1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
  27 
  28 #include "asm/register.hpp"
  29 #include "vm_version_x86.hpp"
  30 
  31 class BiasedLockingCounters;
  32 
  33 // Contains all the definitions needed for x86 assembly code generation.
  34 
  35 // Calling convention
  36 class Argument VALUE_OBJ_CLASS_SPEC {
  37  public:
  38   enum {
  39 #ifdef _LP64
  40 #ifdef _WIN64
  41     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
  42     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
  43 #else
  44     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
  45     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
  46 #endif // _WIN64
  47     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
  48     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
  49 #else
  50     n_register_parameters = 0   // 0 registers used to pass arguments
  51 #endif // _LP64
  52   };
  53 };
  54 
  55 
  56 #ifdef _LP64
  57 // Symbolically name the register arguments used by the c calling convention.
  58 // Windows is different from linux/solaris. So much for standards...
  59 
  60 #ifdef _WIN64
  61 
  62 REGISTER_DECLARATION(Register, c_rarg0, rcx);
  63 REGISTER_DECLARATION(Register, c_rarg1, rdx);
  64 REGISTER_DECLARATION(Register, c_rarg2, r8);
  65 REGISTER_DECLARATION(Register, c_rarg3, r9);
  66 
  67 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  68 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  69 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  70 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  71 
  72 #else
  73 
  74 REGISTER_DECLARATION(Register, c_rarg0, rdi);
  75 REGISTER_DECLARATION(Register, c_rarg1, rsi);
  76 REGISTER_DECLARATION(Register, c_rarg2, rdx);
  77 REGISTER_DECLARATION(Register, c_rarg3, rcx);
  78 REGISTER_DECLARATION(Register, c_rarg4, r8);
  79 REGISTER_DECLARATION(Register, c_rarg5, r9);
  80 
  81 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  82 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  83 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  84 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  85 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
  86 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
  87 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
  88 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
  89 
  90 #endif // _WIN64
  91 
  92 // Symbolically name the register arguments used by the Java calling convention.
  93 // We have control over the convention for java so we can do what we please.
  94 // What pleases us is to offset the java calling convention so that when
  95 // we call a suitable jni method the arguments are lined up and we don't
  96 // have to do little shuffling. A suitable jni method is non-static and a
  97 // small number of arguments (two fewer args on windows)
  98 //
  99 //        |-------------------------------------------------------|
 100 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
 101 //        |-------------------------------------------------------|
 102 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
 103 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
 104 //        |-------------------------------------------------------|
 105 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
 106 //        |-------------------------------------------------------|
 107 
 108 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
 109 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
 110 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
 111 // Windows runs out of register args here
 112 #ifdef _WIN64
 113 REGISTER_DECLARATION(Register, j_rarg3, rdi);
 114 REGISTER_DECLARATION(Register, j_rarg4, rsi);
 115 #else
 116 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
 117 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
 118 #endif /* _WIN64 */
 119 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
 120 
 121 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
 122 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
 123 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
 124 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
 125 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
 126 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
 127 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
 128 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
 129 
 130 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
 131 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
 132 
 133 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
 134 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
 135 
 136 #else
 137 // rscratch1 will apear in 32bit code that is dead but of course must compile
 138 // Using noreg ensures if the dead code is incorrectly live and executed it
 139 // will cause an assertion failure
 140 #define rscratch1 noreg
 141 #define rscratch2 noreg
 142 
 143 #endif // _LP64
 144 
 145 // JSR 292
 146 // On x86, the SP does not have to be saved when invoking method handle intrinsics
 147 // or compiled lambda forms. We indicate that by setting rbp_mh_SP_save to noreg.
 148 REGISTER_DECLARATION(Register, rbp_mh_SP_save, noreg);
 149 
 150 // Address is an abstraction used to represent a memory location
 151 // using any of the amd64 addressing modes with one object.
 152 //
 153 // Note: A register location is represented via a Register, not
 154 //       via an address for efficiency & simplicity reasons.
 155 
 156 class ArrayAddress;
 157 
 158 class Address VALUE_OBJ_CLASS_SPEC {
 159  public:
 160   enum ScaleFactor {
 161     no_scale = -1,
 162     times_1  =  0,
 163     times_2  =  1,
 164     times_4  =  2,
 165     times_8  =  3,
 166     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
 167   };
 168   static ScaleFactor times(int size) {
 169     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
 170     if (size == 8)  return times_8;
 171     if (size == 4)  return times_4;
 172     if (size == 2)  return times_2;
 173     return times_1;
 174   }
 175   static int scale_size(ScaleFactor scale) {
 176     assert(scale != no_scale, "");
 177     assert(((1 << (int)times_1) == 1 &&
 178             (1 << (int)times_2) == 2 &&
 179             (1 << (int)times_4) == 4 &&
 180             (1 << (int)times_8) == 8), "");
 181     return (1 << (int)scale);
 182   }
 183 
 184  private:
 185   Register         _base;
 186   Register         _index;
 187   ScaleFactor      _scale;
 188   int              _disp;
 189   RelocationHolder _rspec;
 190 
 191   // Easily misused constructors make them private
 192   // %%% can we make these go away?
 193   NOT_LP64(Address(address loc, RelocationHolder spec);)
 194   Address(int disp, address loc, relocInfo::relocType rtype);
 195   Address(int disp, address loc, RelocationHolder spec);
 196 
 197  public:
 198 
 199  int disp() { return _disp; }
 200   // creation
 201   Address()
 202     : _base(noreg),
 203       _index(noreg),
 204       _scale(no_scale),
 205       _disp(0) {
 206   }
 207 
 208   // No default displacement otherwise Register can be implicitly
 209   // converted to 0(Register) which is quite a different animal.
 210 
 211   Address(Register base, int disp)
 212     : _base(base),
 213       _index(noreg),
 214       _scale(no_scale),
 215       _disp(disp) {
 216   }
 217 
 218   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
 219     : _base (base),
 220       _index(index),
 221       _scale(scale),
 222       _disp (disp) {
 223     assert(!index->is_valid() == (scale == Address::no_scale),
 224            "inconsistent address");
 225   }
 226 
 227   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
 228     : _base (base),
 229       _index(index.register_or_noreg()),
 230       _scale(scale),
 231       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
 232     if (!index.is_register())  scale = Address::no_scale;
 233     assert(!_index->is_valid() == (scale == Address::no_scale),
 234            "inconsistent address");
 235   }
 236 
 237   Address plus_disp(int disp) const {
 238     Address a = (*this);
 239     a._disp += disp;
 240     return a;
 241   }
 242   Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
 243     Address a = (*this);
 244     a._disp += disp.constant_or_zero() * scale_size(scale);
 245     if (disp.is_register()) {
 246       assert(!a.index()->is_valid(), "competing indexes");
 247       a._index = disp.as_register();
 248       a._scale = scale;
 249     }
 250     return a;
 251   }
 252   bool is_same_address(Address a) const {
 253     // disregard _rspec
 254     return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
 255   }
 256 
 257   // The following two overloads are used in connection with the
 258   // ByteSize type (see sizes.hpp).  They simplify the use of
 259   // ByteSize'd arguments in assembly code. Note that their equivalent
 260   // for the optimized build are the member functions with int disp
 261   // argument since ByteSize is mapped to an int type in that case.
 262   //
 263   // Note: DO NOT introduce similar overloaded functions for WordSize
 264   // arguments as in the optimized mode, both ByteSize and WordSize
 265   // are mapped to the same type and thus the compiler cannot make a
 266   // distinction anymore (=> compiler errors).
 267 
 268 #ifdef ASSERT
 269   Address(Register base, ByteSize disp)
 270     : _base(base),
 271       _index(noreg),
 272       _scale(no_scale),
 273       _disp(in_bytes(disp)) {
 274   }
 275 
 276   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
 277     : _base(base),
 278       _index(index),
 279       _scale(scale),
 280       _disp(in_bytes(disp)) {
 281     assert(!index->is_valid() == (scale == Address::no_scale),
 282            "inconsistent address");
 283   }
 284 
 285   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
 286     : _base (base),
 287       _index(index.register_or_noreg()),
 288       _scale(scale),
 289       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
 290     if (!index.is_register())  scale = Address::no_scale;
 291     assert(!_index->is_valid() == (scale == Address::no_scale),
 292            "inconsistent address");
 293   }
 294 
 295 #endif // ASSERT
 296 
 297   // accessors
 298   bool        uses(Register reg) const { return _base == reg || _index == reg; }
 299   Register    base()             const { return _base;  }
 300   Register    index()            const { return _index; }
 301   ScaleFactor scale()            const { return _scale; }
 302   int         disp()             const { return _disp;  }
 303 
 304   // Convert the raw encoding form into the form expected by the constructor for
 305   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 306   // that to noreg for the Address constructor.
 307   static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
 308 
 309   static Address make_array(ArrayAddress);
 310 
 311  private:
 312   bool base_needs_rex() const {
 313     return _base != noreg && _base->encoding() >= 8;
 314   }
 315 
 316   bool index_needs_rex() const {
 317     return _index != noreg &&_index->encoding() >= 8;
 318   }
 319 
 320   relocInfo::relocType reloc() const { return _rspec.type(); }
 321 
 322   friend class Assembler;
 323   friend class MacroAssembler;
 324   friend class LIR_Assembler; // base/index/scale/disp
 325 };
 326 
 327 //
 328 // AddressLiteral has been split out from Address because operands of this type
 329 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
 330 // the few instructions that need to deal with address literals are unique and the
 331 // MacroAssembler does not have to implement every instruction in the Assembler
 332 // in order to search for address literals that may need special handling depending
 333 // on the instruction and the platform. As small step on the way to merging i486/amd64
 334 // directories.
 335 //
 336 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 337   friend class ArrayAddress;
 338   RelocationHolder _rspec;
 339   // Typically we use AddressLiterals we want to use their rval
 340   // However in some situations we want the lval (effect address) of the item.
 341   // We provide a special factory for making those lvals.
 342   bool _is_lval;
 343 
 344   // If the target is far we'll need to load the ea of this to
 345   // a register to reach it. Otherwise if near we can do rip
 346   // relative addressing.
 347 
 348   address          _target;
 349 
 350  protected:
 351   // creation
 352   AddressLiteral()
 353     : _is_lval(false),
 354       _target(NULL)
 355   {}
 356 
 357   public:
 358 
 359 
 360   AddressLiteral(address target, relocInfo::relocType rtype);
 361 
 362   AddressLiteral(address target, RelocationHolder const& rspec)
 363     : _rspec(rspec),
 364       _is_lval(false),
 365       _target(target)
 366   {}
 367 
 368   AddressLiteral addr() {
 369     AddressLiteral ret = *this;
 370     ret._is_lval = true;
 371     return ret;
 372   }
 373 
 374 
 375  private:
 376 
 377   address target() { return _target; }
 378   bool is_lval() { return _is_lval; }
 379 
 380   relocInfo::relocType reloc() const { return _rspec.type(); }
 381   const RelocationHolder& rspec() const { return _rspec; }
 382 
 383   friend class Assembler;
 384   friend class MacroAssembler;
 385   friend class Address;
 386   friend class LIR_Assembler;
 387 };
 388 
 389 // Convience classes
 390 class RuntimeAddress: public AddressLiteral {
 391 
 392   public:
 393 
 394   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
 395 
 396 };
 397 
 398 class ExternalAddress: public AddressLiteral {
 399  private:
 400   static relocInfo::relocType reloc_for_target(address target) {
 401     // Sometimes ExternalAddress is used for values which aren't
 402     // exactly addresses, like the card table base.
 403     // external_word_type can't be used for values in the first page
 404     // so just skip the reloc in that case.
 405     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 406   }
 407 
 408  public:
 409 
 410   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
 411 
 412 };
 413 
 414 class InternalAddress: public AddressLiteral {
 415 
 416   public:
 417 
 418   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 419 
 420 };
 421 
 422 // x86 can do array addressing as a single operation since disp can be an absolute
 423 // address amd64 can't. We create a class that expresses the concept but does extra
 424 // magic on amd64 to get the final result
 425 
 426 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
 427   private:
 428 
 429   AddressLiteral _base;
 430   Address        _index;
 431 
 432   public:
 433 
 434   ArrayAddress() {};
 435   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
 436   AddressLiteral base() { return _base; }
 437   Address index() { return _index; }
 438 
 439 };
 440 
 441 class InstructionAttr;
 442 
 443 // 64-bit refect the fxsave size which is 512 bytes and the new xsave area on EVEX which is another 2176 bytes
 444 // See fxsave and xsave(EVEX enabled) documentation for layout
 445 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY(2688 / wordSize);
 446 
 447 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 448 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
 449 // is what you get. The Assembler is generating code into a CodeBuffer.
 450 
 451 class Assembler : public AbstractAssembler  {
 452   friend class AbstractAssembler; // for the non-virtual hack
 453   friend class LIR_Assembler; // as_Address()
 454   friend class StubGenerator;
 455 
 456  public:
 457   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
 458     zero          = 0x4,
 459     notZero       = 0x5,
 460     equal         = 0x4,
 461     notEqual      = 0x5,
 462     less          = 0xc,
 463     lessEqual     = 0xe,
 464     greater       = 0xf,
 465     greaterEqual  = 0xd,
 466     below         = 0x2,
 467     belowEqual    = 0x6,
 468     above         = 0x7,
 469     aboveEqual    = 0x3,
 470     overflow      = 0x0,
 471     noOverflow    = 0x1,
 472     carrySet      = 0x2,
 473     carryClear    = 0x3,
 474     negative      = 0x8,
 475     positive      = 0x9,
 476     parity        = 0xa,
 477     noParity      = 0xb
 478   };
 479 
 480   enum Prefix {
 481     // segment overrides
 482     CS_segment = 0x2e,
 483     SS_segment = 0x36,
 484     DS_segment = 0x3e,
 485     ES_segment = 0x26,
 486     FS_segment = 0x64,
 487     GS_segment = 0x65,
 488 
 489     REX        = 0x40,
 490 
 491     REX_B      = 0x41,
 492     REX_X      = 0x42,
 493     REX_XB     = 0x43,
 494     REX_R      = 0x44,
 495     REX_RB     = 0x45,
 496     REX_RX     = 0x46,
 497     REX_RXB    = 0x47,
 498 
 499     REX_W      = 0x48,
 500 
 501     REX_WB     = 0x49,
 502     REX_WX     = 0x4A,
 503     REX_WXB    = 0x4B,
 504     REX_WR     = 0x4C,
 505     REX_WRB    = 0x4D,
 506     REX_WRX    = 0x4E,
 507     REX_WRXB   = 0x4F,
 508 
 509     VEX_3bytes = 0xC4,
 510     VEX_2bytes = 0xC5,
 511     EVEX_4bytes = 0x62,
 512     Prefix_EMPTY = 0x0
 513   };
 514 
 515   enum VexPrefix {
 516     VEX_B = 0x20,
 517     VEX_X = 0x40,
 518     VEX_R = 0x80,
 519     VEX_W = 0x80
 520   };
 521 
 522   enum ExexPrefix {
 523     EVEX_F  = 0x04,
 524     EVEX_V  = 0x08,
 525     EVEX_Rb = 0x10,
 526     EVEX_X  = 0x40,
 527     EVEX_Z  = 0x80
 528   };
 529 
 530   enum VexSimdPrefix {
 531     VEX_SIMD_NONE = 0x0,
 532     VEX_SIMD_66   = 0x1,
 533     VEX_SIMD_F3   = 0x2,
 534     VEX_SIMD_F2   = 0x3
 535   };
 536 
 537   enum VexOpcode {
 538     VEX_OPCODE_NONE  = 0x0,
 539     VEX_OPCODE_0F    = 0x1,
 540     VEX_OPCODE_0F_38 = 0x2,
 541     VEX_OPCODE_0F_3A = 0x3,
 542     VEX_OPCODE_MASK  = 0x1F
 543   };
 544 
 545   enum AvxVectorLen {
 546     AVX_128bit = 0x0,
 547     AVX_256bit = 0x1,
 548     AVX_512bit = 0x2,
 549     AVX_NoVec  = 0x4
 550   };
 551 
 552   enum EvexTupleType {
 553     EVEX_FV   = 0,
 554     EVEX_HV   = 4,
 555     EVEX_FVM  = 6,
 556     EVEX_T1S  = 7,
 557     EVEX_T1F  = 11,
 558     EVEX_T2   = 13,
 559     EVEX_T4   = 15,
 560     EVEX_T8   = 17,
 561     EVEX_HVM  = 18,
 562     EVEX_QVM  = 19,
 563     EVEX_OVM  = 20,
 564     EVEX_M128 = 21,
 565     EVEX_DUP  = 22,
 566     EVEX_ETUP = 23
 567   };
 568 
 569   enum EvexInputSizeInBits {
 570     EVEX_8bit  = 0,
 571     EVEX_16bit = 1,
 572     EVEX_32bit = 2,
 573     EVEX_64bit = 3,
 574     EVEX_NObit = 4
 575   };
 576 
 577   enum WhichOperand {
 578     // input to locate_operand, and format code for relocations
 579     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
 580     disp32_operand = 1,          // embedded 32-bit displacement or address
 581     call32_operand = 2,          // embedded 32-bit self-relative displacement
 582 #ifndef _LP64
 583     _WhichOperand_limit = 3
 584 #else
 585      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
 586     _WhichOperand_limit = 4
 587 #endif
 588   };
 589 
 590 
 591 
 592   // NOTE: The general philopsophy of the declarations here is that 64bit versions
 593   // of instructions are freely declared without the need for wrapping them an ifdef.
 594   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
 595   // In the .cpp file the implementations are wrapped so that they are dropped out
 596   // of the resulting jvm. This is done mostly to keep the footprint of MINIMAL
 597   // to the size it was prior to merging up the 32bit and 64bit assemblers.
 598   //
 599   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
 600   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
 601 
 602 private:
 603 
 604   bool _legacy_mode_bw;
 605   bool _legacy_mode_dq;
 606   bool _legacy_mode_vl;
 607   bool _legacy_mode_vlbw;
 608 
 609   class InstructionAttr *_attributes;
 610 
 611   // 64bit prefixes
 612   int prefix_and_encode(int reg_enc, bool byteinst = false);
 613   int prefixq_and_encode(int reg_enc);
 614 
 615   int prefix_and_encode(int dst_enc, int src_enc) {
 616     return prefix_and_encode(dst_enc, false, src_enc, false);
 617   }
 618   int prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte);
 619   int prefixq_and_encode(int dst_enc, int src_enc);
 620 
 621   void prefix(Register reg);
 622   void prefix(Register dst, Register src, Prefix p);
 623   void prefix(Register dst, Address adr, Prefix p);
 624   void prefix(Address adr);
 625   void prefixq(Address adr);
 626 
 627   void prefix(Address adr, Register reg,  bool byteinst = false);
 628   void prefix(Address adr, XMMRegister reg);
 629   void prefixq(Address adr, Register reg);
 630   void prefixq(Address adr, XMMRegister reg);
 631 
 632   void prefetch_prefix(Address src);
 633 
 634   void rex_prefix(Address adr, XMMRegister xreg,
 635                   VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 636   int  rex_prefix_and_encode(int dst_enc, int src_enc,
 637                              VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 638 
 639   void vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc);
 640 
 641   void evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v,
 642                    int nds_enc, VexSimdPrefix pre, VexOpcode opc);
 643 
 644   void vex_prefix(Address adr, int nds_enc, int xreg_enc,
 645                   VexSimdPrefix pre, VexOpcode opc,
 646                   InstructionAttr *attributes);
 647 
 648   int  vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
 649                              VexSimdPrefix pre, VexOpcode opc,
 650                              InstructionAttr *attributes);
 651 
 652   void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
 653                    VexOpcode opc, InstructionAttr *attributes);
 654 
 655   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
 656                              VexOpcode opc, InstructionAttr *attributes);
 657 
 658   // Helper functions for groups of instructions
 659   void emit_arith_b(int op1, int op2, Register dst, int imm8);
 660 
 661   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
 662   // Force generation of a 4 byte immediate value even if it fits into 8bit
 663   void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
 664   void emit_arith(int op1, int op2, Register dst, Register src);
 665 
 666   bool emit_compressed_disp_byte(int &disp);
 667 
 668   void emit_operand(Register reg,
 669                     Register base, Register index, Address::ScaleFactor scale,
 670                     int disp,
 671                     RelocationHolder const& rspec,
 672                     int rip_relative_correction = 0);
 673 
 674   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
 675 
 676   // operands that only take the original 32bit registers
 677   void emit_operand32(Register reg, Address adr);
 678 
 679   void emit_operand(XMMRegister reg,
 680                     Register base, Register index, Address::ScaleFactor scale,
 681                     int disp,
 682                     RelocationHolder const& rspec);
 683 
 684   void emit_operand(XMMRegister reg, Address adr);
 685 
 686   void emit_operand(MMXRegister reg, Address adr);
 687 
 688   // workaround gcc (3.2.1-7) bug
 689   void emit_operand(Address adr, MMXRegister reg);
 690 
 691 
 692   // Immediate-to-memory forms
 693   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
 694 
 695   void emit_farith(int b1, int b2, int i);
 696 
 697 
 698  protected:
 699   #ifdef ASSERT
 700   void check_relocation(RelocationHolder const& rspec, int format);
 701   #endif
 702 
 703   void emit_data(jint data, relocInfo::relocType    rtype, int format);
 704   void emit_data(jint data, RelocationHolder const& rspec, int format);
 705   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
 706   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
 707 
 708   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
 709 
 710   // These are all easily abused and hence protected
 711 
 712   // 32BIT ONLY SECTION
 713 #ifndef _LP64
 714   // Make these disappear in 64bit mode since they would never be correct
 715   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
 716   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 717 
 718   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 719   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
 720 
 721   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
 722 #else
 723   // 64BIT ONLY SECTION
 724   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
 725 
 726   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
 727   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
 728 
 729   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
 730   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
 731 #endif // _LP64
 732 
 733   // These are unique in that we are ensured by the caller that the 32bit
 734   // relative in these instructions will always be able to reach the potentially
 735   // 64bit address described by entry. Since they can take a 64bit address they
 736   // don't have the 32 suffix like the other instructions in this class.
 737 
 738   void call_literal(address entry, RelocationHolder const& rspec);
 739   void jmp_literal(address entry, RelocationHolder const& rspec);
 740 
 741   // Avoid using directly section
 742   // Instructions in this section are actually usable by anyone without danger
 743   // of failure but have performance issues that are addressed my enhanced
 744   // instructions which will do the proper thing base on the particular cpu.
 745   // We protect them because we don't trust you...
 746 
 747   // Don't use next inc() and dec() methods directly. INC & DEC instructions
 748   // could cause a partial flag stall since they don't set CF flag.
 749   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
 750   // which call inc() & dec() or add() & sub() in accordance with
 751   // the product flag UseIncDec value.
 752 
 753   void decl(Register dst);
 754   void decl(Address dst);
 755   void decq(Register dst);
 756   void decq(Address dst);
 757 
 758   void incl(Register dst);
 759   void incl(Address dst);
 760   void incq(Register dst);
 761   void incq(Address dst);
 762 
 763   // New cpus require use of movsd and movss to avoid partial register stall
 764   // when loading from memory. But for old Opteron use movlpd instead of movsd.
 765   // The selection is done in MacroAssembler::movdbl() and movflt().
 766 
 767   // Move Scalar Single-Precision Floating-Point Values
 768   void movss(XMMRegister dst, Address src);
 769   void movss(XMMRegister dst, XMMRegister src);
 770   void movss(Address dst, XMMRegister src);
 771 
 772   // Move Scalar Double-Precision Floating-Point Values
 773   void movsd(XMMRegister dst, Address src);
 774   void movsd(XMMRegister dst, XMMRegister src);
 775   void movsd(Address dst, XMMRegister src);
 776   void movlpd(XMMRegister dst, Address src);
 777 
 778   // New cpus require use of movaps and movapd to avoid partial register stall
 779   // when moving between registers.
 780   void movaps(XMMRegister dst, XMMRegister src);
 781   void movapd(XMMRegister dst, XMMRegister src);
 782 
 783   // End avoid using directly
 784 
 785 
 786   // Instruction prefixes
 787   void prefix(Prefix p);
 788 
 789   public:
 790 
 791   // Creation
 792   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
 793     init_attributes();
 794   }
 795 
 796   // Decoding
 797   static address locate_operand(address inst, WhichOperand which);
 798   static address locate_next_instruction(address inst);
 799 
 800   // Utilities
 801   static bool is_polling_page_far() NOT_LP64({ return false;});
 802   static bool query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 803                                          int cur_tuple_type, int in_size_in_bits, int cur_encoding);
 804 
 805   // Generic instructions
 806   // Does 32bit or 64bit as needed for the platform. In some sense these
 807   // belong in macro assembler but there is no need for both varieties to exist
 808 
 809   void init_attributes(void) {
 810     _legacy_mode_bw = (VM_Version::supports_avx512bw() == false);
 811     _legacy_mode_dq = (VM_Version::supports_avx512dq() == false);
 812     _legacy_mode_vl = (VM_Version::supports_avx512vl() == false);
 813     _legacy_mode_vlbw = (VM_Version::supports_avx512vlbw() == false);
 814     _attributes = NULL;
 815   }
 816 
 817   void set_attributes(InstructionAttr *attributes) { _attributes = attributes; }
 818   void clear_attributes(void) { _attributes = NULL; }
 819 
 820   void lea(Register dst, Address src);
 821 
 822   void mov(Register dst, Register src);
 823 
 824   void pusha();
 825   void popa();
 826 
 827   void pushf();
 828   void popf();
 829 
 830   void push(int32_t imm32);
 831 
 832   void push(Register src);
 833 
 834   void pop(Register dst);
 835 
 836   // These are dummies to prevent surprise implicit conversions to Register
 837   void push(void* v);
 838   void pop(void* v);
 839 
 840   // These do register sized moves/scans
 841   void rep_mov();
 842   void rep_stos();
 843   void rep_stosb();
 844   void repne_scan();
 845 #ifdef _LP64
 846   void repne_scanl();
 847 #endif
 848 
 849   // Vanilla instructions in lexical order
 850 
 851   void adcl(Address dst, int32_t imm32);
 852   void adcl(Address dst, Register src);
 853   void adcl(Register dst, int32_t imm32);
 854   void adcl(Register dst, Address src);
 855   void adcl(Register dst, Register src);
 856 
 857   void adcq(Register dst, int32_t imm32);
 858   void adcq(Register dst, Address src);
 859   void adcq(Register dst, Register src);
 860 
 861   void addl(Address dst, int32_t imm32);
 862   void addl(Address dst, Register src);
 863   void addl(Register dst, int32_t imm32);
 864   void addl(Register dst, Address src);
 865   void addl(Register dst, Register src);
 866 
 867   void addq(Address dst, int32_t imm32);
 868   void addq(Address dst, Register src);
 869   void addq(Register dst, int32_t imm32);
 870   void addq(Register dst, Address src);
 871   void addq(Register dst, Register src);
 872 
 873 #ifdef _LP64
 874  //Add Unsigned Integers with Carry Flag
 875   void adcxq(Register dst, Register src);
 876 
 877  //Add Unsigned Integers with Overflow Flag
 878   void adoxq(Register dst, Register src);
 879 #endif
 880 
 881   void addr_nop_4();
 882   void addr_nop_5();
 883   void addr_nop_7();
 884   void addr_nop_8();
 885 
 886   // Add Scalar Double-Precision Floating-Point Values
 887   void addsd(XMMRegister dst, Address src);
 888   void addsd(XMMRegister dst, XMMRegister src);
 889 
 890   // Add Scalar Single-Precision Floating-Point Values
 891   void addss(XMMRegister dst, Address src);
 892   void addss(XMMRegister dst, XMMRegister src);
 893 
 894   // AES instructions
 895   void aesdec(XMMRegister dst, Address src);
 896   void aesdec(XMMRegister dst, XMMRegister src);
 897   void aesdeclast(XMMRegister dst, Address src);
 898   void aesdeclast(XMMRegister dst, XMMRegister src);
 899   void aesenc(XMMRegister dst, Address src);
 900   void aesenc(XMMRegister dst, XMMRegister src);
 901   void aesenclast(XMMRegister dst, Address src);
 902   void aesenclast(XMMRegister dst, XMMRegister src);
 903 
 904 
 905   void andl(Address  dst, int32_t imm32);
 906   void andl(Register dst, int32_t imm32);
 907   void andl(Register dst, Address src);
 908   void andl(Register dst, Register src);
 909 
 910   void andq(Address  dst, int32_t imm32);
 911   void andq(Register dst, int32_t imm32);
 912   void andq(Register dst, Address src);
 913   void andq(Register dst, Register src);
 914 
 915   // BMI instructions
 916   void andnl(Register dst, Register src1, Register src2);
 917   void andnl(Register dst, Register src1, Address src2);
 918   void andnq(Register dst, Register src1, Register src2);
 919   void andnq(Register dst, Register src1, Address src2);
 920 
 921   void blsil(Register dst, Register src);
 922   void blsil(Register dst, Address src);
 923   void blsiq(Register dst, Register src);
 924   void blsiq(Register dst, Address src);
 925 
 926   void blsmskl(Register dst, Register src);
 927   void blsmskl(Register dst, Address src);
 928   void blsmskq(Register dst, Register src);
 929   void blsmskq(Register dst, Address src);
 930 
 931   void blsrl(Register dst, Register src);
 932   void blsrl(Register dst, Address src);
 933   void blsrq(Register dst, Register src);
 934   void blsrq(Register dst, Address src);
 935 
 936   void bsfl(Register dst, Register src);
 937   void bsrl(Register dst, Register src);
 938 
 939 #ifdef _LP64
 940   void bsfq(Register dst, Register src);
 941   void bsrq(Register dst, Register src);
 942 #endif
 943 
 944   void bswapl(Register reg);
 945 
 946   void bswapq(Register reg);
 947 
 948   void call(Label& L, relocInfo::relocType rtype);
 949   void call(Register reg);  // push pc; pc <- reg
 950   void call(Address adr);   // push pc; pc <- adr
 951 
 952   void cdql();
 953 
 954   void cdqq();
 955 
 956   void cld();
 957 
 958   void clflush(Address adr);
 959 
 960   void cmovl(Condition cc, Register dst, Register src);
 961   void cmovl(Condition cc, Register dst, Address src);
 962 
 963   void cmovq(Condition cc, Register dst, Register src);
 964   void cmovq(Condition cc, Register dst, Address src);
 965 
 966 
 967   void cmpb(Address dst, int imm8);
 968 
 969   void cmpl(Address dst, int32_t imm32);
 970 
 971   void cmpl(Register dst, int32_t imm32);
 972   void cmpl(Register dst, Register src);
 973   void cmpl(Register dst, Address src);
 974 
 975   void cmpq(Address dst, int32_t imm32);
 976   void cmpq(Address dst, Register src);
 977 
 978   void cmpq(Register dst, int32_t imm32);
 979   void cmpq(Register dst, Register src);
 980   void cmpq(Register dst, Address src);
 981 
 982   // these are dummies used to catch attempting to convert NULL to Register
 983   void cmpl(Register dst, void* junk); // dummy
 984   void cmpq(Register dst, void* junk); // dummy
 985 
 986   void cmpw(Address dst, int imm16);
 987 
 988   void cmpxchg8 (Address adr);
 989 
 990   void cmpxchgb(Register reg, Address adr);
 991   void cmpxchgl(Register reg, Address adr);
 992 
 993   void cmpxchgq(Register reg, Address adr);
 994 
 995   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
 996   void comisd(XMMRegister dst, Address src);
 997   void comisd(XMMRegister dst, XMMRegister src);
 998 
 999   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1000   void comiss(XMMRegister dst, Address src);
1001   void comiss(XMMRegister dst, XMMRegister src);
1002 
1003   // Identify processor type and features
1004   void cpuid();
1005 
1006   // CRC32C
1007   void crc32(Register crc, Register v, int8_t sizeInBytes);
1008   void crc32(Register crc, Address adr, int8_t sizeInBytes);
1009 
1010   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
1011   void cvtsd2ss(XMMRegister dst, XMMRegister src);
1012   void cvtsd2ss(XMMRegister dst, Address src);
1013 
1014   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
1015   void cvtsi2sdl(XMMRegister dst, Register src);
1016   void cvtsi2sdl(XMMRegister dst, Address src);
1017   void cvtsi2sdq(XMMRegister dst, Register src);
1018   void cvtsi2sdq(XMMRegister dst, Address src);
1019 
1020   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
1021   void cvtsi2ssl(XMMRegister dst, Register src);
1022   void cvtsi2ssl(XMMRegister dst, Address src);
1023   void cvtsi2ssq(XMMRegister dst, Register src);
1024   void cvtsi2ssq(XMMRegister dst, Address src);
1025 
1026   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
1027   void cvtdq2pd(XMMRegister dst, XMMRegister src);
1028 
1029   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
1030   void cvtdq2ps(XMMRegister dst, XMMRegister src);
1031 
1032   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
1033   void cvtss2sd(XMMRegister dst, XMMRegister src);
1034   void cvtss2sd(XMMRegister dst, Address src);
1035 
1036   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
1037   void cvttsd2sil(Register dst, Address src);
1038   void cvttsd2sil(Register dst, XMMRegister src);
1039   void cvttsd2siq(Register dst, XMMRegister src);
1040 
1041   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
1042   void cvttss2sil(Register dst, XMMRegister src);
1043   void cvttss2siq(Register dst, XMMRegister src);
1044 
1045   void cvttpd2dq(XMMRegister dst, XMMRegister src);
1046 
1047   // Divide Scalar Double-Precision Floating-Point Values
1048   void divsd(XMMRegister dst, Address src);
1049   void divsd(XMMRegister dst, XMMRegister src);
1050 
1051   // Divide Scalar Single-Precision Floating-Point Values
1052   void divss(XMMRegister dst, Address src);
1053   void divss(XMMRegister dst, XMMRegister src);
1054 
1055   void emms();
1056 
1057   void fabs();
1058 
1059   void fadd(int i);
1060 
1061   void fadd_d(Address src);
1062   void fadd_s(Address src);
1063 
1064   // "Alternate" versions of x87 instructions place result down in FPU
1065   // stack instead of on TOS
1066 
1067   void fadda(int i); // "alternate" fadd
1068   void faddp(int i = 1);
1069 
1070   void fchs();
1071 
1072   void fcom(int i);
1073 
1074   void fcomp(int i = 1);
1075   void fcomp_d(Address src);
1076   void fcomp_s(Address src);
1077 
1078   void fcompp();
1079 
1080   void fcos();
1081 
1082   void fdecstp();
1083 
1084   void fdiv(int i);
1085   void fdiv_d(Address src);
1086   void fdivr_s(Address src);
1087   void fdiva(int i);  // "alternate" fdiv
1088   void fdivp(int i = 1);
1089 
1090   void fdivr(int i);
1091   void fdivr_d(Address src);
1092   void fdiv_s(Address src);
1093 
1094   void fdivra(int i); // "alternate" reversed fdiv
1095 
1096   void fdivrp(int i = 1);
1097 
1098   void ffree(int i = 0);
1099 
1100   void fild_d(Address adr);
1101   void fild_s(Address adr);
1102 
1103   void fincstp();
1104 
1105   void finit();
1106 
1107   void fist_s (Address adr);
1108   void fistp_d(Address adr);
1109   void fistp_s(Address adr);
1110 
1111   void fld1();
1112 
1113   void fld_d(Address adr);
1114   void fld_s(Address adr);
1115   void fld_s(int index);
1116   void fld_x(Address adr);  // extended-precision (80-bit) format
1117 
1118   void fldcw(Address src);
1119 
1120   void fldenv(Address src);
1121 
1122   void fldlg2();
1123 
1124   void fldln2();
1125 
1126   void fldz();
1127 
1128   void flog();
1129   void flog10();
1130 
1131   void fmul(int i);
1132 
1133   void fmul_d(Address src);
1134   void fmul_s(Address src);
1135 
1136   void fmula(int i);  // "alternate" fmul
1137 
1138   void fmulp(int i = 1);
1139 
1140   void fnsave(Address dst);
1141 
1142   void fnstcw(Address src);
1143 
1144   void fnstsw_ax();
1145 
1146   void fprem();
1147   void fprem1();
1148 
1149   void frstor(Address src);
1150 
1151   void fsin();
1152 
1153   void fsqrt();
1154 
1155   void fst_d(Address adr);
1156   void fst_s(Address adr);
1157 
1158   void fstp_d(Address adr);
1159   void fstp_d(int index);
1160   void fstp_s(Address adr);
1161   void fstp_x(Address adr); // extended-precision (80-bit) format
1162 
1163   void fsub(int i);
1164   void fsub_d(Address src);
1165   void fsub_s(Address src);
1166 
1167   void fsuba(int i);  // "alternate" fsub
1168 
1169   void fsubp(int i = 1);
1170 
1171   void fsubr(int i);
1172   void fsubr_d(Address src);
1173   void fsubr_s(Address src);
1174 
1175   void fsubra(int i); // "alternate" reversed fsub
1176 
1177   void fsubrp(int i = 1);
1178 
1179   void ftan();
1180 
1181   void ftst();
1182 
1183   void fucomi(int i = 1);
1184   void fucomip(int i = 1);
1185 
1186   void fwait();
1187 
1188   void fxch(int i = 1);
1189 
1190   void fxrstor(Address src);
1191   void xrstor(Address src);
1192 
1193   void fxsave(Address dst);
1194   void xsave(Address dst);
1195 
1196   void fyl2x();
1197   void frndint();
1198   void f2xm1();
1199   void fldl2e();
1200 
1201   void hlt();
1202 
1203   void idivl(Register src);
1204   void divl(Register src); // Unsigned division
1205 
1206 #ifdef _LP64
1207   void idivq(Register src);
1208 #endif
1209 
1210   void imull(Register src);
1211   void imull(Register dst, Register src);
1212   void imull(Register dst, Register src, int value);
1213   void imull(Register dst, Address src);
1214 
1215 #ifdef _LP64
1216   void imulq(Register dst, Register src);
1217   void imulq(Register dst, Register src, int value);
1218   void imulq(Register dst, Address src);
1219 #endif
1220 
1221   // jcc is the generic conditional branch generator to run-
1222   // time routines, jcc is used for branches to labels. jcc
1223   // takes a branch opcode (cc) and a label (L) and generates
1224   // either a backward branch or a forward branch and links it
1225   // to the label fixup chain. Usage:
1226   //
1227   // Label L;      // unbound label
1228   // jcc(cc, L);   // forward branch to unbound label
1229   // bind(L);      // bind label to the current pc
1230   // jcc(cc, L);   // backward branch to bound label
1231   // bind(L);      // illegal: a label may be bound only once
1232   //
1233   // Note: The same Label can be used for forward and backward branches
1234   // but it may be bound only once.
1235 
1236   void jcc(Condition cc, Label& L, bool maybe_short = true);
1237 
1238   // Conditional jump to a 8-bit offset to L.
1239   // WARNING: be very careful using this for forward jumps.  If the label is
1240   // not bound within an 8-bit offset of this instruction, a run-time error
1241   // will occur.
1242   void jccb(Condition cc, Label& L);
1243 
1244   void jmp(Address entry);    // pc <- entry
1245 
1246   // Label operations & relative jumps (PPUM Appendix D)
1247   void jmp(Label& L, bool maybe_short = true);   // unconditional jump to L
1248 
1249   void jmp(Register entry); // pc <- entry
1250 
1251   // Unconditional 8-bit offset jump to L.
1252   // WARNING: be very careful using this for forward jumps.  If the label is
1253   // not bound within an 8-bit offset of this instruction, a run-time error
1254   // will occur.
1255   void jmpb(Label& L);
1256 
1257   void ldmxcsr( Address src );
1258 
1259   void leal(Register dst, Address src);
1260 
1261   void leaq(Register dst, Address src);
1262 
1263   void lfence();
1264 
1265   void lock();
1266 
1267   void lzcntl(Register dst, Register src);
1268 
1269 #ifdef _LP64
1270   void lzcntq(Register dst, Register src);
1271 #endif
1272 
1273   enum Membar_mask_bits {
1274     StoreStore = 1 << 3,
1275     LoadStore  = 1 << 2,
1276     StoreLoad  = 1 << 1,
1277     LoadLoad   = 1 << 0
1278   };
1279 
1280   // Serializes memory and blows flags
1281   void membar(Membar_mask_bits order_constraint) {
1282     if (os::is_MP()) {
1283       // We only have to handle StoreLoad
1284       if (order_constraint & StoreLoad) {
1285         // All usable chips support "locked" instructions which suffice
1286         // as barriers, and are much faster than the alternative of
1287         // using cpuid instruction. We use here a locked add [esp-C],0.
1288         // This is conveniently otherwise a no-op except for blowing
1289         // flags, and introducing a false dependency on target memory
1290         // location. We can't do anything with flags, but we can avoid
1291         // memory dependencies in the current method by locked-adding
1292         // somewhere else on the stack. Doing [esp+C] will collide with
1293         // something on stack in current method, hence we go for [esp-C].
1294         // It is convenient since it is almost always in data cache, for
1295         // any small C.  We need to step back from SP to avoid data
1296         // dependencies with other things on below SP (callee-saves, for
1297         // example). Without a clear way to figure out the minimal safe
1298         // distance from SP, it makes sense to step back the complete
1299         // cache line, as this will also avoid possible second-order effects
1300         // with locked ops against the cache line. Our choice of offset
1301         // is bounded by x86 operand encoding, which should stay within
1302         // [-128; +127] to have the 8-byte displacement encoding.
1303         //
1304         // Any change to this code may need to revisit other places in
1305         // the code where this idiom is used, in particular the
1306         // orderAccess code.
1307 
1308         int offset = -VM_Version::L1_line_size();
1309         if (offset < -128) {
1310           offset = -128;
1311         }
1312 
1313         lock();
1314         addl(Address(rsp, offset), 0);// Assert the lock# signal here
1315       }
1316     }
1317   }
1318 
1319   void mfence();
1320 
1321   // Moves
1322 
1323   void mov64(Register dst, int64_t imm64);
1324 
1325   void movb(Address dst, Register src);
1326   void movb(Address dst, int imm8);
1327   void movb(Register dst, Address src);
1328 
1329   void movddup(XMMRegister dst, XMMRegister src);
1330 
1331   void kmovbl(KRegister dst, Register src);
1332   void kmovbl(Register dst, KRegister src);
1333   void kmovwl(KRegister dst, Register src);
1334   void kmovwl(Register dst, KRegister src);
1335   void kmovdl(KRegister dst, Register src);
1336   void kmovdl(Register dst, KRegister src);
1337   void kmovql(KRegister dst, KRegister src);
1338   void kmovql(Address dst, KRegister src);
1339   void kmovql(KRegister dst, Address src);
1340   void kmovql(KRegister dst, Register src);
1341   void kmovql(Register dst, KRegister src);
1342 
1343   void kortestbl(KRegister dst, KRegister src);
1344   void kortestwl(KRegister dst, KRegister src);
1345   void kortestdl(KRegister dst, KRegister src);
1346   void kortestql(KRegister dst, KRegister src);
1347 
1348   void movdl(XMMRegister dst, Register src);
1349   void movdl(Register dst, XMMRegister src);
1350   void movdl(XMMRegister dst, Address src);
1351   void movdl(Address dst, XMMRegister src);
1352 
1353   // Move Double Quadword
1354   void movdq(XMMRegister dst, Register src);
1355   void movdq(Register dst, XMMRegister src);
1356 
1357   // Move Aligned Double Quadword
1358   void movdqa(XMMRegister dst, XMMRegister src);
1359   void movdqa(XMMRegister dst, Address src);
1360 
1361   // Move Unaligned Double Quadword
1362   void movdqu(Address     dst, XMMRegister src);
1363   void movdqu(XMMRegister dst, Address src);
1364   void movdqu(XMMRegister dst, XMMRegister src);
1365 
1366   // Move Unaligned 256bit Vector
1367   void vmovdqu(Address dst, XMMRegister src);
1368   void vmovdqu(XMMRegister dst, Address src);
1369   void vmovdqu(XMMRegister dst, XMMRegister src);
1370 
1371    // Move Unaligned 512bit Vector
1372   void evmovdqub(Address dst, XMMRegister src, int vector_len);
1373   void evmovdqub(XMMRegister dst, Address src, int vector_len);
1374   void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len);
1375   void evmovdquw(Address dst, XMMRegister src, int vector_len);
1376   void evmovdquw(XMMRegister dst, Address src, int vector_len);
1377   void evmovdquw(XMMRegister dst, XMMRegister src, int vector_len);
1378   void evmovdqul(Address dst, XMMRegister src, int vector_len);
1379   void evmovdqul(XMMRegister dst, Address src, int vector_len);
1380   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len);
1381   void evmovdquq(Address dst, XMMRegister src, int vector_len);
1382   void evmovdquq(XMMRegister dst, Address src, int vector_len);
1383   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len);
1384 
1385   // Move lower 64bit to high 64bit in 128bit register
1386   void movlhps(XMMRegister dst, XMMRegister src);
1387 
1388   void movl(Register dst, int32_t imm32);
1389   void movl(Address dst, int32_t imm32);
1390   void movl(Register dst, Register src);
1391   void movl(Register dst, Address src);
1392   void movl(Address dst, Register src);
1393 
1394   // These dummies prevent using movl from converting a zero (like NULL) into Register
1395   // by giving the compiler two choices it can't resolve
1396 
1397   void movl(Address  dst, void* junk);
1398   void movl(Register dst, void* junk);
1399 
1400 #ifdef _LP64
1401   void movq(Register dst, Register src);
1402   void movq(Register dst, Address src);
1403   void movq(Address  dst, Register src);
1404 #endif
1405 
1406   void movq(Address     dst, MMXRegister src );
1407   void movq(MMXRegister dst, Address src );
1408 
1409 #ifdef _LP64
1410   // These dummies prevent using movq from converting a zero (like NULL) into Register
1411   // by giving the compiler two choices it can't resolve
1412 
1413   void movq(Address  dst, void* dummy);
1414   void movq(Register dst, void* dummy);
1415 #endif
1416 
1417   // Move Quadword
1418   void movq(Address     dst, XMMRegister src);
1419   void movq(XMMRegister dst, Address src);
1420 
1421   void movsbl(Register dst, Address src);
1422   void movsbl(Register dst, Register src);
1423 
1424 #ifdef _LP64
1425   void movsbq(Register dst, Address src);
1426   void movsbq(Register dst, Register src);
1427 
1428   // Move signed 32bit immediate to 64bit extending sign
1429   void movslq(Address  dst, int32_t imm64);
1430   void movslq(Register dst, int32_t imm64);
1431 
1432   void movslq(Register dst, Address src);
1433   void movslq(Register dst, Register src);
1434   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1435 #endif
1436 
1437   void movswl(Register dst, Address src);
1438   void movswl(Register dst, Register src);
1439 
1440 #ifdef _LP64
1441   void movswq(Register dst, Address src);
1442   void movswq(Register dst, Register src);
1443 #endif
1444 
1445   void movw(Address dst, int imm16);
1446   void movw(Register dst, Address src);
1447   void movw(Address dst, Register src);
1448 
1449   void movzbl(Register dst, Address src);
1450   void movzbl(Register dst, Register src);
1451 
1452 #ifdef _LP64
1453   void movzbq(Register dst, Address src);
1454   void movzbq(Register dst, Register src);
1455 #endif
1456 
1457   void movzwl(Register dst, Address src);
1458   void movzwl(Register dst, Register src);
1459 
1460 #ifdef _LP64
1461   void movzwq(Register dst, Address src);
1462   void movzwq(Register dst, Register src);
1463 #endif
1464 
1465   // Unsigned multiply with RAX destination register
1466   void mull(Address src);
1467   void mull(Register src);
1468 
1469 #ifdef _LP64
1470   void mulq(Address src);
1471   void mulq(Register src);
1472   void mulxq(Register dst1, Register dst2, Register src);
1473 #endif
1474 
1475   // Multiply Scalar Double-Precision Floating-Point Values
1476   void mulsd(XMMRegister dst, Address src);
1477   void mulsd(XMMRegister dst, XMMRegister src);
1478 
1479   // Multiply Scalar Single-Precision Floating-Point Values
1480   void mulss(XMMRegister dst, Address src);
1481   void mulss(XMMRegister dst, XMMRegister src);
1482 
1483   void negl(Register dst);
1484 
1485 #ifdef _LP64
1486   void negq(Register dst);
1487 #endif
1488 
1489   void nop(int i = 1);
1490 
1491   void notl(Register dst);
1492 
1493 #ifdef _LP64
1494   void notq(Register dst);
1495 #endif
1496 
1497   void orl(Address dst, int32_t imm32);
1498   void orl(Register dst, int32_t imm32);
1499   void orl(Register dst, Address src);
1500   void orl(Register dst, Register src);
1501   void orl(Address dst, Register src);
1502 
1503   void orq(Address dst, int32_t imm32);
1504   void orq(Register dst, int32_t imm32);
1505   void orq(Register dst, Address src);
1506   void orq(Register dst, Register src);
1507 
1508   // Pack with unsigned saturation
1509   void packuswb(XMMRegister dst, XMMRegister src);
1510   void packuswb(XMMRegister dst, Address src);
1511   void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1512 
1513   // Pemutation of 64bit words
1514   void vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len);
1515   void vpermq(XMMRegister dst, XMMRegister src, int imm8);
1516 
1517   void pause();
1518 
1519   // SSE4.2 string instructions
1520   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1521   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1522 
1523   void pcmpeqb(XMMRegister dst, XMMRegister src);
1524   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1525   void evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1526   void evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1527 
1528   void pcmpeqw(XMMRegister dst, XMMRegister src);
1529   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1530   void evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1531   void evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1532 
1533   void pcmpeqd(XMMRegister dst, XMMRegister src);
1534   void vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1535   void evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1536   void evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1537 
1538   void pcmpeqq(XMMRegister dst, XMMRegister src);
1539   void vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1540   void evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1541   void evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1542 
1543   void pmovmskb(Register dst, XMMRegister src);
1544   void vpmovmskb(Register dst, XMMRegister src);
1545 
1546   // SSE 4.1 extract
1547   void pextrd(Register dst, XMMRegister src, int imm8);
1548   void pextrq(Register dst, XMMRegister src, int imm8);
1549   void pextrd(Address dst, XMMRegister src, int imm8);
1550   void pextrq(Address dst, XMMRegister src, int imm8);
1551   void pextrb(Address dst, XMMRegister src, int imm8);
1552   // SSE 2 extract
1553   void pextrw(Register dst, XMMRegister src, int imm8);
1554   void pextrw(Address dst, XMMRegister src, int imm8);
1555 
1556   // SSE 4.1 insert
1557   void pinsrd(XMMRegister dst, Register src, int imm8);
1558   void pinsrq(XMMRegister dst, Register src, int imm8);
1559   void pinsrd(XMMRegister dst, Address src, int imm8);
1560   void pinsrq(XMMRegister dst, Address src, int imm8);
1561   void pinsrb(XMMRegister dst, Address src, int imm8);
1562   // SSE 2 insert
1563   void pinsrw(XMMRegister dst, Register src, int imm8);
1564   void pinsrw(XMMRegister dst, Address src, int imm8);
1565 
1566   // SSE4.1 packed move
1567   void pmovzxbw(XMMRegister dst, XMMRegister src);
1568   void pmovzxbw(XMMRegister dst, Address src);
1569 
1570   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1571 
1572 #ifndef _LP64 // no 32bit push/pop on amd64
1573   void popl(Address dst);
1574 #endif
1575 
1576 #ifdef _LP64
1577   void popq(Address dst);
1578 #endif
1579 
1580   void popcntl(Register dst, Address src);
1581   void popcntl(Register dst, Register src);
1582 
1583 #ifdef _LP64
1584   void popcntq(Register dst, Address src);
1585   void popcntq(Register dst, Register src);
1586 #endif
1587 
1588   // Prefetches (SSE, SSE2, 3DNOW only)
1589 
1590   void prefetchnta(Address src);
1591   void prefetchr(Address src);
1592   void prefetcht0(Address src);
1593   void prefetcht1(Address src);
1594   void prefetcht2(Address src);
1595   void prefetchw(Address src);
1596 
1597   // Shuffle Bytes
1598   void pshufb(XMMRegister dst, XMMRegister src);
1599   void pshufb(XMMRegister dst, Address src);
1600 
1601   // Shuffle Packed Doublewords
1602   void pshufd(XMMRegister dst, XMMRegister src, int mode);
1603   void pshufd(XMMRegister dst, Address src,     int mode);
1604 
1605   // Shuffle Packed Low Words
1606   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1607   void pshuflw(XMMRegister dst, Address src,     int mode);
1608 
1609   // Shift Right by bytes Logical DoubleQuadword Immediate
1610   void psrldq(XMMRegister dst, int shift);
1611   // Shift Left by bytes Logical DoubleQuadword Immediate
1612   void pslldq(XMMRegister dst, int shift);
1613 
1614   // Logical Compare 128bit
1615   void ptest(XMMRegister dst, XMMRegister src);
1616   void ptest(XMMRegister dst, Address src);
1617   // Logical Compare 256bit
1618   void vptest(XMMRegister dst, XMMRegister src);
1619   void vptest(XMMRegister dst, Address src);
1620 
1621   // Interleave Low Bytes
1622   void punpcklbw(XMMRegister dst, XMMRegister src);
1623   void punpcklbw(XMMRegister dst, Address src);
1624 
1625   // Interleave Low Doublewords
1626   void punpckldq(XMMRegister dst, XMMRegister src);
1627   void punpckldq(XMMRegister dst, Address src);
1628 
1629   // Interleave Low Quadwords
1630   void punpcklqdq(XMMRegister dst, XMMRegister src);
1631 
1632 #ifndef _LP64 // no 32bit push/pop on amd64
1633   void pushl(Address src);
1634 #endif
1635 
1636   void pushq(Address src);
1637 
1638   void rcll(Register dst, int imm8);
1639 
1640   void rclq(Register dst, int imm8);
1641 
1642   void rcrq(Register dst, int imm8);
1643 
1644   void rcpps(XMMRegister dst, XMMRegister src);
1645 
1646   void rcpss(XMMRegister dst, XMMRegister src);
1647 
1648   void rdtsc();
1649 
1650   void ret(int imm16);
1651 
1652 #ifdef _LP64
1653   void rorq(Register dst, int imm8);
1654   void rorxq(Register dst, Register src, int imm8);
1655 #endif
1656 
1657   void sahf();
1658 
1659   void sarl(Register dst, int imm8);
1660   void sarl(Register dst);
1661 
1662   void sarq(Register dst, int imm8);
1663   void sarq(Register dst);
1664 
1665   void sbbl(Address dst, int32_t imm32);
1666   void sbbl(Register dst, int32_t imm32);
1667   void sbbl(Register dst, Address src);
1668   void sbbl(Register dst, Register src);
1669 
1670   void sbbq(Address dst, int32_t imm32);
1671   void sbbq(Register dst, int32_t imm32);
1672   void sbbq(Register dst, Address src);
1673   void sbbq(Register dst, Register src);
1674 
1675   void setb(Condition cc, Register dst);
1676 
1677   void palignr(XMMRegister dst, XMMRegister src, int imm8);
1678   void pblendw(XMMRegister dst, XMMRegister src, int imm8);
1679 
1680   void sha1rnds4(XMMRegister dst, XMMRegister src, int imm8);
1681   void sha1nexte(XMMRegister dst, XMMRegister src);
1682   void sha1msg1(XMMRegister dst, XMMRegister src);
1683   void sha1msg2(XMMRegister dst, XMMRegister src);
1684   // xmm0 is implicit additional source to the following instruction.
1685   void sha256rnds2(XMMRegister dst, XMMRegister src);
1686   void sha256msg1(XMMRegister dst, XMMRegister src);
1687   void sha256msg2(XMMRegister dst, XMMRegister src);
1688 
1689   void shldl(Register dst, Register src);
1690   void shldl(Register dst, Register src, int8_t imm8);
1691 
1692   void shll(Register dst, int imm8);
1693   void shll(Register dst);
1694 
1695   void shlq(Register dst, int imm8);
1696   void shlq(Register dst);
1697 
1698   void shrdl(Register dst, Register src);
1699 
1700   void shrl(Register dst, int imm8);
1701   void shrl(Register dst);
1702 
1703   void shrq(Register dst, int imm8);
1704   void shrq(Register dst);
1705 
1706   void smovl(); // QQQ generic?
1707 
1708   // Compute Square Root of Scalar Double-Precision Floating-Point Value
1709   void sqrtsd(XMMRegister dst, Address src);
1710   void sqrtsd(XMMRegister dst, XMMRegister src);
1711 
1712   // Compute Square Root of Scalar Single-Precision Floating-Point Value
1713   void sqrtss(XMMRegister dst, Address src);
1714   void sqrtss(XMMRegister dst, XMMRegister src);
1715 
1716   void std();
1717 
1718   void stmxcsr( Address dst );
1719 
1720   void subl(Address dst, int32_t imm32);
1721   void subl(Address dst, Register src);
1722   void subl(Register dst, int32_t imm32);
1723   void subl(Register dst, Address src);
1724   void subl(Register dst, Register src);
1725 
1726   void subq(Address dst, int32_t imm32);
1727   void subq(Address dst, Register src);
1728   void subq(Register dst, int32_t imm32);
1729   void subq(Register dst, Address src);
1730   void subq(Register dst, Register src);
1731 
1732   // Force generation of a 4 byte immediate value even if it fits into 8bit
1733   void subl_imm32(Register dst, int32_t imm32);
1734   void subq_imm32(Register dst, int32_t imm32);
1735 
1736   // Subtract Scalar Double-Precision Floating-Point Values
1737   void subsd(XMMRegister dst, Address src);
1738   void subsd(XMMRegister dst, XMMRegister src);
1739 
1740   // Subtract Scalar Single-Precision Floating-Point Values
1741   void subss(XMMRegister dst, Address src);
1742   void subss(XMMRegister dst, XMMRegister src);
1743 
1744   void testb(Register dst, int imm8);
1745   void testb(Address dst, int imm8);
1746 
1747   void testl(Register dst, int32_t imm32);
1748   void testl(Register dst, Register src);
1749   void testl(Register dst, Address src);
1750 
1751   void testq(Register dst, int32_t imm32);
1752   void testq(Register dst, Register src);
1753 
1754   // BMI - count trailing zeros
1755   void tzcntl(Register dst, Register src);
1756   void tzcntq(Register dst, Register src);
1757 
1758   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1759   void ucomisd(XMMRegister dst, Address src);
1760   void ucomisd(XMMRegister dst, XMMRegister src);
1761 
1762   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1763   void ucomiss(XMMRegister dst, Address src);
1764   void ucomiss(XMMRegister dst, XMMRegister src);
1765 
1766   void xabort(int8_t imm8);
1767 
1768   void xaddl(Address dst, Register src);
1769 
1770   void xaddq(Address dst, Register src);
1771 
1772   void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none);
1773 
1774   void xchgl(Register reg, Address adr);
1775   void xchgl(Register dst, Register src);
1776 
1777   void xchgq(Register reg, Address adr);
1778   void xchgq(Register dst, Register src);
1779 
1780   void xend();
1781 
1782   // Get Value of Extended Control Register
1783   void xgetbv();
1784 
1785   void xorl(Register dst, int32_t imm32);
1786   void xorl(Register dst, Address src);
1787   void xorl(Register dst, Register src);
1788 
1789   void xorb(Register dst, Address src);
1790 
1791   void xorq(Register dst, Address src);
1792   void xorq(Register dst, Register src);
1793 
1794   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1795 
1796   // AVX 3-operands scalar instructions (encoded with VEX prefix)
1797 
1798   void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
1799   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1800   void vaddss(XMMRegister dst, XMMRegister nds, Address src);
1801   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1802   void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
1803   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1804   void vdivss(XMMRegister dst, XMMRegister nds, Address src);
1805   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1806   void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
1807   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1808   void vmulss(XMMRegister dst, XMMRegister nds, Address src);
1809   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1810   void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
1811   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1812   void vsubss(XMMRegister dst, XMMRegister nds, Address src);
1813   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1814 
1815 
1816   //====================VECTOR ARITHMETIC=====================================
1817 
1818   // Add Packed Floating-Point Values
1819   void addpd(XMMRegister dst, XMMRegister src);
1820   void addpd(XMMRegister dst, Address src);
1821   void addps(XMMRegister dst, XMMRegister src);
1822   void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1823   void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1824   void vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1825   void vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1826 
1827   // Subtract Packed Floating-Point Values
1828   void subpd(XMMRegister dst, XMMRegister src);
1829   void subps(XMMRegister dst, XMMRegister src);
1830   void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1831   void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1832   void vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1833   void vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1834 
1835   // Multiply Packed Floating-Point Values
1836   void mulpd(XMMRegister dst, XMMRegister src);
1837   void mulpd(XMMRegister dst, Address src);
1838   void mulps(XMMRegister dst, XMMRegister src);
1839   void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1840   void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1841   void vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1842   void vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1843 
1844   // Divide Packed Floating-Point Values
1845   void divpd(XMMRegister dst, XMMRegister src);
1846   void divps(XMMRegister dst, XMMRegister src);
1847   void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1848   void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1849   void vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1850   void vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1851 
1852   // Sqrt Packed Floating-Point Values - Double precision only
1853   void vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len);
1854   void vsqrtpd(XMMRegister dst, Address src, int vector_len);
1855 
1856   // Bitwise Logical AND of Packed Floating-Point Values
1857   void andpd(XMMRegister dst, XMMRegister src);
1858   void andps(XMMRegister dst, XMMRegister src);
1859   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1860   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1861   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1862   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1863 
1864   void unpckhpd(XMMRegister dst, XMMRegister src);
1865   void unpcklpd(XMMRegister dst, XMMRegister src);
1866 
1867   // Bitwise Logical XOR of Packed Floating-Point Values
1868   void xorpd(XMMRegister dst, XMMRegister src);
1869   void xorps(XMMRegister dst, XMMRegister src);
1870   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1871   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1872   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1873   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1874 
1875   // Add horizontal packed integers
1876   void vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1877   void vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1878   void phaddw(XMMRegister dst, XMMRegister src);
1879   void phaddd(XMMRegister dst, XMMRegister src);
1880 
1881   // Add packed integers
1882   void paddb(XMMRegister dst, XMMRegister src);
1883   void paddw(XMMRegister dst, XMMRegister src);
1884   void paddd(XMMRegister dst, XMMRegister src);
1885   void paddd(XMMRegister dst, Address src);
1886   void paddq(XMMRegister dst, XMMRegister src);
1887   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1888   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1889   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1890   void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1891   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1892   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1893   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1894   void vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1895 
1896   // Sub packed integers
1897   void psubb(XMMRegister dst, XMMRegister src);
1898   void psubw(XMMRegister dst, XMMRegister src);
1899   void psubd(XMMRegister dst, XMMRegister src);
1900   void psubq(XMMRegister dst, XMMRegister src);
1901   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1902   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1903   void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1904   void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1905   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1906   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1907   void vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1908   void vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1909 
1910   // Multiply packed integers (only shorts and ints)
1911   void pmullw(XMMRegister dst, XMMRegister src);
1912   void pmulld(XMMRegister dst, XMMRegister src);
1913   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1914   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1915   void vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1916   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1917   void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1918   void vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1919 
1920   // Shift left packed integers
1921   void psllw(XMMRegister dst, int shift);
1922   void pslld(XMMRegister dst, int shift);
1923   void psllq(XMMRegister dst, int shift);
1924   void psllw(XMMRegister dst, XMMRegister shift);
1925   void pslld(XMMRegister dst, XMMRegister shift);
1926   void psllq(XMMRegister dst, XMMRegister shift);
1927   void vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1928   void vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1929   void vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1930   void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1931   void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1932   void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1933 
1934   // Logical shift right packed integers
1935   void psrlw(XMMRegister dst, int shift);
1936   void psrld(XMMRegister dst, int shift);
1937   void psrlq(XMMRegister dst, int shift);
1938   void psrlw(XMMRegister dst, XMMRegister shift);
1939   void psrld(XMMRegister dst, XMMRegister shift);
1940   void psrlq(XMMRegister dst, XMMRegister shift);
1941   void vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1942   void vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1943   void vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1944   void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1945   void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1946   void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1947 
1948   // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
1949   void psraw(XMMRegister dst, int shift);
1950   void psrad(XMMRegister dst, int shift);
1951   void psraw(XMMRegister dst, XMMRegister shift);
1952   void psrad(XMMRegister dst, XMMRegister shift);
1953   void vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1954   void vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1955   void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1956   void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1957 
1958   // And packed integers
1959   void pand(XMMRegister dst, XMMRegister src);
1960   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1961   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1962 
1963   // Andn packed integers
1964   void pandn(XMMRegister dst, XMMRegister src);
1965 
1966   // Or packed integers
1967   void por(XMMRegister dst, XMMRegister src);
1968   void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1969   void vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1970 
1971   // Xor packed integers
1972   void pxor(XMMRegister dst, XMMRegister src);
1973   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1974   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1975 
1976   // 128bit copy from/to 256bit (YMM) vector registers
1977   void vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
1978   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
1979   void vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8);
1980   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8);
1981   void vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
1982   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
1983   void vextractf128(Address dst, XMMRegister src, uint8_t imm8);
1984   void vextracti128(Address dst, XMMRegister src, uint8_t imm8);
1985 
1986   // 256bit copy from/to 512bit (ZMM) vector registers
1987   void vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
1988   void vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
1989   void vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
1990   void vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
1991   void vextractf64x4(Address dst, XMMRegister src, uint8_t imm8);
1992   void vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
1993 
1994   // 128bit copy from/to 256bit (YMM) or 512bit (ZMM) vector registers
1995   void vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8);
1996   void vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8);
1997   void vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
1998   void vextractf32x4(Address dst, XMMRegister src, uint8_t imm8);
1999   void vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2000   void vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2001 
2002   // duplicate 4-bytes integer data from src into 8 locations in dest
2003   void vpbroadcastd(XMMRegister dst, XMMRegister src);
2004 
2005   // duplicate 2-bytes integer data from src into 16 locations in dest
2006   void vpbroadcastw(XMMRegister dst, XMMRegister src);
2007 
2008   // duplicate n-bytes integer data from src into vector_len locations in dest
2009   void evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len);
2010   void evpbroadcastb(XMMRegister dst, Address src, int vector_len);
2011   void evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
2012   void evpbroadcastw(XMMRegister dst, Address src, int vector_len);
2013   void evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len);
2014   void evpbroadcastd(XMMRegister dst, Address src, int vector_len);
2015   void evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len);
2016   void evpbroadcastq(XMMRegister dst, Address src, int vector_len);
2017 
2018   void evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len);
2019   void evpbroadcastss(XMMRegister dst, Address src, int vector_len);
2020   void evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len);
2021   void evpbroadcastsd(XMMRegister dst, Address src, int vector_len);
2022 
2023   void evpbroadcastb(XMMRegister dst, Register src, int vector_len);
2024   void evpbroadcastw(XMMRegister dst, Register src, int vector_len);
2025   void evpbroadcastd(XMMRegister dst, Register src, int vector_len);
2026   void evpbroadcastq(XMMRegister dst, Register src, int vector_len);
2027 
2028   // Carry-Less Multiplication Quadword
2029   void pclmulqdq(XMMRegister dst, XMMRegister src, int mask);
2030   void vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask);
2031 
2032   // AVX instruction which is used to clear upper 128 bits of YMM registers and
2033   // to avoid transaction penalty between AVX and SSE states. There is no
2034   // penalty if legacy SSE instructions are encoded using VEX prefix because
2035   // they always clear upper 128 bits. It should be used before calling
2036   // runtime code and native libraries.
2037   void vzeroupper();
2038 
2039   // AVX support for vectorized conditional move (double). The following two instructions used only coupled.
2040   void cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len);
2041   void vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len);
2042 
2043 
2044  protected:
2045   // Next instructions require address alignment 16 bytes SSE mode.
2046   // They should be called only from corresponding MacroAssembler instructions.
2047   void andpd(XMMRegister dst, Address src);
2048   void andps(XMMRegister dst, Address src);
2049   void xorpd(XMMRegister dst, Address src);
2050   void xorps(XMMRegister dst, Address src);
2051 
2052 };
2053 
2054 // The Intel x86/Amd64 Assembler attributes: All fields enclosed here are to guide encoding level decisions.
2055 // Specific set functions are for specialized use, else defaults or whatever was supplied to object construction
2056 // are applied.
2057 class InstructionAttr {
2058 public:
2059   InstructionAttr(
2060     int vector_len,     // The length of vector to be applied in encoding - for both AVX and EVEX
2061     bool rex_vex_w,     // Width of data: if 32-bits or less, false, else if 64-bit or specially defined, true
2062     bool legacy_mode,   // Details if either this instruction is conditionally encoded to AVX or earlier if true else possibly EVEX
2063     bool no_reg_mask,   // when true, k0 is used when EVEX encoding is chosen, else k1 is used under the same condition
2064     bool uses_vl)       // This instruction may have legacy constraints based on vector length for EVEX
2065     :
2066       _avx_vector_len(vector_len),
2067       _rex_vex_w(rex_vex_w),
2068       _legacy_mode(legacy_mode),
2069       _no_reg_mask(no_reg_mask),
2070       _uses_vl(uses_vl),
2071       _tuple_type(Assembler::EVEX_ETUP),
2072       _input_size_in_bits(Assembler::EVEX_NObit),
2073       _is_evex_instruction(false),
2074       _evex_encoding(0),
2075       _is_clear_context(false),
2076       _is_extended_context(false),
2077       _current_assembler(NULL) {
2078     if (UseAVX < 3) _legacy_mode = true;
2079   }
2080 
2081   ~InstructionAttr() {
2082     if (_current_assembler != NULL) {
2083       _current_assembler->clear_attributes();
2084     }
2085     _current_assembler = NULL;
2086   }
2087 
2088 private:
2089   int  _avx_vector_len;
2090   bool _rex_vex_w;
2091   bool _legacy_mode;
2092   bool _no_reg_mask;
2093   bool _uses_vl;
2094   int  _tuple_type;
2095   int  _input_size_in_bits;
2096   bool _is_evex_instruction;
2097   int  _evex_encoding;
2098   bool _is_clear_context;
2099   bool _is_extended_context;
2100 
2101   Assembler *_current_assembler;
2102 
2103 public:
2104   // query functions for field accessors
2105   int  get_vector_len(void) const { return _avx_vector_len; }
2106   bool is_rex_vex_w(void) const { return _rex_vex_w; }
2107   bool is_legacy_mode(void) const { return _legacy_mode; }
2108   bool is_no_reg_mask(void) const { return _no_reg_mask; }
2109   bool uses_vl(void) const { return _uses_vl; }
2110   int  get_tuple_type(void) const { return _tuple_type; }
2111   int  get_input_size(void) const { return _input_size_in_bits; }
2112   int  is_evex_instruction(void) const { return _is_evex_instruction; }
2113   int  get_evex_encoding(void) const { return _evex_encoding; }
2114   bool is_clear_context(void) const { return _is_clear_context; }
2115   bool is_extended_context(void) const { return _is_extended_context; }
2116 
2117   // Set the vector len manually
2118   void set_vector_len(int vector_len) { _avx_vector_len = vector_len; }
2119 
2120   // Set the instruction to be encoded in AVX mode
2121   void set_is_legacy_mode(void) { _legacy_mode = true; }
2122 
2123   // Set the current instuction to be encoded as an EVEX instuction
2124   void set_is_evex_instruction(void) { _is_evex_instruction = true; }
2125 
2126   // Internal encoding data used in compressed immediate offset programming
2127   void set_evex_encoding(int value) { _evex_encoding = value; }
2128 
2129   // Set the Evex.Z field to be used to clear all non directed XMM/YMM/ZMM components
2130   void set_is_clear_context(void) { _is_clear_context = true; }
2131 
2132   // Map back to current asembler so that we can manage object level assocation
2133   void set_current_assembler(Assembler *current_assembler) { _current_assembler = current_assembler; }
2134 
2135   // Address modifiers used for compressed displacement calculation
2136   void set_address_attributes(int tuple_type, int input_size_in_bits) {
2137     if (VM_Version::supports_evex()) {
2138       _tuple_type = tuple_type;
2139       _input_size_in_bits = input_size_in_bits;
2140     }
2141   }
2142 
2143 };
2144 
2145 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP