1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_InstructionPrinter.hpp"
  27 #include "c1/c1_LIR.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_ValueStack.hpp"
  30 #include "ci/ciInstance.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 Register LIR_OprDesc::as_register() const {
  34   return FrameMap::cpu_rnr2reg(cpu_regnr());
  35 }
  36 
  37 Register LIR_OprDesc::as_register_lo() const {
  38   return FrameMap::cpu_rnr2reg(cpu_regnrLo());
  39 }
  40 
  41 Register LIR_OprDesc::as_register_hi() const {
  42   return FrameMap::cpu_rnr2reg(cpu_regnrHi());
  43 }
  44 
  45 #if defined(X86)
  46 
  47 XMMRegister LIR_OprDesc::as_xmm_float_reg() const {
  48   return FrameMap::nr2xmmreg(xmm_regnr());
  49 }
  50 
  51 XMMRegister LIR_OprDesc::as_xmm_double_reg() const {
  52   assert(xmm_regnrLo() == xmm_regnrHi(), "assumed in calculation");
  53   return FrameMap::nr2xmmreg(xmm_regnrLo());
  54 }
  55 
  56 #endif // X86
  57 
  58 #if defined(SPARC) || defined(PPC32)
  59 
  60 FloatRegister LIR_OprDesc::as_float_reg() const {
  61   return FrameMap::nr2floatreg(fpu_regnr());
  62 }
  63 
  64 FloatRegister LIR_OprDesc::as_double_reg() const {
  65   return FrameMap::nr2floatreg(fpu_regnrHi());
  66 }
  67 
  68 #endif
  69 
  70 #if defined(ARM) || defined(AARCH64) || defined(PPC64)
  71 
  72 FloatRegister LIR_OprDesc::as_float_reg() const {
  73   return as_FloatRegister(fpu_regnr());
  74 }
  75 
  76 FloatRegister LIR_OprDesc::as_double_reg() const {
  77   return as_FloatRegister(fpu_regnrLo());
  78 }
  79 
  80 #endif
  81 
  82 
  83 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
  84 
  85 LIR_Opr LIR_OprFact::value_type(ValueType* type) {
  86   ValueTag tag = type->tag();
  87   switch (tag) {
  88   case metaDataTag : {
  89     ClassConstant* c = type->as_ClassConstant();
  90     if (c != NULL && !c->value()->is_loaded()) {
  91       return LIR_OprFact::metadataConst(NULL);
  92     } else if (c != NULL) {
  93       return LIR_OprFact::metadataConst(c->value()->constant_encoding());
  94     } else {
  95       MethodConstant* m = type->as_MethodConstant();
  96       assert (m != NULL, "not a class or a method?");
  97       return LIR_OprFact::metadataConst(m->value()->constant_encoding());
  98     }
  99   }
 100   case objectTag : {
 101       return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
 102     }
 103   case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
 104   case intTag    : return LIR_OprFact::intConst(type->as_IntConstant()->value());
 105   case floatTag  : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
 106   case longTag   : return LIR_OprFact::longConst(type->as_LongConstant()->value());
 107   case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
 108   default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 109   }
 110 }
 111 
 112 
 113 LIR_Opr LIR_OprFact::dummy_value_type(ValueType* type) {
 114   switch (type->tag()) {
 115     case objectTag: return LIR_OprFact::oopConst(NULL);
 116     case addressTag:return LIR_OprFact::addressConst(0);
 117     case intTag:    return LIR_OprFact::intConst(0);
 118     case floatTag:  return LIR_OprFact::floatConst(0.0);
 119     case longTag:   return LIR_OprFact::longConst(0);
 120     case doubleTag: return LIR_OprFact::doubleConst(0.0);
 121     default:        ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 122   }
 123   return illegalOpr;
 124 }
 125 
 126 
 127 
 128 //---------------------------------------------------
 129 
 130 
 131 LIR_Address::Scale LIR_Address::scale(BasicType type) {
 132   int elem_size = type2aelembytes(type);
 133   switch (elem_size) {
 134   case 1: return LIR_Address::times_1;
 135   case 2: return LIR_Address::times_2;
 136   case 4: return LIR_Address::times_4;
 137   case 8: return LIR_Address::times_8;
 138   }
 139   ShouldNotReachHere();
 140   return LIR_Address::times_1;
 141 }
 142 
 143 
 144 #ifndef PRODUCT
 145 void LIR_Address::verify0() const {
 146 #if defined(SPARC) || defined(PPC)
 147   assert(scale() == times_1, "Scaled addressing mode not available on SPARC/PPC and should not be used");
 148   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 149 #endif
 150 #ifdef _LP64
 151   assert(base()->is_cpu_register(), "wrong base operand");
 152 #ifndef AARCH64
 153   assert(index()->is_illegal() || index()->is_double_cpu(), "wrong index operand");
 154 #else
 155   assert(index()->is_illegal() || index()->is_double_cpu() || index()->is_single_cpu(), "wrong index operand");
 156 #endif
 157   assert(base()->type() == T_OBJECT || base()->type() == T_LONG || base()->type() == T_METADATA,
 158          "wrong type for addresses");
 159 #else
 160   assert(base()->is_single_cpu(), "wrong base operand");
 161   assert(index()->is_illegal() || index()->is_single_cpu(), "wrong index operand");
 162   assert(base()->type() == T_OBJECT || base()->type() == T_INT || base()->type() == T_METADATA,
 163          "wrong type for addresses");
 164 #endif
 165 }
 166 #endif
 167 
 168 
 169 //---------------------------------------------------
 170 
 171 char LIR_OprDesc::type_char(BasicType t) {
 172   switch (t) {
 173     case T_ARRAY:
 174       t = T_OBJECT;
 175     case T_BOOLEAN:
 176     case T_CHAR:
 177     case T_FLOAT:
 178     case T_DOUBLE:
 179     case T_BYTE:
 180     case T_SHORT:
 181     case T_INT:
 182     case T_LONG:
 183     case T_OBJECT:
 184     case T_ADDRESS:
 185     case T_VOID:
 186       return ::type2char(t);
 187     case T_METADATA:
 188       return 'M';
 189     case T_ILLEGAL:
 190       return '?';
 191 
 192     default:
 193       ShouldNotReachHere();
 194       return '?';
 195   }
 196 }
 197 
 198 #ifndef PRODUCT
 199 void LIR_OprDesc::validate_type() const {
 200 
 201 #ifdef ASSERT
 202   if (!is_pointer() && !is_illegal()) {
 203     OprKind kindfield = kind_field(); // Factored out because of compiler bug, see 8002160
 204     switch (as_BasicType(type_field())) {
 205     case T_LONG:
 206       assert((kindfield == cpu_register || kindfield == stack_value) &&
 207              size_field() == double_size, "must match");
 208       break;
 209     case T_FLOAT:
 210       // FP return values can be also in CPU registers on ARM and PPC32 (softfp ABI)
 211       assert((kindfield == fpu_register || kindfield == stack_value
 212              ARM_ONLY(|| kindfield == cpu_register)
 213              PPC32_ONLY(|| kindfield == cpu_register) ) &&
 214              size_field() == single_size, "must match");
 215       break;
 216     case T_DOUBLE:
 217       // FP return values can be also in CPU registers on ARM and PPC32 (softfp ABI)
 218       assert((kindfield == fpu_register || kindfield == stack_value
 219              ARM_ONLY(|| kindfield == cpu_register)
 220              PPC32_ONLY(|| kindfield == cpu_register) ) &&
 221              size_field() == double_size, "must match");
 222       break;
 223     case T_BOOLEAN:
 224     case T_CHAR:
 225     case T_BYTE:
 226     case T_SHORT:
 227     case T_INT:
 228     case T_ADDRESS:
 229     case T_OBJECT:
 230     case T_METADATA:
 231     case T_ARRAY:
 232       assert((kindfield == cpu_register || kindfield == stack_value) &&
 233              size_field() == single_size, "must match");
 234       break;
 235 
 236     case T_ILLEGAL:
 237       // XXX TKR also means unknown right now
 238       // assert(is_illegal(), "must match");
 239       break;
 240 
 241     default:
 242       ShouldNotReachHere();
 243     }
 244   }
 245 #endif
 246 
 247 }
 248 #endif // PRODUCT
 249 
 250 
 251 bool LIR_OprDesc::is_oop() const {
 252   if (is_pointer()) {
 253     return pointer()->is_oop_pointer();
 254   } else {
 255     OprType t= type_field();
 256     assert(t != unknown_type, "not set");
 257     return t == object_type;
 258   }
 259 }
 260 
 261 
 262 
 263 void LIR_Op2::verify() const {
 264 #ifdef ASSERT
 265   switch (code()) {
 266     case lir_cmove:
 267     case lir_xchg:
 268       break;
 269 
 270     default:
 271       assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
 272              "can't produce oops from arith");
 273   }
 274 
 275   if (TwoOperandLIRForm) {
 276     switch (code()) {
 277     case lir_add:
 278     case lir_sub:
 279     case lir_mul:
 280     case lir_mul_strictfp:
 281     case lir_div:
 282     case lir_div_strictfp:
 283     case lir_rem:
 284     case lir_logic_and:
 285     case lir_logic_or:
 286     case lir_logic_xor:
 287     case lir_shl:
 288     case lir_shr:
 289       assert(in_opr1() == result_opr(), "opr1 and result must match");
 290       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 291       break;
 292 
 293     // special handling for lir_ushr because of write barriers
 294     case lir_ushr:
 295       assert(in_opr1() == result_opr() || in_opr2()->is_constant(), "opr1 and result must match or shift count is constant");
 296       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 297       break;
 298 
 299     }
 300   }
 301 #endif
 302 }
 303 
 304 
 305 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block)
 306   : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 307   , _cond(cond)
 308   , _type(type)
 309   , _label(block->label())
 310   , _block(block)
 311   , _ublock(NULL)
 312   , _stub(NULL) {
 313 }
 314 
 315 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub) :
 316   LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 317   , _cond(cond)
 318   , _type(type)
 319   , _label(stub->entry())
 320   , _block(NULL)
 321   , _ublock(NULL)
 322   , _stub(stub) {
 323 }
 324 
 325 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock)
 326   : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 327   , _cond(cond)
 328   , _type(type)
 329   , _label(block->label())
 330   , _block(block)
 331   , _ublock(ublock)
 332   , _stub(NULL)
 333 {
 334 }
 335 
 336 void LIR_OpBranch::change_block(BlockBegin* b) {
 337   assert(_block != NULL, "must have old block");
 338   assert(_block->label() == label(), "must be equal");
 339 
 340   _block = b;
 341   _label = b->label();
 342 }
 343 
 344 void LIR_OpBranch::change_ublock(BlockBegin* b) {
 345   assert(_ublock != NULL, "must have old block");
 346   _ublock = b;
 347 }
 348 
 349 void LIR_OpBranch::negate_cond() {
 350   switch (_cond) {
 351     case lir_cond_equal:        _cond = lir_cond_notEqual;     break;
 352     case lir_cond_notEqual:     _cond = lir_cond_equal;        break;
 353     case lir_cond_less:         _cond = lir_cond_greaterEqual; break;
 354     case lir_cond_lessEqual:    _cond = lir_cond_greater;      break;
 355     case lir_cond_greaterEqual: _cond = lir_cond_less;         break;
 356     case lir_cond_greater:      _cond = lir_cond_lessEqual;    break;
 357     default: ShouldNotReachHere();
 358   }
 359 }
 360 
 361 
 362 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
 363                                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
 364                                  bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch,
 365                                  CodeStub* stub)
 366 
 367   : LIR_Op(code, result, NULL)
 368   , _object(object)
 369   , _array(LIR_OprFact::illegalOpr)
 370   , _klass(klass)
 371   , _tmp1(tmp1)
 372   , _tmp2(tmp2)
 373   , _tmp3(tmp3)
 374   , _fast_check(fast_check)
 375   , _stub(stub)
 376   , _info_for_patch(info_for_patch)
 377   , _info_for_exception(info_for_exception)
 378   , _profiled_method(NULL)
 379   , _profiled_bci(-1)
 380   , _should_profile(false)
 381 {
 382   if (code == lir_checkcast) {
 383     assert(info_for_exception != NULL, "checkcast throws exceptions");
 384   } else if (code == lir_instanceof) {
 385     assert(info_for_exception == NULL, "instanceof throws no exceptions");
 386   } else {
 387     ShouldNotReachHere();
 388   }
 389 }
 390 
 391 
 392 
 393 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
 394   : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
 395   , _object(object)
 396   , _array(array)
 397   , _klass(NULL)
 398   , _tmp1(tmp1)
 399   , _tmp2(tmp2)
 400   , _tmp3(tmp3)
 401   , _fast_check(false)
 402   , _stub(NULL)
 403   , _info_for_patch(NULL)
 404   , _info_for_exception(info_for_exception)
 405   , _profiled_method(NULL)
 406   , _profiled_bci(-1)
 407   , _should_profile(false)
 408 {
 409   if (code == lir_store_check) {
 410     _stub = new ArrayStoreExceptionStub(object, info_for_exception);
 411     assert(info_for_exception != NULL, "store_check throws exceptions");
 412   } else {
 413     ShouldNotReachHere();
 414   }
 415 }
 416 
 417 
 418 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
 419                                  LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
 420   : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
 421   , _tmp(tmp)
 422   , _src(src)
 423   , _src_pos(src_pos)
 424   , _dst(dst)
 425   , _dst_pos(dst_pos)
 426   , _flags(flags)
 427   , _expected_type(expected_type)
 428   , _length(length) {
 429   _stub = new ArrayCopyStub(this);
 430 }
 431 
 432 LIR_OpUpdateCRC32::LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)
 433   : LIR_Op(lir_updatecrc32, res, NULL)
 434   , _crc(crc)
 435   , _val(val) {
 436 }
 437 
 438 //-------------------verify--------------------------
 439 
 440 void LIR_Op1::verify() const {
 441   switch(code()) {
 442   case lir_move:
 443     assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
 444     break;
 445   case lir_null_check:
 446     assert(in_opr()->is_register(), "must be");
 447     break;
 448   case lir_return:
 449     assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
 450     break;
 451   }
 452 }
 453 
 454 void LIR_OpRTCall::verify() const {
 455   assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
 456 }
 457 
 458 //-------------------visits--------------------------
 459 
 460 // complete rework of LIR instruction visitor.
 461 // The virtual call for each instruction type is replaced by a big
 462 // switch that adds the operands for each instruction
 463 
 464 void LIR_OpVisitState::visit(LIR_Op* op) {
 465   // copy information from the LIR_Op
 466   reset();
 467   set_op(op);
 468 
 469   switch (op->code()) {
 470 
 471 // LIR_Op0
 472     case lir_word_align:               // result and info always invalid
 473     case lir_backwardbranch_target:    // result and info always invalid
 474     case lir_build_frame:              // result and info always invalid
 475     case lir_fpop_raw:                 // result and info always invalid
 476     case lir_24bit_FPU:                // result and info always invalid
 477     case lir_reset_FPU:                // result and info always invalid
 478     case lir_breakpoint:               // result and info always invalid
 479     case lir_membar:                   // result and info always invalid
 480     case lir_membar_acquire:           // result and info always invalid
 481     case lir_membar_release:           // result and info always invalid
 482     case lir_membar_loadload:          // result and info always invalid
 483     case lir_membar_storestore:        // result and info always invalid
 484     case lir_membar_loadstore:         // result and info always invalid
 485     case lir_membar_storeload:         // result and info always invalid
 486     {
 487       assert(op->as_Op0() != NULL, "must be");
 488       assert(op->_info == NULL, "info not used by this instruction");
 489       assert(op->_result->is_illegal(), "not used");
 490       break;
 491     }
 492 
 493     case lir_nop:                      // may have info, result always invalid
 494     case lir_std_entry:                // may have result, info always invalid
 495     case lir_osr_entry:                // may have result, info always invalid
 496     case lir_get_thread:               // may have result, info always invalid
 497     {
 498       assert(op->as_Op0() != NULL, "must be");
 499       if (op->_info != NULL)           do_info(op->_info);
 500       if (op->_result->is_valid())     do_output(op->_result);
 501       break;
 502     }
 503 
 504 
 505 // LIR_OpLabel
 506     case lir_label:                    // result and info always invalid
 507     {
 508       assert(op->as_OpLabel() != NULL, "must be");
 509       assert(op->_info == NULL, "info not used by this instruction");
 510       assert(op->_result->is_illegal(), "not used");
 511       break;
 512     }
 513 
 514 
 515 // LIR_Op1
 516     case lir_fxch:           // input always valid, result and info always invalid
 517     case lir_fld:            // input always valid, result and info always invalid
 518     case lir_ffree:          // input always valid, result and info always invalid
 519     case lir_push:           // input always valid, result and info always invalid
 520     case lir_pop:            // input always valid, result and info always invalid
 521     case lir_return:         // input always valid, result and info always invalid
 522     case lir_leal:           // input and result always valid, info always invalid
 523     case lir_neg:            // input and result always valid, info always invalid
 524     case lir_monaddr:        // input and result always valid, info always invalid
 525     case lir_null_check:     // input and info always valid, result always invalid
 526     case lir_move:           // input and result always valid, may have info
 527     case lir_pack64:         // input and result always valid
 528     case lir_unpack64:       // input and result always valid
 529     {
 530       assert(op->as_Op1() != NULL, "must be");
 531       LIR_Op1* op1 = (LIR_Op1*)op;
 532 
 533       if (op1->_info)                  do_info(op1->_info);
 534       if (op1->_opr->is_valid())       do_input(op1->_opr);
 535       if (op1->_result->is_valid())    do_output(op1->_result);
 536 
 537       break;
 538     }
 539 
 540     case lir_safepoint:
 541     {
 542       assert(op->as_Op1() != NULL, "must be");
 543       LIR_Op1* op1 = (LIR_Op1*)op;
 544 
 545       assert(op1->_info != NULL, "");  do_info(op1->_info);
 546       if (op1->_opr->is_valid())       do_temp(op1->_opr); // safepoints on SPARC need temporary register
 547       assert(op1->_result->is_illegal(), "safepoint does not produce value");
 548 
 549       break;
 550     }
 551 
 552 // LIR_OpConvert;
 553     case lir_convert:        // input and result always valid, info always invalid
 554     {
 555       assert(op->as_OpConvert() != NULL, "must be");
 556       LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
 557 
 558       assert(opConvert->_info == NULL, "must be");
 559       if (opConvert->_opr->is_valid())       do_input(opConvert->_opr);
 560       if (opConvert->_result->is_valid())    do_output(opConvert->_result);
 561 #ifdef PPC32
 562       if (opConvert->_tmp1->is_valid())      do_temp(opConvert->_tmp1);
 563       if (opConvert->_tmp2->is_valid())      do_temp(opConvert->_tmp2);
 564 #endif
 565       do_stub(opConvert->_stub);
 566 
 567       break;
 568     }
 569 
 570 // LIR_OpBranch;
 571     case lir_branch:                   // may have info, input and result register always invalid
 572     case lir_cond_float_branch:        // may have info, input and result register always invalid
 573     {
 574       assert(op->as_OpBranch() != NULL, "must be");
 575       LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
 576 
 577       if (opBranch->_info != NULL)     do_info(opBranch->_info);
 578       assert(opBranch->_result->is_illegal(), "not used");
 579       if (opBranch->_stub != NULL)     opBranch->stub()->visit(this);
 580 
 581       break;
 582     }
 583 
 584 
 585 // LIR_OpAllocObj
 586     case lir_alloc_object:
 587     {
 588       assert(op->as_OpAllocObj() != NULL, "must be");
 589       LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
 590 
 591       if (opAllocObj->_info)                     do_info(opAllocObj->_info);
 592       if (opAllocObj->_opr->is_valid()) {        do_input(opAllocObj->_opr);
 593                                                  do_temp(opAllocObj->_opr);
 594                                         }
 595       if (opAllocObj->_tmp1->is_valid())         do_temp(opAllocObj->_tmp1);
 596       if (opAllocObj->_tmp2->is_valid())         do_temp(opAllocObj->_tmp2);
 597       if (opAllocObj->_tmp3->is_valid())         do_temp(opAllocObj->_tmp3);
 598       if (opAllocObj->_tmp4->is_valid())         do_temp(opAllocObj->_tmp4);
 599       if (opAllocObj->_result->is_valid())       do_output(opAllocObj->_result);
 600                                                  do_stub(opAllocObj->_stub);
 601       break;
 602     }
 603 
 604 
 605 // LIR_OpRoundFP;
 606     case lir_roundfp: {
 607       assert(op->as_OpRoundFP() != NULL, "must be");
 608       LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
 609 
 610       assert(op->_info == NULL, "info not used by this instruction");
 611       assert(opRoundFP->_tmp->is_illegal(), "not used");
 612       do_input(opRoundFP->_opr);
 613       do_output(opRoundFP->_result);
 614 
 615       break;
 616     }
 617 
 618 
 619 // LIR_Op2
 620     case lir_cmp:
 621     case lir_cmp_l2i:
 622     case lir_ucmp_fd2i:
 623     case lir_cmp_fd2i:
 624     case lir_add:
 625     case lir_sub:
 626     case lir_mul:
 627     case lir_div:
 628     case lir_rem:
 629     case lir_sqrt:
 630     case lir_abs:
 631     case lir_logic_and:
 632     case lir_logic_or:
 633     case lir_logic_xor:
 634     case lir_shl:
 635     case lir_shr:
 636     case lir_ushr:
 637     case lir_xadd:
 638     case lir_xchg:
 639     case lir_assert:
 640     {
 641       assert(op->as_Op2() != NULL, "must be");
 642       LIR_Op2* op2 = (LIR_Op2*)op;
 643       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 644              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 645 
 646       if (op2->_info)                     do_info(op2->_info);
 647       if (op2->_opr1->is_valid())         do_input(op2->_opr1);
 648       if (op2->_opr2->is_valid())         do_input(op2->_opr2);
 649       if (op2->_tmp1->is_valid())         do_temp(op2->_tmp1);
 650       if (op2->_result->is_valid())       do_output(op2->_result);
 651       if (op->code() == lir_xchg || op->code() == lir_xadd) {
 652         // on ARM and PPC, return value is loaded first so could
 653         // destroy inputs. On other platforms that implement those
 654         // (x86, sparc), the extra constrainsts are harmless.
 655         if (op2->_opr1->is_valid())       do_temp(op2->_opr1);
 656         if (op2->_opr2->is_valid())       do_temp(op2->_opr2);
 657       }
 658 
 659       break;
 660     }
 661 
 662     // special handling for cmove: right input operand must not be equal
 663     // to the result operand, otherwise the backend fails
 664     case lir_cmove:
 665     {
 666       assert(op->as_Op2() != NULL, "must be");
 667       LIR_Op2* op2 = (LIR_Op2*)op;
 668 
 669       assert(op2->_info == NULL && op2->_tmp1->is_illegal() && op2->_tmp2->is_illegal() &&
 670              op2->_tmp3->is_illegal() && op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 671       assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used");
 672 
 673       do_input(op2->_opr1);
 674       do_input(op2->_opr2);
 675       do_temp(op2->_opr2);
 676       do_output(op2->_result);
 677 
 678       break;
 679     }
 680 
 681     // vspecial handling for strict operations: register input operands
 682     // as temp to guarantee that they do not overlap with other
 683     // registers
 684     case lir_mul_strictfp:
 685     case lir_div_strictfp:
 686     {
 687       assert(op->as_Op2() != NULL, "must be");
 688       LIR_Op2* op2 = (LIR_Op2*)op;
 689 
 690       assert(op2->_info == NULL, "not used");
 691       assert(op2->_opr1->is_valid(), "used");
 692       assert(op2->_opr2->is_valid(), "used");
 693       assert(op2->_result->is_valid(), "used");
 694       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 695              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 696 
 697       do_input(op2->_opr1); do_temp(op2->_opr1);
 698       do_input(op2->_opr2); do_temp(op2->_opr2);
 699       if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1);
 700       do_output(op2->_result);
 701 
 702       break;
 703     }
 704 
 705     case lir_throw: {
 706       assert(op->as_Op2() != NULL, "must be");
 707       LIR_Op2* op2 = (LIR_Op2*)op;
 708 
 709       if (op2->_info)                     do_info(op2->_info);
 710       if (op2->_opr1->is_valid())         do_temp(op2->_opr1);
 711       if (op2->_opr2->is_valid())         do_input(op2->_opr2); // exception object is input parameter
 712       assert(op2->_result->is_illegal(), "no result");
 713       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 714              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 715 
 716       break;
 717     }
 718 
 719     case lir_unwind: {
 720       assert(op->as_Op1() != NULL, "must be");
 721       LIR_Op1* op1 = (LIR_Op1*)op;
 722 
 723       assert(op1->_info == NULL, "no info");
 724       assert(op1->_opr->is_valid(), "exception oop");         do_input(op1->_opr);
 725       assert(op1->_result->is_illegal(), "no result");
 726 
 727       break;
 728     }
 729 
 730 // LIR_Op3
 731     case lir_idiv:
 732     case lir_irem: {
 733       assert(op->as_Op3() != NULL, "must be");
 734       LIR_Op3* op3= (LIR_Op3*)op;
 735 
 736       if (op3->_info)                     do_info(op3->_info);
 737       if (op3->_opr1->is_valid())         do_input(op3->_opr1);
 738 
 739       // second operand is input and temp, so ensure that second operand
 740       // and third operand get not the same register
 741       if (op3->_opr2->is_valid())         do_input(op3->_opr2);
 742       if (op3->_opr2->is_valid())         do_temp(op3->_opr2);
 743       if (op3->_opr3->is_valid())         do_temp(op3->_opr3);
 744 
 745       if (op3->_result->is_valid())       do_output(op3->_result);
 746 
 747       break;
 748     }
 749 
 750 
 751 // LIR_OpJavaCall
 752     case lir_static_call:
 753     case lir_optvirtual_call:
 754     case lir_icvirtual_call:
 755     case lir_virtual_call:
 756     case lir_dynamic_call: {
 757       LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
 758       assert(opJavaCall != NULL, "must be");
 759 
 760       if (opJavaCall->_receiver->is_valid())     do_input(opJavaCall->_receiver);
 761 
 762       // only visit register parameters
 763       int n = opJavaCall->_arguments->length();
 764       for (int i = opJavaCall->_receiver->is_valid() ? 1 : 0; i < n; i++) {
 765         if (!opJavaCall->_arguments->at(i)->is_pointer()) {
 766           do_input(*opJavaCall->_arguments->adr_at(i));
 767         }
 768       }
 769 
 770       if (opJavaCall->_info)                     do_info(opJavaCall->_info);
 771       if (FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr &&
 772           opJavaCall->is_method_handle_invoke()) {
 773         opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
 774         do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
 775       }
 776       do_call();
 777       if (opJavaCall->_result->is_valid())       do_output(opJavaCall->_result);
 778 
 779       break;
 780     }
 781 
 782 
 783 // LIR_OpRTCall
 784     case lir_rtcall: {
 785       assert(op->as_OpRTCall() != NULL, "must be");
 786       LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
 787 
 788       // only visit register parameters
 789       int n = opRTCall->_arguments->length();
 790       for (int i = 0; i < n; i++) {
 791         if (!opRTCall->_arguments->at(i)->is_pointer()) {
 792           do_input(*opRTCall->_arguments->adr_at(i));
 793         }
 794       }
 795       if (opRTCall->_info)                     do_info(opRTCall->_info);
 796       if (opRTCall->_tmp->is_valid())          do_temp(opRTCall->_tmp);
 797       do_call();
 798       if (opRTCall->_result->is_valid())       do_output(opRTCall->_result);
 799 
 800       break;
 801     }
 802 
 803 
 804 // LIR_OpArrayCopy
 805     case lir_arraycopy: {
 806       assert(op->as_OpArrayCopy() != NULL, "must be");
 807       LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
 808 
 809       assert(opArrayCopy->_result->is_illegal(), "unused");
 810       assert(opArrayCopy->_src->is_valid(), "used");          do_input(opArrayCopy->_src);     do_temp(opArrayCopy->_src);
 811       assert(opArrayCopy->_src_pos->is_valid(), "used");      do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
 812       assert(opArrayCopy->_dst->is_valid(), "used");          do_input(opArrayCopy->_dst);     do_temp(opArrayCopy->_dst);
 813       assert(opArrayCopy->_dst_pos->is_valid(), "used");      do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
 814       assert(opArrayCopy->_length->is_valid(), "used");       do_input(opArrayCopy->_length);  do_temp(opArrayCopy->_length);
 815       assert(opArrayCopy->_tmp->is_valid(), "used");          do_temp(opArrayCopy->_tmp);
 816       if (opArrayCopy->_info)                     do_info(opArrayCopy->_info);
 817 
 818       // the implementation of arraycopy always has a call into the runtime
 819       do_call();
 820 
 821       break;
 822     }
 823 
 824 
 825 // LIR_OpUpdateCRC32
 826     case lir_updatecrc32: {
 827       assert(op->as_OpUpdateCRC32() != NULL, "must be");
 828       LIR_OpUpdateCRC32* opUp = (LIR_OpUpdateCRC32*)op;
 829 
 830       assert(opUp->_crc->is_valid(), "used");          do_input(opUp->_crc);     do_temp(opUp->_crc);
 831       assert(opUp->_val->is_valid(), "used");          do_input(opUp->_val);     do_temp(opUp->_val);
 832       assert(opUp->_result->is_valid(), "used");       do_output(opUp->_result);
 833       assert(opUp->_info == NULL, "no info for LIR_OpUpdateCRC32");
 834 
 835       break;
 836     }
 837 
 838 
 839 // LIR_OpLock
 840     case lir_lock:
 841     case lir_unlock: {
 842       assert(op->as_OpLock() != NULL, "must be");
 843       LIR_OpLock* opLock = (LIR_OpLock*)op;
 844 
 845       if (opLock->_info)                          do_info(opLock->_info);
 846 
 847       // TODO: check if these operands really have to be temp
 848       // (or if input is sufficient). This may have influence on the oop map!
 849       assert(opLock->_lock->is_valid(), "used");  do_temp(opLock->_lock);
 850       assert(opLock->_hdr->is_valid(),  "used");  do_temp(opLock->_hdr);
 851       assert(opLock->_obj->is_valid(),  "used");  do_temp(opLock->_obj);
 852 
 853       if (opLock->_scratch->is_valid())           do_temp(opLock->_scratch);
 854       assert(opLock->_result->is_illegal(), "unused");
 855 
 856       do_stub(opLock->_stub);
 857 
 858       break;
 859     }
 860 
 861 
 862 // LIR_OpDelay
 863     case lir_delay_slot: {
 864       assert(op->as_OpDelay() != NULL, "must be");
 865       LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
 866 
 867       visit(opDelay->delay_op());
 868       break;
 869     }
 870 
 871 // LIR_OpTypeCheck
 872     case lir_instanceof:
 873     case lir_checkcast:
 874     case lir_store_check: {
 875       assert(op->as_OpTypeCheck() != NULL, "must be");
 876       LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
 877 
 878       if (opTypeCheck->_info_for_exception)       do_info(opTypeCheck->_info_for_exception);
 879       if (opTypeCheck->_info_for_patch)           do_info(opTypeCheck->_info_for_patch);
 880       if (opTypeCheck->_object->is_valid())       do_input(opTypeCheck->_object);
 881       if (op->code() == lir_store_check && opTypeCheck->_object->is_valid()) {
 882         do_temp(opTypeCheck->_object);
 883       }
 884       if (opTypeCheck->_array->is_valid())        do_input(opTypeCheck->_array);
 885       if (opTypeCheck->_tmp1->is_valid())         do_temp(opTypeCheck->_tmp1);
 886       if (opTypeCheck->_tmp2->is_valid())         do_temp(opTypeCheck->_tmp2);
 887       if (opTypeCheck->_tmp3->is_valid())         do_temp(opTypeCheck->_tmp3);
 888       if (opTypeCheck->_result->is_valid())       do_output(opTypeCheck->_result);
 889                                                   do_stub(opTypeCheck->_stub);
 890       break;
 891     }
 892 
 893 // LIR_OpCompareAndSwap
 894     case lir_cas_long:
 895     case lir_cas_obj:
 896     case lir_cas_int: {
 897       assert(op->as_OpCompareAndSwap() != NULL, "must be");
 898       LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op;
 899 
 900       assert(opCompareAndSwap->_addr->is_valid(),      "used");
 901       assert(opCompareAndSwap->_cmp_value->is_valid(), "used");
 902       assert(opCompareAndSwap->_new_value->is_valid(), "used");
 903       if (opCompareAndSwap->_info)                    do_info(opCompareAndSwap->_info);
 904                                                       do_input(opCompareAndSwap->_addr);
 905                                                       do_temp(opCompareAndSwap->_addr);
 906                                                       do_input(opCompareAndSwap->_cmp_value);
 907                                                       do_temp(opCompareAndSwap->_cmp_value);
 908                                                       do_input(opCompareAndSwap->_new_value);
 909                                                       do_temp(opCompareAndSwap->_new_value);
 910       if (opCompareAndSwap->_tmp1->is_valid())        do_temp(opCompareAndSwap->_tmp1);
 911       if (opCompareAndSwap->_tmp2->is_valid())        do_temp(opCompareAndSwap->_tmp2);
 912       if (opCompareAndSwap->_result->is_valid())      do_output(opCompareAndSwap->_result);
 913 
 914       break;
 915     }
 916 
 917 
 918 // LIR_OpAllocArray;
 919     case lir_alloc_array: {
 920       assert(op->as_OpAllocArray() != NULL, "must be");
 921       LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
 922 
 923       if (opAllocArray->_info)                        do_info(opAllocArray->_info);
 924       if (opAllocArray->_klass->is_valid())           do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass);
 925       if (opAllocArray->_len->is_valid())             do_input(opAllocArray->_len);   do_temp(opAllocArray->_len);
 926       if (opAllocArray->_tmp1->is_valid())            do_temp(opAllocArray->_tmp1);
 927       if (opAllocArray->_tmp2->is_valid())            do_temp(opAllocArray->_tmp2);
 928       if (opAllocArray->_tmp3->is_valid())            do_temp(opAllocArray->_tmp3);
 929       if (opAllocArray->_tmp4->is_valid())            do_temp(opAllocArray->_tmp4);
 930       if (opAllocArray->_result->is_valid())          do_output(opAllocArray->_result);
 931                                                       do_stub(opAllocArray->_stub);
 932       break;
 933     }
 934 
 935 // LIR_OpProfileCall:
 936     case lir_profile_call: {
 937       assert(op->as_OpProfileCall() != NULL, "must be");
 938       LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
 939 
 940       if (opProfileCall->_recv->is_valid())              do_temp(opProfileCall->_recv);
 941       assert(opProfileCall->_mdo->is_valid(), "used");   do_temp(opProfileCall->_mdo);
 942       assert(opProfileCall->_tmp1->is_valid(), "used");  do_temp(opProfileCall->_tmp1);
 943       break;
 944     }
 945 
 946 // LIR_OpProfileType:
 947     case lir_profile_type: {
 948       assert(op->as_OpProfileType() != NULL, "must be");
 949       LIR_OpProfileType* opProfileType = (LIR_OpProfileType*)op;
 950 
 951       do_input(opProfileType->_mdp); do_temp(opProfileType->_mdp);
 952       do_input(opProfileType->_obj);
 953       do_temp(opProfileType->_tmp);
 954       break;
 955     }
 956   default:
 957     ShouldNotReachHere();
 958   }
 959 }
 960 
 961 
 962 void LIR_OpVisitState::do_stub(CodeStub* stub) {
 963   if (stub != NULL) {
 964     stub->visit(this);
 965   }
 966 }
 967 
 968 XHandlers* LIR_OpVisitState::all_xhandler() {
 969   XHandlers* result = NULL;
 970 
 971   int i;
 972   for (i = 0; i < info_count(); i++) {
 973     if (info_at(i)->exception_handlers() != NULL) {
 974       result = info_at(i)->exception_handlers();
 975       break;
 976     }
 977   }
 978 
 979 #ifdef ASSERT
 980   for (i = 0; i < info_count(); i++) {
 981     assert(info_at(i)->exception_handlers() == NULL ||
 982            info_at(i)->exception_handlers() == result,
 983            "only one xhandler list allowed per LIR-operation");
 984   }
 985 #endif
 986 
 987   if (result != NULL) {
 988     return result;
 989   } else {
 990     return new XHandlers();
 991   }
 992 
 993   return result;
 994 }
 995 
 996 
 997 #ifdef ASSERT
 998 bool LIR_OpVisitState::no_operands(LIR_Op* op) {
 999   visit(op);
1000 
1001   return opr_count(inputMode) == 0 &&
1002          opr_count(outputMode) == 0 &&
1003          opr_count(tempMode) == 0 &&
1004          info_count() == 0 &&
1005          !has_call() &&
1006          !has_slow_case();
1007 }
1008 #endif
1009 
1010 //---------------------------------------------------
1011 
1012 
1013 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
1014   masm->emit_call(this);
1015 }
1016 
1017 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
1018   masm->emit_rtcall(this);
1019 }
1020 
1021 void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
1022   masm->emit_opLabel(this);
1023 }
1024 
1025 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
1026   masm->emit_arraycopy(this);
1027   masm->append_code_stub(stub());
1028 }
1029 
1030 void LIR_OpUpdateCRC32::emit_code(LIR_Assembler* masm) {
1031   masm->emit_updatecrc32(this);
1032 }
1033 
1034 void LIR_Op0::emit_code(LIR_Assembler* masm) {
1035   masm->emit_op0(this);
1036 }
1037 
1038 void LIR_Op1::emit_code(LIR_Assembler* masm) {
1039   masm->emit_op1(this);
1040 }
1041 
1042 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
1043   masm->emit_alloc_obj(this);
1044   masm->append_code_stub(stub());
1045 }
1046 
1047 void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
1048   masm->emit_opBranch(this);
1049   if (stub()) {
1050     masm->append_code_stub(stub());
1051   }
1052 }
1053 
1054 void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
1055   masm->emit_opConvert(this);
1056   if (stub() != NULL) {
1057     masm->append_code_stub(stub());
1058   }
1059 }
1060 
1061 void LIR_Op2::emit_code(LIR_Assembler* masm) {
1062   masm->emit_op2(this);
1063 }
1064 
1065 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
1066   masm->emit_alloc_array(this);
1067   masm->append_code_stub(stub());
1068 }
1069 
1070 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
1071   masm->emit_opTypeCheck(this);
1072   if (stub()) {
1073     masm->append_code_stub(stub());
1074   }
1075 }
1076 
1077 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
1078   masm->emit_compare_and_swap(this);
1079 }
1080 
1081 void LIR_Op3::emit_code(LIR_Assembler* masm) {
1082   masm->emit_op3(this);
1083 }
1084 
1085 void LIR_OpLock::emit_code(LIR_Assembler* masm) {
1086   masm->emit_lock(this);
1087   if (stub()) {
1088     masm->append_code_stub(stub());
1089   }
1090 }
1091 
1092 #ifdef ASSERT
1093 void LIR_OpAssert::emit_code(LIR_Assembler* masm) {
1094   masm->emit_assert(this);
1095 }
1096 #endif
1097 
1098 void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
1099   masm->emit_delay(this);
1100 }
1101 
1102 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
1103   masm->emit_profile_call(this);
1104 }
1105 
1106 void LIR_OpProfileType::emit_code(LIR_Assembler* masm) {
1107   masm->emit_profile_type(this);
1108 }
1109 
1110 // LIR_List
1111 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
1112   : _operations(8)
1113   , _compilation(compilation)
1114 #ifndef PRODUCT
1115   , _block(block)
1116 #endif
1117 #ifdef ASSERT
1118   , _file(NULL)
1119   , _line(0)
1120 #endif
1121 { }
1122 
1123 
1124 #ifdef ASSERT
1125 void LIR_List::set_file_and_line(const char * file, int line) {
1126   const char * f = strrchr(file, '/');
1127   if (f == NULL) f = strrchr(file, '\\');
1128   if (f == NULL) {
1129     f = file;
1130   } else {
1131     f++;
1132   }
1133   _file = f;
1134   _line = line;
1135 }
1136 #endif
1137 
1138 
1139 void LIR_List::append(LIR_InsertionBuffer* buffer) {
1140   assert(this == buffer->lir_list(), "wrong lir list");
1141   const int n = _operations.length();
1142 
1143   if (buffer->number_of_ops() > 0) {
1144     // increase size of instructions list
1145     _operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
1146     // insert ops from buffer into instructions list
1147     int op_index = buffer->number_of_ops() - 1;
1148     int ip_index = buffer->number_of_insertion_points() - 1;
1149     int from_index = n - 1;
1150     int to_index = _operations.length() - 1;
1151     for (; ip_index >= 0; ip_index --) {
1152       int index = buffer->index_at(ip_index);
1153       // make room after insertion point
1154       while (index < from_index) {
1155         _operations.at_put(to_index --, _operations.at(from_index --));
1156       }
1157       // insert ops from buffer
1158       for (int i = buffer->count_at(ip_index); i > 0; i --) {
1159         _operations.at_put(to_index --, buffer->op_at(op_index --));
1160       }
1161     }
1162   }
1163 
1164   buffer->finish();
1165 }
1166 
1167 
1168 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
1169   assert(reg->type() == T_OBJECT, "bad reg");
1170   append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),  reg, T_OBJECT, lir_patch_normal, info));
1171 }
1172 
1173 void LIR_List::klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info) {
1174   assert(reg->type() == T_METADATA, "bad reg");
1175   append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg, T_METADATA, lir_patch_normal, info));
1176 }
1177 
1178 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1179   append(new LIR_Op1(
1180             lir_move,
1181             LIR_OprFact::address(addr),
1182             src,
1183             addr->type(),
1184             patch_code,
1185             info));
1186 }
1187 
1188 
1189 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1190   append(new LIR_Op1(
1191             lir_move,
1192             LIR_OprFact::address(address),
1193             dst,
1194             address->type(),
1195             patch_code,
1196             info, lir_move_volatile));
1197 }
1198 
1199 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1200   append(new LIR_Op1(
1201             lir_move,
1202             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1203             dst,
1204             type,
1205             patch_code,
1206             info, lir_move_volatile));
1207 }
1208 
1209 
1210 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1211   append(new LIR_Op1(
1212             lir_move,
1213             LIR_OprFact::intConst(v),
1214             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1215             type,
1216             patch_code,
1217             info));
1218 }
1219 
1220 
1221 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1222   append(new LIR_Op1(
1223             lir_move,
1224             LIR_OprFact::oopConst(o),
1225             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1226             type,
1227             patch_code,
1228             info));
1229 }
1230 
1231 
1232 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1233   append(new LIR_Op1(
1234             lir_move,
1235             src,
1236             LIR_OprFact::address(addr),
1237             addr->type(),
1238             patch_code,
1239             info));
1240 }
1241 
1242 
1243 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1244   append(new LIR_Op1(
1245             lir_move,
1246             src,
1247             LIR_OprFact::address(addr),
1248             addr->type(),
1249             patch_code,
1250             info,
1251             lir_move_volatile));
1252 }
1253 
1254 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1255   append(new LIR_Op1(
1256             lir_move,
1257             src,
1258             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1259             type,
1260             patch_code,
1261             info, lir_move_volatile));
1262 }
1263 
1264 
1265 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1266   append(new LIR_Op3(
1267                     lir_idiv,
1268                     left,
1269                     right,
1270                     tmp,
1271                     res,
1272                     info));
1273 }
1274 
1275 
1276 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1277   append(new LIR_Op3(
1278                     lir_idiv,
1279                     left,
1280                     LIR_OprFact::intConst(right),
1281                     tmp,
1282                     res,
1283                     info));
1284 }
1285 
1286 
1287 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1288   append(new LIR_Op3(
1289                     lir_irem,
1290                     left,
1291                     right,
1292                     tmp,
1293                     res,
1294                     info));
1295 }
1296 
1297 
1298 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1299   append(new LIR_Op3(
1300                     lir_irem,
1301                     left,
1302                     LIR_OprFact::intConst(right),
1303                     tmp,
1304                     res,
1305                     info));
1306 }
1307 
1308 
1309 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
1310   append(new LIR_Op2(
1311                     lir_cmp,
1312                     condition,
1313                     LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
1314                     LIR_OprFact::intConst(c),
1315                     info));
1316 }
1317 
1318 
1319 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
1320   append(new LIR_Op2(
1321                     lir_cmp,
1322                     condition,
1323                     reg,
1324                     LIR_OprFact::address(addr),
1325                     info));
1326 }
1327 
1328 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1329                                int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
1330   append(new LIR_OpAllocObj(
1331                            klass,
1332                            dst,
1333                            t1,
1334                            t2,
1335                            t3,
1336                            t4,
1337                            header_size,
1338                            object_size,
1339                            init_check,
1340                            stub));
1341 }
1342 
1343 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
1344   append(new LIR_OpAllocArray(
1345                            klass,
1346                            len,
1347                            dst,
1348                            t1,
1349                            t2,
1350                            t3,
1351                            t4,
1352                            type,
1353                            stub));
1354 }
1355 
1356 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1357  append(new LIR_Op2(
1358                     lir_shl,
1359                     value,
1360                     count,
1361                     dst,
1362                     tmp));
1363 }
1364 
1365 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1366  append(new LIR_Op2(
1367                     lir_shr,
1368                     value,
1369                     count,
1370                     dst,
1371                     tmp));
1372 }
1373 
1374 
1375 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1376  append(new LIR_Op2(
1377                     lir_ushr,
1378                     value,
1379                     count,
1380                     dst,
1381                     tmp));
1382 }
1383 
1384 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
1385   append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
1386                      left,
1387                      right,
1388                      dst));
1389 }
1390 
1391 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) {
1392   append(new LIR_OpLock(
1393                     lir_lock,
1394                     hdr,
1395                     obj,
1396                     lock,
1397                     scratch,
1398                     stub,
1399                     info));
1400 }
1401 
1402 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
1403   append(new LIR_OpLock(
1404                     lir_unlock,
1405                     hdr,
1406                     obj,
1407                     lock,
1408                     scratch,
1409                     stub,
1410                     NULL));
1411 }
1412 
1413 
1414 void check_LIR() {
1415   // cannot do the proper checking as PRODUCT and other modes return different results
1416   // guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table");
1417 }
1418 
1419 
1420 
1421 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1422                           LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1423                           CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1424                           ciMethod* profiled_method, int profiled_bci) {
1425   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
1426                                            tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub);
1427   if (profiled_method != NULL) {
1428     c->set_profiled_method(profiled_method);
1429     c->set_profiled_bci(profiled_bci);
1430     c->set_should_profile(true);
1431   }
1432   append(c);
1433 }
1434 
1435 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
1436   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL);
1437   if (profiled_method != NULL) {
1438     c->set_profiled_method(profiled_method);
1439     c->set_profiled_bci(profiled_bci);
1440     c->set_should_profile(true);
1441   }
1442   append(c);
1443 }
1444 
1445 
1446 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
1447                            CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) {
1448   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception);
1449   if (profiled_method != NULL) {
1450     c->set_profiled_method(profiled_method);
1451     c->set_profiled_bci(profiled_bci);
1452     c->set_should_profile(true);
1453   }
1454   append(c);
1455 }
1456 
1457 
1458 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1459                         LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1460   append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
1461 }
1462 
1463 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1464                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1465   append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
1466 }
1467 
1468 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1469                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1470   append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
1471 }
1472 
1473 
1474 #ifdef PRODUCT
1475 
1476 void print_LIR(BlockList* blocks) {
1477 }
1478 
1479 #else
1480 // LIR_OprDesc
1481 void LIR_OprDesc::print() const {
1482   print(tty);
1483 }
1484 
1485 void LIR_OprDesc::print(outputStream* out) const {
1486   if (is_illegal()) {
1487     return;
1488   }
1489 
1490   out->print("[");
1491   if (is_pointer()) {
1492     pointer()->print_value_on(out);
1493   } else if (is_single_stack()) {
1494     out->print("stack:%d", single_stack_ix());
1495   } else if (is_double_stack()) {
1496     out->print("dbl_stack:%d",double_stack_ix());
1497   } else if (is_virtual()) {
1498     out->print("R%d", vreg_number());
1499   } else if (is_single_cpu()) {
1500     out->print("%s", as_register()->name());
1501   } else if (is_double_cpu()) {
1502     out->print("%s", as_register_hi()->name());
1503     out->print("%s", as_register_lo()->name());
1504 #if defined(X86)
1505   } else if (is_single_xmm()) {
1506     out->print("%s", as_xmm_float_reg()->name());
1507   } else if (is_double_xmm()) {
1508     out->print("%s", as_xmm_double_reg()->name());
1509   } else if (is_single_fpu()) {
1510     out->print("fpu%d", fpu_regnr());
1511   } else if (is_double_fpu()) {
1512     out->print("fpu%d", fpu_regnrLo());
1513 #elif defined(AARCH64)
1514   } else if (is_single_fpu()) {
1515     out->print("fpu%d", fpu_regnr());
1516   } else if (is_double_fpu()) {
1517     out->print("fpu%d", fpu_regnrLo());
1518 #elif defined(ARM)
1519   } else if (is_single_fpu()) {
1520     out->print("s%d", fpu_regnr());
1521   } else if (is_double_fpu()) {
1522     out->print("d%d", fpu_regnrLo() >> 1);
1523 #else
1524   } else if (is_single_fpu()) {
1525     out->print("%s", as_float_reg()->name());
1526   } else if (is_double_fpu()) {
1527     out->print("%s", as_double_reg()->name());
1528 #endif
1529 
1530   } else if (is_illegal()) {
1531     out->print("-");
1532   } else {
1533     out->print("Unknown Operand");
1534   }
1535   if (!is_illegal()) {
1536     out->print("|%c", type_char());
1537   }
1538   if (is_register() && is_last_use()) {
1539     out->print("(last_use)");
1540   }
1541   out->print("]");
1542 }
1543 
1544 
1545 // LIR_Address
1546 void LIR_Const::print_value_on(outputStream* out) const {
1547   switch (type()) {
1548     case T_ADDRESS:out->print("address:%d",as_jint());          break;
1549     case T_INT:    out->print("int:%d",   as_jint());           break;
1550     case T_LONG:   out->print("lng:" JLONG_FORMAT, as_jlong()); break;
1551     case T_FLOAT:  out->print("flt:%f",   as_jfloat());         break;
1552     case T_DOUBLE: out->print("dbl:%f",   as_jdouble());        break;
1553     case T_OBJECT: out->print("obj:" INTPTR_FORMAT, p2i(as_jobject()));        break;
1554     case T_METADATA: out->print("metadata:" INTPTR_FORMAT, p2i(as_metadata()));break;
1555     default:       out->print("%3d:0x" UINT64_FORMAT_X, type(), (uint64_t)as_jlong()); break;
1556   }
1557 }
1558 
1559 // LIR_Address
1560 void LIR_Address::print_value_on(outputStream* out) const {
1561   out->print("Base:"); _base->print(out);
1562   if (!_index->is_illegal()) {
1563     out->print(" Index:"); _index->print(out);
1564     switch (scale()) {
1565     case times_1: break;
1566     case times_2: out->print(" * 2"); break;
1567     case times_4: out->print(" * 4"); break;
1568     case times_8: out->print(" * 8"); break;
1569     }
1570   }
1571   out->print(" Disp: " INTX_FORMAT, _disp);
1572 }
1573 
1574 // debug output of block header without InstructionPrinter
1575 //       (because phi functions are not necessary for LIR)
1576 static void print_block(BlockBegin* x) {
1577   // print block id
1578   BlockEnd* end = x->end();
1579   tty->print("B%d ", x->block_id());
1580 
1581   // print flags
1582   if (x->is_set(BlockBegin::std_entry_flag))               tty->print("std ");
1583   if (x->is_set(BlockBegin::osr_entry_flag))               tty->print("osr ");
1584   if (x->is_set(BlockBegin::exception_entry_flag))         tty->print("ex ");
1585   if (x->is_set(BlockBegin::subroutine_entry_flag))        tty->print("jsr ");
1586   if (x->is_set(BlockBegin::backward_branch_target_flag))  tty->print("bb ");
1587   if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
1588   if (x->is_set(BlockBegin::linear_scan_loop_end_flag))    tty->print("le ");
1589 
1590   // print block bci range
1591   tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci()));
1592 
1593   // print predecessors and successors
1594   if (x->number_of_preds() > 0) {
1595     tty->print("preds: ");
1596     for (int i = 0; i < x->number_of_preds(); i ++) {
1597       tty->print("B%d ", x->pred_at(i)->block_id());
1598     }
1599   }
1600 
1601   if (x->number_of_sux() > 0) {
1602     tty->print("sux: ");
1603     for (int i = 0; i < x->number_of_sux(); i ++) {
1604       tty->print("B%d ", x->sux_at(i)->block_id());
1605     }
1606   }
1607 
1608   // print exception handlers
1609   if (x->number_of_exception_handlers() > 0) {
1610     tty->print("xhandler: ");
1611     for (int i = 0; i < x->number_of_exception_handlers();  i++) {
1612       tty->print("B%d ", x->exception_handler_at(i)->block_id());
1613     }
1614   }
1615 
1616   tty->cr();
1617 }
1618 
1619 void print_LIR(BlockList* blocks) {
1620   tty->print_cr("LIR:");
1621   int i;
1622   for (i = 0; i < blocks->length(); i++) {
1623     BlockBegin* bb = blocks->at(i);
1624     print_block(bb);
1625     tty->print("__id_Instruction___________________________________________"); tty->cr();
1626     bb->lir()->print_instructions();
1627   }
1628 }
1629 
1630 void LIR_List::print_instructions() {
1631   for (int i = 0; i < _operations.length(); i++) {
1632     _operations.at(i)->print(); tty->cr();
1633   }
1634   tty->cr();
1635 }
1636 
1637 // LIR_Ops printing routines
1638 // LIR_Op
1639 void LIR_Op::print_on(outputStream* out) const {
1640   if (id() != -1 || PrintCFGToFile) {
1641     out->print("%4d ", id());
1642   } else {
1643     out->print("     ");
1644   }
1645   out->print("%s ", name());
1646   print_instr(out);
1647   if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci());
1648 #ifdef ASSERT
1649   if (Verbose && _file != NULL) {
1650     out->print(" (%s:%d)", _file, _line);
1651   }
1652 #endif
1653 }
1654 
1655 const char * LIR_Op::name() const {
1656   const char* s = NULL;
1657   switch(code()) {
1658      // LIR_Op0
1659      case lir_membar:                s = "membar";        break;
1660      case lir_membar_acquire:        s = "membar_acquire"; break;
1661      case lir_membar_release:        s = "membar_release"; break;
1662      case lir_membar_loadload:       s = "membar_loadload";   break;
1663      case lir_membar_storestore:     s = "membar_storestore"; break;
1664      case lir_membar_loadstore:      s = "membar_loadstore";  break;
1665      case lir_membar_storeload:      s = "membar_storeload";  break;
1666      case lir_word_align:            s = "word_align";    break;
1667      case lir_label:                 s = "label";         break;
1668      case lir_nop:                   s = "nop";           break;
1669      case lir_backwardbranch_target: s = "backbranch";    break;
1670      case lir_std_entry:             s = "std_entry";     break;
1671      case lir_osr_entry:             s = "osr_entry";     break;
1672      case lir_build_frame:           s = "build_frm";     break;
1673      case lir_fpop_raw:              s = "fpop_raw";      break;
1674      case lir_24bit_FPU:             s = "24bit_FPU";     break;
1675      case lir_reset_FPU:             s = "reset_FPU";     break;
1676      case lir_breakpoint:            s = "breakpoint";    break;
1677      case lir_get_thread:            s = "get_thread";    break;
1678      // LIR_Op1
1679      case lir_fxch:                  s = "fxch";          break;
1680      case lir_fld:                   s = "fld";           break;
1681      case lir_ffree:                 s = "ffree";         break;
1682      case lir_push:                  s = "push";          break;
1683      case lir_pop:                   s = "pop";           break;
1684      case lir_null_check:            s = "null_check";    break;
1685      case lir_return:                s = "return";        break;
1686      case lir_safepoint:             s = "safepoint";     break;
1687      case lir_neg:                   s = "neg";           break;
1688      case lir_leal:                  s = "leal";          break;
1689      case lir_branch:                s = "branch";        break;
1690      case lir_cond_float_branch:     s = "flt_cond_br";   break;
1691      case lir_move:                  s = "move";          break;
1692      case lir_roundfp:               s = "roundfp";       break;
1693      case lir_rtcall:                s = "rtcall";        break;
1694      case lir_throw:                 s = "throw";         break;
1695      case lir_unwind:                s = "unwind";        break;
1696      case lir_convert:               s = "convert";       break;
1697      case lir_alloc_object:          s = "alloc_obj";     break;
1698      case lir_monaddr:               s = "mon_addr";      break;
1699      case lir_pack64:                s = "pack64";        break;
1700      case lir_unpack64:              s = "unpack64";      break;
1701      // LIR_Op2
1702      case lir_cmp:                   s = "cmp";           break;
1703      case lir_cmp_l2i:               s = "cmp_l2i";       break;
1704      case lir_ucmp_fd2i:             s = "ucomp_fd2i";    break;
1705      case lir_cmp_fd2i:              s = "comp_fd2i";     break;
1706      case lir_cmove:                 s = "cmove";         break;
1707      case lir_add:                   s = "add";           break;
1708      case lir_sub:                   s = "sub";           break;
1709      case lir_mul:                   s = "mul";           break;
1710      case lir_mul_strictfp:          s = "mul_strictfp";  break;
1711      case lir_div:                   s = "div";           break;
1712      case lir_div_strictfp:          s = "div_strictfp";  break;
1713      case lir_rem:                   s = "rem";           break;
1714      case lir_abs:                   s = "abs";           break;
1715      case lir_sqrt:                  s = "sqrt";          break;
1716      case lir_logic_and:             s = "logic_and";     break;
1717      case lir_logic_or:              s = "logic_or";      break;
1718      case lir_logic_xor:             s = "logic_xor";     break;
1719      case lir_shl:                   s = "shift_left";    break;
1720      case lir_shr:                   s = "shift_right";   break;
1721      case lir_ushr:                  s = "ushift_right";  break;
1722      case lir_alloc_array:           s = "alloc_array";   break;
1723      case lir_xadd:                  s = "xadd";          break;
1724      case lir_xchg:                  s = "xchg";          break;
1725      // LIR_Op3
1726      case lir_idiv:                  s = "idiv";          break;
1727      case lir_irem:                  s = "irem";          break;
1728      // LIR_OpJavaCall
1729      case lir_static_call:           s = "static";        break;
1730      case lir_optvirtual_call:       s = "optvirtual";    break;
1731      case lir_icvirtual_call:        s = "icvirtual";     break;
1732      case lir_virtual_call:          s = "virtual";       break;
1733      case lir_dynamic_call:          s = "dynamic";       break;
1734      // LIR_OpArrayCopy
1735      case lir_arraycopy:             s = "arraycopy";     break;
1736      // LIR_OpUpdateCRC32
1737      case lir_updatecrc32:           s = "updatecrc32";   break;
1738      // LIR_OpLock
1739      case lir_lock:                  s = "lock";          break;
1740      case lir_unlock:                s = "unlock";        break;
1741      // LIR_OpDelay
1742      case lir_delay_slot:            s = "delay";         break;
1743      // LIR_OpTypeCheck
1744      case lir_instanceof:            s = "instanceof";    break;
1745      case lir_checkcast:             s = "checkcast";     break;
1746      case lir_store_check:           s = "store_check";   break;
1747      // LIR_OpCompareAndSwap
1748      case lir_cas_long:              s = "cas_long";      break;
1749      case lir_cas_obj:               s = "cas_obj";      break;
1750      case lir_cas_int:               s = "cas_int";      break;
1751      // LIR_OpProfileCall
1752      case lir_profile_call:          s = "profile_call";  break;
1753      // LIR_OpProfileType
1754      case lir_profile_type:          s = "profile_type";  break;
1755      // LIR_OpAssert
1756 #ifdef ASSERT
1757      case lir_assert:                s = "assert";        break;
1758 #endif
1759      case lir_none:                  ShouldNotReachHere();break;
1760     default:                         s = "illegal_op";    break;
1761   }
1762   return s;
1763 }
1764 
1765 // LIR_OpJavaCall
1766 void LIR_OpJavaCall::print_instr(outputStream* out) const {
1767   out->print("call: ");
1768   out->print("[addr: " INTPTR_FORMAT "]", p2i(address()));
1769   if (receiver()->is_valid()) {
1770     out->print(" [recv: ");   receiver()->print(out);   out->print("]");
1771   }
1772   if (result_opr()->is_valid()) {
1773     out->print(" [result: "); result_opr()->print(out); out->print("]");
1774   }
1775 }
1776 
1777 // LIR_OpLabel
1778 void LIR_OpLabel::print_instr(outputStream* out) const {
1779   out->print("[label:" INTPTR_FORMAT "]", p2i(_label));
1780 }
1781 
1782 // LIR_OpArrayCopy
1783 void LIR_OpArrayCopy::print_instr(outputStream* out) const {
1784   src()->print(out);     out->print(" ");
1785   src_pos()->print(out); out->print(" ");
1786   dst()->print(out);     out->print(" ");
1787   dst_pos()->print(out); out->print(" ");
1788   length()->print(out);  out->print(" ");
1789   tmp()->print(out);     out->print(" ");
1790 }
1791 
1792 // LIR_OpUpdateCRC32
1793 void LIR_OpUpdateCRC32::print_instr(outputStream* out) const {
1794   crc()->print(out);     out->print(" ");
1795   val()->print(out);     out->print(" ");
1796   result_opr()->print(out); out->print(" ");
1797 }
1798 
1799 // LIR_OpCompareAndSwap
1800 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
1801   addr()->print(out);      out->print(" ");
1802   cmp_value()->print(out); out->print(" ");
1803   new_value()->print(out); out->print(" ");
1804   tmp1()->print(out);      out->print(" ");
1805   tmp2()->print(out);      out->print(" ");
1806 
1807 }
1808 
1809 // LIR_Op0
1810 void LIR_Op0::print_instr(outputStream* out) const {
1811   result_opr()->print(out);
1812 }
1813 
1814 // LIR_Op1
1815 const char * LIR_Op1::name() const {
1816   if (code() == lir_move) {
1817     switch (move_kind()) {
1818     case lir_move_normal:
1819       return "move";
1820     case lir_move_unaligned:
1821       return "unaligned move";
1822     case lir_move_volatile:
1823       return "volatile_move";
1824     case lir_move_wide:
1825       return "wide_move";
1826     default:
1827       ShouldNotReachHere();
1828     return "illegal_op";
1829     }
1830   } else {
1831     return LIR_Op::name();
1832   }
1833 }
1834 
1835 
1836 void LIR_Op1::print_instr(outputStream* out) const {
1837   _opr->print(out);         out->print(" ");
1838   result_opr()->print(out); out->print(" ");
1839   print_patch_code(out, patch_code());
1840 }
1841 
1842 
1843 // LIR_Op1
1844 void LIR_OpRTCall::print_instr(outputStream* out) const {
1845   intx a = (intx)addr();
1846   out->print("%s", Runtime1::name_for_address(addr()));
1847   out->print(" ");
1848   tmp()->print(out);
1849 }
1850 
1851 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
1852   switch(code) {
1853     case lir_patch_none:                                 break;
1854     case lir_patch_low:    out->print("[patch_low]");    break;
1855     case lir_patch_high:   out->print("[patch_high]");   break;
1856     case lir_patch_normal: out->print("[patch_normal]"); break;
1857     default: ShouldNotReachHere();
1858   }
1859 }
1860 
1861 // LIR_OpBranch
1862 void LIR_OpBranch::print_instr(outputStream* out) const {
1863   print_condition(out, cond());             out->print(" ");
1864   if (block() != NULL) {
1865     out->print("[B%d] ", block()->block_id());
1866   } else if (stub() != NULL) {
1867     out->print("[");
1868     stub()->print_name(out);
1869     out->print(": " INTPTR_FORMAT "]", p2i(stub()));
1870     if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci());
1871   } else {
1872     out->print("[label:" INTPTR_FORMAT "] ", p2i(label()));
1873   }
1874   if (ublock() != NULL) {
1875     out->print("unordered: [B%d] ", ublock()->block_id());
1876   }
1877 }
1878 
1879 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
1880   switch(cond) {
1881     case lir_cond_equal:           out->print("[EQ]");      break;
1882     case lir_cond_notEqual:        out->print("[NE]");      break;
1883     case lir_cond_less:            out->print("[LT]");      break;
1884     case lir_cond_lessEqual:       out->print("[LE]");      break;
1885     case lir_cond_greaterEqual:    out->print("[GE]");      break;
1886     case lir_cond_greater:         out->print("[GT]");      break;
1887     case lir_cond_belowEqual:      out->print("[BE]");      break;
1888     case lir_cond_aboveEqual:      out->print("[AE]");      break;
1889     case lir_cond_always:          out->print("[AL]");      break;
1890     default:                       out->print("[%d]",cond); break;
1891   }
1892 }
1893 
1894 // LIR_OpConvert
1895 void LIR_OpConvert::print_instr(outputStream* out) const {
1896   print_bytecode(out, bytecode());
1897   in_opr()->print(out);                  out->print(" ");
1898   result_opr()->print(out);              out->print(" ");
1899 #ifdef PPC32
1900   if(tmp1()->is_valid()) {
1901     tmp1()->print(out); out->print(" ");
1902     tmp2()->print(out); out->print(" ");
1903   }
1904 #endif
1905 }
1906 
1907 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
1908   switch(code) {
1909     case Bytecodes::_d2f: out->print("[d2f] "); break;
1910     case Bytecodes::_d2i: out->print("[d2i] "); break;
1911     case Bytecodes::_d2l: out->print("[d2l] "); break;
1912     case Bytecodes::_f2d: out->print("[f2d] "); break;
1913     case Bytecodes::_f2i: out->print("[f2i] "); break;
1914     case Bytecodes::_f2l: out->print("[f2l] "); break;
1915     case Bytecodes::_i2b: out->print("[i2b] "); break;
1916     case Bytecodes::_i2c: out->print("[i2c] "); break;
1917     case Bytecodes::_i2d: out->print("[i2d] "); break;
1918     case Bytecodes::_i2f: out->print("[i2f] "); break;
1919     case Bytecodes::_i2l: out->print("[i2l] "); break;
1920     case Bytecodes::_i2s: out->print("[i2s] "); break;
1921     case Bytecodes::_l2i: out->print("[l2i] "); break;
1922     case Bytecodes::_l2f: out->print("[l2f] "); break;
1923     case Bytecodes::_l2d: out->print("[l2d] "); break;
1924     default:
1925       out->print("[?%d]",code);
1926     break;
1927   }
1928 }
1929 
1930 void LIR_OpAllocObj::print_instr(outputStream* out) const {
1931   klass()->print(out);                      out->print(" ");
1932   obj()->print(out);                        out->print(" ");
1933   tmp1()->print(out);                       out->print(" ");
1934   tmp2()->print(out);                       out->print(" ");
1935   tmp3()->print(out);                       out->print(" ");
1936   tmp4()->print(out);                       out->print(" ");
1937   out->print("[hdr:%d]", header_size()); out->print(" ");
1938   out->print("[obj:%d]", object_size()); out->print(" ");
1939   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
1940 }
1941 
1942 void LIR_OpRoundFP::print_instr(outputStream* out) const {
1943   _opr->print(out);         out->print(" ");
1944   tmp()->print(out);        out->print(" ");
1945   result_opr()->print(out); out->print(" ");
1946 }
1947 
1948 // LIR_Op2
1949 void LIR_Op2::print_instr(outputStream* out) const {
1950   if (code() == lir_cmove || code() == lir_cmp) {
1951     print_condition(out, condition());         out->print(" ");
1952   }
1953   in_opr1()->print(out);    out->print(" ");
1954   in_opr2()->print(out);    out->print(" ");
1955   if (tmp1_opr()->is_valid()) { tmp1_opr()->print(out);    out->print(" "); }
1956   if (tmp2_opr()->is_valid()) { tmp2_opr()->print(out);    out->print(" "); }
1957   if (tmp3_opr()->is_valid()) { tmp3_opr()->print(out);    out->print(" "); }
1958   if (tmp4_opr()->is_valid()) { tmp4_opr()->print(out);    out->print(" "); }
1959   if (tmp5_opr()->is_valid()) { tmp5_opr()->print(out);    out->print(" "); }
1960   result_opr()->print(out);
1961 }
1962 
1963 void LIR_OpAllocArray::print_instr(outputStream* out) const {
1964   klass()->print(out);                   out->print(" ");
1965   len()->print(out);                     out->print(" ");
1966   obj()->print(out);                     out->print(" ");
1967   tmp1()->print(out);                    out->print(" ");
1968   tmp2()->print(out);                    out->print(" ");
1969   tmp3()->print(out);                    out->print(" ");
1970   tmp4()->print(out);                    out->print(" ");
1971   out->print("[type:0x%x]", type());     out->print(" ");
1972   out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry()));
1973 }
1974 
1975 
1976 void LIR_OpTypeCheck::print_instr(outputStream* out) const {
1977   object()->print(out);                  out->print(" ");
1978   if (code() == lir_store_check) {
1979     array()->print(out);                 out->print(" ");
1980   }
1981   if (code() != lir_store_check) {
1982     klass()->print_name_on(out);         out->print(" ");
1983     if (fast_check())                 out->print("fast_check ");
1984   }
1985   tmp1()->print(out);                    out->print(" ");
1986   tmp2()->print(out);                    out->print(" ");
1987   tmp3()->print(out);                    out->print(" ");
1988   result_opr()->print(out);              out->print(" ");
1989   if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci());
1990 }
1991 
1992 
1993 // LIR_Op3
1994 void LIR_Op3::print_instr(outputStream* out) const {
1995   in_opr1()->print(out);    out->print(" ");
1996   in_opr2()->print(out);    out->print(" ");
1997   in_opr3()->print(out);    out->print(" ");
1998   result_opr()->print(out);
1999 }
2000 
2001 
2002 void LIR_OpLock::print_instr(outputStream* out) const {
2003   hdr_opr()->print(out);   out->print(" ");
2004   obj_opr()->print(out);   out->print(" ");
2005   lock_opr()->print(out);  out->print(" ");
2006   if (_scratch->is_valid()) {
2007     _scratch->print(out);  out->print(" ");
2008   }
2009   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2010 }
2011 
2012 #ifdef ASSERT
2013 void LIR_OpAssert::print_instr(outputStream* out) const {
2014   print_condition(out, condition()); out->print(" ");
2015   in_opr1()->print(out);             out->print(" ");
2016   in_opr2()->print(out);             out->print(", \"");
2017   out->print("%s", msg());          out->print("\"");
2018 }
2019 #endif
2020 
2021 
2022 void LIR_OpDelay::print_instr(outputStream* out) const {
2023   _op->print_on(out);
2024 }
2025 
2026 
2027 // LIR_OpProfileCall
2028 void LIR_OpProfileCall::print_instr(outputStream* out) const {
2029   profiled_method()->name()->print_symbol_on(out);
2030   out->print(".");
2031   profiled_method()->holder()->name()->print_symbol_on(out);
2032   out->print(" @ %d ", profiled_bci());
2033   mdo()->print(out);           out->print(" ");
2034   recv()->print(out);          out->print(" ");
2035   tmp1()->print(out);          out->print(" ");
2036 }
2037 
2038 // LIR_OpProfileType
2039 void LIR_OpProfileType::print_instr(outputStream* out) const {
2040   out->print("exact = ");
2041   if  (exact_klass() == NULL) {
2042     out->print("unknown");
2043   } else {
2044     exact_klass()->print_name_on(out);
2045   }
2046   out->print(" current = "); ciTypeEntries::print_ciklass(out, current_klass());
2047   out->print(" ");
2048   mdp()->print(out);          out->print(" ");
2049   obj()->print(out);          out->print(" ");
2050   tmp()->print(out);          out->print(" ");
2051 }
2052 
2053 #endif // PRODUCT
2054 
2055 // Implementation of LIR_InsertionBuffer
2056 
2057 void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
2058   assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
2059 
2060   int i = number_of_insertion_points() - 1;
2061   if (i < 0 || index_at(i) < index) {
2062     append_new(index, 1);
2063   } else {
2064     assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
2065     assert(count_at(i) > 0, "check");
2066     set_count_at(i, count_at(i) + 1);
2067   }
2068   _ops.push(op);
2069 
2070   DEBUG_ONLY(verify());
2071 }
2072 
2073 #ifdef ASSERT
2074 void LIR_InsertionBuffer::verify() {
2075   int sum = 0;
2076   int prev_idx = -1;
2077 
2078   for (int i = 0; i < number_of_insertion_points(); i++) {
2079     assert(prev_idx < index_at(i), "index must be ordered ascending");
2080     sum += count_at(i);
2081   }
2082   assert(sum == number_of_ops(), "wrong total sum");
2083 }
2084 #endif