1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_InstructionPrinter.hpp"
  27 #include "c1/c1_LIR.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_ValueStack.hpp"
  30 #include "ci/ciInstance.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 Register LIR_OprDesc::as_register() const {
  34   return FrameMap::cpu_rnr2reg(cpu_regnr());
  35 }
  36 
  37 Register LIR_OprDesc::as_register_lo() const {
  38   return FrameMap::cpu_rnr2reg(cpu_regnrLo());
  39 }
  40 
  41 Register LIR_OprDesc::as_register_hi() const {
  42   return FrameMap::cpu_rnr2reg(cpu_regnrHi());
  43 }
  44 
  45 #if defined(X86)
  46 
  47 XMMRegister LIR_OprDesc::as_xmm_float_reg() const {
  48   return FrameMap::nr2xmmreg(xmm_regnr());
  49 }
  50 
  51 XMMRegister LIR_OprDesc::as_xmm_double_reg() const {
  52   assert(xmm_regnrLo() == xmm_regnrHi(), "assumed in calculation");
  53   return FrameMap::nr2xmmreg(xmm_regnrLo());
  54 }
  55 
  56 #endif // X86
  57 
  58 #if defined(SPARC) || defined(PPC32)
  59 
  60 FloatRegister LIR_OprDesc::as_float_reg() const {
  61   return FrameMap::nr2floatreg(fpu_regnr());
  62 }
  63 
  64 FloatRegister LIR_OprDesc::as_double_reg() const {
  65   return FrameMap::nr2floatreg(fpu_regnrHi());
  66 }
  67 
  68 #endif
  69 
  70 #if defined(ARM) || defined(AARCH64) || defined(PPC64)
  71 
  72 FloatRegister LIR_OprDesc::as_float_reg() const {
  73   return as_FloatRegister(fpu_regnr());
  74 }
  75 
  76 FloatRegister LIR_OprDesc::as_double_reg() const {
  77   return as_FloatRegister(fpu_regnrLo());
  78 }
  79 
  80 #endif
  81 
  82 
  83 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
  84 
  85 LIR_Opr LIR_OprFact::value_type(ValueType* type) {
  86   ValueTag tag = type->tag();
  87   switch (tag) {
  88   case metaDataTag : {
  89     ClassConstant* c = type->as_ClassConstant();
  90     if (c != NULL && !c->value()->is_loaded()) {
  91       return LIR_OprFact::metadataConst(NULL);
  92     } else if (c != NULL) {
  93       return LIR_OprFact::metadataConst(c->value()->constant_encoding());
  94     } else {
  95       MethodConstant* m = type->as_MethodConstant();
  96       assert (m != NULL, "not a class or a method?");
  97       return LIR_OprFact::metadataConst(m->value()->constant_encoding());
  98     }
  99   }
 100   case objectTag : {
 101       return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
 102     }
 103   case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
 104   case intTag    : return LIR_OprFact::intConst(type->as_IntConstant()->value());
 105   case floatTag  : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
 106   case longTag   : return LIR_OprFact::longConst(type->as_LongConstant()->value());
 107   case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
 108   default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 109   }
 110 }
 111 
 112 
 113 LIR_Opr LIR_OprFact::dummy_value_type(ValueType* type) {
 114   switch (type->tag()) {
 115     case objectTag: return LIR_OprFact::oopConst(NULL);
 116     case addressTag:return LIR_OprFact::addressConst(0);
 117     case intTag:    return LIR_OprFact::intConst(0);
 118     case floatTag:  return LIR_OprFact::floatConst(0.0);
 119     case longTag:   return LIR_OprFact::longConst(0);
 120     case doubleTag: return LIR_OprFact::doubleConst(0.0);
 121     default:        ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 122   }
 123   return illegalOpr;
 124 }
 125 
 126 
 127 
 128 //---------------------------------------------------
 129 
 130 
 131 LIR_Address::Scale LIR_Address::scale(BasicType type) {
 132   int elem_size = type2aelembytes(type);
 133   switch (elem_size) {
 134   case 1: return LIR_Address::times_1;
 135   case 2: return LIR_Address::times_2;
 136   case 4: return LIR_Address::times_4;
 137   case 8: return LIR_Address::times_8;
 138   }
 139   ShouldNotReachHere();
 140   return LIR_Address::times_1;
 141 }
 142 
 143 
 144 #ifndef PRODUCT
 145 void LIR_Address::verify0() const {
 146 #if defined(SPARC) || defined(PPC)
 147   assert(scale() == times_1, "Scaled addressing mode not available on SPARC/PPC and should not be used");
 148   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 149 #endif
 150 #ifdef _LP64
 151   assert(base()->is_cpu_register(), "wrong base operand");
 152 #ifndef AARCH64
 153   assert(index()->is_illegal() || index()->is_double_cpu(), "wrong index operand");
 154 #else
 155   assert(index()->is_illegal() || index()->is_double_cpu() || index()->is_single_cpu(), "wrong index operand");
 156 #endif
 157   assert(base()->type() == T_OBJECT || base()->type() == T_LONG || base()->type() == T_METADATA,
 158          "wrong type for addresses");
 159 #else
 160   assert(base()->is_single_cpu(), "wrong base operand");
 161   assert(index()->is_illegal() || index()->is_single_cpu(), "wrong index operand");
 162   assert(base()->type() == T_OBJECT || base()->type() == T_INT || base()->type() == T_METADATA,
 163          "wrong type for addresses");
 164 #endif
 165 }
 166 #endif
 167 
 168 
 169 //---------------------------------------------------
 170 
 171 char LIR_OprDesc::type_char(BasicType t) {
 172   switch (t) {
 173     case T_ARRAY:
 174       t = T_OBJECT;
 175     case T_BOOLEAN:
 176     case T_CHAR:
 177     case T_FLOAT:
 178     case T_DOUBLE:
 179     case T_BYTE:
 180     case T_SHORT:
 181     case T_INT:
 182     case T_LONG:
 183     case T_OBJECT:
 184     case T_ADDRESS:
 185     case T_VOID:
 186       return ::type2char(t);
 187     case T_METADATA:
 188       return 'M';
 189     case T_ILLEGAL:
 190       return '?';
 191 
 192     default:
 193       ShouldNotReachHere();
 194       return '?';
 195   }
 196 }
 197 
 198 #ifndef PRODUCT
 199 void LIR_OprDesc::validate_type() const {
 200 
 201 #ifdef ASSERT
 202   if (!is_pointer() && !is_illegal()) {
 203     OprKind kindfield = kind_field(); // Factored out because of compiler bug, see 8002160
 204     switch (as_BasicType(type_field())) {
 205     case T_LONG:
 206       assert((kindfield == cpu_register || kindfield == stack_value) &&
 207              size_field() == double_size, "must match");
 208       break;
 209     case T_FLOAT:
 210       // FP return values can be also in CPU registers on ARM and PPC32 (softfp ABI)
 211       assert((kindfield == fpu_register || kindfield == stack_value
 212              ARM_ONLY(|| kindfield == cpu_register)
 213              PPC32_ONLY(|| kindfield == cpu_register) ) &&
 214              size_field() == single_size, "must match");
 215       break;
 216     case T_DOUBLE:
 217       // FP return values can be also in CPU registers on ARM and PPC32 (softfp ABI)
 218       assert((kindfield == fpu_register || kindfield == stack_value
 219              ARM_ONLY(|| kindfield == cpu_register)
 220              PPC32_ONLY(|| kindfield == cpu_register) ) &&
 221              size_field() == double_size, "must match");
 222       break;
 223     case T_BOOLEAN:
 224     case T_CHAR:
 225     case T_BYTE:
 226     case T_SHORT:
 227     case T_INT:
 228     case T_ADDRESS:
 229     case T_OBJECT:
 230     case T_METADATA:
 231     case T_ARRAY:
 232       assert((kindfield == cpu_register || kindfield == stack_value) &&
 233              size_field() == single_size, "must match");
 234       break;
 235 
 236     case T_ILLEGAL:
 237       // XXX TKR also means unknown right now
 238       // assert(is_illegal(), "must match");
 239       break;
 240 
 241     default:
 242       ShouldNotReachHere();
 243     }
 244   }
 245 #endif
 246 
 247 }
 248 #endif // PRODUCT
 249 
 250 
 251 bool LIR_OprDesc::is_oop() const {
 252   if (is_pointer()) {
 253     return pointer()->is_oop_pointer();
 254   } else {
 255     OprType t= type_field();
 256     assert(t != unknown_type, "not set");
 257     return t == object_type;
 258   }
 259 }
 260 
 261 
 262 
 263 void LIR_Op2::verify() const {
 264 #ifdef ASSERT
 265   switch (code()) {
 266     case lir_cmove:
 267     case lir_xchg:
 268       break;
 269 
 270     default:
 271       assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
 272              "can't produce oops from arith");
 273   }
 274 
 275   if (TwoOperandLIRForm) {
 276     switch (code()) {
 277     case lir_add:
 278     case lir_sub:
 279     case lir_mul:
 280     case lir_mul_strictfp:
 281     case lir_div:
 282     case lir_div_strictfp:
 283     case lir_rem:
 284     case lir_logic_and:
 285     case lir_logic_or:
 286     case lir_logic_xor:
 287     case lir_shl:
 288     case lir_shr:
 289       assert(in_opr1() == result_opr(), "opr1 and result must match");
 290       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 291       break;
 292 
 293     // special handling for lir_ushr because of write barriers
 294     case lir_ushr:
 295       assert(in_opr1() == result_opr() || in_opr2()->is_constant(), "opr1 and result must match or shift count is constant");
 296       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 297       break;
 298 
 299     }
 300   }
 301 #endif
 302 }
 303 
 304 
 305 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block)
 306   : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 307   , _cond(cond)
 308   , _type(type)
 309   , _label(block->label())
 310   , _block(block)
 311   , _ublock(NULL)
 312   , _stub(NULL) {
 313 }
 314 
 315 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub) :
 316   LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 317   , _cond(cond)
 318   , _type(type)
 319   , _label(stub->entry())
 320   , _block(NULL)
 321   , _ublock(NULL)
 322   , _stub(stub) {
 323 }
 324 
 325 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock)
 326   : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 327   , _cond(cond)
 328   , _type(type)
 329   , _label(block->label())
 330   , _block(block)
 331   , _ublock(ublock)
 332   , _stub(NULL)
 333 {
 334 }
 335 
 336 void LIR_OpBranch::change_block(BlockBegin* b) {
 337   assert(_block != NULL, "must have old block");
 338   assert(_block->label() == label(), "must be equal");
 339 
 340   _block = b;
 341   _label = b->label();
 342 }
 343 
 344 void LIR_OpBranch::change_ublock(BlockBegin* b) {
 345   assert(_ublock != NULL, "must have old block");
 346   _ublock = b;
 347 }
 348 
 349 void LIR_OpBranch::negate_cond() {
 350   switch (_cond) {
 351     case lir_cond_equal:        _cond = lir_cond_notEqual;     break;
 352     case lir_cond_notEqual:     _cond = lir_cond_equal;        break;
 353     case lir_cond_less:         _cond = lir_cond_greaterEqual; break;
 354     case lir_cond_lessEqual:    _cond = lir_cond_greater;      break;
 355     case lir_cond_greaterEqual: _cond = lir_cond_less;         break;
 356     case lir_cond_greater:      _cond = lir_cond_lessEqual;    break;
 357     default: ShouldNotReachHere();
 358   }
 359 }
 360 
 361 
 362 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
 363                                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
 364                                  bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch,
 365                                  CodeStub* stub)
 366 
 367   : LIR_Op(code, result, NULL)
 368   , _object(object)
 369   , _array(LIR_OprFact::illegalOpr)
 370   , _klass(klass)
 371   , _tmp1(tmp1)
 372   , _tmp2(tmp2)
 373   , _tmp3(tmp3)
 374   , _fast_check(fast_check)
 375   , _stub(stub)
 376   , _info_for_patch(info_for_patch)
 377   , _info_for_exception(info_for_exception)
 378   , _profiled_method(NULL)
 379   , _profiled_bci(-1)
 380   , _should_profile(false)
 381 {
 382   if (code == lir_checkcast) {
 383     assert(info_for_exception != NULL, "checkcast throws exceptions");
 384   } else if (code == lir_instanceof) {
 385     assert(info_for_exception == NULL, "instanceof throws no exceptions");
 386   } else {
 387     ShouldNotReachHere();
 388   }
 389 }
 390 
 391 
 392 
 393 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
 394   : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
 395   , _object(object)
 396   , _array(array)
 397   , _klass(NULL)
 398   , _tmp1(tmp1)
 399   , _tmp2(tmp2)
 400   , _tmp3(tmp3)
 401   , _fast_check(false)
 402   , _stub(NULL)
 403   , _info_for_patch(NULL)
 404   , _info_for_exception(info_for_exception)
 405   , _profiled_method(NULL)
 406   , _profiled_bci(-1)
 407   , _should_profile(false)
 408 {
 409   if (code == lir_store_check) {
 410     _stub = new ArrayStoreExceptionStub(object, info_for_exception);
 411     assert(info_for_exception != NULL, "store_check throws exceptions");
 412   } else {
 413     ShouldNotReachHere();
 414   }
 415 }
 416 
 417 
 418 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
 419                                  LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
 420   : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
 421   , _tmp(tmp)
 422   , _src(src)
 423   , _src_pos(src_pos)
 424   , _dst(dst)
 425   , _dst_pos(dst_pos)
 426   , _flags(flags)
 427   , _expected_type(expected_type)
 428   , _length(length) {
 429   _stub = new ArrayCopyStub(this);
 430 }
 431 
 432 LIR_OpUpdateCRC32::LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)
 433   : LIR_Op(lir_updatecrc32, res, NULL)
 434   , _crc(crc)
 435   , _val(val) {
 436 }
 437 
 438 //-------------------verify--------------------------
 439 
 440 void LIR_Op1::verify() const {
 441   switch(code()) {
 442   case lir_move:
 443     assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
 444     break;
 445   case lir_null_check:
 446     assert(in_opr()->is_register(), "must be");
 447     break;
 448   case lir_return:
 449     assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
 450     break;
 451   }
 452 }
 453 
 454 void LIR_OpRTCall::verify() const {
 455   assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
 456 }
 457 
 458 //-------------------visits--------------------------
 459 
 460 // complete rework of LIR instruction visitor.
 461 // The virtual call for each instruction type is replaced by a big
 462 // switch that adds the operands for each instruction
 463 
 464 void LIR_OpVisitState::visit(LIR_Op* op) {
 465   // copy information from the LIR_Op
 466   reset();
 467   set_op(op);
 468 
 469   switch (op->code()) {
 470 
 471 // LIR_Op0
 472     case lir_word_align:               // result and info always invalid
 473     case lir_backwardbranch_target:    // result and info always invalid
 474     case lir_build_frame:              // result and info always invalid
 475     case lir_fpop_raw:                 // result and info always invalid
 476     case lir_24bit_FPU:                // result and info always invalid
 477     case lir_reset_FPU:                // result and info always invalid
 478     case lir_breakpoint:               // result and info always invalid
 479     case lir_membar:                   // result and info always invalid
 480     case lir_membar_acquire:           // result and info always invalid
 481     case lir_membar_release:           // result and info always invalid
 482     case lir_membar_loadload:          // result and info always invalid
 483     case lir_membar_storestore:        // result and info always invalid
 484     case lir_membar_loadstore:         // result and info always invalid
 485     case lir_membar_storeload:         // result and info always invalid
 486     {
 487       assert(op->as_Op0() != NULL, "must be");
 488       assert(op->_info == NULL, "info not used by this instruction");
 489       assert(op->_result->is_illegal(), "not used");
 490       break;
 491     }
 492 
 493     case lir_nop:                      // may have info, result always invalid
 494     case lir_std_entry:                // may have result, info always invalid
 495     case lir_osr_entry:                // may have result, info always invalid
 496     case lir_get_thread:               // may have result, info always invalid
 497     {
 498       assert(op->as_Op0() != NULL, "must be");
 499       if (op->_info != NULL)           do_info(op->_info);
 500       if (op->_result->is_valid())     do_output(op->_result);
 501       break;
 502     }
 503 
 504 
 505 // LIR_OpLabel
 506     case lir_label:                    // result and info always invalid
 507     {
 508       assert(op->as_OpLabel() != NULL, "must be");
 509       assert(op->_info == NULL, "info not used by this instruction");
 510       assert(op->_result->is_illegal(), "not used");
 511       break;
 512     }
 513 
 514 
 515 // LIR_Op1
 516     case lir_fxch:           // input always valid, result and info always invalid
 517     case lir_fld:            // input always valid, result and info always invalid
 518     case lir_ffree:          // input always valid, result and info always invalid
 519     case lir_push:           // input always valid, result and info always invalid
 520     case lir_pop:            // input always valid, result and info always invalid
 521     case lir_return:         // input always valid, result and info always invalid
 522     case lir_leal:           // input and result always valid, info always invalid
 523     case lir_neg:            // input and result always valid, info always invalid
 524     case lir_monaddr:        // input and result always valid, info always invalid
 525     case lir_null_check:     // input and info always valid, result always invalid
 526     case lir_move:           // input and result always valid, may have info
 527     case lir_pack64:         // input and result always valid
 528     case lir_unpack64:       // input and result always valid
 529     {
 530       assert(op->as_Op1() != NULL, "must be");
 531       LIR_Op1* op1 = (LIR_Op1*)op;
 532 
 533       if (op1->_info)                  do_info(op1->_info);
 534       if (op1->_opr->is_valid())       do_input(op1->_opr);
 535       if (op1->_result->is_valid())    do_output(op1->_result);
 536 
 537       break;
 538     }
 539 
 540     case lir_safepoint:
 541     {
 542       assert(op->as_Op1() != NULL, "must be");
 543       LIR_Op1* op1 = (LIR_Op1*)op;
 544 
 545       assert(op1->_info != NULL, "");  do_info(op1->_info);
 546       if (op1->_opr->is_valid())       do_temp(op1->_opr); // safepoints on SPARC need temporary register
 547       assert(op1->_result->is_illegal(), "safepoint does not produce value");
 548 
 549       break;
 550     }
 551 
 552 // LIR_OpConvert;
 553     case lir_convert:        // input and result always valid, info always invalid
 554     {
 555       assert(op->as_OpConvert() != NULL, "must be");
 556       LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
 557 
 558       assert(opConvert->_info == NULL, "must be");
 559       if (opConvert->_opr->is_valid())       do_input(opConvert->_opr);
 560       if (opConvert->_result->is_valid())    do_output(opConvert->_result);
 561 #ifdef PPC32
 562       if (opConvert->_tmp1->is_valid())      do_temp(opConvert->_tmp1);
 563       if (opConvert->_tmp2->is_valid())      do_temp(opConvert->_tmp2);
 564 #endif
 565       do_stub(opConvert->_stub);
 566 
 567       break;
 568     }
 569 
 570 // LIR_OpBranch;
 571     case lir_branch:                   // may have info, input and result register always invalid
 572     case lir_cond_float_branch:        // may have info, input and result register always invalid
 573     {
 574       assert(op->as_OpBranch() != NULL, "must be");
 575       LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
 576 
 577       if (opBranch->_info != NULL)     do_info(opBranch->_info);
 578       assert(opBranch->_result->is_illegal(), "not used");
 579       if (opBranch->_stub != NULL)     opBranch->stub()->visit(this);
 580 
 581       break;
 582     }
 583 
 584 
 585 // LIR_OpAllocObj
 586     case lir_alloc_object:
 587     {
 588       assert(op->as_OpAllocObj() != NULL, "must be");
 589       LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
 590 
 591       if (opAllocObj->_info)                     do_info(opAllocObj->_info);
 592       if (opAllocObj->_opr->is_valid()) {        do_input(opAllocObj->_opr);
 593                                                  do_temp(opAllocObj->_opr);
 594                                         }
 595       if (opAllocObj->_tmp1->is_valid())         do_temp(opAllocObj->_tmp1);
 596       if (opAllocObj->_tmp2->is_valid())         do_temp(opAllocObj->_tmp2);
 597       if (opAllocObj->_tmp3->is_valid())         do_temp(opAllocObj->_tmp3);
 598       if (opAllocObj->_tmp4->is_valid())         do_temp(opAllocObj->_tmp4);
 599       if (opAllocObj->_result->is_valid())       do_output(opAllocObj->_result);
 600                                                  do_stub(opAllocObj->_stub);
 601       break;
 602     }
 603 
 604 
 605 // LIR_OpRoundFP;
 606     case lir_roundfp: {
 607       assert(op->as_OpRoundFP() != NULL, "must be");
 608       LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
 609 
 610       assert(op->_info == NULL, "info not used by this instruction");
 611       assert(opRoundFP->_tmp->is_illegal(), "not used");
 612       do_input(opRoundFP->_opr);
 613       do_output(opRoundFP->_result);
 614 
 615       break;
 616     }
 617 
 618 
 619 // LIR_Op2
 620     case lir_cmp:
 621     case lir_cmp_l2i:
 622     case lir_ucmp_fd2i:
 623     case lir_cmp_fd2i:
 624     case lir_add:
 625     case lir_sub:
 626     case lir_mul:
 627     case lir_div:
 628     case lir_rem:
 629     case lir_sqrt:
 630     case lir_abs:
 631     case lir_logic_and:
 632     case lir_logic_or:
 633     case lir_logic_xor:
 634     case lir_shl:
 635     case lir_shr:
 636     case lir_ushr:
 637     case lir_xadd:
 638     case lir_xchg:
 639     case lir_assert:
 640     {
 641       assert(op->as_Op2() != NULL, "must be");
 642       LIR_Op2* op2 = (LIR_Op2*)op;
 643       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 644              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 645 
 646       if (op2->_info)                     do_info(op2->_info);
 647       if (op2->_opr1->is_valid())         do_input(op2->_opr1);
 648       if (op2->_opr2->is_valid())         do_input(op2->_opr2);
 649       if (op2->_tmp1->is_valid())         do_temp(op2->_tmp1);
 650       if (op2->_result->is_valid())       do_output(op2->_result);
 651       if (op->code() == lir_xchg || op->code() == lir_xadd) {
 652         // on ARM and PPC, return value is loaded first so could
 653         // destroy inputs. On other platforms that implement those
 654         // (x86, sparc), the extra constrainsts are harmless.
 655         if (op2->_opr1->is_valid())       do_temp(op2->_opr1);
 656         if (op2->_opr2->is_valid())       do_temp(op2->_opr2);
 657       }
 658 
 659       break;
 660     }
 661 
 662     // special handling for cmove: right input operand must not be equal
 663     // to the result operand, otherwise the backend fails
 664     case lir_cmove:
 665     {
 666       assert(op->as_Op2() != NULL, "must be");
 667       LIR_Op2* op2 = (LIR_Op2*)op;
 668 
 669       assert(op2->_info == NULL && op2->_tmp1->is_illegal() && op2->_tmp2->is_illegal() &&
 670              op2->_tmp3->is_illegal() && op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 671       assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used");
 672 
 673       do_input(op2->_opr1);
 674       do_input(op2->_opr2);
 675       do_temp(op2->_opr2);
 676       do_output(op2->_result);
 677 
 678       break;
 679     }
 680 
 681     // vspecial handling for strict operations: register input operands
 682     // as temp to guarantee that they do not overlap with other
 683     // registers
 684     case lir_mul_strictfp:
 685     case lir_div_strictfp:
 686     {
 687       assert(op->as_Op2() != NULL, "must be");
 688       LIR_Op2* op2 = (LIR_Op2*)op;
 689 
 690       assert(op2->_info == NULL, "not used");
 691       assert(op2->_opr1->is_valid(), "used");
 692       assert(op2->_opr2->is_valid(), "used");
 693       assert(op2->_result->is_valid(), "used");
 694       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 695              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 696 
 697       do_input(op2->_opr1); do_temp(op2->_opr1);
 698       do_input(op2->_opr2); do_temp(op2->_opr2);
 699       if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1);
 700       do_output(op2->_result);
 701 
 702       break;
 703     }
 704 
 705     case lir_throw: {
 706       assert(op->as_Op2() != NULL, "must be");
 707       LIR_Op2* op2 = (LIR_Op2*)op;
 708 
 709       if (op2->_info)                     do_info(op2->_info);
 710       if (op2->_opr1->is_valid())         do_temp(op2->_opr1);
 711       if (op2->_opr2->is_valid())         do_input(op2->_opr2); // exception object is input parameter
 712       assert(op2->_result->is_illegal(), "no result");
 713       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 714              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 715 
 716       break;
 717     }
 718 
 719     case lir_unwind: {
 720       assert(op->as_Op1() != NULL, "must be");
 721       LIR_Op1* op1 = (LIR_Op1*)op;
 722 
 723       assert(op1->_info == NULL, "no info");
 724       assert(op1->_opr->is_valid(), "exception oop");         do_input(op1->_opr);
 725       assert(op1->_result->is_illegal(), "no result");
 726 
 727       break;
 728     }
 729 
 730 
 731     case lir_tan:
 732     case lir_sin:
 733     case lir_cos:
 734     case lir_log10: {
 735       assert(op->as_Op2() != NULL, "must be");
 736       LIR_Op2* op2 = (LIR_Op2*)op;
 737 
 738       // On x86 tan/sin/cos need two temporary fpu stack slots and
 739       // log/log10 need one so handle opr2 and tmp as temp inputs.
 740       // Register input operand as temp to guarantee that it doesn't
 741       // overlap with the input.
 742       assert(op2->_info == NULL, "not used");
 743       assert(op2->_tmp5->is_illegal(), "not used");
 744       assert(op2->_opr1->is_valid(), "used");
 745       do_input(op2->_opr1); do_temp(op2->_opr1);
 746 
 747       if (op2->_opr2->is_valid())         do_temp(op2->_opr2);
 748       if (op2->_tmp1->is_valid())         do_temp(op2->_tmp1);
 749       if (op2->_tmp2->is_valid())         do_temp(op2->_tmp2);
 750       if (op2->_tmp3->is_valid())         do_temp(op2->_tmp3);
 751       if (op2->_tmp4->is_valid())         do_temp(op2->_tmp4);
 752       if (op2->_result->is_valid())       do_output(op2->_result);
 753 
 754       break;
 755     }
 756 
 757 // LIR_Op3
 758     case lir_idiv:
 759     case lir_irem: {
 760       assert(op->as_Op3() != NULL, "must be");
 761       LIR_Op3* op3= (LIR_Op3*)op;
 762 
 763       if (op3->_info)                     do_info(op3->_info);
 764       if (op3->_opr1->is_valid())         do_input(op3->_opr1);
 765 
 766       // second operand is input and temp, so ensure that second operand
 767       // and third operand get not the same register
 768       if (op3->_opr2->is_valid())         do_input(op3->_opr2);
 769       if (op3->_opr2->is_valid())         do_temp(op3->_opr2);
 770       if (op3->_opr3->is_valid())         do_temp(op3->_opr3);
 771 
 772       if (op3->_result->is_valid())       do_output(op3->_result);
 773 
 774       break;
 775     }
 776 
 777 
 778 // LIR_OpJavaCall
 779     case lir_static_call:
 780     case lir_optvirtual_call:
 781     case lir_icvirtual_call:
 782     case lir_virtual_call:
 783     case lir_dynamic_call: {
 784       LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
 785       assert(opJavaCall != NULL, "must be");
 786 
 787       if (opJavaCall->_receiver->is_valid())     do_input(opJavaCall->_receiver);
 788 
 789       // only visit register parameters
 790       int n = opJavaCall->_arguments->length();
 791       for (int i = opJavaCall->_receiver->is_valid() ? 1 : 0; i < n; i++) {
 792         if (!opJavaCall->_arguments->at(i)->is_pointer()) {
 793           do_input(*opJavaCall->_arguments->adr_at(i));
 794         }
 795       }
 796 
 797       if (opJavaCall->_info)                     do_info(opJavaCall->_info);
 798       if (FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr &&
 799           opJavaCall->is_method_handle_invoke()) {
 800         opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
 801         do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
 802       }
 803       do_call();
 804       if (opJavaCall->_result->is_valid())       do_output(opJavaCall->_result);
 805 
 806       break;
 807     }
 808 
 809 
 810 // LIR_OpRTCall
 811     case lir_rtcall: {
 812       assert(op->as_OpRTCall() != NULL, "must be");
 813       LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
 814 
 815       // only visit register parameters
 816       int n = opRTCall->_arguments->length();
 817       for (int i = 0; i < n; i++) {
 818         if (!opRTCall->_arguments->at(i)->is_pointer()) {
 819           do_input(*opRTCall->_arguments->adr_at(i));
 820         }
 821       }
 822       if (opRTCall->_info)                     do_info(opRTCall->_info);
 823       if (opRTCall->_tmp->is_valid())          do_temp(opRTCall->_tmp);
 824       do_call();
 825       if (opRTCall->_result->is_valid())       do_output(opRTCall->_result);
 826 
 827       break;
 828     }
 829 
 830 
 831 // LIR_OpArrayCopy
 832     case lir_arraycopy: {
 833       assert(op->as_OpArrayCopy() != NULL, "must be");
 834       LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
 835 
 836       assert(opArrayCopy->_result->is_illegal(), "unused");
 837       assert(opArrayCopy->_src->is_valid(), "used");          do_input(opArrayCopy->_src);     do_temp(opArrayCopy->_src);
 838       assert(opArrayCopy->_src_pos->is_valid(), "used");      do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
 839       assert(opArrayCopy->_dst->is_valid(), "used");          do_input(opArrayCopy->_dst);     do_temp(opArrayCopy->_dst);
 840       assert(opArrayCopy->_dst_pos->is_valid(), "used");      do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
 841       assert(opArrayCopy->_length->is_valid(), "used");       do_input(opArrayCopy->_length);  do_temp(opArrayCopy->_length);
 842       assert(opArrayCopy->_tmp->is_valid(), "used");          do_temp(opArrayCopy->_tmp);
 843       if (opArrayCopy->_info)                     do_info(opArrayCopy->_info);
 844 
 845       // the implementation of arraycopy always has a call into the runtime
 846       do_call();
 847 
 848       break;
 849     }
 850 
 851 
 852 // LIR_OpUpdateCRC32
 853     case lir_updatecrc32: {
 854       assert(op->as_OpUpdateCRC32() != NULL, "must be");
 855       LIR_OpUpdateCRC32* opUp = (LIR_OpUpdateCRC32*)op;
 856 
 857       assert(opUp->_crc->is_valid(), "used");          do_input(opUp->_crc);     do_temp(opUp->_crc);
 858       assert(opUp->_val->is_valid(), "used");          do_input(opUp->_val);     do_temp(opUp->_val);
 859       assert(opUp->_result->is_valid(), "used");       do_output(opUp->_result);
 860       assert(opUp->_info == NULL, "no info for LIR_OpUpdateCRC32");
 861 
 862       break;
 863     }
 864 
 865 
 866 // LIR_OpLock
 867     case lir_lock:
 868     case lir_unlock: {
 869       assert(op->as_OpLock() != NULL, "must be");
 870       LIR_OpLock* opLock = (LIR_OpLock*)op;
 871 
 872       if (opLock->_info)                          do_info(opLock->_info);
 873 
 874       // TODO: check if these operands really have to be temp
 875       // (or if input is sufficient). This may have influence on the oop map!
 876       assert(opLock->_lock->is_valid(), "used");  do_temp(opLock->_lock);
 877       assert(opLock->_hdr->is_valid(),  "used");  do_temp(opLock->_hdr);
 878       assert(opLock->_obj->is_valid(),  "used");  do_temp(opLock->_obj);
 879 
 880       if (opLock->_scratch->is_valid())           do_temp(opLock->_scratch);
 881       assert(opLock->_result->is_illegal(), "unused");
 882 
 883       do_stub(opLock->_stub);
 884 
 885       break;
 886     }
 887 
 888 
 889 // LIR_OpDelay
 890     case lir_delay_slot: {
 891       assert(op->as_OpDelay() != NULL, "must be");
 892       LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
 893 
 894       visit(opDelay->delay_op());
 895       break;
 896     }
 897 
 898 // LIR_OpTypeCheck
 899     case lir_instanceof:
 900     case lir_checkcast:
 901     case lir_store_check: {
 902       assert(op->as_OpTypeCheck() != NULL, "must be");
 903       LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
 904 
 905       if (opTypeCheck->_info_for_exception)       do_info(opTypeCheck->_info_for_exception);
 906       if (opTypeCheck->_info_for_patch)           do_info(opTypeCheck->_info_for_patch);
 907       if (opTypeCheck->_object->is_valid())       do_input(opTypeCheck->_object);
 908       if (op->code() == lir_store_check && opTypeCheck->_object->is_valid()) {
 909         do_temp(opTypeCheck->_object);
 910       }
 911       if (opTypeCheck->_array->is_valid())        do_input(opTypeCheck->_array);
 912       if (opTypeCheck->_tmp1->is_valid())         do_temp(opTypeCheck->_tmp1);
 913       if (opTypeCheck->_tmp2->is_valid())         do_temp(opTypeCheck->_tmp2);
 914       if (opTypeCheck->_tmp3->is_valid())         do_temp(opTypeCheck->_tmp3);
 915       if (opTypeCheck->_result->is_valid())       do_output(opTypeCheck->_result);
 916                                                   do_stub(opTypeCheck->_stub);
 917       break;
 918     }
 919 
 920 // LIR_OpCompareAndSwap
 921     case lir_cas_long:
 922     case lir_cas_obj:
 923     case lir_cas_int: {
 924       assert(op->as_OpCompareAndSwap() != NULL, "must be");
 925       LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op;
 926 
 927       assert(opCompareAndSwap->_addr->is_valid(),      "used");
 928       assert(opCompareAndSwap->_cmp_value->is_valid(), "used");
 929       assert(opCompareAndSwap->_new_value->is_valid(), "used");
 930       if (opCompareAndSwap->_info)                    do_info(opCompareAndSwap->_info);
 931                                                       do_input(opCompareAndSwap->_addr);
 932                                                       do_temp(opCompareAndSwap->_addr);
 933                                                       do_input(opCompareAndSwap->_cmp_value);
 934                                                       do_temp(opCompareAndSwap->_cmp_value);
 935                                                       do_input(opCompareAndSwap->_new_value);
 936                                                       do_temp(opCompareAndSwap->_new_value);
 937       if (opCompareAndSwap->_tmp1->is_valid())        do_temp(opCompareAndSwap->_tmp1);
 938       if (opCompareAndSwap->_tmp2->is_valid())        do_temp(opCompareAndSwap->_tmp2);
 939       if (opCompareAndSwap->_result->is_valid())      do_output(opCompareAndSwap->_result);
 940 
 941       break;
 942     }
 943 
 944 
 945 // LIR_OpAllocArray;
 946     case lir_alloc_array: {
 947       assert(op->as_OpAllocArray() != NULL, "must be");
 948       LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
 949 
 950       if (opAllocArray->_info)                        do_info(opAllocArray->_info);
 951       if (opAllocArray->_klass->is_valid())           do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass);
 952       if (opAllocArray->_len->is_valid())             do_input(opAllocArray->_len);   do_temp(opAllocArray->_len);
 953       if (opAllocArray->_tmp1->is_valid())            do_temp(opAllocArray->_tmp1);
 954       if (opAllocArray->_tmp2->is_valid())            do_temp(opAllocArray->_tmp2);
 955       if (opAllocArray->_tmp3->is_valid())            do_temp(opAllocArray->_tmp3);
 956       if (opAllocArray->_tmp4->is_valid())            do_temp(opAllocArray->_tmp4);
 957       if (opAllocArray->_result->is_valid())          do_output(opAllocArray->_result);
 958                                                       do_stub(opAllocArray->_stub);
 959       break;
 960     }
 961 
 962 // LIR_OpProfileCall:
 963     case lir_profile_call: {
 964       assert(op->as_OpProfileCall() != NULL, "must be");
 965       LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
 966 
 967       if (opProfileCall->_recv->is_valid())              do_temp(opProfileCall->_recv);
 968       assert(opProfileCall->_mdo->is_valid(), "used");   do_temp(opProfileCall->_mdo);
 969       assert(opProfileCall->_tmp1->is_valid(), "used");  do_temp(opProfileCall->_tmp1);
 970       break;
 971     }
 972 
 973 // LIR_OpProfileType:
 974     case lir_profile_type: {
 975       assert(op->as_OpProfileType() != NULL, "must be");
 976       LIR_OpProfileType* opProfileType = (LIR_OpProfileType*)op;
 977 
 978       do_input(opProfileType->_mdp); do_temp(opProfileType->_mdp);
 979       do_input(opProfileType->_obj);
 980       do_temp(opProfileType->_tmp);
 981       break;
 982     }
 983   default:
 984     ShouldNotReachHere();
 985   }
 986 }
 987 
 988 
 989 void LIR_OpVisitState::do_stub(CodeStub* stub) {
 990   if (stub != NULL) {
 991     stub->visit(this);
 992   }
 993 }
 994 
 995 XHandlers* LIR_OpVisitState::all_xhandler() {
 996   XHandlers* result = NULL;
 997 
 998   int i;
 999   for (i = 0; i < info_count(); i++) {
1000     if (info_at(i)->exception_handlers() != NULL) {
1001       result = info_at(i)->exception_handlers();
1002       break;
1003     }
1004   }
1005 
1006 #ifdef ASSERT
1007   for (i = 0; i < info_count(); i++) {
1008     assert(info_at(i)->exception_handlers() == NULL ||
1009            info_at(i)->exception_handlers() == result,
1010            "only one xhandler list allowed per LIR-operation");
1011   }
1012 #endif
1013 
1014   if (result != NULL) {
1015     return result;
1016   } else {
1017     return new XHandlers();
1018   }
1019 
1020   return result;
1021 }
1022 
1023 
1024 #ifdef ASSERT
1025 bool LIR_OpVisitState::no_operands(LIR_Op* op) {
1026   visit(op);
1027 
1028   return opr_count(inputMode) == 0 &&
1029          opr_count(outputMode) == 0 &&
1030          opr_count(tempMode) == 0 &&
1031          info_count() == 0 &&
1032          !has_call() &&
1033          !has_slow_case();
1034 }
1035 #endif
1036 
1037 //---------------------------------------------------
1038 
1039 
1040 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
1041   masm->emit_call(this);
1042 }
1043 
1044 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
1045   masm->emit_rtcall(this);
1046 }
1047 
1048 void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
1049   masm->emit_opLabel(this);
1050 }
1051 
1052 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
1053   masm->emit_arraycopy(this);
1054   masm->append_code_stub(stub());
1055 }
1056 
1057 void LIR_OpUpdateCRC32::emit_code(LIR_Assembler* masm) {
1058   masm->emit_updatecrc32(this);
1059 }
1060 
1061 void LIR_Op0::emit_code(LIR_Assembler* masm) {
1062   masm->emit_op0(this);
1063 }
1064 
1065 void LIR_Op1::emit_code(LIR_Assembler* masm) {
1066   masm->emit_op1(this);
1067 }
1068 
1069 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
1070   masm->emit_alloc_obj(this);
1071   masm->append_code_stub(stub());
1072 }
1073 
1074 void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
1075   masm->emit_opBranch(this);
1076   if (stub()) {
1077     masm->append_code_stub(stub());
1078   }
1079 }
1080 
1081 void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
1082   masm->emit_opConvert(this);
1083   if (stub() != NULL) {
1084     masm->append_code_stub(stub());
1085   }
1086 }
1087 
1088 void LIR_Op2::emit_code(LIR_Assembler* masm) {
1089   masm->emit_op2(this);
1090 }
1091 
1092 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
1093   masm->emit_alloc_array(this);
1094   masm->append_code_stub(stub());
1095 }
1096 
1097 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
1098   masm->emit_opTypeCheck(this);
1099   if (stub()) {
1100     masm->append_code_stub(stub());
1101   }
1102 }
1103 
1104 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
1105   masm->emit_compare_and_swap(this);
1106 }
1107 
1108 void LIR_Op3::emit_code(LIR_Assembler* masm) {
1109   masm->emit_op3(this);
1110 }
1111 
1112 void LIR_OpLock::emit_code(LIR_Assembler* masm) {
1113   masm->emit_lock(this);
1114   if (stub()) {
1115     masm->append_code_stub(stub());
1116   }
1117 }
1118 
1119 #ifdef ASSERT
1120 void LIR_OpAssert::emit_code(LIR_Assembler* masm) {
1121   masm->emit_assert(this);
1122 }
1123 #endif
1124 
1125 void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
1126   masm->emit_delay(this);
1127 }
1128 
1129 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
1130   masm->emit_profile_call(this);
1131 }
1132 
1133 void LIR_OpProfileType::emit_code(LIR_Assembler* masm) {
1134   masm->emit_profile_type(this);
1135 }
1136 
1137 // LIR_List
1138 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
1139   : _operations(8)
1140   , _compilation(compilation)
1141 #ifndef PRODUCT
1142   , _block(block)
1143 #endif
1144 #ifdef ASSERT
1145   , _file(NULL)
1146   , _line(0)
1147 #endif
1148 { }
1149 
1150 
1151 #ifdef ASSERT
1152 void LIR_List::set_file_and_line(const char * file, int line) {
1153   const char * f = strrchr(file, '/');
1154   if (f == NULL) f = strrchr(file, '\\');
1155   if (f == NULL) {
1156     f = file;
1157   } else {
1158     f++;
1159   }
1160   _file = f;
1161   _line = line;
1162 }
1163 #endif
1164 
1165 
1166 void LIR_List::append(LIR_InsertionBuffer* buffer) {
1167   assert(this == buffer->lir_list(), "wrong lir list");
1168   const int n = _operations.length();
1169 
1170   if (buffer->number_of_ops() > 0) {
1171     // increase size of instructions list
1172     _operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
1173     // insert ops from buffer into instructions list
1174     int op_index = buffer->number_of_ops() - 1;
1175     int ip_index = buffer->number_of_insertion_points() - 1;
1176     int from_index = n - 1;
1177     int to_index = _operations.length() - 1;
1178     for (; ip_index >= 0; ip_index --) {
1179       int index = buffer->index_at(ip_index);
1180       // make room after insertion point
1181       while (index < from_index) {
1182         _operations.at_put(to_index --, _operations.at(from_index --));
1183       }
1184       // insert ops from buffer
1185       for (int i = buffer->count_at(ip_index); i > 0; i --) {
1186         _operations.at_put(to_index --, buffer->op_at(op_index --));
1187       }
1188     }
1189   }
1190 
1191   buffer->finish();
1192 }
1193 
1194 
1195 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
1196   assert(reg->type() == T_OBJECT, "bad reg");
1197   append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),  reg, T_OBJECT, lir_patch_normal, info));
1198 }
1199 
1200 void LIR_List::klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info) {
1201   assert(reg->type() == T_METADATA, "bad reg");
1202   append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg, T_METADATA, lir_patch_normal, info));
1203 }
1204 
1205 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1206   append(new LIR_Op1(
1207             lir_move,
1208             LIR_OprFact::address(addr),
1209             src,
1210             addr->type(),
1211             patch_code,
1212             info));
1213 }
1214 
1215 
1216 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1217   append(new LIR_Op1(
1218             lir_move,
1219             LIR_OprFact::address(address),
1220             dst,
1221             address->type(),
1222             patch_code,
1223             info, lir_move_volatile));
1224 }
1225 
1226 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1227   append(new LIR_Op1(
1228             lir_move,
1229             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1230             dst,
1231             type,
1232             patch_code,
1233             info, lir_move_volatile));
1234 }
1235 
1236 
1237 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1238   append(new LIR_Op1(
1239             lir_move,
1240             LIR_OprFact::intConst(v),
1241             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1242             type,
1243             patch_code,
1244             info));
1245 }
1246 
1247 
1248 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1249   append(new LIR_Op1(
1250             lir_move,
1251             LIR_OprFact::oopConst(o),
1252             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1253             type,
1254             patch_code,
1255             info));
1256 }
1257 
1258 
1259 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1260   append(new LIR_Op1(
1261             lir_move,
1262             src,
1263             LIR_OprFact::address(addr),
1264             addr->type(),
1265             patch_code,
1266             info));
1267 }
1268 
1269 
1270 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1271   append(new LIR_Op1(
1272             lir_move,
1273             src,
1274             LIR_OprFact::address(addr),
1275             addr->type(),
1276             patch_code,
1277             info,
1278             lir_move_volatile));
1279 }
1280 
1281 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1282   append(new LIR_Op1(
1283             lir_move,
1284             src,
1285             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1286             type,
1287             patch_code,
1288             info, lir_move_volatile));
1289 }
1290 
1291 
1292 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1293   append(new LIR_Op3(
1294                     lir_idiv,
1295                     left,
1296                     right,
1297                     tmp,
1298                     res,
1299                     info));
1300 }
1301 
1302 
1303 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1304   append(new LIR_Op3(
1305                     lir_idiv,
1306                     left,
1307                     LIR_OprFact::intConst(right),
1308                     tmp,
1309                     res,
1310                     info));
1311 }
1312 
1313 
1314 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1315   append(new LIR_Op3(
1316                     lir_irem,
1317                     left,
1318                     right,
1319                     tmp,
1320                     res,
1321                     info));
1322 }
1323 
1324 
1325 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1326   append(new LIR_Op3(
1327                     lir_irem,
1328                     left,
1329                     LIR_OprFact::intConst(right),
1330                     tmp,
1331                     res,
1332                     info));
1333 }
1334 
1335 
1336 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
1337   append(new LIR_Op2(
1338                     lir_cmp,
1339                     condition,
1340                     LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
1341                     LIR_OprFact::intConst(c),
1342                     info));
1343 }
1344 
1345 
1346 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
1347   append(new LIR_Op2(
1348                     lir_cmp,
1349                     condition,
1350                     reg,
1351                     LIR_OprFact::address(addr),
1352                     info));
1353 }
1354 
1355 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1356                                int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
1357   append(new LIR_OpAllocObj(
1358                            klass,
1359                            dst,
1360                            t1,
1361                            t2,
1362                            t3,
1363                            t4,
1364                            header_size,
1365                            object_size,
1366                            init_check,
1367                            stub));
1368 }
1369 
1370 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
1371   append(new LIR_OpAllocArray(
1372                            klass,
1373                            len,
1374                            dst,
1375                            t1,
1376                            t2,
1377                            t3,
1378                            t4,
1379                            type,
1380                            stub));
1381 }
1382 
1383 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1384  append(new LIR_Op2(
1385                     lir_shl,
1386                     value,
1387                     count,
1388                     dst,
1389                     tmp));
1390 }
1391 
1392 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1393  append(new LIR_Op2(
1394                     lir_shr,
1395                     value,
1396                     count,
1397                     dst,
1398                     tmp));
1399 }
1400 
1401 
1402 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1403  append(new LIR_Op2(
1404                     lir_ushr,
1405                     value,
1406                     count,
1407                     dst,
1408                     tmp));
1409 }
1410 
1411 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
1412   append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
1413                      left,
1414                      right,
1415                      dst));
1416 }
1417 
1418 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) {
1419   append(new LIR_OpLock(
1420                     lir_lock,
1421                     hdr,
1422                     obj,
1423                     lock,
1424                     scratch,
1425                     stub,
1426                     info));
1427 }
1428 
1429 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
1430   append(new LIR_OpLock(
1431                     lir_unlock,
1432                     hdr,
1433                     obj,
1434                     lock,
1435                     scratch,
1436                     stub,
1437                     NULL));
1438 }
1439 
1440 
1441 void check_LIR() {
1442   // cannot do the proper checking as PRODUCT and other modes return different results
1443   // guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table");
1444 }
1445 
1446 
1447 
1448 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1449                           LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1450                           CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1451                           ciMethod* profiled_method, int profiled_bci) {
1452   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
1453                                            tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub);
1454   if (profiled_method != NULL) {
1455     c->set_profiled_method(profiled_method);
1456     c->set_profiled_bci(profiled_bci);
1457     c->set_should_profile(true);
1458   }
1459   append(c);
1460 }
1461 
1462 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
1463   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL);
1464   if (profiled_method != NULL) {
1465     c->set_profiled_method(profiled_method);
1466     c->set_profiled_bci(profiled_bci);
1467     c->set_should_profile(true);
1468   }
1469   append(c);
1470 }
1471 
1472 
1473 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
1474                            CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) {
1475   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception);
1476   if (profiled_method != NULL) {
1477     c->set_profiled_method(profiled_method);
1478     c->set_profiled_bci(profiled_bci);
1479     c->set_should_profile(true);
1480   }
1481   append(c);
1482 }
1483 
1484 
1485 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1486                         LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1487   append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
1488 }
1489 
1490 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1491                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1492   append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
1493 }
1494 
1495 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1496                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1497   append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
1498 }
1499 
1500 
1501 #ifdef PRODUCT
1502 
1503 void print_LIR(BlockList* blocks) {
1504 }
1505 
1506 #else
1507 // LIR_OprDesc
1508 void LIR_OprDesc::print() const {
1509   print(tty);
1510 }
1511 
1512 void LIR_OprDesc::print(outputStream* out) const {
1513   if (is_illegal()) {
1514     return;
1515   }
1516 
1517   out->print("[");
1518   if (is_pointer()) {
1519     pointer()->print_value_on(out);
1520   } else if (is_single_stack()) {
1521     out->print("stack:%d", single_stack_ix());
1522   } else if (is_double_stack()) {
1523     out->print("dbl_stack:%d",double_stack_ix());
1524   } else if (is_virtual()) {
1525     out->print("R%d", vreg_number());
1526   } else if (is_single_cpu()) {
1527     out->print("%s", as_register()->name());
1528   } else if (is_double_cpu()) {
1529     out->print("%s", as_register_hi()->name());
1530     out->print("%s", as_register_lo()->name());
1531 #if defined(X86)
1532   } else if (is_single_xmm()) {
1533     out->print("%s", as_xmm_float_reg()->name());
1534   } else if (is_double_xmm()) {
1535     out->print("%s", as_xmm_double_reg()->name());
1536   } else if (is_single_fpu()) {
1537     out->print("fpu%d", fpu_regnr());
1538   } else if (is_double_fpu()) {
1539     out->print("fpu%d", fpu_regnrLo());
1540 #elif defined(AARCH64)
1541   } else if (is_single_fpu()) {
1542     out->print("fpu%d", fpu_regnr());
1543   } else if (is_double_fpu()) {
1544     out->print("fpu%d", fpu_regnrLo());
1545 #elif defined(ARM)
1546   } else if (is_single_fpu()) {
1547     out->print("s%d", fpu_regnr());
1548   } else if (is_double_fpu()) {
1549     out->print("d%d", fpu_regnrLo() >> 1);
1550 #else
1551   } else if (is_single_fpu()) {
1552     out->print("%s", as_float_reg()->name());
1553   } else if (is_double_fpu()) {
1554     out->print("%s", as_double_reg()->name());
1555 #endif
1556 
1557   } else if (is_illegal()) {
1558     out->print("-");
1559   } else {
1560     out->print("Unknown Operand");
1561   }
1562   if (!is_illegal()) {
1563     out->print("|%c", type_char());
1564   }
1565   if (is_register() && is_last_use()) {
1566     out->print("(last_use)");
1567   }
1568   out->print("]");
1569 }
1570 
1571 
1572 // LIR_Address
1573 void LIR_Const::print_value_on(outputStream* out) const {
1574   switch (type()) {
1575     case T_ADDRESS:out->print("address:%d",as_jint());          break;
1576     case T_INT:    out->print("int:%d",   as_jint());           break;
1577     case T_LONG:   out->print("lng:" JLONG_FORMAT, as_jlong()); break;
1578     case T_FLOAT:  out->print("flt:%f",   as_jfloat());         break;
1579     case T_DOUBLE: out->print("dbl:%f",   as_jdouble());        break;
1580     case T_OBJECT: out->print("obj:" INTPTR_FORMAT, p2i(as_jobject()));        break;
1581     case T_METADATA: out->print("metadata:" INTPTR_FORMAT, p2i(as_metadata()));break;
1582     default:       out->print("%3d:0x" UINT64_FORMAT_X, type(), (uint64_t)as_jlong()); break;
1583   }
1584 }
1585 
1586 // LIR_Address
1587 void LIR_Address::print_value_on(outputStream* out) const {
1588   out->print("Base:"); _base->print(out);
1589   if (!_index->is_illegal()) {
1590     out->print(" Index:"); _index->print(out);
1591     switch (scale()) {
1592     case times_1: break;
1593     case times_2: out->print(" * 2"); break;
1594     case times_4: out->print(" * 4"); break;
1595     case times_8: out->print(" * 8"); break;
1596     }
1597   }
1598   out->print(" Disp: " INTX_FORMAT, _disp);
1599 }
1600 
1601 // debug output of block header without InstructionPrinter
1602 //       (because phi functions are not necessary for LIR)
1603 static void print_block(BlockBegin* x) {
1604   // print block id
1605   BlockEnd* end = x->end();
1606   tty->print("B%d ", x->block_id());
1607 
1608   // print flags
1609   if (x->is_set(BlockBegin::std_entry_flag))               tty->print("std ");
1610   if (x->is_set(BlockBegin::osr_entry_flag))               tty->print("osr ");
1611   if (x->is_set(BlockBegin::exception_entry_flag))         tty->print("ex ");
1612   if (x->is_set(BlockBegin::subroutine_entry_flag))        tty->print("jsr ");
1613   if (x->is_set(BlockBegin::backward_branch_target_flag))  tty->print("bb ");
1614   if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
1615   if (x->is_set(BlockBegin::linear_scan_loop_end_flag))    tty->print("le ");
1616 
1617   // print block bci range
1618   tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci()));
1619 
1620   // print predecessors and successors
1621   if (x->number_of_preds() > 0) {
1622     tty->print("preds: ");
1623     for (int i = 0; i < x->number_of_preds(); i ++) {
1624       tty->print("B%d ", x->pred_at(i)->block_id());
1625     }
1626   }
1627 
1628   if (x->number_of_sux() > 0) {
1629     tty->print("sux: ");
1630     for (int i = 0; i < x->number_of_sux(); i ++) {
1631       tty->print("B%d ", x->sux_at(i)->block_id());
1632     }
1633   }
1634 
1635   // print exception handlers
1636   if (x->number_of_exception_handlers() > 0) {
1637     tty->print("xhandler: ");
1638     for (int i = 0; i < x->number_of_exception_handlers();  i++) {
1639       tty->print("B%d ", x->exception_handler_at(i)->block_id());
1640     }
1641   }
1642 
1643   tty->cr();
1644 }
1645 
1646 void print_LIR(BlockList* blocks) {
1647   tty->print_cr("LIR:");
1648   int i;
1649   for (i = 0; i < blocks->length(); i++) {
1650     BlockBegin* bb = blocks->at(i);
1651     print_block(bb);
1652     tty->print("__id_Instruction___________________________________________"); tty->cr();
1653     bb->lir()->print_instructions();
1654   }
1655 }
1656 
1657 void LIR_List::print_instructions() {
1658   for (int i = 0; i < _operations.length(); i++) {
1659     _operations.at(i)->print(); tty->cr();
1660   }
1661   tty->cr();
1662 }
1663 
1664 // LIR_Ops printing routines
1665 // LIR_Op
1666 void LIR_Op::print_on(outputStream* out) const {
1667   if (id() != -1 || PrintCFGToFile) {
1668     out->print("%4d ", id());
1669   } else {
1670     out->print("     ");
1671   }
1672   out->print("%s ", name());
1673   print_instr(out);
1674   if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci());
1675 #ifdef ASSERT
1676   if (Verbose && _file != NULL) {
1677     out->print(" (%s:%d)", _file, _line);
1678   }
1679 #endif
1680 }
1681 
1682 const char * LIR_Op::name() const {
1683   const char* s = NULL;
1684   switch(code()) {
1685      // LIR_Op0
1686      case lir_membar:                s = "membar";        break;
1687      case lir_membar_acquire:        s = "membar_acquire"; break;
1688      case lir_membar_release:        s = "membar_release"; break;
1689      case lir_membar_loadload:       s = "membar_loadload";   break;
1690      case lir_membar_storestore:     s = "membar_storestore"; break;
1691      case lir_membar_loadstore:      s = "membar_loadstore";  break;
1692      case lir_membar_storeload:      s = "membar_storeload";  break;
1693      case lir_word_align:            s = "word_align";    break;
1694      case lir_label:                 s = "label";         break;
1695      case lir_nop:                   s = "nop";           break;
1696      case lir_backwardbranch_target: s = "backbranch";    break;
1697      case lir_std_entry:             s = "std_entry";     break;
1698      case lir_osr_entry:             s = "osr_entry";     break;
1699      case lir_build_frame:           s = "build_frm";     break;
1700      case lir_fpop_raw:              s = "fpop_raw";      break;
1701      case lir_24bit_FPU:             s = "24bit_FPU";     break;
1702      case lir_reset_FPU:             s = "reset_FPU";     break;
1703      case lir_breakpoint:            s = "breakpoint";    break;
1704      case lir_get_thread:            s = "get_thread";    break;
1705      // LIR_Op1
1706      case lir_fxch:                  s = "fxch";          break;
1707      case lir_fld:                   s = "fld";           break;
1708      case lir_ffree:                 s = "ffree";         break;
1709      case lir_push:                  s = "push";          break;
1710      case lir_pop:                   s = "pop";           break;
1711      case lir_null_check:            s = "null_check";    break;
1712      case lir_return:                s = "return";        break;
1713      case lir_safepoint:             s = "safepoint";     break;
1714      case lir_neg:                   s = "neg";           break;
1715      case lir_leal:                  s = "leal";          break;
1716      case lir_branch:                s = "branch";        break;
1717      case lir_cond_float_branch:     s = "flt_cond_br";   break;
1718      case lir_move:                  s = "move";          break;
1719      case lir_roundfp:               s = "roundfp";       break;
1720      case lir_rtcall:                s = "rtcall";        break;
1721      case lir_throw:                 s = "throw";         break;
1722      case lir_unwind:                s = "unwind";        break;
1723      case lir_convert:               s = "convert";       break;
1724      case lir_alloc_object:          s = "alloc_obj";     break;
1725      case lir_monaddr:               s = "mon_addr";      break;
1726      case lir_pack64:                s = "pack64";        break;
1727      case lir_unpack64:              s = "unpack64";      break;
1728      // LIR_Op2
1729      case lir_cmp:                   s = "cmp";           break;
1730      case lir_cmp_l2i:               s = "cmp_l2i";       break;
1731      case lir_ucmp_fd2i:             s = "ucomp_fd2i";    break;
1732      case lir_cmp_fd2i:              s = "comp_fd2i";     break;
1733      case lir_cmove:                 s = "cmove";         break;
1734      case lir_add:                   s = "add";           break;
1735      case lir_sub:                   s = "sub";           break;
1736      case lir_mul:                   s = "mul";           break;
1737      case lir_mul_strictfp:          s = "mul_strictfp";  break;
1738      case lir_div:                   s = "div";           break;
1739      case lir_div_strictfp:          s = "div_strictfp";  break;
1740      case lir_rem:                   s = "rem";           break;
1741      case lir_abs:                   s = "abs";           break;
1742      case lir_sqrt:                  s = "sqrt";          break;
1743      case lir_sin:                   s = "sin";           break;
1744      case lir_cos:                   s = "cos";           break;
1745      case lir_tan:                   s = "tan";           break;
1746      case lir_log10:                 s = "log10";         break;
1747      case lir_logic_and:             s = "logic_and";     break;
1748      case lir_logic_or:              s = "logic_or";      break;
1749      case lir_logic_xor:             s = "logic_xor";     break;
1750      case lir_shl:                   s = "shift_left";    break;
1751      case lir_shr:                   s = "shift_right";   break;
1752      case lir_ushr:                  s = "ushift_right";  break;
1753      case lir_alloc_array:           s = "alloc_array";   break;
1754      case lir_xadd:                  s = "xadd";          break;
1755      case lir_xchg:                  s = "xchg";          break;
1756      // LIR_Op3
1757      case lir_idiv:                  s = "idiv";          break;
1758      case lir_irem:                  s = "irem";          break;
1759      // LIR_OpJavaCall
1760      case lir_static_call:           s = "static";        break;
1761      case lir_optvirtual_call:       s = "optvirtual";    break;
1762      case lir_icvirtual_call:        s = "icvirtual";     break;
1763      case lir_virtual_call:          s = "virtual";       break;
1764      case lir_dynamic_call:          s = "dynamic";       break;
1765      // LIR_OpArrayCopy
1766      case lir_arraycopy:             s = "arraycopy";     break;
1767      // LIR_OpUpdateCRC32
1768      case lir_updatecrc32:           s = "updatecrc32";   break;
1769      // LIR_OpLock
1770      case lir_lock:                  s = "lock";          break;
1771      case lir_unlock:                s = "unlock";        break;
1772      // LIR_OpDelay
1773      case lir_delay_slot:            s = "delay";         break;
1774      // LIR_OpTypeCheck
1775      case lir_instanceof:            s = "instanceof";    break;
1776      case lir_checkcast:             s = "checkcast";     break;
1777      case lir_store_check:           s = "store_check";   break;
1778      // LIR_OpCompareAndSwap
1779      case lir_cas_long:              s = "cas_long";      break;
1780      case lir_cas_obj:               s = "cas_obj";      break;
1781      case lir_cas_int:               s = "cas_int";      break;
1782      // LIR_OpProfileCall
1783      case lir_profile_call:          s = "profile_call";  break;
1784      // LIR_OpProfileType
1785      case lir_profile_type:          s = "profile_type";  break;
1786      // LIR_OpAssert
1787 #ifdef ASSERT
1788      case lir_assert:                s = "assert";        break;
1789 #endif
1790      case lir_none:                  ShouldNotReachHere();break;
1791     default:                         s = "illegal_op";    break;
1792   }
1793   return s;
1794 }
1795 
1796 // LIR_OpJavaCall
1797 void LIR_OpJavaCall::print_instr(outputStream* out) const {
1798   out->print("call: ");
1799   out->print("[addr: " INTPTR_FORMAT "]", p2i(address()));
1800   if (receiver()->is_valid()) {
1801     out->print(" [recv: ");   receiver()->print(out);   out->print("]");
1802   }
1803   if (result_opr()->is_valid()) {
1804     out->print(" [result: "); result_opr()->print(out); out->print("]");
1805   }
1806 }
1807 
1808 // LIR_OpLabel
1809 void LIR_OpLabel::print_instr(outputStream* out) const {
1810   out->print("[label:" INTPTR_FORMAT "]", p2i(_label));
1811 }
1812 
1813 // LIR_OpArrayCopy
1814 void LIR_OpArrayCopy::print_instr(outputStream* out) const {
1815   src()->print(out);     out->print(" ");
1816   src_pos()->print(out); out->print(" ");
1817   dst()->print(out);     out->print(" ");
1818   dst_pos()->print(out); out->print(" ");
1819   length()->print(out);  out->print(" ");
1820   tmp()->print(out);     out->print(" ");
1821 }
1822 
1823 // LIR_OpUpdateCRC32
1824 void LIR_OpUpdateCRC32::print_instr(outputStream* out) const {
1825   crc()->print(out);     out->print(" ");
1826   val()->print(out);     out->print(" ");
1827   result_opr()->print(out); out->print(" ");
1828 }
1829 
1830 // LIR_OpCompareAndSwap
1831 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
1832   addr()->print(out);      out->print(" ");
1833   cmp_value()->print(out); out->print(" ");
1834   new_value()->print(out); out->print(" ");
1835   tmp1()->print(out);      out->print(" ");
1836   tmp2()->print(out);      out->print(" ");
1837 
1838 }
1839 
1840 // LIR_Op0
1841 void LIR_Op0::print_instr(outputStream* out) const {
1842   result_opr()->print(out);
1843 }
1844 
1845 // LIR_Op1
1846 const char * LIR_Op1::name() const {
1847   if (code() == lir_move) {
1848     switch (move_kind()) {
1849     case lir_move_normal:
1850       return "move";
1851     case lir_move_unaligned:
1852       return "unaligned move";
1853     case lir_move_volatile:
1854       return "volatile_move";
1855     case lir_move_wide:
1856       return "wide_move";
1857     default:
1858       ShouldNotReachHere();
1859     return "illegal_op";
1860     }
1861   } else {
1862     return LIR_Op::name();
1863   }
1864 }
1865 
1866 
1867 void LIR_Op1::print_instr(outputStream* out) const {
1868   _opr->print(out);         out->print(" ");
1869   result_opr()->print(out); out->print(" ");
1870   print_patch_code(out, patch_code());
1871 }
1872 
1873 
1874 // LIR_Op1
1875 void LIR_OpRTCall::print_instr(outputStream* out) const {
1876   intx a = (intx)addr();
1877   out->print("%s", Runtime1::name_for_address(addr()));
1878   out->print(" ");
1879   tmp()->print(out);
1880 }
1881 
1882 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
1883   switch(code) {
1884     case lir_patch_none:                                 break;
1885     case lir_patch_low:    out->print("[patch_low]");    break;
1886     case lir_patch_high:   out->print("[patch_high]");   break;
1887     case lir_patch_normal: out->print("[patch_normal]"); break;
1888     default: ShouldNotReachHere();
1889   }
1890 }
1891 
1892 // LIR_OpBranch
1893 void LIR_OpBranch::print_instr(outputStream* out) const {
1894   print_condition(out, cond());             out->print(" ");
1895   if (block() != NULL) {
1896     out->print("[B%d] ", block()->block_id());
1897   } else if (stub() != NULL) {
1898     out->print("[");
1899     stub()->print_name(out);
1900     out->print(": " INTPTR_FORMAT "]", p2i(stub()));
1901     if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci());
1902   } else {
1903     out->print("[label:" INTPTR_FORMAT "] ", p2i(label()));
1904   }
1905   if (ublock() != NULL) {
1906     out->print("unordered: [B%d] ", ublock()->block_id());
1907   }
1908 }
1909 
1910 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
1911   switch(cond) {
1912     case lir_cond_equal:           out->print("[EQ]");      break;
1913     case lir_cond_notEqual:        out->print("[NE]");      break;
1914     case lir_cond_less:            out->print("[LT]");      break;
1915     case lir_cond_lessEqual:       out->print("[LE]");      break;
1916     case lir_cond_greaterEqual:    out->print("[GE]");      break;
1917     case lir_cond_greater:         out->print("[GT]");      break;
1918     case lir_cond_belowEqual:      out->print("[BE]");      break;
1919     case lir_cond_aboveEqual:      out->print("[AE]");      break;
1920     case lir_cond_always:          out->print("[AL]");      break;
1921     default:                       out->print("[%d]",cond); break;
1922   }
1923 }
1924 
1925 // LIR_OpConvert
1926 void LIR_OpConvert::print_instr(outputStream* out) const {
1927   print_bytecode(out, bytecode());
1928   in_opr()->print(out);                  out->print(" ");
1929   result_opr()->print(out);              out->print(" ");
1930 #ifdef PPC32
1931   if(tmp1()->is_valid()) {
1932     tmp1()->print(out); out->print(" ");
1933     tmp2()->print(out); out->print(" ");
1934   }
1935 #endif
1936 }
1937 
1938 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
1939   switch(code) {
1940     case Bytecodes::_d2f: out->print("[d2f] "); break;
1941     case Bytecodes::_d2i: out->print("[d2i] "); break;
1942     case Bytecodes::_d2l: out->print("[d2l] "); break;
1943     case Bytecodes::_f2d: out->print("[f2d] "); break;
1944     case Bytecodes::_f2i: out->print("[f2i] "); break;
1945     case Bytecodes::_f2l: out->print("[f2l] "); break;
1946     case Bytecodes::_i2b: out->print("[i2b] "); break;
1947     case Bytecodes::_i2c: out->print("[i2c] "); break;
1948     case Bytecodes::_i2d: out->print("[i2d] "); break;
1949     case Bytecodes::_i2f: out->print("[i2f] "); break;
1950     case Bytecodes::_i2l: out->print("[i2l] "); break;
1951     case Bytecodes::_i2s: out->print("[i2s] "); break;
1952     case Bytecodes::_l2i: out->print("[l2i] "); break;
1953     case Bytecodes::_l2f: out->print("[l2f] "); break;
1954     case Bytecodes::_l2d: out->print("[l2d] "); break;
1955     default:
1956       out->print("[?%d]",code);
1957     break;
1958   }
1959 }
1960 
1961 void LIR_OpAllocObj::print_instr(outputStream* out) const {
1962   klass()->print(out);                      out->print(" ");
1963   obj()->print(out);                        out->print(" ");
1964   tmp1()->print(out);                       out->print(" ");
1965   tmp2()->print(out);                       out->print(" ");
1966   tmp3()->print(out);                       out->print(" ");
1967   tmp4()->print(out);                       out->print(" ");
1968   out->print("[hdr:%d]", header_size()); out->print(" ");
1969   out->print("[obj:%d]", object_size()); out->print(" ");
1970   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
1971 }
1972 
1973 void LIR_OpRoundFP::print_instr(outputStream* out) const {
1974   _opr->print(out);         out->print(" ");
1975   tmp()->print(out);        out->print(" ");
1976   result_opr()->print(out); out->print(" ");
1977 }
1978 
1979 // LIR_Op2
1980 void LIR_Op2::print_instr(outputStream* out) const {
1981   if (code() == lir_cmove || code() == lir_cmp) {
1982     print_condition(out, condition());         out->print(" ");
1983   }
1984   in_opr1()->print(out);    out->print(" ");
1985   in_opr2()->print(out);    out->print(" ");
1986   if (tmp1_opr()->is_valid()) { tmp1_opr()->print(out);    out->print(" "); }
1987   if (tmp2_opr()->is_valid()) { tmp2_opr()->print(out);    out->print(" "); }
1988   if (tmp3_opr()->is_valid()) { tmp3_opr()->print(out);    out->print(" "); }
1989   if (tmp4_opr()->is_valid()) { tmp4_opr()->print(out);    out->print(" "); }
1990   if (tmp5_opr()->is_valid()) { tmp5_opr()->print(out);    out->print(" "); }
1991   result_opr()->print(out);
1992 }
1993 
1994 void LIR_OpAllocArray::print_instr(outputStream* out) const {
1995   klass()->print(out);                   out->print(" ");
1996   len()->print(out);                     out->print(" ");
1997   obj()->print(out);                     out->print(" ");
1998   tmp1()->print(out);                    out->print(" ");
1999   tmp2()->print(out);                    out->print(" ");
2000   tmp3()->print(out);                    out->print(" ");
2001   tmp4()->print(out);                    out->print(" ");
2002   out->print("[type:0x%x]", type());     out->print(" ");
2003   out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2004 }
2005 
2006 
2007 void LIR_OpTypeCheck::print_instr(outputStream* out) const {
2008   object()->print(out);                  out->print(" ");
2009   if (code() == lir_store_check) {
2010     array()->print(out);                 out->print(" ");
2011   }
2012   if (code() != lir_store_check) {
2013     klass()->print_name_on(out);         out->print(" ");
2014     if (fast_check())                 out->print("fast_check ");
2015   }
2016   tmp1()->print(out);                    out->print(" ");
2017   tmp2()->print(out);                    out->print(" ");
2018   tmp3()->print(out);                    out->print(" ");
2019   result_opr()->print(out);              out->print(" ");
2020   if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci());
2021 }
2022 
2023 
2024 // LIR_Op3
2025 void LIR_Op3::print_instr(outputStream* out) const {
2026   in_opr1()->print(out);    out->print(" ");
2027   in_opr2()->print(out);    out->print(" ");
2028   in_opr3()->print(out);    out->print(" ");
2029   result_opr()->print(out);
2030 }
2031 
2032 
2033 void LIR_OpLock::print_instr(outputStream* out) const {
2034   hdr_opr()->print(out);   out->print(" ");
2035   obj_opr()->print(out);   out->print(" ");
2036   lock_opr()->print(out);  out->print(" ");
2037   if (_scratch->is_valid()) {
2038     _scratch->print(out);  out->print(" ");
2039   }
2040   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2041 }
2042 
2043 #ifdef ASSERT
2044 void LIR_OpAssert::print_instr(outputStream* out) const {
2045   print_condition(out, condition()); out->print(" ");
2046   in_opr1()->print(out);             out->print(" ");
2047   in_opr2()->print(out);             out->print(", \"");
2048   out->print("%s", msg());          out->print("\"");
2049 }
2050 #endif
2051 
2052 
2053 void LIR_OpDelay::print_instr(outputStream* out) const {
2054   _op->print_on(out);
2055 }
2056 
2057 
2058 // LIR_OpProfileCall
2059 void LIR_OpProfileCall::print_instr(outputStream* out) const {
2060   profiled_method()->name()->print_symbol_on(out);
2061   out->print(".");
2062   profiled_method()->holder()->name()->print_symbol_on(out);
2063   out->print(" @ %d ", profiled_bci());
2064   mdo()->print(out);           out->print(" ");
2065   recv()->print(out);          out->print(" ");
2066   tmp1()->print(out);          out->print(" ");
2067 }
2068 
2069 // LIR_OpProfileType
2070 void LIR_OpProfileType::print_instr(outputStream* out) const {
2071   out->print("exact = ");
2072   if  (exact_klass() == NULL) {
2073     out->print("unknown");
2074   } else {
2075     exact_klass()->print_name_on(out);
2076   }
2077   out->print(" current = "); ciTypeEntries::print_ciklass(out, current_klass());
2078   out->print(" ");
2079   mdp()->print(out);          out->print(" ");
2080   obj()->print(out);          out->print(" ");
2081   tmp()->print(out);          out->print(" ");
2082 }
2083 
2084 #endif // PRODUCT
2085 
2086 // Implementation of LIR_InsertionBuffer
2087 
2088 void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
2089   assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
2090 
2091   int i = number_of_insertion_points() - 1;
2092   if (i < 0 || index_at(i) < index) {
2093     append_new(index, 1);
2094   } else {
2095     assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
2096     assert(count_at(i) > 0, "check");
2097     set_count_at(i, count_at(i) + 1);
2098   }
2099   _ops.push(op);
2100 
2101   DEBUG_ONLY(verify());
2102 }
2103 
2104 #ifdef ASSERT
2105 void LIR_InsertionBuffer::verify() {
2106   int sum = 0;
2107   int prev_idx = -1;
2108 
2109   for (int i = 0; i < number_of_insertion_points(); i++) {
2110     assert(prev_idx < index_at(i), "index must be ordered ascending");
2111     sum += count_at(i);
2112   }
2113   assert(sum == number_of_ops(), "wrong total sum");
2114 }
2115 #endif