1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "nativeInst_x86.hpp"
  30 #include "oops/instanceOop.hpp"
  31 #include "oops/method.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/frame.inline.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "utilities/top.hpp"
  42 #ifdef COMPILER2
  43 #include "opto/runtime.hpp"
  44 #endif
  45 
  46 // Declaration and definition of StubGenerator (no .hpp file).
  47 // For a more detailed description of the stub routine structure
  48 // see the comment in stubRoutines.hpp
  49 
  50 #define __ _masm->
  51 #define a__ ((Assembler*)_masm)->
  52 
  53 #ifdef PRODUCT
  54 #define BLOCK_COMMENT(str) /* nothing */
  55 #else
  56 #define BLOCK_COMMENT(str) __ block_comment(str)
  57 #endif
  58 
  59 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  60 
  61 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
  62 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
  63 
  64 // -------------------------------------------------------------------------------------------------------------------------
  65 // Stub Code definitions
  66 
  67 static address handle_unsafe_access() {
  68   JavaThread* thread = JavaThread::current();
  69   address pc  = thread->saved_exception_pc();
  70   // pc is the instruction which we must emulate
  71   // doing a no-op is fine:  return garbage from the load
  72   // therefore, compute npc
  73   address npc = Assembler::locate_next_instruction(pc);
  74 
  75   // request an async exception
  76   thread->set_pending_unsafe_access_error();
  77 
  78   // return address of next instruction to execute
  79   return npc;
  80 }
  81 
  82 class StubGenerator: public StubCodeGenerator {
  83  private:
  84 
  85 #ifdef PRODUCT
  86 #define inc_counter_np(counter) ((void)0)
  87 #else
  88   void inc_counter_np_(int& counter) {
  89     __ incrementl(ExternalAddress((address)&counter));
  90   }
  91 #define inc_counter_np(counter) \
  92   BLOCK_COMMENT("inc_counter " #counter); \
  93   inc_counter_np_(counter);
  94 #endif //PRODUCT
  95 
  96   void inc_copy_counter_np(BasicType t) {
  97 #ifndef PRODUCT
  98     switch (t) {
  99     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
 100     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
 101     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
 102     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
 103     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
 104     }
 105     ShouldNotReachHere();
 106 #endif //PRODUCT
 107   }
 108 
 109   //------------------------------------------------------------------------------------------------------------------------
 110   // Call stubs are used to call Java from C
 111   //
 112   //    [ return_from_Java     ] <--- rsp
 113   //    [ argument word n      ]
 114   //      ...
 115   // -N [ argument word 1      ]
 116   // -7 [ Possible padding for stack alignment ]
 117   // -6 [ Possible padding for stack alignment ]
 118   // -5 [ Possible padding for stack alignment ]
 119   // -4 [ mxcsr save           ] <--- rsp_after_call
 120   // -3 [ saved rbx,            ]
 121   // -2 [ saved rsi            ]
 122   // -1 [ saved rdi            ]
 123   //  0 [ saved rbp,            ] <--- rbp,
 124   //  1 [ return address       ]
 125   //  2 [ ptr. to call wrapper ]
 126   //  3 [ result               ]
 127   //  4 [ result_type          ]
 128   //  5 [ method               ]
 129   //  6 [ entry_point          ]
 130   //  7 [ parameters           ]
 131   //  8 [ parameter_size       ]
 132   //  9 [ thread               ]
 133 
 134 
 135   address generate_call_stub(address& return_address) {
 136     StubCodeMark mark(this, "StubRoutines", "call_stub");
 137     address start = __ pc();
 138 
 139     // stub code parameters / addresses
 140     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
 141     bool  sse_save = false;
 142     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
 143     const int     locals_count_in_bytes  (4*wordSize);
 144     const Address mxcsr_save    (rbp, -4 * wordSize);
 145     const Address saved_rbx     (rbp, -3 * wordSize);
 146     const Address saved_rsi     (rbp, -2 * wordSize);
 147     const Address saved_rdi     (rbp, -1 * wordSize);
 148     const Address result        (rbp,  3 * wordSize);
 149     const Address result_type   (rbp,  4 * wordSize);
 150     const Address method        (rbp,  5 * wordSize);
 151     const Address entry_point   (rbp,  6 * wordSize);
 152     const Address parameters    (rbp,  7 * wordSize);
 153     const Address parameter_size(rbp,  8 * wordSize);
 154     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
 155     sse_save =  UseSSE > 0;
 156 
 157     // stub code
 158     __ enter();
 159     __ movptr(rcx, parameter_size);              // parameter counter
 160     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
 161     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
 162     __ subptr(rsp, rcx);
 163     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
 164 
 165     // save rdi, rsi, & rbx, according to C calling conventions
 166     __ movptr(saved_rdi, rdi);
 167     __ movptr(saved_rsi, rsi);
 168     __ movptr(saved_rbx, rbx);
 169 
 170     // provide initial value for required masks
 171     if (UseAVX > 2) {
 172       __ movl(rbx, 0xffff);
 173       __ kmovwl(k1, rbx);
 174     }
 175 
 176     // save and initialize %mxcsr
 177     if (sse_save) {
 178       Label skip_ldmx;
 179       __ stmxcsr(mxcsr_save);
 180       __ movl(rax, mxcsr_save);
 181       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 182       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 183       __ cmp32(rax, mxcsr_std);
 184       __ jcc(Assembler::equal, skip_ldmx);
 185       __ ldmxcsr(mxcsr_std);
 186       __ bind(skip_ldmx);
 187     }
 188 
 189     // make sure the control word is correct.
 190     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 191 
 192 #ifdef ASSERT
 193     // make sure we have no pending exceptions
 194     { Label L;
 195       __ movptr(rcx, thread);
 196       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 197       __ jcc(Assembler::equal, L);
 198       __ stop("StubRoutines::call_stub: entered with pending exception");
 199       __ bind(L);
 200     }
 201 #endif
 202 
 203     // pass parameters if any
 204     BLOCK_COMMENT("pass parameters if any");
 205     Label parameters_done;
 206     __ movl(rcx, parameter_size);  // parameter counter
 207     __ testl(rcx, rcx);
 208     __ jcc(Assembler::zero, parameters_done);
 209 
 210     // parameter passing loop
 211 
 212     Label loop;
 213     // Copy Java parameters in reverse order (receiver last)
 214     // Note that the argument order is inverted in the process
 215     // source is rdx[rcx: N-1..0]
 216     // dest   is rsp[rbx: 0..N-1]
 217 
 218     __ movptr(rdx, parameters);          // parameter pointer
 219     __ xorptr(rbx, rbx);
 220 
 221     __ BIND(loop);
 222 
 223     // get parameter
 224     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
 225     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
 226                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
 227     __ increment(rbx);
 228     __ decrement(rcx);
 229     __ jcc(Assembler::notZero, loop);
 230 
 231     // call Java function
 232     __ BIND(parameters_done);
 233     __ movptr(rbx, method);           // get Method*
 234     __ movptr(rax, entry_point);      // get entry_point
 235     __ mov(rsi, rsp);                 // set sender sp
 236     BLOCK_COMMENT("call Java function");
 237     __ call(rax);
 238 
 239     BLOCK_COMMENT("call_stub_return_address:");
 240     return_address = __ pc();
 241 
 242 #ifdef COMPILER2
 243     {
 244       Label L_skip;
 245       if (UseSSE >= 2) {
 246         __ verify_FPU(0, "call_stub_return");
 247       } else {
 248         for (int i = 1; i < 8; i++) {
 249           __ ffree(i);
 250         }
 251 
 252         // UseSSE <= 1 so double result should be left on TOS
 253         __ movl(rsi, result_type);
 254         __ cmpl(rsi, T_DOUBLE);
 255         __ jcc(Assembler::equal, L_skip);
 256         if (UseSSE == 0) {
 257           // UseSSE == 0 so float result should be left on TOS
 258           __ cmpl(rsi, T_FLOAT);
 259           __ jcc(Assembler::equal, L_skip);
 260         }
 261         __ ffree(0);
 262       }
 263       __ BIND(L_skip);
 264     }
 265 #endif // COMPILER2
 266 
 267     // store result depending on type
 268     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 269     __ movptr(rdi, result);
 270     Label is_long, is_float, is_double, exit;
 271     __ movl(rsi, result_type);
 272     __ cmpl(rsi, T_LONG);
 273     __ jcc(Assembler::equal, is_long);
 274     __ cmpl(rsi, T_FLOAT);
 275     __ jcc(Assembler::equal, is_float);
 276     __ cmpl(rsi, T_DOUBLE);
 277     __ jcc(Assembler::equal, is_double);
 278 
 279     // handle T_INT case
 280     __ movl(Address(rdi, 0), rax);
 281     __ BIND(exit);
 282 
 283     // check that FPU stack is empty
 284     __ verify_FPU(0, "generate_call_stub");
 285 
 286     // pop parameters
 287     __ lea(rsp, rsp_after_call);
 288 
 289     // restore %mxcsr
 290     if (sse_save) {
 291       __ ldmxcsr(mxcsr_save);
 292     }
 293 
 294     // restore rdi, rsi and rbx,
 295     __ movptr(rbx, saved_rbx);
 296     __ movptr(rsi, saved_rsi);
 297     __ movptr(rdi, saved_rdi);
 298     __ addptr(rsp, 4*wordSize);
 299 
 300     // return
 301     __ pop(rbp);
 302     __ ret(0);
 303 
 304     // handle return types different from T_INT
 305     __ BIND(is_long);
 306     __ movl(Address(rdi, 0 * wordSize), rax);
 307     __ movl(Address(rdi, 1 * wordSize), rdx);
 308     __ jmp(exit);
 309 
 310     __ BIND(is_float);
 311     // interpreter uses xmm0 for return values
 312     if (UseSSE >= 1) {
 313       __ movflt(Address(rdi, 0), xmm0);
 314     } else {
 315       __ fstp_s(Address(rdi, 0));
 316     }
 317     __ jmp(exit);
 318 
 319     __ BIND(is_double);
 320     // interpreter uses xmm0 for return values
 321     if (UseSSE >= 2) {
 322       __ movdbl(Address(rdi, 0), xmm0);
 323     } else {
 324       __ fstp_d(Address(rdi, 0));
 325     }
 326     __ jmp(exit);
 327 
 328     return start;
 329   }
 330 
 331 
 332   //------------------------------------------------------------------------------------------------------------------------
 333   // Return point for a Java call if there's an exception thrown in Java code.
 334   // The exception is caught and transformed into a pending exception stored in
 335   // JavaThread that can be tested from within the VM.
 336   //
 337   // Note: Usually the parameters are removed by the callee. In case of an exception
 338   //       crossing an activation frame boundary, that is not the case if the callee
 339   //       is compiled code => need to setup the rsp.
 340   //
 341   // rax,: exception oop
 342 
 343   address generate_catch_exception() {
 344     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 345     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
 346     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
 347     address start = __ pc();
 348 
 349     // get thread directly
 350     __ movptr(rcx, thread);
 351 #ifdef ASSERT
 352     // verify that threads correspond
 353     { Label L;
 354       __ get_thread(rbx);
 355       __ cmpptr(rbx, rcx);
 356       __ jcc(Assembler::equal, L);
 357       __ stop("StubRoutines::catch_exception: threads must correspond");
 358       __ bind(L);
 359     }
 360 #endif
 361     // set pending exception
 362     __ verify_oop(rax);
 363     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
 364     __ lea(Address(rcx, Thread::exception_file_offset   ()),
 365            ExternalAddress((address)__FILE__));
 366     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
 367     // complete return to VM
 368     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
 369     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 370 
 371     return start;
 372   }
 373 
 374 
 375   //------------------------------------------------------------------------------------------------------------------------
 376   // Continuation point for runtime calls returning with a pending exception.
 377   // The pending exception check happened in the runtime or native call stub.
 378   // The pending exception in Thread is converted into a Java-level exception.
 379   //
 380   // Contract with Java-level exception handlers:
 381   // rax: exception
 382   // rdx: throwing pc
 383   //
 384   // NOTE: At entry of this stub, exception-pc must be on stack !!
 385 
 386   address generate_forward_exception() {
 387     StubCodeMark mark(this, "StubRoutines", "forward exception");
 388     address start = __ pc();
 389     const Register thread = rcx;
 390 
 391     // other registers used in this stub
 392     const Register exception_oop = rax;
 393     const Register handler_addr  = rbx;
 394     const Register exception_pc  = rdx;
 395 
 396     // Upon entry, the sp points to the return address returning into Java
 397     // (interpreted or compiled) code; i.e., the return address becomes the
 398     // throwing pc.
 399     //
 400     // Arguments pushed before the runtime call are still on the stack but
 401     // the exception handler will reset the stack pointer -> ignore them.
 402     // A potential result in registers can be ignored as well.
 403 
 404 #ifdef ASSERT
 405     // make sure this code is only executed if there is a pending exception
 406     { Label L;
 407       __ get_thread(thread);
 408       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 409       __ jcc(Assembler::notEqual, L);
 410       __ stop("StubRoutines::forward exception: no pending exception (1)");
 411       __ bind(L);
 412     }
 413 #endif
 414 
 415     // compute exception handler into rbx,
 416     __ get_thread(thread);
 417     __ movptr(exception_pc, Address(rsp, 0));
 418     BLOCK_COMMENT("call exception_handler_for_return_address");
 419     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
 420     __ mov(handler_addr, rax);
 421 
 422     // setup rax & rdx, remove return address & clear pending exception
 423     __ get_thread(thread);
 424     __ pop(exception_pc);
 425     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
 426     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 427 
 428 #ifdef ASSERT
 429     // make sure exception is set
 430     { Label L;
 431       __ testptr(exception_oop, exception_oop);
 432       __ jcc(Assembler::notEqual, L);
 433       __ stop("StubRoutines::forward exception: no pending exception (2)");
 434       __ bind(L);
 435     }
 436 #endif
 437 
 438     // Verify that there is really a valid exception in RAX.
 439     __ verify_oop(exception_oop);
 440 
 441     // continue at exception handler (return address removed)
 442     // rax: exception
 443     // rbx: exception handler
 444     // rdx: throwing pc
 445     __ jmp(handler_addr);
 446 
 447     return start;
 448   }
 449 
 450 
 451   //----------------------------------------------------------------------------------------------------
 452   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
 453   //
 454   // xchg exists as far back as 8086, lock needed for MP only
 455   // Stack layout immediately after call:
 456   //
 457   // 0 [ret addr ] <--- rsp
 458   // 1 [  ex     ]
 459   // 2 [  dest   ]
 460   //
 461   // Result:   *dest <- ex, return (old *dest)
 462   //
 463   // Note: win32 does not currently use this code
 464 
 465   address generate_atomic_xchg() {
 466     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 467     address start = __ pc();
 468 
 469     __ push(rdx);
 470     Address exchange(rsp, 2 * wordSize);
 471     Address dest_addr(rsp, 3 * wordSize);
 472     __ movl(rax, exchange);
 473     __ movptr(rdx, dest_addr);
 474     __ xchgl(rax, Address(rdx, 0));
 475     __ pop(rdx);
 476     __ ret(0);
 477 
 478     return start;
 479   }
 480 
 481   //----------------------------------------------------------------------------------------------------
 482   // Support for void verify_mxcsr()
 483   //
 484   // This routine is used with -Xcheck:jni to verify that native
 485   // JNI code does not return to Java code without restoring the
 486   // MXCSR register to our expected state.
 487 
 488 
 489   address generate_verify_mxcsr() {
 490     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 491     address start = __ pc();
 492 
 493     const Address mxcsr_save(rsp, 0);
 494 
 495     if (CheckJNICalls && UseSSE > 0 ) {
 496       Label ok_ret;
 497       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 498       __ push(rax);
 499       __ subptr(rsp, wordSize);      // allocate a temp location
 500       __ stmxcsr(mxcsr_save);
 501       __ movl(rax, mxcsr_save);
 502       __ andl(rax, MXCSR_MASK);
 503       __ cmp32(rax, mxcsr_std);
 504       __ jcc(Assembler::equal, ok_ret);
 505 
 506       __ warn("MXCSR changed by native JNI code.");
 507 
 508       __ ldmxcsr(mxcsr_std);
 509 
 510       __ bind(ok_ret);
 511       __ addptr(rsp, wordSize);
 512       __ pop(rax);
 513     }
 514 
 515     __ ret(0);
 516 
 517     return start;
 518   }
 519 
 520 
 521   //---------------------------------------------------------------------------
 522   // Support for void verify_fpu_cntrl_wrd()
 523   //
 524   // This routine is used with -Xcheck:jni to verify that native
 525   // JNI code does not return to Java code without restoring the
 526   // FP control word to our expected state.
 527 
 528   address generate_verify_fpu_cntrl_wrd() {
 529     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
 530     address start = __ pc();
 531 
 532     const Address fpu_cntrl_wrd_save(rsp, 0);
 533 
 534     if (CheckJNICalls) {
 535       Label ok_ret;
 536       __ push(rax);
 537       __ subptr(rsp, wordSize);      // allocate a temp location
 538       __ fnstcw(fpu_cntrl_wrd_save);
 539       __ movl(rax, fpu_cntrl_wrd_save);
 540       __ andl(rax, FPU_CNTRL_WRD_MASK);
 541       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
 542       __ cmp32(rax, fpu_std);
 543       __ jcc(Assembler::equal, ok_ret);
 544 
 545       __ warn("Floating point control word changed by native JNI code.");
 546 
 547       __ fldcw(fpu_std);
 548 
 549       __ bind(ok_ret);
 550       __ addptr(rsp, wordSize);
 551       __ pop(rax);
 552     }
 553 
 554     __ ret(0);
 555 
 556     return start;
 557   }
 558 
 559   //---------------------------------------------------------------------------
 560   // Wrapper for slow-case handling of double-to-integer conversion
 561   // d2i or f2i fast case failed either because it is nan or because
 562   // of under/overflow.
 563   // Input:  FPU TOS: float value
 564   // Output: rax, (rdx): integer (long) result
 565 
 566   address generate_d2i_wrapper(BasicType t, address fcn) {
 567     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
 568     address start = __ pc();
 569 
 570   // Capture info about frame layout
 571   enum layout { FPUState_off         = 0,
 572                 rbp_off              = FPUStateSizeInWords,
 573                 rdi_off,
 574                 rsi_off,
 575                 rcx_off,
 576                 rbx_off,
 577                 saved_argument_off,
 578                 saved_argument_off2, // 2nd half of double
 579                 framesize
 580   };
 581 
 582   assert(FPUStateSizeInWords == 27, "update stack layout");
 583 
 584     // Save outgoing argument to stack across push_FPU_state()
 585     __ subptr(rsp, wordSize * 2);
 586     __ fstp_d(Address(rsp, 0));
 587 
 588     // Save CPU & FPU state
 589     __ push(rbx);
 590     __ push(rcx);
 591     __ push(rsi);
 592     __ push(rdi);
 593     __ push(rbp);
 594     __ push_FPU_state();
 595 
 596     // push_FPU_state() resets the FP top of stack
 597     // Load original double into FP top of stack
 598     __ fld_d(Address(rsp, saved_argument_off * wordSize));
 599     // Store double into stack as outgoing argument
 600     __ subptr(rsp, wordSize*2);
 601     __ fst_d(Address(rsp, 0));
 602 
 603     // Prepare FPU for doing math in C-land
 604     __ empty_FPU_stack();
 605     // Call the C code to massage the double.  Result in EAX
 606     if (t == T_INT)
 607       { BLOCK_COMMENT("SharedRuntime::d2i"); }
 608     else if (t == T_LONG)
 609       { BLOCK_COMMENT("SharedRuntime::d2l"); }
 610     __ call_VM_leaf( fcn, 2 );
 611 
 612     // Restore CPU & FPU state
 613     __ pop_FPU_state();
 614     __ pop(rbp);
 615     __ pop(rdi);
 616     __ pop(rsi);
 617     __ pop(rcx);
 618     __ pop(rbx);
 619     __ addptr(rsp, wordSize * 2);
 620 
 621     __ ret(0);
 622 
 623     return start;
 624   }
 625 
 626 
 627   //---------------------------------------------------------------------------
 628   // The following routine generates a subroutine to throw an asynchronous
 629   // UnknownError when an unsafe access gets a fault that could not be
 630   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
 631   address generate_handler_for_unsafe_access() {
 632     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 633     address start = __ pc();
 634 
 635     __ push(0);                       // hole for return address-to-be
 636     __ pusha();                       // push registers
 637     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
 638     BLOCK_COMMENT("call handle_unsafe_access");
 639     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
 640     __ movptr(next_pc, rax);          // stuff next address
 641     __ popa();
 642     __ ret(0);                        // jump to next address
 643 
 644     return start;
 645   }
 646 
 647 
 648   //----------------------------------------------------------------------------------------------------
 649   // Non-destructive plausibility checks for oops
 650 
 651   address generate_verify_oop() {
 652     StubCodeMark mark(this, "StubRoutines", "verify_oop");
 653     address start = __ pc();
 654 
 655     // Incoming arguments on stack after saving rax,:
 656     //
 657     // [tos    ]: saved rdx
 658     // [tos + 1]: saved EFLAGS
 659     // [tos + 2]: return address
 660     // [tos + 3]: char* error message
 661     // [tos + 4]: oop   object to verify
 662     // [tos + 5]: saved rax, - saved by caller and bashed
 663 
 664     Label exit, error;
 665     __ pushf();
 666     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
 667     __ push(rdx);                                // save rdx
 668     // make sure object is 'reasonable'
 669     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
 670     __ testptr(rax, rax);
 671     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
 672 
 673     // Check if the oop is in the right area of memory
 674     const int oop_mask = Universe::verify_oop_mask();
 675     const int oop_bits = Universe::verify_oop_bits();
 676     __ mov(rdx, rax);
 677     __ andptr(rdx, oop_mask);
 678     __ cmpptr(rdx, oop_bits);
 679     __ jcc(Assembler::notZero, error);
 680 
 681     // make sure klass is 'reasonable', which is not zero.
 682     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
 683     __ testptr(rax, rax);
 684     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
 685 
 686     // return if everything seems ok
 687     __ bind(exit);
 688     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
 689     __ pop(rdx);                                 // restore rdx
 690     __ popf();                                   // restore EFLAGS
 691     __ ret(3 * wordSize);                        // pop arguments
 692 
 693     // handle errors
 694     __ bind(error);
 695     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
 696     __ pop(rdx);                                 // get saved rdx back
 697     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
 698     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
 699     BLOCK_COMMENT("call MacroAssembler::debug");
 700     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 701     __ popa();
 702     __ ret(3 * wordSize);                        // pop arguments
 703     return start;
 704   }
 705 
 706   //
 707   //  Generate pre-barrier for array stores
 708   //
 709   //  Input:
 710   //     start   -  starting address
 711   //     count   -  element count
 712   void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
 713     assert_different_registers(start, count);
 714     BarrierSet* bs = Universe::heap()->barrier_set();
 715     switch (bs->kind()) {
 716       case BarrierSet::G1SATBCTLogging:
 717         // With G1, don't generate the call if we statically know that the target in uninitialized
 718         if (!uninitialized_target) {
 719            __ pusha();                      // push registers
 720            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
 721                            start, count);
 722            __ popa();
 723          }
 724         break;
 725       case BarrierSet::CardTableForRS:
 726       case BarrierSet::CardTableExtension:
 727       case BarrierSet::ModRef:
 728         break;
 729       default      :
 730         ShouldNotReachHere();
 731 
 732     }
 733   }
 734 
 735 
 736   //
 737   // Generate a post-barrier for an array store
 738   //
 739   //     start    -  starting address
 740   //     count    -  element count
 741   //
 742   //  The two input registers are overwritten.
 743   //
 744   void  gen_write_ref_array_post_barrier(Register start, Register count) {
 745     BarrierSet* bs = Universe::heap()->barrier_set();
 746     assert_different_registers(start, count);
 747     switch (bs->kind()) {
 748       case BarrierSet::G1SATBCTLogging:
 749         {
 750           __ pusha();                      // push registers
 751           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
 752                           start, count);
 753           __ popa();
 754         }
 755         break;
 756 
 757       case BarrierSet::CardTableForRS:
 758       case BarrierSet::CardTableExtension:
 759         {
 760           CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
 761           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
 762 
 763           Label L_loop;
 764           const Register end = count;  // elements count; end == start+count-1
 765           assert_different_registers(start, end);
 766 
 767           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
 768           __ shrptr(start, CardTableModRefBS::card_shift);
 769           __ shrptr(end,   CardTableModRefBS::card_shift);
 770           __ subptr(end, start); // end --> count
 771         __ BIND(L_loop);
 772           intptr_t disp = (intptr_t) ct->byte_map_base;
 773           Address cardtable(start, count, Address::times_1, disp);
 774           __ movb(cardtable, 0);
 775           __ decrement(count);
 776           __ jcc(Assembler::greaterEqual, L_loop);
 777         }
 778         break;
 779       case BarrierSet::ModRef:
 780         break;
 781       default      :
 782         ShouldNotReachHere();
 783 
 784     }
 785   }
 786 
 787 
 788   // Copy 64 bytes chunks
 789   //
 790   // Inputs:
 791   //   from        - source array address
 792   //   to_from     - destination array address - from
 793   //   qword_count - 8-bytes element count, negative
 794   //
 795   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
 796     assert( UseSSE >= 2, "supported cpu only" );
 797     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
 798     if (UseAVX > 2) {
 799       __ push(rbx);
 800       __ movl(rbx, 0xffff);
 801       __ kmovwl(k1, rbx);
 802       __ pop(rbx);
 803     }
 804     // Copy 64-byte chunks
 805     __ jmpb(L_copy_64_bytes);
 806     __ align(OptoLoopAlignment);
 807   __ BIND(L_copy_64_bytes_loop);
 808 
 809     if (UseUnalignedLoadStores) {
 810       if (UseAVX > 2) {
 811         __ evmovdqul(xmm0, Address(from, 0), Assembler::AVX_512bit);
 812         __ evmovdqul(Address(from, to_from, Address::times_1, 0), xmm0, Assembler::AVX_512bit);
 813       } else if (UseAVX == 2) {
 814         __ vmovdqu(xmm0, Address(from,  0));
 815         __ vmovdqu(Address(from, to_from, Address::times_1,  0), xmm0);
 816         __ vmovdqu(xmm1, Address(from, 32));
 817         __ vmovdqu(Address(from, to_from, Address::times_1, 32), xmm1);
 818       } else {
 819         __ movdqu(xmm0, Address(from, 0));
 820         __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
 821         __ movdqu(xmm1, Address(from, 16));
 822         __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
 823         __ movdqu(xmm2, Address(from, 32));
 824         __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
 825         __ movdqu(xmm3, Address(from, 48));
 826         __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
 827       }
 828     } else {
 829       __ movq(xmm0, Address(from, 0));
 830       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
 831       __ movq(xmm1, Address(from, 8));
 832       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
 833       __ movq(xmm2, Address(from, 16));
 834       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
 835       __ movq(xmm3, Address(from, 24));
 836       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
 837       __ movq(xmm4, Address(from, 32));
 838       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
 839       __ movq(xmm5, Address(from, 40));
 840       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
 841       __ movq(xmm6, Address(from, 48));
 842       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
 843       __ movq(xmm7, Address(from, 56));
 844       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
 845     }
 846 
 847     __ addl(from, 64);
 848   __ BIND(L_copy_64_bytes);
 849     __ subl(qword_count, 8);
 850     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
 851 
 852     if (UseUnalignedLoadStores && (UseAVX == 2)) {
 853       // clean upper bits of YMM registers
 854       __ vpxor(xmm0, xmm0);
 855       __ vpxor(xmm1, xmm1);
 856     }
 857     __ addl(qword_count, 8);
 858     __ jccb(Assembler::zero, L_exit);
 859     //
 860     // length is too short, just copy qwords
 861     //
 862   __ BIND(L_copy_8_bytes);
 863     __ movq(xmm0, Address(from, 0));
 864     __ movq(Address(from, to_from, Address::times_1), xmm0);
 865     __ addl(from, 8);
 866     __ decrement(qword_count);
 867     __ jcc(Assembler::greater, L_copy_8_bytes);
 868   __ BIND(L_exit);
 869   }
 870 
 871   // Copy 64 bytes chunks
 872   //
 873   // Inputs:
 874   //   from        - source array address
 875   //   to_from     - destination array address - from
 876   //   qword_count - 8-bytes element count, negative
 877   //
 878   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
 879     assert( VM_Version::supports_mmx(), "supported cpu only" );
 880     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
 881     // Copy 64-byte chunks
 882     __ jmpb(L_copy_64_bytes);
 883     __ align(OptoLoopAlignment);
 884   __ BIND(L_copy_64_bytes_loop);
 885     __ movq(mmx0, Address(from, 0));
 886     __ movq(mmx1, Address(from, 8));
 887     __ movq(mmx2, Address(from, 16));
 888     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
 889     __ movq(mmx3, Address(from, 24));
 890     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
 891     __ movq(mmx4, Address(from, 32));
 892     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
 893     __ movq(mmx5, Address(from, 40));
 894     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
 895     __ movq(mmx6, Address(from, 48));
 896     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
 897     __ movq(mmx7, Address(from, 56));
 898     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
 899     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
 900     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
 901     __ addptr(from, 64);
 902   __ BIND(L_copy_64_bytes);
 903     __ subl(qword_count, 8);
 904     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
 905     __ addl(qword_count, 8);
 906     __ jccb(Assembler::zero, L_exit);
 907     //
 908     // length is too short, just copy qwords
 909     //
 910   __ BIND(L_copy_8_bytes);
 911     __ movq(mmx0, Address(from, 0));
 912     __ movq(Address(from, to_from, Address::times_1), mmx0);
 913     __ addptr(from, 8);
 914     __ decrement(qword_count);
 915     __ jcc(Assembler::greater, L_copy_8_bytes);
 916   __ BIND(L_exit);
 917     __ emms();
 918   }
 919 
 920   address generate_disjoint_copy(BasicType t, bool aligned,
 921                                  Address::ScaleFactor sf,
 922                                  address* entry, const char *name,
 923                                  bool dest_uninitialized = false) {
 924     __ align(CodeEntryAlignment);
 925     StubCodeMark mark(this, "StubRoutines", name);
 926     address start = __ pc();
 927 
 928     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
 929     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
 930 
 931     int shift = Address::times_ptr - sf;
 932 
 933     const Register from     = rsi;  // source array address
 934     const Register to       = rdi;  // destination array address
 935     const Register count    = rcx;  // elements count
 936     const Register to_from  = to;   // (to - from)
 937     const Register saved_to = rdx;  // saved destination array address
 938 
 939     __ enter(); // required for proper stackwalking of RuntimeStub frame
 940     __ push(rsi);
 941     __ push(rdi);
 942     __ movptr(from , Address(rsp, 12+ 4));
 943     __ movptr(to   , Address(rsp, 12+ 8));
 944     __ movl(count, Address(rsp, 12+ 12));
 945 
 946     if (entry != NULL) {
 947       *entry = __ pc(); // Entry point from conjoint arraycopy stub.
 948       BLOCK_COMMENT("Entry:");
 949     }
 950 
 951     if (t == T_OBJECT) {
 952       __ testl(count, count);
 953       __ jcc(Assembler::zero, L_0_count);
 954       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
 955       __ mov(saved_to, to);          // save 'to'
 956     }
 957 
 958     __ subptr(to, from); // to --> to_from
 959     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
 960     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
 961     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 962       // align source address at 4 bytes address boundary
 963       if (t == T_BYTE) {
 964         // One byte misalignment happens only for byte arrays
 965         __ testl(from, 1);
 966         __ jccb(Assembler::zero, L_skip_align1);
 967         __ movb(rax, Address(from, 0));
 968         __ movb(Address(from, to_from, Address::times_1, 0), rax);
 969         __ increment(from);
 970         __ decrement(count);
 971       __ BIND(L_skip_align1);
 972       }
 973       // Two bytes misalignment happens only for byte and short (char) arrays
 974       __ testl(from, 2);
 975       __ jccb(Assembler::zero, L_skip_align2);
 976       __ movw(rax, Address(from, 0));
 977       __ movw(Address(from, to_from, Address::times_1, 0), rax);
 978       __ addptr(from, 2);
 979       __ subl(count, 1<<(shift-1));
 980     __ BIND(L_skip_align2);
 981     }
 982     if (!VM_Version::supports_mmx()) {
 983       __ mov(rax, count);      // save 'count'
 984       __ shrl(count, shift); // bytes count
 985       __ addptr(to_from, from);// restore 'to'
 986       __ rep_mov();
 987       __ subptr(to_from, from);// restore 'to_from'
 988       __ mov(count, rax);      // restore 'count'
 989       __ jmpb(L_copy_2_bytes); // all dwords were copied
 990     } else {
 991       if (!UseUnalignedLoadStores) {
 992         // align to 8 bytes, we know we are 4 byte aligned to start
 993         __ testptr(from, 4);
 994         __ jccb(Assembler::zero, L_copy_64_bytes);
 995         __ movl(rax, Address(from, 0));
 996         __ movl(Address(from, to_from, Address::times_1, 0), rax);
 997         __ addptr(from, 4);
 998         __ subl(count, 1<<shift);
 999       }
1000     __ BIND(L_copy_64_bytes);
1001       __ mov(rax, count);
1002       __ shrl(rax, shift+1);  // 8 bytes chunk count
1003       //
1004       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
1005       //
1006       if (UseXMMForArrayCopy) {
1007         xmm_copy_forward(from, to_from, rax);
1008       } else {
1009         mmx_copy_forward(from, to_from, rax);
1010       }
1011     }
1012     // copy tailing dword
1013   __ BIND(L_copy_4_bytes);
1014     __ testl(count, 1<<shift);
1015     __ jccb(Assembler::zero, L_copy_2_bytes);
1016     __ movl(rax, Address(from, 0));
1017     __ movl(Address(from, to_from, Address::times_1, 0), rax);
1018     if (t == T_BYTE || t == T_SHORT) {
1019       __ addptr(from, 4);
1020     __ BIND(L_copy_2_bytes);
1021       // copy tailing word
1022       __ testl(count, 1<<(shift-1));
1023       __ jccb(Assembler::zero, L_copy_byte);
1024       __ movw(rax, Address(from, 0));
1025       __ movw(Address(from, to_from, Address::times_1, 0), rax);
1026       if (t == T_BYTE) {
1027         __ addptr(from, 2);
1028       __ BIND(L_copy_byte);
1029         // copy tailing byte
1030         __ testl(count, 1);
1031         __ jccb(Assembler::zero, L_exit);
1032         __ movb(rax, Address(from, 0));
1033         __ movb(Address(from, to_from, Address::times_1, 0), rax);
1034       __ BIND(L_exit);
1035       } else {
1036       __ BIND(L_copy_byte);
1037       }
1038     } else {
1039     __ BIND(L_copy_2_bytes);
1040     }
1041 
1042     if (t == T_OBJECT) {
1043       __ movl(count, Address(rsp, 12+12)); // reread 'count'
1044       __ mov(to, saved_to); // restore 'to'
1045       gen_write_ref_array_post_barrier(to, count);
1046     __ BIND(L_0_count);
1047     }
1048     inc_copy_counter_np(t);
1049     __ pop(rdi);
1050     __ pop(rsi);
1051     __ leave(); // required for proper stackwalking of RuntimeStub frame
1052     __ xorptr(rax, rax); // return 0
1053     __ ret(0);
1054     return start;
1055   }
1056 
1057 
1058   address generate_fill(BasicType t, bool aligned, const char *name) {
1059     __ align(CodeEntryAlignment);
1060     StubCodeMark mark(this, "StubRoutines", name);
1061     address start = __ pc();
1062 
1063     BLOCK_COMMENT("Entry:");
1064 
1065     const Register to       = rdi;  // source array address
1066     const Register value    = rdx;  // value
1067     const Register count    = rsi;  // elements count
1068 
1069     __ enter(); // required for proper stackwalking of RuntimeStub frame
1070     __ push(rsi);
1071     __ push(rdi);
1072     __ movptr(to   , Address(rsp, 12+ 4));
1073     __ movl(value, Address(rsp, 12+ 8));
1074     __ movl(count, Address(rsp, 12+ 12));
1075 
1076     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
1077 
1078     __ pop(rdi);
1079     __ pop(rsi);
1080     __ leave(); // required for proper stackwalking of RuntimeStub frame
1081     __ ret(0);
1082     return start;
1083   }
1084 
1085   address generate_conjoint_copy(BasicType t, bool aligned,
1086                                  Address::ScaleFactor sf,
1087                                  address nooverlap_target,
1088                                  address* entry, const char *name,
1089                                  bool dest_uninitialized = false) {
1090     __ align(CodeEntryAlignment);
1091     StubCodeMark mark(this, "StubRoutines", name);
1092     address start = __ pc();
1093 
1094     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
1095     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
1096 
1097     int shift = Address::times_ptr - sf;
1098 
1099     const Register src   = rax;  // source array address
1100     const Register dst   = rdx;  // destination array address
1101     const Register from  = rsi;  // source array address
1102     const Register to    = rdi;  // destination array address
1103     const Register count = rcx;  // elements count
1104     const Register end   = rax;  // array end address
1105 
1106     __ enter(); // required for proper stackwalking of RuntimeStub frame
1107     __ push(rsi);
1108     __ push(rdi);
1109     __ movptr(src  , Address(rsp, 12+ 4));   // from
1110     __ movptr(dst  , Address(rsp, 12+ 8));   // to
1111     __ movl2ptr(count, Address(rsp, 12+12)); // count
1112 
1113     if (entry != NULL) {
1114       *entry = __ pc(); // Entry point from generic arraycopy stub.
1115       BLOCK_COMMENT("Entry:");
1116     }
1117 
1118     // nooverlap_target expects arguments in rsi and rdi.
1119     __ mov(from, src);
1120     __ mov(to  , dst);
1121 
1122     // arrays overlap test: dispatch to disjoint stub if necessary.
1123     RuntimeAddress nooverlap(nooverlap_target);
1124     __ cmpptr(dst, src);
1125     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
1126     __ jump_cc(Assembler::belowEqual, nooverlap);
1127     __ cmpptr(dst, end);
1128     __ jump_cc(Assembler::aboveEqual, nooverlap);
1129 
1130     if (t == T_OBJECT) {
1131       __ testl(count, count);
1132       __ jcc(Assembler::zero, L_0_count);
1133       gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
1134     }
1135 
1136     // copy from high to low
1137     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1138     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
1139     if (t == T_BYTE || t == T_SHORT) {
1140       // Align the end of destination array at 4 bytes address boundary
1141       __ lea(end, Address(dst, count, sf, 0));
1142       if (t == T_BYTE) {
1143         // One byte misalignment happens only for byte arrays
1144         __ testl(end, 1);
1145         __ jccb(Assembler::zero, L_skip_align1);
1146         __ decrement(count);
1147         __ movb(rdx, Address(from, count, sf, 0));
1148         __ movb(Address(to, count, sf, 0), rdx);
1149       __ BIND(L_skip_align1);
1150       }
1151       // Two bytes misalignment happens only for byte and short (char) arrays
1152       __ testl(end, 2);
1153       __ jccb(Assembler::zero, L_skip_align2);
1154       __ subptr(count, 1<<(shift-1));
1155       __ movw(rdx, Address(from, count, sf, 0));
1156       __ movw(Address(to, count, sf, 0), rdx);
1157     __ BIND(L_skip_align2);
1158       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1159       __ jcc(Assembler::below, L_copy_4_bytes);
1160     }
1161 
1162     if (!VM_Version::supports_mmx()) {
1163       __ std();
1164       __ mov(rax, count); // Save 'count'
1165       __ mov(rdx, to);    // Save 'to'
1166       __ lea(rsi, Address(from, count, sf, -4));
1167       __ lea(rdi, Address(to  , count, sf, -4));
1168       __ shrptr(count, shift); // bytes count
1169       __ rep_mov();
1170       __ cld();
1171       __ mov(count, rax); // restore 'count'
1172       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
1173       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
1174       __ mov(to, rdx);   // restore 'to'
1175       __ jmpb(L_copy_2_bytes); // all dword were copied
1176    } else {
1177       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
1178       __ testptr(end, 4);
1179       __ jccb(Assembler::zero, L_copy_8_bytes);
1180       __ subl(count, 1<<shift);
1181       __ movl(rdx, Address(from, count, sf, 0));
1182       __ movl(Address(to, count, sf, 0), rdx);
1183       __ jmpb(L_copy_8_bytes);
1184 
1185       __ align(OptoLoopAlignment);
1186       // Move 8 bytes
1187     __ BIND(L_copy_8_bytes_loop);
1188       if (UseXMMForArrayCopy) {
1189         __ movq(xmm0, Address(from, count, sf, 0));
1190         __ movq(Address(to, count, sf, 0), xmm0);
1191       } else {
1192         __ movq(mmx0, Address(from, count, sf, 0));
1193         __ movq(Address(to, count, sf, 0), mmx0);
1194       }
1195     __ BIND(L_copy_8_bytes);
1196       __ subl(count, 2<<shift);
1197       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1198       __ addl(count, 2<<shift);
1199       if (!UseXMMForArrayCopy) {
1200         __ emms();
1201       }
1202     }
1203   __ BIND(L_copy_4_bytes);
1204     // copy prefix qword
1205     __ testl(count, 1<<shift);
1206     __ jccb(Assembler::zero, L_copy_2_bytes);
1207     __ movl(rdx, Address(from, count, sf, -4));
1208     __ movl(Address(to, count, sf, -4), rdx);
1209 
1210     if (t == T_BYTE || t == T_SHORT) {
1211         __ subl(count, (1<<shift));
1212       __ BIND(L_copy_2_bytes);
1213         // copy prefix dword
1214         __ testl(count, 1<<(shift-1));
1215         __ jccb(Assembler::zero, L_copy_byte);
1216         __ movw(rdx, Address(from, count, sf, -2));
1217         __ movw(Address(to, count, sf, -2), rdx);
1218         if (t == T_BYTE) {
1219           __ subl(count, 1<<(shift-1));
1220         __ BIND(L_copy_byte);
1221           // copy prefix byte
1222           __ testl(count, 1);
1223           __ jccb(Assembler::zero, L_exit);
1224           __ movb(rdx, Address(from, 0));
1225           __ movb(Address(to, 0), rdx);
1226         __ BIND(L_exit);
1227         } else {
1228         __ BIND(L_copy_byte);
1229         }
1230     } else {
1231     __ BIND(L_copy_2_bytes);
1232     }
1233     if (t == T_OBJECT) {
1234       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
1235       gen_write_ref_array_post_barrier(to, count);
1236     __ BIND(L_0_count);
1237     }
1238     inc_copy_counter_np(t);
1239     __ pop(rdi);
1240     __ pop(rsi);
1241     __ leave(); // required for proper stackwalking of RuntimeStub frame
1242     __ xorptr(rax, rax); // return 0
1243     __ ret(0);
1244     return start;
1245   }
1246 
1247 
1248   address generate_disjoint_long_copy(address* entry, const char *name) {
1249     __ align(CodeEntryAlignment);
1250     StubCodeMark mark(this, "StubRoutines", name);
1251     address start = __ pc();
1252 
1253     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1254     const Register from       = rax;  // source array address
1255     const Register to         = rdx;  // destination array address
1256     const Register count      = rcx;  // elements count
1257     const Register to_from    = rdx;  // (to - from)
1258 
1259     __ enter(); // required for proper stackwalking of RuntimeStub frame
1260     __ movptr(from , Address(rsp, 8+0));       // from
1261     __ movptr(to   , Address(rsp, 8+4));       // to
1262     __ movl2ptr(count, Address(rsp, 8+8));     // count
1263 
1264     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
1265     BLOCK_COMMENT("Entry:");
1266 
1267     __ subptr(to, from); // to --> to_from
1268     if (VM_Version::supports_mmx()) {
1269       if (UseXMMForArrayCopy) {
1270         xmm_copy_forward(from, to_from, count);
1271       } else {
1272         mmx_copy_forward(from, to_from, count);
1273       }
1274     } else {
1275       __ jmpb(L_copy_8_bytes);
1276       __ align(OptoLoopAlignment);
1277     __ BIND(L_copy_8_bytes_loop);
1278       __ fild_d(Address(from, 0));
1279       __ fistp_d(Address(from, to_from, Address::times_1));
1280       __ addptr(from, 8);
1281     __ BIND(L_copy_8_bytes);
1282       __ decrement(count);
1283       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1284     }
1285     inc_copy_counter_np(T_LONG);
1286     __ leave(); // required for proper stackwalking of RuntimeStub frame
1287     __ xorptr(rax, rax); // return 0
1288     __ ret(0);
1289     return start;
1290   }
1291 
1292   address generate_conjoint_long_copy(address nooverlap_target,
1293                                       address* entry, const char *name) {
1294     __ align(CodeEntryAlignment);
1295     StubCodeMark mark(this, "StubRoutines", name);
1296     address start = __ pc();
1297 
1298     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1299     const Register from       = rax;  // source array address
1300     const Register to         = rdx;  // destination array address
1301     const Register count      = rcx;  // elements count
1302     const Register end_from   = rax;  // source array end address
1303 
1304     __ enter(); // required for proper stackwalking of RuntimeStub frame
1305     __ movptr(from , Address(rsp, 8+0));       // from
1306     __ movptr(to   , Address(rsp, 8+4));       // to
1307     __ movl2ptr(count, Address(rsp, 8+8));     // count
1308 
1309     *entry = __ pc(); // Entry point from generic arraycopy stub.
1310     BLOCK_COMMENT("Entry:");
1311 
1312     // arrays overlap test
1313     __ cmpptr(to, from);
1314     RuntimeAddress nooverlap(nooverlap_target);
1315     __ jump_cc(Assembler::belowEqual, nooverlap);
1316     __ lea(end_from, Address(from, count, Address::times_8, 0));
1317     __ cmpptr(to, end_from);
1318     __ movptr(from, Address(rsp, 8));  // from
1319     __ jump_cc(Assembler::aboveEqual, nooverlap);
1320 
1321     __ jmpb(L_copy_8_bytes);
1322 
1323     __ align(OptoLoopAlignment);
1324   __ BIND(L_copy_8_bytes_loop);
1325     if (VM_Version::supports_mmx()) {
1326       if (UseXMMForArrayCopy) {
1327         __ movq(xmm0, Address(from, count, Address::times_8));
1328         __ movq(Address(to, count, Address::times_8), xmm0);
1329       } else {
1330         __ movq(mmx0, Address(from, count, Address::times_8));
1331         __ movq(Address(to, count, Address::times_8), mmx0);
1332       }
1333     } else {
1334       __ fild_d(Address(from, count, Address::times_8));
1335       __ fistp_d(Address(to, count, Address::times_8));
1336     }
1337   __ BIND(L_copy_8_bytes);
1338     __ decrement(count);
1339     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1340 
1341     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
1342       __ emms();
1343     }
1344     inc_copy_counter_np(T_LONG);
1345     __ leave(); // required for proper stackwalking of RuntimeStub frame
1346     __ xorptr(rax, rax); // return 0
1347     __ ret(0);
1348     return start;
1349   }
1350 
1351 
1352   // Helper for generating a dynamic type check.
1353   // The sub_klass must be one of {rbx, rdx, rsi}.
1354   // The temp is killed.
1355   void generate_type_check(Register sub_klass,
1356                            Address& super_check_offset_addr,
1357                            Address& super_klass_addr,
1358                            Register temp,
1359                            Label* L_success, Label* L_failure) {
1360     BLOCK_COMMENT("type_check:");
1361 
1362     Label L_fallthrough;
1363 #define LOCAL_JCC(assembler_con, label_ptr)                             \
1364     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
1365     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
1366 
1367     // The following is a strange variation of the fast path which requires
1368     // one less register, because needed values are on the argument stack.
1369     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
1370     //                                  L_success, L_failure, NULL);
1371     assert_different_registers(sub_klass, temp);
1372 
1373     int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1374 
1375     // if the pointers are equal, we are done (e.g., String[] elements)
1376     __ cmpptr(sub_klass, super_klass_addr);
1377     LOCAL_JCC(Assembler::equal, L_success);
1378 
1379     // check the supertype display:
1380     __ movl2ptr(temp, super_check_offset_addr);
1381     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
1382     __ movptr(temp, super_check_addr); // load displayed supertype
1383     __ cmpptr(temp, super_klass_addr); // test the super type
1384     LOCAL_JCC(Assembler::equal, L_success);
1385 
1386     // if it was a primary super, we can just fail immediately
1387     __ cmpl(super_check_offset_addr, sc_offset);
1388     LOCAL_JCC(Assembler::notEqual, L_failure);
1389 
1390     // The repne_scan instruction uses fixed registers, which will get spilled.
1391     // We happen to know this works best when super_klass is in rax.
1392     Register super_klass = temp;
1393     __ movptr(super_klass, super_klass_addr);
1394     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
1395                                      L_success, L_failure);
1396 
1397     __ bind(L_fallthrough);
1398 
1399     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
1400     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
1401 
1402 #undef LOCAL_JCC
1403   }
1404 
1405   //
1406   //  Generate checkcasting array copy stub
1407   //
1408   //  Input:
1409   //    4(rsp)   - source array address
1410   //    8(rsp)   - destination array address
1411   //   12(rsp)   - element count, can be zero
1412   //   16(rsp)   - size_t ckoff (super_check_offset)
1413   //   20(rsp)   - oop ckval (super_klass)
1414   //
1415   //  Output:
1416   //    rax, ==  0  -  success
1417   //    rax, == -1^K - failure, where K is partial transfer count
1418   //
1419   address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
1420     __ align(CodeEntryAlignment);
1421     StubCodeMark mark(this, "StubRoutines", name);
1422     address start = __ pc();
1423 
1424     Label L_load_element, L_store_element, L_do_card_marks, L_done;
1425 
1426     // register use:
1427     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
1428     //  rdi, rsi      -- element access (oop, klass)
1429     //  rbx,           -- temp
1430     const Register from       = rax;    // source array address
1431     const Register to         = rdx;    // destination array address
1432     const Register length     = rcx;    // elements count
1433     const Register elem       = rdi;    // each oop copied
1434     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
1435     const Register temp       = rbx;    // lone remaining temp
1436 
1437     __ enter(); // required for proper stackwalking of RuntimeStub frame
1438 
1439     __ push(rsi);
1440     __ push(rdi);
1441     __ push(rbx);
1442 
1443     Address   from_arg(rsp, 16+ 4);     // from
1444     Address     to_arg(rsp, 16+ 8);     // to
1445     Address length_arg(rsp, 16+12);     // elements count
1446     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
1447     Address  ckval_arg(rsp, 16+20);     // super_klass
1448 
1449     // Load up:
1450     __ movptr(from,     from_arg);
1451     __ movptr(to,         to_arg);
1452     __ movl2ptr(length, length_arg);
1453 
1454     if (entry != NULL) {
1455       *entry = __ pc(); // Entry point from generic arraycopy stub.
1456       BLOCK_COMMENT("Entry:");
1457     }
1458 
1459     //---------------------------------------------------------------
1460     // Assembler stub will be used for this call to arraycopy
1461     // if the two arrays are subtypes of Object[] but the
1462     // destination array type is not equal to or a supertype
1463     // of the source type.  Each element must be separately
1464     // checked.
1465 
1466     // Loop-invariant addresses.  They are exclusive end pointers.
1467     Address end_from_addr(from, length, Address::times_ptr, 0);
1468     Address   end_to_addr(to,   length, Address::times_ptr, 0);
1469 
1470     Register end_from = from;           // re-use
1471     Register end_to   = to;             // re-use
1472     Register count    = length;         // re-use
1473 
1474     // Loop-variant addresses.  They assume post-incremented count < 0.
1475     Address from_element_addr(end_from, count, Address::times_ptr, 0);
1476     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
1477     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
1478 
1479     // Copy from low to high addresses, indexed from the end of each array.
1480     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1481     __ lea(end_from, end_from_addr);
1482     __ lea(end_to,   end_to_addr);
1483     assert(length == count, "");        // else fix next line:
1484     __ negptr(count);                   // negate and test the length
1485     __ jccb(Assembler::notZero, L_load_element);
1486 
1487     // Empty array:  Nothing to do.
1488     __ xorptr(rax, rax);                  // return 0 on (trivial) success
1489     __ jmp(L_done);
1490 
1491     // ======== begin loop ========
1492     // (Loop is rotated; its entry is L_load_element.)
1493     // Loop control:
1494     //   for (count = -count; count != 0; count++)
1495     // Base pointers src, dst are biased by 8*count,to last element.
1496     __ align(OptoLoopAlignment);
1497 
1498     __ BIND(L_store_element);
1499     __ movptr(to_element_addr, elem);     // store the oop
1500     __ increment(count);                // increment the count toward zero
1501     __ jccb(Assembler::zero, L_do_card_marks);
1502 
1503     // ======== loop entry is here ========
1504     __ BIND(L_load_element);
1505     __ movptr(elem, from_element_addr);   // load the oop
1506     __ testptr(elem, elem);
1507     __ jccb(Assembler::zero, L_store_element);
1508 
1509     // (Could do a trick here:  Remember last successful non-null
1510     // element stored and make a quick oop equality check on it.)
1511 
1512     __ movptr(elem_klass, elem_klass_addr); // query the object klass
1513     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
1514                         &L_store_element, NULL);
1515     // (On fall-through, we have failed the element type check.)
1516     // ======== end loop ========
1517 
1518     // It was a real error; we must depend on the caller to finish the job.
1519     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
1520     // Emit GC store barriers for the oops we have copied (length_arg + count),
1521     // and report their number to the caller.
1522     assert_different_registers(to, count, rax);
1523     Label L_post_barrier;
1524     __ addl(count, length_arg);         // transfers = (length - remaining)
1525     __ movl2ptr(rax, count);            // save the value
1526     __ notptr(rax);                     // report (-1^K) to caller (does not affect flags)
1527     __ jccb(Assembler::notZero, L_post_barrier);
1528     __ jmp(L_done); // K == 0, nothing was copied, skip post barrier
1529 
1530     // Come here on success only.
1531     __ BIND(L_do_card_marks);
1532     __ xorptr(rax, rax);                // return 0 on success
1533     __ movl2ptr(count, length_arg);
1534 
1535     __ BIND(L_post_barrier);
1536     __ movptr(to, to_arg);              // reload
1537     gen_write_ref_array_post_barrier(to, count);
1538 
1539     // Common exit point (success or failure).
1540     __ BIND(L_done);
1541     __ pop(rbx);
1542     __ pop(rdi);
1543     __ pop(rsi);
1544     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
1545     __ leave(); // required for proper stackwalking of RuntimeStub frame
1546     __ ret(0);
1547 
1548     return start;
1549   }
1550 
1551   //
1552   //  Generate 'unsafe' array copy stub
1553   //  Though just as safe as the other stubs, it takes an unscaled
1554   //  size_t argument instead of an element count.
1555   //
1556   //  Input:
1557   //    4(rsp)   - source array address
1558   //    8(rsp)   - destination array address
1559   //   12(rsp)   - byte count, can be zero
1560   //
1561   //  Output:
1562   //    rax, ==  0  -  success
1563   //    rax, == -1  -  need to call System.arraycopy
1564   //
1565   // Examines the alignment of the operands and dispatches
1566   // to a long, int, short, or byte copy loop.
1567   //
1568   address generate_unsafe_copy(const char *name,
1569                                address byte_copy_entry,
1570                                address short_copy_entry,
1571                                address int_copy_entry,
1572                                address long_copy_entry) {
1573 
1574     Label L_long_aligned, L_int_aligned, L_short_aligned;
1575 
1576     __ align(CodeEntryAlignment);
1577     StubCodeMark mark(this, "StubRoutines", name);
1578     address start = __ pc();
1579 
1580     const Register from       = rax;  // source array address
1581     const Register to         = rdx;  // destination array address
1582     const Register count      = rcx;  // elements count
1583 
1584     __ enter(); // required for proper stackwalking of RuntimeStub frame
1585     __ push(rsi);
1586     __ push(rdi);
1587     Address  from_arg(rsp, 12+ 4);      // from
1588     Address    to_arg(rsp, 12+ 8);      // to
1589     Address count_arg(rsp, 12+12);      // byte count
1590 
1591     // Load up:
1592     __ movptr(from ,  from_arg);
1593     __ movptr(to   ,    to_arg);
1594     __ movl2ptr(count, count_arg);
1595 
1596     // bump this on entry, not on exit:
1597     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
1598 
1599     const Register bits = rsi;
1600     __ mov(bits, from);
1601     __ orptr(bits, to);
1602     __ orptr(bits, count);
1603 
1604     __ testl(bits, BytesPerLong-1);
1605     __ jccb(Assembler::zero, L_long_aligned);
1606 
1607     __ testl(bits, BytesPerInt-1);
1608     __ jccb(Assembler::zero, L_int_aligned);
1609 
1610     __ testl(bits, BytesPerShort-1);
1611     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
1612 
1613     __ BIND(L_short_aligned);
1614     __ shrptr(count, LogBytesPerShort); // size => short_count
1615     __ movl(count_arg, count);          // update 'count'
1616     __ jump(RuntimeAddress(short_copy_entry));
1617 
1618     __ BIND(L_int_aligned);
1619     __ shrptr(count, LogBytesPerInt); // size => int_count
1620     __ movl(count_arg, count);          // update 'count'
1621     __ jump(RuntimeAddress(int_copy_entry));
1622 
1623     __ BIND(L_long_aligned);
1624     __ shrptr(count, LogBytesPerLong); // size => qword_count
1625     __ movl(count_arg, count);          // update 'count'
1626     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1627     __ pop(rsi);
1628     __ jump(RuntimeAddress(long_copy_entry));
1629 
1630     return start;
1631   }
1632 
1633 
1634   // Perform range checks on the proposed arraycopy.
1635   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
1636   void arraycopy_range_checks(Register src,
1637                               Register src_pos,
1638                               Register dst,
1639                               Register dst_pos,
1640                               Address& length,
1641                               Label& L_failed) {
1642     BLOCK_COMMENT("arraycopy_range_checks:");
1643     const Register src_end = src_pos;   // source array end position
1644     const Register dst_end = dst_pos;   // destination array end position
1645     __ addl(src_end, length); // src_pos + length
1646     __ addl(dst_end, length); // dst_pos + length
1647 
1648     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
1649     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
1650     __ jcc(Assembler::above, L_failed);
1651 
1652     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
1653     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
1654     __ jcc(Assembler::above, L_failed);
1655 
1656     BLOCK_COMMENT("arraycopy_range_checks done");
1657   }
1658 
1659 
1660   //
1661   //  Generate generic array copy stubs
1662   //
1663   //  Input:
1664   //     4(rsp)    -  src oop
1665   //     8(rsp)    -  src_pos
1666   //    12(rsp)    -  dst oop
1667   //    16(rsp)    -  dst_pos
1668   //    20(rsp)    -  element count
1669   //
1670   //  Output:
1671   //    rax, ==  0  -  success
1672   //    rax, == -1^K - failure, where K is partial transfer count
1673   //
1674   address generate_generic_copy(const char *name,
1675                                 address entry_jbyte_arraycopy,
1676                                 address entry_jshort_arraycopy,
1677                                 address entry_jint_arraycopy,
1678                                 address entry_oop_arraycopy,
1679                                 address entry_jlong_arraycopy,
1680                                 address entry_checkcast_arraycopy) {
1681     Label L_failed, L_failed_0, L_objArray;
1682 
1683     { int modulus = CodeEntryAlignment;
1684       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
1685       int advance = target - (__ offset() % modulus);
1686       if (advance < 0)  advance += modulus;
1687       if (advance > 0)  __ nop(advance);
1688     }
1689     StubCodeMark mark(this, "StubRoutines", name);
1690 
1691     // Short-hop target to L_failed.  Makes for denser prologue code.
1692     __ BIND(L_failed_0);
1693     __ jmp(L_failed);
1694     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
1695 
1696     __ align(CodeEntryAlignment);
1697     address start = __ pc();
1698 
1699     __ enter(); // required for proper stackwalking of RuntimeStub frame
1700     __ push(rsi);
1701     __ push(rdi);
1702 
1703     // bump this on entry, not on exit:
1704     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
1705 
1706     // Input values
1707     Address SRC     (rsp, 12+ 4);
1708     Address SRC_POS (rsp, 12+ 8);
1709     Address DST     (rsp, 12+12);
1710     Address DST_POS (rsp, 12+16);
1711     Address LENGTH  (rsp, 12+20);
1712 
1713     //-----------------------------------------------------------------------
1714     // Assembler stub will be used for this call to arraycopy
1715     // if the following conditions are met:
1716     //
1717     // (1) src and dst must not be null.
1718     // (2) src_pos must not be negative.
1719     // (3) dst_pos must not be negative.
1720     // (4) length  must not be negative.
1721     // (5) src klass and dst klass should be the same and not NULL.
1722     // (6) src and dst should be arrays.
1723     // (7) src_pos + length must not exceed length of src.
1724     // (8) dst_pos + length must not exceed length of dst.
1725     //
1726 
1727     const Register src     = rax;       // source array oop
1728     const Register src_pos = rsi;
1729     const Register dst     = rdx;       // destination array oop
1730     const Register dst_pos = rdi;
1731     const Register length  = rcx;       // transfer count
1732 
1733     //  if (src == NULL) return -1;
1734     __ movptr(src, SRC);      // src oop
1735     __ testptr(src, src);
1736     __ jccb(Assembler::zero, L_failed_0);
1737 
1738     //  if (src_pos < 0) return -1;
1739     __ movl2ptr(src_pos, SRC_POS);  // src_pos
1740     __ testl(src_pos, src_pos);
1741     __ jccb(Assembler::negative, L_failed_0);
1742 
1743     //  if (dst == NULL) return -1;
1744     __ movptr(dst, DST);      // dst oop
1745     __ testptr(dst, dst);
1746     __ jccb(Assembler::zero, L_failed_0);
1747 
1748     //  if (dst_pos < 0) return -1;
1749     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
1750     __ testl(dst_pos, dst_pos);
1751     __ jccb(Assembler::negative, L_failed_0);
1752 
1753     //  if (length < 0) return -1;
1754     __ movl2ptr(length, LENGTH);   // length
1755     __ testl(length, length);
1756     __ jccb(Assembler::negative, L_failed_0);
1757 
1758     //  if (src->klass() == NULL) return -1;
1759     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
1760     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
1761     const Register rcx_src_klass = rcx;    // array klass
1762     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
1763 
1764 #ifdef ASSERT
1765     //  assert(src->klass() != NULL);
1766     BLOCK_COMMENT("assert klasses not null");
1767     { Label L1, L2;
1768       __ testptr(rcx_src_klass, rcx_src_klass);
1769       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
1770       __ bind(L1);
1771       __ stop("broken null klass");
1772       __ bind(L2);
1773       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
1774       __ jccb(Assembler::equal, L1);      // this would be broken also
1775       BLOCK_COMMENT("assert done");
1776     }
1777 #endif //ASSERT
1778 
1779     // Load layout helper (32-bits)
1780     //
1781     //  |array_tag|     | header_size | element_type |     |log2_element_size|
1782     // 32        30    24            16              8     2                 0
1783     //
1784     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
1785     //
1786 
1787     int lh_offset = in_bytes(Klass::layout_helper_offset());
1788     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
1789 
1790     // Handle objArrays completely differently...
1791     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
1792     __ cmpl(src_klass_lh_addr, objArray_lh);
1793     __ jcc(Assembler::equal, L_objArray);
1794 
1795     //  if (src->klass() != dst->klass()) return -1;
1796     __ cmpptr(rcx_src_klass, dst_klass_addr);
1797     __ jccb(Assembler::notEqual, L_failed_0);
1798 
1799     const Register rcx_lh = rcx;  // layout helper
1800     assert(rcx_lh == rcx_src_klass, "known alias");
1801     __ movl(rcx_lh, src_klass_lh_addr);
1802 
1803     //  if (!src->is_Array()) return -1;
1804     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
1805     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
1806 
1807     // At this point, it is known to be a typeArray (array_tag 0x3).
1808 #ifdef ASSERT
1809     { Label L;
1810       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
1811       __ jcc(Assembler::greaterEqual, L); // signed cmp
1812       __ stop("must be a primitive array");
1813       __ bind(L);
1814     }
1815 #endif
1816 
1817     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
1818     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1819 
1820     // TypeArrayKlass
1821     //
1822     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
1823     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
1824     //
1825     const Register rsi_offset = rsi; // array offset
1826     const Register src_array  = src; // src array offset
1827     const Register dst_array  = dst; // dst array offset
1828     const Register rdi_elsize = rdi; // log2 element size
1829 
1830     __ mov(rsi_offset, rcx_lh);
1831     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
1832     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
1833     __ addptr(src_array, rsi_offset);  // src array offset
1834     __ addptr(dst_array, rsi_offset);  // dst array offset
1835     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
1836 
1837     // next registers should be set before the jump to corresponding stub
1838     const Register from       = src; // source array address
1839     const Register to         = dst; // destination array address
1840     const Register count      = rcx; // elements count
1841     // some of them should be duplicated on stack
1842 #define FROM   Address(rsp, 12+ 4)
1843 #define TO     Address(rsp, 12+ 8)   // Not used now
1844 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
1845 
1846     BLOCK_COMMENT("scale indexes to element size");
1847     __ movl2ptr(rsi, SRC_POS);  // src_pos
1848     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
1849     assert(src_array == from, "");
1850     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
1851     __ movl2ptr(rdi, DST_POS);  // dst_pos
1852     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
1853     assert(dst_array == to, "");
1854     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
1855     __ movptr(FROM, from);      // src_addr
1856     __ mov(rdi_elsize, rcx_lh); // log2 elsize
1857     __ movl2ptr(count, LENGTH); // elements count
1858 
1859     BLOCK_COMMENT("choose copy loop based on element size");
1860     __ cmpl(rdi_elsize, 0);
1861 
1862     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
1863     __ cmpl(rdi_elsize, LogBytesPerShort);
1864     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
1865     __ cmpl(rdi_elsize, LogBytesPerInt);
1866     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
1867 #ifdef ASSERT
1868     __ cmpl(rdi_elsize, LogBytesPerLong);
1869     __ jccb(Assembler::notEqual, L_failed);
1870 #endif
1871     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1872     __ pop(rsi);
1873     __ jump(RuntimeAddress(entry_jlong_arraycopy));
1874 
1875   __ BIND(L_failed);
1876     __ xorptr(rax, rax);
1877     __ notptr(rax); // return -1
1878     __ pop(rdi);
1879     __ pop(rsi);
1880     __ leave(); // required for proper stackwalking of RuntimeStub frame
1881     __ ret(0);
1882 
1883     // ObjArrayKlass
1884   __ BIND(L_objArray);
1885     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
1886 
1887     Label L_plain_copy, L_checkcast_copy;
1888     //  test array classes for subtyping
1889     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
1890     __ jccb(Assembler::notEqual, L_checkcast_copy);
1891 
1892     // Identically typed arrays can be copied without element-wise checks.
1893     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
1894     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1895 
1896   __ BIND(L_plain_copy);
1897     __ movl2ptr(count, LENGTH); // elements count
1898     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
1899     __ lea(from, Address(src, src_pos, Address::times_ptr,
1900                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
1901     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
1902     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
1903                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
1904     __ movptr(FROM,  from);   // src_addr
1905     __ movptr(TO,    to);     // dst_addr
1906     __ movl(COUNT, count);  // count
1907     __ jump(RuntimeAddress(entry_oop_arraycopy));
1908 
1909   __ BIND(L_checkcast_copy);
1910     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
1911     {
1912       // Handy offsets:
1913       int  ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
1914       int sco_offset = in_bytes(Klass::super_check_offset_offset());
1915 
1916       Register rsi_dst_klass = rsi;
1917       Register rdi_temp      = rdi;
1918       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
1919       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
1920       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
1921 
1922       // Before looking at dst.length, make sure dst is also an objArray.
1923       __ movptr(rsi_dst_klass, dst_klass_addr);
1924       __ cmpl(dst_klass_lh_addr, objArray_lh);
1925       __ jccb(Assembler::notEqual, L_failed);
1926 
1927       // It is safe to examine both src.length and dst.length.
1928       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
1929       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1930       // (Now src_pos and dst_pos are killed, but not src and dst.)
1931 
1932       // We'll need this temp (don't forget to pop it after the type check).
1933       __ push(rbx);
1934       Register rbx_src_klass = rbx;
1935 
1936       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
1937       __ movptr(rsi_dst_klass, dst_klass_addr);
1938       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
1939       Label L_fail_array_check;
1940       generate_type_check(rbx_src_klass,
1941                           super_check_offset_addr, dst_klass_addr,
1942                           rdi_temp, NULL, &L_fail_array_check);
1943       // (On fall-through, we have passed the array type check.)
1944       __ pop(rbx);
1945       __ jmp(L_plain_copy);
1946 
1947       __ BIND(L_fail_array_check);
1948       // Reshuffle arguments so we can call checkcast_arraycopy:
1949 
1950       // match initial saves for checkcast_arraycopy
1951       // push(rsi);    // already done; see above
1952       // push(rdi);    // already done; see above
1953       // push(rbx);    // already done; see above
1954 
1955       // Marshal outgoing arguments now, freeing registers.
1956       Address   from_arg(rsp, 16+ 4);   // from
1957       Address     to_arg(rsp, 16+ 8);   // to
1958       Address length_arg(rsp, 16+12);   // elements count
1959       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
1960       Address  ckval_arg(rsp, 16+20);   // super_klass
1961 
1962       Address SRC_POS_arg(rsp, 16+ 8);
1963       Address DST_POS_arg(rsp, 16+16);
1964       Address  LENGTH_arg(rsp, 16+20);
1965       // push rbx, changed the incoming offsets (why not just use rbp,??)
1966       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
1967 
1968       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
1969       __ movl2ptr(length, LENGTH_arg);    // reload elements count
1970       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
1971       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
1972 
1973       __ movptr(ckval_arg, rbx);          // destination element type
1974       __ movl(rbx, Address(rbx, sco_offset));
1975       __ movl(ckoff_arg, rbx);          // corresponding class check offset
1976 
1977       __ movl(length_arg, length);      // outgoing length argument
1978 
1979       __ lea(from, Address(src, src_pos, Address::times_ptr,
1980                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1981       __ movptr(from_arg, from);
1982 
1983       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
1984                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1985       __ movptr(to_arg, to);
1986       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
1987     }
1988 
1989     return start;
1990   }
1991 
1992   void generate_arraycopy_stubs() {
1993     address entry;
1994     address entry_jbyte_arraycopy;
1995     address entry_jshort_arraycopy;
1996     address entry_jint_arraycopy;
1997     address entry_oop_arraycopy;
1998     address entry_jlong_arraycopy;
1999     address entry_checkcast_arraycopy;
2000 
2001     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
2002         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
2003                                "arrayof_jbyte_disjoint_arraycopy");
2004     StubRoutines::_arrayof_jbyte_arraycopy =
2005         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
2006                                NULL, "arrayof_jbyte_arraycopy");
2007     StubRoutines::_jbyte_disjoint_arraycopy =
2008         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
2009                                "jbyte_disjoint_arraycopy");
2010     StubRoutines::_jbyte_arraycopy =
2011         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
2012                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
2013 
2014     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
2015         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
2016                                "arrayof_jshort_disjoint_arraycopy");
2017     StubRoutines::_arrayof_jshort_arraycopy =
2018         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
2019                                NULL, "arrayof_jshort_arraycopy");
2020     StubRoutines::_jshort_disjoint_arraycopy =
2021         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
2022                                "jshort_disjoint_arraycopy");
2023     StubRoutines::_jshort_arraycopy =
2024         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
2025                                &entry_jshort_arraycopy, "jshort_arraycopy");
2026 
2027     // Next arrays are always aligned on 4 bytes at least.
2028     StubRoutines::_jint_disjoint_arraycopy =
2029         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
2030                                "jint_disjoint_arraycopy");
2031     StubRoutines::_jint_arraycopy =
2032         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
2033                                &entry_jint_arraycopy, "jint_arraycopy");
2034 
2035     StubRoutines::_oop_disjoint_arraycopy =
2036         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2037                                "oop_disjoint_arraycopy");
2038     StubRoutines::_oop_arraycopy =
2039         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2040                                &entry_oop_arraycopy, "oop_arraycopy");
2041 
2042     StubRoutines::_oop_disjoint_arraycopy_uninit =
2043         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2044                                "oop_disjoint_arraycopy_uninit",
2045                                /*dest_uninitialized*/true);
2046     StubRoutines::_oop_arraycopy_uninit =
2047         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2048                                NULL, "oop_arraycopy_uninit",
2049                                /*dest_uninitialized*/true);
2050 
2051     StubRoutines::_jlong_disjoint_arraycopy =
2052         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
2053     StubRoutines::_jlong_arraycopy =
2054         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
2055                                     "jlong_arraycopy");
2056 
2057     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
2058     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
2059     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
2060     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
2061     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
2062     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
2063 
2064     StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
2065     StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
2066     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
2067     StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
2068 
2069     StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
2070     StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
2071     StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
2072     StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
2073 
2074     StubRoutines::_checkcast_arraycopy =
2075         generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
2076     StubRoutines::_checkcast_arraycopy_uninit =
2077         generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
2078 
2079     StubRoutines::_unsafe_arraycopy =
2080         generate_unsafe_copy("unsafe_arraycopy",
2081                                entry_jbyte_arraycopy,
2082                                entry_jshort_arraycopy,
2083                                entry_jint_arraycopy,
2084                                entry_jlong_arraycopy);
2085 
2086     StubRoutines::_generic_arraycopy =
2087         generate_generic_copy("generic_arraycopy",
2088                                entry_jbyte_arraycopy,
2089                                entry_jshort_arraycopy,
2090                                entry_jint_arraycopy,
2091                                entry_oop_arraycopy,
2092                                entry_jlong_arraycopy,
2093                                entry_checkcast_arraycopy);
2094   }
2095 
2096   void generate_math_stubs() {
2097     {
2098       StubCodeMark mark(this, "StubRoutines", "log10");
2099       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2100 
2101       __ fld_d(Address(rsp, 4));
2102       __ flog10();
2103       __ ret(0);
2104     }
2105     {
2106       StubCodeMark mark(this, "StubRoutines", "sin");
2107       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
2108 
2109       __ fld_d(Address(rsp, 4));
2110       __ trigfunc('s');
2111       __ ret(0);
2112     }
2113     {
2114       StubCodeMark mark(this, "StubRoutines", "cos");
2115       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2116 
2117       __ fld_d(Address(rsp, 4));
2118       __ trigfunc('c');
2119       __ ret(0);
2120     }
2121     {
2122       StubCodeMark mark(this, "StubRoutines", "tan");
2123       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2124 
2125       __ fld_d(Address(rsp, 4));
2126       __ trigfunc('t');
2127       __ ret(0);
2128     }
2129   }
2130 
2131   // AES intrinsic stubs
2132   enum {AESBlockSize = 16};
2133 
2134   address generate_key_shuffle_mask() {
2135     __ align(16);
2136     StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
2137     address start = __ pc();
2138     __ emit_data(0x00010203, relocInfo::none, 0 );
2139     __ emit_data(0x04050607, relocInfo::none, 0 );
2140     __ emit_data(0x08090a0b, relocInfo::none, 0 );
2141     __ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
2142     return start;
2143   }
2144 
2145   address generate_counter_shuffle_mask() {
2146     __ align(16);
2147     StubCodeMark mark(this, "StubRoutines", "counter_shuffle_mask");
2148     address start = __ pc();
2149     __ emit_data(0x0c0d0e0f, relocInfo::none, 0);
2150     __ emit_data(0x08090a0b, relocInfo::none, 0);
2151     __ emit_data(0x04050607, relocInfo::none, 0);
2152     __ emit_data(0x00010203, relocInfo::none, 0);
2153     return start;
2154   }
2155 
2156   // Utility routine for loading a 128-bit key word in little endian format
2157   // can optionally specify that the shuffle mask is already in an xmmregister
2158   void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2159     __ movdqu(xmmdst, Address(key, offset));
2160     if (xmm_shuf_mask != NULL) {
2161       __ pshufb(xmmdst, xmm_shuf_mask);
2162     } else {
2163       __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2164     }
2165   }
2166 
2167   // aesenc using specified key+offset
2168   // can optionally specify that the shuffle mask is already in an xmmregister
2169   void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2170     load_key(xmmtmp, key, offset, xmm_shuf_mask);
2171     __ aesenc(xmmdst, xmmtmp);
2172   }
2173 
2174   // aesdec using specified key+offset
2175   // can optionally specify that the shuffle mask is already in an xmmregister
2176   void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2177     load_key(xmmtmp, key, offset, xmm_shuf_mask);
2178     __ aesdec(xmmdst, xmmtmp);
2179   }
2180 
2181   // Utility routine for increase 128bit counter (iv in CTR mode)
2182   //  XMM_128bit,  D3, D2, D1, D0
2183   void inc_counter(Register reg, XMMRegister xmmdst, int inc_delta, Label& next_block) {
2184     __ pextrd(reg, xmmdst, 0x0);
2185     __ addl(reg, inc_delta);
2186     __ pinsrd(xmmdst, reg, 0x0);
2187     __ jcc(Assembler::carryClear, next_block); // jump if no carry
2188 
2189     __ pextrd(reg, xmmdst, 0x01); // Carry-> D1
2190     __ addl(reg, 0x01);
2191     __ pinsrd(xmmdst, reg, 0x01);
2192     __ jcc(Assembler::carryClear, next_block); // jump if no carry
2193 
2194     __ pextrd(reg, xmmdst, 0x02); // Carry-> D2
2195     __ addl(reg, 0x01);
2196     __ pinsrd(xmmdst, reg, 0x02);
2197     __ jcc(Assembler::carryClear, next_block); // jump if no carry
2198 
2199     __ pextrd(reg, xmmdst, 0x03); // Carry -> D3
2200     __ addl(reg, 0x01);
2201     __ pinsrd(xmmdst, reg, 0x03);
2202 
2203     __ BIND(next_block);          // next instruction
2204   }
2205 
2206 
2207   // Arguments:
2208   //
2209   // Inputs:
2210   //   c_rarg0   - source byte array address
2211   //   c_rarg1   - destination byte array address
2212   //   c_rarg2   - K (key) in little endian int array
2213   //
2214   address generate_aescrypt_encryptBlock() {
2215     assert(UseAES, "need AES instructions and misaligned SSE support");
2216     __ align(CodeEntryAlignment);
2217     StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
2218     Label L_doLast;
2219     address start = __ pc();
2220 
2221     const Register from        = rdx;      // source array address
2222     const Register to          = rdx;      // destination array address
2223     const Register key         = rcx;      // key array address
2224     const Register keylen      = rax;
2225     const Address  from_param(rbp, 8+0);
2226     const Address  to_param  (rbp, 8+4);
2227     const Address  key_param (rbp, 8+8);
2228 
2229     const XMMRegister xmm_result = xmm0;
2230     const XMMRegister xmm_key_shuf_mask = xmm1;
2231     const XMMRegister xmm_temp1  = xmm2;
2232     const XMMRegister xmm_temp2  = xmm3;
2233     const XMMRegister xmm_temp3  = xmm4;
2234     const XMMRegister xmm_temp4  = xmm5;
2235 
2236     __ enter();   // required for proper stackwalking of RuntimeStub frame
2237 
2238     // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
2239     // context for the registers used, where all instructions below are using 128-bit mode
2240     // On EVEX without VL and BW, these instructions will all be AVX.
2241     if (VM_Version::supports_avx512vlbw()) {
2242       __ movl(rdx, 0xffff);
2243       __ kmovdl(k1, rdx);
2244     }
2245 
2246     __ movptr(from, from_param);
2247     __ movptr(key, key_param);
2248 
2249     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
2250     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2251 
2252     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2253     __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
2254     __ movptr(to, to_param);
2255 
2256     // For encryption, the java expanded key ordering is just what we need
2257 
2258     load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
2259     __ pxor(xmm_result, xmm_temp1);
2260 
2261     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
2262     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
2263     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
2264     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
2265 
2266     __ aesenc(xmm_result, xmm_temp1);
2267     __ aesenc(xmm_result, xmm_temp2);
2268     __ aesenc(xmm_result, xmm_temp3);
2269     __ aesenc(xmm_result, xmm_temp4);
2270 
2271     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
2272     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
2273     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
2274     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
2275 
2276     __ aesenc(xmm_result, xmm_temp1);
2277     __ aesenc(xmm_result, xmm_temp2);
2278     __ aesenc(xmm_result, xmm_temp3);
2279     __ aesenc(xmm_result, xmm_temp4);
2280 
2281     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
2282     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
2283 
2284     __ cmpl(keylen, 44);
2285     __ jccb(Assembler::equal, L_doLast);
2286 
2287     __ aesenc(xmm_result, xmm_temp1);
2288     __ aesenc(xmm_result, xmm_temp2);
2289 
2290     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
2291     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
2292 
2293     __ cmpl(keylen, 52);
2294     __ jccb(Assembler::equal, L_doLast);
2295 
2296     __ aesenc(xmm_result, xmm_temp1);
2297     __ aesenc(xmm_result, xmm_temp2);
2298 
2299     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
2300     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
2301 
2302     __ BIND(L_doLast);
2303     __ aesenc(xmm_result, xmm_temp1);
2304     __ aesenclast(xmm_result, xmm_temp2);
2305     __ movdqu(Address(to, 0), xmm_result);        // store the result
2306     __ xorptr(rax, rax); // return 0
2307     __ leave(); // required for proper stackwalking of RuntimeStub frame
2308     __ ret(0);
2309 
2310     return start;
2311   }
2312 
2313 
2314   // Arguments:
2315   //
2316   // Inputs:
2317   //   c_rarg0   - source byte array address
2318   //   c_rarg1   - destination byte array address
2319   //   c_rarg2   - K (key) in little endian int array
2320   //
2321   address generate_aescrypt_decryptBlock() {
2322     assert(UseAES, "need AES instructions and misaligned SSE support");
2323     __ align(CodeEntryAlignment);
2324     StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
2325     Label L_doLast;
2326     address start = __ pc();
2327 
2328     const Register from        = rdx;      // source array address
2329     const Register to          = rdx;      // destination array address
2330     const Register key         = rcx;      // key array address
2331     const Register keylen      = rax;
2332     const Address  from_param(rbp, 8+0);
2333     const Address  to_param  (rbp, 8+4);
2334     const Address  key_param (rbp, 8+8);
2335 
2336     const XMMRegister xmm_result = xmm0;
2337     const XMMRegister xmm_key_shuf_mask = xmm1;
2338     const XMMRegister xmm_temp1  = xmm2;
2339     const XMMRegister xmm_temp2  = xmm3;
2340     const XMMRegister xmm_temp3  = xmm4;
2341     const XMMRegister xmm_temp4  = xmm5;
2342 
2343     __ enter(); // required for proper stackwalking of RuntimeStub frame
2344 
2345     // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
2346     // context for the registers used, where all instructions below are using 128-bit mode
2347     // On EVEX without VL and BW, these instructions will all be AVX.
2348     if (VM_Version::supports_avx512vlbw()) {
2349       __ movl(rdx, 0xffff);
2350       __ kmovdl(k1, rdx);
2351     }
2352 
2353     __ movptr(from, from_param);
2354     __ movptr(key, key_param);
2355 
2356     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
2357     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2358 
2359     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2360     __ movdqu(xmm_result, Address(from, 0));
2361     __ movptr(to, to_param);
2362 
2363     // for decryption java expanded key ordering is rotated one position from what we want
2364     // so we start from 0x10 here and hit 0x00 last
2365     // we don't know if the key is aligned, hence not using load-execute form
2366     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
2367     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
2368     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
2369     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
2370 
2371     __ pxor  (xmm_result, xmm_temp1);
2372     __ aesdec(xmm_result, xmm_temp2);
2373     __ aesdec(xmm_result, xmm_temp3);
2374     __ aesdec(xmm_result, xmm_temp4);
2375 
2376     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
2377     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
2378     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
2379     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
2380 
2381     __ aesdec(xmm_result, xmm_temp1);
2382     __ aesdec(xmm_result, xmm_temp2);
2383     __ aesdec(xmm_result, xmm_temp3);
2384     __ aesdec(xmm_result, xmm_temp4);
2385 
2386     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
2387     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
2388     load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
2389 
2390     __ cmpl(keylen, 44);
2391     __ jccb(Assembler::equal, L_doLast);
2392 
2393     __ aesdec(xmm_result, xmm_temp1);
2394     __ aesdec(xmm_result, xmm_temp2);
2395 
2396     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
2397     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
2398 
2399     __ cmpl(keylen, 52);
2400     __ jccb(Assembler::equal, L_doLast);
2401 
2402     __ aesdec(xmm_result, xmm_temp1);
2403     __ aesdec(xmm_result, xmm_temp2);
2404 
2405     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
2406     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
2407 
2408     __ BIND(L_doLast);
2409     __ aesdec(xmm_result, xmm_temp1);
2410     __ aesdec(xmm_result, xmm_temp2);
2411 
2412     // for decryption the aesdeclast operation is always on key+0x00
2413     __ aesdeclast(xmm_result, xmm_temp3);
2414     __ movdqu(Address(to, 0), xmm_result);  // store the result
2415     __ xorptr(rax, rax); // return 0
2416     __ leave(); // required for proper stackwalking of RuntimeStub frame
2417     __ ret(0);
2418 
2419     return start;
2420   }
2421 
2422   void handleSOERegisters(bool saving) {
2423     const int saveFrameSizeInBytes = 4 * wordSize;
2424     const Address saved_rbx     (rbp, -3 * wordSize);
2425     const Address saved_rsi     (rbp, -2 * wordSize);
2426     const Address saved_rdi     (rbp, -1 * wordSize);
2427 
2428     if (saving) {
2429       __ subptr(rsp, saveFrameSizeInBytes);
2430       __ movptr(saved_rsi, rsi);
2431       __ movptr(saved_rdi, rdi);
2432       __ movptr(saved_rbx, rbx);
2433     } else {
2434       // restoring
2435       __ movptr(rsi, saved_rsi);
2436       __ movptr(rdi, saved_rdi);
2437       __ movptr(rbx, saved_rbx);
2438     }
2439   }
2440 
2441   // Arguments:
2442   //
2443   // Inputs:
2444   //   c_rarg0   - source byte array address
2445   //   c_rarg1   - destination byte array address
2446   //   c_rarg2   - K (key) in little endian int array
2447   //   c_rarg3   - r vector byte array address
2448   //   c_rarg4   - input length
2449   //
2450   // Output:
2451   //   rax       - input length
2452   //
2453   address generate_cipherBlockChaining_encryptAESCrypt() {
2454     assert(UseAES, "need AES instructions and misaligned SSE support");
2455     __ align(CodeEntryAlignment);
2456     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
2457     address start = __ pc();
2458 
2459     Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
2460     const Register from        = rsi;      // source array address
2461     const Register to          = rdx;      // destination array address
2462     const Register key         = rcx;      // key array address
2463     const Register rvec        = rdi;      // r byte array initialized from initvector array address
2464                                            // and left with the results of the last encryption block
2465     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2466     const Register pos         = rax;
2467 
2468     // xmm register assignments for the loops below
2469     const XMMRegister xmm_result = xmm0;
2470     const XMMRegister xmm_temp   = xmm1;
2471     // first 6 keys preloaded into xmm2-xmm7
2472     const int XMM_REG_NUM_KEY_FIRST = 2;
2473     const int XMM_REG_NUM_KEY_LAST  = 7;
2474     const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
2475 
2476     __ enter(); // required for proper stackwalking of RuntimeStub frame
2477     handleSOERegisters(true /*saving*/);
2478 
2479     // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
2480     // context for the registers used, where all instructions below are using 128-bit mode
2481     // On EVEX without VL and BW, these instructions will all be AVX.
2482     if (VM_Version::supports_avx512vlbw()) {
2483       __ movl(rdx, 0xffff);
2484       __ kmovdl(k1, rdx);
2485     }
2486 
2487     // load registers from incoming parameters
2488     const Address  from_param(rbp, 8+0);
2489     const Address  to_param  (rbp, 8+4);
2490     const Address  key_param (rbp, 8+8);
2491     const Address  rvec_param (rbp, 8+12);
2492     const Address  len_param  (rbp, 8+16);
2493     __ movptr(from , from_param);
2494     __ movptr(to   , to_param);
2495     __ movptr(key  , key_param);
2496     __ movptr(rvec , rvec_param);
2497     __ movptr(len_reg , len_param);
2498 
2499     const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
2500     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2501     // load up xmm regs 2 thru 7 with keys 0-5
2502     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2503       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
2504       offset += 0x10;
2505     }
2506 
2507     __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec
2508 
2509     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2510     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2511     __ cmpl(rax, 44);
2512     __ jcc(Assembler::notEqual, L_key_192_256);
2513 
2514     // 128 bit code follows here
2515     __ movl(pos, 0);
2516     __ align(OptoLoopAlignment);
2517     __ BIND(L_loopTop_128);
2518     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2519     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2520 
2521     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2522     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2523       __ aesenc(xmm_result, as_XMMRegister(rnum));
2524     }
2525     for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
2526       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2527     }
2528     load_key(xmm_temp, key, 0xa0);
2529     __ aesenclast(xmm_result, xmm_temp);
2530 
2531     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2532     // no need to store r to memory until we exit
2533     __ addptr(pos, AESBlockSize);
2534     __ subptr(len_reg, AESBlockSize);
2535     __ jcc(Assembler::notEqual, L_loopTop_128);
2536 
2537     __ BIND(L_exit);
2538     __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object
2539 
2540     handleSOERegisters(false /*restoring*/);
2541     __ movptr(rax, len_param); // return length
2542     __ leave();                                  // required for proper stackwalking of RuntimeStub frame
2543     __ ret(0);
2544 
2545     __ BIND(L_key_192_256);
2546     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
2547     __ cmpl(rax, 52);
2548     __ jcc(Assembler::notEqual, L_key_256);
2549 
2550     // 192-bit code follows here (could be changed to use more xmm registers)
2551     __ movl(pos, 0);
2552     __ align(OptoLoopAlignment);
2553     __ BIND(L_loopTop_192);
2554     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2555     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2556 
2557     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2558     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2559       __ aesenc(xmm_result, as_XMMRegister(rnum));
2560     }
2561     for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
2562       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2563     }
2564     load_key(xmm_temp, key, 0xc0);
2565     __ aesenclast(xmm_result, xmm_temp);
2566 
2567     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2568     // no need to store r to memory until we exit
2569     __ addptr(pos, AESBlockSize);
2570     __ subptr(len_reg, AESBlockSize);
2571     __ jcc(Assembler::notEqual, L_loopTop_192);
2572     __ jmp(L_exit);
2573 
2574     __ BIND(L_key_256);
2575     // 256-bit code follows here (could be changed to use more xmm registers)
2576     __ movl(pos, 0);
2577     __ align(OptoLoopAlignment);
2578     __ BIND(L_loopTop_256);
2579     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2580     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2581 
2582     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2583     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2584       __ aesenc(xmm_result, as_XMMRegister(rnum));
2585     }
2586     for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
2587       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2588     }
2589     load_key(xmm_temp, key, 0xe0);
2590     __ aesenclast(xmm_result, xmm_temp);
2591 
2592     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2593     // no need to store r to memory until we exit
2594     __ addptr(pos, AESBlockSize);
2595     __ subptr(len_reg, AESBlockSize);
2596     __ jcc(Assembler::notEqual, L_loopTop_256);
2597     __ jmp(L_exit);
2598 
2599     return start;
2600   }
2601 
2602 
2603   // CBC AES Decryption.
2604   // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
2605   //
2606   // Arguments:
2607   //
2608   // Inputs:
2609   //   c_rarg0   - source byte array address
2610   //   c_rarg1   - destination byte array address
2611   //   c_rarg2   - K (key) in little endian int array
2612   //   c_rarg3   - r vector byte array address
2613   //   c_rarg4   - input length
2614   //
2615   // Output:
2616   //   rax       - input length
2617   //
2618 
2619   address generate_cipherBlockChaining_decryptAESCrypt() {
2620     assert(UseAES, "need AES instructions and misaligned SSE support");
2621     __ align(CodeEntryAlignment);
2622     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
2623     address start = __ pc();
2624 
2625     Label L_exit, L_key_192_256, L_key_256;
2626     Label L_singleBlock_loopTop_128;
2627     Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
2628     const Register from        = rsi;      // source array address
2629     const Register to          = rdx;      // destination array address
2630     const Register key         = rcx;      // key array address
2631     const Register rvec        = rdi;      // r byte array initialized from initvector array address
2632                                            // and left with the results of the last encryption block
2633     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2634     const Register pos         = rax;
2635 
2636     // xmm register assignments for the loops below
2637     const XMMRegister xmm_result = xmm0;
2638     const XMMRegister xmm_temp   = xmm1;
2639     // first 6 keys preloaded into xmm2-xmm7
2640     const int XMM_REG_NUM_KEY_FIRST = 2;
2641     const int XMM_REG_NUM_KEY_LAST  = 7;
2642     const int FIRST_NON_REG_KEY_offset = 0x70;
2643     const XMMRegister xmm_key_first   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
2644 
2645     __ enter(); // required for proper stackwalking of RuntimeStub frame
2646     handleSOERegisters(true /*saving*/);
2647 
2648     // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
2649     // context for the registers used, where all instructions below are using 128-bit mode
2650     // On EVEX without VL and BW, these instructions will all be AVX.
2651     if (VM_Version::supports_avx512vlbw()) {
2652       __ movl(rdx, 0xffff);
2653       __ kmovdl(k1, rdx);
2654     }
2655 
2656     // load registers from incoming parameters
2657     const Address  from_param(rbp, 8+0);
2658     const Address  to_param  (rbp, 8+4);
2659     const Address  key_param (rbp, 8+8);
2660     const Address  rvec_param (rbp, 8+12);
2661     const Address  len_param  (rbp, 8+16);
2662     __ movptr(from , from_param);
2663     __ movptr(to   , to_param);
2664     __ movptr(key  , key_param);
2665     __ movptr(rvec , rvec_param);
2666     __ movptr(len_reg , len_param);
2667 
2668     // the java expanded key ordering is rotated one position from what we want
2669     // so we start from 0x10 here and hit 0x00 last
2670     const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
2671     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2672     // load up xmm regs 2 thru 6 with first 5 keys
2673     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2674       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
2675       offset += 0x10;
2676     }
2677 
2678     // inside here, use the rvec register to point to previous block cipher
2679     // with which we xor at the end of each newly decrypted block
2680     const Register  prev_block_cipher_ptr = rvec;
2681 
2682     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2683     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2684     __ cmpl(rax, 44);
2685     __ jcc(Assembler::notEqual, L_key_192_256);
2686 
2687 
2688     // 128-bit code follows here, parallelized
2689     __ movl(pos, 0);
2690     __ align(OptoLoopAlignment);
2691     __ BIND(L_singleBlock_loopTop_128);
2692     __ cmpptr(len_reg, 0);           // any blocks left??
2693     __ jcc(Assembler::equal, L_exit);
2694     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2695     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2696     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2697       __ aesdec(xmm_result, as_XMMRegister(rnum));
2698     }
2699     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xa0; key_offset += 0x10) {   // 128-bit runs up to key offset a0
2700       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2701     }
2702     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2703     __ aesdeclast(xmm_result, xmm_temp);
2704     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2705     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2706     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2707     // no need to store r to memory until we exit
2708     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2709     __ addptr(pos, AESBlockSize);
2710     __ subptr(len_reg, AESBlockSize);
2711     __ jmp(L_singleBlock_loopTop_128);
2712 
2713 
2714     __ BIND(L_exit);
2715     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2716     __ movptr(rvec , rvec_param);                                     // restore this since used in loop
2717     __ movdqu(Address(rvec, 0), xmm_temp);                            // final value of r stored in rvec of CipherBlockChaining object
2718     handleSOERegisters(false /*restoring*/);
2719     __ movptr(rax, len_param); // return length
2720     __ leave();                                                       // required for proper stackwalking of RuntimeStub frame
2721     __ ret(0);
2722 
2723 
2724     __ BIND(L_key_192_256);
2725     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
2726     __ cmpl(rax, 52);
2727     __ jcc(Assembler::notEqual, L_key_256);
2728 
2729     // 192-bit code follows here (could be optimized to use parallelism)
2730     __ movl(pos, 0);
2731     __ align(OptoLoopAlignment);
2732     __ BIND(L_singleBlock_loopTop_192);
2733     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2734     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2735     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
2736       __ aesdec(xmm_result, as_XMMRegister(rnum));
2737     }
2738     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xc0; key_offset += 0x10) {   // 192-bit runs up to key offset c0
2739       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2740     }
2741     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2742     __ aesdeclast(xmm_result, xmm_temp);
2743     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2744     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2745     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2746     // no need to store r to memory until we exit
2747     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2748     __ addptr(pos, AESBlockSize);
2749     __ subptr(len_reg, AESBlockSize);
2750     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
2751     __ jmp(L_exit);
2752 
2753     __ BIND(L_key_256);
2754     // 256-bit code follows here (could be optimized to use parallelism)
2755     __ movl(pos, 0);
2756     __ align(OptoLoopAlignment);
2757     __ BIND(L_singleBlock_loopTop_256);
2758     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2759     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2760     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
2761       __ aesdec(xmm_result, as_XMMRegister(rnum));
2762     }
2763     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xe0; key_offset += 0x10) {   // 256-bit runs up to key offset e0
2764       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2765     }
2766     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2767     __ aesdeclast(xmm_result, xmm_temp);
2768     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2769     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2770     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2771     // no need to store r to memory until we exit
2772     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2773     __ addptr(pos, AESBlockSize);
2774     __ subptr(len_reg, AESBlockSize);
2775     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
2776     __ jmp(L_exit);
2777 
2778     return start;
2779   }
2780 
2781 
2782   // CTR AES crypt.
2783   // In 32-bit stub, parallelize 4 blocks at a time
2784   // Arguments:
2785   //
2786   // Inputs:
2787   //   c_rarg0   - source byte array address
2788   //   c_rarg1   - destination byte array address
2789   //   c_rarg2   - K (key) in little endian int array
2790   //   c_rarg3   - counter vector byte array address
2791   //   c_rarg4   - input length
2792   //
2793   // Output:
2794   //   rax       - input length
2795   //
2796   address generate_counterMode_AESCrypt_Parallel() {
2797     assert(UseAES, "need AES instructions and misaligned SSE support");
2798     __ align(CodeEntryAlignment);
2799     StubCodeMark mark(this, "StubRoutines", "counterMode_AESCrypt");
2800     address start = __ pc();
2801     const Register from        = rsi;      // source array address
2802     const Register to          = rdx;      // destination array address
2803     const Register key         = rcx;      // key array address
2804     const Register counter     = rdi;      // counter byte array initialized from initvector array address
2805                                            // and updated with the incremented counter in the end
2806     const Register len_reg     = rbx;
2807     const Register pos         = rax;
2808 
2809     __ enter(); // required for proper stackwalking of RuntimeStub frame
2810     handleSOERegisters(true /*saving*/); // save rbx, rsi, rdi
2811 
2812     // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
2813     // context for the registers used, where all instructions below are using 128-bit mode
2814     // On EVEX without VL and BW, these instructions will all be AVX.
2815     if (VM_Version::supports_avx512vlbw()) {
2816       __ movl(rdx, 0xffff);
2817       __ kmovdl(k1, rdx);
2818     }
2819 
2820     // load registers from incoming parameters
2821     const Address  from_param(rbp, 8+0);
2822     const Address  to_param  (rbp, 8+4);
2823     const Address  key_param (rbp, 8+8);
2824     const Address  rvec_param (rbp, 8+12);
2825     const Address  len_param  (rbp, 8+16);
2826     const Address  saved_counter_param(rbp, 8 + 20);
2827     const Address  used_addr_param(rbp, 8 + 24);
2828 
2829     __ movptr(from , from_param);
2830     __ movptr(to   , to_param);
2831     __ movptr(len_reg , len_param);
2832 
2833     // Use the partially used encrpyted counter from last invocation
2834     Label L_exit_preLoop, L_preLoop_start;
2835 
2836     // Use the registers 'counter' and 'key' here in this preloop
2837     // to hold of last 2 params 'used' and 'saved_encCounter_start'
2838     Register used = counter;
2839     Register saved_encCounter_start = key;
2840     Register used_addr = saved_encCounter_start;
2841 
2842     __ movptr(used_addr, used_addr_param);
2843     __ movptr(used, Address(used_addr, 0));
2844     __ movptr(saved_encCounter_start, saved_counter_param);
2845 
2846     __ BIND(L_preLoop_start);
2847     __ cmpptr(used, 16);
2848     __ jcc(Assembler::aboveEqual, L_exit_preLoop);
2849     __ cmpptr(len_reg, 0);
2850     __ jcc(Assembler::lessEqual, L_exit_preLoop);
2851     __ movb(rax, Address(saved_encCounter_start, used));
2852     __ xorb(rax, Address(from, 0));
2853     __ movb(Address(to, 0), rax);
2854     __ addptr(from, 1);
2855     __ addptr(to, 1);
2856     __ addptr(used, 1);
2857     __ subptr(len_reg, 1);
2858 
2859     __ jmp(L_preLoop_start);
2860 
2861     __ BIND(L_exit_preLoop);
2862     __ movptr(used_addr, used_addr_param);
2863     __ movptr(used_addr, used_addr_param);
2864     __ movl(Address(used_addr, 0), used);
2865 
2866     // load the parameters 'key' and 'counter'
2867     __ movptr(key, key_param);
2868     __ movptr(counter, rvec_param);
2869 
2870     // xmm register assignments for the loops below
2871     const XMMRegister xmm_curr_counter      = xmm0;
2872     const XMMRegister xmm_counter_shuf_mask = xmm1;  // need to be reloaded
2873     const XMMRegister xmm_key_shuf_mask     = xmm2;  // need to be reloaded
2874     const XMMRegister xmm_key               = xmm3;
2875     const XMMRegister xmm_result0           = xmm4;
2876     const XMMRegister xmm_result1           = xmm5;
2877     const XMMRegister xmm_result2           = xmm6;
2878     const XMMRegister xmm_result3           = xmm7;
2879     const XMMRegister xmm_from0             = xmm1;   //reuse XMM register
2880     const XMMRegister xmm_from1             = xmm2;
2881     const XMMRegister xmm_from2             = xmm3;
2882     const XMMRegister xmm_from3             = xmm4;
2883 
2884     //for key_128, key_192, key_256
2885     const int rounds[3] = {10, 12, 14};
2886     Label L_singleBlockLoopTop[3];
2887     Label L_multiBlock_loopTop[3];
2888     Label L_key192_top, L_key256_top;
2889     Label L_incCounter[3][4]; // 3: different key length,  4: 4 blocks at a time
2890     Label L_incCounter_single[3]; //for single block, key128, key192, key256
2891     Label L_processTail_insr[3], L_processTail_4_insr[3], L_processTail_2_insr[3], L_processTail_1_insr[3], L_processTail_exit_insr[3];
2892     Label L_processTail_extr[3], L_processTail_4_extr[3], L_processTail_2_extr[3], L_processTail_1_extr[3], L_processTail_exit_extr[3];
2893 
2894     Label L_exit;
2895     const int PARALLEL_FACTOR = 4;  //because of the limited register number
2896 
2897     // initialize counter with initial counter
2898     __ movdqu(xmm_curr_counter, Address(counter, 0x00));
2899     __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
2900     __ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled for increase
2901 
2902     // key length could be only {11, 13, 15} * 4 = {44, 52, 60}
2903     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2904     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2905     __ cmpl(rax, 52);
2906     __ jcc(Assembler::equal, L_key192_top);
2907     __ cmpl(rax, 60);
2908     __ jcc(Assembler::equal, L_key256_top);
2909 
2910     //key128 begins here
2911     __ movptr(pos, 0); // init pos before L_multiBlock_loopTop
2912 
2913 #define CTR_DoFour(opc, src_reg)               \
2914     __ opc(xmm_result0, src_reg);              \
2915     __ opc(xmm_result1, src_reg);              \
2916     __ opc(xmm_result2, src_reg);              \
2917     __ opc(xmm_result3, src_reg);
2918 
2919     // k == 0 :  generate code for key_128
2920     // k == 1 :  generate code for key_192
2921     // k == 2 :  generate code for key_256
2922     for (int k = 0; k < 3; ++k) {
2923       //multi blocks starts here
2924       __ align(OptoLoopAlignment);
2925       __ BIND(L_multiBlock_loopTop[k]);
2926       __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least PARALLEL_FACTOR blocks left
2927       __ jcc(Assembler::less, L_singleBlockLoopTop[k]);
2928 
2929       __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2930       __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
2931 
2932       //load, then increase counters
2933       CTR_DoFour(movdqa, xmm_curr_counter);
2934       __ push(rbx);
2935       inc_counter(rbx, xmm_result1, 0x01, L_incCounter[k][0]);
2936       inc_counter(rbx, xmm_result2, 0x02, L_incCounter[k][1]);
2937       inc_counter(rbx, xmm_result3, 0x03, L_incCounter[k][2]);
2938       inc_counter(rbx, xmm_curr_counter, 0x04, L_incCounter[k][3]);
2939       __ pop (rbx);
2940 
2941       load_key(xmm_key, key, 0x00, xmm_key_shuf_mask); // load Round 0 key. interleaving for better performance
2942 
2943       CTR_DoFour(pshufb, xmm_counter_shuf_mask); // after increased, shuffled counters back for PXOR
2944       CTR_DoFour(pxor, xmm_key);   //PXOR with Round 0 key
2945 
2946       for (int i = 1; i < rounds[k]; ++i) {
2947         load_key(xmm_key, key, (0x10 * i), xmm_key_shuf_mask);
2948         CTR_DoFour(aesenc, xmm_key);
2949       }
2950       load_key(xmm_key, key, (0x10 * rounds[k]), xmm_key_shuf_mask);
2951       CTR_DoFour(aesenclast, xmm_key);
2952 
2953       // get next PARALLEL_FACTOR blocks into xmm_from registers
2954       __ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize));
2955       __ movdqu(xmm_from1, Address(from, pos, Address::times_1, 1 * AESBlockSize));
2956       __ movdqu(xmm_from2, Address(from, pos, Address::times_1, 2 * AESBlockSize));
2957 
2958       // PXOR with input text
2959       __ pxor(xmm_result0, xmm_from0); //result0 is xmm4
2960       __ pxor(xmm_result1, xmm_from1);
2961       __ pxor(xmm_result2, xmm_from2);
2962 
2963       // store PARALLEL_FACTOR results into the next 64 bytes of output
2964       __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0);
2965       __ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1);
2966       __ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2);
2967 
2968       // do it here after xmm_result0 is saved, because xmm_from3 reuse the same register of xmm_result0.
2969       __ movdqu(xmm_from3, Address(from, pos, Address::times_1, 3 * AESBlockSize));
2970       __ pxor(xmm_result3, xmm_from3);
2971       __ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3);
2972 
2973       __ addptr(pos, PARALLEL_FACTOR * AESBlockSize); // increase the length of crypt text
2974       __ subptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // decrease the remaining length
2975       __ jmp(L_multiBlock_loopTop[k]);
2976 
2977       // singleBlock starts here
2978       __ align(OptoLoopAlignment);
2979       __ BIND(L_singleBlockLoopTop[k]);
2980       __ cmpptr(len_reg, 0);
2981       __ jcc(Assembler::equal, L_exit);
2982       __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2983       __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
2984       __ movdqa(xmm_result0, xmm_curr_counter);
2985       load_key(xmm_key, key, 0x00, xmm_key_shuf_mask);
2986       __ push(rbx);//rbx is used for increasing counter
2987       inc_counter(rbx, xmm_curr_counter, 0x01, L_incCounter_single[k]);
2988       __ pop (rbx);
2989       __ pshufb(xmm_result0, xmm_counter_shuf_mask);
2990       __ pxor(xmm_result0, xmm_key);
2991       for (int i = 1; i < rounds[k]; i++) {
2992         load_key(xmm_key, key, (0x10 * i), xmm_key_shuf_mask);
2993         __ aesenc(xmm_result0, xmm_key);
2994       }
2995       load_key(xmm_key, key, (0x10 * rounds[k]), xmm_key_shuf_mask);
2996       __ aesenclast(xmm_result0, xmm_key);
2997       __ cmpptr(len_reg, AESBlockSize);
2998       __ jcc(Assembler::less, L_processTail_insr[k]);
2999         __ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize));
3000         __ pxor(xmm_result0, xmm_from0);
3001         __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0);
3002         __ addptr(pos, AESBlockSize);
3003         __ subptr(len_reg, AESBlockSize);
3004         __ jmp(L_singleBlockLoopTop[k]);
3005 
3006       __ BIND(L_processTail_insr[k]);                                               // Process the tail part of the input array
3007         __ addptr(pos, len_reg);                                                    // 1. Insert bytes from src array into xmm_from0 register
3008         __ testptr(len_reg, 8);
3009         __ jcc(Assembler::zero, L_processTail_4_insr[k]);
3010           __ subptr(pos,8);
3011           __ pinsrd(xmm_from0, Address(from, pos), 0);
3012           __ pinsrd(xmm_from0, Address(from, pos, Address::times_1, 4), 1);
3013         __ BIND(L_processTail_4_insr[k]);
3014         __ testptr(len_reg, 4);
3015         __ jcc(Assembler::zero, L_processTail_2_insr[k]);
3016           __ subptr(pos,4);
3017           __ pslldq(xmm_from0, 4);
3018           __ pinsrd(xmm_from0, Address(from, pos), 0);
3019         __ BIND(L_processTail_2_insr[k]);
3020         __ testptr(len_reg, 2);
3021         __ jcc(Assembler::zero, L_processTail_1_insr[k]);
3022           __ subptr(pos, 2);
3023           __ pslldq(xmm_from0, 2);
3024           __ pinsrw(xmm_from0, Address(from, pos), 0);
3025         __ BIND(L_processTail_1_insr[k]);
3026         __ testptr(len_reg, 1);
3027         __ jcc(Assembler::zero, L_processTail_exit_insr[k]);
3028           __ subptr(pos, 1);
3029           __ pslldq(xmm_from0, 1);
3030           __ pinsrb(xmm_from0, Address(from, pos), 0);
3031         __ BIND(L_processTail_exit_insr[k]);
3032 
3033         __ movptr(saved_encCounter_start, saved_counter_param);
3034         __ movdqu(Address(saved_encCounter_start, 0), xmm_result0);               // 2. Perform pxor of the encrypted counter and plaintext Bytes.
3035         __ pxor(xmm_result0, xmm_from0);                                          //    Also the encrypted counter is saved for next invocation.
3036 
3037         __ testptr(len_reg, 8);
3038         __ jcc(Assembler::zero, L_processTail_4_extr[k]);                        // 3. Extract bytes from xmm_result0 into the dest. array
3039           __ pextrd(Address(to, pos), xmm_result0, 0);
3040           __ pextrd(Address(to, pos, Address::times_1, 4), xmm_result0, 1);
3041           __ psrldq(xmm_result0, 8);
3042           __ addptr(pos, 8);
3043         __ BIND(L_processTail_4_extr[k]);
3044         __ testptr(len_reg, 4);
3045         __ jcc(Assembler::zero, L_processTail_2_extr[k]);
3046           __ pextrd(Address(to, pos), xmm_result0, 0);
3047           __ psrldq(xmm_result0, 4);
3048           __ addptr(pos, 4);
3049         __ BIND(L_processTail_2_extr[k]);
3050         __ testptr(len_reg, 2);
3051         __ jcc(Assembler::zero, L_processTail_1_extr[k]);
3052           __ pextrb(Address(to, pos), xmm_result0, 0);
3053           __ pextrb(Address(to, pos, Address::times_1, 1), xmm_result0, 1);
3054           __ psrldq(xmm_result0, 2);
3055           __ addptr(pos, 2);
3056         __ BIND(L_processTail_1_extr[k]);
3057         __ testptr(len_reg, 1);
3058         __ jcc(Assembler::zero, L_processTail_exit_extr[k]);
3059           __ pextrb(Address(to, pos), xmm_result0, 0);
3060 
3061         __ BIND(L_processTail_exit_extr[k]);
3062         __ movptr(used_addr, used_addr_param);
3063         __ movl(Address(used_addr, 0), len_reg);
3064         __ jmp(L_exit);
3065     }
3066 
3067     __ BIND(L_exit);
3068     __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
3069     __ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled back.
3070     __ movdqu(Address(counter, 0), xmm_curr_counter); //save counter back
3071     handleSOERegisters(false /*restoring*/);
3072     __ movptr(rax, len_param); // return length
3073     __ leave();                // required for proper stackwalking of RuntimeStub frame
3074     __ ret(0);
3075 
3076     __ BIND (L_key192_top);
3077     __ movptr(pos, 0); // init pos before L_multiBlock_loopTop
3078     __ jmp(L_multiBlock_loopTop[1]); //key192
3079 
3080     __ BIND (L_key256_top);
3081     __ movptr(pos, 0); // init pos before L_multiBlock_loopTop
3082     __ jmp(L_multiBlock_loopTop[2]); //key192
3083 
3084     return start;
3085   }
3086 
3087 
3088   // byte swap x86 long
3089   address generate_ghash_long_swap_mask() {
3090     __ align(CodeEntryAlignment);
3091     StubCodeMark mark(this, "StubRoutines", "ghash_long_swap_mask");
3092     address start = __ pc();
3093     __ emit_data(0x0b0a0908, relocInfo::none, 0);
3094     __ emit_data(0x0f0e0d0c, relocInfo::none, 0);
3095     __ emit_data(0x03020100, relocInfo::none, 0);
3096     __ emit_data(0x07060504, relocInfo::none, 0);
3097 
3098   return start;
3099   }
3100 
3101   // byte swap x86 byte array
3102   address generate_ghash_byte_swap_mask() {
3103     __ align(CodeEntryAlignment);
3104     StubCodeMark mark(this, "StubRoutines", "ghash_byte_swap_mask");
3105     address start = __ pc();
3106     __ emit_data(0x0c0d0e0f, relocInfo::none, 0);
3107     __ emit_data(0x08090a0b, relocInfo::none, 0);
3108     __ emit_data(0x04050607, relocInfo::none, 0);
3109     __ emit_data(0x00010203, relocInfo::none, 0);
3110   return start;
3111   }
3112 
3113   /* Single and multi-block ghash operations */
3114   address generate_ghash_processBlocks() {
3115     assert(UseGHASHIntrinsics, "need GHASH intrinsics and CLMUL support");
3116     __ align(CodeEntryAlignment);
3117     Label L_ghash_loop, L_exit;
3118     StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks");
3119     address start = __ pc();
3120 
3121     const Register state        = rdi;
3122     const Register subkeyH      = rsi;
3123     const Register data         = rdx;
3124     const Register blocks       = rcx;
3125 
3126     const Address  state_param(rbp, 8+0);
3127     const Address  subkeyH_param(rbp, 8+4);
3128     const Address  data_param(rbp, 8+8);
3129     const Address  blocks_param(rbp, 8+12);
3130 
3131     const XMMRegister xmm_temp0 = xmm0;
3132     const XMMRegister xmm_temp1 = xmm1;
3133     const XMMRegister xmm_temp2 = xmm2;
3134     const XMMRegister xmm_temp3 = xmm3;
3135     const XMMRegister xmm_temp4 = xmm4;
3136     const XMMRegister xmm_temp5 = xmm5;
3137     const XMMRegister xmm_temp6 = xmm6;
3138     const XMMRegister xmm_temp7 = xmm7;
3139 
3140     __ enter();
3141     handleSOERegisters(true);  // Save registers
3142 
3143     // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
3144     // context for the registers used, where all instructions below are using 128-bit mode
3145     // On EVEX without VL and BW, these instructions will all be AVX.
3146     if (VM_Version::supports_avx512vlbw()) {
3147       __ movl(rdx, 0xffff);
3148       __ kmovdl(k1, rdx);
3149     }
3150 
3151     __ movptr(state, state_param);
3152     __ movptr(subkeyH, subkeyH_param);
3153     __ movptr(data, data_param);
3154     __ movptr(blocks, blocks_param);
3155 
3156     __ movdqu(xmm_temp0, Address(state, 0));
3157     __ pshufb(xmm_temp0, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
3158 
3159     __ movdqu(xmm_temp1, Address(subkeyH, 0));
3160     __ pshufb(xmm_temp1, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
3161 
3162     __ BIND(L_ghash_loop);
3163     __ movdqu(xmm_temp2, Address(data, 0));
3164     __ pshufb(xmm_temp2, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr()));
3165 
3166     __ pxor(xmm_temp0, xmm_temp2);
3167 
3168     //
3169     // Multiply with the hash key
3170     //
3171     __ movdqu(xmm_temp3, xmm_temp0);
3172     __ pclmulqdq(xmm_temp3, xmm_temp1, 0);      // xmm3 holds a0*b0
3173     __ movdqu(xmm_temp4, xmm_temp0);
3174     __ pclmulqdq(xmm_temp4, xmm_temp1, 16);     // xmm4 holds a0*b1
3175 
3176     __ movdqu(xmm_temp5, xmm_temp0);
3177     __ pclmulqdq(xmm_temp5, xmm_temp1, 1);      // xmm5 holds a1*b0
3178     __ movdqu(xmm_temp6, xmm_temp0);
3179     __ pclmulqdq(xmm_temp6, xmm_temp1, 17);     // xmm6 holds a1*b1
3180 
3181     __ pxor(xmm_temp4, xmm_temp5);      // xmm4 holds a0*b1 + a1*b0
3182 
3183     __ movdqu(xmm_temp5, xmm_temp4);    // move the contents of xmm4 to xmm5
3184     __ psrldq(xmm_temp4, 8);    // shift by xmm4 64 bits to the right
3185     __ pslldq(xmm_temp5, 8);    // shift by xmm5 64 bits to the left
3186     __ pxor(xmm_temp3, xmm_temp5);
3187     __ pxor(xmm_temp6, xmm_temp4);      // Register pair <xmm6:xmm3> holds the result
3188                                         // of the carry-less multiplication of
3189                                         // xmm0 by xmm1.
3190 
3191     // We shift the result of the multiplication by one bit position
3192     // to the left to cope for the fact that the bits are reversed.
3193     __ movdqu(xmm_temp7, xmm_temp3);
3194     __ movdqu(xmm_temp4, xmm_temp6);
3195     __ pslld (xmm_temp3, 1);
3196     __ pslld(xmm_temp6, 1);
3197     __ psrld(xmm_temp7, 31);
3198     __ psrld(xmm_temp4, 31);
3199     __ movdqu(xmm_temp5, xmm_temp7);
3200     __ pslldq(xmm_temp4, 4);
3201     __ pslldq(xmm_temp7, 4);
3202     __ psrldq(xmm_temp5, 12);
3203     __ por(xmm_temp3, xmm_temp7);
3204     __ por(xmm_temp6, xmm_temp4);
3205     __ por(xmm_temp6, xmm_temp5);
3206 
3207     //
3208     // First phase of the reduction
3209     //
3210     // Move xmm3 into xmm4, xmm5, xmm7 in order to perform the shifts
3211     // independently.
3212     __ movdqu(xmm_temp7, xmm_temp3);
3213     __ movdqu(xmm_temp4, xmm_temp3);
3214     __ movdqu(xmm_temp5, xmm_temp3);
3215     __ pslld(xmm_temp7, 31);    // packed right shift shifting << 31
3216     __ pslld(xmm_temp4, 30);    // packed right shift shifting << 30
3217     __ pslld(xmm_temp5, 25);    // packed right shift shifting << 25
3218     __ pxor(xmm_temp7, xmm_temp4);      // xor the shifted versions
3219     __ pxor(xmm_temp7, xmm_temp5);
3220     __ movdqu(xmm_temp4, xmm_temp7);
3221     __ pslldq(xmm_temp7, 12);
3222     __ psrldq(xmm_temp4, 4);
3223     __ pxor(xmm_temp3, xmm_temp7);      // first phase of the reduction complete
3224 
3225     //
3226     // Second phase of the reduction
3227     //
3228     // Make 3 copies of xmm3 in xmm2, xmm5, xmm7 for doing these
3229     // shift operations.
3230     __ movdqu(xmm_temp2, xmm_temp3);
3231     __ movdqu(xmm_temp7, xmm_temp3);
3232     __ movdqu(xmm_temp5, xmm_temp3);
3233     __ psrld(xmm_temp2, 1);     // packed left shifting >> 1
3234     __ psrld(xmm_temp7, 2);     // packed left shifting >> 2
3235     __ psrld(xmm_temp5, 7);     // packed left shifting >> 7
3236     __ pxor(xmm_temp2, xmm_temp7);      // xor the shifted versions
3237     __ pxor(xmm_temp2, xmm_temp5);
3238     __ pxor(xmm_temp2, xmm_temp4);
3239     __ pxor(xmm_temp3, xmm_temp2);
3240     __ pxor(xmm_temp6, xmm_temp3);      // the result is in xmm6
3241 
3242     __ decrement(blocks);
3243     __ jcc(Assembler::zero, L_exit);
3244     __ movdqu(xmm_temp0, xmm_temp6);
3245     __ addptr(data, 16);
3246     __ jmp(L_ghash_loop);
3247 
3248     __ BIND(L_exit);
3249        // Byte swap 16-byte result
3250     __ pshufb(xmm_temp6, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
3251     __ movdqu(Address(state, 0), xmm_temp6);   // store the result
3252 
3253     handleSOERegisters(false);  // restore registers
3254     __ leave();
3255     __ ret(0);
3256     return start;
3257   }
3258 
3259   /**
3260    *  Arguments:
3261    *
3262    * Inputs:
3263    *   rsp(4)   - int crc
3264    *   rsp(8)   - byte* buf
3265    *   rsp(12)  - int length
3266    *
3267    * Ouput:
3268    *       rax   - int crc result
3269    */
3270   address generate_updateBytesCRC32() {
3271     assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
3272 
3273     __ align(CodeEntryAlignment);
3274     StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
3275 
3276     address start = __ pc();
3277 
3278     const Register crc   = rdx;  // crc
3279     const Register buf   = rsi;  // source java byte array address
3280     const Register len   = rcx;  // length
3281     const Register table = rdi;  // crc_table address (reuse register)
3282     const Register tmp   = rbx;
3283     assert_different_registers(crc, buf, len, table, tmp, rax);
3284 
3285     BLOCK_COMMENT("Entry:");
3286     __ enter(); // required for proper stackwalking of RuntimeStub frame
3287     __ push(rsi);
3288     __ push(rdi);
3289     __ push(rbx);
3290 
3291     Address crc_arg(rbp, 8 + 0);
3292     Address buf_arg(rbp, 8 + 4);
3293     Address len_arg(rbp, 8 + 8);
3294 
3295     // Load up:
3296     __ movl(crc,   crc_arg);
3297     __ movptr(buf, buf_arg);
3298     __ movl(len,   len_arg);
3299 
3300     __ kernel_crc32(crc, buf, len, table, tmp);
3301 
3302     __ movl(rax, crc);
3303     __ pop(rbx);
3304     __ pop(rdi);
3305     __ pop(rsi);
3306     __ leave(); // required for proper stackwalking of RuntimeStub frame
3307     __ ret(0);
3308 
3309     return start;
3310   }
3311 
3312   /**
3313   *  Arguments:
3314   *
3315   * Inputs:
3316   *   rsp(4)   - int crc
3317   *   rsp(8)   - byte* buf
3318   *   rsp(12)  - int length
3319   *   rsp(16)  - table_start - optional (present only when doing a library_calll,
3320   *              not used by x86 algorithm)
3321   *
3322   * Ouput:
3323   *       rax  - int crc result
3324   */
3325   address generate_updateBytesCRC32C(bool is_pclmulqdq_supported) {
3326     assert(UseCRC32CIntrinsics, "need SSE4_2");
3327     __ align(CodeEntryAlignment);
3328     StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C");
3329     address start = __ pc();
3330     const Register crc = rax;  // crc
3331     const Register buf = rcx;  // source java byte array address
3332     const Register len = rdx;  // length
3333     const Register d = rbx;
3334     const Register g = rsi;
3335     const Register h = rdi;
3336     const Register empty = 0; // will never be used, in order not
3337                               // to change a signature for crc32c_IPL_Alg2_Alt2
3338                               // between 64/32 I'm just keeping it here
3339     assert_different_registers(crc, buf, len, d, g, h);
3340 
3341     BLOCK_COMMENT("Entry:");
3342     __ enter(); // required for proper stackwalking of RuntimeStub frame
3343     Address crc_arg(rsp, 4 + 4 + 0); // ESP+4 +
3344                                      // we need to add additional 4 because __ enter
3345                                      // have just pushed ebp on a stack
3346     Address buf_arg(rsp, 4 + 4 + 4);
3347     Address len_arg(rsp, 4 + 4 + 8);
3348       // Load up:
3349       __ movl(crc, crc_arg);
3350       __ movl(buf, buf_arg);
3351       __ movl(len, len_arg);
3352       __ push(d);
3353       __ push(g);
3354       __ push(h);
3355       __ crc32c_ipl_alg2_alt2(crc, buf, len,
3356                               d, g, h,
3357                               empty, empty, empty,
3358                               xmm0, xmm1, xmm2,
3359                               is_pclmulqdq_supported);
3360       __ pop(h);
3361       __ pop(g);
3362       __ pop(d);
3363     __ leave(); // required for proper stackwalking of RuntimeStub frame
3364     __ ret(0);
3365 
3366     return start;
3367   }
3368 
3369  address generate_libmExp() {
3370     address start = __ pc();
3371 
3372     const XMMRegister x0  = xmm0;
3373     const XMMRegister x1  = xmm1;
3374     const XMMRegister x2  = xmm2;
3375     const XMMRegister x3  = xmm3;
3376 
3377     const XMMRegister x4  = xmm4;
3378     const XMMRegister x5  = xmm5;
3379     const XMMRegister x6  = xmm6;
3380     const XMMRegister x7  = xmm7;
3381 
3382     const Register tmp   = rbx;
3383 
3384     BLOCK_COMMENT("Entry:");
3385     __ enter(); // required for proper stackwalking of RuntimeStub frame
3386     __ fast_exp(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
3387     __ leave(); // required for proper stackwalking of RuntimeStub frame
3388     __ ret(0);
3389 
3390     return start;
3391 
3392   }
3393 
3394  address generate_libmLog() {
3395    address start = __ pc();
3396 
3397    const XMMRegister x0 = xmm0;
3398    const XMMRegister x1 = xmm1;
3399    const XMMRegister x2 = xmm2;
3400    const XMMRegister x3 = xmm3;
3401 
3402    const XMMRegister x4 = xmm4;
3403    const XMMRegister x5 = xmm5;
3404    const XMMRegister x6 = xmm6;
3405    const XMMRegister x7 = xmm7;
3406 
3407    const Register tmp = rbx;
3408 
3409    BLOCK_COMMENT("Entry:");
3410    __ enter(); // required for proper stackwalking of RuntimeStub frame
3411    __ fast_log(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
3412    __ leave(); // required for proper stackwalking of RuntimeStub frame
3413    __ ret(0);
3414 
3415    return start;
3416 
3417  }
3418 
3419  address generate_libmPow() {
3420    address start = __ pc();
3421 
3422    const XMMRegister x0 = xmm0;
3423    const XMMRegister x1 = xmm1;
3424    const XMMRegister x2 = xmm2;
3425    const XMMRegister x3 = xmm3;
3426 
3427    const XMMRegister x4 = xmm4;
3428    const XMMRegister x5 = xmm5;
3429    const XMMRegister x6 = xmm6;
3430    const XMMRegister x7 = xmm7;
3431 
3432    const Register tmp = rbx;
3433 
3434    BLOCK_COMMENT("Entry:");
3435    __ enter(); // required for proper stackwalking of RuntimeStub frame
3436    __ fast_pow(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
3437    __ leave(); // required for proper stackwalking of RuntimeStub frame
3438    __ ret(0);
3439 
3440    return start;
3441 
3442  }
3443 
3444 
3445   // Safefetch stubs.
3446   void generate_safefetch(const char* name, int size, address* entry,
3447                           address* fault_pc, address* continuation_pc) {
3448     // safefetch signatures:
3449     //   int      SafeFetch32(int*      adr, int      errValue);
3450     //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
3451 
3452     StubCodeMark mark(this, "StubRoutines", name);
3453 
3454     // Entry point, pc or function descriptor.
3455     *entry = __ pc();
3456 
3457     __ movl(rax, Address(rsp, 0x8));
3458     __ movl(rcx, Address(rsp, 0x4));
3459     // Load *adr into eax, may fault.
3460     *fault_pc = __ pc();
3461     switch (size) {
3462       case 4:
3463         // int32_t
3464         __ movl(rax, Address(rcx, 0));
3465         break;
3466       case 8:
3467         // int64_t
3468         Unimplemented();
3469         break;
3470       default:
3471         ShouldNotReachHere();
3472     }
3473 
3474     // Return errValue or *adr.
3475     *continuation_pc = __ pc();
3476     __ ret(0);
3477   }
3478 
3479  public:
3480   // Information about frame layout at time of blocking runtime call.
3481   // Note that we only have to preserve callee-saved registers since
3482   // the compilers are responsible for supplying a continuation point
3483   // if they expect all registers to be preserved.
3484   enum layout {
3485     thread_off,    // last_java_sp
3486     arg1_off,
3487     arg2_off,
3488     rbp_off,       // callee saved register
3489     ret_pc,
3490     framesize
3491   };
3492 
3493  private:
3494 
3495 #undef  __
3496 #define __ masm->
3497 
3498   //------------------------------------------------------------------------------------------------------------------------
3499   // Continuation point for throwing of implicit exceptions that are not handled in
3500   // the current activation. Fabricates an exception oop and initiates normal
3501   // exception dispatching in this frame.
3502   //
3503   // Previously the compiler (c2) allowed for callee save registers on Java calls.
3504   // This is no longer true after adapter frames were removed but could possibly
3505   // be brought back in the future if the interpreter code was reworked and it
3506   // was deemed worthwhile. The comment below was left to describe what must
3507   // happen here if callee saves were resurrected. As it stands now this stub
3508   // could actually be a vanilla BufferBlob and have now oopMap at all.
3509   // Since it doesn't make much difference we've chosen to leave it the
3510   // way it was in the callee save days and keep the comment.
3511 
3512   // If we need to preserve callee-saved values we need a callee-saved oop map and
3513   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
3514   // If the compiler needs all registers to be preserved between the fault
3515   // point and the exception handler then it must assume responsibility for that in
3516   // AbstractCompiler::continuation_for_implicit_null_exception or
3517   // continuation_for_implicit_division_by_zero_exception. All other implicit
3518   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
3519   // either at call sites or otherwise assume that stack unwinding will be initiated,
3520   // so caller saved registers were assumed volatile in the compiler.
3521   address generate_throw_exception(const char* name, address runtime_entry,
3522                                    Register arg1 = noreg, Register arg2 = noreg) {
3523 
3524     int insts_size = 256;
3525     int locs_size  = 32;
3526 
3527     CodeBuffer code(name, insts_size, locs_size);
3528     OopMapSet* oop_maps  = new OopMapSet();
3529     MacroAssembler* masm = new MacroAssembler(&code);
3530 
3531     address start = __ pc();
3532 
3533     // This is an inlined and slightly modified version of call_VM
3534     // which has the ability to fetch the return PC out of
3535     // thread-local storage and also sets up last_Java_sp slightly
3536     // differently than the real call_VM
3537     Register java_thread = rbx;
3538     __ get_thread(java_thread);
3539 
3540     __ enter(); // required for proper stackwalking of RuntimeStub frame
3541 
3542     // pc and rbp, already pushed
3543     __ subptr(rsp, (framesize-2) * wordSize); // prolog
3544 
3545     // Frame is now completed as far as size and linkage.
3546 
3547     int frame_complete = __ pc() - start;
3548 
3549     // push java thread (becomes first argument of C function)
3550     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
3551     if (arg1 != noreg) {
3552       __ movptr(Address(rsp, arg1_off * wordSize), arg1);
3553     }
3554     if (arg2 != noreg) {
3555       assert(arg1 != noreg, "missing reg arg");
3556       __ movptr(Address(rsp, arg2_off * wordSize), arg2);
3557     }
3558 
3559     // Set up last_Java_sp and last_Java_fp
3560     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
3561 
3562     // Call runtime
3563     BLOCK_COMMENT("call runtime_entry");
3564     __ call(RuntimeAddress(runtime_entry));
3565     // Generate oop map
3566     OopMap* map =  new OopMap(framesize, 0);
3567     oop_maps->add_gc_map(__ pc() - start, map);
3568 
3569     // restore the thread (cannot use the pushed argument since arguments
3570     // may be overwritten by C code generated by an optimizing compiler);
3571     // however can use the register value directly if it is callee saved.
3572     __ get_thread(java_thread);
3573 
3574     __ reset_last_Java_frame(java_thread, true, false);
3575 
3576     __ leave(); // required for proper stackwalking of RuntimeStub frame
3577 
3578     // check for pending exceptions
3579 #ifdef ASSERT
3580     Label L;
3581     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3582     __ jcc(Assembler::notEqual, L);
3583     __ should_not_reach_here();
3584     __ bind(L);
3585 #endif /* ASSERT */
3586     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3587 
3588 
3589     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
3590     return stub->entry_point();
3591   }
3592 
3593 
3594   void create_control_words() {
3595     // Round to nearest, 53-bit mode, exceptions masked
3596     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
3597     // Round to zero, 53-bit mode, exception mased
3598     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
3599     // Round to nearest, 24-bit mode, exceptions masked
3600     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
3601     // Round to nearest, 64-bit mode, exceptions masked
3602     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
3603     // Round to nearest, 64-bit mode, exceptions masked
3604     StubRoutines::_mxcsr_std           = 0x1F80;
3605     // Note: the following two constants are 80-bit values
3606     //       layout is critical for correct loading by FPU.
3607     // Bias for strict fp multiply/divide
3608     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
3609     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
3610     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
3611     // Un-Bias for strict fp multiply/divide
3612     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
3613     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
3614     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
3615   }
3616 
3617   //---------------------------------------------------------------------------
3618   // Initialization
3619 
3620   void generate_initial() {
3621     // Generates all stubs and initializes the entry points
3622 
3623     //------------------------------------------------------------------------------------------------------------------------
3624     // entry points that exist in all platforms
3625     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
3626     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
3627     StubRoutines::_forward_exception_entry      = generate_forward_exception();
3628 
3629     StubRoutines::_call_stub_entry              =
3630       generate_call_stub(StubRoutines::_call_stub_return_address);
3631     // is referenced by megamorphic call
3632     StubRoutines::_catch_exception_entry        = generate_catch_exception();
3633 
3634     // These are currently used by Solaris/Intel
3635     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
3636 
3637     StubRoutines::_handler_for_unsafe_access_entry =
3638       generate_handler_for_unsafe_access();
3639 
3640     // platform dependent
3641     create_control_words();
3642 
3643     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
3644     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
3645     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
3646                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
3647     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
3648                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
3649 
3650     // Build this early so it's available for the interpreter
3651     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",
3652                                                                                       CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
3653     StubRoutines::_throw_delayed_StackOverflowError_entry  = generate_throw_exception("delayed StackOverflowError throw_exception",
3654                                                                                       CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
3655 
3656     if (UseCRC32Intrinsics) {
3657       // set table address before stub generation which use it
3658       StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
3659       StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
3660     }
3661 
3662     if (UseCRC32CIntrinsics) {
3663       bool supports_clmul = VM_Version::supports_clmul();
3664       StubRoutines::x86::generate_CRC32C_table(supports_clmul);
3665       StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table;
3666       StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul);
3667     }
3668     if (VM_Version::supports_sse2()) {
3669       StubRoutines::_dexp = generate_libmExp();
3670       StubRoutines::_dlog = generate_libmLog();
3671       StubRoutines::_dpow = generate_libmPow();
3672     }
3673   }
3674 
3675 
3676   void generate_all() {
3677     // Generates all stubs and initializes the entry points
3678 
3679     // These entry points require SharedInfo::stack0 to be set up in non-core builds
3680     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
3681     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
3682     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
3683     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
3684 
3685     //------------------------------------------------------------------------------------------------------------------------
3686     // entry points that are platform specific
3687 
3688     // support for verify_oop (must happen after universe_init)
3689     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
3690 
3691     // arraycopy stubs used by compilers
3692     generate_arraycopy_stubs();
3693 
3694     generate_math_stubs();
3695 
3696     // don't bother generating these AES intrinsic stubs unless global flag is set
3697     if (UseAESIntrinsics) {
3698       StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // might be needed by the others
3699 
3700       StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
3701       StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
3702       StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
3703       StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
3704     }
3705 
3706     if (UseAESCTRIntrinsics) {
3707       StubRoutines::x86::_counter_shuffle_mask_addr = generate_counter_shuffle_mask();
3708       StubRoutines::_counterMode_AESCrypt = generate_counterMode_AESCrypt_Parallel();
3709     }
3710 
3711     // Generate GHASH intrinsics code
3712     if (UseGHASHIntrinsics) {
3713       StubRoutines::x86::_ghash_long_swap_mask_addr = generate_ghash_long_swap_mask();
3714       StubRoutines::x86::_ghash_byte_swap_mask_addr = generate_ghash_byte_swap_mask();
3715       StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks();
3716     }
3717 
3718     // Safefetch stubs.
3719     generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
3720                                                    &StubRoutines::_safefetch32_fault_pc,
3721                                                    &StubRoutines::_safefetch32_continuation_pc);
3722     StubRoutines::_safefetchN_entry           = StubRoutines::_safefetch32_entry;
3723     StubRoutines::_safefetchN_fault_pc        = StubRoutines::_safefetch32_fault_pc;
3724     StubRoutines::_safefetchN_continuation_pc = StubRoutines::_safefetch32_continuation_pc;
3725   }
3726 
3727 
3728  public:
3729   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3730     if (all) {
3731       generate_all();
3732     } else {
3733       generate_initial();
3734     }
3735   }
3736 }; // end class declaration
3737 
3738 
3739 void StubGenerator_generate(CodeBuffer* code, bool all) {
3740   StubGenerator g(code, all);
3741 }