 174 
 175 void LIR_Assembler::fxch(int i) {
 176   __ fxch(i);
 177 }
 178 
 179 void LIR_Assembler::fld(int i) {
 180   __ fld_s(i);
 181 }
 182 
 183 void LIR_Assembler::ffree(int i) {
 184   __ ffree(i);
 185 }
 186 
 187 void LIR_Assembler::breakpoint() {
 188   __ int3();
 189 }
 190 
 191 void LIR_Assembler::push(LIR_Opr opr) {
 192   if (opr->is_single_cpu()) {
 193     __ push_reg(opr->as_register());
 194   } else if (opr->is_double_cpu()) {
 195     NOT_LP64(__ push_reg(opr->as_register_hi()));
 196     __ push_reg(opr->as_register_lo());
 197   } else if (opr->is_stack()) {
 198     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 199   } else if (opr->is_constant()) {
 200     LIR_Const* const_opr = opr->as_constant_ptr();
 201     if (const_opr->type() == T_OBJECT) {
 202       __ push_oop(const_opr->as_jobject());
 203     } else if (const_opr->type() == T_INT) {
 204       __ push_jint(const_opr->as_jint());
 205     } else {
 206       ShouldNotReachHere();
 207     }
 208 
 209   } else {
 210     ShouldNotReachHere();
 211   }
 212 }
 213 
 214 void LIR_Assembler::pop(LIR_Opr opr) {
 215   if (opr->is_single_cpu()) {
 216     __ pop_reg(opr->as_register());
 217   } else {
 218     ShouldNotReachHere();
 219   }
 220 }
 221 
 222 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 223   return addr->base()->is_illegal() && addr->index()->is_illegal();
 224 }
 225 
 226 //-------------------------------------------
 227 
 228 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 229   return as_Address(addr, rscratch1);
 230 }
 231 
 232 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 233   if (addr->base()->is_illegal()) {
 234     assert(addr->index()->is_illegal(), "must be illegal too");
 235     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 236     if (! __ reachable(laddr)) {
 237       __ movptr(tmp, laddr.addr());
 238       Address res(tmp, 0);
 239       return res;
 240     } else {
 241       return __ as_Address(laddr);
 242     }
 243   }
 244 
 245   Register base = addr->base()->as_pointer_register();
 246 
 247   if (addr->index()->is_illegal()) {
 248     return Address( base, addr->disp());
 249   } else if (addr->index()->is_cpu_register()) {
 250     Register index = addr->index()->as_pointer_register();
 251     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 252   } else if (addr->index()->is_constant()) {
 253     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 254     assert(Assembler::is_simm32(addr_offset), "must be");
 255 
 256     return Address(base, addr_offset);
 257   } else {
 258     Unimplemented();
 259     return Address();
 260   }
 261 }
 262 
 263 
 264 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 265   Address base = as_Address(addr);
 266   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 267 }
 268 
 269 
 270 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 271   return as_Address(addr);
 272 }
 273 
 274 
 275 void LIR_Assembler::osr_entry() {
 276   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 277   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 278   ValueStack* entry_state = osr_entry->state();
 279   int number_of_locks = entry_state->locks_size();
 280 
 281   // we jump here if osr happens with the interpreter
 282   // state set up to continue at the beginning of the
 283   // loop that triggered osr - in particular, we have
 284   // the following registers setup:
 285   //
 286   // rcx: osr buffer
 287   //
 288 
 289   // build frame
 290   ciMethod* m = compilation()->method();
 291   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 292 
 293   // OSR buffer is
 294   //
 295   // locals[nlocals-1..0]
 296   // monitors[0..number_of_locks]
 297   //
 298   // locals is a direct copy of the interpreter frame so in the osr buffer
 299   // so first slot in the local array is the last local from the interpreter
 300   // and last slot is local[0] (receiver) from the interpreter
 301   //
 302   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 303   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 304   // in the interpreter frame (the method lock if a sync method)
 305 
 306   // Initialize monitors in the compiled activation.
 307   //   rcx: pointer to osr buffer
 308   //
 309   // All other registers are dead at this point and the locals will be
 310   // copied into place by code emitted in the IR.
 311 
 312   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 313   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 314     int monitor_offset = BytesPerWord * method()->max_locals() +
 315       (2 * BytesPerWord) * (number_of_locks - 1);
 316     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 317     // the OSR buffer using 2 word entries: first the lock and then
 318     // the oop.
 319     for (int i = 0; i < number_of_locks; i++) {
 320       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 321 #ifdef ASSERT
 322       // verify the interpreter's monitor has a non-null object
 323       {
 324         Label L;
 325         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 326         __ jcc(Assembler::notZero, L);
 327         __ stop("locked object is NULL");
 328         __ bind(L);
 329       }
 330 #endif
 331       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 332       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 333       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 334       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 335     }
 336   }
 337 }
 338 
 339 
 340 // inline cache check; done before the frame is built.
 341 int LIR_Assembler::check_icache() {
 342   Register receiver = FrameMap::receiver_opr->as_register();
 343   Register ic_klass = IC_Klass;
 344   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 345   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 346   if (!do_post_padding) {
 347     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 348     __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
 349   }
 350   int offset = __ offset();
 351   __ inline_cache_check(receiver, IC_Klass);
 352   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 353   if (do_post_padding) {
 354     // force alignment after the cache check.
 355     // It's been verified to be aligned if !VerifyOops
 356     __ align(CodeEntryAlignment);
 357   }
 358   return offset;
 359 }
 360 
 361 
 362 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 363   jobject o = NULL;
 364   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 365   __ movoop(reg, o);
 366   patching_epilog(patch, lir_patch_normal, reg, info);
 367 }
 368 
 369 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 370   Metadata* o = NULL;
 371   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 372   __ mov_metadata(reg, o);
 373   patching_epilog(patch, lir_patch_normal, reg, info);
 374 }
 375 
 376 // This specifies the rsp decrement needed to build the frame
 377 int LIR_Assembler::initial_frame_size_in_bytes() const {
 378   // if rounding, must let FrameMap know!
 379 
 380   // The frame_map records size in slots (32bit word)
 381 
 382   // subtract two words to account for return address and link
 383   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 384 }
 385 
 386 
 387 int LIR_Assembler::emit_exception_handler() {
 388   // if the last instruction is a call (typically to do a throw which
 389   // is coming at the end after block reordering) the return address
 390   // must still point into the code area in order to avoid assertion
 391   // failures when searching for the corresponding bci => add a nop
 392   // (was bug 5/14/1999 - gri)
 393   __ nop();
 394 
 395   // generate code for exception handler
 396   address handler_base = __ start_a_stub(exception_handler_size);
 397   if (handler_base == NULL) {
 398     // not enough space left for the handler
 399     bailout("exception handler overflow");
 400     return -1;
 401   }
 402 
 403   int offset = code_offset();
 404 
 405   // the exception oop and pc are in rax, and rdx
 406   // no other registers need to be preserved, so invalidate them
 407   __ invalidate_registers(false, true, true, false, true, true);
 408 
 409   // check that there is really an exception
 410   __ verify_not_null_oop(rax);
 411 
 412   // search an exception handler (rax: exception oop, rdx: throwing pc)
 413   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 414   __ should_not_reach_here();
 415   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
 416   __ end_a_stub();
 417 
 418   return offset;
 419 }
 420 
 421 
 422 // Emit the code to remove the frame from the stack in the exception
 423 // unwind path.
 424 int LIR_Assembler::emit_unwind_handler() {
 425 #ifndef PRODUCT
 426   if (CommentedAssembly) {
 427     _masm->block_comment("Unwind handler");
 428   }
 429 #endif
 430 
 431   int offset = code_offset();
 432 
 433   // Fetch the exception from TLS and clear out exception related thread state
 434   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 435   NOT_LP64(__ get_thread(rsi));
 436   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 437   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 438   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 439 
 440   __ bind(_unwind_handler_entry);
 441   __ verify_not_null_oop(rax);
 442   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 443     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 444   }
 445 
 446   // Preform needed unlocking
 447   MonitorExitStub* stub = NULL;
 448   if (method()->is_synchronized()) {
 449     monitor_address(0, FrameMap::rax_opr);
 450     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 451     __ unlock_object(rdi, rsi, rax, *stub->entry());
 452     __ bind(*stub->continuation());
 453   }
 454 
 455   if (compilation()->env()->dtrace_method_probes()) {
 456 #ifdef _LP64
 457     __ mov(rdi, r15_thread);
 458     __ mov_metadata(rsi, method()->constant_encoding());
 459 #else
 460     __ get_thread(rax);
 461     __ movptr(Address(rsp, 0), rax);
 462     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 463 #endif
 464     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 465   }
 466 
 467   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 468     __ mov(rax, rbx);  // Restore the exception
 469   }
 470 
 471   // remove the activation and dispatch to the unwind handler
 472   __ remove_frame(initial_frame_size_in_bytes());
 473   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 474 
 475   // Emit the slow path assembly
 476   if (stub != NULL) {
 477     stub->emit_code(this);
 478   }
 479 
 480   return offset;
 481 }
 482 
 483 
 484 int LIR_Assembler::emit_deopt_handler() {
 485   // if the last instruction is a call (typically to do a throw which
 486   // is coming at the end after block reordering) the return address
 487   // must still point into the code area in order to avoid assertion
 488   // failures when searching for the corresponding bci => add a nop
 489   // (was bug 5/14/1999 - gri)
 490   __ nop();
 491 
 492   // generate code for exception handler
 493   address handler_base = __ start_a_stub(deopt_handler_size);
 494   if (handler_base == NULL) {
 495     // not enough space left for the handler
 496     bailout("deopt handler overflow");
 497     return -1;
 498   }
 499 
 500   int offset = code_offset();
 501   InternalAddress here(__ pc());
 502 
 503   __ pushptr(here.addr());
 504   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 505   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
 506   __ end_a_stub();
 507 
 508   return offset;
 509 }
 510 
 511 
 512 void LIR_Assembler::return_op(LIR_Opr result) {
 513   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 514   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 515     assert(result->fpu() == 0, "result must already be on TOS");
 516   }
 517 
 518   // Pop the stack before the safepoint code
 519   __ remove_frame(initial_frame_size_in_bytes());
 520 
 521   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 522     __ reserved_stack_check();
 523   }
 524 
 525   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 526 
 527   // Note: we do not need to round double result; float result has the right precision
 528   // the poll sets the condition code, but no data registers
 529   AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 530 
 531   if (Assembler::is_polling_page_far()) {
 532     __ lea(rscratch1, polling_page);
 533     __ relocate(relocInfo::poll_return_type);
 534     __ testl(rax, Address(rscratch1, 0));
 535   } else {
 536     __ testl(rax, polling_page);
 537   }
 538   __ ret(0);
 539 }
 540 
 541 
 542 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 543   AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
 544   guarantee(info != NULL, "Shouldn't be NULL");
 545   int offset = __ offset();
 546   if (Assembler::is_polling_page_far()) {
 547     __ lea(rscratch1, polling_page);
 548     offset = __ offset();
 549     add_debug_info_for_branch(info);
 550     __ relocate(relocInfo::poll_type);
 551     __ testl(rax, Address(rscratch1, 0));
 552   } else {
 553     add_debug_info_for_branch(info);
 554     __ testl(rax, polling_page);
 555   }
 556   return offset;
 557 }
 558 
 559 
 560 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 561   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 562 }
 563 
 564 void LIR_Assembler::swap_reg(Register a, Register b) {
 565   __ xchgptr(a, b);
 566 }
 567 
 568 
 569 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 570   assert(src->is_constant(), "should not call otherwise");
 571   assert(dest->is_register(), "should not call otherwise");
 572   LIR_Const* c = src->as_constant_ptr();
 573 
 574   switch (c->type()) {
 575     case T_INT: {
 576       assert(patch_code == lir_patch_none, "no patching handled here");
 577       __ movl(dest->as_register(), c->as_jint());
 578       break;
 579     }
 580 
 581     case T_ADDRESS: {
 582       assert(patch_code == lir_patch_none, "no patching handled here");
 583       __ movptr(dest->as_register(), c->as_jint());
 584       break;
 585     }
 586 
 587     case T_LONG: {
 588       assert(patch_code == lir_patch_none, "no patching handled here");
 589 #ifdef _LP64
 590       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 591 #else
 592       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 593       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 594 #endif // _LP64
 595       break;
 596     }
 597 
 598     case T_OBJECT: {
 599       if (patch_code != lir_patch_none) {
 600         jobject2reg_with_patching(dest->as_register(), info);
 601       } else {
 602         __ movoop(dest->as_register(), c->as_jobject());
 603       }
 604       break;
 605     }
 606 
 607     case T_METADATA: {
 608       if (patch_code != lir_patch_none) {
 609         klass2reg_with_patching(dest->as_register(), info);
 610       } else {
 611         __ mov_metadata(dest->as_register(), c->as_metadata());
 612       }
 613       break;
 614     }
 615 
 616     case T_FLOAT: {
 617       if (dest->is_single_xmm()) {
 618         if (c->is_zero_float()) {
 619           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 620         } else {
 621           __ movflt(dest->as_xmm_float_reg(),
 622                    InternalAddress(float_constant(c->as_jfloat())));
 623         }
 624       } else {
 625         assert(dest->is_single_fpu(), "must be");
 626         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 627         if (c->is_zero_float()) {
 628           __ fldz();
 629         } else if (c->is_one_float()) {
 630           __ fld1();
 631         } else {
 632           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 633         }
 634       }
 635       break;
 636     }
 637 
 638     case T_DOUBLE: {
 639       if (dest->is_double_xmm()) {
 640         if (c->is_zero_double()) {
 641           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 642         } else {
 643           __ movdbl(dest->as_xmm_double_reg(),
 644                     InternalAddress(double_constant(c->as_jdouble())));
 645         }
 646       } else {
 647         assert(dest->is_double_fpu(), "must be");
 648         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 649         if (c->is_zero_double()) {
 650           __ fldz();
 651         } else if (c->is_one_double()) {
 652           __ fld1();
 653         } else {
 654           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 655         }
 656       }
 657       break;
 658     }
 659 
 660     default:
 661       ShouldNotReachHere();
 662   }
 663 }
 664 
 665 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 666   assert(src->is_constant(), "should not call otherwise");
 667   assert(dest->is_stack(), "should not call otherwise");
 668   LIR_Const* c = src->as_constant_ptr();
 669 
 670   switch (c->type()) {
 671     case T_INT:  // fall through
 672     case T_FLOAT:
 673       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 674       break;
 675 
 676     case T_ADDRESS:
 677       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 678       break;
 679 
 680     case T_OBJECT:
 681       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 682       break;
 683 
 684     case T_LONG:  // fall through
 685     case T_DOUBLE:
 686 #ifdef _LP64
 687       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 688                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 689 #else
 690       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 691                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 692       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 693                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 694 #endif // _LP64
 695       break;
 696 
 697     default:
 698       ShouldNotReachHere();
 699   }
 700 }
 701 
 702 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 703   assert(src->is_constant(), "should not call otherwise");
 704   assert(dest->is_address(), "should not call otherwise");
 705   LIR_Const* c = src->as_constant_ptr();
 706   LIR_Address* addr = dest->as_address_ptr();
 707 
 708   int null_check_here = code_offset();
 709   switch (type) {
 710     case T_INT:    // fall through
 711     case T_FLOAT:
 712       __ movl(as_Address(addr), c->as_jint_bits());
 713       break;
 714 
 715     case T_ADDRESS:
 716       __ movptr(as_Address(addr), c->as_jint_bits());
 717       break;
 718 
 719     case T_OBJECT:  // fall through
 720     case T_ARRAY:
 721       if (c->as_jobject() == NULL) {
 722         if (UseCompressedOops && !wide) {
 723           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 724         } else {
 725 #ifdef _LP64
 726           __ xorptr(rscratch1, rscratch1);
 727           null_check_here = code_offset();
 728           __ movptr(as_Address(addr), rscratch1);
 729 #else
 730           __ movptr(as_Address(addr), NULL_WORD);
 731 #endif
 732         }
 733       } else {
 734         if (is_literal_address(addr)) {
 735           ShouldNotReachHere();
 736           __ movoop(as_Address(addr, noreg), c->as_jobject());
 737         } else {
 738 #ifdef _LP64
 739           __ movoop(rscratch1, c->as_jobject());
 740           if (UseCompressedOops && !wide) {
 741             __ encode_heap_oop(rscratch1);
 742             null_check_here = code_offset();
 743             __ movl(as_Address_lo(addr), rscratch1);
 744           } else {
 745             null_check_here = code_offset();
 746             __ movptr(as_Address_lo(addr), rscratch1);
 747           }
 748 #else
 749           __ movoop(as_Address(addr), c->as_jobject());
 750 #endif
 751         }
 752       }
 753       break;
 754 
 755     case T_LONG:    // fall through
 756     case T_DOUBLE:
 757 #ifdef _LP64
 758       if (is_literal_address(addr)) {
 759         ShouldNotReachHere();
 760         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 761       } else {
 762         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 763         null_check_here = code_offset();
 764         __ movptr(as_Address_lo(addr), r10);
 765       }
 766 #else
 767       // Always reachable in 32bit so this doesn't produce useless move literal
 768       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 769       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 770 #endif // _LP64
 771       break;
 772 
 773     case T_BOOLEAN: // fall through
 774     case T_BYTE:
 775       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 776       break;
 777 
 778     case T_CHAR:    // fall through
 779     case T_SHORT:
 780       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 781       break;
 782 
 783     default:
 784       ShouldNotReachHere();
 785   };
 786 
 787   if (info != NULL) {
 788     add_debug_info_for_null_check(null_check_here, info);
 789   }
 790 }
 791 
 792 
 793 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 794   assert(src->is_register(), "should not call otherwise");
 795   assert(dest->is_register(), "should not call otherwise");
 796 
 797   // move between cpu-registers
 798   if (dest->is_single_cpu()) {
 799 #ifdef _LP64
 800     if (src->type() == T_LONG) {
 801       // Can do LONG -> OBJECT
 802       move_regs(src->as_register_lo(), dest->as_register());
 803       return;
 804     }
 805 #endif
 806     assert(src->is_single_cpu(), "must match");
 807     if (src->type() == T_OBJECT) {
 808       __ verify_oop(src->as_register());
 809     }
 810     move_regs(src->as_register(), dest->as_register());
 811 
 812   } else if (dest->is_double_cpu()) {
 813 #ifdef _LP64
 814     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 815       // Surprising to me but we can see move of a long to t_object
 816       __ verify_oop(src->as_register());
 817       move_regs(src->as_register(), dest->as_register_lo());
 818       return;
 819     }
 820 #endif
 821     assert(src->is_double_cpu(), "must match");
 822     Register f_lo = src->as_register_lo();
 823     Register f_hi = src->as_register_hi();
 824     Register t_lo = dest->as_register_lo();
 825     Register t_hi = dest->as_register_hi();
 826 #ifdef _LP64
 827     assert(f_hi == f_lo, "must be same");
 828     assert(t_hi == t_lo, "must be same");
 829     move_regs(f_lo, t_lo);
 830 #else
 831     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 832 
 833 
 834     if (f_lo == t_hi && f_hi == t_lo) {
 835       swap_reg(f_lo, f_hi);
 836     } else if (f_hi == t_lo) {
 837       assert(f_lo != t_hi, "overwriting register");
 838       move_regs(f_hi, t_hi);
 839       move_regs(f_lo, t_lo);
 840     } else {
 841       assert(f_hi != t_lo, "overwriting register");
 842       move_regs(f_lo, t_lo);
 843       move_regs(f_hi, t_hi);
 844     }
 845 #endif // LP64
 846 
 847     // special moves from fpu-register to xmm-register
 848     // necessary for method results
 849   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 850     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 851     __ fld_s(Address(rsp, 0));
 852   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 853     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 854     __ fld_d(Address(rsp, 0));
 855   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 856     __ fstp_s(Address(rsp, 0));
 857     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 858   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 859     __ fstp_d(Address(rsp, 0));
 860     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 861 
 862     // move between xmm-registers
 863   } else if (dest->is_single_xmm()) {
 864     assert(src->is_single_xmm(), "must match");
 865     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 866   } else if (dest->is_double_xmm()) {
 867     assert(src->is_double_xmm(), "must match");
 868     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 869 
 870     // move between fpu-registers (no instruction necessary because of fpu-stack)
 871   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 872     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 873     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 874   } else {
 875     ShouldNotReachHere();
 876   }
 877 }
 878 
 879 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 880   assert(src->is_register(), "should not call otherwise");
 881   assert(dest->is_stack(), "should not call otherwise");
 882 
 883   if (src->is_single_cpu()) {
 884     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 885     if (type == T_OBJECT || type == T_ARRAY) {
 886       __ verify_oop(src->as_register());
 887       __ movptr (dst, src->as_register());
 888     } else if (type == T_METADATA) {
 889       __ movptr (dst, src->as_register());
 890     } else {
 891       __ movl (dst, src->as_register());
 892     }
 893 
 894   } else if (src->is_double_cpu()) {
 895     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 896     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 897     __ movptr (dstLO, src->as_register_lo());
 898     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 899 
 900   } else if (src->is_single_xmm()) {
 901     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 902     __ movflt(dst_addr, src->as_xmm_float_reg());
 903 
 904   } else if (src->is_double_xmm()) {
 905     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 906     __ movdbl(dst_addr, src->as_xmm_double_reg());
 907 
 908   } else if (src->is_single_fpu()) {
 909     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 910     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 911     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 912     else                   __ fst_s  (dst_addr);
 913 
 914   } else if (src->is_double_fpu()) {
 915     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 916     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 917     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 918     else                   __ fst_d  (dst_addr);
 919 
 920   } else {
 921     ShouldNotReachHere();
 922   }
 923 }
 924 
 925 
 926 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 927   LIR_Address* to_addr = dest->as_address_ptr();
 928   PatchingStub* patch = NULL;
 929   Register compressed_src = rscratch1;
 930 
 931   if (type == T_ARRAY || type == T_OBJECT) {
 932     __ verify_oop(src->as_register());
 933 #ifdef _LP64
 934     if (UseCompressedOops && !wide) {
 935       __ movptr(compressed_src, src->as_register());
 936       __ encode_heap_oop(compressed_src);
 937       if (patch_code != lir_patch_none) {
 938         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 939       }
 940     }
 941 #endif
 942   }
 943 
 944   if (patch_code != lir_patch_none) {
 945     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 946     Address toa = as_Address(to_addr);
 947     assert(toa.disp() != 0, "must have");
 948   }
 949 
 950   int null_check_here = code_offset();
 951   switch (type) {
 952     case T_FLOAT: {
 953       if (src->is_single_xmm()) {
 954         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 955       } else {
 956         assert(src->is_single_fpu(), "must be");
 957         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 958         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 959         else                    __ fst_s (as_Address(to_addr));
 960       }
 961       break;
 962     }
 963 
 964     case T_DOUBLE: {
 965       if (src->is_double_xmm()) {
 966         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 967       } else {
 968         assert(src->is_double_fpu(), "must be");
 969         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 970         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
 971         else                    __ fst_d (as_Address(to_addr));
 972       }
 973       break;
 974     }
 975 
 976     case T_ARRAY:   // fall through
 977     case T_OBJECT:  // fall through
 978       if (UseCompressedOops && !wide) {
 979         __ movl(as_Address(to_addr), compressed_src);
 980       } else {
 981         __ movptr(as_Address(to_addr), src->as_register());
 982       }
 983       break;
 984     case T_METADATA:
 985       // We get here to store a method pointer to the stack to pass to
 986       // a dtrace runtime call. This can't work on 64 bit with
 987       // compressed klass ptrs: T_METADATA can be a compressed klass
 988       // ptr or a 64 bit method pointer.
 989       LP64_ONLY(ShouldNotReachHere());
 990       __ movptr(as_Address(to_addr), src->as_register());
 991       break;
 992     case T_ADDRESS:
 993       __ movptr(as_Address(to_addr), src->as_register());
 994       break;
 995     case T_INT:
 996       __ movl(as_Address(to_addr), src->as_register());
 997       break;
 998 
 999     case T_LONG: {
1000       Register from_lo = src->as_register_lo();
1001       Register from_hi = src->as_register_hi();
1002 #ifdef _LP64
1003       __ movptr(as_Address_lo(to_addr), from_lo);
1004 #else
1005       Register base = to_addr->base()->as_register();
1006       Register index = noreg;
1007       if (to_addr->index()->is_register()) {
1008         index = to_addr->index()->as_register();
1009       }
1010       if (base == from_lo || index == from_lo) {
1011         assert(base != from_hi, "can't be");
1012         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1013         __ movl(as_Address_hi(to_addr), from_hi);
1014         if (patch != NULL) {
1015           patching_epilog(patch, lir_patch_high, base, info);
1016           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1017           patch_code = lir_patch_low;
1018         }
1019         __ movl(as_Address_lo(to_addr), from_lo);
1020       } else {
1021         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1022         __ movl(as_Address_lo(to_addr), from_lo);
1023         if (patch != NULL) {
1024           patching_epilog(patch, lir_patch_low, base, info);
1025           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1026           patch_code = lir_patch_high;
1027         }
1028         __ movl(as_Address_hi(to_addr), from_hi);
1029       }
1030 #endif // _LP64
1031       break;
1032     }
1033 
1034     case T_BYTE:    // fall through
1035     case T_BOOLEAN: {
1036       Register src_reg = src->as_register();
1037       Address dst_addr = as_Address(to_addr);
1038       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1039       __ movb(dst_addr, src_reg);
1040       break;
1041     }
1042 
1043     case T_CHAR:    // fall through
1044     case T_SHORT:
1045       __ movw(as_Address(to_addr), src->as_register());
1046       break;
1047 
1048     default:
1049       ShouldNotReachHere();
1050   }
1051   if (info != NULL) {
1052     add_debug_info_for_null_check(null_check_here, info);
1053   }
1054 
1055   if (patch_code != lir_patch_none) {
1056     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1057   }
1058 }
1059 
1060 
1061 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1062   assert(src->is_stack(), "should not call otherwise");
1063   assert(dest->is_register(), "should not call otherwise");
1064 
1065   if (dest->is_single_cpu()) {
1066     if (type == T_ARRAY || type == T_OBJECT) {
1067       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1068       __ verify_oop(dest->as_register());
1069     } else if (type == T_METADATA) {
1070       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1071     } else {
1072       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1073     }
1074 
1075   } else if (dest->is_double_cpu()) {
1076     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1077     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1078     __ movptr(dest->as_register_lo(), src_addr_LO);
1079     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1080 
1081   } else if (dest->is_single_xmm()) {
1082     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1083     __ movflt(dest->as_xmm_float_reg(), src_addr);
1084 
1085   } else if (dest->is_double_xmm()) {
1086     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1087     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1088 
1089   } else if (dest->is_single_fpu()) {
1090     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1091     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1092     __ fld_s(src_addr);
1093 
1094   } else if (dest->is_double_fpu()) {
1095     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1096     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1097     __ fld_d(src_addr);
1098 
1099   } else {
1100     ShouldNotReachHere();
1101   }
1102 }
1103 
1104 
1105 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1106   if (src->is_single_stack()) {
1107     if (type == T_OBJECT || type == T_ARRAY) {
1108       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1109       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1110     } else {
1111 #ifndef _LP64
1112       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1113       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1114 #else
1115       //no pushl on 64bits
1116       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1117       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1118 #endif
1119     }
1120 
1121   } else if (src->is_double_stack()) {
1122 #ifdef _LP64
1123     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1124     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1125 #else
1126     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1127     // push and pop the part at src + wordSize, adding wordSize for the previous push
1128     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1129     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1130     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1131 #endif // _LP64
1132 
1133   } else {
1134     ShouldNotReachHere();
1135   }
1136 }
1137 
1138 
1139 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1140   assert(src->is_address(), "should not call otherwise");
1141   assert(dest->is_register(), "should not call otherwise");
1142 
1143   LIR_Address* addr = src->as_address_ptr();
1144   Address from_addr = as_Address(addr);
1145 
1146   if (addr->base()->type() == T_OBJECT) {
1147     __ verify_oop(addr->base()->as_pointer_register());
1148   }
1149 
1150   switch (type) {
1151     case T_BOOLEAN: // fall through
1152     case T_BYTE:    // fall through
1153     case T_CHAR:    // fall through
1154     case T_SHORT:
1155       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1156         // on pre P6 processors we may get partial register stalls
1157         // so blow away the value of to_rinfo before loading a
1158         // partial word into it.  Do it here so that it precedes
1159         // the potential patch point below.
1160         __ xorptr(dest->as_register(), dest->as_register());
1161       }
1162       break;
1163   }
1164 
1165   PatchingStub* patch = NULL;
1166   if (patch_code != lir_patch_none) {
1167     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1168     assert(from_addr.disp() != 0, "must have");
1169   }
1170   if (info != NULL) {
1171     add_debug_info_for_null_check_here(info);
1172   }
1173 
1174   switch (type) {
1175     case T_FLOAT: {
1176       if (dest->is_single_xmm()) {
1177         __ movflt(dest->as_xmm_float_reg(), from_addr);
1178       } else {
1179         assert(dest->is_single_fpu(), "must be");
1180         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1181         __ fld_s(from_addr);
1182       }
1183       break;
1184     }
1185 
1186     case T_DOUBLE: {
1187       if (dest->is_double_xmm()) {
1188         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1189       } else {
1190         assert(dest->is_double_fpu(), "must be");
1191         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1192         __ fld_d(from_addr);
1193       }
1194       break;
1195     }
1196 
1197     case T_OBJECT:  // fall through
1198     case T_ARRAY:   // fall through
1199       if (UseCompressedOops && !wide) {
1200         __ movl(dest->as_register(), from_addr);
1201       } else {
1202         __ movptr(dest->as_register(), from_addr);
1203       }
1204       break;
1205 
1206     case T_ADDRESS:
1207       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1208         __ movl(dest->as_register(), from_addr);
1209       } else {
1210         __ movptr(dest->as_register(), from_addr);
1211       }
1212       break;
1213     case T_INT:
1214       __ movl(dest->as_register(), from_addr);
1215       break;
1216 
1217     case T_LONG: {
1218       Register to_lo = dest->as_register_lo();
1219       Register to_hi = dest->as_register_hi();
1220 #ifdef _LP64
1221       __ movptr(to_lo, as_Address_lo(addr));
1222 #else
1223       Register base = addr->base()->as_register();
1224       Register index = noreg;
1225       if (addr->index()->is_register()) {
1226         index = addr->index()->as_register();
1227       }
1228       if ((base == to_lo && index == to_hi) ||
1229           (base == to_hi && index == to_lo)) {
1230         // addresses with 2 registers are only formed as a result of
1231         // array access so this code will never have to deal with
1232         // patches or null checks.
1233         assert(info == NULL && patch == NULL, "must be");
1234         __ lea(to_hi, as_Address(addr));
1235         __ movl(to_lo, Address(to_hi, 0));
1236         __ movl(to_hi, Address(to_hi, BytesPerWord));
1237       } else if (base == to_lo || index == to_lo) {
1238         assert(base != to_hi, "can't be");
1239         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1240         __ movl(to_hi, as_Address_hi(addr));
1241         if (patch != NULL) {
1242           patching_epilog(patch, lir_patch_high, base, info);
1243           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1244           patch_code = lir_patch_low;
1245         }
1246         __ movl(to_lo, as_Address_lo(addr));
1247       } else {
1248         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1249         __ movl(to_lo, as_Address_lo(addr));
1250         if (patch != NULL) {
1251           patching_epilog(patch, lir_patch_low, base, info);
1252           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1253           patch_code = lir_patch_high;
1254         }
1255         __ movl(to_hi, as_Address_hi(addr));
1256       }
1257 #endif // _LP64
1258       break;
1259     }
1260 
1261     case T_BOOLEAN: // fall through
1262     case T_BYTE: {
1263       Register dest_reg = dest->as_register();
1264       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1265       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1266         __ movsbl(dest_reg, from_addr);
1267       } else {
1268         __ movb(dest_reg, from_addr);
1269         __ shll(dest_reg, 24);
1270         __ sarl(dest_reg, 24);
1271       }
1272       break;
1273     }
1274 
1275     case T_CHAR: {
1276       Register dest_reg = dest->as_register();
1277       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1278       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1279         __ movzwl(dest_reg, from_addr);
1280       } else {
1281         __ movw(dest_reg, from_addr);
1282       }
1283       break;
1284     }
1285 
1286     case T_SHORT: {
1287       Register dest_reg = dest->as_register();
1288       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1289         __ movswl(dest_reg, from_addr);
1290       } else {
1291         __ movw(dest_reg, from_addr);
1292         __ shll(dest_reg, 16);
1293         __ sarl(dest_reg, 16);
1294       }
1295       break;
1296     }
1297 
1298     default:
1299       ShouldNotReachHere();
1300   }
1301 
1302   if (patch != NULL) {
1303     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1304   }
1305 
1306   if (type == T_ARRAY || type == T_OBJECT) {
1307 #ifdef _LP64
1308     if (UseCompressedOops && !wide) {
1309       __ decode_heap_oop(dest->as_register());
1310     }
1311 #endif
1312     __ verify_oop(dest->as_register());
1313   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1314 #ifdef _LP64
1315     if (UseCompressedClassPointers) {
1316       __ decode_klass_not_null(dest->as_register());
1317     }
1318 #endif
1319   }
1320 }
1321 
1322 
1323 NEEDS_CLEANUP; // This could be static?
1324 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1325   int elem_size = type2aelembytes(type);
1326   switch (elem_size) {
1327     case 1: return Address::times_1;
1328     case 2: return Address::times_2;
1329     case 4: return Address::times_4;
1330     case 8: return Address::times_8;
1331   }
1332   ShouldNotReachHere();
1333   return Address::no_scale;
1334 }
1335 
1336 
1337 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1338   switch (op->code()) {
1339     case lir_idiv:
1340     case lir_irem:
1341       arithmetic_idiv(op->code(),
1342                       op->in_opr1(),
1343                       op->in_opr2(),
1344                       op->in_opr3(),
1345                       op->result_opr(),
1346                       op->info());
1347       break;
1348     default:      ShouldNotReachHere(); break;
1349   }
1350 }
1351 
1352 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1353 #ifdef ASSERT
1354   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1355   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1356   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1357 #endif
1358 
1359   if (op->cond() == lir_cond_always) {
1360     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1361     __ jmp (*(op->label()));
1362   } else {
1363     Assembler::Condition acond = Assembler::zero;
1364     if (op->code() == lir_cond_float_branch) {
1365       assert(op->ublock() != NULL, "must have unordered successor");
1366       __ jcc(Assembler::parity, *(op->ublock()->label()));
1367       switch(op->cond()) {
1368         case lir_cond_equal:        acond = Assembler::equal;      break;
1369         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1370         case lir_cond_less:         acond = Assembler::below;      break;
1371         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1372         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1373         case lir_cond_greater:      acond = Assembler::above;      break;
1374         default:                         ShouldNotReachHere();
1375       }
1376     } else {
1377       switch (op->cond()) {
1378         case lir_cond_equal:        acond = Assembler::equal;       break;
1379         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1380         case lir_cond_less:         acond = Assembler::less;        break;
1381         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1382         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1383         case lir_cond_greater:      acond = Assembler::greater;     break;
1384         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1385         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1386         default:                         ShouldNotReachHere();
1387       }
1388     }
1389     __ jcc(acond,*(op->label()));
1390   }
1391 }
1392 
1393 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1394   LIR_Opr src  = op->in_opr();
1395   LIR_Opr dest = op->result_opr();
1396 
1397   switch (op->bytecode()) {
1398     case Bytecodes::_i2l:
1399 #ifdef _LP64
1400       __ movl2ptr(dest->as_register_lo(), src->as_register());
1401 #else
1402       move_regs(src->as_register(), dest->as_register_lo());
1403       move_regs(src->as_register(), dest->as_register_hi());
1404       __ sarl(dest->as_register_hi(), 31);
1405 #endif // LP64
1406       break;
1407 
1408     case Bytecodes::_l2i:
1409 #ifdef _LP64
1410       __ movl(dest->as_register(), src->as_register_lo());
1411 #else
1412       move_regs(src->as_register_lo(), dest->as_register());
1413 #endif
1414       break;
1415 
1416     case Bytecodes::_i2b:
1417       move_regs(src->as_register(), dest->as_register());
1418       __ sign_extend_byte(dest->as_register());
1419       break;
1420 
1421     case Bytecodes::_i2c:
1422       move_regs(src->as_register(), dest->as_register());
1423       __ andl(dest->as_register(), 0xFFFF);
1424       break;
1425 
1426     case Bytecodes::_i2s:
1427       move_regs(src->as_register(), dest->as_register());
1428       __ sign_extend_short(dest->as_register());
1429       break;
1430 
1431 
1432     case Bytecodes::_f2d:
1433     case Bytecodes::_d2f:
1434       if (dest->is_single_xmm()) {
1435         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1436       } else if (dest->is_double_xmm()) {
1437         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1438       } else {
1439         assert(src->fpu() == dest->fpu(), "register must be equal");
1440         // do nothing (float result is rounded later through spilling)
1441       }
1442       break;
1443 
1444     case Bytecodes::_i2f:
1445     case Bytecodes::_i2d:
1446       if (dest->is_single_xmm()) {
1447         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1448       } else if (dest->is_double_xmm()) {
1449         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1450       } else {
1451         assert(dest->fpu() == 0, "result must be on TOS");
1452         __ movl(Address(rsp, 0), src->as_register());
1453         __ fild_s(Address(rsp, 0));
1454       }
1455       break;
1456 
1457     case Bytecodes::_f2i:
1458     case Bytecodes::_d2i:
1459       if (src->is_single_xmm()) {
1460         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1461       } else if (src->is_double_xmm()) {
1462         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1463       } else {
1464         assert(src->fpu() == 0, "input must be on TOS");
1465         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1466         __ fist_s(Address(rsp, 0));
1467         __ movl(dest->as_register(), Address(rsp, 0));
1468         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1469       }
1470 
1471       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1472       assert(op->stub() != NULL, "stub required");
1473       __ cmpl(dest->as_register(), 0x80000000);
1474       __ jcc(Assembler::equal, *op->stub()->entry());
1475       __ bind(*op->stub()->continuation());
1476       break;
1477 
1478     case Bytecodes::_l2f:
1479     case Bytecodes::_l2d:
1480       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1481       assert(dest->fpu() == 0, "result must be on TOS");
1482 
1483       __ movptr(Address(rsp, 0),            src->as_register_lo());
1484       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1485       __ fild_d(Address(rsp, 0));
1486       // float result is rounded later through spilling
1487       break;
1488 
1489     case Bytecodes::_f2l:
1490     case Bytecodes::_d2l:
1491       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1492       assert(src->fpu() == 0, "input must be on TOS");
1493       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1494 
1495       // instruction sequence too long to inline it here
1496       {
1497         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1498       }
1499       break;
1500 
1501     default: ShouldNotReachHere();
1502   }
1503 }
1504 
1505 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1506   if (op->init_check()) {
1507     __ cmpb(Address(op->klass()->as_register(),
1508                     InstanceKlass::init_state_offset()),
1509                     InstanceKlass::fully_initialized);
1510     add_debug_info_for_null_check_here(op->stub()->info());
1511     __ jcc(Assembler::notEqual, *op->stub()->entry());
1512   }
1513   __ allocate_object(op->obj()->as_register(),
1514                      op->tmp1()->as_register(),
1515                      op->tmp2()->as_register(),
1516                      op->header_size(),
1517                      op->object_size(),
1518                      op->klass()->as_register(),
1519                      *op->stub()->entry());
1520   __ bind(*op->stub()->continuation());
1521 }
1522 
1523 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1524   Register len =  op->len()->as_register();
1525   LP64_ONLY( __ movslq(len, len); )
1526 
1527   if (UseSlowPath ||
1528       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1529       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1530     __ jmp(*op->stub()->entry());
1531   } else {
1532     Register tmp1 = op->tmp1()->as_register();
1533     Register tmp2 = op->tmp2()->as_register();
1534     Register tmp3 = op->tmp3()->as_register();
1535     if (len == tmp1) {
1536       tmp1 = tmp3;
1537     } else if (len == tmp2) {
1538       tmp2 = tmp3;
1539     } else if (len == tmp3) {
1540       // everything is ok
1541     } else {
1542       __ mov(tmp3, len);
1543     }
1544     __ allocate_array(op->obj()->as_register(),
1545                       len,
1546                       tmp1,
1547                       tmp2,
1548                       arrayOopDesc::header_size(op->type()),
1549                       array_element_size(op->type()),
1550                       op->klass()->as_register(),
1551                       *op->stub()->entry());
1552   }
1553   __ bind(*op->stub()->continuation());
1554 }
1555 
1556 void LIR_Assembler::type_profile_helper(Register mdo,
1557                                         ciMethodData *md, ciProfileData *data,
1558                                         Register recv, Label* update_done) {
1559   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1560     Label next_test;
1561     // See if the receiver is receiver[n].
1562     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1563     __ jccb(Assembler::notEqual, next_test);
1564     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1565     __ addptr(data_addr, DataLayout::counter_increment);
1566     __ jmp(*update_done);
1567     __ bind(next_test);
1568   }
1569 
1570   // Didn't find receiver; find next empty slot and fill it in
1571   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1572     Label next_test;
1573     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1574     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1575     __ jccb(Assembler::notEqual, next_test);
1576     __ movptr(recv_addr, recv);
1577     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1578     __ jmp(*update_done);
1579     __ bind(next_test);
1580   }
1581 }
1582 
1583 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1584   // we always need a stub for the failure case.
1585   CodeStub* stub = op->stub();
1586   Register obj = op->object()->as_register();
1587   Register k_RInfo = op->tmp1()->as_register();
1588   Register klass_RInfo = op->tmp2()->as_register();
1589   Register dst = op->result_opr()->as_register();
1590   ciKlass* k = op->klass();
1591   Register Rtmp1 = noreg;
1592 
1593   // check if it needs to be profiled
1594   ciMethodData* md = NULL;
1595   ciProfileData* data = NULL;
1596 
1597   if (op->should_profile()) {
1598     ciMethod* method = op->profiled_method();
1599     assert(method != NULL, "Should have method");
1600     int bci = op->profiled_bci();
1601     md = method->method_data_or_null();
1602     assert(md != NULL, "Sanity");
1603     data = md->bci_to_data(bci);
1604     assert(data != NULL,                "need data for type check");
1605     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1606   }
1607   Label profile_cast_success, profile_cast_failure;
1608   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1609   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1610 
1611   if (obj == k_RInfo) {
1612     k_RInfo = dst;
1613   } else if (obj == klass_RInfo) {
1614     klass_RInfo = dst;
1615   }
1616   if (k->is_loaded() && !UseCompressedClassPointers) {
1617     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1618   } else {
1619     Rtmp1 = op->tmp3()->as_register();
1620     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1621   }
1622 
1623   assert_different_registers(obj, k_RInfo, klass_RInfo);
1624 
1625   __ cmpptr(obj, (int32_t)NULL_WORD);
1626   if (op->should_profile()) {
1627     Label not_null;
1628     __ jccb(Assembler::notEqual, not_null);
1629     // Object is null; update MDO and exit
1630     Register mdo  = klass_RInfo;
1631     __ mov_metadata(mdo, md->constant_encoding());
1632     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1633     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1634     __ orl(data_addr, header_bits);
1635     __ jmp(*obj_is_null);
1636     __ bind(not_null);
1637   } else {
1638     __ jcc(Assembler::equal, *obj_is_null);
1639   }
1640 
1641   if (!k->is_loaded()) {
1642     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1643   } else {
1644 #ifdef _LP64
1645     __ mov_metadata(k_RInfo, k->constant_encoding());
1646 #endif // _LP64
1647   }
1648   __ verify_oop(obj);
1649 
1650   if (op->fast_check()) {
1651     // get object class
1652     // not a safepoint as obj null check happens earlier
1653 #ifdef _LP64
1654     if (UseCompressedClassPointers) {
1655       __ load_klass(Rtmp1, obj);
1656       __ cmpptr(k_RInfo, Rtmp1);
1657     } else {
1658       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1659     }
1660 #else
1661     if (k->is_loaded()) {
1662       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1663     } else {
1664       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1665     }
1666 #endif
1667     __ jcc(Assembler::notEqual, *failure_target);
1668     // successful cast, fall through to profile or jump
1669   } else {
1670     // get object class
1671     // not a safepoint as obj null check happens earlier
1672     __ load_klass(klass_RInfo, obj);
1673     if (k->is_loaded()) {
1674       // See if we get an immediate positive hit
1675 #ifdef _LP64
1676       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1677 #else
1678       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1679 #endif // _LP64
1680       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1681         __ jcc(Assembler::notEqual, *failure_target);
1682         // successful cast, fall through to profile or jump
1683       } else {
1684         // See if we get an immediate positive hit
1685         __ jcc(Assembler::equal, *success_target);
1686         // check for self
1687 #ifdef _LP64
1688         __ cmpptr(klass_RInfo, k_RInfo);
1689 #else
1690         __ cmpklass(klass_RInfo, k->constant_encoding());
1691 #endif // _LP64
1692         __ jcc(Assembler::equal, *success_target);
1693 
1694         __ push(klass_RInfo);
1695 #ifdef _LP64
1696         __ push(k_RInfo);
1697 #else
1698         __ pushklass(k->constant_encoding());
1699 #endif // _LP64
1700         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1701         __ pop(klass_RInfo);
1702         __ pop(klass_RInfo);
1703         // result is a boolean
1704         __ cmpl(klass_RInfo, 0);
1705         __ jcc(Assembler::equal, *failure_target);
1706         // successful cast, fall through to profile or jump
1707       }
1708     } else {
1709       // perform the fast part of the checking logic
1710       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1711       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1712       __ push(klass_RInfo);
1713       __ push(k_RInfo);
1714       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1715       __ pop(klass_RInfo);
1716       __ pop(k_RInfo);
1717       // result is a boolean
1718       __ cmpl(k_RInfo, 0);
1719       __ jcc(Assembler::equal, *failure_target);
1720       // successful cast, fall through to profile or jump
1721     }
1722   }
1723   if (op->should_profile()) {
1724     Register mdo  = klass_RInfo, recv = k_RInfo;
1725     __ bind(profile_cast_success);
1726     __ mov_metadata(mdo, md->constant_encoding());
1727     __ load_klass(recv, obj);
1728     Label update_done;
1729     type_profile_helper(mdo, md, data, recv, success);
1730     __ jmp(*success);
1731 
1732     __ bind(profile_cast_failure);
1733     __ mov_metadata(mdo, md->constant_encoding());
1734     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1735     __ subptr(counter_addr, DataLayout::counter_increment);
1736     __ jmp(*failure);
1737   }
1738   __ jmp(*success);
1739 }
1740 
1741 
1742 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1743   LIR_Code code = op->code();
1744   if (code == lir_store_check) {
1745     Register value = op->object()->as_register();
1746     Register array = op->array()->as_register();
1747     Register k_RInfo = op->tmp1()->as_register();
1748     Register klass_RInfo = op->tmp2()->as_register();
1749     Register Rtmp1 = op->tmp3()->as_register();
1750 
1751     CodeStub* stub = op->stub();
1752 
1753     // check if it needs to be profiled
1754     ciMethodData* md = NULL;
1755     ciProfileData* data = NULL;
1756 
1757     if (op->should_profile()) {
1758       ciMethod* method = op->profiled_method();
1759       assert(method != NULL, "Should have method");
1760       int bci = op->profiled_bci();
1761       md = method->method_data_or_null();
1762       assert(md != NULL, "Sanity");
1763       data = md->bci_to_data(bci);
1764       assert(data != NULL,                "need data for type check");
1765       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1766     }
1767     Label profile_cast_success, profile_cast_failure, done;
1768     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1769     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1770 
1771     __ cmpptr(value, (int32_t)NULL_WORD);
1772     if (op->should_profile()) {
1773       Label not_null;
1774       __ jccb(Assembler::notEqual, not_null);
1775       // Object is null; update MDO and exit
1776       Register mdo  = klass_RInfo;
1777       __ mov_metadata(mdo, md->constant_encoding());
1778       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1779       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1780       __ orl(data_addr, header_bits);
1781       __ jmp(done);
1782       __ bind(not_null);
1783     } else {
1784       __ jcc(Assembler::equal, done);
1785     }
1786 
1787     add_debug_info_for_null_check_here(op->info_for_exception());
1788     __ load_klass(k_RInfo, array);
1789     __ load_klass(klass_RInfo, value);
1790 
1791     // get instance klass (it's already uncompressed)
1792     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1793     // perform the fast part of the checking logic
1794     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1795     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1796     __ push(klass_RInfo);
1797     __ push(k_RInfo);
1798     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1799     __ pop(klass_RInfo);
1800     __ pop(k_RInfo);
1801     // result is a boolean
1802     __ cmpl(k_RInfo, 0);
1803     __ jcc(Assembler::equal, *failure_target);
1804     // fall through to the success case
1805 
1806     if (op->should_profile()) {
1807       Register mdo  = klass_RInfo, recv = k_RInfo;
1808       __ bind(profile_cast_success);
1809       __ mov_metadata(mdo, md->constant_encoding());
1810       __ load_klass(recv, value);
1811       Label update_done;
1812       type_profile_helper(mdo, md, data, recv, &done);
1813       __ jmpb(done);
1814 
1815       __ bind(profile_cast_failure);
1816       __ mov_metadata(mdo, md->constant_encoding());
1817       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1818       __ subptr(counter_addr, DataLayout::counter_increment);
1819       __ jmp(*stub->entry());
1820     }
1821 
1822     __ bind(done);
1823   } else
1824     if (code == lir_checkcast) {
1825       Register obj = op->object()->as_register();
1826       Register dst = op->result_opr()->as_register();
1827       Label success;
1828       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1829       __ bind(success);
1830       if (dst != obj) {
1831         __ mov(dst, obj);
1832       }
1833     } else
1834       if (code == lir_instanceof) {
1835         Register obj = op->object()->as_register();
1836         Register dst = op->result_opr()->as_register();
1837         Label success, failure, done;
1838         emit_typecheck_helper(op, &success, &failure, &failure);
1839         __ bind(failure);
1840         __ xorptr(dst, dst);
1841         __ jmpb(done);
1842         __ bind(success);
1843         __ movptr(dst, 1);
1844         __ bind(done);
1845       } else {
1846         ShouldNotReachHere();
1847       }
1848 
1849 }
1850 
1851 
1852 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1853   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1854     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1855     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1856     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1857     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1858     Register addr = op->addr()->as_register();
1859     if (os::is_MP()) {
1860       __ lock();
1861     }
1862     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1863 
1864   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1865     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1866     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1867     Register newval = op->new_value()->as_register();
1868     Register cmpval = op->cmp_value()->as_register();
1869     assert(cmpval == rax, "wrong register");
1870     assert(newval != NULL, "new val must be register");
1871     assert(cmpval != newval, "cmp and new values must be in different registers");
1872     assert(cmpval != addr, "cmp and addr must be in different registers");
1873     assert(newval != addr, "new value and addr must be in different registers");
1874 
1875     if ( op->code() == lir_cas_obj) {
1876 #ifdef _LP64
1877       if (UseCompressedOops) {
1878         __ encode_heap_oop(cmpval);
1879         __ mov(rscratch1, newval);
1880         __ encode_heap_oop(rscratch1);
1881         if (os::is_MP()) {
1882           __ lock();
1883         }
1884         // cmpval (rax) is implicitly used by this instruction
1885         __ cmpxchgl(rscratch1, Address(addr, 0));
1886       } else
1887 #endif
1888       {
1889         if (os::is_MP()) {
1890           __ lock();
1891         }
1892         __ cmpxchgptr(newval, Address(addr, 0));
1893       }
1894     } else {
1895       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1896       if (os::is_MP()) {
1897         __ lock();
1898       }
1899       __ cmpxchgl(newval, Address(addr, 0));
1900     }
1901 #ifdef _LP64
1902   } else if (op->code() == lir_cas_long) {
1903     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1904     Register newval = op->new_value()->as_register_lo();
1905     Register cmpval = op->cmp_value()->as_register_lo();
1906     assert(cmpval == rax, "wrong register");
1907     assert(newval != NULL, "new val must be register");
1908     assert(cmpval != newval, "cmp and new values must be in different registers");
1909     assert(cmpval != addr, "cmp and addr must be in different registers");
1910     assert(newval != addr, "new value and addr must be in different registers");
1911     if (os::is_MP()) {
1912       __ lock();
1913     }
1914     __ cmpxchgq(newval, Address(addr, 0));
1915 #endif // _LP64
1916   } else {
1917     Unimplemented();
1918   }
1919 }
1920 
1921 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1922   Assembler::Condition acond, ncond;
1923   switch (condition) {
1924     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1925     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1926     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1927     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1928     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1929     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1930     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1931     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1932     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
1933                                 ShouldNotReachHere();
1934   }
1935 
1936   if (opr1->is_cpu_register()) {
1937     reg2reg(opr1, result);
1938   } else if (opr1->is_stack()) {
1939     stack2reg(opr1, result, result->type());
1940   } else if (opr1->is_constant()) {
1941     const2reg(opr1, result, lir_patch_none, NULL);
1942   } else {
1943     ShouldNotReachHere();
1944   }
1945 
1946   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1947     // optimized version that does not require a branch
1948     if (opr2->is_single_cpu()) {
1949       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1950       __ cmov(ncond, result->as_register(), opr2->as_register());
1951     } else if (opr2->is_double_cpu()) {
1952       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1953       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1954       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
1955       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
1956     } else if (opr2->is_single_stack()) {
1957       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
1958     } else if (opr2->is_double_stack()) {
1959       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
1960       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
1961     } else {
1962       ShouldNotReachHere();
1963     }
1964 
1965   } else {
1966     Label skip;
1967     __ jcc (acond, skip);
1968     if (opr2->is_cpu_register()) {
1969       reg2reg(opr2, result);
1970     } else if (opr2->is_stack()) {
1971       stack2reg(opr2, result, result->type());
1972     } else if (opr2->is_constant()) {
1973       const2reg(opr2, result, lir_patch_none, NULL);
1974     } else {
1975       ShouldNotReachHere();
1976     }
1977     __ bind(skip);
1978   }
1979 }
1980 
1981 
1982 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1983   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1984 
1985   if (left->is_single_cpu()) {
1986     assert(left == dest, "left and dest must be equal");
1987     Register lreg = left->as_register();
1988 
1989     if (right->is_single_cpu()) {
1990       // cpu register - cpu register
1991       Register rreg = right->as_register();
1992       switch (code) {
1993         case lir_add: __ addl (lreg, rreg); break;
1994         case lir_sub: __ subl (lreg, rreg); break;
1995         case lir_mul: __ imull(lreg, rreg); break;
1996         default:      ShouldNotReachHere();
1997       }
1998 
1999     } else if (right->is_stack()) {
2000       // cpu register - stack
2001       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2002       switch (code) {
2003         case lir_add: __ addl(lreg, raddr); break;
2004         case lir_sub: __ subl(lreg, raddr); break;
2005         default:      ShouldNotReachHere();
2006       }
2007 
2008     } else if (right->is_constant()) {
2009       // cpu register - constant
2010       jint c = right->as_constant_ptr()->as_jint();
2011       switch (code) {
2012         case lir_add: {
2013           __ incrementl(lreg, c);
2014           break;
2015         }
2016         case lir_sub: {
2017           __ decrementl(lreg, c);
2018           break;
2019         }
2020         default: ShouldNotReachHere();
2021       }
2022 
2023     } else {
2024       ShouldNotReachHere();
2025     }
2026 
2027   } else if (left->is_double_cpu()) {
2028     assert(left == dest, "left and dest must be equal");
2029     Register lreg_lo = left->as_register_lo();
2030     Register lreg_hi = left->as_register_hi();
2031 
2032     if (right->is_double_cpu()) {
2033       // cpu register - cpu register
2034       Register rreg_lo = right->as_register_lo();
2035       Register rreg_hi = right->as_register_hi();
2036       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2037       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2038       switch (code) {
2039         case lir_add:
2040           __ addptr(lreg_lo, rreg_lo);
2041           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2042           break;
2043         case lir_sub:
2044           __ subptr(lreg_lo, rreg_lo);
2045           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2046           break;
2047         case lir_mul:
2048 #ifdef _LP64
2049           __ imulq(lreg_lo, rreg_lo);
2050 #else
2051           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2052           __ imull(lreg_hi, rreg_lo);
2053           __ imull(rreg_hi, lreg_lo);
2054           __ addl (rreg_hi, lreg_hi);
2055           __ mull (rreg_lo);
2056           __ addl (lreg_hi, rreg_hi);
2057 #endif // _LP64
2058           break;
2059         default:
2060           ShouldNotReachHere();
2061       }
2062 
2063     } else if (right->is_constant()) {
2064       // cpu register - constant
2065 #ifdef _LP64
2066       jlong c = right->as_constant_ptr()->as_jlong_bits();
2067       __ movptr(r10, (intptr_t) c);
2068       switch (code) {
2069         case lir_add:
2070           __ addptr(lreg_lo, r10);
2071           break;
2072         case lir_sub:
2073           __ subptr(lreg_lo, r10);
2074           break;
2075         default:
2076           ShouldNotReachHere();
2077       }
2078 #else
2079       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2080       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2081       switch (code) {
2082         case lir_add:
2083           __ addptr(lreg_lo, c_lo);
2084           __ adcl(lreg_hi, c_hi);
2085           break;
2086         case lir_sub:
2087           __ subptr(lreg_lo, c_lo);
2088           __ sbbl(lreg_hi, c_hi);
2089           break;
2090         default:
2091           ShouldNotReachHere();
2092       }
2093 #endif // _LP64
2094 
2095     } else {
2096       ShouldNotReachHere();
2097     }
2098 
2099   } else if (left->is_single_xmm()) {
2100     assert(left == dest, "left and dest must be equal");
2101     XMMRegister lreg = left->as_xmm_float_reg();
2102 
2103     if (right->is_single_xmm()) {
2104       XMMRegister rreg = right->as_xmm_float_reg();
2105       switch (code) {
2106         case lir_add: __ addss(lreg, rreg);  break;
2107         case lir_sub: __ subss(lreg, rreg);  break;
2108         case lir_mul_strictfp: // fall through
2109         case lir_mul: __ mulss(lreg, rreg);  break;
2110         case lir_div_strictfp: // fall through
2111         case lir_div: __ divss(lreg, rreg);  break;
2112         default: ShouldNotReachHere();
2113       }
2114     } else {
2115       Address raddr;
2116       if (right->is_single_stack()) {
2117         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2118       } else if (right->is_constant()) {
2119         // hack for now
2120         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2121       } else {
2122         ShouldNotReachHere();
2123       }
2124       switch (code) {
2125         case lir_add: __ addss(lreg, raddr);  break;
2126         case lir_sub: __ subss(lreg, raddr);  break;
2127         case lir_mul_strictfp: // fall through
2128         case lir_mul: __ mulss(lreg, raddr);  break;
2129         case lir_div_strictfp: // fall through
2130         case lir_div: __ divss(lreg, raddr);  break;
2131         default: ShouldNotReachHere();
2132       }
2133     }
2134 
2135   } else if (left->is_double_xmm()) {
2136     assert(left == dest, "left and dest must be equal");
2137 
2138     XMMRegister lreg = left->as_xmm_double_reg();
2139     if (right->is_double_xmm()) {
2140       XMMRegister rreg = right->as_xmm_double_reg();
2141       switch (code) {
2142         case lir_add: __ addsd(lreg, rreg);  break;
2143         case lir_sub: __ subsd(lreg, rreg);  break;
2144         case lir_mul_strictfp: // fall through
2145         case lir_mul: __ mulsd(lreg, rreg);  break;
2146         case lir_div_strictfp: // fall through
2147         case lir_div: __ divsd(lreg, rreg);  break;
2148         default: ShouldNotReachHere();
2149       }
2150     } else {
2151       Address raddr;
2152       if (right->is_double_stack()) {
2153         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2154       } else if (right->is_constant()) {
2155         // hack for now
2156         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2157       } else {
2158         ShouldNotReachHere();
2159       }
2160       switch (code) {
2161         case lir_add: __ addsd(lreg, raddr);  break;
2162         case lir_sub: __ subsd(lreg, raddr);  break;
2163         case lir_mul_strictfp: // fall through
2164         case lir_mul: __ mulsd(lreg, raddr);  break;
2165         case lir_div_strictfp: // fall through
2166         case lir_div: __ divsd(lreg, raddr);  break;
2167         default: ShouldNotReachHere();
2168       }
2169     }
2170 
2171   } else if (left->is_single_fpu()) {
2172     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2173 
2174     if (right->is_single_fpu()) {
2175       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2176 
2177     } else {
2178       assert(left->fpu_regnr() == 0, "left must be on TOS");
2179       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2180 
2181       Address raddr;
2182       if (right->is_single_stack()) {
2183         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2184       } else if (right->is_constant()) {
2185         address const_addr = float_constant(right->as_jfloat());
2186         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2187         // hack for now
2188         raddr = __ as_Address(InternalAddress(const_addr));
2189       } else {
2190         ShouldNotReachHere();
2191       }
2192 
2193       switch (code) {
2194         case lir_add: __ fadd_s(raddr); break;
2195         case lir_sub: __ fsub_s(raddr); break;
2196         case lir_mul_strictfp: // fall through
2197         case lir_mul: __ fmul_s(raddr); break;
2198         case lir_div_strictfp: // fall through
2199         case lir_div: __ fdiv_s(raddr); break;
2200         default:      ShouldNotReachHere();
2201       }
2202     }
2203 
2204   } else if (left->is_double_fpu()) {
2205     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2206 
2207     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2208       // Double values require special handling for strictfp mul/div on x86
2209       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2210       __ fmulp(left->fpu_regnrLo() + 1);
2211     }
2212 
2213     if (right->is_double_fpu()) {
2214       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2215 
2216     } else {
2217       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2218       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2219 
2220       Address raddr;
2221       if (right->is_double_stack()) {
2222         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2223       } else if (right->is_constant()) {
2224         // hack for now
2225         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2226       } else {
2227         ShouldNotReachHere();
2228       }
2229 
2230       switch (code) {
2231         case lir_add: __ fadd_d(raddr); break;
2232         case lir_sub: __ fsub_d(raddr); break;
2233         case lir_mul_strictfp: // fall through
2234         case lir_mul: __ fmul_d(raddr); break;
2235         case lir_div_strictfp: // fall through
2236         case lir_div: __ fdiv_d(raddr); break;
2237         default: ShouldNotReachHere();
2238       }
2239     }
2240 
2241     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2242       // Double values require special handling for strictfp mul/div on x86
2243       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2244       __ fmulp(dest->fpu_regnrLo() + 1);
2245     }
2246 
2247   } else if (left->is_single_stack() || left->is_address()) {
2248     assert(left == dest, "left and dest must be equal");
2249 
2250     Address laddr;
2251     if (left->is_single_stack()) {
2252       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2253     } else if (left->is_address()) {
2254       laddr = as_Address(left->as_address_ptr());
2255     } else {
2256       ShouldNotReachHere();
2257     }
2258 
2259     if (right->is_single_cpu()) {
2260       Register rreg = right->as_register();
2261       switch (code) {
2262         case lir_add: __ addl(laddr, rreg); break;
2263         case lir_sub: __ subl(laddr, rreg); break;
2264         default:      ShouldNotReachHere();
2265       }
2266     } else if (right->is_constant()) {
2267       jint c = right->as_constant_ptr()->as_jint();
2268       switch (code) {
2269         case lir_add: {
2270           __ incrementl(laddr, c);
2271           break;
2272         }
2273         case lir_sub: {
2274           __ decrementl(laddr, c);
2275           break;
2276         }
2277         default: ShouldNotReachHere();
2278       }
2279     } else {
2280       ShouldNotReachHere();
2281     }
2282 
2283   } else {
2284     ShouldNotReachHere();
2285   }
2286 }
2287 
2288 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2289   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2290   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2291   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2292 
2293   bool left_is_tos = (left_index == 0);
2294   bool dest_is_tos = (dest_index == 0);
2295   int non_tos_index = (left_is_tos ? right_index : left_index);
2296 
2297   switch (code) {
2298     case lir_add:
2299       if (pop_fpu_stack)       __ faddp(non_tos_index);
2300       else if (dest_is_tos)    __ fadd (non_tos_index);
2301       else                     __ fadda(non_tos_index);
2302       break;
2303 
2304     case lir_sub:
2305       if (left_is_tos) {
2306         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2307         else if (dest_is_tos)  __ fsub  (non_tos_index);
2308         else                   __ fsubra(non_tos_index);
2309       } else {
2310         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2311         else if (dest_is_tos)  __ fsubr (non_tos_index);
2312         else                   __ fsuba (non_tos_index);
2313       }
2314       break;
2315 
2316     case lir_mul_strictfp: // fall through
2317     case lir_mul:
2318       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2319       else if (dest_is_tos)    __ fmul (non_tos_index);
2320       else                     __ fmula(non_tos_index);
2321       break;
2322 
2323     case lir_div_strictfp: // fall through
2324     case lir_div:
2325       if (left_is_tos) {
2326         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2327         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2328         else                   __ fdivra(non_tos_index);
2329       } else {
2330         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2331         else if (dest_is_tos)  __ fdivr (non_tos_index);
2332         else                   __ fdiva (non_tos_index);
2333       }
2334       break;
2335 
2336     case lir_rem:
2337       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2338       __ fremr(noreg);
2339       break;
2340 
2341     default:
2342       ShouldNotReachHere();
2343   }
2344 }
2345 
2346 
2347 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2348   if (value->is_double_xmm()) {
2349     switch(code) {
2350       case lir_abs :
2351         {
2352           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2353             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2354           }
2355           __ andpd(dest->as_xmm_double_reg(),
2356                     ExternalAddress((address)double_signmask_pool));
2357         }
2358         break;
2359 
2360       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2361       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2362       default      : ShouldNotReachHere();
2363     }
2364 
2365   } else if (value->is_double_fpu()) {
2366     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2367     switch(code) {
2368       case lir_log10 : __ flog10() ; break;
2369       case lir_abs   : __ fabs() ; break;
2370       case lir_sqrt  : __ fsqrt(); break;
2371       case lir_sin   :
2372         // Should consider not saving rbx, if not necessary
2373         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2374         break;
2375       case lir_cos :
2376         // Should consider not saving rbx, if not necessary
2377         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2378         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2379         break;
2380       case lir_tan :
2381         // Should consider not saving rbx, if not necessary
2382         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2383         break;
2384       default      : ShouldNotReachHere();
2385     }
2386   } else {
2387     Unimplemented();
2388   }
2389 }
2390 
2391 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2392   // assert(left->destroys_register(), "check");
2393   if (left->is_single_cpu()) {
2394     Register reg = left->as_register();
2395     if (right->is_constant()) {
2396       int val = right->as_constant_ptr()->as_jint();
2397       switch (code) {
2398         case lir_logic_and: __ andl (reg, val); break;
2399         case lir_logic_or:  __ orl  (reg, val); break;
2400         case lir_logic_xor: __ xorl (reg, val); break;
2401         default: ShouldNotReachHere();
2402       }
2403     } else if (right->is_stack()) {
2404       // added support for stack operands
2405       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2406       switch (code) {
2407         case lir_logic_and: __ andl (reg, raddr); break;
2408         case lir_logic_or:  __ orl  (reg, raddr); break;
2409         case lir_logic_xor: __ xorl (reg, raddr); break;
2410         default: ShouldNotReachHere();
2411       }
2412     } else {
2413       Register rright = right->as_register();
2414       switch (code) {
2415         case lir_logic_and: __ andptr (reg, rright); break;
2416         case lir_logic_or : __ orptr  (reg, rright); break;
2417         case lir_logic_xor: __ xorptr (reg, rright); break;
2418         default: ShouldNotReachHere();
2419       }
2420     }
2421     move_regs(reg, dst->as_register());
2422   } else {
2423     Register l_lo = left->as_register_lo();
2424     Register l_hi = left->as_register_hi();
2425     if (right->is_constant()) {
2426 #ifdef _LP64
2427       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2428       switch (code) {
2429         case lir_logic_and:
2430           __ andq(l_lo, rscratch1);
2431           break;
2432         case lir_logic_or:
2433           __ orq(l_lo, rscratch1);
2434           break;
2435         case lir_logic_xor:
2436           __ xorq(l_lo, rscratch1);
2437           break;
2438         default: ShouldNotReachHere();
2439       }
2440 #else
2441       int r_lo = right->as_constant_ptr()->as_jint_lo();
2442       int r_hi = right->as_constant_ptr()->as_jint_hi();
2443       switch (code) {
2444         case lir_logic_and:
2445           __ andl(l_lo, r_lo);
2446           __ andl(l_hi, r_hi);
2447           break;
2448         case lir_logic_or:
2449           __ orl(l_lo, r_lo);
2450           __ orl(l_hi, r_hi);
2451           break;
2452         case lir_logic_xor:
2453           __ xorl(l_lo, r_lo);
2454           __ xorl(l_hi, r_hi);
2455           break;
2456         default: ShouldNotReachHere();
2457       }
2458 #endif // _LP64
2459     } else {
2460 #ifdef _LP64
2461       Register r_lo;
2462       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2463         r_lo = right->as_register();
2464       } else {
2465         r_lo = right->as_register_lo();
2466       }
2467 #else
2468       Register r_lo = right->as_register_lo();
2469       Register r_hi = right->as_register_hi();
2470       assert(l_lo != r_hi, "overwriting registers");
2471 #endif
2472       switch (code) {
2473         case lir_logic_and:
2474           __ andptr(l_lo, r_lo);
2475           NOT_LP64(__ andptr(l_hi, r_hi);)
2476           break;
2477         case lir_logic_or:
2478           __ orptr(l_lo, r_lo);
2479           NOT_LP64(__ orptr(l_hi, r_hi);)
2480           break;
2481         case lir_logic_xor:
2482           __ xorptr(l_lo, r_lo);
2483           NOT_LP64(__ xorptr(l_hi, r_hi);)
2484           break;
2485         default: ShouldNotReachHere();
2486       }
2487     }
2488 
2489     Register dst_lo = dst->as_register_lo();
2490     Register dst_hi = dst->as_register_hi();
2491 
2492 #ifdef _LP64
2493     move_regs(l_lo, dst_lo);
2494 #else
2495     if (dst_lo == l_hi) {
2496       assert(dst_hi != l_lo, "overwriting registers");
2497       move_regs(l_hi, dst_hi);
2498       move_regs(l_lo, dst_lo);
2499     } else {
2500       assert(dst_lo != l_hi, "overwriting registers");
2501       move_regs(l_lo, dst_lo);
2502       move_regs(l_hi, dst_hi);
2503     }
2504 #endif // _LP64
2505   }
2506 }
2507 
2508 
2509 // we assume that rax, and rdx can be overwritten
2510 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2511 
2512   assert(left->is_single_cpu(),   "left must be register");
2513   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2514   assert(result->is_single_cpu(), "result must be register");
2515 
2516   //  assert(left->destroys_register(), "check");
2517   //  assert(right->destroys_register(), "check");
2518 
2519   Register lreg = left->as_register();
2520   Register dreg = result->as_register();
2521 
2522   if (right->is_constant()) {
2523     int divisor = right->as_constant_ptr()->as_jint();
2524     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2525     if (code == lir_idiv) {
2526       assert(lreg == rax, "must be rax,");
2527       assert(temp->as_register() == rdx, "tmp register must be rdx");
2528       __ cdql(); // sign extend into rdx:rax
2529       if (divisor == 2) {
2530         __ subl(lreg, rdx);
2531       } else {
2532         __ andl(rdx, divisor - 1);
2533         __ addl(lreg, rdx);
2534       }
2535       __ sarl(lreg, log2_intptr(divisor));
2536       move_regs(lreg, dreg);
2537     } else if (code == lir_irem) {
2538       Label done;
2539       __ mov(dreg, lreg);
2540       __ andl(dreg, 0x80000000 | (divisor - 1));
2541       __ jcc(Assembler::positive, done);
2542       __ decrement(dreg);
2543       __ orl(dreg, ~(divisor - 1));
2544       __ increment(dreg);
2545       __ bind(done);
2546     } else {
2547       ShouldNotReachHere();
2548     }
2549   } else {
2550     Register rreg = right->as_register();
2551     assert(lreg == rax, "left register must be rax,");
2552     assert(rreg != rdx, "right register must not be rdx");
2553     assert(temp->as_register() == rdx, "tmp register must be rdx");
2554 
2555     move_regs(lreg, rax);
2556 
2557     int idivl_offset = __ corrected_idivl(rreg);
2558     add_debug_info_for_div0(idivl_offset, info);
2559     if (code == lir_irem) {
2560       move_regs(rdx, dreg); // result is in rdx
2561     } else {
2562       move_regs(rax, dreg);
2563     }
2564   }
2565 }
2566 
2567 
2568 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2569   if (opr1->is_single_cpu()) {
2570     Register reg1 = opr1->as_register();
2571     if (opr2->is_single_cpu()) {
2572       // cpu register - cpu register
2573       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2574         __ cmpptr(reg1, opr2->as_register());
2575       } else {
2576         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2577         __ cmpl(reg1, opr2->as_register());
2578       }
2579     } else if (opr2->is_stack()) {
2580       // cpu register - stack
2581       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2582         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2583       } else {
2584         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2585       }
2586     } else if (opr2->is_constant()) {
2587       // cpu register - constant
2588       LIR_Const* c = opr2->as_constant_ptr();
2589       if (c->type() == T_INT) {
2590         __ cmpl(reg1, c->as_jint());
2591       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2592         // In 64bit oops are single register
2593         jobject o = c->as_jobject();
2594         if (o == NULL) {
2595           __ cmpptr(reg1, (int32_t)NULL_WORD);
2596         } else {
2597 #ifdef _LP64
2598           __ movoop(rscratch1, o);
2599           __ cmpptr(reg1, rscratch1);
2600 #else
2601           __ cmpoop(reg1, c->as_jobject());
2602 #endif // _LP64
2603         }
2604       } else {
2605         fatal("unexpected type: %s", basictype_to_str(c->type()));
2606       }
2607       // cpu register - address
2608     } else if (opr2->is_address()) {
2609       if (op->info() != NULL) {
2610         add_debug_info_for_null_check_here(op->info());
2611       }
2612       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2613     } else {
2614       ShouldNotReachHere();
2615     }
2616 
2617   } else if(opr1->is_double_cpu()) {
2618     Register xlo = opr1->as_register_lo();
2619     Register xhi = opr1->as_register_hi();
2620     if (opr2->is_double_cpu()) {
2621 #ifdef _LP64
2622       __ cmpptr(xlo, opr2->as_register_lo());
2623 #else
2624       // cpu register - cpu register
2625       Register ylo = opr2->as_register_lo();
2626       Register yhi = opr2->as_register_hi();
2627       __ subl(xlo, ylo);
2628       __ sbbl(xhi, yhi);
2629       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2630         __ orl(xhi, xlo);
2631       }
2632 #endif // _LP64
2633     } else if (opr2->is_constant()) {
2634       // cpu register - constant 0
2635       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2636 #ifdef _LP64
2637       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2638 #else
2639       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2640       __ orl(xhi, xlo);
2641 #endif // _LP64
2642     } else {
2643       ShouldNotReachHere();
2644     }
2645 
2646   } else if (opr1->is_single_xmm()) {
2647     XMMRegister reg1 = opr1->as_xmm_float_reg();
2648     if (opr2->is_single_xmm()) {
2649       // xmm register - xmm register
2650       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2651     } else if (opr2->is_stack()) {
2652       // xmm register - stack
2653       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2654     } else if (opr2->is_constant()) {
2655       // xmm register - constant
2656       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2657     } else if (opr2->is_address()) {
2658       // xmm register - address
2659       if (op->info() != NULL) {
2660         add_debug_info_for_null_check_here(op->info());
2661       }
2662       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2663     } else {
2664       ShouldNotReachHere();
2665     }
2666 
2667   } else if (opr1->is_double_xmm()) {
2668     XMMRegister reg1 = opr1->as_xmm_double_reg();
2669     if (opr2->is_double_xmm()) {
2670       // xmm register - xmm register
2671       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2672     } else if (opr2->is_stack()) {
2673       // xmm register - stack
2674       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2675     } else if (opr2->is_constant()) {
2676       // xmm register - constant
2677       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2678     } else if (opr2->is_address()) {
2679       // xmm register - address
2680       if (op->info() != NULL) {
2681         add_debug_info_for_null_check_here(op->info());
2682       }
2683       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2684     } else {
2685       ShouldNotReachHere();
2686     }
2687 
2688   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2689     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2690     assert(opr2->is_fpu_register(), "both must be registers");
2691     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2692 
2693   } else if (opr1->is_address() && opr2->is_constant()) {
2694     LIR_Const* c = opr2->as_constant_ptr();
2695 #ifdef _LP64
2696     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2697       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2698       __ movoop(rscratch1, c->as_jobject());
2699     }
2700 #endif // LP64
2701     if (op->info() != NULL) {
2702       add_debug_info_for_null_check_here(op->info());
2703     }
2704     // special case: address - constant
2705     LIR_Address* addr = opr1->as_address_ptr();
2706     if (c->type() == T_INT) {
2707       __ cmpl(as_Address(addr), c->as_jint());
2708     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2709 #ifdef _LP64
2710       // %%% Make this explode if addr isn't reachable until we figure out a
2711       // better strategy by giving noreg as the temp for as_Address
2712       __ cmpptr(rscratch1, as_Address(addr, noreg));
2713 #else
2714       __ cmpoop(as_Address(addr), c->as_jobject());
2715 #endif // _LP64
2716     } else {
2717       ShouldNotReachHere();
2718     }
2719 
2720   } else {
2721     ShouldNotReachHere();
2722   }
2723 }
2724 
2725 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2726   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2727     if (left->is_single_xmm()) {
2728       assert(right->is_single_xmm(), "must match");
2729       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2730     } else if (left->is_double_xmm()) {
2731       assert(right->is_double_xmm(), "must match");
2732       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2733 
2734     } else {
2735       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2736       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2737 
2738       assert(left->fpu() == 0, "left must be on TOS");
2739       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2740                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2741     }
2742   } else {
2743     assert(code == lir_cmp_l2i, "check");
2744 #ifdef _LP64
2745     Label done;
2746     Register dest = dst->as_register();
2747     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2748     __ movl(dest, -1);
2749     __ jccb(Assembler::less, done);
2750     __ set_byte_if_not_zero(dest);
2751     __ movzbl(dest, dest);
2752     __ bind(done);
2753 #else
2754     __ lcmp2int(left->as_register_hi(),
2755                 left->as_register_lo(),
2756                 right->as_register_hi(),
2757                 right->as_register_lo());
2758     move_regs(left->as_register_hi(), dst->as_register());
2759 #endif // _LP64
2760   }
2761 }
2762 
2763 
2764 void LIR_Assembler::align_call(LIR_Code code) {
2765   if (os::is_MP()) {
2766     // make sure that the displacement word of the call ends up word aligned
2767     int offset = __ offset();
2768     switch (code) {
2769       case lir_static_call:
2770       case lir_optvirtual_call:
2771       case lir_dynamic_call:
2772         offset += NativeCall::displacement_offset;
2773         break;
2774       case lir_icvirtual_call:
2775         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2776       break;
2777       case lir_virtual_call:  // currently, sparc-specific for niagara
2778       default: ShouldNotReachHere();
2779     }
2780     __ align(BytesPerWord, offset);
2781   }
2782 }
2783 
2784 
2785 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2786   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2787          "must be aligned");
2788   __ call(AddressLiteral(op->addr(), rtype));
2789   add_call_info(code_offset(), op->info());
2790 }
2791 
2792 
2793 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2794   __ ic_call(op->addr());
2795   add_call_info(code_offset(), op->info());
2796   assert(!os::is_MP() ||
2797          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2798          "must be aligned");
2799 }
2800 
2801 
2802 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2803 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2804   ShouldNotReachHere();
2805 }
2806 
2807 
2808 void LIR_Assembler::emit_static_call_stub() {
2809   address call_pc = __ pc();
2810   address stub = __ start_a_stub(call_stub_size);
2811   if (stub == NULL) {
2812     bailout("static call stub overflow");
2813     return;
2814   }
2815 
2816   int start = __ offset();
2817   if (os::is_MP()) {
2818     // make sure that the displacement word of the call ends up word aligned
2819     __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2820   }
2821   __ relocate(static_stub_Relocation::spec(call_pc));
2822   __ mov_metadata(rbx, (Metadata*)NULL);
2823   // must be set to -1 at code generation time
2824   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2825   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2826   __ jump(RuntimeAddress(__ pc()));
2827 
2828   assert(__ offset() - start <= call_stub_size, "stub too big");
2829   __ end_a_stub();
2830 }
2831 
2832 
2833 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2834   assert(exceptionOop->as_register() == rax, "must match");
2835   assert(exceptionPC->as_register() == rdx, "must match");
2836 
2837   // exception object is not added to oop map by LinearScan
2838   // (LinearScan assumes that no oops are in fixed registers)
2839   info->add_register_oop(exceptionOop);
2840   Runtime1::StubID unwind_id;
2841 
2842   // get current pc information
2843   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2844   int pc_for_athrow_offset = __ offset();
2845   InternalAddress pc_for_athrow(__ pc());
2846   __ lea(exceptionPC->as_register(), pc_for_athrow);
2847   add_call_info(pc_for_athrow_offset, info); // for exception handler
2848 
2849   __ verify_not_null_oop(rax);
2850   // search an exception handler (rax: exception oop, rdx: throwing pc)
2851   if (compilation()->has_fpu_code()) {
2852     unwind_id = Runtime1::handle_exception_id;
2853   } else {
2854     unwind_id = Runtime1::handle_exception_nofpu_id;
2855   }
2856   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2857 
2858   // enough room for two byte trap
2859   __ nop();
2860 }
2861 
2862 
2863 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2864   assert(exceptionOop->as_register() == rax, "must match");
2865 
2866   __ jmp(_unwind_handler_entry);
2867 }
2868 
2869 
2870 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2871 
2872   // optimized version for linear scan:
2873   // * count must be already in ECX (guaranteed by LinearScan)
2874   // * left and dest must be equal
2875   // * tmp must be unused
2876   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2877   assert(left == dest, "left and dest must be equal");
2878   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2879 
2880   if (left->is_single_cpu()) {
2881     Register value = left->as_register();
2882     assert(value != SHIFT_count, "left cannot be ECX");
2883 
2884     switch (code) {
2885       case lir_shl:  __ shll(value); break;
2886       case lir_shr:  __ sarl(value); break;
2887       case lir_ushr: __ shrl(value); break;
2888       default: ShouldNotReachHere();
2889     }
2890   } else if (left->is_double_cpu()) {
2891     Register lo = left->as_register_lo();
2892     Register hi = left->as_register_hi();
2893     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2894 #ifdef _LP64
2895     switch (code) {
2896       case lir_shl:  __ shlptr(lo);        break;
2897       case lir_shr:  __ sarptr(lo);        break;
2898       case lir_ushr: __ shrptr(lo);        break;
2899       default: ShouldNotReachHere();
2900     }
2901 #else
2902 
2903     switch (code) {
2904       case lir_shl:  __ lshl(hi, lo);        break;
2905       case lir_shr:  __ lshr(hi, lo, true);  break;
2906       case lir_ushr: __ lshr(hi, lo, false); break;
2907       default: ShouldNotReachHere();
2908     }
2909 #endif // LP64
2910   } else {
2911     ShouldNotReachHere();
2912   }
2913 }
2914 
2915 
2916 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2917   if (dest->is_single_cpu()) {
2918     // first move left into dest so that left is not destroyed by the shift
2919     Register value = dest->as_register();
2920     count = count & 0x1F; // Java spec
2921 
2922     move_regs(left->as_register(), value);
2923     switch (code) {
2924       case lir_shl:  __ shll(value, count); break;
2925       case lir_shr:  __ sarl(value, count); break;
2926       case lir_ushr: __ shrl(value, count); break;
2927       default: ShouldNotReachHere();
2928     }
2929   } else if (dest->is_double_cpu()) {
2930 #ifndef _LP64
2931     Unimplemented();
2932 #else
2933     // first move left into dest so that left is not destroyed by the shift
2934     Register value = dest->as_register_lo();
2935     count = count & 0x1F; // Java spec
2936 
2937     move_regs(left->as_register_lo(), value);
2938     switch (code) {
2939       case lir_shl:  __ shlptr(value, count); break;
2940       case lir_shr:  __ sarptr(value, count); break;
2941       case lir_ushr: __ shrptr(value, count); break;
2942       default: ShouldNotReachHere();
2943     }
2944 #endif // _LP64
2945   } else {
2946     ShouldNotReachHere();
2947   }
2948 }
2949 
2950 
2951 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2952   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2953   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2954   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2955   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
2956 }
2957 
2958 
2959 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2960   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2961   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2962   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2963   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
2964 }
2965 
2966 
2967 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2968   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2969   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2970   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2971   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
2972 }
2973 
2974 
2975 void LIR_Assembler::store_parameter(Metadata* m,  int offset_from_rsp_in_words) {
2976   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2977   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2978   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2979   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m);
2980 }
2981 
2982 
2983 // This code replaces a call to arraycopy; no exception may
2984 // be thrown in this code, they must be thrown in the System.arraycopy
2985 // activation frame; we could save some checks if this would not be the case
2986 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2987   ciArrayKlass* default_type = op->expected_type();
2988   Register src = op->src()->as_register();
2989   Register dst = op->dst()->as_register();
2990   Register src_pos = op->src_pos()->as_register();
2991   Register dst_pos = op->dst_pos()->as_register();
2992   Register length  = op->length()->as_register();
2993   Register tmp = op->tmp()->as_register();
2994 
2995   CodeStub* stub = op->stub();
2996   int flags = op->flags();
2997   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2998   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2999 
3000   // if we don't know anything, just go through the generic arraycopy
3001   if (default_type == NULL) {
3002     Label done;
3003     // save outgoing arguments on stack in case call to System.arraycopy is needed
3004     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3005     // for interpreter calling conventions. Now we have to do it in new style conventions.
3006     // For the moment until C1 gets the new register allocator I just force all the
3007     // args to the right place (except the register args) and then on the back side
3008     // reload the register args properly if we go slow path. Yuck
3009 
3010     // These are proper for the calling convention
3011     store_parameter(length, 2);
3012     store_parameter(dst_pos, 1);
3013     store_parameter(dst, 0);
3014 
3015     // these are just temporary placements until we need to reload
3016     store_parameter(src_pos, 3);
3017     store_parameter(src, 4);
3018     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3019 
3020     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3021 
3022     address copyfunc_addr = StubRoutines::generic_arraycopy();
3023 
3024     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3025 #ifdef _LP64
3026     // The arguments are in java calling convention so we can trivially shift them to C
3027     // convention
3028     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3029     __ mov(c_rarg0, j_rarg0);
3030     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3031     __ mov(c_rarg1, j_rarg1);
3032     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3033     __ mov(c_rarg2, j_rarg2);
3034     assert_different_registers(c_rarg3, j_rarg4);
3035     __ mov(c_rarg3, j_rarg3);
3036 #ifdef _WIN64
3037     // Allocate abi space for args but be sure to keep stack aligned
3038     __ subptr(rsp, 6*wordSize);
3039     store_parameter(j_rarg4, 4);
3040     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3041       __ call(RuntimeAddress(C_entry));
3042     } else {
3043 #ifndef PRODUCT
3044       if (PrintC1Statistics) {
3045         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3046       }
3047 #endif
3048       __ call(RuntimeAddress(copyfunc_addr));
3049     }
3050     __ addptr(rsp, 6*wordSize);
3051 #else
3052     __ mov(c_rarg4, j_rarg4);
3053     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3054       __ call(RuntimeAddress(C_entry));
3055     } else {
3056 #ifndef PRODUCT
3057       if (PrintC1Statistics) {
3058         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3059       }
3060 #endif
3061       __ call(RuntimeAddress(copyfunc_addr));
3062     }
3063 #endif // _WIN64
3064 #else
3065     __ push(length);
3066     __ push(dst_pos);
3067     __ push(dst);
3068     __ push(src_pos);
3069     __ push(src);
3070 
3071     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3072       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3073     } else {
3074 #ifndef PRODUCT
3075       if (PrintC1Statistics) {
3076         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3077       }
3078 #endif
3079       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3080     }
3081 
3082 #endif // _LP64
3083 
3084     __ cmpl(rax, 0);
3085     __ jcc(Assembler::equal, *stub->continuation());
3086 
3087     if (copyfunc_addr != NULL) {
3088       __ mov(tmp, rax);
3089       __ xorl(tmp, -1);
3090     }
3091 
3092     // Reload values from the stack so they are where the stub
3093     // expects them.
3094     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3095     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3096     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3097     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3098     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3099 
3100     if (copyfunc_addr != NULL) {
3101       __ subl(length, tmp);
3102       __ addl(src_pos, tmp);
3103       __ addl(dst_pos, tmp);
3104     }
3105     __ jmp(*stub->entry());
3106 
3107     __ bind(*stub->continuation());
3108     return;
3109   }
3110 
3111   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3112 
3113   int elem_size = type2aelembytes(basic_type);
3114   Address::ScaleFactor scale;
3115 
3116   switch (elem_size) {
3117     case 1 :
3118       scale = Address::times_1;
3119       break;
3120     case 2 :
3121       scale = Address::times_2;
3122       break;
3123     case 4 :
3124       scale = Address::times_4;
3125       break;
3126     case 8 :
3127       scale = Address::times_8;
3128       break;
3129     default:
3130       scale = Address::no_scale;
3131       ShouldNotReachHere();
3132   }
3133 
3134   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3135   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3136   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3137   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3138 
3139   // length and pos's are all sign extended at this point on 64bit
3140 
3141   // test for NULL
3142   if (flags & LIR_OpArrayCopy::src_null_check) {
3143     __ testptr(src, src);
3144     __ jcc(Assembler::zero, *stub->entry());
3145   }
3146   if (flags & LIR_OpArrayCopy::dst_null_check) {
3147     __ testptr(dst, dst);
3148     __ jcc(Assembler::zero, *stub->entry());
3149   }
3150 
3151   // check if negative
3152   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3153     __ testl(src_pos, src_pos);
3154     __ jcc(Assembler::less, *stub->entry());
3155   }
3156   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3157     __ testl(dst_pos, dst_pos);
3158     __ jcc(Assembler::less, *stub->entry());
3159   }
3160 
3161   if (flags & LIR_OpArrayCopy::src_range_check) {
3162     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3163     __ cmpl(tmp, src_length_addr);
3164     __ jcc(Assembler::above, *stub->entry());
3165   }
3166   if (flags & LIR_OpArrayCopy::dst_range_check) {
3167     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3168     __ cmpl(tmp, dst_length_addr);
3169     __ jcc(Assembler::above, *stub->entry());
3170   }
3171 
3172   if (flags & LIR_OpArrayCopy::length_positive_check) {
3173     __ testl(length, length);
3174     __ jcc(Assembler::less, *stub->entry());
3175     __ jcc(Assembler::zero, *stub->continuation());
3176   }
3177 
3178 #ifdef _LP64
3179   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3180   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3181 #endif
3182 
3183   if (flags & LIR_OpArrayCopy::type_check) {
3184     // We don't know the array types are compatible
3185     if (basic_type != T_OBJECT) {
3186       // Simple test for basic type arrays
3187       if (UseCompressedClassPointers) {
3188         __ movl(tmp, src_klass_addr);
3189         __ cmpl(tmp, dst_klass_addr);
3190       } else {
3191         __ movptr(tmp, src_klass_addr);
3192         __ cmpptr(tmp, dst_klass_addr);
3193       }
3194       __ jcc(Assembler::notEqual, *stub->entry());
3195     } else {
3196       // For object arrays, if src is a sub class of dst then we can
3197       // safely do the copy.
3198       Label cont, slow;
3199 
3200       __ push(src);
3201       __ push(dst);
3202 
3203       __ load_klass(src, src);
3204       __ load_klass(dst, dst);
3205 
3206       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3207 
3208       __ push(src);
3209       __ push(dst);
3210       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3211       __ pop(dst);
3212       __ pop(src);
3213 
3214       __ cmpl(src, 0);
3215       __ jcc(Assembler::notEqual, cont);
3216 
3217       __ bind(slow);
3218       __ pop(dst);
3219       __ pop(src);
3220 
3221       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3222       if (copyfunc_addr != NULL) { // use stub if available
3223         // src is not a sub class of dst so we have to do a
3224         // per-element check.
3225 
3226         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3227         if ((flags & mask) != mask) {
3228           // Check that at least both of them object arrays.
3229           assert(flags & mask, "one of the two should be known to be an object array");
3230 
3231           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3232             __ load_klass(tmp, src);
3233           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3234             __ load_klass(tmp, dst);
3235           }
3236           int lh_offset = in_bytes(Klass::layout_helper_offset());
3237           Address klass_lh_addr(tmp, lh_offset);
3238           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3239           __ cmpl(klass_lh_addr, objArray_lh);
3240           __ jcc(Assembler::notEqual, *stub->entry());
3241         }
3242 
3243        // Spill because stubs can use any register they like and it's
3244        // easier to restore just those that we care about.
3245        store_parameter(dst, 0);
3246        store_parameter(dst_pos, 1);
3247        store_parameter(length, 2);
3248        store_parameter(src_pos, 3);
3249        store_parameter(src, 4);
3250 
3251 #ifndef _LP64
3252         __ movptr(tmp, dst_klass_addr);
3253         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3254         __ push(tmp);
3255         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3256         __ push(tmp);
3257         __ push(length);
3258         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3259         __ push(tmp);
3260         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3261         __ push(tmp);
3262 
3263         __ call_VM_leaf(copyfunc_addr, 5);
3264 #else
3265         __ movl2ptr(length, length); //higher 32bits must be null
3266 
3267         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3268         assert_different_registers(c_rarg0, dst, dst_pos, length);
3269         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3270         assert_different_registers(c_rarg1, dst, length);
3271 
3272         __ mov(c_rarg2, length);
3273         assert_different_registers(c_rarg2, dst);
3274 
3275 #ifdef _WIN64
3276         // Allocate abi space for args but be sure to keep stack aligned
3277         __ subptr(rsp, 6*wordSize);
3278         __ load_klass(c_rarg3, dst);
3279         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3280         store_parameter(c_rarg3, 4);
3281         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3282         __ call(RuntimeAddress(copyfunc_addr));
3283         __ addptr(rsp, 6*wordSize);
3284 #else
3285         __ load_klass(c_rarg4, dst);
3286         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3287         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3288         __ call(RuntimeAddress(copyfunc_addr));
3289 #endif
3290 
3291 #endif
3292 
3293 #ifndef PRODUCT
3294         if (PrintC1Statistics) {
3295           Label failed;
3296           __ testl(rax, rax);
3297           __ jcc(Assembler::notZero, failed);
3298           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3299           __ bind(failed);
3300         }
3301 #endif
3302 
3303         __ testl(rax, rax);
3304         __ jcc(Assembler::zero, *stub->continuation());
3305 
3306 #ifndef PRODUCT
3307         if (PrintC1Statistics) {
3308           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3309         }
3310 #endif
3311 
3312         __ mov(tmp, rax);
3313 
3314         __ xorl(tmp, -1);
3315 
3316         // Restore previously spilled arguments
3317         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3318         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3319         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3320         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3321         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3322 
3323 
3324         __ subl(length, tmp);
3325         __ addl(src_pos, tmp);
3326         __ addl(dst_pos, tmp);
3327       }
3328 
3329       __ jmp(*stub->entry());
3330 
3331       __ bind(cont);
3332       __ pop(dst);
3333       __ pop(src);
3334     }
3335   }
3336 
3337 #ifdef ASSERT
3338   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3339     // Sanity check the known type with the incoming class.  For the
3340     // primitive case the types must match exactly with src.klass and
3341     // dst.klass each exactly matching the default type.  For the
3342     // object array case, if no type check is needed then either the
3343     // dst type is exactly the expected type and the src type is a
3344     // subtype which we can't check or src is the same array as dst
3345     // but not necessarily exactly of type default_type.
3346     Label known_ok, halt;
3347     __ mov_metadata(tmp, default_type->constant_encoding());
3348 #ifdef _LP64
3349     if (UseCompressedClassPointers) {
3350       __ encode_klass_not_null(tmp);
3351     }
3352 #endif
3353 
3354     if (basic_type != T_OBJECT) {
3355 
3356       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3357       else                   __ cmpptr(tmp, dst_klass_addr);
3358       __ jcc(Assembler::notEqual, halt);
3359       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3360       else                   __ cmpptr(tmp, src_klass_addr);
3361       __ jcc(Assembler::equal, known_ok);
3362     } else {
3363       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3364       else                   __ cmpptr(tmp, dst_klass_addr);
3365       __ jcc(Assembler::equal, known_ok);
3366       __ cmpptr(src, dst);
3367       __ jcc(Assembler::equal, known_ok);
3368     }
3369     __ bind(halt);
3370     __ stop("incorrect type information in arraycopy");
3371     __ bind(known_ok);
3372   }
3373 #endif
3374 
3375 #ifndef PRODUCT
3376   if (PrintC1Statistics) {
3377     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3378   }
3379 #endif
3380 
3381 #ifdef _LP64
3382   assert_different_registers(c_rarg0, dst, dst_pos, length);
3383   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3384   assert_different_registers(c_rarg1, length);
3385   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3386   __ mov(c_rarg2, length);
3387 
3388 #else
3389   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3390   store_parameter(tmp, 0);
3391   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3392   store_parameter(tmp, 1);
3393   store_parameter(length, 2);
3394 #endif // _LP64
3395 
3396   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3397   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3398   const char *name;
3399   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3400   __ call_VM_leaf(entry, 0);
3401 
3402   __ bind(*stub->continuation());
3403 }
3404 
3405 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3406   assert(op->crc()->is_single_cpu(),  "crc must be register");
3407   assert(op->val()->is_single_cpu(),  "byte value must be register");
3408   assert(op->result_opr()->is_single_cpu(), "result must be register");
3409   Register crc = op->crc()->as_register();
3410   Register val = op->val()->as_register();
3411   Register res = op->result_opr()->as_register();
3412 
3413   assert_different_registers(val, crc, res);
3414 
3415   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3416   __ notl(crc); // ~crc
3417   __ update_byte_crc32(crc, val, res);
3418   __ notl(crc); // ~crc
3419   __ mov(res, crc);
3420 }
3421 
3422 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3423   Register obj = op->obj_opr()->as_register();  // may not be an oop
3424   Register hdr = op->hdr_opr()->as_register();
3425   Register lock = op->lock_opr()->as_register();
3426   if (!UseFastLocking) {
3427     __ jmp(*op->stub()->entry());
3428   } else if (op->code() == lir_lock) {
3429     Register scratch = noreg;
3430     if (UseBiasedLocking) {
3431       scratch = op->scratch_opr()->as_register();
3432     }
3433     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3434     // add debug info for NullPointerException only if one is possible
3435     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3436     if (op->info() != NULL) {
3437       add_debug_info_for_null_check(null_check_offset, op->info());
3438     }
3439     // done
3440   } else if (op->code() == lir_unlock) {
3441     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3442     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3443   } else {
3444     Unimplemented();
3445   }
3446   __ bind(*op->stub()->continuation());
3447 }
3448 
3449 
3450 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3451   ciMethod* method = op->profiled_method();
3452   int bci          = op->profiled_bci();
3453   ciMethod* callee = op->profiled_callee();
3454 
3455   // Update counter for all call types
3456   ciMethodData* md = method->method_data_or_null();
3457   assert(md != NULL, "Sanity");
3458   ciProfileData* data = md->bci_to_data(bci);
3459   assert(data->is_CounterData(), "need CounterData for calls");
3460   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3461   Register mdo  = op->mdo()->as_register();
3462   __ mov_metadata(mdo, md->constant_encoding());
3463   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3464   Bytecodes::Code bc = method->java_code_at_bci(bci);
3465   const bool callee_is_static = callee->is_loaded() && callee->is_static();
3466   // Perform additional virtual call profiling for invokevirtual and
3467   // invokeinterface bytecodes
3468   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3469       !callee_is_static &&  // required for optimized MH invokes
3470       C1ProfileVirtualCalls) {
3471     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3472     Register recv = op->recv()->as_register();
3473     assert_different_registers(mdo, recv);
3474     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3475     ciKlass* known_klass = op->known_holder();
3476     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3477       // We know the type that will be seen at this call site; we can
3478       // statically update the MethodData* rather than needing to do
3479       // dynamic tests on the receiver type
3480 
3481       // NOTE: we should probably put a lock around this search to
3482       // avoid collisions by concurrent compilations
3483       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3484       uint i;
3485       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3486         ciKlass* receiver = vc_data->receiver(i);
3487         if (known_klass->equals(receiver)) {
3488           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3489           __ addptr(data_addr, DataLayout::counter_increment);
3490           return;
3491         }
3492       }
3493 
3494       // Receiver type not found in profile data; select an empty slot
3495 
3496       // Note that this is less efficient than it should be because it
3497       // always does a write to the receiver part of the
3498       // VirtualCallData rather than just the first time
3499       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3500         ciKlass* receiver = vc_data->receiver(i);
3501         if (receiver == NULL) {
3502           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3503           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3504           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3505           __ addptr(data_addr, DataLayout::counter_increment);
3506           return;
3507         }
3508       }
3509     } else {
3510       __ load_klass(recv, recv);
3511       Label update_done;
3512       type_profile_helper(mdo, md, data, recv, &update_done);
3513       // Receiver did not match any saved receiver and there is no empty row for it.
3514       // Increment total counter to indicate polymorphic case.
3515       __ addptr(counter_addr, DataLayout::counter_increment);
3516 
3517       __ bind(update_done);
3518     }
3519   } else {
3520     // Static call
3521     __ addptr(counter_addr, DataLayout::counter_increment);
3522   }
3523 }
3524 
3525 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3526   Register obj = op->obj()->as_register();
3527   Register tmp = op->tmp()->as_pointer_register();
3528   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3529   ciKlass* exact_klass = op->exact_klass();
3530   intptr_t current_klass = op->current_klass();
3531   bool not_null = op->not_null();
3532   bool no_conflict = op->no_conflict();
3533 
3534   Label update, next, none;
3535 
3536   bool do_null = !not_null;
3537   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3538   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3539 
3540   assert(do_null || do_update, "why are we here?");
3541   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3542 
3543   __ verify_oop(obj);
3544 
3545   if (tmp != obj) {
3546     __ mov(tmp, obj);
3547   }
3548   if (do_null) {
3549     __ testptr(tmp, tmp);
3550     __ jccb(Assembler::notZero, update);
3551     if (!TypeEntries::was_null_seen(current_klass)) {
3552       __ orptr(mdo_addr, TypeEntries::null_seen);
3553     }
3554     if (do_update) {
3555 #ifndef ASSERT
3556       __ jmpb(next);
3557     }
3558 #else
3559       __ jmp(next);
3560     }
3561   } else {
3562     __ testptr(tmp, tmp);
3563     __ jccb(Assembler::notZero, update);
3564     __ stop("unexpect null obj");
3565 #endif
3566   }
3567 
3568   __ bind(update);
3569 
3570   if (do_update) {
3571 #ifdef ASSERT
3572     if (exact_klass != NULL) {
3573       Label ok;
3574       __ load_klass(tmp, tmp);
3575       __ push(tmp);
3576       __ mov_metadata(tmp, exact_klass->constant_encoding());
3577       __ cmpptr(tmp, Address(rsp, 0));
3578       __ jccb(Assembler::equal, ok);
3579       __ stop("exact klass and actual klass differ");
3580       __ bind(ok);
3581       __ pop(tmp);
3582     }
3583 #endif
3584     if (!no_conflict) {
3585       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3586         if (exact_klass != NULL) {
3587           __ mov_metadata(tmp, exact_klass->constant_encoding());
3588         } else {
3589           __ load_klass(tmp, tmp);
3590         }
3591 
3592         __ xorptr(tmp, mdo_addr);
3593         __ testptr(tmp, TypeEntries::type_klass_mask);
3594         // klass seen before, nothing to do. The unknown bit may have been
3595         // set already but no need to check.
3596         __ jccb(Assembler::zero, next);
3597 
3598         __ testptr(tmp, TypeEntries::type_unknown);
3599         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3600 
3601         if (TypeEntries::is_type_none(current_klass)) {
3602           __ cmpptr(mdo_addr, 0);
3603           __ jccb(Assembler::equal, none);
3604           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3605           __ jccb(Assembler::equal, none);
3606           // There is a chance that the checks above (re-reading profiling
3607           // data from memory) fail if another thread has just set the
3608           // profiling to this obj's klass
3609           __ xorptr(tmp, mdo_addr);
3610           __ testptr(tmp, TypeEntries::type_klass_mask);
3611           __ jccb(Assembler::zero, next);
3612         }
3613       } else {
3614         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3615                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3616 
3617         __ movptr(tmp, mdo_addr);
3618         __ testptr(tmp, TypeEntries::type_unknown);
3619         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3620       }
3621 
3622       // different than before. Cannot keep accurate profile.
3623       __ orptr(mdo_addr, TypeEntries::type_unknown);
3624 
3625       if (TypeEntries::is_type_none(current_klass)) {
3626         __ jmpb(next);
3627 
3628         __ bind(none);
3629         // first time here. Set profile type.
3630         __ movptr(mdo_addr, tmp);
3631       }
3632     } else {
3633       // There's a single possible klass at this profile point
3634       assert(exact_klass != NULL, "should be");
3635       if (TypeEntries::is_type_none(current_klass)) {
3636         __ mov_metadata(tmp, exact_klass->constant_encoding());
3637         __ xorptr(tmp, mdo_addr);
3638         __ testptr(tmp, TypeEntries::type_klass_mask);
3639 #ifdef ASSERT
3640         __ jcc(Assembler::zero, next);
3641 
3642         {
3643           Label ok;
3644           __ push(tmp);
3645           __ cmpptr(mdo_addr, 0);
3646           __ jcc(Assembler::equal, ok);
3647           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3648           __ jcc(Assembler::equal, ok);
3649           // may have been set by another thread
3650           __ mov_metadata(tmp, exact_klass->constant_encoding());
3651           __ xorptr(tmp, mdo_addr);
3652           __ testptr(tmp, TypeEntries::type_mask);
3653           __ jcc(Assembler::zero, ok);
3654 
3655           __ stop("unexpected profiling mismatch");
3656           __ bind(ok);
3657           __ pop(tmp);
3658         }
3659 #else
3660         __ jccb(Assembler::zero, next);
3661 #endif
3662         // first time here. Set profile type.
3663         __ movptr(mdo_addr, tmp);
3664       } else {
3665         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3666                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3667 
3668         __ movptr(tmp, mdo_addr);
3669         __ testptr(tmp, TypeEntries::type_unknown);
3670         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3671 
3672         __ orptr(mdo_addr, TypeEntries::type_unknown);
3673       }
3674     }
3675 
3676     __ bind(next);
3677   }
3678 }
3679 
3680 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3681   Unimplemented();
3682 }
3683 
3684 
3685 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3686   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3687 }
3688 
3689 
3690 void LIR_Assembler::align_backward_branch_target() {
3691   __ align(BytesPerWord);
3692 }
3693 
3694 
3695 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3696   if (left->is_single_cpu()) {
3697     __ negl(left->as_register());
3698     move_regs(left->as_register(), dest->as_register());
3699 
3700   } else if (left->is_double_cpu()) {
3701     Register lo = left->as_register_lo();
3702 #ifdef _LP64
3703     Register dst = dest->as_register_lo();
3704     __ movptr(dst, lo);
3705     __ negptr(dst);
3706 #else
3707     Register hi = left->as_register_hi();
3708     __ lneg(hi, lo);
3709     if (dest->as_register_lo() == hi) {
3710       assert(dest->as_register_hi() != lo, "destroying register");
3711       move_regs(hi, dest->as_register_hi());
3712       move_regs(lo, dest->as_register_lo());
3713     } else {
3714       move_regs(lo, dest->as_register_lo());
3715       move_regs(hi, dest->as_register_hi());
3716     }
3717 #endif // _LP64
3718 
3719   } else if (dest->is_single_xmm()) {
3720     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3721       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3722     }
3723     if (UseAVX > 0) {
3724       __ vnegatess(dest->as_xmm_float_reg(), dest->as_xmm_float_reg(),
3725                    ExternalAddress((address)float_signflip_pool));
3726     } else {
3727       __ xorps(dest->as_xmm_float_reg(),
3728                ExternalAddress((address)float_signflip_pool));
3729     }
3730   } else if (dest->is_double_xmm()) {
3731     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3732       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3733     }
3734     if (UseAVX > 0) {
3735       __ vnegatesd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg(),
3736                    ExternalAddress((address)double_signflip_pool));
3737     } else {
3738       __ xorpd(dest->as_xmm_double_reg(),
3739                ExternalAddress((address)double_signflip_pool));
3740     }
3741   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3742     assert(left->fpu() == 0, "arg must be on TOS");
3743     assert(dest->fpu() == 0, "dest must be TOS");
3744     __ fchs();
3745 
3746   } else {
3747     ShouldNotReachHere();
3748   }
3749 }
3750 
3751 
3752 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3753   assert(addr->is_address() && dest->is_register(), "check");
3754   Register reg;
3755   reg = dest->as_pointer_register();
3756   __ lea(reg, as_Address(addr->as_address_ptr()));
3757 }
3758 
3759 
3760 
3761 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3762   assert(!tmp->is_valid(), "don't need temporary");
3763   __ call(RuntimeAddress(dest));
3764   if (info != NULL) {
3765     add_call_info_here(info);
3766   }
3767 }
3768 
3769 
3770 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3771   assert(type == T_LONG, "only for volatile long fields");
3772 
3773   if (info != NULL) {
3774     add_debug_info_for_null_check_here(info);
3775   }
3776 
3777   if (src->is_double_xmm()) {
3778     if (dest->is_double_cpu()) {
3779 #ifdef _LP64
3780       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3781 #else
3782       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3783       __ psrlq(src->as_xmm_double_reg(), 32);
3784       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3785 #endif // _LP64
3786     } else if (dest->is_double_stack()) {
3787       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3788     } else if (dest->is_address()) {
3789       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3790     } else {
3791       ShouldNotReachHere();
3792     }
3793 
3794   } else if (dest->is_double_xmm()) {
3795     if (src->is_double_stack()) {
3796       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3797     } else if (src->is_address()) {
3798       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3799     } else {
3800       ShouldNotReachHere();
3801     }
3802 
3803   } else if (src->is_double_fpu()) {
3804     assert(src->fpu_regnrLo() == 0, "must be TOS");
3805     if (dest->is_double_stack()) {
3806       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3807     } else if (dest->is_address()) {
3808       __ fistp_d(as_Address(dest->as_address_ptr()));
3809     } else {
3810       ShouldNotReachHere();
3811     }
3812 
3813   } else if (dest->is_double_fpu()) {
3814     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3815     if (src->is_double_stack()) {
3816       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3817     } else if (src->is_address()) {
3818       __ fild_d(as_Address(src->as_address_ptr()));
3819     } else {
3820       ShouldNotReachHere();
3821     }
3822   } else {
3823     ShouldNotReachHere();
3824   }
3825 }
3826 
3827 #ifdef ASSERT
3828 // emit run-time assertion
3829 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3830   assert(op->code() == lir_assert, "must be");
3831 
3832   if (op->in_opr1()->is_valid()) {
3833     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3834     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3835   } else {
3836     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3837     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3838   }
3839 
3840   Label ok;
3841   if (op->condition() != lir_cond_always) {
3842     Assembler::Condition acond = Assembler::zero;
3843     switch (op->condition()) {
3844       case lir_cond_equal:        acond = Assembler::equal;       break;
3845       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3846       case lir_cond_less:         acond = Assembler::less;        break;
3847       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3848       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3849       case lir_cond_greater:      acond = Assembler::greater;     break;
3850       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3851       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3852       default:                    ShouldNotReachHere();
3853     }
3854     __ jcc(acond, ok);
3855   }
3856   if (op->halt()) {
3857     const char* str = __ code_string(op->msg());
3858     __ stop(str);
3859   } else {
3860     breakpoint();
3861   }
3862   __ bind(ok);
3863 }
3864 #endif
3865 
3866 void LIR_Assembler::membar() {
3867   // QQQ sparc TSO uses this,
3868   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3869 }
3870 
3871 void LIR_Assembler::membar_acquire() {
3872   // No x86 machines currently require load fences
3873 }
3874 
3875 void LIR_Assembler::membar_release() {
3876   // No x86 machines currently require store fences
3877 }
3878 
3879 void LIR_Assembler::membar_loadload() {
3880   // no-op
3881   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3882 }
3883 
3884 void LIR_Assembler::membar_storestore() {
3885   // no-op
3886   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3887 }
3888 
3889 void LIR_Assembler::membar_loadstore() {
3890   // no-op
3891   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3892 }
3893 
3894 void LIR_Assembler::membar_storeload() {
3895   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3896 }
3897 
3898 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3899   assert(result_reg->is_register(), "check");
3900 #ifdef _LP64
3901   // __ get_thread(result_reg->as_register_lo());
3902   __ mov(result_reg->as_register(), r15_thread);
3903 #else
3904   __ get_thread(result_reg->as_register());
3905 #endif // _LP64
3906 }
3907 
3908 
3909 void LIR_Assembler::peephole(LIR_List*) {
3910   // do nothing for now
3911 }
3912 
3913 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3914   assert(data == dest, "xchg/xadd uses only 2 operands");
3915 
3916   if (data->type() == T_INT) {
3917     if (code == lir_xadd) {
3918       if (os::is_MP()) {
3919         __ lock();
3920       }
3921       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
3922     } else {
3923       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
3924     }
3925   } else if (data->is_oop()) {
3926     assert (code == lir_xchg, "xadd for oops");
3927     Register obj = data->as_register();
3928 #ifdef _LP64
3929     if (UseCompressedOops) {
3930       __ encode_heap_oop(obj);
3931       __ xchgl(obj, as_Address(src->as_address_ptr()));
3932       __ decode_heap_oop(obj);
3933     } else {
3934       __ xchgptr(obj, as_Address(src->as_address_ptr()));
3935     }
3936 #else
3937     __ xchgl(obj, as_Address(src->as_address_ptr()));
3938 #endif
3939   } else if (data->type() == T_LONG) {
3940 #ifdef _LP64
3941     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
3942     if (code == lir_xadd) {
3943       if (os::is_MP()) {
3944         __ lock();
3945       }
3946       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
3947     } else {
3948       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
3949     }
3950 #else
3951     ShouldNotReachHere();
3952 #endif
3953   } else {
3954     ShouldNotReachHere();
3955   }
3956 }
3957 
3958 #undef __