/* * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "interpreter/interp_masm.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterRuntime.hpp" #include "interpreter/templateInterpreterGenerator.hpp" #include "runtime/arguments.hpp" #define __ _masm-> #ifdef _WIN64 address TemplateInterpreterGenerator::generate_slow_signature_handler() { address entry = __ pc(); // rbx: method // r14: pointer to locals // c_rarg3: first stack arg - wordSize __ mov(c_rarg3, rsp); // adjust rsp __ subptr(rsp, 4 * wordSize); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), rbx, r14, c_rarg3); // rax: result handler // Stack layout: // rsp: 3 integer or float args (if static first is unused) // 1 float/double identifiers // return address // stack args // garbage // expression stack bottom // bcp (NULL) // ... // Do FP first so we can use c_rarg3 as temp __ movl(c_rarg3, Address(rsp, 3 * wordSize)); // float/double identifiers for ( int i= 0; i < Argument::n_int_register_parameters_c-1; i++ ) { XMMRegister floatreg = as_XMMRegister(i+1); Label isfloatordouble, isdouble, next; __ testl(c_rarg3, 1 << (i*2)); // Float or Double? __ jcc(Assembler::notZero, isfloatordouble); // Do Int register here switch ( i ) { case 0: __ movl(rscratch1, Address(rbx, Method::access_flags_offset())); __ testl(rscratch1, JVM_ACC_STATIC); __ cmovptr(Assembler::zero, c_rarg1, Address(rsp, 0)); break; case 1: __ movptr(c_rarg2, Address(rsp, wordSize)); break; case 2: __ movptr(c_rarg3, Address(rsp, 2 * wordSize)); break; default: break; } __ jmp (next); __ bind(isfloatordouble); __ testl(c_rarg3, 1 << ((i*2)+1)); // Double? __ jcc(Assembler::notZero, isdouble); // Do Float Here __ movflt(floatreg, Address(rsp, i * wordSize)); __ jmp(next); // Do Double here __ bind(isdouble); __ movdbl(floatreg, Address(rsp, i * wordSize)); __ bind(next); } // restore rsp __ addptr(rsp, 4 * wordSize); __ ret(0); return entry; } #else address TemplateInterpreterGenerator::generate_slow_signature_handler() { address entry = __ pc(); // rbx: method // r14: pointer to locals // c_rarg3: first stack arg - wordSize __ mov(c_rarg3, rsp); // adjust rsp __ subptr(rsp, 14 * wordSize); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), rbx, r14, c_rarg3); // rax: result handler // Stack layout: // rsp: 5 integer args (if static first is unused) // 1 float/double identifiers // 8 double args // return address // stack args // garbage // expression stack bottom // bcp (NULL) // ... // Do FP first so we can use c_rarg3 as temp __ movl(c_rarg3, Address(rsp, 5 * wordSize)); // float/double identifiers for (int i = 0; i < Argument::n_float_register_parameters_c; i++) { const XMMRegister r = as_XMMRegister(i); Label d, done; __ testl(c_rarg3, 1 << i); __ jcc(Assembler::notZero, d); __ movflt(r, Address(rsp, (6 + i) * wordSize)); __ jmp(done); __ bind(d); __ movdbl(r, Address(rsp, (6 + i) * wordSize)); __ bind(done); } // Now handle integrals. Only do c_rarg1 if not static. __ movl(c_rarg3, Address(rbx, Method::access_flags_offset())); __ testl(c_rarg3, JVM_ACC_STATIC); __ cmovptr(Assembler::zero, c_rarg1, Address(rsp, 0)); __ movptr(c_rarg2, Address(rsp, wordSize)); __ movptr(c_rarg3, Address(rsp, 2 * wordSize)); __ movptr(c_rarg4, Address(rsp, 3 * wordSize)); __ movptr(c_rarg5, Address(rsp, 4 * wordSize)); // restore rsp __ addptr(rsp, 14 * wordSize); __ ret(0); return entry; } #endif // __WIN64 /** * Method entry for static native methods: * int java.util.zip.CRC32.update(int crc, int b) */ address TemplateInterpreterGenerator::generate_CRC32_update_entry() { if (UseCRC32Intrinsics) { address entry = __ pc(); // rbx,: Method* // r13: senderSP must preserved for slow path, set SP to it on fast path // c_rarg0: scratch (rdi on non-Win64, rcx on Win64) // c_rarg1: scratch (rsi on non-Win64, rdx on Win64) Label slow_path; // If we need a safepoint check, generate full interpreter entry. ExternalAddress state(SafepointSynchronize::address_of_state()); __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()), SafepointSynchronize::_not_synchronized); __ jcc(Assembler::notEqual, slow_path); // We don't generate local frame and don't align stack because // we call stub code and there is no safepoint on this path. // Load parameters const Register crc = rax; // crc const Register val = c_rarg0; // source java byte value const Register tbl = c_rarg1; // scratch // Arguments are reversed on java expression stack __ movl(val, Address(rsp, wordSize)); // byte value __ movl(crc, Address(rsp, 2*wordSize)); // Initial CRC __ lea(tbl, ExternalAddress(StubRoutines::crc_table_addr())); __ notl(crc); // ~crc __ update_byte_crc32(crc, val, tbl); __ notl(crc); // ~crc // result in rax // _areturn __ pop(rdi); // get return address __ mov(rsp, r13); // set sp to sender sp __ jmp(rdi); // generate a vanilla native entry as the slow path __ bind(slow_path); __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); return entry; } return NULL; } /** * Method entry for static native methods: * int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len) * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) */ address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { if (UseCRC32Intrinsics) { address entry = __ pc(); // rbx,: Method* // r13: senderSP must preserved for slow path, set SP to it on fast path Label slow_path; // If we need a safepoint check, generate full interpreter entry. ExternalAddress state(SafepointSynchronize::address_of_state()); __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()), SafepointSynchronize::_not_synchronized); __ jcc(Assembler::notEqual, slow_path); // We don't generate local frame and don't align stack because // we call stub code and there is no safepoint on this path. // Load parameters const Register crc = c_rarg0; // crc const Register buf = c_rarg1; // source java byte array address const Register len = c_rarg2; // length const Register off = len; // offset (never overlaps with 'len') // Arguments are reversed on java expression stack // Calculate address of start element if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { __ movptr(buf, Address(rsp, 3*wordSize)); // long buf __ movl2ptr(off, Address(rsp, 2*wordSize)); // offset __ addq(buf, off); // + offset __ movl(crc, Address(rsp, 5*wordSize)); // Initial CRC } else { __ movptr(buf, Address(rsp, 3*wordSize)); // byte[] array __ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size __ movl2ptr(off, Address(rsp, 2*wordSize)); // offset __ addq(buf, off); // + offset __ movl(crc, Address(rsp, 4*wordSize)); // Initial CRC } // Can now load 'len' since we're finished with 'off' __ movl(len, Address(rsp, wordSize)); // Length __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()), crc, buf, len); // result in rax // _areturn __ pop(rdi); // get return address __ mov(rsp, r13); // set sp to sender sp __ jmp(rdi); // generate a vanilla native entry as the slow path __ bind(slow_path); __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); return entry; } return NULL; } /** * Method entry for static native methods: * int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end) * int java.util.zip.CRC32C.updateByteBuffer(int crc, long address, int off, int end) */ address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { if (UseCRC32CIntrinsics) { address entry = __ pc(); // Load parameters const Register crc = c_rarg0; // crc const Register buf = c_rarg1; // source java byte array address const Register len = c_rarg2; const Register off = c_rarg3; // offset const Register end = len; // Arguments are reversed on java expression stack // Calculate address of start element if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { __ movptr(buf, Address(rsp, 3 * wordSize)); // long buf __ movl2ptr(off, Address(rsp, 2 * wordSize)); // offset __ addq(buf, off); // + offset __ movl(crc, Address(rsp, 5 * wordSize)); // Initial CRC // Note on 5 * wordSize vs. 4 * wordSize: // * int java.util.zip.CRC32C.updateByteBuffer(int crc, long address, int off, int end) // 4 2,3 1 0 // end starts at SP + 8 // The Java(R) Virtual Machine Specification Java SE 7 Edition // 4.10.2.3. Values of Types long and double // "When calculating operand stack length, values of type long and double have length two." } else { __ movptr(buf, Address(rsp, 3 * wordSize)); // byte[] array __ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size __ movl2ptr(off, Address(rsp, 2 * wordSize)); // offset __ addq(buf, off); // + offset __ movl(crc, Address(rsp, 4 * wordSize)); // Initial CRC } __ movl(end, Address(rsp, wordSize)); // end __ subl(end, off); // end - off __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C()), crc, buf, len); // result in rax // _areturn __ pop(rdi); // get return address __ mov(rsp, r13); // set sp to sender sp __ jmp(rdi); return entry; } return NULL; } // // Various method entries // address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { // rbx,: Method* // rcx: scratrch // r13: sender sp if (!InlineIntrinsics) return NULL; // Generate a vanilla entry address entry_point = __ pc(); // These don't need a safepoint check because they aren't virtually // callable. We won't enter these intrinsics from compiled code. // If in the future we added an intrinsic which was virtually callable // we'd have to worry about how to safepoint so that this code is used. // mathematical functions inlined by compiler // (interpreter must provide identical implementation // in order to avoid monotonicity bugs when switching // from interpreter to compiler in the middle of some // computation) // // stack: [ ret adr ] <-- rsp // [ lo(arg) ] // [ hi(arg) ] // if (kind == Interpreter::java_lang_math_sqrt) { __ sqrtsd(xmm0, Address(rsp, wordSize)); } else if (kind == Interpreter::java_lang_math_exp) { __ movdbl(xmm0, Address(rsp, wordSize)); if (StubRoutines::dexp() != NULL) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dexp()))); } else { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dexp))); } } else if (kind == Interpreter::java_lang_math_log) { __ movdbl(xmm0, Address(rsp, wordSize)); if (StubRoutines::dlog() != NULL) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dlog()))); } else { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dlog))); } } else if (kind == Interpreter::java_lang_math_log10) { __ movdbl(xmm0, Address(rsp, wordSize)); if (StubRoutines::dlog10() != NULL) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dlog10()))); } else { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10))); } } else if (kind == Interpreter::java_lang_math_sin) { __ movdbl(xmm0, Address(rsp, wordSize)); if (StubRoutines::dsin() != NULL) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dsin()))); } else { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dsin))); } } else if (kind == Interpreter::java_lang_math_cos) { __ movdbl(xmm0, Address(rsp, wordSize)); if (StubRoutines::dcos() != NULL) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dcos()))); } else { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dcos))); } } else if (kind == Interpreter::java_lang_math_pow) { __ movdbl(xmm1, Address(rsp, wordSize)); __ movdbl(xmm0, Address(rsp, 3 * wordSize)); if (StubRoutines::dpow() != NULL) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dpow()))); } else { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dpow))); } } else if (kind == Interpreter::java_lang_math_tan) { __ movdbl(xmm0, Address(rsp, wordSize)); if (StubRoutines::dtan() != NULL) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dtan()))); } else { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtan))); } } else { __ fld_d(Address(rsp, wordSize)); switch (kind) { case Interpreter::java_lang_math_abs: __ fabs(); break; default : ShouldNotReachHere(); } // return double result in xmm0 for interpreter and compilers. __ subptr(rsp, 2*wordSize); // Round to 64bit precision __ fstp_d(Address(rsp, 0)); __ movdbl(xmm0, Address(rsp, 0)); __ addptr(rsp, 2*wordSize); } __ pop(rax); __ mov(rsp, r13); __ jmp(rax); return entry_point; }