1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && (_attributes != NULL) && _attributes->is_evex_instruction()) {
 398     int evex_encoding = _attributes->get_evex_encoding();
 399     int tuple_type = _attributes->get_tuple_type();
 400     switch (tuple_type) {
 401     case EVEX_FV:
 402       if ((evex_encoding & VEX_W) == VEX_W) {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 404       } else {
 405         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 406       }
 407       break;
 408 
 409     case EVEX_HV:
 410       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 411       break;
 412 
 413     case EVEX_FVM:
 414       break;
 415 
 416     case EVEX_T1S:
 417       switch (_attributes->get_input_size()) {
 418       case EVEX_8bit:
 419         break;
 420 
 421       case EVEX_16bit:
 422         mod_idx = 1;
 423         break;
 424 
 425       case EVEX_32bit:
 426         mod_idx = 2;
 427         break;
 428 
 429       case EVEX_64bit:
 430         mod_idx = 3;
 431         break;
 432       }
 433       break;
 434 
 435     case EVEX_T1F:
 436     case EVEX_T2:
 437     case EVEX_T4:
 438       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 439       break;
 440 
 441     case EVEX_T8:
 442       break;
 443 
 444     case EVEX_HVM:
 445       break;
 446 
 447     case EVEX_QVM:
 448       break;
 449 
 450     case EVEX_OVM:
 451       break;
 452 
 453     case EVEX_M128:
 454       break;
 455 
 456     case EVEX_DUP:
 457       break;
 458 
 459     default:
 460       assert(0, "no valid evex tuple_table entry");
 461       break;
 462     }
 463 
 464     int vector_len = _attributes->get_vector_len();
 465     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 466       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 467       if ((disp % disp_factor) == 0) {
 468         int new_disp = disp / disp_factor;
 469         if (is8bit(new_disp)) {
 470           disp = new_disp;
 471         }
 472       } else {
 473         return false;
 474       }
 475     }
 476   }
 477   return is8bit(disp);
 478 }
 479 
 480 
 481 void Assembler::emit_operand(Register reg, Register base, Register index,
 482                              Address::ScaleFactor scale, int disp,
 483                              RelocationHolder const& rspec,
 484                              int rip_relative_correction) {
 485   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 486 
 487   // Encode the registers as needed in the fields they are used in
 488 
 489   int regenc = encode(reg) << 3;
 490   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 491   int baseenc = base->is_valid() ? encode(base) : 0;
 492 
 493   if (base->is_valid()) {
 494     if (index->is_valid()) {
 495       assert(scale != Address::no_scale, "inconsistent address");
 496       // [base + index*scale + disp]
 497       if (disp == 0 && rtype == relocInfo::none  &&
 498           base != rbp LP64_ONLY(&& base != r13)) {
 499         // [base + index*scale]
 500         // [00 reg 100][ss index base]
 501         assert(index != rsp, "illegal addressing mode");
 502         emit_int8(0x04 | regenc);
 503         emit_int8(scale << 6 | indexenc | baseenc);
 504       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 505         // [base + index*scale + imm8]
 506         // [01 reg 100][ss index base] imm8
 507         assert(index != rsp, "illegal addressing mode");
 508         emit_int8(0x44 | regenc);
 509         emit_int8(scale << 6 | indexenc | baseenc);
 510         emit_int8(disp & 0xFF);
 511       } else {
 512         // [base + index*scale + disp32]
 513         // [10 reg 100][ss index base] disp32
 514         assert(index != rsp, "illegal addressing mode");
 515         emit_int8(0x84 | regenc);
 516         emit_int8(scale << 6 | indexenc | baseenc);
 517         emit_data(disp, rspec, disp32_operand);
 518       }
 519     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 520       // [rsp + disp]
 521       if (disp == 0 && rtype == relocInfo::none) {
 522         // [rsp]
 523         // [00 reg 100][00 100 100]
 524         emit_int8(0x04 | regenc);
 525         emit_int8(0x24);
 526       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 527         // [rsp + imm8]
 528         // [01 reg 100][00 100 100] disp8
 529         emit_int8(0x44 | regenc);
 530         emit_int8(0x24);
 531         emit_int8(disp & 0xFF);
 532       } else {
 533         // [rsp + imm32]
 534         // [10 reg 100][00 100 100] disp32
 535         emit_int8(0x84 | regenc);
 536         emit_int8(0x24);
 537         emit_data(disp, rspec, disp32_operand);
 538       }
 539     } else {
 540       // [base + disp]
 541       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 542       if (disp == 0 && rtype == relocInfo::none &&
 543           base != rbp LP64_ONLY(&& base != r13)) {
 544         // [base]
 545         // [00 reg base]
 546         emit_int8(0x00 | regenc | baseenc);
 547       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 548         // [base + disp8]
 549         // [01 reg base] disp8
 550         emit_int8(0x40 | regenc | baseenc);
 551         emit_int8(disp & 0xFF);
 552       } else {
 553         // [base + disp32]
 554         // [10 reg base] disp32
 555         emit_int8(0x80 | regenc | baseenc);
 556         emit_data(disp, rspec, disp32_operand);
 557       }
 558     }
 559   } else {
 560     if (index->is_valid()) {
 561       assert(scale != Address::no_scale, "inconsistent address");
 562       // [index*scale + disp]
 563       // [00 reg 100][ss index 101] disp32
 564       assert(index != rsp, "illegal addressing mode");
 565       emit_int8(0x04 | regenc);
 566       emit_int8(scale << 6 | indexenc | 0x05);
 567       emit_data(disp, rspec, disp32_operand);
 568     } else if (rtype != relocInfo::none ) {
 569       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 570       // [00 000 101] disp32
 571 
 572       emit_int8(0x05 | regenc);
 573       // Note that the RIP-rel. correction applies to the generated
 574       // disp field, but _not_ to the target address in the rspec.
 575 
 576       // disp was created by converting the target address minus the pc
 577       // at the start of the instruction. That needs more correction here.
 578       // intptr_t disp = target - next_ip;
 579       assert(inst_mark() != NULL, "must be inside InstructionMark");
 580       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 581       int64_t adjusted = disp;
 582       // Do rip-rel adjustment for 64bit
 583       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 584       assert(is_simm32(adjusted),
 585              "must be 32bit offset (RIP relative address)");
 586       emit_data((int32_t) adjusted, rspec, disp32_operand);
 587 
 588     } else {
 589       // 32bit never did this, did everything as the rip-rel/disp code above
 590       // [disp] ABSOLUTE
 591       // [00 reg 100][00 100 101] disp32
 592       emit_int8(0x04 | regenc);
 593       emit_int8(0x25);
 594       emit_data(disp, rspec, disp32_operand);
 595     }
 596   }
 597 }
 598 
 599 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 600                              Address::ScaleFactor scale, int disp,
 601                              RelocationHolder const& rspec) {
 602   if (UseAVX > 2) {
 603     int xreg_enc = reg->encoding();
 604     if (xreg_enc > 15) {
 605       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 606       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 607       return;
 608     }
 609   }
 610   emit_operand((Register)reg, base, index, scale, disp, rspec);
 611 }
 612 
 613 // Secret local extension to Assembler::WhichOperand:
 614 #define end_pc_operand (_WhichOperand_limit)
 615 
 616 address Assembler::locate_operand(address inst, WhichOperand which) {
 617   // Decode the given instruction, and return the address of
 618   // an embedded 32-bit operand word.
 619 
 620   // If "which" is disp32_operand, selects the displacement portion
 621   // of an effective address specifier.
 622   // If "which" is imm64_operand, selects the trailing immediate constant.
 623   // If "which" is call32_operand, selects the displacement of a call or jump.
 624   // Caller is responsible for ensuring that there is such an operand,
 625   // and that it is 32/64 bits wide.
 626 
 627   // If "which" is end_pc_operand, find the end of the instruction.
 628 
 629   address ip = inst;
 630   bool is_64bit = false;
 631 
 632   debug_only(bool has_disp32 = false);
 633   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 634 
 635   again_after_prefix:
 636   switch (0xFF & *ip++) {
 637 
 638   // These convenience macros generate groups of "case" labels for the switch.
 639 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 640 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 641              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 642 #define REP16(x) REP8((x)+0): \
 643               case REP8((x)+8)
 644 
 645   case CS_segment:
 646   case SS_segment:
 647   case DS_segment:
 648   case ES_segment:
 649   case FS_segment:
 650   case GS_segment:
 651     // Seems dubious
 652     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 653     assert(ip == inst+1, "only one prefix allowed");
 654     goto again_after_prefix;
 655 
 656   case 0x67:
 657   case REX:
 658   case REX_B:
 659   case REX_X:
 660   case REX_XB:
 661   case REX_R:
 662   case REX_RB:
 663   case REX_RX:
 664   case REX_RXB:
 665     NOT_LP64(assert(false, "64bit prefixes"));
 666     goto again_after_prefix;
 667 
 668   case REX_W:
 669   case REX_WB:
 670   case REX_WX:
 671   case REX_WXB:
 672   case REX_WR:
 673   case REX_WRB:
 674   case REX_WRX:
 675   case REX_WRXB:
 676     NOT_LP64(assert(false, "64bit prefixes"));
 677     is_64bit = true;
 678     goto again_after_prefix;
 679 
 680   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 681   case 0x88: // movb a, r
 682   case 0x89: // movl a, r
 683   case 0x8A: // movb r, a
 684   case 0x8B: // movl r, a
 685   case 0x8F: // popl a
 686     debug_only(has_disp32 = true);
 687     break;
 688 
 689   case 0x68: // pushq #32
 690     if (which == end_pc_operand) {
 691       return ip + 4;
 692     }
 693     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 694     return ip;                  // not produced by emit_operand
 695 
 696   case 0x66: // movw ... (size prefix)
 697     again_after_size_prefix2:
 698     switch (0xFF & *ip++) {
 699     case REX:
 700     case REX_B:
 701     case REX_X:
 702     case REX_XB:
 703     case REX_R:
 704     case REX_RB:
 705     case REX_RX:
 706     case REX_RXB:
 707     case REX_W:
 708     case REX_WB:
 709     case REX_WX:
 710     case REX_WXB:
 711     case REX_WR:
 712     case REX_WRB:
 713     case REX_WRX:
 714     case REX_WRXB:
 715       NOT_LP64(assert(false, "64bit prefix found"));
 716       goto again_after_size_prefix2;
 717     case 0x8B: // movw r, a
 718     case 0x89: // movw a, r
 719       debug_only(has_disp32 = true);
 720       break;
 721     case 0xC7: // movw a, #16
 722       debug_only(has_disp32 = true);
 723       tail_size = 2;  // the imm16
 724       break;
 725     case 0x0F: // several SSE/SSE2 variants
 726       ip--;    // reparse the 0x0F
 727       goto again_after_prefix;
 728     default:
 729       ShouldNotReachHere();
 730     }
 731     break;
 732 
 733   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 734     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 735     // these asserts are somewhat nonsensical
 736 #ifndef _LP64
 737     assert(which == imm_operand || which == disp32_operand,
 738            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 739 #else
 740     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 741            which == narrow_oop_operand && !is_64bit,
 742            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 743 #endif // _LP64
 744     return ip;
 745 
 746   case 0x69: // imul r, a, #32
 747   case 0xC7: // movl a, #32(oop?)
 748     tail_size = 4;
 749     debug_only(has_disp32 = true); // has both kinds of operands!
 750     break;
 751 
 752   case 0x0F: // movx..., etc.
 753     switch (0xFF & *ip++) {
 754     case 0x3A: // pcmpestri
 755       tail_size = 1;
 756     case 0x38: // ptest, pmovzxbw
 757       ip++; // skip opcode
 758       debug_only(has_disp32 = true); // has both kinds of operands!
 759       break;
 760 
 761     case 0x70: // pshufd r, r/a, #8
 762       debug_only(has_disp32 = true); // has both kinds of operands!
 763     case 0x73: // psrldq r, #8
 764       tail_size = 1;
 765       break;
 766 
 767     case 0x12: // movlps
 768     case 0x28: // movaps
 769     case 0x2E: // ucomiss
 770     case 0x2F: // comiss
 771     case 0x54: // andps
 772     case 0x55: // andnps
 773     case 0x56: // orps
 774     case 0x57: // xorps
 775     case 0x58: // addpd
 776     case 0x59: // mulpd
 777     case 0x6E: // movd
 778     case 0x7E: // movd
 779     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 780     case 0xFE: // paddd
 781       debug_only(has_disp32 = true);
 782       break;
 783 
 784     case 0xAD: // shrd r, a, %cl
 785     case 0xAF: // imul r, a
 786     case 0xBE: // movsbl r, a (movsxb)
 787     case 0xBF: // movswl r, a (movsxw)
 788     case 0xB6: // movzbl r, a (movzxb)
 789     case 0xB7: // movzwl r, a (movzxw)
 790     case REP16(0x40): // cmovl cc, r, a
 791     case 0xB0: // cmpxchgb
 792     case 0xB1: // cmpxchg
 793     case 0xC1: // xaddl
 794     case 0xC7: // cmpxchg8
 795     case REP16(0x90): // setcc a
 796       debug_only(has_disp32 = true);
 797       // fall out of the switch to decode the address
 798       break;
 799 
 800     case 0xC4: // pinsrw r, a, #8
 801       debug_only(has_disp32 = true);
 802     case 0xC5: // pextrw r, r, #8
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case 0xAC: // shrd r, a, #8
 807       debug_only(has_disp32 = true);
 808       tail_size = 1;  // the imm8
 809       break;
 810 
 811     case REP16(0x80): // jcc rdisp32
 812       if (which == end_pc_operand)  return ip + 4;
 813       assert(which == call32_operand, "jcc has no disp32 or imm");
 814       return ip;
 815     default:
 816       ShouldNotReachHere();
 817     }
 818     break;
 819 
 820   case 0x81: // addl a, #32; addl r, #32
 821     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 822     // on 32bit in the case of cmpl, the imm might be an oop
 823     tail_size = 4;
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     break;
 826 
 827   case 0x83: // addl a, #8; addl r, #8
 828     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 829     debug_only(has_disp32 = true); // has both kinds of operands!
 830     tail_size = 1;
 831     break;
 832 
 833   case 0x9B:
 834     switch (0xFF & *ip++) {
 835     case 0xD9: // fnstcw a
 836       debug_only(has_disp32 = true);
 837       break;
 838     default:
 839       ShouldNotReachHere();
 840     }
 841     break;
 842 
 843   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 844   case REP4(0x10): // adc...
 845   case REP4(0x20): // and...
 846   case REP4(0x30): // xor...
 847   case REP4(0x08): // or...
 848   case REP4(0x18): // sbb...
 849   case REP4(0x28): // sub...
 850   case 0xF7: // mull a
 851   case 0x8D: // lea r, a
 852   case 0x87: // xchg r, a
 853   case REP4(0x38): // cmp...
 854   case 0x85: // test r, a
 855     debug_only(has_disp32 = true); // has both kinds of operands!
 856     break;
 857 
 858   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 859   case 0xC6: // movb a, #8
 860   case 0x80: // cmpb a, #8
 861   case 0x6B: // imul r, a, #8
 862     debug_only(has_disp32 = true); // has both kinds of operands!
 863     tail_size = 1; // the imm8
 864     break;
 865 
 866   case 0xC4: // VEX_3bytes
 867   case 0xC5: // VEX_2bytes
 868     assert((UseAVX > 0), "shouldn't have VEX prefix");
 869     assert(ip == inst+1, "no prefixes allowed");
 870     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 871     // but they have prefix 0x0F and processed when 0x0F processed above.
 872     //
 873     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 874     // instructions (these instructions are not supported in 64-bit mode).
 875     // To distinguish them bits [7:6] are set in the VEX second byte since
 876     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 877     // those VEX bits REX and vvvv bits are inverted.
 878     //
 879     // Fortunately C2 doesn't generate these instructions so we don't need
 880     // to check for them in product version.
 881 
 882     // Check second byte
 883     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 884 
 885     int vex_opcode;
 886     // First byte
 887     if ((0xFF & *inst) == VEX_3bytes) {
 888       vex_opcode = VEX_OPCODE_MASK & *ip;
 889       ip++; // third byte
 890       is_64bit = ((VEX_W & *ip) == VEX_W);
 891     } else {
 892       vex_opcode = VEX_OPCODE_0F;
 893     }
 894     ip++; // opcode
 895     // To find the end of instruction (which == end_pc_operand).
 896     switch (vex_opcode) {
 897       case VEX_OPCODE_0F:
 898         switch (0xFF & *ip) {
 899         case 0x70: // pshufd r, r/a, #8
 900         case 0x71: // ps[rl|ra|ll]w r, #8
 901         case 0x72: // ps[rl|ra|ll]d r, #8
 902         case 0x73: // ps[rl|ra|ll]q r, #8
 903         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 904         case 0xC4: // pinsrw r, r, r/a, #8
 905         case 0xC5: // pextrw r/a, r, #8
 906         case 0xC6: // shufp[s|d] r, r, r/a, #8
 907           tail_size = 1;  // the imm8
 908           break;
 909         }
 910         break;
 911       case VEX_OPCODE_0F_3A:
 912         tail_size = 1;
 913         break;
 914     }
 915     ip++; // skip opcode
 916     debug_only(has_disp32 = true); // has both kinds of operands!
 917     break;
 918 
 919   case 0x62: // EVEX_4bytes
 920     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 921     assert(ip == inst+1, "no prefixes allowed");
 922     // no EVEX collisions, all instructions that have 0x62 opcodes
 923     // have EVEX versions and are subopcodes of 0x66
 924     ip++; // skip P0 and exmaine W in P1
 925     is_64bit = ((VEX_W & *ip) == VEX_W);
 926     ip++; // move to P2
 927     ip++; // skip P2, move to opcode
 928     // To find the end of instruction (which == end_pc_operand).
 929     switch (0xFF & *ip) {
 930     case 0x22: // pinsrd r, r/a, #8
 931     case 0x61: // pcmpestri r, r/a, #8
 932     case 0x70: // pshufd r, r/a, #8
 933     case 0x73: // psrldq r, #8
 934       tail_size = 1;  // the imm8
 935       break;
 936     default:
 937       break;
 938     }
 939     ip++; // skip opcode
 940     debug_only(has_disp32 = true); // has both kinds of operands!
 941     break;
 942 
 943   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 944   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 945   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 946   case 0xDD: // fld_d a; fst_d a; fstp_d a
 947   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 948   case 0xDF: // fild_d a; fistp_d a
 949   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 950   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 951   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 952     debug_only(has_disp32 = true);
 953     break;
 954 
 955   case 0xE8: // call rdisp32
 956   case 0xE9: // jmp  rdisp32
 957     if (which == end_pc_operand)  return ip + 4;
 958     assert(which == call32_operand, "call has no disp32 or imm");
 959     return ip;
 960 
 961   case 0xF0:                    // Lock
 962     assert(os::is_MP(), "only on MP");
 963     goto again_after_prefix;
 964 
 965   case 0xF3:                    // For SSE
 966   case 0xF2:                    // For SSE2
 967     switch (0xFF & *ip++) {
 968     case REX:
 969     case REX_B:
 970     case REX_X:
 971     case REX_XB:
 972     case REX_R:
 973     case REX_RB:
 974     case REX_RX:
 975     case REX_RXB:
 976     case REX_W:
 977     case REX_WB:
 978     case REX_WX:
 979     case REX_WXB:
 980     case REX_WR:
 981     case REX_WRB:
 982     case REX_WRX:
 983     case REX_WRXB:
 984       NOT_LP64(assert(false, "found 64bit prefix"));
 985       ip++;
 986     default:
 987       ip++;
 988     }
 989     debug_only(has_disp32 = true); // has both kinds of operands!
 990     break;
 991 
 992   default:
 993     ShouldNotReachHere();
 994 
 995 #undef REP8
 996 #undef REP16
 997   }
 998 
 999   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
1000 #ifdef _LP64
1001   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1002 #else
1003   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1004   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1005 #endif // LP64
1006   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1007 
1008   // parse the output of emit_operand
1009   int op2 = 0xFF & *ip++;
1010   int base = op2 & 0x07;
1011   int op3 = -1;
1012   const int b100 = 4;
1013   const int b101 = 5;
1014   if (base == b100 && (op2 >> 6) != 3) {
1015     op3 = 0xFF & *ip++;
1016     base = op3 & 0x07;   // refetch the base
1017   }
1018   // now ip points at the disp (if any)
1019 
1020   switch (op2 >> 6) {
1021   case 0:
1022     // [00 reg  100][ss index base]
1023     // [00 reg  100][00   100  esp]
1024     // [00 reg base]
1025     // [00 reg  100][ss index  101][disp32]
1026     // [00 reg  101]               [disp32]
1027 
1028     if (base == b101) {
1029       if (which == disp32_operand)
1030         return ip;              // caller wants the disp32
1031       ip += 4;                  // skip the disp32
1032     }
1033     break;
1034 
1035   case 1:
1036     // [01 reg  100][ss index base][disp8]
1037     // [01 reg  100][00   100  esp][disp8]
1038     // [01 reg base]               [disp8]
1039     ip += 1;                    // skip the disp8
1040     break;
1041 
1042   case 2:
1043     // [10 reg  100][ss index base][disp32]
1044     // [10 reg  100][00   100  esp][disp32]
1045     // [10 reg base]               [disp32]
1046     if (which == disp32_operand)
1047       return ip;                // caller wants the disp32
1048     ip += 4;                    // skip the disp32
1049     break;
1050 
1051   case 3:
1052     // [11 reg base]  (not a memory addressing mode)
1053     break;
1054   }
1055 
1056   if (which == end_pc_operand) {
1057     return ip + tail_size;
1058   }
1059 
1060 #ifdef _LP64
1061   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1062 #else
1063   assert(which == imm_operand, "instruction has only an imm field");
1064 #endif // LP64
1065   return ip;
1066 }
1067 
1068 address Assembler::locate_next_instruction(address inst) {
1069   // Secretly share code with locate_operand:
1070   return locate_operand(inst, end_pc_operand);
1071 }
1072 
1073 
1074 #ifdef ASSERT
1075 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1076   address inst = inst_mark();
1077   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1078   address opnd;
1079 
1080   Relocation* r = rspec.reloc();
1081   if (r->type() == relocInfo::none) {
1082     return;
1083   } else if (r->is_call() || format == call32_operand) {
1084     // assert(format == imm32_operand, "cannot specify a nonzero format");
1085     opnd = locate_operand(inst, call32_operand);
1086   } else if (r->is_data()) {
1087     assert(format == imm_operand || format == disp32_operand
1088            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1089     opnd = locate_operand(inst, (WhichOperand)format);
1090   } else {
1091     assert(format == imm_operand, "cannot specify a format");
1092     return;
1093   }
1094   assert(opnd == pc(), "must put operand where relocs can find it");
1095 }
1096 #endif // ASSERT
1097 
1098 void Assembler::emit_operand32(Register reg, Address adr) {
1099   assert(reg->encoding() < 8, "no extended registers");
1100   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1101   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1102                adr._rspec);
1103 }
1104 
1105 void Assembler::emit_operand(Register reg, Address adr,
1106                              int rip_relative_correction) {
1107   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1108                adr._rspec,
1109                rip_relative_correction);
1110 }
1111 
1112 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1113   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1114                adr._rspec);
1115 }
1116 
1117 // MMX operations
1118 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1119   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1120   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1121 }
1122 
1123 // work around gcc (3.2.1-7a) bug
1124 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1125   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1126   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1127 }
1128 
1129 
1130 void Assembler::emit_farith(int b1, int b2, int i) {
1131   assert(isByte(b1) && isByte(b2), "wrong opcode");
1132   assert(0 <= i &&  i < 8, "illegal stack offset");
1133   emit_int8(b1);
1134   emit_int8(b2 + i);
1135 }
1136 
1137 
1138 // Now the Assembler instructions (identical for 32/64 bits)
1139 
1140 void Assembler::adcl(Address dst, int32_t imm32) {
1141   InstructionMark im(this);
1142   prefix(dst);
1143   emit_arith_operand(0x81, rdx, dst, imm32);
1144 }
1145 
1146 void Assembler::adcl(Address dst, Register src) {
1147   InstructionMark im(this);
1148   prefix(dst, src);
1149   emit_int8(0x11);
1150   emit_operand(src, dst);
1151 }
1152 
1153 void Assembler::adcl(Register dst, int32_t imm32) {
1154   prefix(dst);
1155   emit_arith(0x81, 0xD0, dst, imm32);
1156 }
1157 
1158 void Assembler::adcl(Register dst, Address src) {
1159   InstructionMark im(this);
1160   prefix(src, dst);
1161   emit_int8(0x13);
1162   emit_operand(dst, src);
1163 }
1164 
1165 void Assembler::adcl(Register dst, Register src) {
1166   (void) prefix_and_encode(dst->encoding(), src->encoding());
1167   emit_arith(0x13, 0xC0, dst, src);
1168 }
1169 
1170 void Assembler::addl(Address dst, int32_t imm32) {
1171   InstructionMark im(this);
1172   prefix(dst);
1173   emit_arith_operand(0x81, rax, dst, imm32);
1174 }
1175 
1176 void Assembler::addl(Address dst, Register src) {
1177   InstructionMark im(this);
1178   prefix(dst, src);
1179   emit_int8(0x01);
1180   emit_operand(src, dst);
1181 }
1182 
1183 void Assembler::addl(Register dst, int32_t imm32) {
1184   prefix(dst);
1185   emit_arith(0x81, 0xC0, dst, imm32);
1186 }
1187 
1188 void Assembler::addl(Register dst, Address src) {
1189   InstructionMark im(this);
1190   prefix(src, dst);
1191   emit_int8(0x03);
1192   emit_operand(dst, src);
1193 }
1194 
1195 void Assembler::addl(Register dst, Register src) {
1196   (void) prefix_and_encode(dst->encoding(), src->encoding());
1197   emit_arith(0x03, 0xC0, dst, src);
1198 }
1199 
1200 void Assembler::addr_nop_4() {
1201   assert(UseAddressNop, "no CPU support");
1202   // 4 bytes: NOP DWORD PTR [EAX+0]
1203   emit_int8(0x0F);
1204   emit_int8(0x1F);
1205   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1206   emit_int8(0);    // 8-bits offset (1 byte)
1207 }
1208 
1209 void Assembler::addr_nop_5() {
1210   assert(UseAddressNop, "no CPU support");
1211   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1212   emit_int8(0x0F);
1213   emit_int8(0x1F);
1214   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1215   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1216   emit_int8(0);    // 8-bits offset (1 byte)
1217 }
1218 
1219 void Assembler::addr_nop_7() {
1220   assert(UseAddressNop, "no CPU support");
1221   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1222   emit_int8(0x0F);
1223   emit_int8(0x1F);
1224   emit_int8((unsigned char)0x80);
1225                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1226   emit_int32(0);   // 32-bits offset (4 bytes)
1227 }
1228 
1229 void Assembler::addr_nop_8() {
1230   assert(UseAddressNop, "no CPU support");
1231   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1232   emit_int8(0x0F);
1233   emit_int8(0x1F);
1234   emit_int8((unsigned char)0x84);
1235                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1236   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1237   emit_int32(0);   // 32-bits offset (4 bytes)
1238 }
1239 
1240 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1241   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1242   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1243   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1244   emit_int8(0x58);
1245   emit_int8((unsigned char)(0xC0 | encode));
1246 }
1247 
1248 void Assembler::addsd(XMMRegister dst, Address src) {
1249   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1250   InstructionMark im(this);
1251   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1252   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1253   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1254   emit_int8(0x58);
1255   emit_operand(dst, src);
1256 }
1257 
1258 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1259   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1260   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1261   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1262   emit_int8(0x58);
1263   emit_int8((unsigned char)(0xC0 | encode));
1264 }
1265 
1266 void Assembler::addss(XMMRegister dst, Address src) {
1267   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1268   InstructionMark im(this);
1269   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1270   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1271   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1272   emit_int8(0x58);
1273   emit_operand(dst, src);
1274 }
1275 
1276 void Assembler::aesdec(XMMRegister dst, Address src) {
1277   assert(VM_Version::supports_aes(), "");
1278   InstructionMark im(this);
1279   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1280   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1281   emit_int8((unsigned char)0xDE);
1282   emit_operand(dst, src);
1283 }
1284 
1285 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1286   assert(VM_Version::supports_aes(), "");
1287   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1288   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1289   emit_int8((unsigned char)0xDE);
1290   emit_int8(0xC0 | encode);
1291 }
1292 
1293 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1294   assert(VM_Version::supports_aes(), "");
1295   InstructionMark im(this);
1296   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1297   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1298   emit_int8((unsigned char)0xDF);
1299   emit_operand(dst, src);
1300 }
1301 
1302 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1303   assert(VM_Version::supports_aes(), "");
1304   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1305   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1306   emit_int8((unsigned char)0xDF);
1307   emit_int8((unsigned char)(0xC0 | encode));
1308 }
1309 
1310 void Assembler::aesenc(XMMRegister dst, Address src) {
1311   assert(VM_Version::supports_aes(), "");
1312   InstructionMark im(this);
1313   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1314   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1315   emit_int8((unsigned char)0xDC);
1316   emit_operand(dst, src);
1317 }
1318 
1319 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1320   assert(VM_Version::supports_aes(), "");
1321   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1322   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1323   emit_int8((unsigned char)0xDC);
1324   emit_int8(0xC0 | encode);
1325 }
1326 
1327 void Assembler::aesenclast(XMMRegister dst, Address src) {
1328   assert(VM_Version::supports_aes(), "");
1329   InstructionMark im(this);
1330   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1331   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1332   emit_int8((unsigned char)0xDD);
1333   emit_operand(dst, src);
1334 }
1335 
1336 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1337   assert(VM_Version::supports_aes(), "");
1338   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1339   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1340   emit_int8((unsigned char)0xDD);
1341   emit_int8((unsigned char)(0xC0 | encode));
1342 }
1343 
1344 void Assembler::andl(Address dst, int32_t imm32) {
1345   InstructionMark im(this);
1346   prefix(dst);
1347   emit_int8((unsigned char)0x81);
1348   emit_operand(rsp, dst, 4);
1349   emit_int32(imm32);
1350 }
1351 
1352 void Assembler::andl(Register dst, int32_t imm32) {
1353   prefix(dst);
1354   emit_arith(0x81, 0xE0, dst, imm32);
1355 }
1356 
1357 void Assembler::andl(Register dst, Address src) {
1358   InstructionMark im(this);
1359   prefix(src, dst);
1360   emit_int8(0x23);
1361   emit_operand(dst, src);
1362 }
1363 
1364 void Assembler::andl(Register dst, Register src) {
1365   (void) prefix_and_encode(dst->encoding(), src->encoding());
1366   emit_arith(0x23, 0xC0, dst, src);
1367 }
1368 
1369 void Assembler::andnl(Register dst, Register src1, Register src2) {
1370   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1371   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1372   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1373   emit_int8((unsigned char)0xF2);
1374   emit_int8((unsigned char)(0xC0 | encode));
1375 }
1376 
1377 void Assembler::andnl(Register dst, Register src1, Address src2) {
1378   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1379   InstructionMark im(this);
1380   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1381   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1382   emit_int8((unsigned char)0xF2);
1383   emit_operand(dst, src2);
1384 }
1385 
1386 void Assembler::bsfl(Register dst, Register src) {
1387   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1388   emit_int8(0x0F);
1389   emit_int8((unsigned char)0xBC);
1390   emit_int8((unsigned char)(0xC0 | encode));
1391 }
1392 
1393 void Assembler::bsrl(Register dst, Register src) {
1394   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1395   emit_int8(0x0F);
1396   emit_int8((unsigned char)0xBD);
1397   emit_int8((unsigned char)(0xC0 | encode));
1398 }
1399 
1400 void Assembler::bswapl(Register reg) { // bswap
1401   int encode = prefix_and_encode(reg->encoding());
1402   emit_int8(0x0F);
1403   emit_int8((unsigned char)(0xC8 | encode));
1404 }
1405 
1406 void Assembler::blsil(Register dst, Register src) {
1407   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1408   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1409   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1410   emit_int8((unsigned char)0xF3);
1411   emit_int8((unsigned char)(0xC0 | encode));
1412 }
1413 
1414 void Assembler::blsil(Register dst, Address src) {
1415   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1416   InstructionMark im(this);
1417   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1418   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1419   emit_int8((unsigned char)0xF3);
1420   emit_operand(rbx, src);
1421 }
1422 
1423 void Assembler::blsmskl(Register dst, Register src) {
1424   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1425   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1426   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1427   emit_int8((unsigned char)0xF3);
1428   emit_int8((unsigned char)(0xC0 | encode));
1429 }
1430 
1431 void Assembler::blsmskl(Register dst, Address src) {
1432   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1433   InstructionMark im(this);
1434   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1435   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1436   emit_int8((unsigned char)0xF3);
1437   emit_operand(rdx, src);
1438 }
1439 
1440 void Assembler::blsrl(Register dst, Register src) {
1441   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1442   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1443   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1444   emit_int8((unsigned char)0xF3);
1445   emit_int8((unsigned char)(0xC0 | encode));
1446 }
1447 
1448 void Assembler::blsrl(Register dst, Address src) {
1449   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1450   InstructionMark im(this);
1451   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1452   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1453   emit_int8((unsigned char)0xF3);
1454   emit_operand(rcx, src);
1455 }
1456 
1457 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1458   // suspect disp32 is always good
1459   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1460 
1461   if (L.is_bound()) {
1462     const int long_size = 5;
1463     int offs = (int)( target(L) - pc() );
1464     assert(offs <= 0, "assembler error");
1465     InstructionMark im(this);
1466     // 1110 1000 #32-bit disp
1467     emit_int8((unsigned char)0xE8);
1468     emit_data(offs - long_size, rtype, operand);
1469   } else {
1470     InstructionMark im(this);
1471     // 1110 1000 #32-bit disp
1472     L.add_patch_at(code(), locator());
1473 
1474     emit_int8((unsigned char)0xE8);
1475     emit_data(int(0), rtype, operand);
1476   }
1477 }
1478 
1479 void Assembler::call(Register dst) {
1480   int encode = prefix_and_encode(dst->encoding());
1481   emit_int8((unsigned char)0xFF);
1482   emit_int8((unsigned char)(0xD0 | encode));
1483 }
1484 
1485 
1486 void Assembler::call(Address adr) {
1487   InstructionMark im(this);
1488   prefix(adr);
1489   emit_int8((unsigned char)0xFF);
1490   emit_operand(rdx, adr);
1491 }
1492 
1493 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1494   assert(entry != NULL, "call most probably wrong");
1495   InstructionMark im(this);
1496   emit_int8((unsigned char)0xE8);
1497   intptr_t disp = entry - (pc() + sizeof(int32_t));
1498   assert(is_simm32(disp), "must be 32bit offset (call2)");
1499   // Technically, should use call32_operand, but this format is
1500   // implied by the fact that we're emitting a call instruction.
1501 
1502   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1503   emit_data((int) disp, rspec, operand);
1504 }
1505 
1506 void Assembler::cdql() {
1507   emit_int8((unsigned char)0x99);
1508 }
1509 
1510 void Assembler::cld() {
1511   emit_int8((unsigned char)0xFC);
1512 }
1513 
1514 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1515   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1516   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1517   emit_int8(0x0F);
1518   emit_int8(0x40 | cc);
1519   emit_int8((unsigned char)(0xC0 | encode));
1520 }
1521 
1522 
1523 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1524   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1525   prefix(src, dst);
1526   emit_int8(0x0F);
1527   emit_int8(0x40 | cc);
1528   emit_operand(dst, src);
1529 }
1530 
1531 void Assembler::cmpb(Address dst, int imm8) {
1532   InstructionMark im(this);
1533   prefix(dst);
1534   emit_int8((unsigned char)0x80);
1535   emit_operand(rdi, dst, 1);
1536   emit_int8(imm8);
1537 }
1538 
1539 void Assembler::cmpl(Address dst, int32_t imm32) {
1540   InstructionMark im(this);
1541   prefix(dst);
1542   emit_int8((unsigned char)0x81);
1543   emit_operand(rdi, dst, 4);
1544   emit_int32(imm32);
1545 }
1546 
1547 void Assembler::cmpl(Register dst, int32_t imm32) {
1548   prefix(dst);
1549   emit_arith(0x81, 0xF8, dst, imm32);
1550 }
1551 
1552 void Assembler::cmpl(Register dst, Register src) {
1553   (void) prefix_and_encode(dst->encoding(), src->encoding());
1554   emit_arith(0x3B, 0xC0, dst, src);
1555 }
1556 
1557 void Assembler::cmpl(Register dst, Address  src) {
1558   InstructionMark im(this);
1559   prefix(src, dst);
1560   emit_int8((unsigned char)0x3B);
1561   emit_operand(dst, src);
1562 }
1563 
1564 void Assembler::cmpw(Address dst, int imm16) {
1565   InstructionMark im(this);
1566   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1567   emit_int8(0x66);
1568   emit_int8((unsigned char)0x81);
1569   emit_operand(rdi, dst, 2);
1570   emit_int16(imm16);
1571 }
1572 
1573 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1574 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1575 // The ZF is set if the compared values were equal, and cleared otherwise.
1576 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1577   InstructionMark im(this);
1578   prefix(adr, reg);
1579   emit_int8(0x0F);
1580   emit_int8((unsigned char)0xB1);
1581   emit_operand(reg, adr);
1582 }
1583 
1584 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1585 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1586 // The ZF is set if the compared values were equal, and cleared otherwise.
1587 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1588   InstructionMark im(this);
1589   prefix(adr, reg, true);
1590   emit_int8(0x0F);
1591   emit_int8((unsigned char)0xB0);
1592   emit_operand(reg, adr);
1593 }
1594 
1595 void Assembler::comisd(XMMRegister dst, Address src) {
1596   // NOTE: dbx seems to decode this as comiss even though the
1597   // 0x66 is there. Strangly ucomisd comes out correct
1598   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1599   InstructionMark im(this);
1600   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1601   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1602   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1603   emit_int8(0x2F);
1604   emit_operand(dst, src);
1605 }
1606 
1607 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1608   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1609   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1610   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1611   emit_int8(0x2F);
1612   emit_int8((unsigned char)(0xC0 | encode));
1613 }
1614 
1615 void Assembler::comiss(XMMRegister dst, Address src) {
1616   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1617   InstructionMark im(this);
1618   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1619   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1620   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1621   emit_int8(0x2F);
1622   emit_operand(dst, src);
1623 }
1624 
1625 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1626   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1627   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1628   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1629   emit_int8(0x2F);
1630   emit_int8((unsigned char)(0xC0 | encode));
1631 }
1632 
1633 void Assembler::cpuid() {
1634   emit_int8(0x0F);
1635   emit_int8((unsigned char)0xA2);
1636 }
1637 
1638 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1639 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1640 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1641 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1642 //
1643 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1644 //
1645 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1646 //
1647 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1648 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1649   assert(VM_Version::supports_sse4_2(), "");
1650   int8_t w = 0x01;
1651   Prefix p = Prefix_EMPTY;
1652 
1653   emit_int8((int8_t)0xF2);
1654   switch (sizeInBytes) {
1655   case 1:
1656     w = 0;
1657     break;
1658   case 2:
1659   case 4:
1660     break;
1661   LP64_ONLY(case 8:)
1662     // This instruction is not valid in 32 bits
1663     // Note:
1664     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1665     //
1666     // Page B - 72   Vol. 2C says
1667     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1668     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1669     //                                                                            F0!!!
1670     // while 3 - 208 Vol. 2A
1671     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1672     //
1673     // the 0 on a last bit is reserved for a different flavor of this instruction :
1674     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1675     p = REX_W;
1676     break;
1677   default:
1678     assert(0, "Unsupported value for a sizeInBytes argument");
1679     break;
1680   }
1681   LP64_ONLY(prefix(crc, v, p);)
1682   emit_int8((int8_t)0x0F);
1683   emit_int8(0x38);
1684   emit_int8((int8_t)(0xF0 | w));
1685   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1686 }
1687 
1688 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1689   assert(VM_Version::supports_sse4_2(), "");
1690   InstructionMark im(this);
1691   int8_t w = 0x01;
1692   Prefix p = Prefix_EMPTY;
1693 
1694   emit_int8((int8_t)0xF2);
1695   switch (sizeInBytes) {
1696   case 1:
1697     w = 0;
1698     break;
1699   case 2:
1700   case 4:
1701     break;
1702   LP64_ONLY(case 8:)
1703     // This instruction is not valid in 32 bits
1704     p = REX_W;
1705     break;
1706   default:
1707     assert(0, "Unsupported value for a sizeInBytes argument");
1708     break;
1709   }
1710   LP64_ONLY(prefix(crc, adr, p);)
1711   emit_int8((int8_t)0x0F);
1712   emit_int8(0x38);
1713   emit_int8((int8_t)(0xF0 | w));
1714   emit_operand(crc, adr);
1715 }
1716 
1717 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1718   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1719   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1720   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1721   emit_int8((unsigned char)0xE6);
1722   emit_int8((unsigned char)(0xC0 | encode));
1723 }
1724 
1725 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1727   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1728   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1729   emit_int8(0x5B);
1730   emit_int8((unsigned char)(0xC0 | encode));
1731 }
1732 
1733 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1734   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1735   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1736   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1737   emit_int8(0x5A);
1738   emit_int8((unsigned char)(0xC0 | encode));
1739 }
1740 
1741 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1742   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1743   InstructionMark im(this);
1744   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1745   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1746   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1747   emit_int8(0x5A);
1748   emit_operand(dst, src);
1749 }
1750 
1751 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1752   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1753   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1754   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1755   emit_int8(0x2A);
1756   emit_int8((unsigned char)(0xC0 | encode));
1757 }
1758 
1759 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1760   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1761   InstructionMark im(this);
1762   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1763   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1764   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1765   emit_int8(0x2A);
1766   emit_operand(dst, src);
1767 }
1768 
1769 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1770   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1771   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1772   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1773   emit_int8(0x2A);
1774   emit_int8((unsigned char)(0xC0 | encode));
1775 }
1776 
1777 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1778   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1779   InstructionMark im(this);
1780   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1781   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1782   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1783   emit_int8(0x2A);
1784   emit_operand(dst, src);
1785 }
1786 
1787 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1788   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1789   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1790   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1791   emit_int8(0x2A);
1792   emit_int8((unsigned char)(0xC0 | encode));
1793 }
1794 
1795 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1796   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1797   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1798   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1799   emit_int8(0x5A);
1800   emit_int8((unsigned char)(0xC0 | encode));
1801 }
1802 
1803 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1804   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1805   InstructionMark im(this);
1806   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1807   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1808   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1809   emit_int8(0x5A);
1810   emit_operand(dst, src);
1811 }
1812 
1813 
1814 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1815   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1816   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1817   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1818   emit_int8(0x2C);
1819   emit_int8((unsigned char)(0xC0 | encode));
1820 }
1821 
1822 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1823   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1824   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1825   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1826   emit_int8(0x2C);
1827   emit_int8((unsigned char)(0xC0 | encode));
1828 }
1829 
1830 void Assembler::decl(Address dst) {
1831   // Don't use it directly. Use MacroAssembler::decrement() instead.
1832   InstructionMark im(this);
1833   prefix(dst);
1834   emit_int8((unsigned char)0xFF);
1835   emit_operand(rcx, dst);
1836 }
1837 
1838 void Assembler::divsd(XMMRegister dst, Address src) {
1839   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1840   InstructionMark im(this);
1841   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1842   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1843   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1844   emit_int8(0x5E);
1845   emit_operand(dst, src);
1846 }
1847 
1848 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1849   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1850   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1851   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1852   emit_int8(0x5E);
1853   emit_int8((unsigned char)(0xC0 | encode));
1854 }
1855 
1856 void Assembler::divss(XMMRegister dst, Address src) {
1857   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1858   InstructionMark im(this);
1859   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1860   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1861   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1862   emit_int8(0x5E);
1863   emit_operand(dst, src);
1864 }
1865 
1866 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1867   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1868   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1869   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1870   emit_int8(0x5E);
1871   emit_int8((unsigned char)(0xC0 | encode));
1872 }
1873 
1874 void Assembler::emms() {
1875   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1876   emit_int8(0x0F);
1877   emit_int8(0x77);
1878 }
1879 
1880 void Assembler::hlt() {
1881   emit_int8((unsigned char)0xF4);
1882 }
1883 
1884 void Assembler::idivl(Register src) {
1885   int encode = prefix_and_encode(src->encoding());
1886   emit_int8((unsigned char)0xF7);
1887   emit_int8((unsigned char)(0xF8 | encode));
1888 }
1889 
1890 void Assembler::divl(Register src) { // Unsigned
1891   int encode = prefix_and_encode(src->encoding());
1892   emit_int8((unsigned char)0xF7);
1893   emit_int8((unsigned char)(0xF0 | encode));
1894 }
1895 
1896 void Assembler::imull(Register src) {
1897   int encode = prefix_and_encode(src->encoding());
1898   emit_int8((unsigned char)0xF7);
1899   emit_int8((unsigned char)(0xE8 | encode));
1900 }
1901 
1902 void Assembler::imull(Register dst, Register src) {
1903   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1904   emit_int8(0x0F);
1905   emit_int8((unsigned char)0xAF);
1906   emit_int8((unsigned char)(0xC0 | encode));
1907 }
1908 
1909 
1910 void Assembler::imull(Register dst, Register src, int value) {
1911   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1912   if (is8bit(value)) {
1913     emit_int8(0x6B);
1914     emit_int8((unsigned char)(0xC0 | encode));
1915     emit_int8(value & 0xFF);
1916   } else {
1917     emit_int8(0x69);
1918     emit_int8((unsigned char)(0xC0 | encode));
1919     emit_int32(value);
1920   }
1921 }
1922 
1923 void Assembler::imull(Register dst, Address src) {
1924   InstructionMark im(this);
1925   prefix(src, dst);
1926   emit_int8(0x0F);
1927   emit_int8((unsigned char) 0xAF);
1928   emit_operand(dst, src);
1929 }
1930 
1931 
1932 void Assembler::incl(Address dst) {
1933   // Don't use it directly. Use MacroAssembler::increment() instead.
1934   InstructionMark im(this);
1935   prefix(dst);
1936   emit_int8((unsigned char)0xFF);
1937   emit_operand(rax, dst);
1938 }
1939 
1940 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1941   InstructionMark im(this);
1942   assert((0 <= cc) && (cc < 16), "illegal cc");
1943   if (L.is_bound()) {
1944     address dst = target(L);
1945     assert(dst != NULL, "jcc most probably wrong");
1946 
1947     const int short_size = 2;
1948     const int long_size = 6;
1949     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1950     if (maybe_short && is8bit(offs - short_size)) {
1951       // 0111 tttn #8-bit disp
1952       emit_int8(0x70 | cc);
1953       emit_int8((offs - short_size) & 0xFF);
1954     } else {
1955       // 0000 1111 1000 tttn #32-bit disp
1956       assert(is_simm32(offs - long_size),
1957              "must be 32bit offset (call4)");
1958       emit_int8(0x0F);
1959       emit_int8((unsigned char)(0x80 | cc));
1960       emit_int32(offs - long_size);
1961     }
1962   } else {
1963     // Note: could eliminate cond. jumps to this jump if condition
1964     //       is the same however, seems to be rather unlikely case.
1965     // Note: use jccb() if label to be bound is very close to get
1966     //       an 8-bit displacement
1967     L.add_patch_at(code(), locator());
1968     emit_int8(0x0F);
1969     emit_int8((unsigned char)(0x80 | cc));
1970     emit_int32(0);
1971   }
1972 }
1973 
1974 void Assembler::jccb(Condition cc, Label& L) {
1975   if (L.is_bound()) {
1976     const int short_size = 2;
1977     address entry = target(L);
1978 #ifdef ASSERT
1979     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1980     intptr_t delta = short_branch_delta();
1981     if (delta != 0) {
1982       dist += (dist < 0 ? (-delta) :delta);
1983     }
1984     assert(is8bit(dist), "Dispacement too large for a short jmp");
1985 #endif
1986     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1987     // 0111 tttn #8-bit disp
1988     emit_int8(0x70 | cc);
1989     emit_int8((offs - short_size) & 0xFF);
1990   } else {
1991     InstructionMark im(this);
1992     L.add_patch_at(code(), locator());
1993     emit_int8(0x70 | cc);
1994     emit_int8(0);
1995   }
1996 }
1997 
1998 void Assembler::jmp(Address adr) {
1999   InstructionMark im(this);
2000   prefix(adr);
2001   emit_int8((unsigned char)0xFF);
2002   emit_operand(rsp, adr);
2003 }
2004 
2005 void Assembler::jmp(Label& L, bool maybe_short) {
2006   if (L.is_bound()) {
2007     address entry = target(L);
2008     assert(entry != NULL, "jmp most probably wrong");
2009     InstructionMark im(this);
2010     const int short_size = 2;
2011     const int long_size = 5;
2012     intptr_t offs = entry - pc();
2013     if (maybe_short && is8bit(offs - short_size)) {
2014       emit_int8((unsigned char)0xEB);
2015       emit_int8((offs - short_size) & 0xFF);
2016     } else {
2017       emit_int8((unsigned char)0xE9);
2018       emit_int32(offs - long_size);
2019     }
2020   } else {
2021     // By default, forward jumps are always 32-bit displacements, since
2022     // we can't yet know where the label will be bound.  If you're sure that
2023     // the forward jump will not run beyond 256 bytes, use jmpb to
2024     // force an 8-bit displacement.
2025     InstructionMark im(this);
2026     L.add_patch_at(code(), locator());
2027     emit_int8((unsigned char)0xE9);
2028     emit_int32(0);
2029   }
2030 }
2031 
2032 void Assembler::jmp(Register entry) {
2033   int encode = prefix_and_encode(entry->encoding());
2034   emit_int8((unsigned char)0xFF);
2035   emit_int8((unsigned char)(0xE0 | encode));
2036 }
2037 
2038 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2039   InstructionMark im(this);
2040   emit_int8((unsigned char)0xE9);
2041   assert(dest != NULL, "must have a target");
2042   intptr_t disp = dest - (pc() + sizeof(int32_t));
2043   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2044   emit_data(disp, rspec.reloc(), call32_operand);
2045 }
2046 
2047 void Assembler::jmpb(Label& L) {
2048   if (L.is_bound()) {
2049     const int short_size = 2;
2050     address entry = target(L);
2051     assert(entry != NULL, "jmp most probably wrong");
2052 #ifdef ASSERT
2053     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2054     intptr_t delta = short_branch_delta();
2055     if (delta != 0) {
2056       dist += (dist < 0 ? (-delta) :delta);
2057     }
2058     assert(is8bit(dist), "Dispacement too large for a short jmp");
2059 #endif
2060     intptr_t offs = entry - pc();
2061     emit_int8((unsigned char)0xEB);
2062     emit_int8((offs - short_size) & 0xFF);
2063   } else {
2064     InstructionMark im(this);
2065     L.add_patch_at(code(), locator());
2066     emit_int8((unsigned char)0xEB);
2067     emit_int8(0);
2068   }
2069 }
2070 
2071 void Assembler::ldmxcsr( Address src) {
2072   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2073   InstructionMark im(this);
2074   prefix(src);
2075   emit_int8(0x0F);
2076   emit_int8((unsigned char)0xAE);
2077   emit_operand(as_Register(2), src);
2078 }
2079 
2080 void Assembler::leal(Register dst, Address src) {
2081   InstructionMark im(this);
2082 #ifdef _LP64
2083   emit_int8(0x67); // addr32
2084   prefix(src, dst);
2085 #endif // LP64
2086   emit_int8((unsigned char)0x8D);
2087   emit_operand(dst, src);
2088 }
2089 
2090 void Assembler::lfence() {
2091   emit_int8(0x0F);
2092   emit_int8((unsigned char)0xAE);
2093   emit_int8((unsigned char)0xE8);
2094 }
2095 
2096 void Assembler::lock() {
2097   emit_int8((unsigned char)0xF0);
2098 }
2099 
2100 void Assembler::lzcntl(Register dst, Register src) {
2101   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2102   emit_int8((unsigned char)0xF3);
2103   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2104   emit_int8(0x0F);
2105   emit_int8((unsigned char)0xBD);
2106   emit_int8((unsigned char)(0xC0 | encode));
2107 }
2108 
2109 // Emit mfence instruction
2110 void Assembler::mfence() {
2111   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2112   emit_int8(0x0F);
2113   emit_int8((unsigned char)0xAE);
2114   emit_int8((unsigned char)0xF0);
2115 }
2116 
2117 void Assembler::mov(Register dst, Register src) {
2118   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2119 }
2120 
2121 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2122   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2123   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2124   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2125   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2126   emit_int8(0x28);
2127   emit_int8((unsigned char)(0xC0 | encode));
2128 }
2129 
2130 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2131   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2132   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2133   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2134   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2135   emit_int8(0x28);
2136   emit_int8((unsigned char)(0xC0 | encode));
2137 }
2138 
2139 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2140   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2141   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2142   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2143   emit_int8(0x16);
2144   emit_int8((unsigned char)(0xC0 | encode));
2145 }
2146 
2147 void Assembler::movb(Register dst, Address src) {
2148   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2149   InstructionMark im(this);
2150   prefix(src, dst, true);
2151   emit_int8((unsigned char)0x8A);
2152   emit_operand(dst, src);
2153 }
2154 
2155 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2156   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2157   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_128bit;
2158   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2159   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2160   emit_int8(0x12);
2161   emit_int8(0xC0 | encode);
2162 }
2163 
2164 void Assembler::kmovbl(KRegister dst, Register src) {
2165   assert(VM_Version::supports_avx512dq(), "");
2166   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2167   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2168   emit_int8((unsigned char)0x92);
2169   emit_int8((unsigned char)(0xC0 | encode));
2170 }
2171 
2172 void Assembler::kmovbl(Register dst, KRegister src) {
2173   assert(VM_Version::supports_avx512dq(), "");
2174   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2175   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2176   emit_int8((unsigned char)0x93);
2177   emit_int8((unsigned char)(0xC0 | encode));
2178 }
2179 
2180 void Assembler::kmovwl(KRegister dst, Register src) {
2181   assert(VM_Version::supports_evex(), "");
2182   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2183   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2184   emit_int8((unsigned char)0x92);
2185   emit_int8((unsigned char)(0xC0 | encode));
2186 }
2187 
2188 void Assembler::kmovwl(Register dst, KRegister src) {
2189   assert(VM_Version::supports_evex(), "");
2190   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2191   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2192   emit_int8((unsigned char)0x93);
2193   emit_int8((unsigned char)(0xC0 | encode));
2194 }
2195 
2196 void Assembler::kmovdl(KRegister dst, Register src) {
2197   assert(VM_Version::supports_avx512bw(), "");
2198   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2199   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2200   emit_int8((unsigned char)0x92);
2201   emit_int8((unsigned char)(0xC0 | encode));
2202 }
2203 
2204 void Assembler::kmovdl(Register dst, KRegister src) {
2205   assert(VM_Version::supports_avx512bw(), "");
2206   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2207   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2208   emit_int8((unsigned char)0x93);
2209   emit_int8((unsigned char)(0xC0 | encode));
2210 }
2211 
2212 void Assembler::kmovql(KRegister dst, KRegister src) {
2213   assert(VM_Version::supports_avx512bw(), "");
2214   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2215   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2216   emit_int8((unsigned char)0x90);
2217   emit_int8((unsigned char)(0xC0 | encode));
2218 }
2219 
2220 void Assembler::kmovql(KRegister dst, Address src) {
2221   assert(VM_Version::supports_avx512bw(), "");
2222   InstructionMark im(this);
2223   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2224   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2225   emit_int8((unsigned char)0x90);
2226   emit_operand((Register)dst, src);
2227 }
2228 
2229 void Assembler::kmovql(Address dst, KRegister src) {
2230   assert(VM_Version::supports_avx512bw(), "");
2231   InstructionMark im(this);
2232   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2233   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2234   emit_int8((unsigned char)0x90);
2235   emit_operand((Register)src, dst);
2236 }
2237 
2238 void Assembler::kmovql(KRegister dst, Register src) {
2239   assert(VM_Version::supports_avx512bw(), "");
2240   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2241   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2242   emit_int8((unsigned char)0x92);
2243   emit_int8((unsigned char)(0xC0 | encode));
2244 }
2245 
2246 void Assembler::kmovql(Register dst, KRegister src) {
2247   assert(VM_Version::supports_avx512bw(), "");
2248   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2249   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2250   emit_int8((unsigned char)0x93);
2251   emit_int8((unsigned char)(0xC0 | encode));
2252 }
2253 
2254 // This instruction produces ZF or CF flags
2255 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2256   assert(VM_Version::supports_avx512dq(), "");
2257   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2258   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2259   emit_int8((unsigned char)0x98);
2260   emit_int8((unsigned char)(0xC0 | encode));
2261 }
2262 
2263 // This instruction produces ZF or CF flags
2264 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2265   assert(VM_Version::supports_evex(), "");
2266   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2267   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2268   emit_int8((unsigned char)0x98);
2269   emit_int8((unsigned char)(0xC0 | encode));
2270 }
2271 
2272 // This instruction produces ZF or CF flags
2273 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2274   assert(VM_Version::supports_avx512bw(), "");
2275   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2276   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2277   emit_int8((unsigned char)0x98);
2278   emit_int8((unsigned char)(0xC0 | encode));
2279 }
2280 
2281 // This instruction produces ZF or CF flags
2282 void Assembler::kortestql(KRegister src1, KRegister src2) {
2283   assert(VM_Version::supports_avx512bw(), "");
2284   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2285   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2286   emit_int8((unsigned char)0x98);
2287   emit_int8((unsigned char)(0xC0 | encode));
2288 }
2289 
2290 void Assembler::movb(Address dst, int imm8) {
2291   InstructionMark im(this);
2292    prefix(dst);
2293   emit_int8((unsigned char)0xC6);
2294   emit_operand(rax, dst, 1);
2295   emit_int8(imm8);
2296 }
2297 
2298 
2299 void Assembler::movb(Address dst, Register src) {
2300   assert(src->has_byte_register(), "must have byte register");
2301   InstructionMark im(this);
2302   prefix(dst, src, true);
2303   emit_int8((unsigned char)0x88);
2304   emit_operand(src, dst);
2305 }
2306 
2307 void Assembler::movdl(XMMRegister dst, Register src) {
2308   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2309   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2310   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2311   emit_int8(0x6E);
2312   emit_int8((unsigned char)(0xC0 | encode));
2313 }
2314 
2315 void Assembler::movdl(Register dst, XMMRegister src) {
2316   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2317   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2318   // swap src/dst to get correct prefix
2319   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2320   emit_int8(0x7E);
2321   emit_int8((unsigned char)(0xC0 | encode));
2322 }
2323 
2324 void Assembler::movdl(XMMRegister dst, Address src) {
2325   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2326   InstructionMark im(this);
2327   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2328   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2329   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2330   emit_int8(0x6E);
2331   emit_operand(dst, src);
2332 }
2333 
2334 void Assembler::movdl(Address dst, XMMRegister src) {
2335   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2336   InstructionMark im(this);
2337   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2338   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2339   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2340   emit_int8(0x7E);
2341   emit_operand(src, dst);
2342 }
2343 
2344 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2345   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2346   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2347   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2348   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2349   emit_int8(0x6F);
2350   emit_int8((unsigned char)(0xC0 | encode));
2351 }
2352 
2353 void Assembler::movdqa(XMMRegister dst, Address src) {
2354   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2355   InstructionMark im(this);
2356   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2357   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2358   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2359   emit_int8(0x6F);
2360   emit_operand(dst, src);
2361 }
2362 
2363 void Assembler::movdqu(XMMRegister dst, Address src) {
2364   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2365   InstructionMark im(this);
2366   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2367   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2368   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2369   emit_int8(0x6F);
2370   emit_operand(dst, src);
2371 }
2372 
2373 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2374   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2375   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2376   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2377   emit_int8(0x6F);
2378   emit_int8((unsigned char)(0xC0 | encode));
2379 }
2380 
2381 void Assembler::movdqu(Address dst, XMMRegister src) {
2382   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2383   InstructionMark im(this);
2384   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2385   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2386   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2387   emit_int8(0x7F);
2388   emit_operand(src, dst);
2389 }
2390 
2391 // Move Unaligned 256bit Vector
2392 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2393   assert(UseAVX > 0, "");
2394   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2395   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2396   emit_int8(0x6F);
2397   emit_int8((unsigned char)(0xC0 | encode));
2398 }
2399 
2400 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2401   assert(UseAVX > 0, "");
2402   InstructionMark im(this);
2403   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2404   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2405   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2406   emit_int8(0x6F);
2407   emit_operand(dst, src);
2408 }
2409 
2410 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2411   assert(UseAVX > 0, "");
2412   InstructionMark im(this);
2413   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2414   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2415   // swap src<->dst for encoding
2416   assert(src != xnoreg, "sanity");
2417   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2418   emit_int8(0x7F);
2419   emit_operand(src, dst);
2420 }
2421 
2422 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2423 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2424   assert(VM_Version::supports_evex(), "");
2425   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2426   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2427   emit_int8(0x6F);
2428   emit_int8((unsigned char)(0xC0 | encode));
2429 }
2430 
2431 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2432   assert(VM_Version::supports_evex(), "");
2433   InstructionMark im(this);
2434   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2435   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2436   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2437   emit_int8(0x6F);
2438   emit_operand(dst, src);
2439 }
2440 
2441 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2442   assert(VM_Version::supports_evex(), "");
2443   assert(src != xnoreg, "sanity");
2444   InstructionMark im(this);
2445   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2446   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2447   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2448   emit_int8(0x7F);
2449   emit_operand(src, dst);
2450 }
2451 
2452 void Assembler::evmovdquw(XMMRegister dst, XMMRegister src, int vector_len) {
2453   assert(VM_Version::supports_evex(), "");
2454   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2455   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2456   emit_int8(0x6F);
2457   emit_int8((unsigned char)(0xC0 | encode));
2458 }
2459 
2460 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2461   assert(VM_Version::supports_evex(), "");
2462   InstructionMark im(this);
2463   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2464   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2465   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2466   emit_int8(0x6F);
2467   emit_operand(dst, src);
2468 }
2469 
2470 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2471   assert(VM_Version::supports_evex(), "");
2472   assert(src != xnoreg, "sanity");
2473   InstructionMark im(this);
2474   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2475   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2476   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2477   emit_int8(0x7F);
2478   emit_operand(src, dst);
2479 }
2480 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2481   assert(VM_Version::supports_evex(), "");
2482   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2483   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2484   emit_int8(0x6F);
2485   emit_int8((unsigned char)(0xC0 | encode));
2486 }
2487 
2488 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2489   assert(VM_Version::supports_evex(), "");
2490   InstructionMark im(this);
2491   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ true);
2492   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2493   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2494   emit_int8(0x6F);
2495   emit_operand(dst, src);
2496 }
2497 
2498 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2499   assert(VM_Version::supports_evex(), "");
2500   assert(src != xnoreg, "sanity");
2501   InstructionMark im(this);
2502   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2503   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2504   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2505   emit_int8(0x7F);
2506   emit_operand(src, dst);
2507 }
2508 
2509 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2510   assert(VM_Version::supports_evex(), "");
2511   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2512   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2513   emit_int8(0x6F);
2514   emit_int8((unsigned char)(0xC0 | encode));
2515 }
2516 
2517 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2518   assert(VM_Version::supports_evex(), "");
2519   InstructionMark im(this);
2520   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2521   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2522   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2523   emit_int8(0x6F);
2524   emit_operand(dst, src);
2525 }
2526 
2527 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2528   assert(VM_Version::supports_evex(), "");
2529   assert(src != xnoreg, "sanity");
2530   InstructionMark im(this);
2531   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2532   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2533   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2534   emit_int8(0x7F);
2535   emit_operand(src, dst);
2536 }
2537 
2538 // Uses zero extension on 64bit
2539 
2540 void Assembler::movl(Register dst, int32_t imm32) {
2541   int encode = prefix_and_encode(dst->encoding());
2542   emit_int8((unsigned char)(0xB8 | encode));
2543   emit_int32(imm32);
2544 }
2545 
2546 void Assembler::movl(Register dst, Register src) {
2547   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2548   emit_int8((unsigned char)0x8B);
2549   emit_int8((unsigned char)(0xC0 | encode));
2550 }
2551 
2552 void Assembler::movl(Register dst, Address src) {
2553   InstructionMark im(this);
2554   prefix(src, dst);
2555   emit_int8((unsigned char)0x8B);
2556   emit_operand(dst, src);
2557 }
2558 
2559 void Assembler::movl(Address dst, int32_t imm32) {
2560   InstructionMark im(this);
2561   prefix(dst);
2562   emit_int8((unsigned char)0xC7);
2563   emit_operand(rax, dst, 4);
2564   emit_int32(imm32);
2565 }
2566 
2567 void Assembler::movl(Address dst, Register src) {
2568   InstructionMark im(this);
2569   prefix(dst, src);
2570   emit_int8((unsigned char)0x89);
2571   emit_operand(src, dst);
2572 }
2573 
2574 // New cpus require to use movsd and movss to avoid partial register stall
2575 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2576 // The selection is done in MacroAssembler::movdbl() and movflt().
2577 void Assembler::movlpd(XMMRegister dst, Address src) {
2578   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2579   InstructionMark im(this);
2580   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2581   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2582   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2583   emit_int8(0x12);
2584   emit_operand(dst, src);
2585 }
2586 
2587 void Assembler::movq( MMXRegister dst, Address src ) {
2588   assert( VM_Version::supports_mmx(), "" );
2589   emit_int8(0x0F);
2590   emit_int8(0x6F);
2591   emit_operand(dst, src);
2592 }
2593 
2594 void Assembler::movq( Address dst, MMXRegister src ) {
2595   assert( VM_Version::supports_mmx(), "" );
2596   emit_int8(0x0F);
2597   emit_int8(0x7F);
2598   // workaround gcc (3.2.1-7a) bug
2599   // In that version of gcc with only an emit_operand(MMX, Address)
2600   // gcc will tail jump and try and reverse the parameters completely
2601   // obliterating dst in the process. By having a version available
2602   // that doesn't need to swap the args at the tail jump the bug is
2603   // avoided.
2604   emit_operand(dst, src);
2605 }
2606 
2607 void Assembler::movq(XMMRegister dst, Address src) {
2608   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2609   InstructionMark im(this);
2610   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2611   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2612   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2613   emit_int8(0x7E);
2614   emit_operand(dst, src);
2615 }
2616 
2617 void Assembler::movq(Address dst, XMMRegister src) {
2618   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2619   InstructionMark im(this);
2620   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2621   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2622   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2623   emit_int8((unsigned char)0xD6);
2624   emit_operand(src, dst);
2625 }
2626 
2627 void Assembler::movsbl(Register dst, Address src) { // movsxb
2628   InstructionMark im(this);
2629   prefix(src, dst);
2630   emit_int8(0x0F);
2631   emit_int8((unsigned char)0xBE);
2632   emit_operand(dst, src);
2633 }
2634 
2635 void Assembler::movsbl(Register dst, Register src) { // movsxb
2636   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2637   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2638   emit_int8(0x0F);
2639   emit_int8((unsigned char)0xBE);
2640   emit_int8((unsigned char)(0xC0 | encode));
2641 }
2642 
2643 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2644   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2645   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2646   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2647   emit_int8(0x10);
2648   emit_int8((unsigned char)(0xC0 | encode));
2649 }
2650 
2651 void Assembler::movsd(XMMRegister dst, Address src) {
2652   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2653   InstructionMark im(this);
2654   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2655   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2656   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2657   emit_int8(0x10);
2658   emit_operand(dst, src);
2659 }
2660 
2661 void Assembler::movsd(Address dst, XMMRegister src) {
2662   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2663   InstructionMark im(this);
2664   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2665   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2666   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2667   emit_int8(0x11);
2668   emit_operand(src, dst);
2669 }
2670 
2671 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2672   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2673   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2674   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2675   emit_int8(0x10);
2676   emit_int8((unsigned char)(0xC0 | encode));
2677 }
2678 
2679 void Assembler::movss(XMMRegister dst, Address src) {
2680   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2681   InstructionMark im(this);
2682   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2683   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2684   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2685   emit_int8(0x10);
2686   emit_operand(dst, src);
2687 }
2688 
2689 void Assembler::movss(Address dst, XMMRegister src) {
2690   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2691   InstructionMark im(this);
2692   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2693   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2694   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2695   emit_int8(0x11);
2696   emit_operand(src, dst);
2697 }
2698 
2699 void Assembler::movswl(Register dst, Address src) { // movsxw
2700   InstructionMark im(this);
2701   prefix(src, dst);
2702   emit_int8(0x0F);
2703   emit_int8((unsigned char)0xBF);
2704   emit_operand(dst, src);
2705 }
2706 
2707 void Assembler::movswl(Register dst, Register src) { // movsxw
2708   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2709   emit_int8(0x0F);
2710   emit_int8((unsigned char)0xBF);
2711   emit_int8((unsigned char)(0xC0 | encode));
2712 }
2713 
2714 void Assembler::movw(Address dst, int imm16) {
2715   InstructionMark im(this);
2716 
2717   emit_int8(0x66); // switch to 16-bit mode
2718   prefix(dst);
2719   emit_int8((unsigned char)0xC7);
2720   emit_operand(rax, dst, 2);
2721   emit_int16(imm16);
2722 }
2723 
2724 void Assembler::movw(Register dst, Address src) {
2725   InstructionMark im(this);
2726   emit_int8(0x66);
2727   prefix(src, dst);
2728   emit_int8((unsigned char)0x8B);
2729   emit_operand(dst, src);
2730 }
2731 
2732 void Assembler::movw(Address dst, Register src) {
2733   InstructionMark im(this);
2734   emit_int8(0x66);
2735   prefix(dst, src);
2736   emit_int8((unsigned char)0x89);
2737   emit_operand(src, dst);
2738 }
2739 
2740 void Assembler::movzbl(Register dst, Address src) { // movzxb
2741   InstructionMark im(this);
2742   prefix(src, dst);
2743   emit_int8(0x0F);
2744   emit_int8((unsigned char)0xB6);
2745   emit_operand(dst, src);
2746 }
2747 
2748 void Assembler::movzbl(Register dst, Register src) { // movzxb
2749   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2750   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2751   emit_int8(0x0F);
2752   emit_int8((unsigned char)0xB6);
2753   emit_int8(0xC0 | encode);
2754 }
2755 
2756 void Assembler::movzwl(Register dst, Address src) { // movzxw
2757   InstructionMark im(this);
2758   prefix(src, dst);
2759   emit_int8(0x0F);
2760   emit_int8((unsigned char)0xB7);
2761   emit_operand(dst, src);
2762 }
2763 
2764 void Assembler::movzwl(Register dst, Register src) { // movzxw
2765   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2766   emit_int8(0x0F);
2767   emit_int8((unsigned char)0xB7);
2768   emit_int8(0xC0 | encode);
2769 }
2770 
2771 void Assembler::mull(Address src) {
2772   InstructionMark im(this);
2773   prefix(src);
2774   emit_int8((unsigned char)0xF7);
2775   emit_operand(rsp, src);
2776 }
2777 
2778 void Assembler::mull(Register src) {
2779   int encode = prefix_and_encode(src->encoding());
2780   emit_int8((unsigned char)0xF7);
2781   emit_int8((unsigned char)(0xE0 | encode));
2782 }
2783 
2784 void Assembler::mulsd(XMMRegister dst, Address src) {
2785   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2786   InstructionMark im(this);
2787   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2788   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2789   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2790   emit_int8(0x59);
2791   emit_operand(dst, src);
2792 }
2793 
2794 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2795   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2796   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2797   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2798   emit_int8(0x59);
2799   emit_int8((unsigned char)(0xC0 | encode));
2800 }
2801 
2802 void Assembler::mulss(XMMRegister dst, Address src) {
2803   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2804   InstructionMark im(this);
2805   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2806   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2807   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2808   emit_int8(0x59);
2809   emit_operand(dst, src);
2810 }
2811 
2812 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2813   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2814   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2815   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2816   emit_int8(0x59);
2817   emit_int8((unsigned char)(0xC0 | encode));
2818 }
2819 
2820 void Assembler::negl(Register dst) {
2821   int encode = prefix_and_encode(dst->encoding());
2822   emit_int8((unsigned char)0xF7);
2823   emit_int8((unsigned char)(0xD8 | encode));
2824 }
2825 
2826 void Assembler::nop(int i) {
2827 #ifdef ASSERT
2828   assert(i > 0, " ");
2829   // The fancy nops aren't currently recognized by debuggers making it a
2830   // pain to disassemble code while debugging. If asserts are on clearly
2831   // speed is not an issue so simply use the single byte traditional nop
2832   // to do alignment.
2833 
2834   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2835   return;
2836 
2837 #endif // ASSERT
2838 
2839   if (UseAddressNop && VM_Version::is_intel()) {
2840     //
2841     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2842     //  1: 0x90
2843     //  2: 0x66 0x90
2844     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2845     //  4: 0x0F 0x1F 0x40 0x00
2846     //  5: 0x0F 0x1F 0x44 0x00 0x00
2847     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2848     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2849     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2850     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2851     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2852     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2853 
2854     // The rest coding is Intel specific - don't use consecutive address nops
2855 
2856     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2857     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2858     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2859     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2860 
2861     while(i >= 15) {
2862       // For Intel don't generate consecutive addess nops (mix with regular nops)
2863       i -= 15;
2864       emit_int8(0x66);   // size prefix
2865       emit_int8(0x66);   // size prefix
2866       emit_int8(0x66);   // size prefix
2867       addr_nop_8();
2868       emit_int8(0x66);   // size prefix
2869       emit_int8(0x66);   // size prefix
2870       emit_int8(0x66);   // size prefix
2871       emit_int8((unsigned char)0x90);
2872                          // nop
2873     }
2874     switch (i) {
2875       case 14:
2876         emit_int8(0x66); // size prefix
2877       case 13:
2878         emit_int8(0x66); // size prefix
2879       case 12:
2880         addr_nop_8();
2881         emit_int8(0x66); // size prefix
2882         emit_int8(0x66); // size prefix
2883         emit_int8(0x66); // size prefix
2884         emit_int8((unsigned char)0x90);
2885                          // nop
2886         break;
2887       case 11:
2888         emit_int8(0x66); // size prefix
2889       case 10:
2890         emit_int8(0x66); // size prefix
2891       case 9:
2892         emit_int8(0x66); // size prefix
2893       case 8:
2894         addr_nop_8();
2895         break;
2896       case 7:
2897         addr_nop_7();
2898         break;
2899       case 6:
2900         emit_int8(0x66); // size prefix
2901       case 5:
2902         addr_nop_5();
2903         break;
2904       case 4:
2905         addr_nop_4();
2906         break;
2907       case 3:
2908         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2909         emit_int8(0x66); // size prefix
2910       case 2:
2911         emit_int8(0x66); // size prefix
2912       case 1:
2913         emit_int8((unsigned char)0x90);
2914                          // nop
2915         break;
2916       default:
2917         assert(i == 0, " ");
2918     }
2919     return;
2920   }
2921   if (UseAddressNop && VM_Version::is_amd()) {
2922     //
2923     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2924     //  1: 0x90
2925     //  2: 0x66 0x90
2926     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2927     //  4: 0x0F 0x1F 0x40 0x00
2928     //  5: 0x0F 0x1F 0x44 0x00 0x00
2929     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2930     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2931     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2932     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2933     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2934     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2935 
2936     // The rest coding is AMD specific - use consecutive address nops
2937 
2938     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2939     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2940     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2941     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2942     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2943     //     Size prefixes (0x66) are added for larger sizes
2944 
2945     while(i >= 22) {
2946       i -= 11;
2947       emit_int8(0x66); // size prefix
2948       emit_int8(0x66); // size prefix
2949       emit_int8(0x66); // size prefix
2950       addr_nop_8();
2951     }
2952     // Generate first nop for size between 21-12
2953     switch (i) {
2954       case 21:
2955         i -= 1;
2956         emit_int8(0x66); // size prefix
2957       case 20:
2958       case 19:
2959         i -= 1;
2960         emit_int8(0x66); // size prefix
2961       case 18:
2962       case 17:
2963         i -= 1;
2964         emit_int8(0x66); // size prefix
2965       case 16:
2966       case 15:
2967         i -= 8;
2968         addr_nop_8();
2969         break;
2970       case 14:
2971       case 13:
2972         i -= 7;
2973         addr_nop_7();
2974         break;
2975       case 12:
2976         i -= 6;
2977         emit_int8(0x66); // size prefix
2978         addr_nop_5();
2979         break;
2980       default:
2981         assert(i < 12, " ");
2982     }
2983 
2984     // Generate second nop for size between 11-1
2985     switch (i) {
2986       case 11:
2987         emit_int8(0x66); // size prefix
2988       case 10:
2989         emit_int8(0x66); // size prefix
2990       case 9:
2991         emit_int8(0x66); // size prefix
2992       case 8:
2993         addr_nop_8();
2994         break;
2995       case 7:
2996         addr_nop_7();
2997         break;
2998       case 6:
2999         emit_int8(0x66); // size prefix
3000       case 5:
3001         addr_nop_5();
3002         break;
3003       case 4:
3004         addr_nop_4();
3005         break;
3006       case 3:
3007         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3008         emit_int8(0x66); // size prefix
3009       case 2:
3010         emit_int8(0x66); // size prefix
3011       case 1:
3012         emit_int8((unsigned char)0x90);
3013                          // nop
3014         break;
3015       default:
3016         assert(i == 0, " ");
3017     }
3018     return;
3019   }
3020 
3021   // Using nops with size prefixes "0x66 0x90".
3022   // From AMD Optimization Guide:
3023   //  1: 0x90
3024   //  2: 0x66 0x90
3025   //  3: 0x66 0x66 0x90
3026   //  4: 0x66 0x66 0x66 0x90
3027   //  5: 0x66 0x66 0x90 0x66 0x90
3028   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3029   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3030   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3031   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3032   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3033   //
3034   while(i > 12) {
3035     i -= 4;
3036     emit_int8(0x66); // size prefix
3037     emit_int8(0x66);
3038     emit_int8(0x66);
3039     emit_int8((unsigned char)0x90);
3040                      // nop
3041   }
3042   // 1 - 12 nops
3043   if(i > 8) {
3044     if(i > 9) {
3045       i -= 1;
3046       emit_int8(0x66);
3047     }
3048     i -= 3;
3049     emit_int8(0x66);
3050     emit_int8(0x66);
3051     emit_int8((unsigned char)0x90);
3052   }
3053   // 1 - 8 nops
3054   if(i > 4) {
3055     if(i > 6) {
3056       i -= 1;
3057       emit_int8(0x66);
3058     }
3059     i -= 3;
3060     emit_int8(0x66);
3061     emit_int8(0x66);
3062     emit_int8((unsigned char)0x90);
3063   }
3064   switch (i) {
3065     case 4:
3066       emit_int8(0x66);
3067     case 3:
3068       emit_int8(0x66);
3069     case 2:
3070       emit_int8(0x66);
3071     case 1:
3072       emit_int8((unsigned char)0x90);
3073       break;
3074     default:
3075       assert(i == 0, " ");
3076   }
3077 }
3078 
3079 void Assembler::notl(Register dst) {
3080   int encode = prefix_and_encode(dst->encoding());
3081   emit_int8((unsigned char)0xF7);
3082   emit_int8((unsigned char)(0xD0 | encode));
3083 }
3084 
3085 void Assembler::orl(Address dst, int32_t imm32) {
3086   InstructionMark im(this);
3087   prefix(dst);
3088   emit_arith_operand(0x81, rcx, dst, imm32);
3089 }
3090 
3091 void Assembler::orl(Register dst, int32_t imm32) {
3092   prefix(dst);
3093   emit_arith(0x81, 0xC8, dst, imm32);
3094 }
3095 
3096 void Assembler::orl(Register dst, Address src) {
3097   InstructionMark im(this);
3098   prefix(src, dst);
3099   emit_int8(0x0B);
3100   emit_operand(dst, src);
3101 }
3102 
3103 void Assembler::orl(Register dst, Register src) {
3104   (void) prefix_and_encode(dst->encoding(), src->encoding());
3105   emit_arith(0x0B, 0xC0, dst, src);
3106 }
3107 
3108 void Assembler::orl(Address dst, Register src) {
3109   InstructionMark im(this);
3110   prefix(dst, src);
3111   emit_int8(0x09);
3112   emit_operand(src, dst);
3113 }
3114 
3115 void Assembler::packuswb(XMMRegister dst, Address src) {
3116   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3117   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3118   InstructionMark im(this);
3119   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3120   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3121   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3122   emit_int8(0x67);
3123   emit_operand(dst, src);
3124 }
3125 
3126 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3127   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3128   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3129   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3130   emit_int8(0x67);
3131   emit_int8((unsigned char)(0xC0 | encode));
3132 }
3133 
3134 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3135   assert(UseAVX > 0, "some form of AVX must be enabled");
3136   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3137   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3138   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3139   emit_int8(0x67);
3140   emit_int8((unsigned char)(0xC0 | encode));
3141 }
3142 
3143 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3144   assert(VM_Version::supports_avx2(), "");
3145   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3146   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3147   emit_int8(0x00);
3148   emit_int8(0xC0 | encode);
3149   emit_int8(imm8);
3150 }
3151 
3152 void Assembler::pause() {
3153   emit_int8((unsigned char)0xF3);
3154   emit_int8((unsigned char)0x90);
3155 }
3156 
3157 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3158   assert(VM_Version::supports_sse4_2(), "");
3159   InstructionMark im(this);
3160   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3161   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3162   emit_int8(0x61);
3163   emit_operand(dst, src);
3164   emit_int8(imm8);
3165 }
3166 
3167 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3168   assert(VM_Version::supports_sse4_2(), "");
3169   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3170   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3171   emit_int8(0x61);
3172   emit_int8((unsigned char)(0xC0 | encode));
3173   emit_int8(imm8);
3174 }
3175 
3176 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3177 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3178   assert(VM_Version::supports_sse2(), "");
3179   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3180   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3181   emit_int8(0x74);
3182   emit_int8((unsigned char)(0xC0 | encode));
3183 }
3184 
3185 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3186 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3187   assert(VM_Version::supports_avx(), "");
3188   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3189   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3190   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3191   emit_int8(0x74);
3192   emit_int8((unsigned char)(0xC0 | encode));
3193 }
3194 
3195 // In this context, kdst is written the mask used to process the equal components
3196 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3197   assert(VM_Version::supports_avx512bw(), "");
3198   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3199   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3200   int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3201   emit_int8(0x74);
3202   emit_int8((unsigned char)(0xC0 | encode));
3203 }
3204 
3205 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3206   assert(VM_Version::supports_avx512bw(), "");
3207   InstructionMark im(this);
3208   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3209   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3210   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3211   int dst_enc = kdst->encoding();
3212   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3213   emit_int8(0x74);
3214   emit_operand(as_Register(dst_enc), src);
3215 }
3216 
3217 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3218 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3219   assert(VM_Version::supports_sse2(), "");
3220   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3221   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3222   emit_int8(0x75);
3223   emit_int8((unsigned char)(0xC0 | encode));
3224 }
3225 
3226 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3227 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3228   assert(VM_Version::supports_avx(), "");
3229   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3230   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3231   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3232   emit_int8(0x75);
3233   emit_int8((unsigned char)(0xC0 | encode));
3234 }
3235 
3236 // In this context, kdst is written the mask used to process the equal components
3237 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3238   assert(VM_Version::supports_avx512bw(), "");
3239   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3240   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3241   int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3242   emit_int8(0x75);
3243   emit_int8((unsigned char)(0xC0 | encode));
3244 }
3245 
3246 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3247   assert(VM_Version::supports_avx512bw(), "");
3248   InstructionMark im(this);
3249   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3250   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3251   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3252   int dst_enc = kdst->encoding();
3253   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3254   emit_int8(0x75);
3255   emit_operand(as_Register(dst_enc), src);
3256 }
3257 
3258 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3259 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3260   assert(VM_Version::supports_sse2(), "");
3261   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3262   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3263   emit_int8(0x76);
3264   emit_int8((unsigned char)(0xC0 | encode));
3265 }
3266 
3267 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3268 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3269   assert(VM_Version::supports_avx(), "");
3270   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3271   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3272   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3273   emit_int8(0x76);
3274   emit_int8((unsigned char)(0xC0 | encode));
3275 }
3276 
3277 // In this context, kdst is written the mask used to process the equal components
3278 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3279   assert(VM_Version::supports_evex(), "");
3280   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3281   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3282   int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3283   emit_int8(0x76);
3284   emit_int8((unsigned char)(0xC0 | encode));
3285 }
3286 
3287 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3288   assert(VM_Version::supports_evex(), "");
3289   InstructionMark im(this);
3290   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3291   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3292   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3293   int dst_enc = kdst->encoding();
3294   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3295   emit_int8(0x76);
3296   emit_operand(as_Register(dst_enc), src);
3297 }
3298 
3299 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3300 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3301   assert(VM_Version::supports_sse4_1(), "");
3302   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3303   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3304   emit_int8(0x29);
3305   emit_int8((unsigned char)(0xC0 | encode));
3306 }
3307 
3308 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3309 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3310   assert(VM_Version::supports_avx(), "");
3311   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3312   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3313   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3314   emit_int8(0x29);
3315   emit_int8((unsigned char)(0xC0 | encode));
3316 }
3317 
3318 // In this context, kdst is written the mask used to process the equal components
3319 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3320   assert(VM_Version::supports_evex(), "");
3321   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3322   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3323   int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3324   emit_int8(0x29);
3325   emit_int8((unsigned char)(0xC0 | encode));
3326 }
3327 
3328 // In this context, kdst is written the mask used to process the equal components
3329 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3330   assert(VM_Version::supports_evex(), "");
3331   InstructionMark im(this);
3332   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3333   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3334   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3335   int dst_enc = kdst->encoding();
3336   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3337   emit_int8(0x29);
3338   emit_operand(as_Register(dst_enc), src);
3339 }
3340 
3341 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3342   assert(VM_Version::supports_sse2(), "");
3343   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3344   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3345   emit_int8((unsigned char)0xD7);
3346   emit_int8((unsigned char)(0xC0 | encode));
3347 }
3348 
3349 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3350   assert(VM_Version::supports_avx2(), "");
3351   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3352   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3353   emit_int8((unsigned char)0xD7);
3354   emit_int8((unsigned char)(0xC0 | encode));
3355 }
3356 
3357 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3358   assert(VM_Version::supports_sse4_1(), "");
3359   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3360   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3361   emit_int8(0x16);
3362   emit_int8((unsigned char)(0xC0 | encode));
3363   emit_int8(imm8);
3364 }
3365 
3366 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3367   assert(VM_Version::supports_sse4_1(), "");
3368   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3369   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3370   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3371   emit_int8(0x16);
3372   emit_operand(src, dst);
3373   emit_int8(imm8);
3374 }
3375 
3376 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3377   assert(VM_Version::supports_sse4_1(), "");
3378   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3379   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3380   emit_int8(0x16);
3381   emit_int8((unsigned char)(0xC0 | encode));
3382   emit_int8(imm8);
3383 }
3384 
3385 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3386   assert(VM_Version::supports_sse4_1(), "");
3387   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3388   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3389   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3390   emit_int8(0x16);
3391   emit_operand(src, dst);
3392   emit_int8(imm8);
3393 }
3394 
3395 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3396   assert(VM_Version::supports_sse2(), "");
3397   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3398   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3399   emit_int8((unsigned char)0xC5);
3400   emit_int8((unsigned char)(0xC0 | encode));
3401   emit_int8(imm8);
3402 }
3403 
3404 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3405   assert(VM_Version::supports_sse4_1(), "");
3406   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3407   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3408   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3409   emit_int8((unsigned char)0x15);
3410   emit_operand(src, dst);
3411   emit_int8(imm8);
3412 }
3413 
3414 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3415   assert(VM_Version::supports_sse4_1(), "");
3416   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3417   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3418   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3419   emit_int8(0x14);
3420   emit_operand(src, dst);
3421   emit_int8(imm8);
3422 }
3423 
3424 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3425   assert(VM_Version::supports_sse4_1(), "");
3426   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3427   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3428   emit_int8(0x22);
3429   emit_int8((unsigned char)(0xC0 | encode));
3430   emit_int8(imm8);
3431 }
3432 
3433 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3434   assert(VM_Version::supports_sse4_1(), "");
3435   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3436   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3437   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3438   emit_int8(0x22);
3439   emit_operand(dst,src);
3440   emit_int8(imm8);
3441 }
3442 
3443 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3444   assert(VM_Version::supports_sse4_1(), "");
3445   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3446   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3447   emit_int8(0x22);
3448   emit_int8((unsigned char)(0xC0 | encode));
3449   emit_int8(imm8);
3450 }
3451 
3452 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3453   assert(VM_Version::supports_sse4_1(), "");
3454   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3455   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3456   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3457   emit_int8(0x22);
3458   emit_operand(dst, src);
3459   emit_int8(imm8);
3460 }
3461 
3462 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3463   assert(VM_Version::supports_sse2(), "");
3464   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3465   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3466   emit_int8((unsigned char)0xC4);
3467   emit_int8((unsigned char)(0xC0 | encode));
3468   emit_int8(imm8);
3469 }
3470 
3471 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3472   assert(VM_Version::supports_sse2(), "");
3473   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3474   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3475   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3476   emit_int8((unsigned char)0xC4);
3477   emit_operand(dst, src);
3478   emit_int8(imm8);
3479 }
3480 
3481 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3482   assert(VM_Version::supports_sse4_1(), "");
3483   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3484   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3485   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3486   emit_int8(0x20);
3487   emit_operand(dst, src);
3488   emit_int8(imm8);
3489 }
3490 
3491 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3492   assert(VM_Version::supports_sse4_1(), "");
3493   InstructionMark im(this);
3494   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3495   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3496   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3497   emit_int8(0x30);
3498   emit_operand(dst, src);
3499 }
3500 
3501 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3502   assert(VM_Version::supports_sse4_1(), "");
3503   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3504   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3505   emit_int8(0x30);
3506   emit_int8((unsigned char)(0xC0 | encode));
3507 }
3508 
3509 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3510   assert(VM_Version::supports_avx(), "");
3511   InstructionMark im(this);
3512   assert(dst != xnoreg, "sanity");
3513   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3514   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3515   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3516   emit_int8(0x30);
3517   emit_operand(dst, src);
3518 }
3519 
3520 // generic
3521 void Assembler::pop(Register dst) {
3522   int encode = prefix_and_encode(dst->encoding());
3523   emit_int8(0x58 | encode);
3524 }
3525 
3526 void Assembler::popcntl(Register dst, Address src) {
3527   assert(VM_Version::supports_popcnt(), "must support");
3528   InstructionMark im(this);
3529   emit_int8((unsigned char)0xF3);
3530   prefix(src, dst);
3531   emit_int8(0x0F);
3532   emit_int8((unsigned char)0xB8);
3533   emit_operand(dst, src);
3534 }
3535 
3536 void Assembler::popcntl(Register dst, Register src) {
3537   assert(VM_Version::supports_popcnt(), "must support");
3538   emit_int8((unsigned char)0xF3);
3539   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3540   emit_int8(0x0F);
3541   emit_int8((unsigned char)0xB8);
3542   emit_int8((unsigned char)(0xC0 | encode));
3543 }
3544 
3545 void Assembler::popf() {
3546   emit_int8((unsigned char)0x9D);
3547 }
3548 
3549 #ifndef _LP64 // no 32bit push/pop on amd64
3550 void Assembler::popl(Address dst) {
3551   // NOTE: this will adjust stack by 8byte on 64bits
3552   InstructionMark im(this);
3553   prefix(dst);
3554   emit_int8((unsigned char)0x8F);
3555   emit_operand(rax, dst);
3556 }
3557 #endif
3558 
3559 void Assembler::prefetch_prefix(Address src) {
3560   prefix(src);
3561   emit_int8(0x0F);
3562 }
3563 
3564 void Assembler::prefetchnta(Address src) {
3565   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3566   InstructionMark im(this);
3567   prefetch_prefix(src);
3568   emit_int8(0x18);
3569   emit_operand(rax, src); // 0, src
3570 }
3571 
3572 void Assembler::prefetchr(Address src) {
3573   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3574   InstructionMark im(this);
3575   prefetch_prefix(src);
3576   emit_int8(0x0D);
3577   emit_operand(rax, src); // 0, src
3578 }
3579 
3580 void Assembler::prefetcht0(Address src) {
3581   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3582   InstructionMark im(this);
3583   prefetch_prefix(src);
3584   emit_int8(0x18);
3585   emit_operand(rcx, src); // 1, src
3586 }
3587 
3588 void Assembler::prefetcht1(Address src) {
3589   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3590   InstructionMark im(this);
3591   prefetch_prefix(src);
3592   emit_int8(0x18);
3593   emit_operand(rdx, src); // 2, src
3594 }
3595 
3596 void Assembler::prefetcht2(Address src) {
3597   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3598   InstructionMark im(this);
3599   prefetch_prefix(src);
3600   emit_int8(0x18);
3601   emit_operand(rbx, src); // 3, src
3602 }
3603 
3604 void Assembler::prefetchw(Address src) {
3605   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3606   InstructionMark im(this);
3607   prefetch_prefix(src);
3608   emit_int8(0x0D);
3609   emit_operand(rcx, src); // 1, src
3610 }
3611 
3612 void Assembler::prefix(Prefix p) {
3613   emit_int8(p);
3614 }
3615 
3616 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3617   assert(VM_Version::supports_ssse3(), "");
3618   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3619   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3620   emit_int8(0x00);
3621   emit_int8((unsigned char)(0xC0 | encode));
3622 }
3623 
3624 void Assembler::pshufb(XMMRegister dst, Address src) {
3625   assert(VM_Version::supports_ssse3(), "");
3626   InstructionMark im(this);
3627   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3628   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3629   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3630   emit_int8(0x00);
3631   emit_operand(dst, src);
3632 }
3633 
3634 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3635   assert(isByte(mode), "invalid value");
3636   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3637   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_128bit;
3638   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3639   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3640   emit_int8(0x70);
3641   emit_int8((unsigned char)(0xC0 | encode));
3642   emit_int8(mode & 0xFF);
3643 }
3644 
3645 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3646   assert(isByte(mode), "invalid value");
3647   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3648   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3649   InstructionMark im(this);
3650   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3651   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3652   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3653   emit_int8(0x70);
3654   emit_operand(dst, src);
3655   emit_int8(mode & 0xFF);
3656 }
3657 
3658 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3659   assert(isByte(mode), "invalid value");
3660   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3661   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3662   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3663   emit_int8(0x70);
3664   emit_int8((unsigned char)(0xC0 | encode));
3665   emit_int8(mode & 0xFF);
3666 }
3667 
3668 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3669   assert(isByte(mode), "invalid value");
3670   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3671   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3672   InstructionMark im(this);
3673   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3674   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3675   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3676   emit_int8(0x70);
3677   emit_operand(dst, src);
3678   emit_int8(mode & 0xFF);
3679 }
3680 
3681 void Assembler::psrldq(XMMRegister dst, int shift) {
3682   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3683   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3684   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3685   // XMM3 is for /3 encoding: 66 0F 73 /3 ib
3686   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3687   emit_int8(0x73);
3688   emit_int8((unsigned char)(0xC0 | encode));
3689   emit_int8(shift);
3690 }
3691 
3692 void Assembler::pslldq(XMMRegister dst, int shift) {
3693   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3694   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3695   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3696   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
3697   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3698   emit_int8(0x73);
3699   emit_int8((unsigned char)(0xC0 | encode));
3700   emit_int8(shift);
3701 }
3702 
3703 void Assembler::ptest(XMMRegister dst, Address src) {
3704   assert(VM_Version::supports_sse4_1(), "");
3705   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3706   InstructionMark im(this);
3707   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3708   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3709   emit_int8(0x17);
3710   emit_operand(dst, src);
3711 }
3712 
3713 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3714   assert(VM_Version::supports_sse4_1(), "");
3715   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3716   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3717   emit_int8(0x17);
3718   emit_int8((unsigned char)(0xC0 | encode));
3719 }
3720 
3721 void Assembler::vptest(XMMRegister dst, Address src) {
3722   assert(VM_Version::supports_avx(), "");
3723   InstructionMark im(this);
3724   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3725   assert(dst != xnoreg, "sanity");
3726   // swap src<->dst for encoding
3727   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3728   emit_int8(0x17);
3729   emit_operand(dst, src);
3730 }
3731 
3732 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3733   assert(VM_Version::supports_avx(), "");
3734   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3735   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3736   emit_int8(0x17);
3737   emit_int8((unsigned char)(0xC0 | encode));
3738 }
3739 
3740 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3741   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3742   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3743   InstructionMark im(this);
3744   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3745   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3746   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3747   emit_int8(0x60);
3748   emit_operand(dst, src);
3749 }
3750 
3751 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3752   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3753   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3754   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3755   emit_int8(0x60);
3756   emit_int8((unsigned char)(0xC0 | encode));
3757 }
3758 
3759 void Assembler::punpckldq(XMMRegister dst, Address src) {
3760   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3761   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3762   InstructionMark im(this);
3763   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3764   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3765   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3766   emit_int8(0x62);
3767   emit_operand(dst, src);
3768 }
3769 
3770 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3771   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3772   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3773   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3774   emit_int8(0x62);
3775   emit_int8((unsigned char)(0xC0 | encode));
3776 }
3777 
3778 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3779   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3780   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3781   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3782   emit_int8(0x6C);
3783   emit_int8((unsigned char)(0xC0 | encode));
3784 }
3785 
3786 void Assembler::push(int32_t imm32) {
3787   // in 64bits we push 64bits onto the stack but only
3788   // take a 32bit immediate
3789   emit_int8(0x68);
3790   emit_int32(imm32);
3791 }
3792 
3793 void Assembler::push(Register src) {
3794   int encode = prefix_and_encode(src->encoding());
3795 
3796   emit_int8(0x50 | encode);
3797 }
3798 
3799 void Assembler::pushf() {
3800   emit_int8((unsigned char)0x9C);
3801 }
3802 
3803 #ifndef _LP64 // no 32bit push/pop on amd64
3804 void Assembler::pushl(Address src) {
3805   // Note this will push 64bit on 64bit
3806   InstructionMark im(this);
3807   prefix(src);
3808   emit_int8((unsigned char)0xFF);
3809   emit_operand(rsi, src);
3810 }
3811 #endif
3812 
3813 void Assembler::rcll(Register dst, int imm8) {
3814   assert(isShiftCount(imm8), "illegal shift count");
3815   int encode = prefix_and_encode(dst->encoding());
3816   if (imm8 == 1) {
3817     emit_int8((unsigned char)0xD1);
3818     emit_int8((unsigned char)(0xD0 | encode));
3819   } else {
3820     emit_int8((unsigned char)0xC1);
3821     emit_int8((unsigned char)0xD0 | encode);
3822     emit_int8(imm8);
3823   }
3824 }
3825 
3826 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
3827   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3828   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3829   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
3830   emit_int8(0x53);
3831   emit_int8((unsigned char)(0xC0 | encode));
3832 }
3833 
3834 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
3835   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3836   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3837   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3838   emit_int8(0x53);
3839   emit_int8((unsigned char)(0xC0 | encode));
3840 }
3841 
3842 void Assembler::rdtsc() {
3843   emit_int8((unsigned char)0x0F);
3844   emit_int8((unsigned char)0x31);
3845 }
3846 
3847 // copies data from [esi] to [edi] using rcx pointer sized words
3848 // generic
3849 void Assembler::rep_mov() {
3850   emit_int8((unsigned char)0xF3);
3851   // MOVSQ
3852   LP64_ONLY(prefix(REX_W));
3853   emit_int8((unsigned char)0xA5);
3854 }
3855 
3856 // sets rcx bytes with rax, value at [edi]
3857 void Assembler::rep_stosb() {
3858   emit_int8((unsigned char)0xF3); // REP
3859   LP64_ONLY(prefix(REX_W));
3860   emit_int8((unsigned char)0xAA); // STOSB
3861 }
3862 
3863 // sets rcx pointer sized words with rax, value at [edi]
3864 // generic
3865 void Assembler::rep_stos() {
3866   emit_int8((unsigned char)0xF3); // REP
3867   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3868   emit_int8((unsigned char)0xAB);
3869 }
3870 
3871 // scans rcx pointer sized words at [edi] for occurance of rax,
3872 // generic
3873 void Assembler::repne_scan() { // repne_scan
3874   emit_int8((unsigned char)0xF2);
3875   // SCASQ
3876   LP64_ONLY(prefix(REX_W));
3877   emit_int8((unsigned char)0xAF);
3878 }
3879 
3880 #ifdef _LP64
3881 // scans rcx 4 byte words at [edi] for occurance of rax,
3882 // generic
3883 void Assembler::repne_scanl() { // repne_scan
3884   emit_int8((unsigned char)0xF2);
3885   // SCASL
3886   emit_int8((unsigned char)0xAF);
3887 }
3888 #endif
3889 
3890 void Assembler::ret(int imm16) {
3891   if (imm16 == 0) {
3892     emit_int8((unsigned char)0xC3);
3893   } else {
3894     emit_int8((unsigned char)0xC2);
3895     emit_int16(imm16);
3896   }
3897 }
3898 
3899 void Assembler::sahf() {
3900 #ifdef _LP64
3901   // Not supported in 64bit mode
3902   ShouldNotReachHere();
3903 #endif
3904   emit_int8((unsigned char)0x9E);
3905 }
3906 
3907 void Assembler::sarl(Register dst, int imm8) {
3908   int encode = prefix_and_encode(dst->encoding());
3909   assert(isShiftCount(imm8), "illegal shift count");
3910   if (imm8 == 1) {
3911     emit_int8((unsigned char)0xD1);
3912     emit_int8((unsigned char)(0xF8 | encode));
3913   } else {
3914     emit_int8((unsigned char)0xC1);
3915     emit_int8((unsigned char)(0xF8 | encode));
3916     emit_int8(imm8);
3917   }
3918 }
3919 
3920 void Assembler::sarl(Register dst) {
3921   int encode = prefix_and_encode(dst->encoding());
3922   emit_int8((unsigned char)0xD3);
3923   emit_int8((unsigned char)(0xF8 | encode));
3924 }
3925 
3926 void Assembler::sbbl(Address dst, int32_t imm32) {
3927   InstructionMark im(this);
3928   prefix(dst);
3929   emit_arith_operand(0x81, rbx, dst, imm32);
3930 }
3931 
3932 void Assembler::sbbl(Register dst, int32_t imm32) {
3933   prefix(dst);
3934   emit_arith(0x81, 0xD8, dst, imm32);
3935 }
3936 
3937 
3938 void Assembler::sbbl(Register dst, Address src) {
3939   InstructionMark im(this);
3940   prefix(src, dst);
3941   emit_int8(0x1B);
3942   emit_operand(dst, src);
3943 }
3944 
3945 void Assembler::sbbl(Register dst, Register src) {
3946   (void) prefix_and_encode(dst->encoding(), src->encoding());
3947   emit_arith(0x1B, 0xC0, dst, src);
3948 }
3949 
3950 void Assembler::setb(Condition cc, Register dst) {
3951   assert(0 <= cc && cc < 16, "illegal cc");
3952   int encode = prefix_and_encode(dst->encoding(), true);
3953   emit_int8(0x0F);
3954   emit_int8((unsigned char)0x90 | cc);
3955   emit_int8((unsigned char)(0xC0 | encode));
3956 }
3957 
3958 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
3959   assert(VM_Version::supports_ssse3(), "");
3960   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3961   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3962   emit_int8((unsigned char)0x0F);
3963   emit_int8((unsigned char)(0xC0 | encode));
3964   emit_int8(imm8);
3965 }
3966 
3967 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
3968   assert(VM_Version::supports_sse4_1(), "");
3969   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3970   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3971   emit_int8((unsigned char)0x0E);
3972   emit_int8((unsigned char)(0xC0 | encode));
3973   emit_int8(imm8);
3974 }
3975 
3976 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
3977   assert(VM_Version::supports_sha(), "");
3978   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3979   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_3A, &attributes);
3980   emit_int8((unsigned char)0xCC);
3981   emit_int8((unsigned char)(0xC0 | encode));
3982   emit_int8((unsigned char)imm8);
3983 }
3984 
3985 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
3986   assert(VM_Version::supports_sha(), "");
3987   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3988   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
3989   emit_int8((unsigned char)0xC8);
3990   emit_int8((unsigned char)(0xC0 | encode));
3991 }
3992 
3993 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
3994   assert(VM_Version::supports_sha(), "");
3995   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3996   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
3997   emit_int8((unsigned char)0xC9);
3998   emit_int8((unsigned char)(0xC0 | encode));
3999 }
4000 
4001 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4002   assert(VM_Version::supports_sha(), "");
4003   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4004   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4005   emit_int8((unsigned char)0xCA);
4006   emit_int8((unsigned char)(0xC0 | encode));
4007 }
4008 
4009 // xmm0 is implicit additional source to this instruction.
4010 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4011   assert(VM_Version::supports_sha(), "");
4012   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4013   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4014   emit_int8((unsigned char)0xCB);
4015   emit_int8((unsigned char)(0xC0 | encode));
4016 }
4017 
4018 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4019   assert(VM_Version::supports_sha(), "");
4020   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4021   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4022   emit_int8((unsigned char)0xCC);
4023   emit_int8((unsigned char)(0xC0 | encode));
4024 }
4025 
4026 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4027   assert(VM_Version::supports_sha(), "");
4028   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4029   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4030   emit_int8((unsigned char)0xCD);
4031   emit_int8((unsigned char)(0xC0 | encode));
4032 }
4033 
4034 
4035 void Assembler::shll(Register dst, int imm8) {
4036   assert(isShiftCount(imm8), "illegal shift count");
4037   int encode = prefix_and_encode(dst->encoding());
4038   if (imm8 == 1 ) {
4039     emit_int8((unsigned char)0xD1);
4040     emit_int8((unsigned char)(0xE0 | encode));
4041   } else {
4042     emit_int8((unsigned char)0xC1);
4043     emit_int8((unsigned char)(0xE0 | encode));
4044     emit_int8(imm8);
4045   }
4046 }
4047 
4048 void Assembler::shll(Register dst) {
4049   int encode = prefix_and_encode(dst->encoding());
4050   emit_int8((unsigned char)0xD3);
4051   emit_int8((unsigned char)(0xE0 | encode));
4052 }
4053 
4054 void Assembler::shrl(Register dst, int imm8) {
4055   assert(isShiftCount(imm8), "illegal shift count");
4056   int encode = prefix_and_encode(dst->encoding());
4057   emit_int8((unsigned char)0xC1);
4058   emit_int8((unsigned char)(0xE8 | encode));
4059   emit_int8(imm8);
4060 }
4061 
4062 void Assembler::shrl(Register dst) {
4063   int encode = prefix_and_encode(dst->encoding());
4064   emit_int8((unsigned char)0xD3);
4065   emit_int8((unsigned char)(0xE8 | encode));
4066 }
4067 
4068 // copies a single word from [esi] to [edi]
4069 void Assembler::smovl() {
4070   emit_int8((unsigned char)0xA5);
4071 }
4072 
4073 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4074   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4075   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4076   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4077   emit_int8(0x51);
4078   emit_int8((unsigned char)(0xC0 | encode));
4079 }
4080 
4081 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4082   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4083   InstructionMark im(this);
4084   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4085   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4086   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4087   emit_int8(0x51);
4088   emit_operand(dst, src);
4089 }
4090 
4091 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4092   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4093   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4094   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4095   emit_int8(0x51);
4096   emit_int8((unsigned char)(0xC0 | encode));
4097 }
4098 
4099 void Assembler::std() {
4100   emit_int8((unsigned char)0xFD);
4101 }
4102 
4103 void Assembler::sqrtss(XMMRegister dst, Address src) {
4104   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4105   InstructionMark im(this);
4106   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4107   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4108   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4109   emit_int8(0x51);
4110   emit_operand(dst, src);
4111 }
4112 
4113 void Assembler::stmxcsr( Address dst) {
4114   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4115   InstructionMark im(this);
4116   prefix(dst);
4117   emit_int8(0x0F);
4118   emit_int8((unsigned char)0xAE);
4119   emit_operand(as_Register(3), dst);
4120 }
4121 
4122 void Assembler::subl(Address dst, int32_t imm32) {
4123   InstructionMark im(this);
4124   prefix(dst);
4125   emit_arith_operand(0x81, rbp, dst, imm32);
4126 }
4127 
4128 void Assembler::subl(Address dst, Register src) {
4129   InstructionMark im(this);
4130   prefix(dst, src);
4131   emit_int8(0x29);
4132   emit_operand(src, dst);
4133 }
4134 
4135 void Assembler::subl(Register dst, int32_t imm32) {
4136   prefix(dst);
4137   emit_arith(0x81, 0xE8, dst, imm32);
4138 }
4139 
4140 // Force generation of a 4 byte immediate value even if it fits into 8bit
4141 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4142   prefix(dst);
4143   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4144 }
4145 
4146 void Assembler::subl(Register dst, Address src) {
4147   InstructionMark im(this);
4148   prefix(src, dst);
4149   emit_int8(0x2B);
4150   emit_operand(dst, src);
4151 }
4152 
4153 void Assembler::subl(Register dst, Register src) {
4154   (void) prefix_and_encode(dst->encoding(), src->encoding());
4155   emit_arith(0x2B, 0xC0, dst, src);
4156 }
4157 
4158 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4159   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4160   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4161   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4162   emit_int8(0x5C);
4163   emit_int8((unsigned char)(0xC0 | encode));
4164 }
4165 
4166 void Assembler::subsd(XMMRegister dst, Address src) {
4167   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4168   InstructionMark im(this);
4169   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4170   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4171   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4172   emit_int8(0x5C);
4173   emit_operand(dst, src);
4174 }
4175 
4176 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4177   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4178   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ false);
4179   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4180   emit_int8(0x5C);
4181   emit_int8((unsigned char)(0xC0 | encode));
4182 }
4183 
4184 void Assembler::subss(XMMRegister dst, Address src) {
4185   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4186   InstructionMark im(this);
4187   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4188   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4189   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4190   emit_int8(0x5C);
4191   emit_operand(dst, src);
4192 }
4193 
4194 void Assembler::testb(Register dst, int imm8) {
4195   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4196   (void) prefix_and_encode(dst->encoding(), true);
4197   emit_arith_b(0xF6, 0xC0, dst, imm8);
4198 }
4199 
4200 void Assembler::testb(Address dst, int imm8) {
4201   InstructionMark im(this);
4202   prefix(dst);
4203   emit_int8((unsigned char)0xF6);
4204   emit_operand(rax, dst, 1);
4205   emit_int8(imm8);
4206 }
4207 
4208 void Assembler::testl(Register dst, int32_t imm32) {
4209   // not using emit_arith because test
4210   // doesn't support sign-extension of
4211   // 8bit operands
4212   int encode = dst->encoding();
4213   if (encode == 0) {
4214     emit_int8((unsigned char)0xA9);
4215   } else {
4216     encode = prefix_and_encode(encode);
4217     emit_int8((unsigned char)0xF7);
4218     emit_int8((unsigned char)(0xC0 | encode));
4219   }
4220   emit_int32(imm32);
4221 }
4222 
4223 void Assembler::testl(Register dst, Register src) {
4224   (void) prefix_and_encode(dst->encoding(), src->encoding());
4225   emit_arith(0x85, 0xC0, dst, src);
4226 }
4227 
4228 void Assembler::testl(Register dst, Address src) {
4229   InstructionMark im(this);
4230   prefix(src, dst);
4231   emit_int8((unsigned char)0x85);
4232   emit_operand(dst, src);
4233 }
4234 
4235 void Assembler::tzcntl(Register dst, Register src) {
4236   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4237   emit_int8((unsigned char)0xF3);
4238   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4239   emit_int8(0x0F);
4240   emit_int8((unsigned char)0xBC);
4241   emit_int8((unsigned char)0xC0 | encode);
4242 }
4243 
4244 void Assembler::tzcntq(Register dst, Register src) {
4245   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4246   emit_int8((unsigned char)0xF3);
4247   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4248   emit_int8(0x0F);
4249   emit_int8((unsigned char)0xBC);
4250   emit_int8((unsigned char)(0xC0 | encode));
4251 }
4252 
4253 void Assembler::ucomisd(XMMRegister dst, Address src) {
4254   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4255   InstructionMark im(this);
4256   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4257   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4258   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4259   emit_int8(0x2E);
4260   emit_operand(dst, src);
4261 }
4262 
4263 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4264   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4265   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4266   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4267   emit_int8(0x2E);
4268   emit_int8((unsigned char)(0xC0 | encode));
4269 }
4270 
4271 void Assembler::ucomiss(XMMRegister dst, Address src) {
4272   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4273   InstructionMark im(this);
4274   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4275   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4276   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4277   emit_int8(0x2E);
4278   emit_operand(dst, src);
4279 }
4280 
4281 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4282   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4283   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4284   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4285   emit_int8(0x2E);
4286   emit_int8((unsigned char)(0xC0 | encode));
4287 }
4288 
4289 void Assembler::xabort(int8_t imm8) {
4290   emit_int8((unsigned char)0xC6);
4291   emit_int8((unsigned char)0xF8);
4292   emit_int8((unsigned char)(imm8 & 0xFF));
4293 }
4294 
4295 void Assembler::xaddl(Address dst, Register src) {
4296   InstructionMark im(this);
4297   prefix(dst, src);
4298   emit_int8(0x0F);
4299   emit_int8((unsigned char)0xC1);
4300   emit_operand(src, dst);
4301 }
4302 
4303 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4304   InstructionMark im(this);
4305   relocate(rtype);
4306   if (abort.is_bound()) {
4307     address entry = target(abort);
4308     assert(entry != NULL, "abort entry NULL");
4309     intptr_t offset = entry - pc();
4310     emit_int8((unsigned char)0xC7);
4311     emit_int8((unsigned char)0xF8);
4312     emit_int32(offset - 6); // 2 opcode + 4 address
4313   } else {
4314     abort.add_patch_at(code(), locator());
4315     emit_int8((unsigned char)0xC7);
4316     emit_int8((unsigned char)0xF8);
4317     emit_int32(0);
4318   }
4319 }
4320 
4321 void Assembler::xchgl(Register dst, Address src) { // xchg
4322   InstructionMark im(this);
4323   prefix(src, dst);
4324   emit_int8((unsigned char)0x87);
4325   emit_operand(dst, src);
4326 }
4327 
4328 void Assembler::xchgl(Register dst, Register src) {
4329   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4330   emit_int8((unsigned char)0x87);
4331   emit_int8((unsigned char)(0xC0 | encode));
4332 }
4333 
4334 void Assembler::xend() {
4335   emit_int8((unsigned char)0x0F);
4336   emit_int8((unsigned char)0x01);
4337   emit_int8((unsigned char)0xD5);
4338 }
4339 
4340 void Assembler::xgetbv() {
4341   emit_int8(0x0F);
4342   emit_int8(0x01);
4343   emit_int8((unsigned char)0xD0);
4344 }
4345 
4346 void Assembler::xorl(Register dst, int32_t imm32) {
4347   prefix(dst);
4348   emit_arith(0x81, 0xF0, dst, imm32);
4349 }
4350 
4351 void Assembler::xorl(Register dst, Address src) {
4352   InstructionMark im(this);
4353   prefix(src, dst);
4354   emit_int8(0x33);
4355   emit_operand(dst, src);
4356 }
4357 
4358 void Assembler::xorl(Register dst, Register src) {
4359   (void) prefix_and_encode(dst->encoding(), src->encoding());
4360   emit_arith(0x33, 0xC0, dst, src);
4361 }
4362 
4363 void Assembler::xorb(Register dst, Address src) {
4364   InstructionMark im(this);
4365   prefix(src, dst);
4366   emit_int8(0x32);
4367   emit_operand(dst, src);
4368 }
4369 
4370 // AVX 3-operands scalar float-point arithmetic instructions
4371 
4372 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4373   assert(VM_Version::supports_avx(), "");
4374   InstructionMark im(this);
4375   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4376   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4377   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4378   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4379   emit_int8(0x58);
4380   emit_operand(dst, src);
4381 }
4382 
4383 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4384   assert(VM_Version::supports_avx(), "");
4385   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4386   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4387   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4388   emit_int8(0x58);
4389   emit_int8((unsigned char)(0xC0 | encode));
4390 }
4391 
4392 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4393   assert(VM_Version::supports_avx(), "");
4394   InstructionMark im(this);
4395   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4396   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4397   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4398   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4399   emit_int8(0x58);
4400   emit_operand(dst, src);
4401 }
4402 
4403 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4404   assert(VM_Version::supports_avx(), "");
4405   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4406   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4407   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4408   emit_int8(0x58);
4409   emit_int8((unsigned char)(0xC0 | encode));
4410 }
4411 
4412 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4413   assert(VM_Version::supports_avx(), "");
4414   InstructionMark im(this);
4415   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4416   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4417   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4418   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4419   emit_int8(0x5E);
4420   emit_operand(dst, src);
4421 }
4422 
4423 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4424   assert(VM_Version::supports_avx(), "");
4425   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4426   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4427   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4428   emit_int8(0x5E);
4429   emit_int8((unsigned char)(0xC0 | encode));
4430 }
4431 
4432 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
4433   assert(VM_Version::supports_avx(), "");
4434   InstructionMark im(this);
4435   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4436   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4437   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4438   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4439   emit_int8(0x5E);
4440   emit_operand(dst, src);
4441 }
4442 
4443 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4444   assert(VM_Version::supports_avx(), "");
4445   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4446   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4447   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4448   emit_int8(0x5E);
4449   emit_int8((unsigned char)(0xC0 | encode));
4450 }
4451 
4452 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
4453   assert(VM_Version::supports_avx(), "");
4454   InstructionMark im(this);
4455   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4456   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4457   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4458   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4459   emit_int8(0x59);
4460   emit_operand(dst, src);
4461 }
4462 
4463 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4464   assert(VM_Version::supports_avx(), "");
4465   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4466   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4467   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4468   emit_int8(0x59);
4469   emit_int8((unsigned char)(0xC0 | encode));
4470 }
4471 
4472 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4473   assert(VM_Version::supports_avx(), "");
4474   InstructionMark im(this);
4475   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4476   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4477   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4478   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4479   emit_int8(0x59);
4480   emit_operand(dst, src);
4481 }
4482 
4483 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4484   assert(VM_Version::supports_avx(), "");
4485   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4486   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4487   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4488   emit_int8(0x59);
4489   emit_int8((unsigned char)(0xC0 | encode));
4490 }
4491 
4492 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4493   assert(VM_Version::supports_avx(), "");
4494   InstructionMark im(this);
4495   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4496   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4497   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4498   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4499   emit_int8(0x5C);
4500   emit_operand(dst, src);
4501 }
4502 
4503 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4504   assert(VM_Version::supports_avx(), "");
4505   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4506   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4507   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4508   emit_int8(0x5C);
4509   emit_int8((unsigned char)(0xC0 | encode));
4510 }
4511 
4512 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
4513   assert(VM_Version::supports_avx(), "");
4514   InstructionMark im(this);
4515   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4516   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4517   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4518   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4519   emit_int8(0x5C);
4520   emit_operand(dst, src);
4521 }
4522 
4523 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4524   assert(VM_Version::supports_avx(), "");
4525   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4526   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4527   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4528   emit_int8(0x5C);
4529   emit_int8((unsigned char)(0xC0 | encode));
4530 }
4531 
4532 //====================VECTOR ARITHMETIC=====================================
4533 
4534 // Float-point vector arithmetic
4535 
4536 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4537   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4538   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4539   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4540   emit_int8(0x58);
4541   emit_int8((unsigned char)(0xC0 | encode));
4542 }
4543 
4544 void Assembler::addpd(XMMRegister dst, Address src) {
4545   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4546   InstructionMark im(this);
4547   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4548   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4549   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4550   emit_int8(0x58);
4551   emit_operand(dst, src);
4552 }
4553 
4554 
4555 void Assembler::addps(XMMRegister dst, XMMRegister src) {
4556   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4557   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4558   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4559   emit_int8(0x58);
4560   emit_int8((unsigned char)(0xC0 | encode));
4561 }
4562 
4563 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4564   assert(VM_Version::supports_avx(), "");
4565   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4566   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4567   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4568   emit_int8(0x58);
4569   emit_int8((unsigned char)(0xC0 | encode));
4570 }
4571 
4572 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4573   assert(VM_Version::supports_avx(), "");
4574   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4575   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4576   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4577   emit_int8(0x58);
4578   emit_int8((unsigned char)(0xC0 | encode));
4579 }
4580 
4581 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4582   assert(VM_Version::supports_avx(), "");
4583   InstructionMark im(this);
4584   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4585   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4586   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4587   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4588   emit_int8(0x58);
4589   emit_operand(dst, src);
4590 }
4591 
4592 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4593   assert(VM_Version::supports_avx(), "");
4594   InstructionMark im(this);
4595   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4596   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4597   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4598   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4599   emit_int8(0x58);
4600   emit_operand(dst, src);
4601 }
4602 
4603 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
4604   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4605   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4606   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4607   emit_int8(0x5C);
4608   emit_int8((unsigned char)(0xC0 | encode));
4609 }
4610 
4611 void Assembler::subps(XMMRegister dst, XMMRegister src) {
4612   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4613   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4614   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4615   emit_int8(0x5C);
4616   emit_int8((unsigned char)(0xC0 | encode));
4617 }
4618 
4619 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4620   assert(VM_Version::supports_avx(), "");
4621   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4622   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4623   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4624   emit_int8(0x5C);
4625   emit_int8((unsigned char)(0xC0 | encode));
4626 }
4627 
4628 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4629   assert(VM_Version::supports_avx(), "");
4630   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4631   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4632   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4633   emit_int8(0x5C);
4634   emit_int8((unsigned char)(0xC0 | encode));
4635 }
4636 
4637 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4638   assert(VM_Version::supports_avx(), "");
4639   InstructionMark im(this);
4640   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4641   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4642   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4643   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4644   emit_int8(0x5C);
4645   emit_operand(dst, src);
4646 }
4647 
4648 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4649   assert(VM_Version::supports_avx(), "");
4650   InstructionMark im(this);
4651   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4652   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4653   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4654   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4655   emit_int8(0x5C);
4656   emit_operand(dst, src);
4657 }
4658 
4659 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
4660   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4661   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4662   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4663   emit_int8(0x59);
4664   emit_int8((unsigned char)(0xC0 | encode));
4665 }
4666 
4667 void Assembler::mulpd(XMMRegister dst, Address src) {
4668   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4669   InstructionMark im(this);
4670   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4671   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4672   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4673   emit_int8(0x59);
4674   emit_operand(dst, src);
4675 }
4676 
4677 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
4678   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4679   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4680   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4681   emit_int8(0x59);
4682   emit_int8((unsigned char)(0xC0 | encode));
4683 }
4684 
4685 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4686   assert(VM_Version::supports_avx(), "");
4687   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4688   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4689   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4690   emit_int8(0x59);
4691   emit_int8((unsigned char)(0xC0 | encode));
4692 }
4693 
4694 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4695   assert(VM_Version::supports_avx(), "");
4696   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4697   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4698   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4699   emit_int8(0x59);
4700   emit_int8((unsigned char)(0xC0 | encode));
4701 }
4702 
4703 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4704   assert(VM_Version::supports_avx(), "");
4705   InstructionMark im(this);
4706   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4707   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4708   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4709   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4710   emit_int8(0x59);
4711   emit_operand(dst, src);
4712 }
4713 
4714 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4715   assert(VM_Version::supports_avx(), "");
4716   InstructionMark im(this);
4717   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4718   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4719   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4720   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4721   emit_int8(0x59);
4722   emit_operand(dst, src);
4723 }
4724 
4725 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
4726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4727   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4728   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4729   emit_int8(0x5E);
4730   emit_int8((unsigned char)(0xC0 | encode));
4731 }
4732 
4733 void Assembler::divps(XMMRegister dst, XMMRegister src) {
4734   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4735   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4736   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4737   emit_int8(0x5E);
4738   emit_int8((unsigned char)(0xC0 | encode));
4739 }
4740 
4741 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4742   assert(VM_Version::supports_avx(), "");
4743   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4744   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4745   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4746   emit_int8(0x5E);
4747   emit_int8((unsigned char)(0xC0 | encode));
4748 }
4749 
4750 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4751   assert(VM_Version::supports_avx(), "");
4752   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4753   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4754   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4755   emit_int8(0x5E);
4756   emit_int8((unsigned char)(0xC0 | encode));
4757 }
4758 
4759 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4760   assert(VM_Version::supports_avx(), "");
4761   InstructionMark im(this);
4762   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4763   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4764   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4765   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4766   emit_int8(0x5E);
4767   emit_operand(dst, src);
4768 }
4769 
4770 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4771   assert(VM_Version::supports_avx(), "");
4772   InstructionMark im(this);
4773   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4774   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4775   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4776   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4777   emit_int8(0x5E);
4778   emit_operand(dst, src);
4779 }
4780 
4781 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
4782   assert(VM_Version::supports_avx(), "");
4783   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4784   int nds_enc = 0;
4785   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4786   emit_int8(0x51);
4787   emit_int8((unsigned char)(0xC0 | encode));
4788 }
4789 
4790 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
4791   assert(VM_Version::supports_avx(), "");
4792   InstructionMark im(this);
4793   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4794   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4795   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4796   emit_int8(0x51);
4797   emit_operand(dst, src);
4798 }
4799 
4800 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
4801   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4802   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4803   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4804   emit_int8(0x54);
4805   emit_int8((unsigned char)(0xC0 | encode));
4806 }
4807 
4808 void Assembler::andps(XMMRegister dst, XMMRegister src) {
4809   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4810   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4811   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4812   emit_int8(0x54);
4813   emit_int8((unsigned char)(0xC0 | encode));
4814 }
4815 
4816 void Assembler::andps(XMMRegister dst, Address src) {
4817   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4818   InstructionMark im(this);
4819   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4820   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4821   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4822   emit_int8(0x54);
4823   emit_operand(dst, src);
4824 }
4825 
4826 void Assembler::andpd(XMMRegister dst, Address src) {
4827   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4828   InstructionMark im(this);
4829   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4830   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4831   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4832   emit_int8(0x54);
4833   emit_operand(dst, src);
4834 }
4835 
4836 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4837   assert(VM_Version::supports_avx(), "");
4838   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4839   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4840   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4841   emit_int8(0x54);
4842   emit_int8((unsigned char)(0xC0 | encode));
4843 }
4844 
4845 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4846   assert(VM_Version::supports_avx(), "");
4847   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4848   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4849   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4850   emit_int8(0x54);
4851   emit_int8((unsigned char)(0xC0 | encode));
4852 }
4853 
4854 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4855   assert(VM_Version::supports_avx(), "");
4856   InstructionMark im(this);
4857   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4858   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4859   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4860   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4861   emit_int8(0x54);
4862   emit_operand(dst, src);
4863 }
4864 
4865 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4866   assert(VM_Version::supports_avx(), "");
4867   InstructionMark im(this);
4868   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4869   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4870   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4871   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4872   emit_int8(0x54);
4873   emit_operand(dst, src);
4874 }
4875 
4876 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
4877   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4878   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4879   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4880   emit_int8(0x15);
4881   emit_int8((unsigned char)(0xC0 | encode));
4882 }
4883 
4884 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
4885   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4886   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4887   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4888   emit_int8(0x14);
4889   emit_int8((unsigned char)(0xC0 | encode));
4890 }
4891 
4892 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4893   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4894   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4895   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4896   emit_int8(0x57);
4897   emit_int8((unsigned char)(0xC0 | encode));
4898 }
4899 
4900 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4901   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4902   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4903   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4904   emit_int8(0x57);
4905   emit_int8((unsigned char)(0xC0 | encode));
4906 }
4907 
4908 void Assembler::xorpd(XMMRegister dst, Address src) {
4909   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4910   InstructionMark im(this);
4911   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4912   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4913   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4914   emit_int8(0x57);
4915   emit_operand(dst, src);
4916 }
4917 
4918 void Assembler::xorps(XMMRegister dst, Address src) {
4919   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4920   InstructionMark im(this);
4921   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4922   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4923   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4924   emit_int8(0x57);
4925   emit_operand(dst, src);
4926 }
4927 
4928 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4929   assert(VM_Version::supports_avx(), "");
4930   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4931   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4932   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4933   emit_int8(0x57);
4934   emit_int8((unsigned char)(0xC0 | encode));
4935 }
4936 
4937 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4938   assert(VM_Version::supports_avx(), "");
4939   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4940   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4941   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4942   emit_int8(0x57);
4943   emit_int8((unsigned char)(0xC0 | encode));
4944 }
4945 
4946 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4947   assert(VM_Version::supports_avx(), "");
4948   InstructionMark im(this);
4949   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4950   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4951   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4952   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4953   emit_int8(0x57);
4954   emit_operand(dst, src);
4955 }
4956 
4957 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4958   assert(VM_Version::supports_avx(), "");
4959   InstructionMark im(this);
4960   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4961   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4962   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4963   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4964   emit_int8(0x57);
4965   emit_operand(dst, src);
4966 }
4967 
4968 // Integer vector arithmetic
4969 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4970   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4971          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4972   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4973   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4974   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4975   emit_int8(0x01);
4976   emit_int8((unsigned char)(0xC0 | encode));
4977 }
4978 
4979 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4980   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4981          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4982   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4983   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4984   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4985   emit_int8(0x02);
4986   emit_int8((unsigned char)(0xC0 | encode));
4987 }
4988 
4989 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
4990   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4991   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4992   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4993   emit_int8((unsigned char)0xFC);
4994   emit_int8((unsigned char)(0xC0 | encode));
4995 }
4996 
4997 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
4998   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4999   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5000   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5001   emit_int8((unsigned char)0xFD);
5002   emit_int8((unsigned char)(0xC0 | encode));
5003 }
5004 
5005 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
5006   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5007   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5008   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5009   emit_int8((unsigned char)0xFE);
5010   emit_int8((unsigned char)(0xC0 | encode));
5011 }
5012 
5013 void Assembler::paddd(XMMRegister dst, Address src) {
5014   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5015   InstructionMark im(this);
5016   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5017   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5018   emit_int8((unsigned char)0xFE);
5019   emit_operand(dst, src);
5020 }
5021 
5022 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
5023   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5024   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5025   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5026   emit_int8((unsigned char)0xD4);
5027   emit_int8((unsigned char)(0xC0 | encode));
5028 }
5029 
5030 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
5031   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
5032   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5033   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5034   emit_int8(0x01);
5035   emit_int8((unsigned char)(0xC0 | encode));
5036 }
5037 
5038 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5039   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
5040   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5041   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5042   emit_int8(0x02);
5043   emit_int8((unsigned char)(0xC0 | encode));
5044 }
5045 
5046 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5047   assert(UseAVX > 0, "requires some form of AVX");
5048   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5049   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5050   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5051   emit_int8((unsigned char)0xFC);
5052   emit_int8((unsigned char)(0xC0 | encode));
5053 }
5054 
5055 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5056   assert(UseAVX > 0, "requires some form of AVX");
5057   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5058   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5059   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5060   emit_int8((unsigned char)0xFD);
5061   emit_int8((unsigned char)(0xC0 | encode));
5062 }
5063 
5064 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5065   assert(UseAVX > 0, "requires some form of AVX");
5066   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5067   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5068   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5069   emit_int8((unsigned char)0xFE);
5070   emit_int8((unsigned char)(0xC0 | encode));
5071 }
5072 
5073 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5074   assert(UseAVX > 0, "requires some form of AVX");
5075   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5076   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5077   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5078   emit_int8((unsigned char)0xD4);
5079   emit_int8((unsigned char)(0xC0 | encode));
5080 }
5081 
5082 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5083   assert(UseAVX > 0, "requires some form of AVX");
5084   InstructionMark im(this);
5085   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5086   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5087   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5088   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5089   emit_int8((unsigned char)0xFC);
5090   emit_operand(dst, src);
5091 }
5092 
5093 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5094   assert(UseAVX > 0, "requires some form of AVX");
5095   InstructionMark im(this);
5096   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5097   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5098   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5099   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5100   emit_int8((unsigned char)0xFD);
5101   emit_operand(dst, src);
5102 }
5103 
5104 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5105   assert(UseAVX > 0, "requires some form of AVX");
5106   InstructionMark im(this);
5107   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5108   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5109   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5110   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5111   emit_int8((unsigned char)0xFE);
5112   emit_operand(dst, src);
5113 }
5114 
5115 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5116   assert(UseAVX > 0, "requires some form of AVX");
5117   InstructionMark im(this);
5118   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5119   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5120   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5121   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5122   emit_int8((unsigned char)0xD4);
5123   emit_operand(dst, src);
5124 }
5125 
5126 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5127   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5128   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5129   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5130   emit_int8((unsigned char)0xF8);
5131   emit_int8((unsigned char)(0xC0 | encode));
5132 }
5133 
5134 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5135   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5136   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5137   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5138   emit_int8((unsigned char)0xF9);
5139   emit_int8((unsigned char)(0xC0 | encode));
5140 }
5141 
5142 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5143   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5144   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5145   emit_int8((unsigned char)0xFA);
5146   emit_int8((unsigned char)(0xC0 | encode));
5147 }
5148 
5149 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5150   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5151   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5152   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5153   emit_int8((unsigned char)0xFB);
5154   emit_int8((unsigned char)(0xC0 | encode));
5155 }
5156 
5157 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5158   assert(UseAVX > 0, "requires some form of AVX");
5159   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5160   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5161   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5162   emit_int8((unsigned char)0xF8);
5163   emit_int8((unsigned char)(0xC0 | encode));
5164 }
5165 
5166 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5167   assert(UseAVX > 0, "requires some form of AVX");
5168   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5169   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5170   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5171   emit_int8((unsigned char)0xF9);
5172   emit_int8((unsigned char)(0xC0 | encode));
5173 }
5174 
5175 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5176   assert(UseAVX > 0, "requires some form of AVX");
5177   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5178   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5179   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5180   emit_int8((unsigned char)0xFA);
5181   emit_int8((unsigned char)(0xC0 | encode));
5182 }
5183 
5184 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5185   assert(UseAVX > 0, "requires some form of AVX");
5186   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5187   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5188   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5189   emit_int8((unsigned char)0xFB);
5190   emit_int8((unsigned char)(0xC0 | encode));
5191 }
5192 
5193 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5194   assert(UseAVX > 0, "requires some form of AVX");
5195   InstructionMark im(this);
5196   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5197   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5198   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5199   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5200   emit_int8((unsigned char)0xF8);
5201   emit_operand(dst, src);
5202 }
5203 
5204 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5205   assert(UseAVX > 0, "requires some form of AVX");
5206   InstructionMark im(this);
5207   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5208   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5209   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5210   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5211   emit_int8((unsigned char)0xF9);
5212   emit_operand(dst, src);
5213 }
5214 
5215 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5216   assert(UseAVX > 0, "requires some form of AVX");
5217   InstructionMark im(this);
5218   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5219   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5220   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5221   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5222   emit_int8((unsigned char)0xFA);
5223   emit_operand(dst, src);
5224 }
5225 
5226 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5227   assert(UseAVX > 0, "requires some form of AVX");
5228   InstructionMark im(this);
5229   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5230   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5231   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5232   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5233   emit_int8((unsigned char)0xFB);
5234   emit_operand(dst, src);
5235 }
5236 
5237 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5238   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5239   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5240   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5241   emit_int8((unsigned char)0xD5);
5242   emit_int8((unsigned char)(0xC0 | encode));
5243 }
5244 
5245 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5246   assert(VM_Version::supports_sse4_1(), "");
5247   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5248   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5249   emit_int8(0x40);
5250   emit_int8((unsigned char)(0xC0 | encode));
5251 }
5252 
5253 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5254   assert(UseAVX > 0, "requires some form of AVX");
5255   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5256   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5257   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5258   emit_int8((unsigned char)0xD5);
5259   emit_int8((unsigned char)(0xC0 | encode));
5260 }
5261 
5262 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5263   assert(UseAVX > 0, "requires some form of AVX");
5264   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5265   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5266   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5267   emit_int8(0x40);
5268   emit_int8((unsigned char)(0xC0 | encode));
5269 }
5270 
5271 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5272   assert(UseAVX > 2, "requires some form of AVX");
5273   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5274   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5275   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5276   emit_int8(0x40);
5277   emit_int8((unsigned char)(0xC0 | encode));
5278 }
5279 
5280 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5281   assert(UseAVX > 0, "requires some form of AVX");
5282   InstructionMark im(this);
5283   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5284   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5285   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5286   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5287   emit_int8((unsigned char)0xD5);
5288   emit_operand(dst, src);
5289 }
5290 
5291 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5292   assert(UseAVX > 0, "requires some form of AVX");
5293   InstructionMark im(this);
5294   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5295   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5296   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5297   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5298   emit_int8(0x40);
5299   emit_operand(dst, src);
5300 }
5301 
5302 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5303   assert(UseAVX > 0, "requires some form of AVX");
5304   InstructionMark im(this);
5305   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5306   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5307   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5308   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5309   emit_int8(0x40);
5310   emit_operand(dst, src);
5311 }
5312 
5313 // Shift packed integers left by specified number of bits.
5314 void Assembler::psllw(XMMRegister dst, int shift) {
5315   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5316   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5317   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5318   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5319   emit_int8(0x71);
5320   emit_int8((unsigned char)(0xC0 | encode));
5321   emit_int8(shift & 0xFF);
5322 }
5323 
5324 void Assembler::pslld(XMMRegister dst, int shift) {
5325   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5326   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5327   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5328   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5329   emit_int8(0x72);
5330   emit_int8((unsigned char)(0xC0 | encode));
5331   emit_int8(shift & 0xFF);
5332 }
5333 
5334 void Assembler::psllq(XMMRegister dst, int shift) {
5335   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5336   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5337   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5338   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5339   emit_int8(0x73);
5340   emit_int8((unsigned char)(0xC0 | encode));
5341   emit_int8(shift & 0xFF);
5342 }
5343 
5344 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5345   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5346   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5347   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5348   emit_int8((unsigned char)0xF1);
5349   emit_int8((unsigned char)(0xC0 | encode));
5350 }
5351 
5352 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5353   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5354   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5355   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5356   emit_int8((unsigned char)0xF2);
5357   emit_int8((unsigned char)(0xC0 | encode));
5358 }
5359 
5360 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5361   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5362   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5363   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5364   emit_int8((unsigned char)0xF3);
5365   emit_int8((unsigned char)(0xC0 | encode));
5366 }
5367 
5368 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5369   assert(UseAVX > 0, "requires some form of AVX");
5370   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5371   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5372   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5373   emit_int8(0x71);
5374   emit_int8((unsigned char)(0xC0 | encode));
5375   emit_int8(shift & 0xFF);
5376 }
5377 
5378 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5379   assert(UseAVX > 0, "requires some form of AVX");
5380   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5381   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5382   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5383   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5384   emit_int8(0x72);
5385   emit_int8((unsigned char)(0xC0 | encode));
5386   emit_int8(shift & 0xFF);
5387 }
5388 
5389 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5390   assert(UseAVX > 0, "requires some form of AVX");
5391   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5392   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5393   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5394   emit_int8(0x73);
5395   emit_int8((unsigned char)(0xC0 | encode));
5396   emit_int8(shift & 0xFF);
5397 }
5398 
5399 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5400   assert(UseAVX > 0, "requires some form of AVX");
5401   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5402   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5403   emit_int8((unsigned char)0xF1);
5404   emit_int8((unsigned char)(0xC0 | encode));
5405 }
5406 
5407 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5408   assert(UseAVX > 0, "requires some form of AVX");
5409   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5410   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5411   emit_int8((unsigned char)0xF2);
5412   emit_int8((unsigned char)(0xC0 | encode));
5413 }
5414 
5415 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5416   assert(UseAVX > 0, "requires some form of AVX");
5417   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5418   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5419   emit_int8((unsigned char)0xF3);
5420   emit_int8((unsigned char)(0xC0 | encode));
5421 }
5422 
5423 // Shift packed integers logically right by specified number of bits.
5424 void Assembler::psrlw(XMMRegister dst, int shift) {
5425   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5426   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5427   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5428   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5429   emit_int8(0x71);
5430   emit_int8((unsigned char)(0xC0 | encode));
5431   emit_int8(shift & 0xFF);
5432 }
5433 
5434 void Assembler::psrld(XMMRegister dst, int shift) {
5435   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5436   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5437   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5438   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5439   emit_int8(0x72);
5440   emit_int8((unsigned char)(0xC0 | encode));
5441   emit_int8(shift & 0xFF);
5442 }
5443 
5444 void Assembler::psrlq(XMMRegister dst, int shift) {
5445   // Do not confuse it with psrldq SSE2 instruction which
5446   // shifts 128 bit value in xmm register by number of bytes.
5447   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5448   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5449   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5450   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5451   emit_int8(0x73);
5452   emit_int8((unsigned char)(0xC0 | encode));
5453   emit_int8(shift & 0xFF);
5454 }
5455 
5456 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
5457   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5458   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5459   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5460   emit_int8((unsigned char)0xD1);
5461   emit_int8((unsigned char)(0xC0 | encode));
5462 }
5463 
5464 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
5465   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5466   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5467   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5468   emit_int8((unsigned char)0xD2);
5469   emit_int8((unsigned char)(0xC0 | encode));
5470 }
5471 
5472 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
5473   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5474   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5475   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5476   emit_int8((unsigned char)0xD3);
5477   emit_int8((unsigned char)(0xC0 | encode));
5478 }
5479 
5480 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5481   assert(UseAVX > 0, "requires some form of AVX");
5482   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5483   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5484   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5485   emit_int8(0x71);
5486   emit_int8((unsigned char)(0xC0 | encode));
5487   emit_int8(shift & 0xFF);
5488 }
5489 
5490 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5491   assert(UseAVX > 0, "requires some form of AVX");
5492   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5493   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5494   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5495   emit_int8(0x72);
5496   emit_int8((unsigned char)(0xC0 | encode));
5497   emit_int8(shift & 0xFF);
5498 }
5499 
5500 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5501   assert(UseAVX > 0, "requires some form of AVX");
5502   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5503   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5504   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5505   emit_int8(0x73);
5506   emit_int8((unsigned char)(0xC0 | encode));
5507   emit_int8(shift & 0xFF);
5508 }
5509 
5510 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5511   assert(UseAVX > 0, "requires some form of AVX");
5512   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5513   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5514   emit_int8((unsigned char)0xD1);
5515   emit_int8((unsigned char)(0xC0 | encode));
5516 }
5517 
5518 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5519   assert(UseAVX > 0, "requires some form of AVX");
5520   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5521   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5522   emit_int8((unsigned char)0xD2);
5523   emit_int8((unsigned char)(0xC0 | encode));
5524 }
5525 
5526 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5527   assert(UseAVX > 0, "requires some form of AVX");
5528   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5529   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5530   emit_int8((unsigned char)0xD3);
5531   emit_int8((unsigned char)(0xC0 | encode));
5532 }
5533 
5534 // Shift packed integers arithmetically right by specified number of bits.
5535 void Assembler::psraw(XMMRegister dst, int shift) {
5536   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5537   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5538   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5539   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5540   emit_int8(0x71);
5541   emit_int8((unsigned char)(0xC0 | encode));
5542   emit_int8(shift & 0xFF);
5543 }
5544 
5545 void Assembler::psrad(XMMRegister dst, int shift) {
5546   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5547   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5548   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
5549   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5550   emit_int8(0x72);
5551   emit_int8((unsigned char)(0xC0 | encode));
5552   emit_int8(shift & 0xFF);
5553 }
5554 
5555 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
5556   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5557   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5558   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5559   emit_int8((unsigned char)0xE1);
5560   emit_int8((unsigned char)(0xC0 | encode));
5561 }
5562 
5563 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
5564   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5565   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5566   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5567   emit_int8((unsigned char)0xE2);
5568   emit_int8((unsigned char)(0xC0 | encode));
5569 }
5570 
5571 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5572   assert(UseAVX > 0, "requires some form of AVX");
5573   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5574   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5575   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5576   emit_int8(0x71);
5577   emit_int8((unsigned char)(0xC0 | encode));
5578   emit_int8(shift & 0xFF);
5579 }
5580 
5581 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5582   assert(UseAVX > 0, "requires some form of AVX");
5583   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5584   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5585   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5586   emit_int8(0x72);
5587   emit_int8((unsigned char)(0xC0 | encode));
5588   emit_int8(shift & 0xFF);
5589 }
5590 
5591 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5592   assert(UseAVX > 0, "requires some form of AVX");
5593   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5594   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5595   emit_int8((unsigned char)0xE1);
5596   emit_int8((unsigned char)(0xC0 | encode));
5597 }
5598 
5599 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5600   assert(UseAVX > 0, "requires some form of AVX");
5601   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5602   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5603   emit_int8((unsigned char)0xE2);
5604   emit_int8((unsigned char)(0xC0 | encode));
5605 }
5606 
5607 
5608 // logical operations packed integers
5609 void Assembler::pand(XMMRegister dst, XMMRegister src) {
5610   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5611   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5612   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5613   emit_int8((unsigned char)0xDB);
5614   emit_int8((unsigned char)(0xC0 | encode));
5615 }
5616 
5617 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5618   assert(UseAVX > 0, "requires some form of AVX");
5619   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5620   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5621   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5622   emit_int8((unsigned char)0xDB);
5623   emit_int8((unsigned char)(0xC0 | encode));
5624 }
5625 
5626 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5627   assert(UseAVX > 0, "requires some form of AVX");
5628   InstructionMark im(this);
5629   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5630   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5631   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5632   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5633   emit_int8((unsigned char)0xDB);
5634   emit_operand(dst, src);
5635 }
5636 
5637 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
5638   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5639   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5640   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5641   emit_int8((unsigned char)0xDF);
5642   emit_int8((unsigned char)(0xC0 | encode));
5643 }
5644 
5645 void Assembler::por(XMMRegister dst, XMMRegister src) {
5646   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5647   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5648   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5649   emit_int8((unsigned char)0xEB);
5650   emit_int8((unsigned char)(0xC0 | encode));
5651 }
5652 
5653 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5654   assert(UseAVX > 0, "requires some form of AVX");
5655   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5656   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5657   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5658   emit_int8((unsigned char)0xEB);
5659   emit_int8((unsigned char)(0xC0 | encode));
5660 }
5661 
5662 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5663   assert(UseAVX > 0, "requires some form of AVX");
5664   InstructionMark im(this);
5665   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5666   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5667   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5668   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5669   emit_int8((unsigned char)0xEB);
5670   emit_operand(dst, src);
5671 }
5672 
5673 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
5674   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5675   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5676   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5677   emit_int8((unsigned char)0xEF);
5678   emit_int8((unsigned char)(0xC0 | encode));
5679 }
5680 
5681 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5682   assert(UseAVX > 0, "requires some form of AVX");
5683   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5684   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5685   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5686   emit_int8((unsigned char)0xEF);
5687   emit_int8((unsigned char)(0xC0 | encode));
5688 }
5689 
5690 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5691   assert(UseAVX > 0, "requires some form of AVX");
5692   InstructionMark im(this);
5693   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5694   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5695   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5696   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5697   emit_int8((unsigned char)0xEF);
5698   emit_operand(dst, src);
5699 }
5700 
5701 
5702 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5703   assert(VM_Version::supports_avx(), "");
5704   assert(imm8 <= 0x01, "imm8: %u", imm8);
5705   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5706   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5707   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5708   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5709   emit_int8(0x18);
5710   emit_int8((unsigned char)(0xC0 | encode));
5711   // 0x00 - insert into lower 128 bits
5712   // 0x01 - insert into upper 128 bits
5713   emit_int8(imm8 & 0x01);
5714 }
5715 
5716 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5717   assert(VM_Version::supports_evex(), "");
5718   assert(imm8 <= 0x01, "imm8: %u", imm8);
5719   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5720   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5721   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5722   emit_int8(0x1A);
5723   emit_int8((unsigned char)(0xC0 | encode));
5724   // 0x00 - insert into lower 256 bits
5725   // 0x01 - insert into upper 256 bits
5726   emit_int8(imm8 & 0x01);
5727 }
5728 
5729 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5730   assert(VM_Version::supports_evex(), "");
5731   assert(dst != xnoreg, "sanity");
5732   assert(imm8 <= 0x01, "imm8: %u", imm8);
5733   InstructionMark im(this);
5734   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5735   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5736   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
5737   // swap src<->dst for encoding
5738   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5739   emit_int8(0x1A);
5740   emit_operand(dst, src);
5741   // 0x00 - insert into lower 256 bits
5742   // 0x01 - insert into upper 256 bits
5743   emit_int8(imm8 & 0x01);
5744 }
5745 
5746 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5747   assert(VM_Version::supports_evex(), "");
5748   assert(imm8 <= 0x03, "imm8: %u", imm8);
5749   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5750   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5751   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5752   emit_int8(0x18);
5753   emit_int8((unsigned char)(0xC0 | encode));
5754   // 0x00 - insert into q0 128 bits (0..127)
5755   // 0x01 - insert into q1 128 bits (128..255)
5756   // 0x02 - insert into q2 128 bits (256..383)
5757   // 0x03 - insert into q3 128 bits (384..511)
5758   emit_int8(imm8 & 0x03);
5759 }
5760 
5761 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5762   assert(VM_Version::supports_avx(), "");
5763   assert(dst != xnoreg, "sanity");
5764   assert(imm8 <= 0x03, "imm8: %u", imm8);
5765   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5766   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5767   InstructionMark im(this);
5768   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5769   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5770   // swap src<->dst for encoding
5771   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5772   emit_int8(0x18);
5773   emit_operand(dst, src);
5774   // 0x00 - insert into q0 128 bits (0..127)
5775   // 0x01 - insert into q1 128 bits (128..255)
5776   // 0x02 - insert into q2 128 bits (256..383)
5777   // 0x03 - insert into q3 128 bits (384..511)
5778   emit_int8(imm8 & 0x03);
5779 }
5780 
5781 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5782   assert(VM_Version::supports_avx(), "");
5783   assert(dst != xnoreg, "sanity");
5784   assert(imm8 <= 0x01, "imm8: %u", imm8);
5785   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5786   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5787   InstructionMark im(this);
5788   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5789   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5790   // swap src<->dst for encoding
5791   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5792   emit_int8(0x18);
5793   emit_operand(dst, src);
5794   // 0x00 - insert into lower 128 bits
5795   // 0x01 - insert into upper 128 bits
5796   emit_int8(imm8 & 0x01);
5797 }
5798 
5799 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5800   assert(VM_Version::supports_avx(), "");
5801   assert(imm8 <= 0x01, "imm8: %u", imm8);
5802   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5803   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5804   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5805   emit_int8(0x19);
5806   emit_int8((unsigned char)(0xC0 | encode));
5807   // 0x00 - extract from lower 128 bits
5808   // 0x01 - extract from upper 128 bits
5809   emit_int8(imm8 & 0x01);
5810 }
5811 
5812 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
5813   assert(VM_Version::supports_avx(), "");
5814   assert(src != xnoreg, "sanity");
5815   assert(imm8 <= 0x01, "imm8: %u", imm8);
5816   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5817   InstructionMark im(this);
5818   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5819   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5820   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5821   emit_int8(0x19);
5822   emit_operand(src, dst);
5823   // 0x00 - extract from lower 128 bits
5824   // 0x01 - extract from upper 128 bits
5825   emit_int8(imm8 & 0x01);
5826 }
5827 
5828 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5829   assert(VM_Version::supports_avx2(), "");
5830   assert(imm8 <= 0x01, "imm8: %u", imm8);
5831   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5832   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5833   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5834   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5835   emit_int8(0x38);
5836   emit_int8((unsigned char)(0xC0 | encode));
5837   // 0x00 - insert into lower 128 bits
5838   // 0x01 - insert into upper 128 bits
5839   emit_int8(imm8 & 0x01);
5840 }
5841 
5842 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5843   assert(VM_Version::supports_evex(), "");
5844   assert(imm8 <= 0x01, "imm8: %u", imm8);
5845   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5846   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5847   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5848   emit_int8(0x38);
5849   emit_int8((unsigned char)(0xC0 | encode));
5850   // 0x00 - insert into lower 256 bits
5851   // 0x01 - insert into upper 256 bits
5852   emit_int8(imm8 & 0x01);
5853 }
5854 
5855 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5856   assert(VM_Version::supports_avx2(), "");
5857   assert(dst != xnoreg, "sanity");
5858   assert(imm8 <= 0x01, "imm8: %u", imm8);
5859   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5860   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5861   InstructionMark im(this);
5862   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5863   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5864   // swap src<->dst for encoding
5865   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5866   emit_int8(0x38);
5867   emit_operand(dst, src);
5868   // 0x00 - insert into lower 128 bits
5869   // 0x01 - insert into upper 128 bits
5870   emit_int8(imm8 & 0x01);
5871 }
5872 
5873 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5874   assert(VM_Version::supports_avx(), "");
5875   assert(imm8 <= 0x01, "imm8: %u", imm8);
5876   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5877   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5878   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5879   emit_int8(0x39);
5880   emit_int8((unsigned char)(0xC0 | encode));
5881   // 0x00 - extract from lower 128 bits
5882   // 0x01 - extract from upper 128 bits
5883   emit_int8(imm8 & 0x01);
5884 }
5885 
5886 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
5887   assert(VM_Version::supports_avx2(), "");
5888   assert(src != xnoreg, "sanity");
5889   assert(imm8 <= 0x01, "imm8: %u", imm8);
5890   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5891   InstructionMark im(this);
5892   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5893   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5894   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5895   emit_int8(0x39);
5896   emit_operand(src, dst);
5897   // 0x00 - extract from lower 128 bits
5898   // 0x01 - extract from upper 128 bits
5899   emit_int8(imm8 & 0x01);
5900 }
5901 
5902 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5903   assert(VM_Version::supports_evex(), "");
5904   assert(imm8 <= 0x01, "imm8: %u", imm8);
5905   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5906   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5907   emit_int8(0x3B);
5908   emit_int8((unsigned char)(0xC0 | encode));
5909   // 0x00 - extract from lower 256 bits
5910   // 0x01 - extract from upper 256 bits
5911   emit_int8(imm8 & 0x01);
5912 }
5913 
5914 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5915   assert(VM_Version::supports_evex(), "");
5916   assert(imm8 <= 0x03, "imm8: %u", imm8);
5917   InstructionAttr attributes(AVX_512bit, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5918   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5919   emit_int8(0x39);
5920   emit_int8((unsigned char)(0xC0 | encode));
5921   // 0x00 - extract from bits 127:0
5922   // 0x01 - extract from bits 255:128
5923   // 0x02 - extract from bits 383:256
5924   // 0x03 - extract from bits 511:384
5925   emit_int8(imm8 & 0x03);
5926 }
5927 
5928 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5929   assert(VM_Version::supports_evex(), "");
5930   assert(imm8 <= 0x01, "imm8: %u", imm8);
5931   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5932   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5933   emit_int8(0x1B);
5934   emit_int8((unsigned char)(0xC0 | encode));
5935   // 0x00 - extract from lower 256 bits
5936   // 0x01 - extract from upper 256 bits
5937   emit_int8(imm8 & 0x01);
5938 }
5939 
5940 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
5941   assert(VM_Version::supports_evex(), "");
5942   assert(src != xnoreg, "sanity");
5943   assert(imm8 <= 0x01, "imm8: %u", imm8);
5944   InstructionMark im(this);
5945   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5946   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
5947   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5948   emit_int8(0x1B);
5949   emit_operand(src, dst);
5950   // 0x00 - extract from lower 256 bits
5951   // 0x01 - extract from upper 256 bits
5952   emit_int8(imm8 & 0x01);
5953 }
5954 
5955 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5956   assert(VM_Version::supports_avx(), "");
5957   assert(imm8 <= 0x03, "imm8: %u", imm8);
5958   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5959   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5960   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5961   emit_int8(0x19);
5962   emit_int8((unsigned char)(0xC0 | encode));
5963   // 0x00 - extract from bits 127:0
5964   // 0x01 - extract from bits 255:128
5965   // 0x02 - extract from bits 383:256
5966   // 0x03 - extract from bits 511:384
5967   emit_int8(imm8 & 0x03);
5968 }
5969 
5970 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
5971   assert(VM_Version::supports_evex(), "");
5972   assert(src != xnoreg, "sanity");
5973   assert(imm8 <= 0x03, "imm8: %u", imm8);
5974   InstructionMark im(this);
5975   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5976   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5977   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5978   emit_int8(0x19);
5979   emit_operand(src, dst);
5980   // 0x00 - extract from bits 127:0
5981   // 0x01 - extract from bits 255:128
5982   // 0x02 - extract from bits 383:256
5983   // 0x03 - extract from bits 511:384
5984   emit_int8(imm8 & 0x03);
5985 }
5986 
5987 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5988   assert(VM_Version::supports_evex(), "");
5989   assert(imm8 <= 0x03, "imm8: %u", imm8);
5990   InstructionAttr attributes(AVX_512bit, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5991   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5992   emit_int8(0x19);
5993   emit_int8((unsigned char)(0xC0 | encode));
5994   // 0x00 - extract from bits 127:0
5995   // 0x01 - extract from bits 255:128
5996   // 0x02 - extract from bits 383:256
5997   // 0x03 - extract from bits 511:384
5998   emit_int8(imm8 & 0x03);
5999 }
6000 
6001 // duplicate 4-bytes integer data from src into 8 locations in dest
6002 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
6003   assert(VM_Version::supports_avx2(), "");
6004   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6005   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6006   emit_int8(0x58);
6007   emit_int8((unsigned char)(0xC0 | encode));
6008 }
6009 
6010 // duplicate 2-bytes integer data from src into 16 locations in dest
6011 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
6012   assert(VM_Version::supports_avx2(), "");
6013   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6014   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6015   emit_int8(0x79);
6016   emit_int8((unsigned char)(0xC0 | encode));
6017 }
6018 
6019 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
6020 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6021   assert(VM_Version::supports_evex(), "");
6022   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6023   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6024   emit_int8(0x78);
6025   emit_int8((unsigned char)(0xC0 | encode));
6026 }
6027 
6028 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6029   assert(VM_Version::supports_evex(), "");
6030   assert(dst != xnoreg, "sanity");
6031   InstructionMark im(this);
6032   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6033   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6034   // swap src<->dst for encoding
6035   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6036   emit_int8(0x78);
6037   emit_operand(dst, src);
6038 }
6039 
6040 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
6041 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6042   assert(VM_Version::supports_evex(), "");
6043   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6044   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6045   emit_int8(0x79);
6046   emit_int8((unsigned char)(0xC0 | encode));
6047 }
6048 
6049 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6050   assert(VM_Version::supports_evex(), "");
6051   assert(dst != xnoreg, "sanity");
6052   InstructionMark im(this);
6053   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6054   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6055   // swap src<->dst for encoding
6056   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6057   emit_int8(0x79);
6058   emit_operand(dst, src);
6059 }
6060 
6061 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
6062 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6063   assert(VM_Version::supports_evex(), "");
6064   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6065   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6066   emit_int8(0x58);
6067   emit_int8((unsigned char)(0xC0 | encode));
6068 }
6069 
6070 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6071   assert(VM_Version::supports_evex(), "");
6072   assert(dst != xnoreg, "sanity");
6073   InstructionMark im(this);
6074   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6075   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6076   // swap src<->dst for encoding
6077   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6078   emit_int8(0x58);
6079   emit_operand(dst, src);
6080 }
6081 
6082 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
6083 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6084   assert(VM_Version::supports_evex(), "");
6085   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6086   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6087   emit_int8(0x59);
6088   emit_int8((unsigned char)(0xC0 | encode));
6089 }
6090 
6091 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6092   assert(VM_Version::supports_evex(), "");
6093   assert(dst != xnoreg, "sanity");
6094   InstructionMark im(this);
6095   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6096   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6097   // swap src<->dst for encoding
6098   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6099   emit_int8(0x59);
6100   emit_operand(dst, src);
6101 }
6102 
6103 // duplicate single precision fp from src into 4|8|16 locations in dest : requires AVX512VL
6104 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6105   assert(VM_Version::supports_evex(), "");
6106   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6107   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6108   emit_int8(0x18);
6109   emit_int8((unsigned char)(0xC0 | encode));
6110 }
6111 
6112 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
6113   assert(VM_Version::supports_evex(), "");
6114   assert(dst != xnoreg, "sanity");
6115   InstructionMark im(this);
6116   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6117   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6118   // swap src<->dst for encoding
6119   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6120   emit_int8(0x18);
6121   emit_operand(dst, src);
6122 }
6123 
6124 // duplicate double precision fp from src into 2|4|8 locations in dest : requires AVX512VL
6125 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6126   assert(VM_Version::supports_evex(), "");
6127   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6128   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6129   emit_int8(0x19);
6130   emit_int8((unsigned char)(0xC0 | encode));
6131 }
6132 
6133 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6134   assert(VM_Version::supports_evex(), "");
6135   assert(dst != xnoreg, "sanity");
6136   InstructionMark im(this);
6137   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6138   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6139   // swap src<->dst for encoding
6140   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6141   emit_int8(0x19);
6142   emit_operand(dst, src);
6143 }
6144 
6145 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
6146 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6147   assert(VM_Version::supports_evex(), "");
6148   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6149   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6150   emit_int8(0x7A);
6151   emit_int8((unsigned char)(0xC0 | encode));
6152 }
6153 
6154 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
6155 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6156   assert(VM_Version::supports_evex(), "");
6157   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6158   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6159   emit_int8(0x7B);
6160   emit_int8((unsigned char)(0xC0 | encode));
6161 }
6162 
6163 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
6164 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6165   assert(VM_Version::supports_evex(), "");
6166   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6167   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6168   emit_int8(0x7C);
6169   emit_int8((unsigned char)(0xC0 | encode));
6170 }
6171 
6172 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
6173 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6174   assert(VM_Version::supports_evex(), "");
6175   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6176   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6177   emit_int8(0x7C);
6178   emit_int8((unsigned char)(0xC0 | encode));
6179 }
6180 
6181 // Carry-Less Multiplication Quadword
6182 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
6183   assert(VM_Version::supports_clmul(), "");
6184   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6185   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6186   emit_int8(0x44);
6187   emit_int8((unsigned char)(0xC0 | encode));
6188   emit_int8((unsigned char)mask);
6189 }
6190 
6191 // Carry-Less Multiplication Quadword
6192 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
6193   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
6194   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6195   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6196   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6197   emit_int8(0x44);
6198   emit_int8((unsigned char)(0xC0 | encode));
6199   emit_int8((unsigned char)mask);
6200 }
6201 
6202 void Assembler::vzeroupper() {
6203   assert(VM_Version::supports_avx(), "");
6204   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6205   (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6206   emit_int8(0x77);
6207 }
6208 
6209 
6210 #ifndef _LP64
6211 // 32bit only pieces of the assembler
6212 
6213 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6214   // NO PREFIX AS NEVER 64BIT
6215   InstructionMark im(this);
6216   emit_int8((unsigned char)0x81);
6217   emit_int8((unsigned char)(0xF8 | src1->encoding()));
6218   emit_data(imm32, rspec, 0);
6219 }
6220 
6221 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6222   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
6223   InstructionMark im(this);
6224   emit_int8((unsigned char)0x81);
6225   emit_operand(rdi, src1);
6226   emit_data(imm32, rspec, 0);
6227 }
6228 
6229 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
6230 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
6231 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
6232 void Assembler::cmpxchg8(Address adr) {
6233   InstructionMark im(this);
6234   emit_int8(0x0F);
6235   emit_int8((unsigned char)0xC7);
6236   emit_operand(rcx, adr);
6237 }
6238 
6239 void Assembler::decl(Register dst) {
6240   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6241  emit_int8(0x48 | dst->encoding());
6242 }
6243 
6244 #endif // _LP64
6245 
6246 // 64bit typically doesn't use the x87 but needs to for the trig funcs
6247 
6248 void Assembler::fabs() {
6249   emit_int8((unsigned char)0xD9);
6250   emit_int8((unsigned char)0xE1);
6251 }
6252 
6253 void Assembler::fadd(int i) {
6254   emit_farith(0xD8, 0xC0, i);
6255 }
6256 
6257 void Assembler::fadd_d(Address src) {
6258   InstructionMark im(this);
6259   emit_int8((unsigned char)0xDC);
6260   emit_operand32(rax, src);
6261 }
6262 
6263 void Assembler::fadd_s(Address src) {
6264   InstructionMark im(this);
6265   emit_int8((unsigned char)0xD8);
6266   emit_operand32(rax, src);
6267 }
6268 
6269 void Assembler::fadda(int i) {
6270   emit_farith(0xDC, 0xC0, i);
6271 }
6272 
6273 void Assembler::faddp(int i) {
6274   emit_farith(0xDE, 0xC0, i);
6275 }
6276 
6277 void Assembler::fchs() {
6278   emit_int8((unsigned char)0xD9);
6279   emit_int8((unsigned char)0xE0);
6280 }
6281 
6282 void Assembler::fcom(int i) {
6283   emit_farith(0xD8, 0xD0, i);
6284 }
6285 
6286 void Assembler::fcomp(int i) {
6287   emit_farith(0xD8, 0xD8, i);
6288 }
6289 
6290 void Assembler::fcomp_d(Address src) {
6291   InstructionMark im(this);
6292   emit_int8((unsigned char)0xDC);
6293   emit_operand32(rbx, src);
6294 }
6295 
6296 void Assembler::fcomp_s(Address src) {
6297   InstructionMark im(this);
6298   emit_int8((unsigned char)0xD8);
6299   emit_operand32(rbx, src);
6300 }
6301 
6302 void Assembler::fcompp() {
6303   emit_int8((unsigned char)0xDE);
6304   emit_int8((unsigned char)0xD9);
6305 }
6306 
6307 void Assembler::fcos() {
6308   emit_int8((unsigned char)0xD9);
6309   emit_int8((unsigned char)0xFF);
6310 }
6311 
6312 void Assembler::fdecstp() {
6313   emit_int8((unsigned char)0xD9);
6314   emit_int8((unsigned char)0xF6);
6315 }
6316 
6317 void Assembler::fdiv(int i) {
6318   emit_farith(0xD8, 0xF0, i);
6319 }
6320 
6321 void Assembler::fdiv_d(Address src) {
6322   InstructionMark im(this);
6323   emit_int8((unsigned char)0xDC);
6324   emit_operand32(rsi, src);
6325 }
6326 
6327 void Assembler::fdiv_s(Address src) {
6328   InstructionMark im(this);
6329   emit_int8((unsigned char)0xD8);
6330   emit_operand32(rsi, src);
6331 }
6332 
6333 void Assembler::fdiva(int i) {
6334   emit_farith(0xDC, 0xF8, i);
6335 }
6336 
6337 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
6338 //       is erroneous for some of the floating-point instructions below.
6339 
6340 void Assembler::fdivp(int i) {
6341   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
6342 }
6343 
6344 void Assembler::fdivr(int i) {
6345   emit_farith(0xD8, 0xF8, i);
6346 }
6347 
6348 void Assembler::fdivr_d(Address src) {
6349   InstructionMark im(this);
6350   emit_int8((unsigned char)0xDC);
6351   emit_operand32(rdi, src);
6352 }
6353 
6354 void Assembler::fdivr_s(Address src) {
6355   InstructionMark im(this);
6356   emit_int8((unsigned char)0xD8);
6357   emit_operand32(rdi, src);
6358 }
6359 
6360 void Assembler::fdivra(int i) {
6361   emit_farith(0xDC, 0xF0, i);
6362 }
6363 
6364 void Assembler::fdivrp(int i) {
6365   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
6366 }
6367 
6368 void Assembler::ffree(int i) {
6369   emit_farith(0xDD, 0xC0, i);
6370 }
6371 
6372 void Assembler::fild_d(Address adr) {
6373   InstructionMark im(this);
6374   emit_int8((unsigned char)0xDF);
6375   emit_operand32(rbp, adr);
6376 }
6377 
6378 void Assembler::fild_s(Address adr) {
6379   InstructionMark im(this);
6380   emit_int8((unsigned char)0xDB);
6381   emit_operand32(rax, adr);
6382 }
6383 
6384 void Assembler::fincstp() {
6385   emit_int8((unsigned char)0xD9);
6386   emit_int8((unsigned char)0xF7);
6387 }
6388 
6389 void Assembler::finit() {
6390   emit_int8((unsigned char)0x9B);
6391   emit_int8((unsigned char)0xDB);
6392   emit_int8((unsigned char)0xE3);
6393 }
6394 
6395 void Assembler::fist_s(Address adr) {
6396   InstructionMark im(this);
6397   emit_int8((unsigned char)0xDB);
6398   emit_operand32(rdx, adr);
6399 }
6400 
6401 void Assembler::fistp_d(Address adr) {
6402   InstructionMark im(this);
6403   emit_int8((unsigned char)0xDF);
6404   emit_operand32(rdi, adr);
6405 }
6406 
6407 void Assembler::fistp_s(Address adr) {
6408   InstructionMark im(this);
6409   emit_int8((unsigned char)0xDB);
6410   emit_operand32(rbx, adr);
6411 }
6412 
6413 void Assembler::fld1() {
6414   emit_int8((unsigned char)0xD9);
6415   emit_int8((unsigned char)0xE8);
6416 }
6417 
6418 void Assembler::fld_d(Address adr) {
6419   InstructionMark im(this);
6420   emit_int8((unsigned char)0xDD);
6421   emit_operand32(rax, adr);
6422 }
6423 
6424 void Assembler::fld_s(Address adr) {
6425   InstructionMark im(this);
6426   emit_int8((unsigned char)0xD9);
6427   emit_operand32(rax, adr);
6428 }
6429 
6430 
6431 void Assembler::fld_s(int index) {
6432   emit_farith(0xD9, 0xC0, index);
6433 }
6434 
6435 void Assembler::fld_x(Address adr) {
6436   InstructionMark im(this);
6437   emit_int8((unsigned char)0xDB);
6438   emit_operand32(rbp, adr);
6439 }
6440 
6441 void Assembler::fldcw(Address src) {
6442   InstructionMark im(this);
6443   emit_int8((unsigned char)0xD9);
6444   emit_operand32(rbp, src);
6445 }
6446 
6447 void Assembler::fldenv(Address src) {
6448   InstructionMark im(this);
6449   emit_int8((unsigned char)0xD9);
6450   emit_operand32(rsp, src);
6451 }
6452 
6453 void Assembler::fldlg2() {
6454   emit_int8((unsigned char)0xD9);
6455   emit_int8((unsigned char)0xEC);
6456 }
6457 
6458 void Assembler::fldln2() {
6459   emit_int8((unsigned char)0xD9);
6460   emit_int8((unsigned char)0xED);
6461 }
6462 
6463 void Assembler::fldz() {
6464   emit_int8((unsigned char)0xD9);
6465   emit_int8((unsigned char)0xEE);
6466 }
6467 
6468 void Assembler::flog() {
6469   fldln2();
6470   fxch();
6471   fyl2x();
6472 }
6473 
6474 void Assembler::flog10() {
6475   fldlg2();
6476   fxch();
6477   fyl2x();
6478 }
6479 
6480 void Assembler::fmul(int i) {
6481   emit_farith(0xD8, 0xC8, i);
6482 }
6483 
6484 void Assembler::fmul_d(Address src) {
6485   InstructionMark im(this);
6486   emit_int8((unsigned char)0xDC);
6487   emit_operand32(rcx, src);
6488 }
6489 
6490 void Assembler::fmul_s(Address src) {
6491   InstructionMark im(this);
6492   emit_int8((unsigned char)0xD8);
6493   emit_operand32(rcx, src);
6494 }
6495 
6496 void Assembler::fmula(int i) {
6497   emit_farith(0xDC, 0xC8, i);
6498 }
6499 
6500 void Assembler::fmulp(int i) {
6501   emit_farith(0xDE, 0xC8, i);
6502 }
6503 
6504 void Assembler::fnsave(Address dst) {
6505   InstructionMark im(this);
6506   emit_int8((unsigned char)0xDD);
6507   emit_operand32(rsi, dst);
6508 }
6509 
6510 void Assembler::fnstcw(Address src) {
6511   InstructionMark im(this);
6512   emit_int8((unsigned char)0x9B);
6513   emit_int8((unsigned char)0xD9);
6514   emit_operand32(rdi, src);
6515 }
6516 
6517 void Assembler::fnstsw_ax() {
6518   emit_int8((unsigned char)0xDF);
6519   emit_int8((unsigned char)0xE0);
6520 }
6521 
6522 void Assembler::fprem() {
6523   emit_int8((unsigned char)0xD9);
6524   emit_int8((unsigned char)0xF8);
6525 }
6526 
6527 void Assembler::fprem1() {
6528   emit_int8((unsigned char)0xD9);
6529   emit_int8((unsigned char)0xF5);
6530 }
6531 
6532 void Assembler::frstor(Address src) {
6533   InstructionMark im(this);
6534   emit_int8((unsigned char)0xDD);
6535   emit_operand32(rsp, src);
6536 }
6537 
6538 void Assembler::fsin() {
6539   emit_int8((unsigned char)0xD9);
6540   emit_int8((unsigned char)0xFE);
6541 }
6542 
6543 void Assembler::fsqrt() {
6544   emit_int8((unsigned char)0xD9);
6545   emit_int8((unsigned char)0xFA);
6546 }
6547 
6548 void Assembler::fst_d(Address adr) {
6549   InstructionMark im(this);
6550   emit_int8((unsigned char)0xDD);
6551   emit_operand32(rdx, adr);
6552 }
6553 
6554 void Assembler::fst_s(Address adr) {
6555   InstructionMark im(this);
6556   emit_int8((unsigned char)0xD9);
6557   emit_operand32(rdx, adr);
6558 }
6559 
6560 void Assembler::fstp_d(Address adr) {
6561   InstructionMark im(this);
6562   emit_int8((unsigned char)0xDD);
6563   emit_operand32(rbx, adr);
6564 }
6565 
6566 void Assembler::fstp_d(int index) {
6567   emit_farith(0xDD, 0xD8, index);
6568 }
6569 
6570 void Assembler::fstp_s(Address adr) {
6571   InstructionMark im(this);
6572   emit_int8((unsigned char)0xD9);
6573   emit_operand32(rbx, adr);
6574 }
6575 
6576 void Assembler::fstp_x(Address adr) {
6577   InstructionMark im(this);
6578   emit_int8((unsigned char)0xDB);
6579   emit_operand32(rdi, adr);
6580 }
6581 
6582 void Assembler::fsub(int i) {
6583   emit_farith(0xD8, 0xE0, i);
6584 }
6585 
6586 void Assembler::fsub_d(Address src) {
6587   InstructionMark im(this);
6588   emit_int8((unsigned char)0xDC);
6589   emit_operand32(rsp, src);
6590 }
6591 
6592 void Assembler::fsub_s(Address src) {
6593   InstructionMark im(this);
6594   emit_int8((unsigned char)0xD8);
6595   emit_operand32(rsp, src);
6596 }
6597 
6598 void Assembler::fsuba(int i) {
6599   emit_farith(0xDC, 0xE8, i);
6600 }
6601 
6602 void Assembler::fsubp(int i) {
6603   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
6604 }
6605 
6606 void Assembler::fsubr(int i) {
6607   emit_farith(0xD8, 0xE8, i);
6608 }
6609 
6610 void Assembler::fsubr_d(Address src) {
6611   InstructionMark im(this);
6612   emit_int8((unsigned char)0xDC);
6613   emit_operand32(rbp, src);
6614 }
6615 
6616 void Assembler::fsubr_s(Address src) {
6617   InstructionMark im(this);
6618   emit_int8((unsigned char)0xD8);
6619   emit_operand32(rbp, src);
6620 }
6621 
6622 void Assembler::fsubra(int i) {
6623   emit_farith(0xDC, 0xE0, i);
6624 }
6625 
6626 void Assembler::fsubrp(int i) {
6627   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
6628 }
6629 
6630 void Assembler::ftan() {
6631   emit_int8((unsigned char)0xD9);
6632   emit_int8((unsigned char)0xF2);
6633   emit_int8((unsigned char)0xDD);
6634   emit_int8((unsigned char)0xD8);
6635 }
6636 
6637 void Assembler::ftst() {
6638   emit_int8((unsigned char)0xD9);
6639   emit_int8((unsigned char)0xE4);
6640 }
6641 
6642 void Assembler::fucomi(int i) {
6643   // make sure the instruction is supported (introduced for P6, together with cmov)
6644   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6645   emit_farith(0xDB, 0xE8, i);
6646 }
6647 
6648 void Assembler::fucomip(int i) {
6649   // make sure the instruction is supported (introduced for P6, together with cmov)
6650   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6651   emit_farith(0xDF, 0xE8, i);
6652 }
6653 
6654 void Assembler::fwait() {
6655   emit_int8((unsigned char)0x9B);
6656 }
6657 
6658 void Assembler::fxch(int i) {
6659   emit_farith(0xD9, 0xC8, i);
6660 }
6661 
6662 void Assembler::fyl2x() {
6663   emit_int8((unsigned char)0xD9);
6664   emit_int8((unsigned char)0xF1);
6665 }
6666 
6667 void Assembler::frndint() {
6668   emit_int8((unsigned char)0xD9);
6669   emit_int8((unsigned char)0xFC);
6670 }
6671 
6672 void Assembler::f2xm1() {
6673   emit_int8((unsigned char)0xD9);
6674   emit_int8((unsigned char)0xF0);
6675 }
6676 
6677 void Assembler::fldl2e() {
6678   emit_int8((unsigned char)0xD9);
6679   emit_int8((unsigned char)0xEA);
6680 }
6681 
6682 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
6683 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
6684 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
6685 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
6686 
6687 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
6688 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6689   if (pre > 0) {
6690     emit_int8(simd_pre[pre]);
6691   }
6692   if (rex_w) {
6693     prefixq(adr, xreg);
6694   } else {
6695     prefix(adr, xreg);
6696   }
6697   if (opc > 0) {
6698     emit_int8(0x0F);
6699     int opc2 = simd_opc[opc];
6700     if (opc2 > 0) {
6701       emit_int8(opc2);
6702     }
6703   }
6704 }
6705 
6706 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6707   if (pre > 0) {
6708     emit_int8(simd_pre[pre]);
6709   }
6710   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
6711   if (opc > 0) {
6712     emit_int8(0x0F);
6713     int opc2 = simd_opc[opc];
6714     if (opc2 > 0) {
6715       emit_int8(opc2);
6716     }
6717   }
6718   return encode;
6719 }
6720 
6721 
6722 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
6723   int vector_len = _attributes->get_vector_len();
6724   bool vex_w = _attributes->is_rex_vex_w();
6725   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
6726     prefix(VEX_3bytes);
6727 
6728     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
6729     byte1 = (~byte1) & 0xE0;
6730     byte1 |= opc;
6731     emit_int8(byte1);
6732 
6733     int byte2 = ((~nds_enc) & 0xf) << 3;
6734     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
6735     emit_int8(byte2);
6736   } else {
6737     prefix(VEX_2bytes);
6738 
6739     int byte1 = vex_r ? VEX_R : 0;
6740     byte1 = (~byte1) & 0x80;
6741     byte1 |= ((~nds_enc) & 0xf) << 3;
6742     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
6743     emit_int8(byte1);
6744   }
6745 }
6746 
6747 // This is a 4 byte encoding
6748 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
6749   // EVEX 0x62 prefix
6750   prefix(EVEX_4bytes);
6751   bool vex_w = _attributes->is_rex_vex_w();
6752   int evex_encoding = (vex_w ? VEX_W : 0);
6753   // EVEX.b is not currently used for broadcast of single element or data rounding modes
6754   _attributes->set_evex_encoding(evex_encoding);
6755 
6756   // P0: byte 2, initialized to RXBR`00mm
6757   // instead of not'd
6758   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
6759   byte2 = (~byte2) & 0xF0;
6760   // confine opc opcode extensions in mm bits to lower two bits
6761   // of form {0F, 0F_38, 0F_3A}
6762   byte2 |= opc;
6763   emit_int8(byte2);
6764 
6765   // P1: byte 3 as Wvvvv1pp
6766   int byte3 = ((~nds_enc) & 0xf) << 3;
6767   // p[10] is always 1
6768   byte3 |= EVEX_F;
6769   byte3 |= (vex_w & 1) << 7;
6770   // confine pre opcode extensions in pp bits to lower two bits
6771   // of form {66, F3, F2}
6772   byte3 |= pre;
6773   emit_int8(byte3);
6774 
6775   // P2: byte 4 as zL'Lbv'aaa
6776   int byte4 = (_attributes->is_no_reg_mask()) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
6777   // EVEX.v` for extending EVEX.vvvv or VIDX
6778   byte4 |= (evex_v ? 0: EVEX_V);
6779   // third EXEC.b for broadcast actions
6780   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
6781   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
6782   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
6783   // last is EVEX.z for zero/merge actions
6784   byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
6785   emit_int8(byte4);
6786 }
6787 
6788 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
6789   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
6790   bool vex_b = adr.base_needs_rex();
6791   bool vex_x = adr.index_needs_rex();
6792   set_attributes(attributes);
6793   attributes->set_current_assembler(this);
6794 
6795   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6796   if ((UseAVX > 2) && _legacy_mode_vl && attributes->uses_vl()) {
6797     switch (attributes->get_vector_len()) {
6798     case AVX_128bit:
6799     case AVX_256bit:
6800       attributes->set_is_legacy_mode();
6801       break;
6802     }
6803   }
6804 
6805   if ((UseAVX > 2) && !attributes->is_legacy_mode())
6806   {
6807     bool evex_r = (xreg_enc >= 16);
6808     bool evex_v = (nds_enc >= 16);
6809     attributes->set_is_evex_instruction();
6810     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
6811   } else {
6812     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
6813   }
6814 }
6815 
6816 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
6817   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
6818   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
6819   bool vex_x = false;
6820   set_attributes(attributes);
6821   attributes->set_current_assembler(this);
6822 
6823   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6824   if ((UseAVX > 2) && _legacy_mode_vl && attributes->uses_vl()) {
6825     switch (attributes->get_vector_len()) {
6826     case AVX_128bit:
6827     case AVX_256bit:
6828       if ((dst_enc >= 16) | (nds_enc >= 16) | (src_enc >= 16)) {
6829         // up propagate arithmetic instructions to meet RA requirements
6830         attributes->set_vector_len(AVX_512bit);
6831       } else {
6832         attributes->set_is_legacy_mode();
6833       }
6834       break;
6835     }
6836   }
6837 
6838   if ((UseAVX > 2) && !attributes->is_legacy_mode())
6839   {
6840     bool evex_r = (dst_enc >= 16);
6841     bool evex_v = (nds_enc >= 16);
6842     // can use vex_x as bank extender on rm encoding
6843     vex_x = (src_enc >= 16);
6844     attributes->set_is_evex_instruction();
6845     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
6846   } else {
6847     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
6848   }
6849 
6850   // return modrm byte components for operands
6851   return (((dst_enc & 7) << 3) | (src_enc & 7));
6852 }
6853 
6854 
6855 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
6856                             VexOpcode opc, InstructionAttr *attributes) {
6857   if (UseAVX > 0) {
6858     int xreg_enc = xreg->encoding();
6859     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6860     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
6861   } else {
6862     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
6863     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
6864   }
6865 }
6866 
6867 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
6868                                       VexOpcode opc, InstructionAttr *attributes) {
6869   int dst_enc = dst->encoding();
6870   int src_enc = src->encoding();
6871   if (UseAVX > 0) {
6872     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6873     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
6874   } else {
6875     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
6876     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
6877   }
6878 }
6879 
6880 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
6881   assert(VM_Version::supports_avx(), "");
6882   assert(!VM_Version::supports_evex(), "");
6883   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6884   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6885   emit_int8((unsigned char)0xC2);
6886   emit_int8((unsigned char)(0xC0 | encode));
6887   emit_int8((unsigned char)(0xF & cop));
6888 }
6889 
6890 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
6891   assert(VM_Version::supports_avx(), "");
6892   assert(!VM_Version::supports_evex(), "");
6893   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6894   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6895   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6896   emit_int8((unsigned char)0x4B);
6897   emit_int8((unsigned char)(0xC0 | encode));
6898   int src2_enc = src2->encoding();
6899   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
6900 }
6901 
6902 
6903 #ifndef _LP64
6904 
6905 void Assembler::incl(Register dst) {
6906   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6907   emit_int8(0x40 | dst->encoding());
6908 }
6909 
6910 void Assembler::lea(Register dst, Address src) {
6911   leal(dst, src);
6912 }
6913 
6914 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
6915   InstructionMark im(this);
6916   emit_int8((unsigned char)0xC7);
6917   emit_operand(rax, dst);
6918   emit_data((int)imm32, rspec, 0);
6919 }
6920 
6921 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6922   InstructionMark im(this);
6923   int encode = prefix_and_encode(dst->encoding());
6924   emit_int8((unsigned char)(0xB8 | encode));
6925   emit_data((int)imm32, rspec, 0);
6926 }
6927 
6928 void Assembler::popa() { // 32bit
6929   emit_int8(0x61);
6930 }
6931 
6932 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
6933   InstructionMark im(this);
6934   emit_int8(0x68);
6935   emit_data(imm32, rspec, 0);
6936 }
6937 
6938 void Assembler::pusha() { // 32bit
6939   emit_int8(0x60);
6940 }
6941 
6942 void Assembler::set_byte_if_not_zero(Register dst) {
6943   emit_int8(0x0F);
6944   emit_int8((unsigned char)0x95);
6945   emit_int8((unsigned char)(0xE0 | dst->encoding()));
6946 }
6947 
6948 void Assembler::shldl(Register dst, Register src) {
6949   emit_int8(0x0F);
6950   emit_int8((unsigned char)0xA5);
6951   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6952 }
6953 
6954 // 0F A4 / r ib
6955 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
6956   emit_int8(0x0F);
6957   emit_int8((unsigned char)0xA4);
6958   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6959   emit_int8(imm8);
6960 }
6961 
6962 void Assembler::shrdl(Register dst, Register src) {
6963   emit_int8(0x0F);
6964   emit_int8((unsigned char)0xAD);
6965   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6966 }
6967 
6968 #else // LP64
6969 
6970 void Assembler::set_byte_if_not_zero(Register dst) {
6971   int enc = prefix_and_encode(dst->encoding(), true);
6972   emit_int8(0x0F);
6973   emit_int8((unsigned char)0x95);
6974   emit_int8((unsigned char)(0xE0 | enc));
6975 }
6976 
6977 // 64bit only pieces of the assembler
6978 // This should only be used by 64bit instructions that can use rip-relative
6979 // it cannot be used by instructions that want an immediate value.
6980 
6981 bool Assembler::reachable(AddressLiteral adr) {
6982   int64_t disp;
6983   // None will force a 64bit literal to the code stream. Likely a placeholder
6984   // for something that will be patched later and we need to certain it will
6985   // always be reachable.
6986   if (adr.reloc() == relocInfo::none) {
6987     return false;
6988   }
6989   if (adr.reloc() == relocInfo::internal_word_type) {
6990     // This should be rip relative and easily reachable.
6991     return true;
6992   }
6993   if (adr.reloc() == relocInfo::virtual_call_type ||
6994       adr.reloc() == relocInfo::opt_virtual_call_type ||
6995       adr.reloc() == relocInfo::static_call_type ||
6996       adr.reloc() == relocInfo::static_stub_type ) {
6997     // This should be rip relative within the code cache and easily
6998     // reachable until we get huge code caches. (At which point
6999     // ic code is going to have issues).
7000     return true;
7001   }
7002   if (adr.reloc() != relocInfo::external_word_type &&
7003       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
7004       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
7005       adr.reloc() != relocInfo::runtime_call_type ) {
7006     return false;
7007   }
7008 
7009   // Stress the correction code
7010   if (ForceUnreachable) {
7011     // Must be runtimecall reloc, see if it is in the codecache
7012     // Flipping stuff in the codecache to be unreachable causes issues
7013     // with things like inline caches where the additional instructions
7014     // are not handled.
7015     if (CodeCache::find_blob(adr._target) == NULL) {
7016       return false;
7017     }
7018   }
7019   // For external_word_type/runtime_call_type if it is reachable from where we
7020   // are now (possibly a temp buffer) and where we might end up
7021   // anywhere in the codeCache then we are always reachable.
7022   // This would have to change if we ever save/restore shared code
7023   // to be more pessimistic.
7024   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7025   if (!is_simm32(disp)) return false;
7026   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7027   if (!is_simm32(disp)) return false;
7028 
7029   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7030 
7031   // Because rip relative is a disp + address_of_next_instruction and we
7032   // don't know the value of address_of_next_instruction we apply a fudge factor
7033   // to make sure we will be ok no matter the size of the instruction we get placed into.
7034   // We don't have to fudge the checks above here because they are already worst case.
7035 
7036   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
7037   // + 4 because better safe than sorry.
7038   const int fudge = 12 + 4;
7039   if (disp < 0) {
7040     disp -= fudge;
7041   } else {
7042     disp += fudge;
7043   }
7044   return is_simm32(disp);
7045 }
7046 
7047 // Check if the polling page is not reachable from the code cache using rip-relative
7048 // addressing.
7049 bool Assembler::is_polling_page_far() {
7050   intptr_t addr = (intptr_t)os::get_polling_page();
7051   return ForceUnreachable ||
7052          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
7053          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
7054 }
7055 
7056 void Assembler::emit_data64(jlong data,
7057                             relocInfo::relocType rtype,
7058                             int format) {
7059   if (rtype == relocInfo::none) {
7060     emit_int64(data);
7061   } else {
7062     emit_data64(data, Relocation::spec_simple(rtype), format);
7063   }
7064 }
7065 
7066 void Assembler::emit_data64(jlong data,
7067                             RelocationHolder const& rspec,
7068                             int format) {
7069   assert(imm_operand == 0, "default format must be immediate in this file");
7070   assert(imm_operand == format, "must be immediate");
7071   assert(inst_mark() != NULL, "must be inside InstructionMark");
7072   // Do not use AbstractAssembler::relocate, which is not intended for
7073   // embedded words.  Instead, relocate to the enclosing instruction.
7074   code_section()->relocate(inst_mark(), rspec, format);
7075 #ifdef ASSERT
7076   check_relocation(rspec, format);
7077 #endif
7078   emit_int64(data);
7079 }
7080 
7081 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
7082   if (reg_enc >= 8) {
7083     prefix(REX_B);
7084     reg_enc -= 8;
7085   } else if (byteinst && reg_enc >= 4) {
7086     prefix(REX);
7087   }
7088   return reg_enc;
7089 }
7090 
7091 int Assembler::prefixq_and_encode(int reg_enc) {
7092   if (reg_enc < 8) {
7093     prefix(REX_W);
7094   } else {
7095     prefix(REX_WB);
7096     reg_enc -= 8;
7097   }
7098   return reg_enc;
7099 }
7100 
7101 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
7102   if (dst_enc < 8) {
7103     if (src_enc >= 8) {
7104       prefix(REX_B);
7105       src_enc -= 8;
7106     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
7107       prefix(REX);
7108     }
7109   } else {
7110     if (src_enc < 8) {
7111       prefix(REX_R);
7112     } else {
7113       prefix(REX_RB);
7114       src_enc -= 8;
7115     }
7116     dst_enc -= 8;
7117   }
7118   return dst_enc << 3 | src_enc;
7119 }
7120 
7121 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
7122   if (dst_enc < 8) {
7123     if (src_enc < 8) {
7124       prefix(REX_W);
7125     } else {
7126       prefix(REX_WB);
7127       src_enc -= 8;
7128     }
7129   } else {
7130     if (src_enc < 8) {
7131       prefix(REX_WR);
7132     } else {
7133       prefix(REX_WRB);
7134       src_enc -= 8;
7135     }
7136     dst_enc -= 8;
7137   }
7138   return dst_enc << 3 | src_enc;
7139 }
7140 
7141 void Assembler::prefix(Register reg) {
7142   if (reg->encoding() >= 8) {
7143     prefix(REX_B);
7144   }
7145 }
7146 
7147 void Assembler::prefix(Register dst, Register src, Prefix p) {
7148   if (src->encoding() >= 8) {
7149     p = (Prefix)(p | REX_B);
7150   }
7151   if (dst->encoding() >= 8) {
7152     p = (Prefix)( p | REX_R);
7153   }
7154   if (p != Prefix_EMPTY) {
7155     // do not generate an empty prefix
7156     prefix(p);
7157   }
7158 }
7159 
7160 void Assembler::prefix(Register dst, Address adr, Prefix p) {
7161   if (adr.base_needs_rex()) {
7162     if (adr.index_needs_rex()) {
7163       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7164     } else {
7165       prefix(REX_B);
7166     }
7167   } else {
7168     if (adr.index_needs_rex()) {
7169       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7170     }
7171   }
7172   if (dst->encoding() >= 8) {
7173     p = (Prefix)(p | REX_R);
7174   }
7175   if (p != Prefix_EMPTY) {
7176     // do not generate an empty prefix
7177     prefix(p);
7178   }
7179 }
7180 
7181 void Assembler::prefix(Address adr) {
7182   if (adr.base_needs_rex()) {
7183     if (adr.index_needs_rex()) {
7184       prefix(REX_XB);
7185     } else {
7186       prefix(REX_B);
7187     }
7188   } else {
7189     if (adr.index_needs_rex()) {
7190       prefix(REX_X);
7191     }
7192   }
7193 }
7194 
7195 void Assembler::prefixq(Address adr) {
7196   if (adr.base_needs_rex()) {
7197     if (adr.index_needs_rex()) {
7198       prefix(REX_WXB);
7199     } else {
7200       prefix(REX_WB);
7201     }
7202   } else {
7203     if (adr.index_needs_rex()) {
7204       prefix(REX_WX);
7205     } else {
7206       prefix(REX_W);
7207     }
7208   }
7209 }
7210 
7211 
7212 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
7213   if (reg->encoding() < 8) {
7214     if (adr.base_needs_rex()) {
7215       if (adr.index_needs_rex()) {
7216         prefix(REX_XB);
7217       } else {
7218         prefix(REX_B);
7219       }
7220     } else {
7221       if (adr.index_needs_rex()) {
7222         prefix(REX_X);
7223       } else if (byteinst && reg->encoding() >= 4 ) {
7224         prefix(REX);
7225       }
7226     }
7227   } else {
7228     if (adr.base_needs_rex()) {
7229       if (adr.index_needs_rex()) {
7230         prefix(REX_RXB);
7231       } else {
7232         prefix(REX_RB);
7233       }
7234     } else {
7235       if (adr.index_needs_rex()) {
7236         prefix(REX_RX);
7237       } else {
7238         prefix(REX_R);
7239       }
7240     }
7241   }
7242 }
7243 
7244 void Assembler::prefixq(Address adr, Register src) {
7245   if (src->encoding() < 8) {
7246     if (adr.base_needs_rex()) {
7247       if (adr.index_needs_rex()) {
7248         prefix(REX_WXB);
7249       } else {
7250         prefix(REX_WB);
7251       }
7252     } else {
7253       if (adr.index_needs_rex()) {
7254         prefix(REX_WX);
7255       } else {
7256         prefix(REX_W);
7257       }
7258     }
7259   } else {
7260     if (adr.base_needs_rex()) {
7261       if (adr.index_needs_rex()) {
7262         prefix(REX_WRXB);
7263       } else {
7264         prefix(REX_WRB);
7265       }
7266     } else {
7267       if (adr.index_needs_rex()) {
7268         prefix(REX_WRX);
7269       } else {
7270         prefix(REX_WR);
7271       }
7272     }
7273   }
7274 }
7275 
7276 void Assembler::prefix(Address adr, XMMRegister reg) {
7277   if (reg->encoding() < 8) {
7278     if (adr.base_needs_rex()) {
7279       if (adr.index_needs_rex()) {
7280         prefix(REX_XB);
7281       } else {
7282         prefix(REX_B);
7283       }
7284     } else {
7285       if (adr.index_needs_rex()) {
7286         prefix(REX_X);
7287       }
7288     }
7289   } else {
7290     if (adr.base_needs_rex()) {
7291       if (adr.index_needs_rex()) {
7292         prefix(REX_RXB);
7293       } else {
7294         prefix(REX_RB);
7295       }
7296     } else {
7297       if (adr.index_needs_rex()) {
7298         prefix(REX_RX);
7299       } else {
7300         prefix(REX_R);
7301       }
7302     }
7303   }
7304 }
7305 
7306 void Assembler::prefixq(Address adr, XMMRegister src) {
7307   if (src->encoding() < 8) {
7308     if (adr.base_needs_rex()) {
7309       if (adr.index_needs_rex()) {
7310         prefix(REX_WXB);
7311       } else {
7312         prefix(REX_WB);
7313       }
7314     } else {
7315       if (adr.index_needs_rex()) {
7316         prefix(REX_WX);
7317       } else {
7318         prefix(REX_W);
7319       }
7320     }
7321   } else {
7322     if (adr.base_needs_rex()) {
7323       if (adr.index_needs_rex()) {
7324         prefix(REX_WRXB);
7325       } else {
7326         prefix(REX_WRB);
7327       }
7328     } else {
7329       if (adr.index_needs_rex()) {
7330         prefix(REX_WRX);
7331       } else {
7332         prefix(REX_WR);
7333       }
7334     }
7335   }
7336 }
7337 
7338 void Assembler::adcq(Register dst, int32_t imm32) {
7339   (void) prefixq_and_encode(dst->encoding());
7340   emit_arith(0x81, 0xD0, dst, imm32);
7341 }
7342 
7343 void Assembler::adcq(Register dst, Address src) {
7344   InstructionMark im(this);
7345   prefixq(src, dst);
7346   emit_int8(0x13);
7347   emit_operand(dst, src);
7348 }
7349 
7350 void Assembler::adcq(Register dst, Register src) {
7351   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7352   emit_arith(0x13, 0xC0, dst, src);
7353 }
7354 
7355 void Assembler::addq(Address dst, int32_t imm32) {
7356   InstructionMark im(this);
7357   prefixq(dst);
7358   emit_arith_operand(0x81, rax, dst,imm32);
7359 }
7360 
7361 void Assembler::addq(Address dst, Register src) {
7362   InstructionMark im(this);
7363   prefixq(dst, src);
7364   emit_int8(0x01);
7365   emit_operand(src, dst);
7366 }
7367 
7368 void Assembler::addq(Register dst, int32_t imm32) {
7369   (void) prefixq_and_encode(dst->encoding());
7370   emit_arith(0x81, 0xC0, dst, imm32);
7371 }
7372 
7373 void Assembler::addq(Register dst, Address src) {
7374   InstructionMark im(this);
7375   prefixq(src, dst);
7376   emit_int8(0x03);
7377   emit_operand(dst, src);
7378 }
7379 
7380 void Assembler::addq(Register dst, Register src) {
7381   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7382   emit_arith(0x03, 0xC0, dst, src);
7383 }
7384 
7385 void Assembler::adcxq(Register dst, Register src) {
7386   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7387   emit_int8((unsigned char)0x66);
7388   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7389   emit_int8(0x0F);
7390   emit_int8(0x38);
7391   emit_int8((unsigned char)0xF6);
7392   emit_int8((unsigned char)(0xC0 | encode));
7393 }
7394 
7395 void Assembler::adoxq(Register dst, Register src) {
7396   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7397   emit_int8((unsigned char)0xF3);
7398   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7399   emit_int8(0x0F);
7400   emit_int8(0x38);
7401   emit_int8((unsigned char)0xF6);
7402   emit_int8((unsigned char)(0xC0 | encode));
7403 }
7404 
7405 void Assembler::andq(Address dst, int32_t imm32) {
7406   InstructionMark im(this);
7407   prefixq(dst);
7408   emit_int8((unsigned char)0x81);
7409   emit_operand(rsp, dst, 4);
7410   emit_int32(imm32);
7411 }
7412 
7413 void Assembler::andq(Register dst, int32_t imm32) {
7414   (void) prefixq_and_encode(dst->encoding());
7415   emit_arith(0x81, 0xE0, dst, imm32);
7416 }
7417 
7418 void Assembler::andq(Register dst, Address src) {
7419   InstructionMark im(this);
7420   prefixq(src, dst);
7421   emit_int8(0x23);
7422   emit_operand(dst, src);
7423 }
7424 
7425 void Assembler::andq(Register dst, Register src) {
7426   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7427   emit_arith(0x23, 0xC0, dst, src);
7428 }
7429 
7430 void Assembler::andnq(Register dst, Register src1, Register src2) {
7431   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7432   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7433   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7434   emit_int8((unsigned char)0xF2);
7435   emit_int8((unsigned char)(0xC0 | encode));
7436 }
7437 
7438 void Assembler::andnq(Register dst, Register src1, Address src2) {
7439   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7440   InstructionMark im(this);
7441   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7442   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7443   emit_int8((unsigned char)0xF2);
7444   emit_operand(dst, src2);
7445 }
7446 
7447 void Assembler::bsfq(Register dst, Register src) {
7448   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7449   emit_int8(0x0F);
7450   emit_int8((unsigned char)0xBC);
7451   emit_int8((unsigned char)(0xC0 | encode));
7452 }
7453 
7454 void Assembler::bsrq(Register dst, Register src) {
7455   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7456   emit_int8(0x0F);
7457   emit_int8((unsigned char)0xBD);
7458   emit_int8((unsigned char)(0xC0 | encode));
7459 }
7460 
7461 void Assembler::bswapq(Register reg) {
7462   int encode = prefixq_and_encode(reg->encoding());
7463   emit_int8(0x0F);
7464   emit_int8((unsigned char)(0xC8 | encode));
7465 }
7466 
7467 void Assembler::blsiq(Register dst, Register src) {
7468   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7469   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7470   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7471   emit_int8((unsigned char)0xF3);
7472   emit_int8((unsigned char)(0xC0 | encode));
7473 }
7474 
7475 void Assembler::blsiq(Register dst, Address src) {
7476   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7477   InstructionMark im(this);
7478   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7479   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7480   emit_int8((unsigned char)0xF3);
7481   emit_operand(rbx, src);
7482 }
7483 
7484 void Assembler::blsmskq(Register dst, Register src) {
7485   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7486   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7487   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7488   emit_int8((unsigned char)0xF3);
7489   emit_int8((unsigned char)(0xC0 | encode));
7490 }
7491 
7492 void Assembler::blsmskq(Register dst, Address src) {
7493   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7494   InstructionMark im(this);
7495   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7496   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7497   emit_int8((unsigned char)0xF3);
7498   emit_operand(rdx, src);
7499 }
7500 
7501 void Assembler::blsrq(Register dst, Register src) {
7502   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7503   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7504   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7505   emit_int8((unsigned char)0xF3);
7506   emit_int8((unsigned char)(0xC0 | encode));
7507 }
7508 
7509 void Assembler::blsrq(Register dst, Address src) {
7510   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7511   InstructionMark im(this);
7512   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7513   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7514   emit_int8((unsigned char)0xF3);
7515   emit_operand(rcx, src);
7516 }
7517 
7518 void Assembler::cdqq() {
7519   prefix(REX_W);
7520   emit_int8((unsigned char)0x99);
7521 }
7522 
7523 void Assembler::clflush(Address adr) {
7524   prefix(adr);
7525   emit_int8(0x0F);
7526   emit_int8((unsigned char)0xAE);
7527   emit_operand(rdi, adr);
7528 }
7529 
7530 void Assembler::cmovq(Condition cc, Register dst, Register src) {
7531   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7532   emit_int8(0x0F);
7533   emit_int8(0x40 | cc);
7534   emit_int8((unsigned char)(0xC0 | encode));
7535 }
7536 
7537 void Assembler::cmovq(Condition cc, Register dst, Address src) {
7538   InstructionMark im(this);
7539   prefixq(src, dst);
7540   emit_int8(0x0F);
7541   emit_int8(0x40 | cc);
7542   emit_operand(dst, src);
7543 }
7544 
7545 void Assembler::cmpq(Address dst, int32_t imm32) {
7546   InstructionMark im(this);
7547   prefixq(dst);
7548   emit_int8((unsigned char)0x81);
7549   emit_operand(rdi, dst, 4);
7550   emit_int32(imm32);
7551 }
7552 
7553 void Assembler::cmpq(Register dst, int32_t imm32) {
7554   (void) prefixq_and_encode(dst->encoding());
7555   emit_arith(0x81, 0xF8, dst, imm32);
7556 }
7557 
7558 void Assembler::cmpq(Address dst, Register src) {
7559   InstructionMark im(this);
7560   prefixq(dst, src);
7561   emit_int8(0x3B);
7562   emit_operand(src, dst);
7563 }
7564 
7565 void Assembler::cmpq(Register dst, Register src) {
7566   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7567   emit_arith(0x3B, 0xC0, dst, src);
7568 }
7569 
7570 void Assembler::cmpq(Register dst, Address  src) {
7571   InstructionMark im(this);
7572   prefixq(src, dst);
7573   emit_int8(0x3B);
7574   emit_operand(dst, src);
7575 }
7576 
7577 void Assembler::cmpxchgq(Register reg, Address adr) {
7578   InstructionMark im(this);
7579   prefixq(adr, reg);
7580   emit_int8(0x0F);
7581   emit_int8((unsigned char)0xB1);
7582   emit_operand(reg, adr);
7583 }
7584 
7585 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
7586   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7587   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7588   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7589   emit_int8(0x2A);
7590   emit_int8((unsigned char)(0xC0 | encode));
7591 }
7592 
7593 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
7594   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7595   InstructionMark im(this);
7596   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7597   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7598   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7599   emit_int8(0x2A);
7600   emit_operand(dst, src);
7601 }
7602 
7603 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
7604   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7605   InstructionMark im(this);
7606   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7607   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7608   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7609   emit_int8(0x2A);
7610   emit_operand(dst, src);
7611 }
7612 
7613 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
7614   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7615   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7616   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7617   emit_int8(0x2C);
7618   emit_int8((unsigned char)(0xC0 | encode));
7619 }
7620 
7621 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
7622   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7623   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7624   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7625   emit_int8(0x2C);
7626   emit_int8((unsigned char)(0xC0 | encode));
7627 }
7628 
7629 void Assembler::decl(Register dst) {
7630   // Don't use it directly. Use MacroAssembler::decrementl() instead.
7631   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
7632   int encode = prefix_and_encode(dst->encoding());
7633   emit_int8((unsigned char)0xFF);
7634   emit_int8((unsigned char)(0xC8 | encode));
7635 }
7636 
7637 void Assembler::decq(Register dst) {
7638   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7639   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7640   int encode = prefixq_and_encode(dst->encoding());
7641   emit_int8((unsigned char)0xFF);
7642   emit_int8(0xC8 | encode);
7643 }
7644 
7645 void Assembler::decq(Address dst) {
7646   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7647   InstructionMark im(this);
7648   prefixq(dst);
7649   emit_int8((unsigned char)0xFF);
7650   emit_operand(rcx, dst);
7651 }
7652 
7653 void Assembler::fxrstor(Address src) {
7654   prefixq(src);
7655   emit_int8(0x0F);
7656   emit_int8((unsigned char)0xAE);
7657   emit_operand(as_Register(1), src);
7658 }
7659 
7660 void Assembler::xrstor(Address src) {
7661   prefixq(src);
7662   emit_int8(0x0F);
7663   emit_int8((unsigned char)0xAE);
7664   emit_operand(as_Register(5), src);
7665 }
7666 
7667 void Assembler::fxsave(Address dst) {
7668   prefixq(dst);
7669   emit_int8(0x0F);
7670   emit_int8((unsigned char)0xAE);
7671   emit_operand(as_Register(0), dst);
7672 }
7673 
7674 void Assembler::xsave(Address dst) {
7675   prefixq(dst);
7676   emit_int8(0x0F);
7677   emit_int8((unsigned char)0xAE);
7678   emit_operand(as_Register(4), dst);
7679 }
7680 
7681 void Assembler::idivq(Register src) {
7682   int encode = prefixq_and_encode(src->encoding());
7683   emit_int8((unsigned char)0xF7);
7684   emit_int8((unsigned char)(0xF8 | encode));
7685 }
7686 
7687 void Assembler::imulq(Register dst, Register src) {
7688   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7689   emit_int8(0x0F);
7690   emit_int8((unsigned char)0xAF);
7691   emit_int8((unsigned char)(0xC0 | encode));
7692 }
7693 
7694 void Assembler::imulq(Register dst, Register src, int value) {
7695   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7696   if (is8bit(value)) {
7697     emit_int8(0x6B);
7698     emit_int8((unsigned char)(0xC0 | encode));
7699     emit_int8(value & 0xFF);
7700   } else {
7701     emit_int8(0x69);
7702     emit_int8((unsigned char)(0xC0 | encode));
7703     emit_int32(value);
7704   }
7705 }
7706 
7707 void Assembler::imulq(Register dst, Address src) {
7708   InstructionMark im(this);
7709   prefixq(src, dst);
7710   emit_int8(0x0F);
7711   emit_int8((unsigned char) 0xAF);
7712   emit_operand(dst, src);
7713 }
7714 
7715 void Assembler::incl(Register dst) {
7716   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7717   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7718   int encode = prefix_and_encode(dst->encoding());
7719   emit_int8((unsigned char)0xFF);
7720   emit_int8((unsigned char)(0xC0 | encode));
7721 }
7722 
7723 void Assembler::incq(Register dst) {
7724   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7725   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7726   int encode = prefixq_and_encode(dst->encoding());
7727   emit_int8((unsigned char)0xFF);
7728   emit_int8((unsigned char)(0xC0 | encode));
7729 }
7730 
7731 void Assembler::incq(Address dst) {
7732   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7733   InstructionMark im(this);
7734   prefixq(dst);
7735   emit_int8((unsigned char)0xFF);
7736   emit_operand(rax, dst);
7737 }
7738 
7739 void Assembler::lea(Register dst, Address src) {
7740   leaq(dst, src);
7741 }
7742 
7743 void Assembler::leaq(Register dst, Address src) {
7744   InstructionMark im(this);
7745   prefixq(src, dst);
7746   emit_int8((unsigned char)0x8D);
7747   emit_operand(dst, src);
7748 }
7749 
7750 void Assembler::mov64(Register dst, int64_t imm64) {
7751   InstructionMark im(this);
7752   int encode = prefixq_and_encode(dst->encoding());
7753   emit_int8((unsigned char)(0xB8 | encode));
7754   emit_int64(imm64);
7755 }
7756 
7757 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
7758   InstructionMark im(this);
7759   int encode = prefixq_and_encode(dst->encoding());
7760   emit_int8(0xB8 | encode);
7761   emit_data64(imm64, rspec);
7762 }
7763 
7764 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7765   InstructionMark im(this);
7766   int encode = prefix_and_encode(dst->encoding());
7767   emit_int8((unsigned char)(0xB8 | encode));
7768   emit_data((int)imm32, rspec, narrow_oop_operand);
7769 }
7770 
7771 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
7772   InstructionMark im(this);
7773   prefix(dst);
7774   emit_int8((unsigned char)0xC7);
7775   emit_operand(rax, dst, 4);
7776   emit_data((int)imm32, rspec, narrow_oop_operand);
7777 }
7778 
7779 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
7780   InstructionMark im(this);
7781   int encode = prefix_and_encode(src1->encoding());
7782   emit_int8((unsigned char)0x81);
7783   emit_int8((unsigned char)(0xF8 | encode));
7784   emit_data((int)imm32, rspec, narrow_oop_operand);
7785 }
7786 
7787 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
7788   InstructionMark im(this);
7789   prefix(src1);
7790   emit_int8((unsigned char)0x81);
7791   emit_operand(rax, src1, 4);
7792   emit_data((int)imm32, rspec, narrow_oop_operand);
7793 }
7794 
7795 void Assembler::lzcntq(Register dst, Register src) {
7796   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
7797   emit_int8((unsigned char)0xF3);
7798   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7799   emit_int8(0x0F);
7800   emit_int8((unsigned char)0xBD);
7801   emit_int8((unsigned char)(0xC0 | encode));
7802 }
7803 
7804 void Assembler::movdq(XMMRegister dst, Register src) {
7805   // table D-1 says MMX/SSE2
7806   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7807   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7808   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7809   emit_int8(0x6E);
7810   emit_int8((unsigned char)(0xC0 | encode));
7811 }
7812 
7813 void Assembler::movdq(Register dst, XMMRegister src) {
7814   // table D-1 says MMX/SSE2
7815   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7816   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7817   // swap src/dst to get correct prefix
7818   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7819   emit_int8(0x7E);
7820   emit_int8((unsigned char)(0xC0 | encode));
7821 }
7822 
7823 void Assembler::movq(Register dst, Register src) {
7824   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7825   emit_int8((unsigned char)0x8B);
7826   emit_int8((unsigned char)(0xC0 | encode));
7827 }
7828 
7829 void Assembler::movq(Register dst, Address src) {
7830   InstructionMark im(this);
7831   prefixq(src, dst);
7832   emit_int8((unsigned char)0x8B);
7833   emit_operand(dst, src);
7834 }
7835 
7836 void Assembler::movq(Address dst, Register src) {
7837   InstructionMark im(this);
7838   prefixq(dst, src);
7839   emit_int8((unsigned char)0x89);
7840   emit_operand(src, dst);
7841 }
7842 
7843 void Assembler::movsbq(Register dst, Address src) {
7844   InstructionMark im(this);
7845   prefixq(src, dst);
7846   emit_int8(0x0F);
7847   emit_int8((unsigned char)0xBE);
7848   emit_operand(dst, src);
7849 }
7850 
7851 void Assembler::movsbq(Register dst, Register src) {
7852   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7853   emit_int8(0x0F);
7854   emit_int8((unsigned char)0xBE);
7855   emit_int8((unsigned char)(0xC0 | encode));
7856 }
7857 
7858 void Assembler::movslq(Register dst, int32_t imm32) {
7859   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
7860   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
7861   // as a result we shouldn't use until tested at runtime...
7862   ShouldNotReachHere();
7863   InstructionMark im(this);
7864   int encode = prefixq_and_encode(dst->encoding());
7865   emit_int8((unsigned char)(0xC7 | encode));
7866   emit_int32(imm32);
7867 }
7868 
7869 void Assembler::movslq(Address dst, int32_t imm32) {
7870   assert(is_simm32(imm32), "lost bits");
7871   InstructionMark im(this);
7872   prefixq(dst);
7873   emit_int8((unsigned char)0xC7);
7874   emit_operand(rax, dst, 4);
7875   emit_int32(imm32);
7876 }
7877 
7878 void Assembler::movslq(Register dst, Address src) {
7879   InstructionMark im(this);
7880   prefixq(src, dst);
7881   emit_int8(0x63);
7882   emit_operand(dst, src);
7883 }
7884 
7885 void Assembler::movslq(Register dst, Register src) {
7886   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7887   emit_int8(0x63);
7888   emit_int8((unsigned char)(0xC0 | encode));
7889 }
7890 
7891 void Assembler::movswq(Register dst, Address src) {
7892   InstructionMark im(this);
7893   prefixq(src, dst);
7894   emit_int8(0x0F);
7895   emit_int8((unsigned char)0xBF);
7896   emit_operand(dst, src);
7897 }
7898 
7899 void Assembler::movswq(Register dst, Register src) {
7900   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7901   emit_int8((unsigned char)0x0F);
7902   emit_int8((unsigned char)0xBF);
7903   emit_int8((unsigned char)(0xC0 | encode));
7904 }
7905 
7906 void Assembler::movzbq(Register dst, Address src) {
7907   InstructionMark im(this);
7908   prefixq(src, dst);
7909   emit_int8((unsigned char)0x0F);
7910   emit_int8((unsigned char)0xB6);
7911   emit_operand(dst, src);
7912 }
7913 
7914 void Assembler::movzbq(Register dst, Register src) {
7915   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7916   emit_int8(0x0F);
7917   emit_int8((unsigned char)0xB6);
7918   emit_int8(0xC0 | encode);
7919 }
7920 
7921 void Assembler::movzwq(Register dst, Address src) {
7922   InstructionMark im(this);
7923   prefixq(src, dst);
7924   emit_int8((unsigned char)0x0F);
7925   emit_int8((unsigned char)0xB7);
7926   emit_operand(dst, src);
7927 }
7928 
7929 void Assembler::movzwq(Register dst, Register src) {
7930   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7931   emit_int8((unsigned char)0x0F);
7932   emit_int8((unsigned char)0xB7);
7933   emit_int8((unsigned char)(0xC0 | encode));
7934 }
7935 
7936 void Assembler::mulq(Address src) {
7937   InstructionMark im(this);
7938   prefixq(src);
7939   emit_int8((unsigned char)0xF7);
7940   emit_operand(rsp, src);
7941 }
7942 
7943 void Assembler::mulq(Register src) {
7944   int encode = prefixq_and_encode(src->encoding());
7945   emit_int8((unsigned char)0xF7);
7946   emit_int8((unsigned char)(0xE0 | encode));
7947 }
7948 
7949 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
7950   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7951   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7952   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
7953   emit_int8((unsigned char)0xF6);
7954   emit_int8((unsigned char)(0xC0 | encode));
7955 }
7956 
7957 void Assembler::negq(Register dst) {
7958   int encode = prefixq_and_encode(dst->encoding());
7959   emit_int8((unsigned char)0xF7);
7960   emit_int8((unsigned char)(0xD8 | encode));
7961 }
7962 
7963 void Assembler::notq(Register dst) {
7964   int encode = prefixq_and_encode(dst->encoding());
7965   emit_int8((unsigned char)0xF7);
7966   emit_int8((unsigned char)(0xD0 | encode));
7967 }
7968 
7969 void Assembler::orq(Address dst, int32_t imm32) {
7970   InstructionMark im(this);
7971   prefixq(dst);
7972   emit_int8((unsigned char)0x81);
7973   emit_operand(rcx, dst, 4);
7974   emit_int32(imm32);
7975 }
7976 
7977 void Assembler::orq(Register dst, int32_t imm32) {
7978   (void) prefixq_and_encode(dst->encoding());
7979   emit_arith(0x81, 0xC8, dst, imm32);
7980 }
7981 
7982 void Assembler::orq(Register dst, Address src) {
7983   InstructionMark im(this);
7984   prefixq(src, dst);
7985   emit_int8(0x0B);
7986   emit_operand(dst, src);
7987 }
7988 
7989 void Assembler::orq(Register dst, Register src) {
7990   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7991   emit_arith(0x0B, 0xC0, dst, src);
7992 }
7993 
7994 void Assembler::popa() { // 64bit
7995   movq(r15, Address(rsp, 0));
7996   movq(r14, Address(rsp, wordSize));
7997   movq(r13, Address(rsp, 2 * wordSize));
7998   movq(r12, Address(rsp, 3 * wordSize));
7999   movq(r11, Address(rsp, 4 * wordSize));
8000   movq(r10, Address(rsp, 5 * wordSize));
8001   movq(r9,  Address(rsp, 6 * wordSize));
8002   movq(r8,  Address(rsp, 7 * wordSize));
8003   movq(rdi, Address(rsp, 8 * wordSize));
8004   movq(rsi, Address(rsp, 9 * wordSize));
8005   movq(rbp, Address(rsp, 10 * wordSize));
8006   // skip rsp
8007   movq(rbx, Address(rsp, 12 * wordSize));
8008   movq(rdx, Address(rsp, 13 * wordSize));
8009   movq(rcx, Address(rsp, 14 * wordSize));
8010   movq(rax, Address(rsp, 15 * wordSize));
8011 
8012   addq(rsp, 16 * wordSize);
8013 }
8014 
8015 void Assembler::popcntq(Register dst, Address src) {
8016   assert(VM_Version::supports_popcnt(), "must support");
8017   InstructionMark im(this);
8018   emit_int8((unsigned char)0xF3);
8019   prefixq(src, dst);
8020   emit_int8((unsigned char)0x0F);
8021   emit_int8((unsigned char)0xB8);
8022   emit_operand(dst, src);
8023 }
8024 
8025 void Assembler::popcntq(Register dst, Register src) {
8026   assert(VM_Version::supports_popcnt(), "must support");
8027   emit_int8((unsigned char)0xF3);
8028   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8029   emit_int8((unsigned char)0x0F);
8030   emit_int8((unsigned char)0xB8);
8031   emit_int8((unsigned char)(0xC0 | encode));
8032 }
8033 
8034 void Assembler::popq(Address dst) {
8035   InstructionMark im(this);
8036   prefixq(dst);
8037   emit_int8((unsigned char)0x8F);
8038   emit_operand(rax, dst);
8039 }
8040 
8041 void Assembler::pusha() { // 64bit
8042   // we have to store original rsp.  ABI says that 128 bytes
8043   // below rsp are local scratch.
8044   movq(Address(rsp, -5 * wordSize), rsp);
8045 
8046   subq(rsp, 16 * wordSize);
8047 
8048   movq(Address(rsp, 15 * wordSize), rax);
8049   movq(Address(rsp, 14 * wordSize), rcx);
8050   movq(Address(rsp, 13 * wordSize), rdx);
8051   movq(Address(rsp, 12 * wordSize), rbx);
8052   // skip rsp
8053   movq(Address(rsp, 10 * wordSize), rbp);
8054   movq(Address(rsp, 9 * wordSize), rsi);
8055   movq(Address(rsp, 8 * wordSize), rdi);
8056   movq(Address(rsp, 7 * wordSize), r8);
8057   movq(Address(rsp, 6 * wordSize), r9);
8058   movq(Address(rsp, 5 * wordSize), r10);
8059   movq(Address(rsp, 4 * wordSize), r11);
8060   movq(Address(rsp, 3 * wordSize), r12);
8061   movq(Address(rsp, 2 * wordSize), r13);
8062   movq(Address(rsp, wordSize), r14);
8063   movq(Address(rsp, 0), r15);
8064 }
8065 
8066 void Assembler::pushq(Address src) {
8067   InstructionMark im(this);
8068   prefixq(src);
8069   emit_int8((unsigned char)0xFF);
8070   emit_operand(rsi, src);
8071 }
8072 
8073 void Assembler::rclq(Register dst, int imm8) {
8074   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8075   int encode = prefixq_and_encode(dst->encoding());
8076   if (imm8 == 1) {
8077     emit_int8((unsigned char)0xD1);
8078     emit_int8((unsigned char)(0xD0 | encode));
8079   } else {
8080     emit_int8((unsigned char)0xC1);
8081     emit_int8((unsigned char)(0xD0 | encode));
8082     emit_int8(imm8);
8083   }
8084 }
8085 
8086 void Assembler::rcrq(Register dst, int imm8) {
8087   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8088   int encode = prefixq_and_encode(dst->encoding());
8089   if (imm8 == 1) {
8090     emit_int8((unsigned char)0xD1);
8091     emit_int8((unsigned char)(0xD8 | encode));
8092   } else {
8093     emit_int8((unsigned char)0xC1);
8094     emit_int8((unsigned char)(0xD8 | encode));
8095     emit_int8(imm8);
8096   }
8097 }
8098 
8099 void Assembler::rorq(Register dst, int imm8) {
8100   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8101   int encode = prefixq_and_encode(dst->encoding());
8102   if (imm8 == 1) {
8103     emit_int8((unsigned char)0xD1);
8104     emit_int8((unsigned char)(0xC8 | encode));
8105   } else {
8106     emit_int8((unsigned char)0xC1);
8107     emit_int8((unsigned char)(0xc8 | encode));
8108     emit_int8(imm8);
8109   }
8110 }
8111 
8112 void Assembler::rorxq(Register dst, Register src, int imm8) {
8113   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8114   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8115   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8116   emit_int8((unsigned char)0xF0);
8117   emit_int8((unsigned char)(0xC0 | encode));
8118   emit_int8(imm8);
8119 }
8120 
8121 void Assembler::sarq(Register dst, int imm8) {
8122   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8123   int encode = prefixq_and_encode(dst->encoding());
8124   if (imm8 == 1) {
8125     emit_int8((unsigned char)0xD1);
8126     emit_int8((unsigned char)(0xF8 | encode));
8127   } else {
8128     emit_int8((unsigned char)0xC1);
8129     emit_int8((unsigned char)(0xF8 | encode));
8130     emit_int8(imm8);
8131   }
8132 }
8133 
8134 void Assembler::sarq(Register dst) {
8135   int encode = prefixq_and_encode(dst->encoding());
8136   emit_int8((unsigned char)0xD3);
8137   emit_int8((unsigned char)(0xF8 | encode));
8138 }
8139 
8140 void Assembler::sbbq(Address dst, int32_t imm32) {
8141   InstructionMark im(this);
8142   prefixq(dst);
8143   emit_arith_operand(0x81, rbx, dst, imm32);
8144 }
8145 
8146 void Assembler::sbbq(Register dst, int32_t imm32) {
8147   (void) prefixq_and_encode(dst->encoding());
8148   emit_arith(0x81, 0xD8, dst, imm32);
8149 }
8150 
8151 void Assembler::sbbq(Register dst, Address src) {
8152   InstructionMark im(this);
8153   prefixq(src, dst);
8154   emit_int8(0x1B);
8155   emit_operand(dst, src);
8156 }
8157 
8158 void Assembler::sbbq(Register dst, Register src) {
8159   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8160   emit_arith(0x1B, 0xC0, dst, src);
8161 }
8162 
8163 void Assembler::shlq(Register dst, int imm8) {
8164   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8165   int encode = prefixq_and_encode(dst->encoding());
8166   if (imm8 == 1) {
8167     emit_int8((unsigned char)0xD1);
8168     emit_int8((unsigned char)(0xE0 | encode));
8169   } else {
8170     emit_int8((unsigned char)0xC1);
8171     emit_int8((unsigned char)(0xE0 | encode));
8172     emit_int8(imm8);
8173   }
8174 }
8175 
8176 void Assembler::shlq(Register dst) {
8177   int encode = prefixq_and_encode(dst->encoding());
8178   emit_int8((unsigned char)0xD3);
8179   emit_int8((unsigned char)(0xE0 | encode));
8180 }
8181 
8182 void Assembler::shrq(Register dst, int imm8) {
8183   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8184   int encode = prefixq_and_encode(dst->encoding());
8185   emit_int8((unsigned char)0xC1);
8186   emit_int8((unsigned char)(0xE8 | encode));
8187   emit_int8(imm8);
8188 }
8189 
8190 void Assembler::shrq(Register dst) {
8191   int encode = prefixq_and_encode(dst->encoding());
8192   emit_int8((unsigned char)0xD3);
8193   emit_int8(0xE8 | encode);
8194 }
8195 
8196 void Assembler::subq(Address dst, int32_t imm32) {
8197   InstructionMark im(this);
8198   prefixq(dst);
8199   emit_arith_operand(0x81, rbp, dst, imm32);
8200 }
8201 
8202 void Assembler::subq(Address dst, Register src) {
8203   InstructionMark im(this);
8204   prefixq(dst, src);
8205   emit_int8(0x29);
8206   emit_operand(src, dst);
8207 }
8208 
8209 void Assembler::subq(Register dst, int32_t imm32) {
8210   (void) prefixq_and_encode(dst->encoding());
8211   emit_arith(0x81, 0xE8, dst, imm32);
8212 }
8213 
8214 // Force generation of a 4 byte immediate value even if it fits into 8bit
8215 void Assembler::subq_imm32(Register dst, int32_t imm32) {
8216   (void) prefixq_and_encode(dst->encoding());
8217   emit_arith_imm32(0x81, 0xE8, dst, imm32);
8218 }
8219 
8220 void Assembler::subq(Register dst, Address src) {
8221   InstructionMark im(this);
8222   prefixq(src, dst);
8223   emit_int8(0x2B);
8224   emit_operand(dst, src);
8225 }
8226 
8227 void Assembler::subq(Register dst, Register src) {
8228   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8229   emit_arith(0x2B, 0xC0, dst, src);
8230 }
8231 
8232 void Assembler::testq(Register dst, int32_t imm32) {
8233   // not using emit_arith because test
8234   // doesn't support sign-extension of
8235   // 8bit operands
8236   int encode = dst->encoding();
8237   if (encode == 0) {
8238     prefix(REX_W);
8239     emit_int8((unsigned char)0xA9);
8240   } else {
8241     encode = prefixq_and_encode(encode);
8242     emit_int8((unsigned char)0xF7);
8243     emit_int8((unsigned char)(0xC0 | encode));
8244   }
8245   emit_int32(imm32);
8246 }
8247 
8248 void Assembler::testq(Register dst, Register src) {
8249   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8250   emit_arith(0x85, 0xC0, dst, src);
8251 }
8252 
8253 void Assembler::xaddq(Address dst, Register src) {
8254   InstructionMark im(this);
8255   prefixq(dst, src);
8256   emit_int8(0x0F);
8257   emit_int8((unsigned char)0xC1);
8258   emit_operand(src, dst);
8259 }
8260 
8261 void Assembler::xchgq(Register dst, Address src) {
8262   InstructionMark im(this);
8263   prefixq(src, dst);
8264   emit_int8((unsigned char)0x87);
8265   emit_operand(dst, src);
8266 }
8267 
8268 void Assembler::xchgq(Register dst, Register src) {
8269   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8270   emit_int8((unsigned char)0x87);
8271   emit_int8((unsigned char)(0xc0 | encode));
8272 }
8273 
8274 void Assembler::xorq(Register dst, Register src) {
8275   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8276   emit_arith(0x33, 0xC0, dst, src);
8277 }
8278 
8279 void Assembler::xorq(Register dst, Address src) {
8280   InstructionMark im(this);
8281   prefixq(src, dst);
8282   emit_int8(0x33);
8283   emit_operand(dst, src);
8284 }
8285 
8286 #endif // !LP64