1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/callGenerator.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/countbitsnode.hpp"
  40 #include "opto/intrinsicnode.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/mathexactnode.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/mulnode.hpp"
  45 #include "opto/narrowptrnode.hpp"
  46 #include "opto/opaquenode.hpp"
  47 #include "opto/parse.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/subnode.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "prims/unsafe.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #ifdef TRACE_HAVE_INTRINSICS
  54 #include "trace/traceMacros.hpp"
  55 #endif
  56 
  57 class LibraryIntrinsic : public InlineCallGenerator {
  58   // Extend the set of intrinsics known to the runtime:
  59  public:
  60  private:
  61   bool             _is_virtual;
  62   bool             _does_virtual_dispatch;
  63   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  64   int8_t           _last_predicate; // Last generated predicate
  65   vmIntrinsics::ID _intrinsic_id;
  66 
  67  public:
  68   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  69     : InlineCallGenerator(m),
  70       _is_virtual(is_virtual),
  71       _does_virtual_dispatch(does_virtual_dispatch),
  72       _predicates_count((int8_t)predicates_count),
  73       _last_predicate((int8_t)-1),
  74       _intrinsic_id(id)
  75   {
  76   }
  77   virtual bool is_intrinsic() const { return true; }
  78   virtual bool is_virtual()   const { return _is_virtual; }
  79   virtual bool is_predicated() const { return _predicates_count > 0; }
  80   virtual int  predicates_count() const { return _predicates_count; }
  81   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  82   virtual JVMState* generate(JVMState* jvms);
  83   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  84   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  85 };
  86 
  87 
  88 // Local helper class for LibraryIntrinsic:
  89 class LibraryCallKit : public GraphKit {
  90  private:
  91   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  92   Node*             _result;        // the result node, if any
  93   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  94 
  95   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  96 
  97  public:
  98   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  99     : GraphKit(jvms),
 100       _intrinsic(intrinsic),
 101       _result(NULL)
 102   {
 103     // Check if this is a root compile.  In that case we don't have a caller.
 104     if (!jvms->has_method()) {
 105       _reexecute_sp = sp();
 106     } else {
 107       // Find out how many arguments the interpreter needs when deoptimizing
 108       // and save the stack pointer value so it can used by uncommon_trap.
 109       // We find the argument count by looking at the declared signature.
 110       bool ignored_will_link;
 111       ciSignature* declared_signature = NULL;
 112       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 113       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 114       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 115     }
 116   }
 117 
 118   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 119 
 120   ciMethod*         caller()    const    { return jvms()->method(); }
 121   int               bci()       const    { return jvms()->bci(); }
 122   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 123   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 124   ciMethod*         callee()    const    { return _intrinsic->method(); }
 125 
 126   bool  try_to_inline(int predicate);
 127   Node* try_to_predicate(int predicate);
 128 
 129   void push_result() {
 130     // Push the result onto the stack.
 131     if (!stopped() && result() != NULL) {
 132       BasicType bt = result()->bottom_type()->basic_type();
 133       push_node(bt, result());
 134     }
 135   }
 136 
 137  private:
 138   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 139     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 140   }
 141 
 142   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 143   void  set_result(RegionNode* region, PhiNode* value);
 144   Node*     result() { return _result; }
 145 
 146   virtual int reexecute_sp() { return _reexecute_sp; }
 147 
 148   // Helper functions to inline natives
 149   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 150   Node* generate_slow_guard(Node* test, RegionNode* region);
 151   Node* generate_fair_guard(Node* test, RegionNode* region);
 152   Node* generate_negative_guard(Node* index, RegionNode* region,
 153                                 // resulting CastII of index:
 154                                 Node* *pos_index = NULL);
 155   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 156                              Node* array_length,
 157                              RegionNode* region);
 158   void  generate_string_range_check(Node* array, Node* offset,
 159                                     Node* length, bool char_count);
 160   Node* generate_current_thread(Node* &tls_output);
 161   Node* load_mirror_from_klass(Node* klass);
 162   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 163                                       RegionNode* region, int null_path,
 164                                       int offset);
 165   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 166                                RegionNode* region, int null_path) {
 167     int offset = java_lang_Class::klass_offset_in_bytes();
 168     return load_klass_from_mirror_common(mirror, never_see_null,
 169                                          region, null_path,
 170                                          offset);
 171   }
 172   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 173                                      RegionNode* region, int null_path) {
 174     int offset = java_lang_Class::array_klass_offset_in_bytes();
 175     return load_klass_from_mirror_common(mirror, never_see_null,
 176                                          region, null_path,
 177                                          offset);
 178   }
 179   Node* generate_access_flags_guard(Node* kls,
 180                                     int modifier_mask, int modifier_bits,
 181                                     RegionNode* region);
 182   Node* generate_interface_guard(Node* kls, RegionNode* region);
 183   Node* generate_array_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, false, false);
 185   }
 186   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, false, true);
 188   }
 189   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 190     return generate_array_guard_common(kls, region, true, false);
 191   }
 192   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 193     return generate_array_guard_common(kls, region, true, true);
 194   }
 195   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 196                                     bool obj_array, bool not_array);
 197   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 198   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 199                                      bool is_virtual = false, bool is_static = false);
 200   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 201     return generate_method_call(method_id, false, true);
 202   }
 203   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 204     return generate_method_call(method_id, true, false);
 205   }
 206   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 207   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 208 
 209   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 210   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 211   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 212   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 213   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 214                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 215   bool inline_string_indexOfChar();
 216   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 217   bool inline_string_toBytesU();
 218   bool inline_string_getCharsU();
 219   bool inline_string_copy(bool compress);
 220   bool inline_string_char_access(bool is_store);
 221   Node* round_double_node(Node* n);
 222   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 223   bool inline_math_native(vmIntrinsics::ID id);
 224   bool inline_trig(vmIntrinsics::ID id);
 225   bool inline_math(vmIntrinsics::ID id);
 226   template <typename OverflowOp>
 227   bool inline_math_overflow(Node* arg1, Node* arg2);
 228   void inline_math_mathExact(Node* math, Node* test);
 229   bool inline_math_addExactI(bool is_increment);
 230   bool inline_math_addExactL(bool is_increment);
 231   bool inline_math_multiplyExactI();
 232   bool inline_math_multiplyExactL();
 233   bool inline_math_negateExactI();
 234   bool inline_math_negateExactL();
 235   bool inline_math_subtractExactI(bool is_decrement);
 236   bool inline_math_subtractExactL(bool is_decrement);
 237   bool inline_min_max(vmIntrinsics::ID id);
 238   bool inline_notify(vmIntrinsics::ID id);
 239   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 240   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 241   int classify_unsafe_addr(Node* &base, Node* &offset);
 242   Node* make_unsafe_address(Node* base, Node* offset);
 243   // Helper for inline_unsafe_access.
 244   // Generates the guards that check whether the result of
 245   // Unsafe.getObject should be recorded in an SATB log buffer.
 246   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 247 
 248   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 249   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 250   static bool klass_needs_init_guard(Node* kls);
 251   bool inline_unsafe_allocate();
 252   bool inline_unsafe_newArray(bool uninitialized);
 253   bool inline_unsafe_copyMemory();
 254   bool inline_native_currentThread();
 255 
 256   bool inline_native_time_funcs(address method, const char* funcName);
 257   bool inline_native_isInterrupted();
 258   bool inline_native_Class_query(vmIntrinsics::ID id);
 259   bool inline_native_subtype_check();
 260   bool inline_native_getLength();
 261   bool inline_array_copyOf(bool is_copyOfRange);
 262   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 263   bool inline_objects_checkIndex();
 264   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 265   bool inline_native_clone(bool is_virtual);
 266   bool inline_native_Reflection_getCallerClass();
 267   // Helper function for inlining native object hash method
 268   bool inline_native_hashcode(bool is_virtual, bool is_static);
 269   bool inline_native_getClass();
 270 
 271   // Helper functions for inlining arraycopy
 272   bool inline_arraycopy();
 273   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 274                                                 RegionNode* slow_region);
 275   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 276   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 277 
 278   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 279   MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
 280   MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
 281   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 282   bool inline_unsafe_fence(vmIntrinsics::ID id);
 283   bool inline_fp_conversions(vmIntrinsics::ID id);
 284   bool inline_number_methods(vmIntrinsics::ID id);
 285   bool inline_reference_get();
 286   bool inline_Class_cast();
 287   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 288   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 289   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 290   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 291   Node* inline_counterMode_AESCrypt_predicate();
 292   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 293   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 294   bool inline_ghash_processBlocks();
 295   bool inline_sha_implCompress(vmIntrinsics::ID id);
 296   bool inline_digestBase_implCompressMB(int predicate);
 297   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 298                                  bool long_state, address stubAddr, const char *stubName,
 299                                  Node* src_start, Node* ofs, Node* limit);
 300   Node* get_state_from_sha_object(Node *sha_object);
 301   Node* get_state_from_sha5_object(Node *sha_object);
 302   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 303   bool inline_encodeISOArray();
 304   bool inline_updateCRC32();
 305   bool inline_updateBytesCRC32();
 306   bool inline_updateByteBufferCRC32();
 307   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 308   bool inline_updateBytesCRC32C();
 309   bool inline_updateDirectByteBufferCRC32C();
 310   bool inline_updateBytesAdler32();
 311   bool inline_updateByteBufferAdler32();
 312   bool inline_multiplyToLen();
 313   bool inline_hasNegatives();
 314   bool inline_squareToLen();
 315   bool inline_mulAdd();
 316   bool inline_montgomeryMultiply();
 317   bool inline_montgomerySquare();
 318   bool inline_vectorizedMismatch();
 319 
 320   bool inline_profileBoolean();
 321   bool inline_isCompileConstant();
 322 };
 323 
 324 //---------------------------make_vm_intrinsic----------------------------
 325 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 326   vmIntrinsics::ID id = m->intrinsic_id();
 327   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 328 
 329   if (!m->is_loaded()) {
 330     // Do not attempt to inline unloaded methods.
 331     return NULL;
 332   }
 333 
 334   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 335   bool is_available = false;
 336 
 337   {
 338     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 339     // the compiler must transition to '_thread_in_vm' state because both
 340     // methods access VM-internal data.
 341     VM_ENTRY_MARK;
 342     methodHandle mh(THREAD, m->get_Method());
 343     is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
 344                    !C->directive()->is_intrinsic_disabled(mh) &&
 345                    !vmIntrinsics::is_disabled_by_flags(mh);
 346 
 347   }
 348 
 349   if (is_available) {
 350     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 351     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 352     return new LibraryIntrinsic(m, is_virtual,
 353                                 vmIntrinsics::predicates_needed(id),
 354                                 vmIntrinsics::does_virtual_dispatch(id),
 355                                 (vmIntrinsics::ID) id);
 356   } else {
 357     return NULL;
 358   }
 359 }
 360 
 361 //----------------------register_library_intrinsics-----------------------
 362 // Initialize this file's data structures, for each Compile instance.
 363 void Compile::register_library_intrinsics() {
 364   // Nothing to do here.
 365 }
 366 
 367 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 368   LibraryCallKit kit(jvms, this);
 369   Compile* C = kit.C;
 370   int nodes = C->unique();
 371 #ifndef PRODUCT
 372   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 373     char buf[1000];
 374     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 375     tty->print_cr("Intrinsic %s", str);
 376   }
 377 #endif
 378   ciMethod* callee = kit.callee();
 379   const int bci    = kit.bci();
 380 
 381   // Try to inline the intrinsic.
 382   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 383       kit.try_to_inline(_last_predicate)) {
 384     if (C->print_intrinsics() || C->print_inlining()) {
 385       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 386     }
 387     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 388     if (C->log()) {
 389       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 390                      vmIntrinsics::name_at(intrinsic_id()),
 391                      (is_virtual() ? " virtual='1'" : ""),
 392                      C->unique() - nodes);
 393     }
 394     // Push the result from the inlined method onto the stack.
 395     kit.push_result();
 396     C->print_inlining_update(this);
 397     return kit.transfer_exceptions_into_jvms();
 398   }
 399 
 400   // The intrinsic bailed out
 401   if (C->print_intrinsics() || C->print_inlining()) {
 402     if (jvms->has_method()) {
 403       // Not a root compile.
 404       const char* msg;
 405       if (callee->intrinsic_candidate()) {
 406         msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 407       } else {
 408         msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 409                            : "failed to inline (intrinsic), method not annotated";
 410       }
 411       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 412     } else {
 413       // Root compile
 414       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 415                vmIntrinsics::name_at(intrinsic_id()),
 416                (is_virtual() ? " (virtual)" : ""), bci);
 417     }
 418   }
 419   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 420   C->print_inlining_update(this);
 421   return NULL;
 422 }
 423 
 424 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 425   LibraryCallKit kit(jvms, this);
 426   Compile* C = kit.C;
 427   int nodes = C->unique();
 428   _last_predicate = predicate;
 429 #ifndef PRODUCT
 430   assert(is_predicated() && predicate < predicates_count(), "sanity");
 431   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 432     char buf[1000];
 433     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 434     tty->print_cr("Predicate for intrinsic %s", str);
 435   }
 436 #endif
 437   ciMethod* callee = kit.callee();
 438   const int bci    = kit.bci();
 439 
 440   Node* slow_ctl = kit.try_to_predicate(predicate);
 441   if (!kit.failing()) {
 442     if (C->print_intrinsics() || C->print_inlining()) {
 443       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 444     }
 445     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 446     if (C->log()) {
 447       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 448                      vmIntrinsics::name_at(intrinsic_id()),
 449                      (is_virtual() ? " virtual='1'" : ""),
 450                      C->unique() - nodes);
 451     }
 452     return slow_ctl; // Could be NULL if the check folds.
 453   }
 454 
 455   // The intrinsic bailed out
 456   if (C->print_intrinsics() || C->print_inlining()) {
 457     if (jvms->has_method()) {
 458       // Not a root compile.
 459       const char* msg = "failed to generate predicate for intrinsic";
 460       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 461     } else {
 462       // Root compile
 463       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 464                                         vmIntrinsics::name_at(intrinsic_id()),
 465                                         (is_virtual() ? " (virtual)" : ""), bci);
 466     }
 467   }
 468   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 469   return NULL;
 470 }
 471 
 472 bool LibraryCallKit::try_to_inline(int predicate) {
 473   // Handle symbolic names for otherwise undistinguished boolean switches:
 474   const bool is_store       = true;
 475   const bool is_compress    = true;
 476   const bool is_native_ptr  = true;
 477   const bool is_static      = true;
 478   const bool is_volatile    = true;
 479 
 480   if (!jvms()->has_method()) {
 481     // Root JVMState has a null method.
 482     assert(map()->memory()->Opcode() == Op_Parm, "");
 483     // Insert the memory aliasing node
 484     set_all_memory(reset_memory());
 485   }
 486   assert(merged_memory(), "");
 487 
 488 
 489   switch (intrinsic_id()) {
 490   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 491   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 492   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 493 
 494   case vmIntrinsics::_dsin:
 495   case vmIntrinsics::_dcos:
 496   case vmIntrinsics::_dtan:
 497   case vmIntrinsics::_dabs:
 498   case vmIntrinsics::_datan2:
 499   case vmIntrinsics::_dsqrt:
 500   case vmIntrinsics::_dexp:
 501   case vmIntrinsics::_dlog:
 502   case vmIntrinsics::_dlog10:
 503   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 504 
 505   case vmIntrinsics::_min:
 506   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 507 
 508   case vmIntrinsics::_notify:
 509   case vmIntrinsics::_notifyAll:
 510     if (InlineNotify) {
 511       return inline_notify(intrinsic_id());
 512     }
 513     return false;
 514 
 515   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 516   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 517   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 518   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 519   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 520   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 521   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 522   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 523   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 524   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 525   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 526   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 527 
 528   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 529 
 530   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 531   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 532   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 533   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 534 
 535   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 536   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 537   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 538   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 539   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 540   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 541   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 542 
 543   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 544   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 545 
 546   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 547   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 548   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 549   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 550 
 551   case vmIntrinsics::_compressStringC:
 552   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 553   case vmIntrinsics::_inflateStringC:
 554   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 555 
 556   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Relaxed, false);
 557   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Relaxed, false);
 558   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Relaxed, false);
 559   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Relaxed, false);
 560   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Relaxed, false);
 561   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Relaxed, false);
 562   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Relaxed, false);
 563   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Relaxed, false);
 564   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Relaxed, false);
 565 
 566   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Relaxed, false);
 567   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Relaxed, false);
 568   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Relaxed, false);
 569   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Relaxed, false);
 570   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Relaxed, false);
 571   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Relaxed, false);
 572   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Relaxed, false);
 573   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Relaxed, false);
 574   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Relaxed, false);
 575 
 576   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,     Relaxed, false);
 577   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,    Relaxed, false);
 578   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,     Relaxed, false);
 579   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,      Relaxed, false);
 580   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,     Relaxed, false);
 581   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,    Relaxed, false);
 582   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,   Relaxed, false);
 583   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS,  Relaxed, false);
 584 
 585   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,     Relaxed, false);
 586   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,    Relaxed, false);
 587   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,     Relaxed, false);
 588   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,      Relaxed, false);
 589   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,     Relaxed, false);
 590   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,    Relaxed, false);
 591   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,   Relaxed, false);
 592   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS,  Relaxed, false);
 593 
 594   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Volatile, false);
 595   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Volatile, false);
 596   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Volatile, false);
 597   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Volatile, false);
 598   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Volatile, false);
 599   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Volatile, false);
 600   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Volatile, false);
 601   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Volatile, false);
 602   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Volatile, false);
 603 
 604   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Volatile, false);
 605   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Volatile, false);
 606   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Volatile, false);
 607   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Volatile, false);
 608   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Volatile, false);
 609   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Volatile, false);
 610   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Volatile, false);
 611   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Volatile, false);
 612   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Volatile, false);
 613 
 614   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Relaxed, true);
 615   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Relaxed, true);
 616   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Relaxed, true);
 617   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Relaxed, true);
 618 
 619   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Relaxed, true);
 620   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Relaxed, true);
 621   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Relaxed, true);
 622   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Relaxed, true);
 623 
 624   case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Acquire, false);
 625   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Acquire, false);
 626   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Acquire, false);
 627   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Acquire, false);
 628   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Acquire, false);
 629   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Acquire, false);
 630   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Acquire, false);
 631   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Acquire, false);
 632   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Acquire, false);
 633 
 634   case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Release, false);
 635   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Release, false);
 636   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Release, false);
 637   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Release, false);
 638   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Release, false);
 639   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Release, false);
 640   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Release, false);
 641   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Release, false);
 642   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Release, false);
 643 
 644   case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Opaque, false);
 645   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Opaque, false);
 646   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Opaque, false);
 647   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Opaque, false);
 648   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Opaque, false);
 649   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Opaque, false);
 650   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Opaque, false);
 651   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Opaque, false);
 652   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Opaque, false);
 653 
 654   case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Opaque, false);
 655   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Opaque, false);
 656   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Opaque, false);
 657   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Opaque, false);
 658   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Opaque, false);
 659   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Opaque, false);
 660   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Opaque, false);
 661   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Opaque, false);
 662   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Opaque, false);
 663 
 664   case vmIntrinsics::_compareAndSwapObject:             return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 665   case vmIntrinsics::_compareAndSwapInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 666   case vmIntrinsics::_compareAndSwapLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 667 
 668   case vmIntrinsics::_weakCompareAndSwapObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 669   case vmIntrinsics::_weakCompareAndSwapObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 670   case vmIntrinsics::_weakCompareAndSwapObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 671   case vmIntrinsics::_weakCompareAndSwapInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 672   case vmIntrinsics::_weakCompareAndSwapIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 673   case vmIntrinsics::_weakCompareAndSwapIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 674   case vmIntrinsics::_weakCompareAndSwapLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 675   case vmIntrinsics::_weakCompareAndSwapLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 676   case vmIntrinsics::_weakCompareAndSwapLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 677 
 678   case vmIntrinsics::_compareAndExchangeObjectVolatile: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 679   case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 680   case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 681   case vmIntrinsics::_compareAndExchangeIntVolatile:    return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 682   case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 683   case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 684   case vmIntrinsics::_compareAndExchangeLongVolatile:   return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 685   case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 686   case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 687 
 688   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 689   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 690   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 691   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 692   case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 693 
 694   case vmIntrinsics::_loadFence:
 695   case vmIntrinsics::_storeFence:
 696   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 697 
 698   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 699   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 700 
 701 #ifdef TRACE_HAVE_INTRINSICS
 702   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 703 #endif
 704   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 705   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 706   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 707   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 708   case vmIntrinsics::_getLength:                return inline_native_getLength();
 709   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 710   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 711   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 712   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 713   case vmIntrinsics::_Objects_checkIndex:       return inline_objects_checkIndex();
 714   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 715 
 716   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 717   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 718 
 719   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 720 
 721   case vmIntrinsics::_isInstance:
 722   case vmIntrinsics::_getModifiers:
 723   case vmIntrinsics::_isInterface:
 724   case vmIntrinsics::_isArray:
 725   case vmIntrinsics::_isPrimitive:
 726   case vmIntrinsics::_getSuperclass:
 727   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 728 
 729   case vmIntrinsics::_floatToRawIntBits:
 730   case vmIntrinsics::_floatToIntBits:
 731   case vmIntrinsics::_intBitsToFloat:
 732   case vmIntrinsics::_doubleToRawLongBits:
 733   case vmIntrinsics::_doubleToLongBits:
 734   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 735 
 736   case vmIntrinsics::_numberOfLeadingZeros_i:
 737   case vmIntrinsics::_numberOfLeadingZeros_l:
 738   case vmIntrinsics::_numberOfTrailingZeros_i:
 739   case vmIntrinsics::_numberOfTrailingZeros_l:
 740   case vmIntrinsics::_bitCount_i:
 741   case vmIntrinsics::_bitCount_l:
 742   case vmIntrinsics::_reverseBytes_i:
 743   case vmIntrinsics::_reverseBytes_l:
 744   case vmIntrinsics::_reverseBytes_s:
 745   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 746 
 747   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 748 
 749   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 750 
 751   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 752 
 753   case vmIntrinsics::_aescrypt_encryptBlock:
 754   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 755 
 756   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 757   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 758     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 759 
 760   case vmIntrinsics::_counterMode_AESCrypt:
 761     return inline_counterMode_AESCrypt(intrinsic_id());
 762 
 763   case vmIntrinsics::_sha_implCompress:
 764   case vmIntrinsics::_sha2_implCompress:
 765   case vmIntrinsics::_sha5_implCompress:
 766     return inline_sha_implCompress(intrinsic_id());
 767 
 768   case vmIntrinsics::_digestBase_implCompressMB:
 769     return inline_digestBase_implCompressMB(predicate);
 770 
 771   case vmIntrinsics::_multiplyToLen:
 772     return inline_multiplyToLen();
 773 
 774   case vmIntrinsics::_squareToLen:
 775     return inline_squareToLen();
 776 
 777   case vmIntrinsics::_mulAdd:
 778     return inline_mulAdd();
 779 
 780   case vmIntrinsics::_montgomeryMultiply:
 781     return inline_montgomeryMultiply();
 782   case vmIntrinsics::_montgomerySquare:
 783     return inline_montgomerySquare();
 784 
 785   case vmIntrinsics::_vectorizedMismatch:
 786     return inline_vectorizedMismatch();
 787 
 788   case vmIntrinsics::_ghash_processBlocks:
 789     return inline_ghash_processBlocks();
 790 
 791   case vmIntrinsics::_encodeISOArray:
 792   case vmIntrinsics::_encodeByteISOArray:
 793     return inline_encodeISOArray();
 794 
 795   case vmIntrinsics::_updateCRC32:
 796     return inline_updateCRC32();
 797   case vmIntrinsics::_updateBytesCRC32:
 798     return inline_updateBytesCRC32();
 799   case vmIntrinsics::_updateByteBufferCRC32:
 800     return inline_updateByteBufferCRC32();
 801 
 802   case vmIntrinsics::_updateBytesCRC32C:
 803     return inline_updateBytesCRC32C();
 804   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 805     return inline_updateDirectByteBufferCRC32C();
 806 
 807   case vmIntrinsics::_updateBytesAdler32:
 808     return inline_updateBytesAdler32();
 809   case vmIntrinsics::_updateByteBufferAdler32:
 810     return inline_updateByteBufferAdler32();
 811 
 812   case vmIntrinsics::_profileBoolean:
 813     return inline_profileBoolean();
 814   case vmIntrinsics::_isCompileConstant:
 815     return inline_isCompileConstant();
 816 
 817   case vmIntrinsics::_hasNegatives:
 818     return inline_hasNegatives();
 819 
 820   default:
 821     // If you get here, it may be that someone has added a new intrinsic
 822     // to the list in vmSymbols.hpp without implementing it here.
 823 #ifndef PRODUCT
 824     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 825       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 826                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 827     }
 828 #endif
 829     return false;
 830   }
 831 }
 832 
 833 Node* LibraryCallKit::try_to_predicate(int predicate) {
 834   if (!jvms()->has_method()) {
 835     // Root JVMState has a null method.
 836     assert(map()->memory()->Opcode() == Op_Parm, "");
 837     // Insert the memory aliasing node
 838     set_all_memory(reset_memory());
 839   }
 840   assert(merged_memory(), "");
 841 
 842   switch (intrinsic_id()) {
 843   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 844     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 845   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 846     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 847   case vmIntrinsics::_counterMode_AESCrypt:
 848     return inline_counterMode_AESCrypt_predicate();
 849   case vmIntrinsics::_digestBase_implCompressMB:
 850     return inline_digestBase_implCompressMB_predicate(predicate);
 851 
 852   default:
 853     // If you get here, it may be that someone has added a new intrinsic
 854     // to the list in vmSymbols.hpp without implementing it here.
 855 #ifndef PRODUCT
 856     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 857       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 858                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 859     }
 860 #endif
 861     Node* slow_ctl = control();
 862     set_control(top()); // No fast path instrinsic
 863     return slow_ctl;
 864   }
 865 }
 866 
 867 //------------------------------set_result-------------------------------
 868 // Helper function for finishing intrinsics.
 869 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 870   record_for_igvn(region);
 871   set_control(_gvn.transform(region));
 872   set_result( _gvn.transform(value));
 873   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 874 }
 875 
 876 //------------------------------generate_guard---------------------------
 877 // Helper function for generating guarded fast-slow graph structures.
 878 // The given 'test', if true, guards a slow path.  If the test fails
 879 // then a fast path can be taken.  (We generally hope it fails.)
 880 // In all cases, GraphKit::control() is updated to the fast path.
 881 // The returned value represents the control for the slow path.
 882 // The return value is never 'top'; it is either a valid control
 883 // or NULL if it is obvious that the slow path can never be taken.
 884 // Also, if region and the slow control are not NULL, the slow edge
 885 // is appended to the region.
 886 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 887   if (stopped()) {
 888     // Already short circuited.
 889     return NULL;
 890   }
 891 
 892   // Build an if node and its projections.
 893   // If test is true we take the slow path, which we assume is uncommon.
 894   if (_gvn.type(test) == TypeInt::ZERO) {
 895     // The slow branch is never taken.  No need to build this guard.
 896     return NULL;
 897   }
 898 
 899   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 900 
 901   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 902   if (if_slow == top()) {
 903     // The slow branch is never taken.  No need to build this guard.
 904     return NULL;
 905   }
 906 
 907   if (region != NULL)
 908     region->add_req(if_slow);
 909 
 910   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 911   set_control(if_fast);
 912 
 913   return if_slow;
 914 }
 915 
 916 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 917   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 918 }
 919 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 920   return generate_guard(test, region, PROB_FAIR);
 921 }
 922 
 923 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 924                                                      Node* *pos_index) {
 925   if (stopped())
 926     return NULL;                // already stopped
 927   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 928     return NULL;                // index is already adequately typed
 929   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 930   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 931   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 932   if (is_neg != NULL && pos_index != NULL) {
 933     // Emulate effect of Parse::adjust_map_after_if.
 934     Node* ccast = new CastIINode(index, TypeInt::POS);
 935     ccast->set_req(0, control());
 936     (*pos_index) = _gvn.transform(ccast);
 937   }
 938   return is_neg;
 939 }
 940 
 941 // Make sure that 'position' is a valid limit index, in [0..length].
 942 // There are two equivalent plans for checking this:
 943 //   A. (offset + copyLength)  unsigned<=  arrayLength
 944 //   B. offset  <=  (arrayLength - copyLength)
 945 // We require that all of the values above, except for the sum and
 946 // difference, are already known to be non-negative.
 947 // Plan A is robust in the face of overflow, if offset and copyLength
 948 // are both hugely positive.
 949 //
 950 // Plan B is less direct and intuitive, but it does not overflow at
 951 // all, since the difference of two non-negatives is always
 952 // representable.  Whenever Java methods must perform the equivalent
 953 // check they generally use Plan B instead of Plan A.
 954 // For the moment we use Plan A.
 955 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 956                                                   Node* subseq_length,
 957                                                   Node* array_length,
 958                                                   RegionNode* region) {
 959   if (stopped())
 960     return NULL;                // already stopped
 961   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 962   if (zero_offset && subseq_length->eqv_uncast(array_length))
 963     return NULL;                // common case of whole-array copy
 964   Node* last = subseq_length;
 965   if (!zero_offset)             // last += offset
 966     last = _gvn.transform(new AddINode(last, offset));
 967   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 968   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 969   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 970   return is_over;
 971 }
 972 
 973 // Emit range checks for the given String.value byte array
 974 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 975   if (stopped()) {
 976     return; // already stopped
 977   }
 978   RegionNode* bailout = new RegionNode(1);
 979   record_for_igvn(bailout);
 980   if (char_count) {
 981     // Convert char count to byte count
 982     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 983   }
 984 
 985   // Offset and count must not be negative
 986   generate_negative_guard(offset, bailout);
 987   generate_negative_guard(count, bailout);
 988   // Offset + count must not exceed length of array
 989   generate_limit_guard(offset, count, load_array_length(array), bailout);
 990 
 991   if (bailout->req() > 1) {
 992     PreserveJVMState pjvms(this);
 993     set_control(_gvn.transform(bailout));
 994     uncommon_trap(Deoptimization::Reason_intrinsic,
 995                   Deoptimization::Action_maybe_recompile);
 996   }
 997 }
 998 
 999 //--------------------------generate_current_thread--------------------
1000 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1001   ciKlass*    thread_klass = env()->Thread_klass();
1002   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1003   Node* thread = _gvn.transform(new ThreadLocalNode());
1004   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1005   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1006   tls_output = thread;
1007   return threadObj;
1008 }
1009 
1010 
1011 //------------------------------make_string_method_node------------------------
1012 // Helper method for String intrinsic functions. This version is called with
1013 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1014 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1015 // containing the lengths of str1 and str2.
1016 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1017   Node* result = NULL;
1018   switch (opcode) {
1019   case Op_StrIndexOf:
1020     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1021                                 str1_start, cnt1, str2_start, cnt2, ae);
1022     break;
1023   case Op_StrComp:
1024     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1025                              str1_start, cnt1, str2_start, cnt2, ae);
1026     break;
1027   case Op_StrEquals:
1028     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1029     // Use the constant length if there is one because optimized match rule may exist.
1030     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1031                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1032     break;
1033   default:
1034     ShouldNotReachHere();
1035     return NULL;
1036   }
1037 
1038   // All these intrinsics have checks.
1039   C->set_has_split_ifs(true); // Has chance for split-if optimization
1040 
1041   return _gvn.transform(result);
1042 }
1043 
1044 //------------------------------inline_string_compareTo------------------------
1045 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1046   Node* arg1 = argument(0);
1047   Node* arg2 = argument(1);
1048 
1049   // Get start addr and length of first argument
1050   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1051   Node* arg1_cnt    = load_array_length(arg1);
1052 
1053   // Get start addr and length of second argument
1054   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1055   Node* arg2_cnt    = load_array_length(arg2);
1056 
1057   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1058   set_result(result);
1059   return true;
1060 }
1061 
1062 //------------------------------inline_string_equals------------------------
1063 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1064   Node* arg1 = argument(0);
1065   Node* arg2 = argument(1);
1066 
1067   // paths (plus control) merge
1068   RegionNode* region = new RegionNode(3);
1069   Node* phi = new PhiNode(region, TypeInt::BOOL);
1070 
1071   if (!stopped()) {
1072     // Get start addr and length of first argument
1073     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1074     Node* arg1_cnt    = load_array_length(arg1);
1075 
1076     // Get start addr and length of second argument
1077     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1078     Node* arg2_cnt    = load_array_length(arg2);
1079 
1080     // Check for arg1_cnt != arg2_cnt
1081     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1082     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1083     Node* if_ne = generate_slow_guard(bol, NULL);
1084     if (if_ne != NULL) {
1085       phi->init_req(2, intcon(0));
1086       region->init_req(2, if_ne);
1087     }
1088 
1089     // Check for count == 0 is done by assembler code for StrEquals.
1090 
1091     if (!stopped()) {
1092       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1093       phi->init_req(1, equals);
1094       region->init_req(1, control());
1095     }
1096   }
1097 
1098   // post merge
1099   set_control(_gvn.transform(region));
1100   record_for_igvn(region);
1101 
1102   set_result(_gvn.transform(phi));
1103   return true;
1104 }
1105 
1106 //------------------------------inline_array_equals----------------------------
1107 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1108   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1109   Node* arg1 = argument(0);
1110   Node* arg2 = argument(1);
1111 
1112   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1113   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1114   return true;
1115 }
1116 
1117 //------------------------------inline_hasNegatives------------------------------
1118 bool LibraryCallKit::inline_hasNegatives() {
1119   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1120     return false;
1121   }
1122 
1123   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1124   // no receiver since it is static method
1125   Node* ba         = argument(0);
1126   Node* offset     = argument(1);
1127   Node* len        = argument(2);
1128 
1129   // Range checks
1130   generate_string_range_check(ba, offset, len, false);
1131   if (stopped()) {
1132     return true;
1133   }
1134   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1135   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1136   set_result(_gvn.transform(result));
1137   return true;
1138 }
1139 
1140 bool LibraryCallKit::inline_objects_checkIndex() {
1141   Node* index = argument(0);
1142   Node* length = argument(1);
1143   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1144     return false;
1145   }
1146 
1147   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1148   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1149 
1150   {
1151     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1152     uncommon_trap(Deoptimization::Reason_intrinsic,
1153                   Deoptimization::Action_make_not_entrant);
1154   }
1155 
1156   if (stopped()) {
1157     return false;
1158   }
1159 
1160   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1161   BoolTest::mask btest = BoolTest::lt;
1162   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1163   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1164   _gvn.set_type(rc, rc->Value(&_gvn));
1165   if (!rc_bool->is_Con()) {
1166     record_for_igvn(rc);
1167   }
1168   set_control(_gvn.transform(new IfTrueNode(rc)));
1169   {
1170     PreserveJVMState pjvms(this);
1171     set_control(_gvn.transform(new IfFalseNode(rc)));
1172     uncommon_trap(Deoptimization::Reason_range_check,
1173                   Deoptimization::Action_make_not_entrant);
1174   }
1175 
1176   if (stopped()) {
1177     return false;
1178   }
1179 
1180   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1181   result->set_req(0, control());
1182   result = _gvn.transform(result);
1183   set_result(result);
1184   replace_in_map(index, result);
1185   return true;
1186 }
1187 
1188 //------------------------------inline_string_indexOf------------------------
1189 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1190   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1191     return false;
1192   }
1193   Node* src = argument(0);
1194   Node* tgt = argument(1);
1195 
1196   // Make the merge point
1197   RegionNode* result_rgn = new RegionNode(4);
1198   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1199 
1200   // Get start addr and length of source string
1201   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1202   Node* src_count = load_array_length(src);
1203 
1204   // Get start addr and length of substring
1205   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1206   Node* tgt_count = load_array_length(tgt);
1207 
1208   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1209     // Divide src size by 2 if String is UTF16 encoded
1210     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1211   }
1212   if (ae == StrIntrinsicNode::UU) {
1213     // Divide substring size by 2 if String is UTF16 encoded
1214     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1215   }
1216 
1217   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1218   if (result != NULL) {
1219     result_phi->init_req(3, result);
1220     result_rgn->init_req(3, control());
1221   }
1222   set_control(_gvn.transform(result_rgn));
1223   record_for_igvn(result_rgn);
1224   set_result(_gvn.transform(result_phi));
1225 
1226   return true;
1227 }
1228 
1229 //-----------------------------inline_string_indexOf-----------------------
1230 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1231   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1232     return false;
1233   }
1234   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1235     return false;
1236   }
1237   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1238   Node* src         = argument(0); // byte[]
1239   Node* src_count   = argument(1); // char count
1240   Node* tgt         = argument(2); // byte[]
1241   Node* tgt_count   = argument(3); // char count
1242   Node* from_index  = argument(4); // char index
1243 
1244   // Multiply byte array index by 2 if String is UTF16 encoded
1245   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1246   src_count = _gvn.transform(new SubINode(src_count, from_index));
1247   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1248   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1249 
1250   // Range checks
1251   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1252   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1253   if (stopped()) {
1254     return true;
1255   }
1256 
1257   RegionNode* region = new RegionNode(5);
1258   Node* phi = new PhiNode(region, TypeInt::INT);
1259 
1260   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1261   if (result != NULL) {
1262     // The result is index relative to from_index if substring was found, -1 otherwise.
1263     // Generate code which will fold into cmove.
1264     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1265     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1266 
1267     Node* if_lt = generate_slow_guard(bol, NULL);
1268     if (if_lt != NULL) {
1269       // result == -1
1270       phi->init_req(3, result);
1271       region->init_req(3, if_lt);
1272     }
1273     if (!stopped()) {
1274       result = _gvn.transform(new AddINode(result, from_index));
1275       phi->init_req(4, result);
1276       region->init_req(4, control());
1277     }
1278   }
1279 
1280   set_control(_gvn.transform(region));
1281   record_for_igvn(region);
1282   set_result(_gvn.transform(phi));
1283 
1284   return true;
1285 }
1286 
1287 // Create StrIndexOfNode with fast path checks
1288 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1289                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1290   // Check for substr count > string count
1291   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1292   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1293   Node* if_gt = generate_slow_guard(bol, NULL);
1294   if (if_gt != NULL) {
1295     phi->init_req(1, intcon(-1));
1296     region->init_req(1, if_gt);
1297   }
1298   if (!stopped()) {
1299     // Check for substr count == 0
1300     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1301     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1302     Node* if_zero = generate_slow_guard(bol, NULL);
1303     if (if_zero != NULL) {
1304       phi->init_req(2, intcon(0));
1305       region->init_req(2, if_zero);
1306     }
1307   }
1308   if (!stopped()) {
1309     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1310   }
1311   return NULL;
1312 }
1313 
1314 //-----------------------------inline_string_indexOfChar-----------------------
1315 bool LibraryCallKit::inline_string_indexOfChar() {
1316   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1317     return false;
1318   }
1319   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1320     return false;
1321   }
1322   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1323   Node* src         = argument(0); // byte[]
1324   Node* tgt         = argument(1); // tgt is int ch
1325   Node* from_index  = argument(2);
1326   Node* max         = argument(3);
1327 
1328   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1329   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1330   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1331 
1332   // Range checks
1333   generate_string_range_check(src, src_offset, src_count, true);
1334   if (stopped()) {
1335     return true;
1336   }
1337 
1338   RegionNode* region = new RegionNode(3);
1339   Node* phi = new PhiNode(region, TypeInt::INT);
1340 
1341   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1342   C->set_has_split_ifs(true); // Has chance for split-if optimization
1343   _gvn.transform(result);
1344 
1345   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1346   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1347 
1348   Node* if_lt = generate_slow_guard(bol, NULL);
1349   if (if_lt != NULL) {
1350     // result == -1
1351     phi->init_req(2, result);
1352     region->init_req(2, if_lt);
1353   }
1354   if (!stopped()) {
1355     result = _gvn.transform(new AddINode(result, from_index));
1356     phi->init_req(1, result);
1357     region->init_req(1, control());
1358   }
1359   set_control(_gvn.transform(region));
1360   record_for_igvn(region);
1361   set_result(_gvn.transform(phi));
1362 
1363   return true;
1364 }
1365 //---------------------------inline_string_copy---------------------
1366 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1367 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1368 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1369 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1370 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1371 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1372 bool LibraryCallKit::inline_string_copy(bool compress) {
1373   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1374     return false;
1375   }
1376   int nargs = 5;  // 2 oops, 3 ints
1377   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1378 
1379   Node* src         = argument(0);
1380   Node* src_offset  = argument(1);
1381   Node* dst         = argument(2);
1382   Node* dst_offset  = argument(3);
1383   Node* length      = argument(4);
1384 
1385   // Check for allocation before we add nodes that would confuse
1386   // tightly_coupled_allocation()
1387   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1388 
1389   // Figure out the size and type of the elements we will be copying.
1390   const Type* src_type = src->Value(&_gvn);
1391   const Type* dst_type = dst->Value(&_gvn);
1392   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1393   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1394   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1395          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1396          "Unsupported array types for inline_string_copy");
1397 
1398   // Range checks
1399   generate_string_range_check(src, src_offset, length, compress && src_elem == T_BYTE);
1400   generate_string_range_check(dst, dst_offset, length, !compress && dst_elem == T_BYTE);
1401   if (stopped()) {
1402     return true;
1403   }
1404 
1405   // Convert char[] offsets to byte[] offsets
1406   if (compress && src_elem == T_BYTE) {
1407     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1408   } else if (!compress && dst_elem == T_BYTE) {
1409     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1410   }
1411 
1412   Node* src_start = array_element_address(src, src_offset, src_elem);
1413   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1414   // 'src_start' points to src array + scaled offset
1415   // 'dst_start' points to dst array + scaled offset
1416   Node* count = NULL;
1417   if (compress) {
1418     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1419   } else {
1420     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1421   }
1422 
1423   if (alloc != NULL) {
1424     if (alloc->maybe_set_complete(&_gvn)) {
1425       // "You break it, you buy it."
1426       InitializeNode* init = alloc->initialization();
1427       assert(init->is_complete(), "we just did this");
1428       init->set_complete_with_arraycopy();
1429       assert(dst->is_CheckCastPP(), "sanity");
1430       assert(dst->in(0)->in(0) == init, "dest pinned");
1431     }
1432     // Do not let stores that initialize this object be reordered with
1433     // a subsequent store that would make this object accessible by
1434     // other threads.
1435     // Record what AllocateNode this StoreStore protects so that
1436     // escape analysis can go from the MemBarStoreStoreNode to the
1437     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1438     // based on the escape status of the AllocateNode.
1439     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1440   }
1441   if (compress) {
1442     set_result(_gvn.transform(count));
1443   }
1444   return true;
1445 }
1446 
1447 #ifdef _LP64
1448 #define XTOP ,top() /*additional argument*/
1449 #else  //_LP64
1450 #define XTOP        /*no additional argument*/
1451 #endif //_LP64
1452 
1453 //------------------------inline_string_toBytesU--------------------------
1454 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1455 bool LibraryCallKit::inline_string_toBytesU() {
1456   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1457     return false;
1458   }
1459   // Get the arguments.
1460   Node* value     = argument(0);
1461   Node* offset    = argument(1);
1462   Node* length    = argument(2);
1463 
1464   Node* newcopy = NULL;
1465 
1466   // Set the original stack and the reexecute bit for the interpreter to reexecute
1467   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1468   { PreserveReexecuteState preexecs(this);
1469     jvms()->set_should_reexecute(true);
1470 
1471     // Check if a null path was taken unconditionally.
1472     value = null_check(value);
1473 
1474     RegionNode* bailout = new RegionNode(1);
1475     record_for_igvn(bailout);
1476 
1477     // Range checks
1478     generate_negative_guard(offset, bailout);
1479     generate_negative_guard(length, bailout);
1480     generate_limit_guard(offset, length, load_array_length(value), bailout);
1481     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1482     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1483 
1484     if (bailout->req() > 1) {
1485       PreserveJVMState pjvms(this);
1486       set_control(_gvn.transform(bailout));
1487       uncommon_trap(Deoptimization::Reason_intrinsic,
1488                     Deoptimization::Action_maybe_recompile);
1489     }
1490     if (stopped()) {
1491       return true;
1492     }
1493 
1494     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1495     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1496     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1497     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1498 
1499     // Calculate starting addresses.
1500     Node* src_start = array_element_address(value, offset, T_CHAR);
1501     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1502 
1503     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1504     const TypeInt* toffset = gvn().type(offset)->is_int();
1505     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1506 
1507     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1508     const char* copyfunc_name = "arraycopy";
1509     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1510     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1511                       OptoRuntime::fast_arraycopy_Type(),
1512                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1513                       src_start, dst_start, ConvI2X(length) XTOP);
1514     // Do not let reads from the cloned object float above the arraycopy.
1515     if (alloc != NULL) {
1516       if (alloc->maybe_set_complete(&_gvn)) {
1517         // "You break it, you buy it."
1518         InitializeNode* init = alloc->initialization();
1519         assert(init->is_complete(), "we just did this");
1520         init->set_complete_with_arraycopy();
1521         assert(newcopy->is_CheckCastPP(), "sanity");
1522         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1523       }
1524       // Do not let stores that initialize this object be reordered with
1525       // a subsequent store that would make this object accessible by
1526       // other threads.
1527       // Record what AllocateNode this StoreStore protects so that
1528       // escape analysis can go from the MemBarStoreStoreNode to the
1529       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1530       // based on the escape status of the AllocateNode.
1531       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1532     } else {
1533       insert_mem_bar(Op_MemBarCPUOrder);
1534     }
1535   } // original reexecute is set back here
1536 
1537   C->set_has_split_ifs(true); // Has chance for split-if optimization
1538   if (!stopped()) {
1539     set_result(newcopy);
1540   }
1541   return true;
1542 }
1543 
1544 //------------------------inline_string_getCharsU--------------------------
1545 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1546 bool LibraryCallKit::inline_string_getCharsU() {
1547   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1548     return false;
1549   }
1550 
1551   // Get the arguments.
1552   Node* src       = argument(0);
1553   Node* src_begin = argument(1);
1554   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1555   Node* dst       = argument(3);
1556   Node* dst_begin = argument(4);
1557 
1558   // Check for allocation before we add nodes that would confuse
1559   // tightly_coupled_allocation()
1560   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1561 
1562   // Check if a null path was taken unconditionally.
1563   src = null_check(src);
1564   dst = null_check(dst);
1565   if (stopped()) {
1566     return true;
1567   }
1568 
1569   // Get length and convert char[] offset to byte[] offset
1570   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1571   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1572 
1573   // Range checks
1574   generate_string_range_check(src, src_begin, length, true);
1575   generate_string_range_check(dst, dst_begin, length, false);
1576   if (stopped()) {
1577     return true;
1578   }
1579 
1580   if (!stopped()) {
1581     // Calculate starting addresses.
1582     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1583     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1584 
1585     // Check if array addresses are aligned to HeapWordSize
1586     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1587     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1588     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1589                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1590 
1591     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1592     const char* copyfunc_name = "arraycopy";
1593     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1594     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1595                       OptoRuntime::fast_arraycopy_Type(),
1596                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1597                       src_start, dst_start, ConvI2X(length) XTOP);
1598     // Do not let reads from the cloned object float above the arraycopy.
1599     if (alloc != NULL) {
1600       if (alloc->maybe_set_complete(&_gvn)) {
1601         // "You break it, you buy it."
1602         InitializeNode* init = alloc->initialization();
1603         assert(init->is_complete(), "we just did this");
1604         init->set_complete_with_arraycopy();
1605         assert(dst->is_CheckCastPP(), "sanity");
1606         assert(dst->in(0)->in(0) == init, "dest pinned");
1607       }
1608       // Do not let stores that initialize this object be reordered with
1609       // a subsequent store that would make this object accessible by
1610       // other threads.
1611       // Record what AllocateNode this StoreStore protects so that
1612       // escape analysis can go from the MemBarStoreStoreNode to the
1613       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1614       // based on the escape status of the AllocateNode.
1615       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1616     } else {
1617       insert_mem_bar(Op_MemBarCPUOrder);
1618     }
1619   }
1620 
1621   C->set_has_split_ifs(true); // Has chance for split-if optimization
1622   return true;
1623 }
1624 
1625 //----------------------inline_string_char_access----------------------------
1626 // Store/Load char to/from byte[] array.
1627 // static void StringUTF16.putChar(byte[] val, int index, int c)
1628 // static char StringUTF16.getChar(byte[] val, int index)
1629 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1630   Node* value  = argument(0);
1631   Node* index  = argument(1);
1632   Node* ch = is_store ? argument(2) : NULL;
1633 
1634   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1635   // correctly requires matched array shapes.
1636   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1637           "sanity: byte[] and char[] bases agree");
1638   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1639           "sanity: byte[] and char[] scales agree");
1640 
1641   // Bail when getChar over constants is requested: constant folding would
1642   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1643   // Java method would constant fold nicely instead.
1644   if (!is_store && value->is_Con() && index->is_Con()) {
1645     return false;
1646   }
1647 
1648   Node* adr = array_element_address(value, index, T_CHAR);
1649   if (is_store) {
1650     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1651                            false, false, true /* mismatched */);
1652   } else {
1653     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1654                    LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1655     set_result(ch);
1656   }
1657   return true;
1658 }
1659 
1660 //--------------------------round_double_node--------------------------------
1661 // Round a double node if necessary.
1662 Node* LibraryCallKit::round_double_node(Node* n) {
1663   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1664     n = _gvn.transform(new RoundDoubleNode(0, n));
1665   return n;
1666 }
1667 
1668 //------------------------------inline_math-----------------------------------
1669 // public static double Math.abs(double)
1670 // public static double Math.sqrt(double)
1671 // public static double Math.log(double)
1672 // public static double Math.log10(double)
1673 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1674   Node* arg = round_double_node(argument(0));
1675   Node* n = NULL;
1676   switch (id) {
1677   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1678   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1679   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1680   default:  fatal_unexpected_iid(id);  break;
1681   }
1682   set_result(_gvn.transform(n));
1683   return true;
1684 }
1685 
1686 //------------------------------inline_trig----------------------------------
1687 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1688 // argument reduction which will turn into a fast/slow diamond.
1689 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1690   Node* arg = round_double_node(argument(0));
1691   Node* n = NULL;
1692 
1693   switch (id) {
1694   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1695   default:  fatal_unexpected_iid(id);  break;
1696   }
1697   n = _gvn.transform(n);
1698 
1699   // Rounding required?  Check for argument reduction!
1700   if (Matcher::strict_fp_requires_explicit_rounding) {
1701     static const double     pi_4 =  0.7853981633974483;
1702     static const double neg_pi_4 = -0.7853981633974483;
1703     // pi/2 in 80-bit extended precision
1704     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1705     // -pi/2 in 80-bit extended precision
1706     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1707     // Cutoff value for using this argument reduction technique
1708     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1709     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1710 
1711     // Pseudocode for sin:
1712     // if (x <= Math.PI / 4.0) {
1713     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1714     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1715     // } else {
1716     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1717     // }
1718     // return StrictMath.sin(x);
1719 
1720     // Pseudocode for cos:
1721     // if (x <= Math.PI / 4.0) {
1722     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1723     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1724     // } else {
1725     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1726     // }
1727     // return StrictMath.cos(x);
1728 
1729     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1730     // requires a special machine instruction to load it.  Instead we'll try
1731     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1732     // probably do the math inside the SIN encoding.
1733 
1734     // Make the merge point
1735     RegionNode* r = new RegionNode(3);
1736     Node* phi = new PhiNode(r, Type::DOUBLE);
1737 
1738     // Flatten arg so we need only 1 test
1739     Node *abs = _gvn.transform(new AbsDNode(arg));
1740     // Node for PI/4 constant
1741     Node *pi4 = makecon(TypeD::make(pi_4));
1742     // Check PI/4 : abs(arg)
1743     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1744     // Check: If PI/4 < abs(arg) then go slow
1745     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1746     // Branch either way
1747     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1748     set_control(opt_iff(r,iff));
1749 
1750     // Set fast path result
1751     phi->init_req(2, n);
1752 
1753     // Slow path - non-blocking leaf call
1754     Node* call = NULL;
1755     switch (id) {
1756     case vmIntrinsics::_dtan:
1757       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1758                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1759                                "Tan", NULL, arg, top());
1760       break;
1761     }
1762     assert(control()->in(0) == call, "");
1763     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1764     r->init_req(1, control());
1765     phi->init_req(1, slow_result);
1766 
1767     // Post-merge
1768     set_control(_gvn.transform(r));
1769     record_for_igvn(r);
1770     n = _gvn.transform(phi);
1771 
1772     C->set_has_split_ifs(true); // Has chance for split-if optimization
1773   }
1774   set_result(n);
1775   return true;
1776 }
1777 
1778 //------------------------------runtime_math-----------------------------
1779 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1780   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1781          "must be (DD)D or (D)D type");
1782 
1783   // Inputs
1784   Node* a = round_double_node(argument(0));
1785   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1786 
1787   const TypePtr* no_memory_effects = NULL;
1788   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1789                                  no_memory_effects,
1790                                  a, top(), b, b ? top() : NULL);
1791   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1792 #ifdef ASSERT
1793   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1794   assert(value_top == top(), "second value must be top");
1795 #endif
1796 
1797   set_result(value);
1798   return true;
1799 }
1800 
1801 //------------------------------inline_math_native-----------------------------
1802 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1803 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1804   switch (id) {
1805     // These intrinsics are not properly supported on all hardware
1806   case vmIntrinsics::_dsin:
1807     return StubRoutines::dsin() != NULL ?
1808       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1809       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1810   case vmIntrinsics::_dcos:
1811     return StubRoutines::dcos() != NULL ?
1812       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1813       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1814   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1815     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1816 
1817   case vmIntrinsics::_dlog:
1818     return StubRoutines::dlog() != NULL ?
1819       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1820       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1821   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1822     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1823 
1824     // These intrinsics are supported on all hardware
1825   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1826   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1827 
1828   case vmIntrinsics::_dexp:
1829     return StubRoutines::dexp() != NULL ?
1830       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1831       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1832   case vmIntrinsics::_dpow:
1833     return StubRoutines::dpow() != NULL ?
1834       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1835       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1836 #undef FN_PTR
1837 
1838    // These intrinsics are not yet correctly implemented
1839   case vmIntrinsics::_datan2:
1840     return false;
1841 
1842   default:
1843     fatal_unexpected_iid(id);
1844     return false;
1845   }
1846 }
1847 
1848 static bool is_simple_name(Node* n) {
1849   return (n->req() == 1         // constant
1850           || (n->is_Type() && n->as_Type()->type()->singleton())
1851           || n->is_Proj()       // parameter or return value
1852           || n->is_Phi()        // local of some sort
1853           );
1854 }
1855 
1856 //----------------------------inline_notify-----------------------------------*
1857 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1858   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1859   address func;
1860   if (id == vmIntrinsics::_notify) {
1861     func = OptoRuntime::monitor_notify_Java();
1862   } else {
1863     func = OptoRuntime::monitor_notifyAll_Java();
1864   }
1865   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1866   make_slow_call_ex(call, env()->Throwable_klass(), false);
1867   return true;
1868 }
1869 
1870 
1871 //----------------------------inline_min_max-----------------------------------
1872 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1873   set_result(generate_min_max(id, argument(0), argument(1)));
1874   return true;
1875 }
1876 
1877 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1878   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1879   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1880   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1881   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1882 
1883   {
1884     PreserveJVMState pjvms(this);
1885     PreserveReexecuteState preexecs(this);
1886     jvms()->set_should_reexecute(true);
1887 
1888     set_control(slow_path);
1889     set_i_o(i_o());
1890 
1891     uncommon_trap(Deoptimization::Reason_intrinsic,
1892                   Deoptimization::Action_none);
1893   }
1894 
1895   set_control(fast_path);
1896   set_result(math);
1897 }
1898 
1899 template <typename OverflowOp>
1900 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1901   typedef typename OverflowOp::MathOp MathOp;
1902 
1903   MathOp* mathOp = new MathOp(arg1, arg2);
1904   Node* operation = _gvn.transform( mathOp );
1905   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1906   inline_math_mathExact(operation, ofcheck);
1907   return true;
1908 }
1909 
1910 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1911   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1912 }
1913 
1914 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1915   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1916 }
1917 
1918 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1919   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1920 }
1921 
1922 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1923   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1924 }
1925 
1926 bool LibraryCallKit::inline_math_negateExactI() {
1927   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1928 }
1929 
1930 bool LibraryCallKit::inline_math_negateExactL() {
1931   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1932 }
1933 
1934 bool LibraryCallKit::inline_math_multiplyExactI() {
1935   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1936 }
1937 
1938 bool LibraryCallKit::inline_math_multiplyExactL() {
1939   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1940 }
1941 
1942 Node*
1943 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1944   // These are the candidate return value:
1945   Node* xvalue = x0;
1946   Node* yvalue = y0;
1947 
1948   if (xvalue == yvalue) {
1949     return xvalue;
1950   }
1951 
1952   bool want_max = (id == vmIntrinsics::_max);
1953 
1954   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1955   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1956   if (txvalue == NULL || tyvalue == NULL)  return top();
1957   // This is not really necessary, but it is consistent with a
1958   // hypothetical MaxINode::Value method:
1959   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1960 
1961   // %%% This folding logic should (ideally) be in a different place.
1962   // Some should be inside IfNode, and there to be a more reliable
1963   // transformation of ?: style patterns into cmoves.  We also want
1964   // more powerful optimizations around cmove and min/max.
1965 
1966   // Try to find a dominating comparison of these guys.
1967   // It can simplify the index computation for Arrays.copyOf
1968   // and similar uses of System.arraycopy.
1969   // First, compute the normalized version of CmpI(x, y).
1970   int   cmp_op = Op_CmpI;
1971   Node* xkey = xvalue;
1972   Node* ykey = yvalue;
1973   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1974   if (ideal_cmpxy->is_Cmp()) {
1975     // E.g., if we have CmpI(length - offset, count),
1976     // it might idealize to CmpI(length, count + offset)
1977     cmp_op = ideal_cmpxy->Opcode();
1978     xkey = ideal_cmpxy->in(1);
1979     ykey = ideal_cmpxy->in(2);
1980   }
1981 
1982   // Start by locating any relevant comparisons.
1983   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1984   Node* cmpxy = NULL;
1985   Node* cmpyx = NULL;
1986   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1987     Node* cmp = start_from->fast_out(k);
1988     if (cmp->outcnt() > 0 &&            // must have prior uses
1989         cmp->in(0) == NULL &&           // must be context-independent
1990         cmp->Opcode() == cmp_op) {      // right kind of compare
1991       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1992       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1993     }
1994   }
1995 
1996   const int NCMPS = 2;
1997   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1998   int cmpn;
1999   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2000     if (cmps[cmpn] != NULL)  break;     // find a result
2001   }
2002   if (cmpn < NCMPS) {
2003     // Look for a dominating test that tells us the min and max.
2004     int depth = 0;                // Limit search depth for speed
2005     Node* dom = control();
2006     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2007       if (++depth >= 100)  break;
2008       Node* ifproj = dom;
2009       if (!ifproj->is_Proj())  continue;
2010       Node* iff = ifproj->in(0);
2011       if (!iff->is_If())  continue;
2012       Node* bol = iff->in(1);
2013       if (!bol->is_Bool())  continue;
2014       Node* cmp = bol->in(1);
2015       if (cmp == NULL)  continue;
2016       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2017         if (cmps[cmpn] == cmp)  break;
2018       if (cmpn == NCMPS)  continue;
2019       BoolTest::mask btest = bol->as_Bool()->_test._test;
2020       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2021       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2022       // At this point, we know that 'x btest y' is true.
2023       switch (btest) {
2024       case BoolTest::eq:
2025         // They are proven equal, so we can collapse the min/max.
2026         // Either value is the answer.  Choose the simpler.
2027         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2028           return yvalue;
2029         return xvalue;
2030       case BoolTest::lt:          // x < y
2031       case BoolTest::le:          // x <= y
2032         return (want_max ? yvalue : xvalue);
2033       case BoolTest::gt:          // x > y
2034       case BoolTest::ge:          // x >= y
2035         return (want_max ? xvalue : yvalue);
2036       }
2037     }
2038   }
2039 
2040   // We failed to find a dominating test.
2041   // Let's pick a test that might GVN with prior tests.
2042   Node*          best_bol   = NULL;
2043   BoolTest::mask best_btest = BoolTest::illegal;
2044   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2045     Node* cmp = cmps[cmpn];
2046     if (cmp == NULL)  continue;
2047     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2048       Node* bol = cmp->fast_out(j);
2049       if (!bol->is_Bool())  continue;
2050       BoolTest::mask btest = bol->as_Bool()->_test._test;
2051       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2052       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2053       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2054         best_bol   = bol->as_Bool();
2055         best_btest = btest;
2056       }
2057     }
2058   }
2059 
2060   Node* answer_if_true  = NULL;
2061   Node* answer_if_false = NULL;
2062   switch (best_btest) {
2063   default:
2064     if (cmpxy == NULL)
2065       cmpxy = ideal_cmpxy;
2066     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2067     // and fall through:
2068   case BoolTest::lt:          // x < y
2069   case BoolTest::le:          // x <= y
2070     answer_if_true  = (want_max ? yvalue : xvalue);
2071     answer_if_false = (want_max ? xvalue : yvalue);
2072     break;
2073   case BoolTest::gt:          // x > y
2074   case BoolTest::ge:          // x >= y
2075     answer_if_true  = (want_max ? xvalue : yvalue);
2076     answer_if_false = (want_max ? yvalue : xvalue);
2077     break;
2078   }
2079 
2080   jint hi, lo;
2081   if (want_max) {
2082     // We can sharpen the minimum.
2083     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2084     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2085   } else {
2086     // We can sharpen the maximum.
2087     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2088     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2089   }
2090 
2091   // Use a flow-free graph structure, to avoid creating excess control edges
2092   // which could hinder other optimizations.
2093   // Since Math.min/max is often used with arraycopy, we want
2094   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2095   Node* cmov = CMoveNode::make(NULL, best_bol,
2096                                answer_if_false, answer_if_true,
2097                                TypeInt::make(lo, hi, widen));
2098 
2099   return _gvn.transform(cmov);
2100 
2101   /*
2102   // This is not as desirable as it may seem, since Min and Max
2103   // nodes do not have a full set of optimizations.
2104   // And they would interfere, anyway, with 'if' optimizations
2105   // and with CMoveI canonical forms.
2106   switch (id) {
2107   case vmIntrinsics::_min:
2108     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2109   case vmIntrinsics::_max:
2110     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2111   default:
2112     ShouldNotReachHere();
2113   }
2114   */
2115 }
2116 
2117 inline int
2118 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2119   const TypePtr* base_type = TypePtr::NULL_PTR;
2120   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2121   if (base_type == NULL) {
2122     // Unknown type.
2123     return Type::AnyPtr;
2124   } else if (base_type == TypePtr::NULL_PTR) {
2125     // Since this is a NULL+long form, we have to switch to a rawptr.
2126     base   = _gvn.transform(new CastX2PNode(offset));
2127     offset = MakeConX(0);
2128     return Type::RawPtr;
2129   } else if (base_type->base() == Type::RawPtr) {
2130     return Type::RawPtr;
2131   } else if (base_type->isa_oopptr()) {
2132     // Base is never null => always a heap address.
2133     if (base_type->ptr() == TypePtr::NotNull) {
2134       return Type::OopPtr;
2135     }
2136     // Offset is small => always a heap address.
2137     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2138     if (offset_type != NULL &&
2139         base_type->offset() == 0 &&     // (should always be?)
2140         offset_type->_lo >= 0 &&
2141         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2142       return Type::OopPtr;
2143     }
2144     // Otherwise, it might either be oop+off or NULL+addr.
2145     return Type::AnyPtr;
2146   } else {
2147     // No information:
2148     return Type::AnyPtr;
2149   }
2150 }
2151 
2152 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2153   int kind = classify_unsafe_addr(base, offset);
2154   if (kind == Type::RawPtr) {
2155     return basic_plus_adr(top(), base, offset);
2156   } else {
2157     return basic_plus_adr(base, offset);
2158   }
2159 }
2160 
2161 //--------------------------inline_number_methods-----------------------------
2162 // inline int     Integer.numberOfLeadingZeros(int)
2163 // inline int        Long.numberOfLeadingZeros(long)
2164 //
2165 // inline int     Integer.numberOfTrailingZeros(int)
2166 // inline int        Long.numberOfTrailingZeros(long)
2167 //
2168 // inline int     Integer.bitCount(int)
2169 // inline int        Long.bitCount(long)
2170 //
2171 // inline char  Character.reverseBytes(char)
2172 // inline short     Short.reverseBytes(short)
2173 // inline int     Integer.reverseBytes(int)
2174 // inline long       Long.reverseBytes(long)
2175 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2176   Node* arg = argument(0);
2177   Node* n = NULL;
2178   switch (id) {
2179   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2180   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2181   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2182   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2183   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2184   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2185   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2186   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2187   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2188   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2189   default:  fatal_unexpected_iid(id);  break;
2190   }
2191   set_result(_gvn.transform(n));
2192   return true;
2193 }
2194 
2195 //----------------------------inline_unsafe_access----------------------------
2196 
2197 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2198 
2199 // Helper that guards and inserts a pre-barrier.
2200 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2201                                         Node* pre_val, bool need_mem_bar) {
2202   // We could be accessing the referent field of a reference object. If so, when G1
2203   // is enabled, we need to log the value in the referent field in an SATB buffer.
2204   // This routine performs some compile time filters and generates suitable
2205   // runtime filters that guard the pre-barrier code.
2206   // Also add memory barrier for non volatile load from the referent field
2207   // to prevent commoning of loads across safepoint.
2208   if (!UseG1GC && !need_mem_bar)
2209     return;
2210 
2211   // Some compile time checks.
2212 
2213   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2214   const TypeX* otype = offset->find_intptr_t_type();
2215   if (otype != NULL && otype->is_con() &&
2216       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2217     // Constant offset but not the reference_offset so just return
2218     return;
2219   }
2220 
2221   // We only need to generate the runtime guards for instances.
2222   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2223   if (btype != NULL) {
2224     if (btype->isa_aryptr()) {
2225       // Array type so nothing to do
2226       return;
2227     }
2228 
2229     const TypeInstPtr* itype = btype->isa_instptr();
2230     if (itype != NULL) {
2231       // Can the klass of base_oop be statically determined to be
2232       // _not_ a sub-class of Reference and _not_ Object?
2233       ciKlass* klass = itype->klass();
2234       if ( klass->is_loaded() &&
2235           !klass->is_subtype_of(env()->Reference_klass()) &&
2236           !env()->Object_klass()->is_subtype_of(klass)) {
2237         return;
2238       }
2239     }
2240   }
2241 
2242   // The compile time filters did not reject base_oop/offset so
2243   // we need to generate the following runtime filters
2244   //
2245   // if (offset == java_lang_ref_Reference::_reference_offset) {
2246   //   if (instance_of(base, java.lang.ref.Reference)) {
2247   //     pre_barrier(_, pre_val, ...);
2248   //   }
2249   // }
2250 
2251   float likely   = PROB_LIKELY(  0.999);
2252   float unlikely = PROB_UNLIKELY(0.999);
2253 
2254   IdealKit ideal(this);
2255 #define __ ideal.
2256 
2257   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2258 
2259   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2260       // Update graphKit memory and control from IdealKit.
2261       sync_kit(ideal);
2262 
2263       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2264       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2265 
2266       // Update IdealKit memory and control from graphKit.
2267       __ sync_kit(this);
2268 
2269       Node* one = __ ConI(1);
2270       // is_instof == 0 if base_oop == NULL
2271       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2272 
2273         // Update graphKit from IdeakKit.
2274         sync_kit(ideal);
2275 
2276         // Use the pre-barrier to record the value in the referent field
2277         pre_barrier(false /* do_load */,
2278                     __ ctrl(),
2279                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2280                     pre_val /* pre_val */,
2281                     T_OBJECT);
2282         if (need_mem_bar) {
2283           // Add memory barrier to prevent commoning reads from this field
2284           // across safepoint since GC can change its value.
2285           insert_mem_bar(Op_MemBarCPUOrder);
2286         }
2287         // Update IdealKit from graphKit.
2288         __ sync_kit(this);
2289 
2290       } __ end_if(); // _ref_type != ref_none
2291   } __ end_if(); // offset == referent_offset
2292 
2293   // Final sync IdealKit and GraphKit.
2294   final_sync(ideal);
2295 #undef __
2296 }
2297 
2298 
2299 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2300   // Attempt to infer a sharper value type from the offset and base type.
2301   ciKlass* sharpened_klass = NULL;
2302 
2303   // See if it is an instance field, with an object type.
2304   if (alias_type->field() != NULL) {
2305     assert(!is_native_ptr, "native pointer op cannot use a java address");
2306     if (alias_type->field()->type()->is_klass()) {
2307       sharpened_klass = alias_type->field()->type()->as_klass();
2308     }
2309   }
2310 
2311   // See if it is a narrow oop array.
2312   if (adr_type->isa_aryptr()) {
2313     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2314       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2315       if (elem_type != NULL) {
2316         sharpened_klass = elem_type->klass();
2317       }
2318     }
2319   }
2320 
2321   // The sharpened class might be unloaded if there is no class loader
2322   // contraint in place.
2323   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2324     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2325 
2326 #ifndef PRODUCT
2327     if (C->print_intrinsics() || C->print_inlining()) {
2328       tty->print("  from base type: ");  adr_type->dump();
2329       tty->print("  sharpened value: ");  tjp->dump();
2330     }
2331 #endif
2332     // Sharpen the value type.
2333     return tjp;
2334   }
2335   return NULL;
2336 }
2337 
2338 bool LibraryCallKit::inline_unsafe_access(const bool is_native_ptr, bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2339   if (callee()->is_static())  return false;  // caller must have the capability!
2340   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2341   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2342 
2343 #ifndef PRODUCT
2344   {
2345     ResourceMark rm;
2346     // Check the signatures.
2347     ciSignature* sig = callee()->signature();
2348 #ifdef ASSERT
2349     if (!is_store) {
2350       // Object getObject(Object base, int/long offset), etc.
2351       BasicType rtype = sig->return_type()->basic_type();
2352       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2353           rtype = T_ADDRESS;  // it is really a C void*
2354       assert(rtype == type, "getter must return the expected value");
2355       if (!is_native_ptr) {
2356         assert(sig->count() == 2, "oop getter has 2 arguments");
2357         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2358         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2359       } else {
2360         assert(sig->count() == 1, "native getter has 1 argument");
2361         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2362       }
2363     } else {
2364       // void putObject(Object base, int/long offset, Object x), etc.
2365       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2366       if (!is_native_ptr) {
2367         assert(sig->count() == 3, "oop putter has 3 arguments");
2368         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2369         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2370       } else {
2371         assert(sig->count() == 2, "native putter has 2 arguments");
2372         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2373       }
2374       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2375       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2376         vtype = T_ADDRESS;  // it is really a C void*
2377       assert(vtype == type, "putter must accept the expected value");
2378     }
2379 #endif // ASSERT
2380  }
2381 #endif //PRODUCT
2382 
2383   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2384 
2385   Node* receiver = argument(0);  // type: oop
2386 
2387   // Build address expression.
2388   Node* adr;
2389   Node* heap_base_oop = top();
2390   Node* offset = top();
2391   Node* val;
2392 
2393   if (!is_native_ptr) {
2394     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2395     Node* base = argument(1);  // type: oop
2396     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2397     offset = argument(2);  // type: long
2398     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2399     // to be plain byte offsets, which are also the same as those accepted
2400     // by oopDesc::field_base.
2401     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2402            "fieldOffset must be byte-scaled");
2403     // 32-bit machines ignore the high half!
2404     offset = ConvL2X(offset);
2405     adr = make_unsafe_address(base, offset);
2406     heap_base_oop = base;
2407     val = is_store ? argument(4) : NULL;
2408   } else {
2409     Node* ptr = argument(1);  // type: long
2410     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2411     adr = make_unsafe_address(NULL, ptr);
2412     val = is_store ? argument(3) : NULL;
2413   }
2414 
2415   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2416 
2417   // First guess at the value type.
2418   const Type *value_type = Type::get_const_basic_type(type);
2419 
2420   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2421   // there was not enough information to nail it down.
2422   Compile::AliasType* alias_type = C->alias_type(adr_type);
2423   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2424 
2425   // We will need memory barriers unless we can determine a unique
2426   // alias category for this reference.  (Note:  If for some reason
2427   // the barriers get omitted and the unsafe reference begins to "pollute"
2428   // the alias analysis of the rest of the graph, either Compile::can_alias
2429   // or Compile::must_alias will throw a diagnostic assert.)
2430   bool need_mem_bar;
2431   switch (kind) {
2432       case Relaxed:
2433           need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2434           break;
2435       case Opaque:
2436           // Opaque uses CPUOrder membars for protection against code movement.
2437       case Acquire:
2438       case Release:
2439       case Volatile:
2440           need_mem_bar = true;
2441           break;
2442       default:
2443           ShouldNotReachHere();
2444   }
2445 
2446   // Some accesses require access atomicity for all types, notably longs and doubles.
2447   // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2448   bool requires_atomic_access = false;
2449   switch (kind) {
2450       case Relaxed:
2451       case Opaque:
2452           requires_atomic_access = AlwaysAtomicAccesses;
2453           break;
2454       case Acquire:
2455       case Release:
2456       case Volatile:
2457           requires_atomic_access = true;
2458           break;
2459       default:
2460           ShouldNotReachHere();
2461   }
2462 
2463   // Figure out the memory ordering.
2464   // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2465   MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2466 
2467   // If we are reading the value of the referent field of a Reference
2468   // object (either by using Unsafe directly or through reflection)
2469   // then, if G1 is enabled, we need to record the referent in an
2470   // SATB log buffer using the pre-barrier mechanism.
2471   // Also we need to add memory barrier to prevent commoning reads
2472   // from this field across safepoint since GC can change its value.
2473   bool need_read_barrier = !is_native_ptr && !is_store &&
2474                            offset != top() && heap_base_oop != top();
2475 
2476   if (!is_store && type == T_OBJECT) {
2477     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2478     if (tjp != NULL) {
2479       value_type = tjp;
2480     }
2481   }
2482 
2483   receiver = null_check(receiver);
2484   if (stopped()) {
2485     return true;
2486   }
2487   // Heap pointers get a null-check from the interpreter,
2488   // as a courtesy.  However, this is not guaranteed by Unsafe,
2489   // and it is not possible to fully distinguish unintended nulls
2490   // from intended ones in this API.
2491 
2492   // We need to emit leading and trailing CPU membars (see below) in
2493   // addition to memory membars for special access modes. This is a little
2494   // too strong, but avoids the need to insert per-alias-type
2495   // volatile membars (for stores; compare Parse::do_put_xxx), which
2496   // we cannot do effectively here because we probably only have a
2497   // rough approximation of type.
2498 
2499   switch(kind) {
2500     case Relaxed:
2501     case Opaque:
2502     case Acquire:
2503       break;
2504     case Release:
2505     case Volatile:
2506       if (is_store) {
2507         insert_mem_bar(Op_MemBarRelease);
2508       } else {
2509         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2510           insert_mem_bar(Op_MemBarVolatile);
2511         }
2512       }
2513       break;
2514     default:
2515       ShouldNotReachHere();
2516   }
2517 
2518   // Memory barrier to prevent normal and 'unsafe' accesses from
2519   // bypassing each other.  Happens after null checks, so the
2520   // exception paths do not take memory state from the memory barrier,
2521   // so there's no problems making a strong assert about mixing users
2522   // of safe & unsafe memory.
2523   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2524 
2525   assert(alias_type->adr_type() == TypeRawPtr::BOTTOM || alias_type->adr_type() == TypeOopPtr::BOTTOM ||
2526          alias_type->field() != NULL || alias_type->element() != NULL, "field, array element or unknown");
2527   bool mismatched = false;
2528   if (alias_type->element() != NULL || alias_type->field() != NULL) {
2529     BasicType bt;
2530     if (alias_type->element() != NULL) {
2531       // Use address type to get the element type. Alias type doesn't provide
2532       // enough information (e.g., doesn't differentiate between byte[] and boolean[]).
2533       const Type* element = adr_type->is_aryptr()->elem();
2534       bt = element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
2535     } else {
2536       bt = alias_type->field()->layout_type();
2537     }
2538     if (bt == T_ARRAY) {
2539       // accessing an array field with getObject is not a mismatch
2540       bt = T_OBJECT;
2541     }
2542     if (bt != type) {
2543       mismatched = true;
2544     }
2545   }
2546   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2547 
2548   if (!is_store) {
2549     Node* p = NULL;
2550     // Try to constant fold a load from a constant field
2551     ciField* field = alias_type->field();
2552     if (heap_base_oop != top() &&
2553         field != NULL && field->is_constant() && !mismatched) {
2554       // final or stable field
2555       const Type* con_type = Type::make_constant(alias_type->field(), heap_base_oop);
2556       if (con_type != NULL) {
2557         p = makecon(con_type);
2558       }
2559     }
2560     if (p == NULL) {
2561       // To be valid, unsafe loads may depend on other conditions than
2562       // the one that guards them: pin the Load node
2563       p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, requires_atomic_access, unaligned, mismatched);
2564       // load value
2565       switch (type) {
2566       case T_BOOLEAN:
2567       case T_CHAR:
2568       case T_BYTE:
2569       case T_SHORT:
2570       case T_INT:
2571       case T_LONG:
2572       case T_FLOAT:
2573       case T_DOUBLE:
2574         break;
2575       case T_OBJECT:
2576         if (need_read_barrier) {
2577           // We do not require a mem bar inside pre_barrier if need_mem_bar
2578           // is set: the barriers would be emitted by us.
2579           insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2580         }
2581         break;
2582       case T_ADDRESS:
2583         // Cast to an int type.
2584         p = _gvn.transform(new CastP2XNode(NULL, p));
2585         p = ConvX2UL(p);
2586         break;
2587       default:
2588         fatal("unexpected type %d: %s", type, type2name(type));
2589         break;
2590       }
2591     }
2592     // The load node has the control of the preceding MemBarCPUOrder.  All
2593     // following nodes will have the control of the MemBarCPUOrder inserted at
2594     // the end of this method.  So, pushing the load onto the stack at a later
2595     // point is fine.
2596     set_result(p);
2597   } else {
2598     // place effect of store into memory
2599     switch (type) {
2600     case T_DOUBLE:
2601       val = dstore_rounding(val);
2602       break;
2603     case T_ADDRESS:
2604       // Repackage the long as a pointer.
2605       val = ConvL2X(val);
2606       val = _gvn.transform(new CastX2PNode(val));
2607       break;
2608     }
2609 
2610     if (type != T_OBJECT) {
2611       (void) store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2612     } else {
2613       // Possibly an oop being stored to Java heap or native memory
2614       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2615         // oop to Java heap.
2616         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2617       } else {
2618         // We can't tell at compile time if we are storing in the Java heap or outside
2619         // of it. So we need to emit code to conditionally do the proper type of
2620         // store.
2621 
2622         IdealKit ideal(this);
2623 #define __ ideal.
2624         // QQQ who knows what probability is here??
2625         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2626           // Sync IdealKit and graphKit.
2627           sync_kit(ideal);
2628           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2629           // Update IdealKit memory.
2630           __ sync_kit(this);
2631         } __ else_(); {
2632           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, requires_atomic_access, mismatched);
2633         } __ end_if();
2634         // Final sync IdealKit and GraphKit.
2635         final_sync(ideal);
2636 #undef __
2637       }
2638     }
2639   }
2640 
2641   switch(kind) {
2642     case Relaxed:
2643     case Opaque:
2644     case Release:
2645       break;
2646     case Acquire:
2647     case Volatile:
2648       if (!is_store) {
2649         insert_mem_bar(Op_MemBarAcquire);
2650       } else {
2651         if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2652           insert_mem_bar(Op_MemBarVolatile);
2653         }
2654       }
2655       break;
2656     default:
2657       ShouldNotReachHere();
2658   }
2659 
2660   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2661 
2662   return true;
2663 }
2664 
2665 //----------------------------inline_unsafe_load_store----------------------------
2666 // This method serves a couple of different customers (depending on LoadStoreKind):
2667 //
2668 // LS_cmp_swap:
2669 //
2670 //   boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2671 //   boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2672 //   boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2673 //
2674 // LS_cmp_swap_weak:
2675 //
2676 //   boolean weakCompareAndSwapObject(       Object o, long offset, Object expected, Object x);
2677 //   boolean weakCompareAndSwapObjectAcquire(Object o, long offset, Object expected, Object x);
2678 //   boolean weakCompareAndSwapObjectRelease(Object o, long offset, Object expected, Object x);
2679 //
2680 //   boolean weakCompareAndSwapInt(          Object o, long offset, int    expected, int    x);
2681 //   boolean weakCompareAndSwapIntAcquire(   Object o, long offset, int    expected, int    x);
2682 //   boolean weakCompareAndSwapIntRelease(   Object o, long offset, int    expected, int    x);
2683 //
2684 //   boolean weakCompareAndSwapLong(         Object o, long offset, long   expected, long   x);
2685 //   boolean weakCompareAndSwapLongAcquire(  Object o, long offset, long   expected, long   x);
2686 //   boolean weakCompareAndSwapLongRelease(  Object o, long offset, long   expected, long   x);
2687 //
2688 // LS_cmp_exchange:
2689 //
2690 //   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2691 //   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2692 //   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2693 //
2694 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2695 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2696 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2697 //
2698 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2699 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2700 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2701 //
2702 // LS_get_add:
2703 //
2704 //   int  getAndAddInt( Object o, long offset, int  delta)
2705 //   long getAndAddLong(Object o, long offset, long delta)
2706 //
2707 // LS_get_set:
2708 //
2709 //   int    getAndSet(Object o, long offset, int    newValue)
2710 //   long   getAndSet(Object o, long offset, long   newValue)
2711 //   Object getAndSet(Object o, long offset, Object newValue)
2712 //
2713 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2714   // This basic scheme here is the same as inline_unsafe_access, but
2715   // differs in enough details that combining them would make the code
2716   // overly confusing.  (This is a true fact! I originally combined
2717   // them, but even I was confused by it!) As much code/comments as
2718   // possible are retained from inline_unsafe_access though to make
2719   // the correspondences clearer. - dl
2720 
2721   if (callee()->is_static())  return false;  // caller must have the capability!
2722 
2723 #ifndef PRODUCT
2724   BasicType rtype;
2725   {
2726     ResourceMark rm;
2727     // Check the signatures.
2728     ciSignature* sig = callee()->signature();
2729     rtype = sig->return_type()->basic_type();
2730     switch(kind) {
2731       case LS_get_add:
2732       case LS_get_set: {
2733       // Check the signatures.
2734 #ifdef ASSERT
2735       assert(rtype == type, "get and set must return the expected type");
2736       assert(sig->count() == 3, "get and set has 3 arguments");
2737       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2738       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2739       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2740 #endif // ASSERT
2741         break;
2742       }
2743       case LS_cmp_swap:
2744       case LS_cmp_swap_weak: {
2745       // Check the signatures.
2746 #ifdef ASSERT
2747       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2748       assert(sig->count() == 4, "CAS has 4 arguments");
2749       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2750       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2751 #endif // ASSERT
2752         break;
2753       }
2754       case LS_cmp_exchange: {
2755       // Check the signatures.
2756 #ifdef ASSERT
2757       assert(rtype == type, "CAS must return the expected type");
2758       assert(sig->count() == 4, "CAS has 4 arguments");
2759       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2760       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2761 #endif // ASSERT
2762         break;
2763       }
2764       default:
2765         ShouldNotReachHere();
2766     }
2767   }
2768 #endif //PRODUCT
2769 
2770   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2771 
2772   // Get arguments:
2773   Node* receiver = NULL;
2774   Node* base     = NULL;
2775   Node* offset   = NULL;
2776   Node* oldval   = NULL;
2777   Node* newval   = NULL;
2778   switch(kind) {
2779     case LS_cmp_swap:
2780     case LS_cmp_swap_weak:
2781     case LS_cmp_exchange: {
2782       const bool two_slot_type = type2size[type] == 2;
2783       receiver = argument(0);  // type: oop
2784       base     = argument(1);  // type: oop
2785       offset   = argument(2);  // type: long
2786       oldval   = argument(4);  // type: oop, int, or long
2787       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2788       break;
2789     }
2790     case LS_get_add:
2791     case LS_get_set: {
2792       receiver = argument(0);  // type: oop
2793       base     = argument(1);  // type: oop
2794       offset   = argument(2);  // type: long
2795       oldval   = NULL;
2796       newval   = argument(4);  // type: oop, int, or long
2797       break;
2798     }
2799     default:
2800       ShouldNotReachHere();
2801   }
2802 
2803   // Null check receiver.
2804   receiver = null_check(receiver);
2805   if (stopped()) {
2806     return true;
2807   }
2808 
2809   // Build field offset expression.
2810   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2811   // to be plain byte offsets, which are also the same as those accepted
2812   // by oopDesc::field_base.
2813   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2814   // 32-bit machines ignore the high half of long offsets
2815   offset = ConvL2X(offset);
2816   Node* adr = make_unsafe_address(base, offset);
2817   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2818 
2819   // For CAS, unlike inline_unsafe_access, there seems no point in
2820   // trying to refine types. Just use the coarse types here.
2821   const Type *value_type = Type::get_const_basic_type(type);
2822   Compile::AliasType* alias_type = C->alias_type(adr_type);
2823   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2824 
2825   switch (kind) {
2826     case LS_get_set:
2827     case LS_cmp_exchange: {
2828       if (type == T_OBJECT) {
2829         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2830         if (tjp != NULL) {
2831           value_type = tjp;
2832         }
2833       }
2834       break;
2835     }
2836     case LS_cmp_swap:
2837     case LS_cmp_swap_weak:
2838     case LS_get_add:
2839       break;
2840     default:
2841       ShouldNotReachHere();
2842   }
2843 
2844   int alias_idx = C->get_alias_index(adr_type);
2845 
2846   // Memory-model-wise, a LoadStore acts like a little synchronized
2847   // block, so needs barriers on each side.  These don't translate
2848   // into actual barriers on most machines, but we still need rest of
2849   // compiler to respect ordering.
2850 
2851   switch (access_kind) {
2852     case Relaxed:
2853     case Acquire:
2854       break;
2855     case Release:
2856     case Volatile:
2857       insert_mem_bar(Op_MemBarRelease);
2858       break;
2859     default:
2860       ShouldNotReachHere();
2861   }
2862   insert_mem_bar(Op_MemBarCPUOrder);
2863 
2864   // Figure out the memory ordering.
2865   MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2866 
2867   // 4984716: MemBars must be inserted before this
2868   //          memory node in order to avoid a false
2869   //          dependency which will confuse the scheduler.
2870   Node *mem = memory(alias_idx);
2871 
2872   // For now, we handle only those cases that actually exist: ints,
2873   // longs, and Object. Adding others should be straightforward.
2874   Node* load_store = NULL;
2875   switch(type) {
2876   case T_INT:
2877     switch(kind) {
2878       case LS_get_add:
2879         load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2880         break;
2881       case LS_get_set:
2882         load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2883         break;
2884       case LS_cmp_swap_weak:
2885         load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2886         break;
2887       case LS_cmp_swap:
2888         load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2889         break;
2890       case LS_cmp_exchange:
2891         load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2892         break;
2893       default:
2894         ShouldNotReachHere();
2895     }
2896     break;
2897   case T_LONG:
2898     switch(kind) {
2899       case LS_get_add:
2900         load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2901         break;
2902       case LS_get_set:
2903         load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2904         break;
2905       case LS_cmp_swap_weak:
2906         load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2907         break;
2908       case LS_cmp_swap:
2909         load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2910         break;
2911       case LS_cmp_exchange:
2912         load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
2913         break;
2914       default:
2915         ShouldNotReachHere();
2916     }
2917     break;
2918   case T_OBJECT:
2919     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2920     // could be delayed during Parse (for example, in adjust_map_after_if()).
2921     // Execute transformation here to avoid barrier generation in such case.
2922     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2923       newval = _gvn.makecon(TypePtr::NULL_PTR);
2924 
2925     // Reference stores need a store barrier.
2926     switch(kind) {
2927       case LS_get_set: {
2928         // If pre-barrier must execute before the oop store, old value will require do_load here.
2929         if (!can_move_pre_barrier()) {
2930           pre_barrier(true /* do_load*/,
2931                       control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2932                       NULL /* pre_val*/,
2933                       T_OBJECT);
2934         } // Else move pre_barrier to use load_store value, see below.
2935         break;
2936       }
2937       case LS_cmp_swap_weak:
2938       case LS_cmp_swap:
2939       case LS_cmp_exchange: {
2940         // Same as for newval above:
2941         if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2942           oldval = _gvn.makecon(TypePtr::NULL_PTR);
2943         }
2944         // The only known value which might get overwritten is oldval.
2945         pre_barrier(false /* do_load */,
2946                     control(), NULL, NULL, max_juint, NULL, NULL,
2947                     oldval /* pre_val */,
2948                     T_OBJECT);
2949         break;
2950       }
2951       default:
2952         ShouldNotReachHere();
2953     }
2954 
2955 #ifdef _LP64
2956     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2957       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2958 
2959       switch(kind) {
2960         case LS_get_set:
2961           load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
2962           break;
2963         case LS_cmp_swap_weak: {
2964           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2965           load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2966           break;
2967         }
2968         case LS_cmp_swap: {
2969           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2970           load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2971           break;
2972         }
2973         case LS_cmp_exchange: {
2974           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2975           load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
2976           break;
2977         }
2978         default:
2979           ShouldNotReachHere();
2980       }
2981     } else
2982 #endif
2983     switch (kind) {
2984       case LS_get_set:
2985         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2986         break;
2987       case LS_cmp_swap_weak:
2988         load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2989         break;
2990       case LS_cmp_swap:
2991         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2992         break;
2993       case LS_cmp_exchange:
2994         load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
2995         break;
2996       default:
2997         ShouldNotReachHere();
2998     }
2999 
3000     // Emit the post barrier only when the actual store happened. This makes sense
3001     // to check only for LS_cmp_* that can fail to set the value.
3002     // LS_cmp_exchange does not produce any branches by default, so there is no
3003     // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
3004     // CompareAndExchange and move branches here, it would make sense to conditionalize
3005     // post_barriers for LS_cmp_exchange as well.
3006     //
3007     // CAS success path is marked more likely since we anticipate this is a performance
3008     // critical path, while CAS failure path can use the penalty for going through unlikely
3009     // path as backoff. Which is still better than doing a store barrier there.
3010     switch (kind) {
3011       case LS_get_set:
3012       case LS_cmp_exchange: {
3013         post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3014         break;
3015       }
3016       case LS_cmp_swap_weak:
3017       case LS_cmp_swap: {
3018         IdealKit ideal(this);
3019         ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
3020           sync_kit(ideal);
3021           post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3022           ideal.sync_kit(this);
3023         } ideal.end_if();
3024         final_sync(ideal);
3025         break;
3026       }
3027       default:
3028         ShouldNotReachHere();
3029     }
3030     break;
3031   default:
3032     fatal("unexpected type %d: %s", type, type2name(type));
3033     break;
3034   }
3035 
3036   // SCMemProjNodes represent the memory state of a LoadStore. Their
3037   // main role is to prevent LoadStore nodes from being optimized away
3038   // when their results aren't used.
3039   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3040   set_memory(proj, alias_idx);
3041 
3042   if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
3043 #ifdef _LP64
3044     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3045       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3046     }
3047 #endif
3048     if (can_move_pre_barrier()) {
3049       // Don't need to load pre_val. The old value is returned by load_store.
3050       // The pre_barrier can execute after the xchg as long as no safepoint
3051       // gets inserted between them.
3052       pre_barrier(false /* do_load */,
3053                   control(), NULL, NULL, max_juint, NULL, NULL,
3054                   load_store /* pre_val */,
3055                   T_OBJECT);
3056     }
3057   }
3058 
3059   // Add the trailing membar surrounding the access
3060   insert_mem_bar(Op_MemBarCPUOrder);
3061 
3062   switch (access_kind) {
3063     case Relaxed:
3064     case Release:
3065       break; // do nothing
3066     case Acquire:
3067     case Volatile:
3068       insert_mem_bar(Op_MemBarAcquire);
3069       break;
3070     default:
3071       ShouldNotReachHere();
3072   }
3073 
3074   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3075   set_result(load_store);
3076   return true;
3077 }
3078 
3079 MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3080   MemNode::MemOrd mo = MemNode::unset;
3081   switch(kind) {
3082     case Opaque:
3083     case Relaxed:  mo = MemNode::unordered; break;
3084     case Acquire:  mo = MemNode::acquire;   break;
3085     case Release:  mo = MemNode::release;   break;
3086     case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3087     default:
3088       ShouldNotReachHere();
3089   }
3090   guarantee(mo != MemNode::unset, "Should select memory ordering");
3091   return mo;
3092 }
3093 
3094 MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3095   MemNode::MemOrd mo = MemNode::unset;
3096   switch(kind) {
3097     case Opaque:
3098     case Relaxed:  mo = MemNode::unordered; break;
3099     case Acquire:  mo = MemNode::acquire;   break;
3100     case Release:  mo = MemNode::release;   break;
3101     case Volatile: mo = MemNode::seqcst;    break;
3102     default:
3103       ShouldNotReachHere();
3104   }
3105   guarantee(mo != MemNode::unset, "Should select memory ordering");
3106   return mo;
3107 }
3108 
3109 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3110   // Regardless of form, don't allow previous ld/st to move down,
3111   // then issue acquire, release, or volatile mem_bar.
3112   insert_mem_bar(Op_MemBarCPUOrder);
3113   switch(id) {
3114     case vmIntrinsics::_loadFence:
3115       insert_mem_bar(Op_LoadFence);
3116       return true;
3117     case vmIntrinsics::_storeFence:
3118       insert_mem_bar(Op_StoreFence);
3119       return true;
3120     case vmIntrinsics::_fullFence:
3121       insert_mem_bar(Op_MemBarVolatile);
3122       return true;
3123     default:
3124       fatal_unexpected_iid(id);
3125       return false;
3126   }
3127 }
3128 
3129 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3130   if (!kls->is_Con()) {
3131     return true;
3132   }
3133   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3134   if (klsptr == NULL) {
3135     return true;
3136   }
3137   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3138   // don't need a guard for a klass that is already initialized
3139   return !ik->is_initialized();
3140 }
3141 
3142 //----------------------------inline_unsafe_allocate---------------------------
3143 // public native Object Unsafe.allocateInstance(Class<?> cls);
3144 bool LibraryCallKit::inline_unsafe_allocate() {
3145   if (callee()->is_static())  return false;  // caller must have the capability!
3146 
3147   null_check_receiver();  // null-check, then ignore
3148   Node* cls = null_check(argument(1));
3149   if (stopped())  return true;
3150 
3151   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3152   kls = null_check(kls);
3153   if (stopped())  return true;  // argument was like int.class
3154 
3155   Node* test = NULL;
3156   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3157     // Note:  The argument might still be an illegal value like
3158     // Serializable.class or Object[].class.   The runtime will handle it.
3159     // But we must make an explicit check for initialization.
3160     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3161     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3162     // can generate code to load it as unsigned byte.
3163     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3164     Node* bits = intcon(InstanceKlass::fully_initialized);
3165     test = _gvn.transform(new SubINode(inst, bits));
3166     // The 'test' is non-zero if we need to take a slow path.
3167   }
3168 
3169   Node* obj = new_instance(kls, test);
3170   set_result(obj);
3171   return true;
3172 }
3173 
3174 //------------------------inline_native_time_funcs--------------
3175 // inline code for System.currentTimeMillis() and System.nanoTime()
3176 // these have the same type and signature
3177 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3178   const TypeFunc* tf = OptoRuntime::void_long_Type();
3179   const TypePtr* no_memory_effects = NULL;
3180   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3181   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3182 #ifdef ASSERT
3183   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3184   assert(value_top == top(), "second value must be top");
3185 #endif
3186   set_result(value);
3187   return true;
3188 }
3189 
3190 //------------------------inline_native_currentThread------------------
3191 bool LibraryCallKit::inline_native_currentThread() {
3192   Node* junk = NULL;
3193   set_result(generate_current_thread(junk));
3194   return true;
3195 }
3196 
3197 //------------------------inline_native_isInterrupted------------------
3198 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3199 bool LibraryCallKit::inline_native_isInterrupted() {
3200   // Add a fast path to t.isInterrupted(clear_int):
3201   //   (t == Thread.current() &&
3202   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3203   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3204   // So, in the common case that the interrupt bit is false,
3205   // we avoid making a call into the VM.  Even if the interrupt bit
3206   // is true, if the clear_int argument is false, we avoid the VM call.
3207   // However, if the receiver is not currentThread, we must call the VM,
3208   // because there must be some locking done around the operation.
3209 
3210   // We only go to the fast case code if we pass two guards.
3211   // Paths which do not pass are accumulated in the slow_region.
3212 
3213   enum {
3214     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3215     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3216     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3217     PATH_LIMIT
3218   };
3219 
3220   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3221   // out of the function.
3222   insert_mem_bar(Op_MemBarCPUOrder);
3223 
3224   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3225   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3226 
3227   RegionNode* slow_region = new RegionNode(1);
3228   record_for_igvn(slow_region);
3229 
3230   // (a) Receiving thread must be the current thread.
3231   Node* rec_thr = argument(0);
3232   Node* tls_ptr = NULL;
3233   Node* cur_thr = generate_current_thread(tls_ptr);
3234   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3235   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3236 
3237   generate_slow_guard(bol_thr, slow_region);
3238 
3239   // (b) Interrupt bit on TLS must be false.
3240   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3241   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3242   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3243 
3244   // Set the control input on the field _interrupted read to prevent it floating up.
3245   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3246   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3247   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3248 
3249   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3250 
3251   // First fast path:  if (!TLS._interrupted) return false;
3252   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3253   result_rgn->init_req(no_int_result_path, false_bit);
3254   result_val->init_req(no_int_result_path, intcon(0));
3255 
3256   // drop through to next case
3257   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3258 
3259 #ifndef TARGET_OS_FAMILY_windows
3260   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3261   Node* clr_arg = argument(1);
3262   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3263   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3264   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3265 
3266   // Second fast path:  ... else if (!clear_int) return true;
3267   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3268   result_rgn->init_req(no_clear_result_path, false_arg);
3269   result_val->init_req(no_clear_result_path, intcon(1));
3270 
3271   // drop through to next case
3272   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3273 #else
3274   // To return true on Windows you must read the _interrupted field
3275   // and check the event state i.e. take the slow path.
3276 #endif // TARGET_OS_FAMILY_windows
3277 
3278   // (d) Otherwise, go to the slow path.
3279   slow_region->add_req(control());
3280   set_control( _gvn.transform(slow_region));
3281 
3282   if (stopped()) {
3283     // There is no slow path.
3284     result_rgn->init_req(slow_result_path, top());
3285     result_val->init_req(slow_result_path, top());
3286   } else {
3287     // non-virtual because it is a private non-static
3288     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3289 
3290     Node* slow_val = set_results_for_java_call(slow_call);
3291     // this->control() comes from set_results_for_java_call
3292 
3293     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3294     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3295 
3296     // These two phis are pre-filled with copies of of the fast IO and Memory
3297     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3298     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3299 
3300     result_rgn->init_req(slow_result_path, control());
3301     result_io ->init_req(slow_result_path, i_o());
3302     result_mem->init_req(slow_result_path, reset_memory());
3303     result_val->init_req(slow_result_path, slow_val);
3304 
3305     set_all_memory(_gvn.transform(result_mem));
3306     set_i_o(       _gvn.transform(result_io));
3307   }
3308 
3309   C->set_has_split_ifs(true); // Has chance for split-if optimization
3310   set_result(result_rgn, result_val);
3311   return true;
3312 }
3313 
3314 //---------------------------load_mirror_from_klass----------------------------
3315 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3316 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3317   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3318   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3319 }
3320 
3321 //-----------------------load_klass_from_mirror_common-------------------------
3322 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3323 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3324 // and branch to the given path on the region.
3325 // If never_see_null, take an uncommon trap on null, so we can optimistically
3326 // compile for the non-null case.
3327 // If the region is NULL, force never_see_null = true.
3328 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3329                                                     bool never_see_null,
3330                                                     RegionNode* region,
3331                                                     int null_path,
3332                                                     int offset) {
3333   if (region == NULL)  never_see_null = true;
3334   Node* p = basic_plus_adr(mirror, offset);
3335   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3336   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3337   Node* null_ctl = top();
3338   kls = null_check_oop(kls, &null_ctl, never_see_null);
3339   if (region != NULL) {
3340     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3341     region->init_req(null_path, null_ctl);
3342   } else {
3343     assert(null_ctl == top(), "no loose ends");
3344   }
3345   return kls;
3346 }
3347 
3348 //--------------------(inline_native_Class_query helpers)---------------------
3349 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3350 // Fall through if (mods & mask) == bits, take the guard otherwise.
3351 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3352   // Branch around if the given klass has the given modifier bit set.
3353   // Like generate_guard, adds a new path onto the region.
3354   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3355   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3356   Node* mask = intcon(modifier_mask);
3357   Node* bits = intcon(modifier_bits);
3358   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3359   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3360   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3361   return generate_fair_guard(bol, region);
3362 }
3363 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3364   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3365 }
3366 
3367 //-------------------------inline_native_Class_query-------------------
3368 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3369   const Type* return_type = TypeInt::BOOL;
3370   Node* prim_return_value = top();  // what happens if it's a primitive class?
3371   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3372   bool expect_prim = false;     // most of these guys expect to work on refs
3373 
3374   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3375 
3376   Node* mirror = argument(0);
3377   Node* obj    = top();
3378 
3379   switch (id) {
3380   case vmIntrinsics::_isInstance:
3381     // nothing is an instance of a primitive type
3382     prim_return_value = intcon(0);
3383     obj = argument(1);
3384     break;
3385   case vmIntrinsics::_getModifiers:
3386     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3387     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3388     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3389     break;
3390   case vmIntrinsics::_isInterface:
3391     prim_return_value = intcon(0);
3392     break;
3393   case vmIntrinsics::_isArray:
3394     prim_return_value = intcon(0);
3395     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3396     break;
3397   case vmIntrinsics::_isPrimitive:
3398     prim_return_value = intcon(1);
3399     expect_prim = true;  // obviously
3400     break;
3401   case vmIntrinsics::_getSuperclass:
3402     prim_return_value = null();
3403     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3404     break;
3405   case vmIntrinsics::_getClassAccessFlags:
3406     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3407     return_type = TypeInt::INT;  // not bool!  6297094
3408     break;
3409   default:
3410     fatal_unexpected_iid(id);
3411     break;
3412   }
3413 
3414   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3415   if (mirror_con == NULL)  return false;  // cannot happen?
3416 
3417 #ifndef PRODUCT
3418   if (C->print_intrinsics() || C->print_inlining()) {
3419     ciType* k = mirror_con->java_mirror_type();
3420     if (k) {
3421       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3422       k->print_name();
3423       tty->cr();
3424     }
3425   }
3426 #endif
3427 
3428   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3429   RegionNode* region = new RegionNode(PATH_LIMIT);
3430   record_for_igvn(region);
3431   PhiNode* phi = new PhiNode(region, return_type);
3432 
3433   // The mirror will never be null of Reflection.getClassAccessFlags, however
3434   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3435   // if it is. See bug 4774291.
3436 
3437   // For Reflection.getClassAccessFlags(), the null check occurs in
3438   // the wrong place; see inline_unsafe_access(), above, for a similar
3439   // situation.
3440   mirror = null_check(mirror);
3441   // If mirror or obj is dead, only null-path is taken.
3442   if (stopped())  return true;
3443 
3444   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3445 
3446   // Now load the mirror's klass metaobject, and null-check it.
3447   // Side-effects region with the control path if the klass is null.
3448   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3449   // If kls is null, we have a primitive mirror.
3450   phi->init_req(_prim_path, prim_return_value);
3451   if (stopped()) { set_result(region, phi); return true; }
3452   bool safe_for_replace = (region->in(_prim_path) == top());
3453 
3454   Node* p;  // handy temp
3455   Node* null_ctl;
3456 
3457   // Now that we have the non-null klass, we can perform the real query.
3458   // For constant classes, the query will constant-fold in LoadNode::Value.
3459   Node* query_value = top();
3460   switch (id) {
3461   case vmIntrinsics::_isInstance:
3462     // nothing is an instance of a primitive type
3463     query_value = gen_instanceof(obj, kls, safe_for_replace);
3464     break;
3465 
3466   case vmIntrinsics::_getModifiers:
3467     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3468     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3469     break;
3470 
3471   case vmIntrinsics::_isInterface:
3472     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3473     if (generate_interface_guard(kls, region) != NULL)
3474       // A guard was added.  If the guard is taken, it was an interface.
3475       phi->add_req(intcon(1));
3476     // If we fall through, it's a plain class.
3477     query_value = intcon(0);
3478     break;
3479 
3480   case vmIntrinsics::_isArray:
3481     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3482     if (generate_array_guard(kls, region) != NULL)
3483       // A guard was added.  If the guard is taken, it was an array.
3484       phi->add_req(intcon(1));
3485     // If we fall through, it's a plain class.
3486     query_value = intcon(0);
3487     break;
3488 
3489   case vmIntrinsics::_isPrimitive:
3490     query_value = intcon(0); // "normal" path produces false
3491     break;
3492 
3493   case vmIntrinsics::_getSuperclass:
3494     // The rules here are somewhat unfortunate, but we can still do better
3495     // with random logic than with a JNI call.
3496     // Interfaces store null or Object as _super, but must report null.
3497     // Arrays store an intermediate super as _super, but must report Object.
3498     // Other types can report the actual _super.
3499     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3500     if (generate_interface_guard(kls, region) != NULL)
3501       // A guard was added.  If the guard is taken, it was an interface.
3502       phi->add_req(null());
3503     if (generate_array_guard(kls, region) != NULL)
3504       // A guard was added.  If the guard is taken, it was an array.
3505       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3506     // If we fall through, it's a plain class.  Get its _super.
3507     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3508     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3509     null_ctl = top();
3510     kls = null_check_oop(kls, &null_ctl);
3511     if (null_ctl != top()) {
3512       // If the guard is taken, Object.superClass is null (both klass and mirror).
3513       region->add_req(null_ctl);
3514       phi   ->add_req(null());
3515     }
3516     if (!stopped()) {
3517       query_value = load_mirror_from_klass(kls);
3518     }
3519     break;
3520 
3521   case vmIntrinsics::_getClassAccessFlags:
3522     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3523     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3524     break;
3525 
3526   default:
3527     fatal_unexpected_iid(id);
3528     break;
3529   }
3530 
3531   // Fall-through is the normal case of a query to a real class.
3532   phi->init_req(1, query_value);
3533   region->init_req(1, control());
3534 
3535   C->set_has_split_ifs(true); // Has chance for split-if optimization
3536   set_result(region, phi);
3537   return true;
3538 }
3539 
3540 //-------------------------inline_Class_cast-------------------
3541 bool LibraryCallKit::inline_Class_cast() {
3542   Node* mirror = argument(0); // Class
3543   Node* obj    = argument(1);
3544   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3545   if (mirror_con == NULL) {
3546     return false;  // dead path (mirror->is_top()).
3547   }
3548   if (obj == NULL || obj->is_top()) {
3549     return false;  // dead path
3550   }
3551   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3552 
3553   // First, see if Class.cast() can be folded statically.
3554   // java_mirror_type() returns non-null for compile-time Class constants.
3555   ciType* tm = mirror_con->java_mirror_type();
3556   if (tm != NULL && tm->is_klass() &&
3557       tp != NULL && tp->klass() != NULL) {
3558     if (!tp->klass()->is_loaded()) {
3559       // Don't use intrinsic when class is not loaded.
3560       return false;
3561     } else {
3562       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3563       if (static_res == Compile::SSC_always_true) {
3564         // isInstance() is true - fold the code.
3565         set_result(obj);
3566         return true;
3567       } else if (static_res == Compile::SSC_always_false) {
3568         // Don't use intrinsic, have to throw ClassCastException.
3569         // If the reference is null, the non-intrinsic bytecode will
3570         // be optimized appropriately.
3571         return false;
3572       }
3573     }
3574   }
3575 
3576   // Bailout intrinsic and do normal inlining if exception path is frequent.
3577   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3578     return false;
3579   }
3580 
3581   // Generate dynamic checks.
3582   // Class.cast() is java implementation of _checkcast bytecode.
3583   // Do checkcast (Parse::do_checkcast()) optimizations here.
3584 
3585   mirror = null_check(mirror);
3586   // If mirror is dead, only null-path is taken.
3587   if (stopped()) {
3588     return true;
3589   }
3590 
3591   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3592   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3593   RegionNode* region = new RegionNode(PATH_LIMIT);
3594   record_for_igvn(region);
3595 
3596   // Now load the mirror's klass metaobject, and null-check it.
3597   // If kls is null, we have a primitive mirror and
3598   // nothing is an instance of a primitive type.
3599   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3600 
3601   Node* res = top();
3602   if (!stopped()) {
3603     Node* bad_type_ctrl = top();
3604     // Do checkcast optimizations.
3605     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3606     region->init_req(_bad_type_path, bad_type_ctrl);
3607   }
3608   if (region->in(_prim_path) != top() ||
3609       region->in(_bad_type_path) != top()) {
3610     // Let Interpreter throw ClassCastException.
3611     PreserveJVMState pjvms(this);
3612     set_control(_gvn.transform(region));
3613     uncommon_trap(Deoptimization::Reason_intrinsic,
3614                   Deoptimization::Action_maybe_recompile);
3615   }
3616   if (!stopped()) {
3617     set_result(res);
3618   }
3619   return true;
3620 }
3621 
3622 
3623 //--------------------------inline_native_subtype_check------------------------
3624 // This intrinsic takes the JNI calls out of the heart of
3625 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3626 bool LibraryCallKit::inline_native_subtype_check() {
3627   // Pull both arguments off the stack.
3628   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3629   args[0] = argument(0);
3630   args[1] = argument(1);
3631   Node* klasses[2];             // corresponding Klasses: superk, subk
3632   klasses[0] = klasses[1] = top();
3633 
3634   enum {
3635     // A full decision tree on {superc is prim, subc is prim}:
3636     _prim_0_path = 1,           // {P,N} => false
3637                                 // {P,P} & superc!=subc => false
3638     _prim_same_path,            // {P,P} & superc==subc => true
3639     _prim_1_path,               // {N,P} => false
3640     _ref_subtype_path,          // {N,N} & subtype check wins => true
3641     _both_ref_path,             // {N,N} & subtype check loses => false
3642     PATH_LIMIT
3643   };
3644 
3645   RegionNode* region = new RegionNode(PATH_LIMIT);
3646   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3647   record_for_igvn(region);
3648 
3649   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3650   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3651   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3652 
3653   // First null-check both mirrors and load each mirror's klass metaobject.
3654   int which_arg;
3655   for (which_arg = 0; which_arg <= 1; which_arg++) {
3656     Node* arg = args[which_arg];
3657     arg = null_check(arg);
3658     if (stopped())  break;
3659     args[which_arg] = arg;
3660 
3661     Node* p = basic_plus_adr(arg, class_klass_offset);
3662     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3663     klasses[which_arg] = _gvn.transform(kls);
3664   }
3665 
3666   // Having loaded both klasses, test each for null.
3667   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3668   for (which_arg = 0; which_arg <= 1; which_arg++) {
3669     Node* kls = klasses[which_arg];
3670     Node* null_ctl = top();
3671     kls = null_check_oop(kls, &null_ctl, never_see_null);
3672     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3673     region->init_req(prim_path, null_ctl);
3674     if (stopped())  break;
3675     klasses[which_arg] = kls;
3676   }
3677 
3678   if (!stopped()) {
3679     // now we have two reference types, in klasses[0..1]
3680     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3681     Node* superk = klasses[0];  // the receiver
3682     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3683     // now we have a successful reference subtype check
3684     region->set_req(_ref_subtype_path, control());
3685   }
3686 
3687   // If both operands are primitive (both klasses null), then
3688   // we must return true when they are identical primitives.
3689   // It is convenient to test this after the first null klass check.
3690   set_control(region->in(_prim_0_path)); // go back to first null check
3691   if (!stopped()) {
3692     // Since superc is primitive, make a guard for the superc==subc case.
3693     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3694     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3695     generate_guard(bol_eq, region, PROB_FAIR);
3696     if (region->req() == PATH_LIMIT+1) {
3697       // A guard was added.  If the added guard is taken, superc==subc.
3698       region->swap_edges(PATH_LIMIT, _prim_same_path);
3699       region->del_req(PATH_LIMIT);
3700     }
3701     region->set_req(_prim_0_path, control()); // Not equal after all.
3702   }
3703 
3704   // these are the only paths that produce 'true':
3705   phi->set_req(_prim_same_path,   intcon(1));
3706   phi->set_req(_ref_subtype_path, intcon(1));
3707 
3708   // pull together the cases:
3709   assert(region->req() == PATH_LIMIT, "sane region");
3710   for (uint i = 1; i < region->req(); i++) {
3711     Node* ctl = region->in(i);
3712     if (ctl == NULL || ctl == top()) {
3713       region->set_req(i, top());
3714       phi   ->set_req(i, top());
3715     } else if (phi->in(i) == NULL) {
3716       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3717     }
3718   }
3719 
3720   set_control(_gvn.transform(region));
3721   set_result(_gvn.transform(phi));
3722   return true;
3723 }
3724 
3725 //---------------------generate_array_guard_common------------------------
3726 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3727                                                   bool obj_array, bool not_array) {
3728 
3729   if (stopped()) {
3730     return NULL;
3731   }
3732 
3733   // If obj_array/non_array==false/false:
3734   // Branch around if the given klass is in fact an array (either obj or prim).
3735   // If obj_array/non_array==false/true:
3736   // Branch around if the given klass is not an array klass of any kind.
3737   // If obj_array/non_array==true/true:
3738   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3739   // If obj_array/non_array==true/false:
3740   // Branch around if the kls is an oop array (Object[] or subtype)
3741   //
3742   // Like generate_guard, adds a new path onto the region.
3743   jint  layout_con = 0;
3744   Node* layout_val = get_layout_helper(kls, layout_con);
3745   if (layout_val == NULL) {
3746     bool query = (obj_array
3747                   ? Klass::layout_helper_is_objArray(layout_con)
3748                   : Klass::layout_helper_is_array(layout_con));
3749     if (query == not_array) {
3750       return NULL;                       // never a branch
3751     } else {                             // always a branch
3752       Node* always_branch = control();
3753       if (region != NULL)
3754         region->add_req(always_branch);
3755       set_control(top());
3756       return always_branch;
3757     }
3758   }
3759   // Now test the correct condition.
3760   jint  nval = (obj_array
3761                 ? ((jint)Klass::_lh_array_tag_type_value
3762                    <<    Klass::_lh_array_tag_shift)
3763                 : Klass::_lh_neutral_value);
3764   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3765   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3766   // invert the test if we are looking for a non-array
3767   if (not_array)  btest = BoolTest(btest).negate();
3768   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3769   return generate_fair_guard(bol, region);
3770 }
3771 
3772 
3773 //-----------------------inline_native_newArray--------------------------
3774 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3775 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3776 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3777   Node* mirror;
3778   Node* count_val;
3779   if (uninitialized) {
3780     mirror    = argument(1);
3781     count_val = argument(2);
3782   } else {
3783     mirror    = argument(0);
3784     count_val = argument(1);
3785   }
3786 
3787   mirror = null_check(mirror);
3788   // If mirror or obj is dead, only null-path is taken.
3789   if (stopped())  return true;
3790 
3791   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3792   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3793   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3794   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3795   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3796 
3797   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3798   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3799                                                   result_reg, _slow_path);
3800   Node* normal_ctl   = control();
3801   Node* no_array_ctl = result_reg->in(_slow_path);
3802 
3803   // Generate code for the slow case.  We make a call to newArray().
3804   set_control(no_array_ctl);
3805   if (!stopped()) {
3806     // Either the input type is void.class, or else the
3807     // array klass has not yet been cached.  Either the
3808     // ensuing call will throw an exception, or else it
3809     // will cache the array klass for next time.
3810     PreserveJVMState pjvms(this);
3811     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3812     Node* slow_result = set_results_for_java_call(slow_call);
3813     // this->control() comes from set_results_for_java_call
3814     result_reg->set_req(_slow_path, control());
3815     result_val->set_req(_slow_path, slow_result);
3816     result_io ->set_req(_slow_path, i_o());
3817     result_mem->set_req(_slow_path, reset_memory());
3818   }
3819 
3820   set_control(normal_ctl);
3821   if (!stopped()) {
3822     // Normal case:  The array type has been cached in the java.lang.Class.
3823     // The following call works fine even if the array type is polymorphic.
3824     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3825     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3826     result_reg->init_req(_normal_path, control());
3827     result_val->init_req(_normal_path, obj);
3828     result_io ->init_req(_normal_path, i_o());
3829     result_mem->init_req(_normal_path, reset_memory());
3830 
3831     if (uninitialized) {
3832       // Mark the allocation so that zeroing is skipped
3833       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3834       alloc->maybe_set_complete(&_gvn);
3835     }
3836   }
3837 
3838   // Return the combined state.
3839   set_i_o(        _gvn.transform(result_io)  );
3840   set_all_memory( _gvn.transform(result_mem));
3841 
3842   C->set_has_split_ifs(true); // Has chance for split-if optimization
3843   set_result(result_reg, result_val);
3844   return true;
3845 }
3846 
3847 //----------------------inline_native_getLength--------------------------
3848 // public static native int java.lang.reflect.Array.getLength(Object array);
3849 bool LibraryCallKit::inline_native_getLength() {
3850   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3851 
3852   Node* array = null_check(argument(0));
3853   // If array is dead, only null-path is taken.
3854   if (stopped())  return true;
3855 
3856   // Deoptimize if it is a non-array.
3857   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3858 
3859   if (non_array != NULL) {
3860     PreserveJVMState pjvms(this);
3861     set_control(non_array);
3862     uncommon_trap(Deoptimization::Reason_intrinsic,
3863                   Deoptimization::Action_maybe_recompile);
3864   }
3865 
3866   // If control is dead, only non-array-path is taken.
3867   if (stopped())  return true;
3868 
3869   // The works fine even if the array type is polymorphic.
3870   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3871   Node* result = load_array_length(array);
3872 
3873   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3874   set_result(result);
3875   return true;
3876 }
3877 
3878 //------------------------inline_array_copyOf----------------------------
3879 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3880 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3881 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3882   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3883 
3884   // Get the arguments.
3885   Node* original          = argument(0);
3886   Node* start             = is_copyOfRange? argument(1): intcon(0);
3887   Node* end               = is_copyOfRange? argument(2): argument(1);
3888   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3889 
3890   Node* newcopy = NULL;
3891 
3892   // Set the original stack and the reexecute bit for the interpreter to reexecute
3893   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3894   { PreserveReexecuteState preexecs(this);
3895     jvms()->set_should_reexecute(true);
3896 
3897     array_type_mirror = null_check(array_type_mirror);
3898     original          = null_check(original);
3899 
3900     // Check if a null path was taken unconditionally.
3901     if (stopped())  return true;
3902 
3903     Node* orig_length = load_array_length(original);
3904 
3905     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3906     klass_node = null_check(klass_node);
3907 
3908     RegionNode* bailout = new RegionNode(1);
3909     record_for_igvn(bailout);
3910 
3911     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3912     // Bail out if that is so.
3913     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3914     if (not_objArray != NULL) {
3915       // Improve the klass node's type from the new optimistic assumption:
3916       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3917       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3918       Node* cast = new CastPPNode(klass_node, akls);
3919       cast->init_req(0, control());
3920       klass_node = _gvn.transform(cast);
3921     }
3922 
3923     // Bail out if either start or end is negative.
3924     generate_negative_guard(start, bailout, &start);
3925     generate_negative_guard(end,   bailout, &end);
3926 
3927     Node* length = end;
3928     if (_gvn.type(start) != TypeInt::ZERO) {
3929       length = _gvn.transform(new SubINode(end, start));
3930     }
3931 
3932     // Bail out if length is negative.
3933     // Without this the new_array would throw
3934     // NegativeArraySizeException but IllegalArgumentException is what
3935     // should be thrown
3936     generate_negative_guard(length, bailout, &length);
3937 
3938     if (bailout->req() > 1) {
3939       PreserveJVMState pjvms(this);
3940       set_control(_gvn.transform(bailout));
3941       uncommon_trap(Deoptimization::Reason_intrinsic,
3942                     Deoptimization::Action_maybe_recompile);
3943     }
3944 
3945     if (!stopped()) {
3946       // How many elements will we copy from the original?
3947       // The answer is MinI(orig_length - start, length).
3948       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3949       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3950 
3951       // Generate a direct call to the right arraycopy function(s).
3952       // We know the copy is disjoint but we might not know if the
3953       // oop stores need checking.
3954       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3955       // This will fail a store-check if x contains any non-nulls.
3956 
3957       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3958       // loads/stores but it is legal only if we're sure the
3959       // Arrays.copyOf would succeed. So we need all input arguments
3960       // to the copyOf to be validated, including that the copy to the
3961       // new array won't trigger an ArrayStoreException. That subtype
3962       // check can be optimized if we know something on the type of
3963       // the input array from type speculation.
3964       if (_gvn.type(klass_node)->singleton()) {
3965         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3966         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3967 
3968         int test = C->static_subtype_check(superk, subk);
3969         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3970           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3971           if (t_original->speculative_type() != NULL) {
3972             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3973           }
3974         }
3975       }
3976 
3977       bool validated = false;
3978       // Reason_class_check rather than Reason_intrinsic because we
3979       // want to intrinsify even if this traps.
3980       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3981         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3982                                                    klass_node);
3983 
3984         if (not_subtype_ctrl != top()) {
3985           PreserveJVMState pjvms(this);
3986           set_control(not_subtype_ctrl);
3987           uncommon_trap(Deoptimization::Reason_class_check,
3988                         Deoptimization::Action_make_not_entrant);
3989           assert(stopped(), "Should be stopped");
3990         }
3991         validated = true;
3992       }
3993 
3994       if (!stopped()) {
3995         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3996 
3997         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
3998                                                 load_object_klass(original), klass_node);
3999         if (!is_copyOfRange) {
4000           ac->set_copyof(validated);
4001         } else {
4002           ac->set_copyofrange(validated);
4003         }
4004         Node* n = _gvn.transform(ac);
4005         if (n == ac) {
4006           ac->connect_outputs(this);
4007         } else {
4008           assert(validated, "shouldn't transform if all arguments not validated");
4009           set_all_memory(n);
4010         }
4011       }
4012     }
4013   } // original reexecute is set back here
4014 
4015   C->set_has_split_ifs(true); // Has chance for split-if optimization
4016   if (!stopped()) {
4017     set_result(newcopy);
4018   }
4019   return true;
4020 }
4021 
4022 
4023 //----------------------generate_virtual_guard---------------------------
4024 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4025 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4026                                              RegionNode* slow_region) {
4027   ciMethod* method = callee();
4028   int vtable_index = method->vtable_index();
4029   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4030          "bad index %d", vtable_index);
4031   // Get the Method* out of the appropriate vtable entry.
4032   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4033                      vtable_index*vtableEntry::size_in_bytes() +
4034                      vtableEntry::method_offset_in_bytes();
4035   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4036   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4037 
4038   // Compare the target method with the expected method (e.g., Object.hashCode).
4039   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4040 
4041   Node* native_call = makecon(native_call_addr);
4042   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4043   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4044 
4045   return generate_slow_guard(test_native, slow_region);
4046 }
4047 
4048 //-----------------------generate_method_call----------------------------
4049 // Use generate_method_call to make a slow-call to the real
4050 // method if the fast path fails.  An alternative would be to
4051 // use a stub like OptoRuntime::slow_arraycopy_Java.
4052 // This only works for expanding the current library call,
4053 // not another intrinsic.  (E.g., don't use this for making an
4054 // arraycopy call inside of the copyOf intrinsic.)
4055 CallJavaNode*
4056 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4057   // When compiling the intrinsic method itself, do not use this technique.
4058   guarantee(callee() != C->method(), "cannot make slow-call to self");
4059 
4060   ciMethod* method = callee();
4061   // ensure the JVMS we have will be correct for this call
4062   guarantee(method_id == method->intrinsic_id(), "must match");
4063 
4064   const TypeFunc* tf = TypeFunc::make(method);
4065   CallJavaNode* slow_call;
4066   if (is_static) {
4067     assert(!is_virtual, "");
4068     slow_call = new CallStaticJavaNode(C, tf,
4069                            SharedRuntime::get_resolve_static_call_stub(),
4070                            method, bci());
4071   } else if (is_virtual) {
4072     null_check_receiver();
4073     int vtable_index = Method::invalid_vtable_index;
4074     if (UseInlineCaches) {
4075       // Suppress the vtable call
4076     } else {
4077       // hashCode and clone are not a miranda methods,
4078       // so the vtable index is fixed.
4079       // No need to use the linkResolver to get it.
4080        vtable_index = method->vtable_index();
4081        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4082               "bad index %d", vtable_index);
4083     }
4084     slow_call = new CallDynamicJavaNode(tf,
4085                           SharedRuntime::get_resolve_virtual_call_stub(),
4086                           method, vtable_index, bci());
4087   } else {  // neither virtual nor static:  opt_virtual
4088     null_check_receiver();
4089     slow_call = new CallStaticJavaNode(C, tf,
4090                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4091                                 method, bci());
4092     slow_call->set_optimized_virtual(true);
4093   }
4094   set_arguments_for_java_call(slow_call);
4095   set_edges_for_java_call(slow_call);
4096   return slow_call;
4097 }
4098 
4099 
4100 /**
4101  * Build special case code for calls to hashCode on an object. This call may
4102  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4103  * slightly different code.
4104  */
4105 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4106   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4107   assert(!(is_virtual && is_static), "either virtual, special, or static");
4108 
4109   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4110 
4111   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4112   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4113   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4114   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4115   Node* obj = NULL;
4116   if (!is_static) {
4117     // Check for hashing null object
4118     obj = null_check_receiver();
4119     if (stopped())  return true;        // unconditionally null
4120     result_reg->init_req(_null_path, top());
4121     result_val->init_req(_null_path, top());
4122   } else {
4123     // Do a null check, and return zero if null.
4124     // System.identityHashCode(null) == 0
4125     obj = argument(0);
4126     Node* null_ctl = top();
4127     obj = null_check_oop(obj, &null_ctl);
4128     result_reg->init_req(_null_path, null_ctl);
4129     result_val->init_req(_null_path, _gvn.intcon(0));
4130   }
4131 
4132   // Unconditionally null?  Then return right away.
4133   if (stopped()) {
4134     set_control( result_reg->in(_null_path));
4135     if (!stopped())
4136       set_result(result_val->in(_null_path));
4137     return true;
4138   }
4139 
4140   // We only go to the fast case code if we pass a number of guards.  The
4141   // paths which do not pass are accumulated in the slow_region.
4142   RegionNode* slow_region = new RegionNode(1);
4143   record_for_igvn(slow_region);
4144 
4145   // If this is a virtual call, we generate a funny guard.  We pull out
4146   // the vtable entry corresponding to hashCode() from the target object.
4147   // If the target method which we are calling happens to be the native
4148   // Object hashCode() method, we pass the guard.  We do not need this
4149   // guard for non-virtual calls -- the caller is known to be the native
4150   // Object hashCode().
4151   if (is_virtual) {
4152     // After null check, get the object's klass.
4153     Node* obj_klass = load_object_klass(obj);
4154     generate_virtual_guard(obj_klass, slow_region);
4155   }
4156 
4157   // Get the header out of the object, use LoadMarkNode when available
4158   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4159   // The control of the load must be NULL. Otherwise, the load can move before
4160   // the null check after castPP removal.
4161   Node* no_ctrl = NULL;
4162   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4163 
4164   // Test the header to see if it is unlocked.
4165   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4166   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4167   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4168   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4169   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4170 
4171   generate_slow_guard(test_unlocked, slow_region);
4172 
4173   // Get the hash value and check to see that it has been properly assigned.
4174   // We depend on hash_mask being at most 32 bits and avoid the use of
4175   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4176   // vm: see markOop.hpp.
4177   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4178   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4179   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4180   // This hack lets the hash bits live anywhere in the mark object now, as long
4181   // as the shift drops the relevant bits into the low 32 bits.  Note that
4182   // Java spec says that HashCode is an int so there's no point in capturing
4183   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4184   hshifted_header      = ConvX2I(hshifted_header);
4185   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4186 
4187   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4188   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4189   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4190 
4191   generate_slow_guard(test_assigned, slow_region);
4192 
4193   Node* init_mem = reset_memory();
4194   // fill in the rest of the null path:
4195   result_io ->init_req(_null_path, i_o());
4196   result_mem->init_req(_null_path, init_mem);
4197 
4198   result_val->init_req(_fast_path, hash_val);
4199   result_reg->init_req(_fast_path, control());
4200   result_io ->init_req(_fast_path, i_o());
4201   result_mem->init_req(_fast_path, init_mem);
4202 
4203   // Generate code for the slow case.  We make a call to hashCode().
4204   set_control(_gvn.transform(slow_region));
4205   if (!stopped()) {
4206     // No need for PreserveJVMState, because we're using up the present state.
4207     set_all_memory(init_mem);
4208     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4209     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4210     Node* slow_result = set_results_for_java_call(slow_call);
4211     // this->control() comes from set_results_for_java_call
4212     result_reg->init_req(_slow_path, control());
4213     result_val->init_req(_slow_path, slow_result);
4214     result_io  ->set_req(_slow_path, i_o());
4215     result_mem ->set_req(_slow_path, reset_memory());
4216   }
4217 
4218   // Return the combined state.
4219   set_i_o(        _gvn.transform(result_io)  );
4220   set_all_memory( _gvn.transform(result_mem));
4221 
4222   set_result(result_reg, result_val);
4223   return true;
4224 }
4225 
4226 //---------------------------inline_native_getClass----------------------------
4227 // public final native Class<?> java.lang.Object.getClass();
4228 //
4229 // Build special case code for calls to getClass on an object.
4230 bool LibraryCallKit::inline_native_getClass() {
4231   Node* obj = null_check_receiver();
4232   if (stopped())  return true;
4233   set_result(load_mirror_from_klass(load_object_klass(obj)));
4234   return true;
4235 }
4236 
4237 //-----------------inline_native_Reflection_getCallerClass---------------------
4238 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4239 //
4240 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4241 //
4242 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4243 // in that it must skip particular security frames and checks for
4244 // caller sensitive methods.
4245 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4246 #ifndef PRODUCT
4247   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4248     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4249   }
4250 #endif
4251 
4252   if (!jvms()->has_method()) {
4253 #ifndef PRODUCT
4254     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4255       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4256     }
4257 #endif
4258     return false;
4259   }
4260 
4261   // Walk back up the JVM state to find the caller at the required
4262   // depth.
4263   JVMState* caller_jvms = jvms();
4264 
4265   // Cf. JVM_GetCallerClass
4266   // NOTE: Start the loop at depth 1 because the current JVM state does
4267   // not include the Reflection.getCallerClass() frame.
4268   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4269     ciMethod* m = caller_jvms->method();
4270     switch (n) {
4271     case 0:
4272       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4273       break;
4274     case 1:
4275       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4276       if (!m->caller_sensitive()) {
4277 #ifndef PRODUCT
4278         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4279           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4280         }
4281 #endif
4282         return false;  // bail-out; let JVM_GetCallerClass do the work
4283       }
4284       break;
4285     default:
4286       if (!m->is_ignored_by_security_stack_walk()) {
4287         // We have reached the desired frame; return the holder class.
4288         // Acquire method holder as java.lang.Class and push as constant.
4289         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4290         ciInstance* caller_mirror = caller_klass->java_mirror();
4291         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4292 
4293 #ifndef PRODUCT
4294         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4295           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4296           tty->print_cr("  JVM state at this point:");
4297           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4298             ciMethod* m = jvms()->of_depth(i)->method();
4299             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4300           }
4301         }
4302 #endif
4303         return true;
4304       }
4305       break;
4306     }
4307   }
4308 
4309 #ifndef PRODUCT
4310   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4311     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4312     tty->print_cr("  JVM state at this point:");
4313     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4314       ciMethod* m = jvms()->of_depth(i)->method();
4315       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4316     }
4317   }
4318 #endif
4319 
4320   return false;  // bail-out; let JVM_GetCallerClass do the work
4321 }
4322 
4323 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4324   Node* arg = argument(0);
4325   Node* result = NULL;
4326 
4327   switch (id) {
4328   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4329   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4330   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4331   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4332 
4333   case vmIntrinsics::_doubleToLongBits: {
4334     // two paths (plus control) merge in a wood
4335     RegionNode *r = new RegionNode(3);
4336     Node *phi = new PhiNode(r, TypeLong::LONG);
4337 
4338     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4339     // Build the boolean node
4340     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4341 
4342     // Branch either way.
4343     // NaN case is less traveled, which makes all the difference.
4344     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4345     Node *opt_isnan = _gvn.transform(ifisnan);
4346     assert( opt_isnan->is_If(), "Expect an IfNode");
4347     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4348     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4349 
4350     set_control(iftrue);
4351 
4352     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4353     Node *slow_result = longcon(nan_bits); // return NaN
4354     phi->init_req(1, _gvn.transform( slow_result ));
4355     r->init_req(1, iftrue);
4356 
4357     // Else fall through
4358     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4359     set_control(iffalse);
4360 
4361     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4362     r->init_req(2, iffalse);
4363 
4364     // Post merge
4365     set_control(_gvn.transform(r));
4366     record_for_igvn(r);
4367 
4368     C->set_has_split_ifs(true); // Has chance for split-if optimization
4369     result = phi;
4370     assert(result->bottom_type()->isa_long(), "must be");
4371     break;
4372   }
4373 
4374   case vmIntrinsics::_floatToIntBits: {
4375     // two paths (plus control) merge in a wood
4376     RegionNode *r = new RegionNode(3);
4377     Node *phi = new PhiNode(r, TypeInt::INT);
4378 
4379     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4380     // Build the boolean node
4381     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4382 
4383     // Branch either way.
4384     // NaN case is less traveled, which makes all the difference.
4385     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4386     Node *opt_isnan = _gvn.transform(ifisnan);
4387     assert( opt_isnan->is_If(), "Expect an IfNode");
4388     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4389     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4390 
4391     set_control(iftrue);
4392 
4393     static const jint nan_bits = 0x7fc00000;
4394     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4395     phi->init_req(1, _gvn.transform( slow_result ));
4396     r->init_req(1, iftrue);
4397 
4398     // Else fall through
4399     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4400     set_control(iffalse);
4401 
4402     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4403     r->init_req(2, iffalse);
4404 
4405     // Post merge
4406     set_control(_gvn.transform(r));
4407     record_for_igvn(r);
4408 
4409     C->set_has_split_ifs(true); // Has chance for split-if optimization
4410     result = phi;
4411     assert(result->bottom_type()->isa_int(), "must be");
4412     break;
4413   }
4414 
4415   default:
4416     fatal_unexpected_iid(id);
4417     break;
4418   }
4419   set_result(_gvn.transform(result));
4420   return true;
4421 }
4422 
4423 //----------------------inline_unsafe_copyMemory-------------------------
4424 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4425 bool LibraryCallKit::inline_unsafe_copyMemory() {
4426   if (callee()->is_static())  return false;  // caller must have the capability!
4427   null_check_receiver();  // null-check receiver
4428   if (stopped())  return true;
4429 
4430   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4431 
4432   Node* src_ptr =         argument(1);   // type: oop
4433   Node* src_off = ConvL2X(argument(2));  // type: long
4434   Node* dst_ptr =         argument(4);   // type: oop
4435   Node* dst_off = ConvL2X(argument(5));  // type: long
4436   Node* size    = ConvL2X(argument(7));  // type: long
4437 
4438   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4439          "fieldOffset must be byte-scaled");
4440 
4441   Node* src = make_unsafe_address(src_ptr, src_off);
4442   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4443 
4444   // Conservatively insert a memory barrier on all memory slices.
4445   // Do not let writes of the copy source or destination float below the copy.
4446   insert_mem_bar(Op_MemBarCPUOrder);
4447 
4448   // Call it.  Note that the length argument is not scaled.
4449   make_runtime_call(RC_LEAF|RC_NO_FP,
4450                     OptoRuntime::fast_arraycopy_Type(),
4451                     StubRoutines::unsafe_arraycopy(),
4452                     "unsafe_arraycopy",
4453                     TypeRawPtr::BOTTOM,
4454                     src, dst, size XTOP);
4455 
4456   // Do not let reads of the copy destination float above the copy.
4457   insert_mem_bar(Op_MemBarCPUOrder);
4458 
4459   return true;
4460 }
4461 
4462 //------------------------clone_coping-----------------------------------
4463 // Helper function for inline_native_clone.
4464 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4465   assert(obj_size != NULL, "");
4466   Node* raw_obj = alloc_obj->in(1);
4467   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4468 
4469   AllocateNode* alloc = NULL;
4470   if (ReduceBulkZeroing) {
4471     // We will be completely responsible for initializing this object -
4472     // mark Initialize node as complete.
4473     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4474     // The object was just allocated - there should be no any stores!
4475     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4476     // Mark as complete_with_arraycopy so that on AllocateNode
4477     // expansion, we know this AllocateNode is initialized by an array
4478     // copy and a StoreStore barrier exists after the array copy.
4479     alloc->initialization()->set_complete_with_arraycopy();
4480   }
4481 
4482   // Copy the fastest available way.
4483   // TODO: generate fields copies for small objects instead.
4484   Node* src  = obj;
4485   Node* dest = alloc_obj;
4486   Node* size = _gvn.transform(obj_size);
4487 
4488   // Exclude the header but include array length to copy by 8 bytes words.
4489   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4490   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4491                             instanceOopDesc::base_offset_in_bytes();
4492   // base_off:
4493   // 8  - 32-bit VM
4494   // 12 - 64-bit VM, compressed klass
4495   // 16 - 64-bit VM, normal klass
4496   if (base_off % BytesPerLong != 0) {
4497     assert(UseCompressedClassPointers, "");
4498     if (is_array) {
4499       // Exclude length to copy by 8 bytes words.
4500       base_off += sizeof(int);
4501     } else {
4502       // Include klass to copy by 8 bytes words.
4503       base_off = instanceOopDesc::klass_offset_in_bytes();
4504     }
4505     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4506   }
4507   src  = basic_plus_adr(src,  base_off);
4508   dest = basic_plus_adr(dest, base_off);
4509 
4510   // Compute the length also, if needed:
4511   Node* countx = size;
4512   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4513   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4514 
4515   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4516 
4517   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4518   ac->set_clonebasic();
4519   Node* n = _gvn.transform(ac);
4520   if (n == ac) {
4521     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4522   } else {
4523     set_all_memory(n);
4524   }
4525 
4526   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4527   if (card_mark) {
4528     assert(!is_array, "");
4529     // Put in store barrier for any and all oops we are sticking
4530     // into this object.  (We could avoid this if we could prove
4531     // that the object type contains no oop fields at all.)
4532     Node* no_particular_value = NULL;
4533     Node* no_particular_field = NULL;
4534     int raw_adr_idx = Compile::AliasIdxRaw;
4535     post_barrier(control(),
4536                  memory(raw_adr_type),
4537                  alloc_obj,
4538                  no_particular_field,
4539                  raw_adr_idx,
4540                  no_particular_value,
4541                  T_OBJECT,
4542                  false);
4543   }
4544 
4545   // Do not let reads from the cloned object float above the arraycopy.
4546   if (alloc != NULL) {
4547     // Do not let stores that initialize this object be reordered with
4548     // a subsequent store that would make this object accessible by
4549     // other threads.
4550     // Record what AllocateNode this StoreStore protects so that
4551     // escape analysis can go from the MemBarStoreStoreNode to the
4552     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4553     // based on the escape status of the AllocateNode.
4554     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4555   } else {
4556     insert_mem_bar(Op_MemBarCPUOrder);
4557   }
4558 }
4559 
4560 //------------------------inline_native_clone----------------------------
4561 // protected native Object java.lang.Object.clone();
4562 //
4563 // Here are the simple edge cases:
4564 //  null receiver => normal trap
4565 //  virtual and clone was overridden => slow path to out-of-line clone
4566 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4567 //
4568 // The general case has two steps, allocation and copying.
4569 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4570 //
4571 // Copying also has two cases, oop arrays and everything else.
4572 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4573 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4574 //
4575 // These steps fold up nicely if and when the cloned object's klass
4576 // can be sharply typed as an object array, a type array, or an instance.
4577 //
4578 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4579   PhiNode* result_val;
4580 
4581   // Set the reexecute bit for the interpreter to reexecute
4582   // the bytecode that invokes Object.clone if deoptimization happens.
4583   { PreserveReexecuteState preexecs(this);
4584     jvms()->set_should_reexecute(true);
4585 
4586     Node* obj = null_check_receiver();
4587     if (stopped())  return true;
4588 
4589     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4590 
4591     // If we are going to clone an instance, we need its exact type to
4592     // know the number and types of fields to convert the clone to
4593     // loads/stores. Maybe a speculative type can help us.
4594     if (!obj_type->klass_is_exact() &&
4595         obj_type->speculative_type() != NULL &&
4596         obj_type->speculative_type()->is_instance_klass()) {
4597       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4598       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4599           !spec_ik->has_injected_fields()) {
4600         ciKlass* k = obj_type->klass();
4601         if (!k->is_instance_klass() ||
4602             k->as_instance_klass()->is_interface() ||
4603             k->as_instance_klass()->has_subklass()) {
4604           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4605         }
4606       }
4607     }
4608 
4609     Node* obj_klass = load_object_klass(obj);
4610     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4611     const TypeOopPtr*   toop   = ((tklass != NULL)
4612                                 ? tklass->as_instance_type()
4613                                 : TypeInstPtr::NOTNULL);
4614 
4615     // Conservatively insert a memory barrier on all memory slices.
4616     // Do not let writes into the original float below the clone.
4617     insert_mem_bar(Op_MemBarCPUOrder);
4618 
4619     // paths into result_reg:
4620     enum {
4621       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4622       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4623       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4624       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4625       PATH_LIMIT
4626     };
4627     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4628     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4629     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4630     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4631     record_for_igvn(result_reg);
4632 
4633     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4634     int raw_adr_idx = Compile::AliasIdxRaw;
4635 
4636     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4637     if (array_ctl != NULL) {
4638       // It's an array.
4639       PreserveJVMState pjvms(this);
4640       set_control(array_ctl);
4641       Node* obj_length = load_array_length(obj);
4642       Node* obj_size  = NULL;
4643       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4644 
4645       if (!use_ReduceInitialCardMarks()) {
4646         // If it is an oop array, it requires very special treatment,
4647         // because card marking is required on each card of the array.
4648         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4649         if (is_obja != NULL) {
4650           PreserveJVMState pjvms2(this);
4651           set_control(is_obja);
4652           // Generate a direct call to the right arraycopy function(s).
4653           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4654           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4655           ac->set_cloneoop();
4656           Node* n = _gvn.transform(ac);
4657           assert(n == ac, "cannot disappear");
4658           ac->connect_outputs(this);
4659 
4660           result_reg->init_req(_objArray_path, control());
4661           result_val->init_req(_objArray_path, alloc_obj);
4662           result_i_o ->set_req(_objArray_path, i_o());
4663           result_mem ->set_req(_objArray_path, reset_memory());
4664         }
4665       }
4666       // Otherwise, there are no card marks to worry about.
4667       // (We can dispense with card marks if we know the allocation
4668       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4669       //  causes the non-eden paths to take compensating steps to
4670       //  simulate a fresh allocation, so that no further
4671       //  card marks are required in compiled code to initialize
4672       //  the object.)
4673 
4674       if (!stopped()) {
4675         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4676 
4677         // Present the results of the copy.
4678         result_reg->init_req(_array_path, control());
4679         result_val->init_req(_array_path, alloc_obj);
4680         result_i_o ->set_req(_array_path, i_o());
4681         result_mem ->set_req(_array_path, reset_memory());
4682       }
4683     }
4684 
4685     // We only go to the instance fast case code if we pass a number of guards.
4686     // The paths which do not pass are accumulated in the slow_region.
4687     RegionNode* slow_region = new RegionNode(1);
4688     record_for_igvn(slow_region);
4689     if (!stopped()) {
4690       // It's an instance (we did array above).  Make the slow-path tests.
4691       // If this is a virtual call, we generate a funny guard.  We grab
4692       // the vtable entry corresponding to clone() from the target object.
4693       // If the target method which we are calling happens to be the
4694       // Object clone() method, we pass the guard.  We do not need this
4695       // guard for non-virtual calls; the caller is known to be the native
4696       // Object clone().
4697       if (is_virtual) {
4698         generate_virtual_guard(obj_klass, slow_region);
4699       }
4700 
4701       // The object must be easily cloneable and must not have a finalizer.
4702       // Both of these conditions may be checked in a single test.
4703       // We could optimize the test further, but we don't care.
4704       generate_access_flags_guard(obj_klass,
4705                                   // Test both conditions:
4706                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4707                                   // Must be cloneable but not finalizer:
4708                                   JVM_ACC_IS_CLONEABLE_FAST,
4709                                   slow_region);
4710     }
4711 
4712     if (!stopped()) {
4713       // It's an instance, and it passed the slow-path tests.
4714       PreserveJVMState pjvms(this);
4715       Node* obj_size  = NULL;
4716       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4717       // is reexecuted if deoptimization occurs and there could be problems when merging
4718       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4719       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4720 
4721       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4722 
4723       // Present the results of the slow call.
4724       result_reg->init_req(_instance_path, control());
4725       result_val->init_req(_instance_path, alloc_obj);
4726       result_i_o ->set_req(_instance_path, i_o());
4727       result_mem ->set_req(_instance_path, reset_memory());
4728     }
4729 
4730     // Generate code for the slow case.  We make a call to clone().
4731     set_control(_gvn.transform(slow_region));
4732     if (!stopped()) {
4733       PreserveJVMState pjvms(this);
4734       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4735       Node* slow_result = set_results_for_java_call(slow_call);
4736       // this->control() comes from set_results_for_java_call
4737       result_reg->init_req(_slow_path, control());
4738       result_val->init_req(_slow_path, slow_result);
4739       result_i_o ->set_req(_slow_path, i_o());
4740       result_mem ->set_req(_slow_path, reset_memory());
4741     }
4742 
4743     // Return the combined state.
4744     set_control(    _gvn.transform(result_reg));
4745     set_i_o(        _gvn.transform(result_i_o));
4746     set_all_memory( _gvn.transform(result_mem));
4747   } // original reexecute is set back here
4748 
4749   set_result(_gvn.transform(result_val));
4750   return true;
4751 }
4752 
4753 // If we have a tighly coupled allocation, the arraycopy may take care
4754 // of the array initialization. If one of the guards we insert between
4755 // the allocation and the arraycopy causes a deoptimization, an
4756 // unitialized array will escape the compiled method. To prevent that
4757 // we set the JVM state for uncommon traps between the allocation and
4758 // the arraycopy to the state before the allocation so, in case of
4759 // deoptimization, we'll reexecute the allocation and the
4760 // initialization.
4761 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4762   if (alloc != NULL) {
4763     ciMethod* trap_method = alloc->jvms()->method();
4764     int trap_bci = alloc->jvms()->bci();
4765 
4766     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4767           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4768       // Make sure there's no store between the allocation and the
4769       // arraycopy otherwise visible side effects could be rexecuted
4770       // in case of deoptimization and cause incorrect execution.
4771       bool no_interfering_store = true;
4772       Node* mem = alloc->in(TypeFunc::Memory);
4773       if (mem->is_MergeMem()) {
4774         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4775           Node* n = mms.memory();
4776           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4777             assert(n->is_Store(), "what else?");
4778             no_interfering_store = false;
4779             break;
4780           }
4781         }
4782       } else {
4783         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4784           Node* n = mms.memory();
4785           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4786             assert(n->is_Store(), "what else?");
4787             no_interfering_store = false;
4788             break;
4789           }
4790         }
4791       }
4792 
4793       if (no_interfering_store) {
4794         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4795         uint size = alloc->req();
4796         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4797         old_jvms->set_map(sfpt);
4798         for (uint i = 0; i < size; i++) {
4799           sfpt->init_req(i, alloc->in(i));
4800         }
4801         // re-push array length for deoptimization
4802         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4803         old_jvms->set_sp(old_jvms->sp()+1);
4804         old_jvms->set_monoff(old_jvms->monoff()+1);
4805         old_jvms->set_scloff(old_jvms->scloff()+1);
4806         old_jvms->set_endoff(old_jvms->endoff()+1);
4807         old_jvms->set_should_reexecute(true);
4808 
4809         sfpt->set_i_o(map()->i_o());
4810         sfpt->set_memory(map()->memory());
4811         sfpt->set_control(map()->control());
4812 
4813         JVMState* saved_jvms = jvms();
4814         saved_reexecute_sp = _reexecute_sp;
4815 
4816         set_jvms(sfpt->jvms());
4817         _reexecute_sp = jvms()->sp();
4818 
4819         return saved_jvms;
4820       }
4821     }
4822   }
4823   return NULL;
4824 }
4825 
4826 // In case of a deoptimization, we restart execution at the
4827 // allocation, allocating a new array. We would leave an uninitialized
4828 // array in the heap that GCs wouldn't expect. Move the allocation
4829 // after the traps so we don't allocate the array if we
4830 // deoptimize. This is possible because tightly_coupled_allocation()
4831 // guarantees there's no observer of the allocated array at this point
4832 // and the control flow is simple enough.
4833 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4834   if (saved_jvms != NULL && !stopped()) {
4835     assert(alloc != NULL, "only with a tightly coupled allocation");
4836     // restore JVM state to the state at the arraycopy
4837     saved_jvms->map()->set_control(map()->control());
4838     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4839     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4840     // If we've improved the types of some nodes (null check) while
4841     // emitting the guards, propagate them to the current state
4842     map()->replaced_nodes().apply(saved_jvms->map());
4843     set_jvms(saved_jvms);
4844     _reexecute_sp = saved_reexecute_sp;
4845 
4846     // Remove the allocation from above the guards
4847     CallProjections callprojs;
4848     alloc->extract_projections(&callprojs, true);
4849     InitializeNode* init = alloc->initialization();
4850     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4851     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4852     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4853     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4854 
4855     // move the allocation here (after the guards)
4856     _gvn.hash_delete(alloc);
4857     alloc->set_req(TypeFunc::Control, control());
4858     alloc->set_req(TypeFunc::I_O, i_o());
4859     Node *mem = reset_memory();
4860     set_all_memory(mem);
4861     alloc->set_req(TypeFunc::Memory, mem);
4862     set_control(init->proj_out(TypeFunc::Control));
4863     set_i_o(callprojs.fallthrough_ioproj);
4864 
4865     // Update memory as done in GraphKit::set_output_for_allocation()
4866     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4867     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4868     if (ary_type->isa_aryptr() && length_type != NULL) {
4869       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4870     }
4871     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4872     int            elemidx  = C->get_alias_index(telemref);
4873     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4874     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4875 
4876     Node* allocx = _gvn.transform(alloc);
4877     assert(allocx == alloc, "where has the allocation gone?");
4878     assert(dest->is_CheckCastPP(), "not an allocation result?");
4879 
4880     _gvn.hash_delete(dest);
4881     dest->set_req(0, control());
4882     Node* destx = _gvn.transform(dest);
4883     assert(destx == dest, "where has the allocation result gone?");
4884   }
4885 }
4886 
4887 
4888 //------------------------------inline_arraycopy-----------------------
4889 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4890 //                                                      Object dest, int destPos,
4891 //                                                      int length);
4892 bool LibraryCallKit::inline_arraycopy() {
4893   // Get the arguments.
4894   Node* src         = argument(0);  // type: oop
4895   Node* src_offset  = argument(1);  // type: int
4896   Node* dest        = argument(2);  // type: oop
4897   Node* dest_offset = argument(3);  // type: int
4898   Node* length      = argument(4);  // type: int
4899 
4900 
4901   // Check for allocation before we add nodes that would confuse
4902   // tightly_coupled_allocation()
4903   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4904 
4905   int saved_reexecute_sp = -1;
4906   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4907   // See arraycopy_restore_alloc_state() comment
4908   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4909   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4910   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4911   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4912 
4913   // The following tests must be performed
4914   // (1) src and dest are arrays.
4915   // (2) src and dest arrays must have elements of the same BasicType
4916   // (3) src and dest must not be null.
4917   // (4) src_offset must not be negative.
4918   // (5) dest_offset must not be negative.
4919   // (6) length must not be negative.
4920   // (7) src_offset + length must not exceed length of src.
4921   // (8) dest_offset + length must not exceed length of dest.
4922   // (9) each element of an oop array must be assignable
4923 
4924   // (3) src and dest must not be null.
4925   // always do this here because we need the JVM state for uncommon traps
4926   Node* null_ctl = top();
4927   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4928   assert(null_ctl->is_top(), "no null control here");
4929   dest = null_check(dest, T_ARRAY);
4930 
4931   if (!can_emit_guards) {
4932     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4933     // guards but the arraycopy node could still take advantage of a
4934     // tightly allocated allocation. tightly_coupled_allocation() is
4935     // called again to make sure it takes the null check above into
4936     // account: the null check is mandatory and if it caused an
4937     // uncommon trap to be emitted then the allocation can't be
4938     // considered tightly coupled in this context.
4939     alloc = tightly_coupled_allocation(dest, NULL);
4940   }
4941 
4942   bool validated = false;
4943 
4944   const Type* src_type  = _gvn.type(src);
4945   const Type* dest_type = _gvn.type(dest);
4946   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4947   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4948 
4949   // Do we have the type of src?
4950   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4951   // Do we have the type of dest?
4952   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4953   // Is the type for src from speculation?
4954   bool src_spec = false;
4955   // Is the type for dest from speculation?
4956   bool dest_spec = false;
4957 
4958   if ((!has_src || !has_dest) && can_emit_guards) {
4959     // We don't have sufficient type information, let's see if
4960     // speculative types can help. We need to have types for both src
4961     // and dest so that it pays off.
4962 
4963     // Do we already have or could we have type information for src
4964     bool could_have_src = has_src;
4965     // Do we already have or could we have type information for dest
4966     bool could_have_dest = has_dest;
4967 
4968     ciKlass* src_k = NULL;
4969     if (!has_src) {
4970       src_k = src_type->speculative_type_not_null();
4971       if (src_k != NULL && src_k->is_array_klass()) {
4972         could_have_src = true;
4973       }
4974     }
4975 
4976     ciKlass* dest_k = NULL;
4977     if (!has_dest) {
4978       dest_k = dest_type->speculative_type_not_null();
4979       if (dest_k != NULL && dest_k->is_array_klass()) {
4980         could_have_dest = true;
4981       }
4982     }
4983 
4984     if (could_have_src && could_have_dest) {
4985       // This is going to pay off so emit the required guards
4986       if (!has_src) {
4987         src = maybe_cast_profiled_obj(src, src_k, true);
4988         src_type  = _gvn.type(src);
4989         top_src  = src_type->isa_aryptr();
4990         has_src = (top_src != NULL && top_src->klass() != NULL);
4991         src_spec = true;
4992       }
4993       if (!has_dest) {
4994         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4995         dest_type  = _gvn.type(dest);
4996         top_dest  = dest_type->isa_aryptr();
4997         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4998         dest_spec = true;
4999       }
5000     }
5001   }
5002 
5003   if (has_src && has_dest && can_emit_guards) {
5004     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5005     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5006     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5007     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5008 
5009     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5010       // If both arrays are object arrays then having the exact types
5011       // for both will remove the need for a subtype check at runtime
5012       // before the call and may make it possible to pick a faster copy
5013       // routine (without a subtype check on every element)
5014       // Do we have the exact type of src?
5015       bool could_have_src = src_spec;
5016       // Do we have the exact type of dest?
5017       bool could_have_dest = dest_spec;
5018       ciKlass* src_k = top_src->klass();
5019       ciKlass* dest_k = top_dest->klass();
5020       if (!src_spec) {
5021         src_k = src_type->speculative_type_not_null();
5022         if (src_k != NULL && src_k->is_array_klass()) {
5023           could_have_src = true;
5024         }
5025       }
5026       if (!dest_spec) {
5027         dest_k = dest_type->speculative_type_not_null();
5028         if (dest_k != NULL && dest_k->is_array_klass()) {
5029           could_have_dest = true;
5030         }
5031       }
5032       if (could_have_src && could_have_dest) {
5033         // If we can have both exact types, emit the missing guards
5034         if (could_have_src && !src_spec) {
5035           src = maybe_cast_profiled_obj(src, src_k, true);
5036         }
5037         if (could_have_dest && !dest_spec) {
5038           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5039         }
5040       }
5041     }
5042   }
5043 
5044   ciMethod* trap_method = method();
5045   int trap_bci = bci();
5046   if (saved_jvms != NULL) {
5047     trap_method = alloc->jvms()->method();
5048     trap_bci = alloc->jvms()->bci();
5049   }
5050 
5051   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5052       can_emit_guards &&
5053       !src->is_top() && !dest->is_top()) {
5054     // validate arguments: enables transformation the ArrayCopyNode
5055     validated = true;
5056 
5057     RegionNode* slow_region = new RegionNode(1);
5058     record_for_igvn(slow_region);
5059 
5060     // (1) src and dest are arrays.
5061     generate_non_array_guard(load_object_klass(src), slow_region);
5062     generate_non_array_guard(load_object_klass(dest), slow_region);
5063 
5064     // (2) src and dest arrays must have elements of the same BasicType
5065     // done at macro expansion or at Ideal transformation time
5066 
5067     // (4) src_offset must not be negative.
5068     generate_negative_guard(src_offset, slow_region);
5069 
5070     // (5) dest_offset must not be negative.
5071     generate_negative_guard(dest_offset, slow_region);
5072 
5073     // (7) src_offset + length must not exceed length of src.
5074     generate_limit_guard(src_offset, length,
5075                          load_array_length(src),
5076                          slow_region);
5077 
5078     // (8) dest_offset + length must not exceed length of dest.
5079     generate_limit_guard(dest_offset, length,
5080                          load_array_length(dest),
5081                          slow_region);
5082 
5083     // (9) each element of an oop array must be assignable
5084     Node* src_klass  = load_object_klass(src);
5085     Node* dest_klass = load_object_klass(dest);
5086     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5087 
5088     if (not_subtype_ctrl != top()) {
5089       PreserveJVMState pjvms(this);
5090       set_control(not_subtype_ctrl);
5091       uncommon_trap(Deoptimization::Reason_intrinsic,
5092                     Deoptimization::Action_make_not_entrant);
5093       assert(stopped(), "Should be stopped");
5094     }
5095     {
5096       PreserveJVMState pjvms(this);
5097       set_control(_gvn.transform(slow_region));
5098       uncommon_trap(Deoptimization::Reason_intrinsic,
5099                     Deoptimization::Action_make_not_entrant);
5100       assert(stopped(), "Should be stopped");
5101     }
5102   }
5103 
5104   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5105 
5106   if (stopped()) {
5107     return true;
5108   }
5109 
5110   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5111                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5112                                           // so the compiler has a chance to eliminate them: during macro expansion,
5113                                           // we have to set their control (CastPP nodes are eliminated).
5114                                           load_object_klass(src), load_object_klass(dest),
5115                                           load_array_length(src), load_array_length(dest));
5116 
5117   ac->set_arraycopy(validated);
5118 
5119   Node* n = _gvn.transform(ac);
5120   if (n == ac) {
5121     ac->connect_outputs(this);
5122   } else {
5123     assert(validated, "shouldn't transform if all arguments not validated");
5124     set_all_memory(n);
5125   }
5126 
5127   return true;
5128 }
5129 
5130 
5131 // Helper function which determines if an arraycopy immediately follows
5132 // an allocation, with no intervening tests or other escapes for the object.
5133 AllocateArrayNode*
5134 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5135                                            RegionNode* slow_region) {
5136   if (stopped())             return NULL;  // no fast path
5137   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5138 
5139   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5140   if (alloc == NULL)  return NULL;
5141 
5142   Node* rawmem = memory(Compile::AliasIdxRaw);
5143   // Is the allocation's memory state untouched?
5144   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5145     // Bail out if there have been raw-memory effects since the allocation.
5146     // (Example:  There might have been a call or safepoint.)
5147     return NULL;
5148   }
5149   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5150   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5151     return NULL;
5152   }
5153 
5154   // There must be no unexpected observers of this allocation.
5155   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5156     Node* obs = ptr->fast_out(i);
5157     if (obs != this->map()) {
5158       return NULL;
5159     }
5160   }
5161 
5162   // This arraycopy must unconditionally follow the allocation of the ptr.
5163   Node* alloc_ctl = ptr->in(0);
5164   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5165 
5166   Node* ctl = control();
5167   while (ctl != alloc_ctl) {
5168     // There may be guards which feed into the slow_region.
5169     // Any other control flow means that we might not get a chance
5170     // to finish initializing the allocated object.
5171     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5172       IfNode* iff = ctl->in(0)->as_If();
5173       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5174       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5175       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5176         ctl = iff->in(0);       // This test feeds the known slow_region.
5177         continue;
5178       }
5179       // One more try:  Various low-level checks bottom out in
5180       // uncommon traps.  If the debug-info of the trap omits
5181       // any reference to the allocation, as we've already
5182       // observed, then there can be no objection to the trap.
5183       bool found_trap = false;
5184       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5185         Node* obs = not_ctl->fast_out(j);
5186         if (obs->in(0) == not_ctl && obs->is_Call() &&
5187             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5188           found_trap = true; break;
5189         }
5190       }
5191       if (found_trap) {
5192         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5193         continue;
5194       }
5195     }
5196     return NULL;
5197   }
5198 
5199   // If we get this far, we have an allocation which immediately
5200   // precedes the arraycopy, and we can take over zeroing the new object.
5201   // The arraycopy will finish the initialization, and provide
5202   // a new control state to which we will anchor the destination pointer.
5203 
5204   return alloc;
5205 }
5206 
5207 //-------------inline_encodeISOArray-----------------------------------
5208 // encode char[] to byte[] in ISO_8859_1
5209 bool LibraryCallKit::inline_encodeISOArray() {
5210   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5211   // no receiver since it is static method
5212   Node *src         = argument(0);
5213   Node *src_offset  = argument(1);
5214   Node *dst         = argument(2);
5215   Node *dst_offset  = argument(3);
5216   Node *length      = argument(4);
5217 
5218   const Type* src_type = src->Value(&_gvn);
5219   const Type* dst_type = dst->Value(&_gvn);
5220   const TypeAryPtr* top_src = src_type->isa_aryptr();
5221   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5222   if (top_src  == NULL || top_src->klass()  == NULL ||
5223       top_dest == NULL || top_dest->klass() == NULL) {
5224     // failed array check
5225     return false;
5226   }
5227 
5228   // Figure out the size and type of the elements we will be copying.
5229   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5230   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5231   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5232     return false;
5233   }
5234 
5235   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5236   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5237   // 'src_start' points to src array + scaled offset
5238   // 'dst_start' points to dst array + scaled offset
5239 
5240   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5241   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5242   enc = _gvn.transform(enc);
5243   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5244   set_memory(res_mem, mtype);
5245   set_result(enc);
5246   return true;
5247 }
5248 
5249 //-------------inline_multiplyToLen-----------------------------------
5250 bool LibraryCallKit::inline_multiplyToLen() {
5251   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5252 
5253   address stubAddr = StubRoutines::multiplyToLen();
5254   if (stubAddr == NULL) {
5255     return false; // Intrinsic's stub is not implemented on this platform
5256   }
5257   const char* stubName = "multiplyToLen";
5258 
5259   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5260 
5261   // no receiver because it is a static method
5262   Node* x    = argument(0);
5263   Node* xlen = argument(1);
5264   Node* y    = argument(2);
5265   Node* ylen = argument(3);
5266   Node* z    = argument(4);
5267 
5268   const Type* x_type = x->Value(&_gvn);
5269   const Type* y_type = y->Value(&_gvn);
5270   const TypeAryPtr* top_x = x_type->isa_aryptr();
5271   const TypeAryPtr* top_y = y_type->isa_aryptr();
5272   if (top_x  == NULL || top_x->klass()  == NULL ||
5273       top_y == NULL || top_y->klass() == NULL) {
5274     // failed array check
5275     return false;
5276   }
5277 
5278   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5279   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5280   if (x_elem != T_INT || y_elem != T_INT) {
5281     return false;
5282   }
5283 
5284   // Set the original stack and the reexecute bit for the interpreter to reexecute
5285   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5286   // on the return from z array allocation in runtime.
5287   { PreserveReexecuteState preexecs(this);
5288     jvms()->set_should_reexecute(true);
5289 
5290     Node* x_start = array_element_address(x, intcon(0), x_elem);
5291     Node* y_start = array_element_address(y, intcon(0), y_elem);
5292     // 'x_start' points to x array + scaled xlen
5293     // 'y_start' points to y array + scaled ylen
5294 
5295     // Allocate the result array
5296     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5297     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5298     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5299 
5300     IdealKit ideal(this);
5301 
5302 #define __ ideal.
5303      Node* one = __ ConI(1);
5304      Node* zero = __ ConI(0);
5305      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5306      __ set(need_alloc, zero);
5307      __ set(z_alloc, z);
5308      __ if_then(z, BoolTest::eq, null()); {
5309        __ increment (need_alloc, one);
5310      } __ else_(); {
5311        // Update graphKit memory and control from IdealKit.
5312        sync_kit(ideal);
5313        Node* zlen_arg = load_array_length(z);
5314        // Update IdealKit memory and control from graphKit.
5315        __ sync_kit(this);
5316        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5317          __ increment (need_alloc, one);
5318        } __ end_if();
5319      } __ end_if();
5320 
5321      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5322        // Update graphKit memory and control from IdealKit.
5323        sync_kit(ideal);
5324        Node * narr = new_array(klass_node, zlen, 1);
5325        // Update IdealKit memory and control from graphKit.
5326        __ sync_kit(this);
5327        __ set(z_alloc, narr);
5328      } __ end_if();
5329 
5330      sync_kit(ideal);
5331      z = __ value(z_alloc);
5332      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5333      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5334      // Final sync IdealKit and GraphKit.
5335      final_sync(ideal);
5336 #undef __
5337 
5338     Node* z_start = array_element_address(z, intcon(0), T_INT);
5339 
5340     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5341                                    OptoRuntime::multiplyToLen_Type(),
5342                                    stubAddr, stubName, TypePtr::BOTTOM,
5343                                    x_start, xlen, y_start, ylen, z_start, zlen);
5344   } // original reexecute is set back here
5345 
5346   C->set_has_split_ifs(true); // Has chance for split-if optimization
5347   set_result(z);
5348   return true;
5349 }
5350 
5351 //-------------inline_squareToLen------------------------------------
5352 bool LibraryCallKit::inline_squareToLen() {
5353   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5354 
5355   address stubAddr = StubRoutines::squareToLen();
5356   if (stubAddr == NULL) {
5357     return false; // Intrinsic's stub is not implemented on this platform
5358   }
5359   const char* stubName = "squareToLen";
5360 
5361   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5362 
5363   Node* x    = argument(0);
5364   Node* len  = argument(1);
5365   Node* z    = argument(2);
5366   Node* zlen = argument(3);
5367 
5368   const Type* x_type = x->Value(&_gvn);
5369   const Type* z_type = z->Value(&_gvn);
5370   const TypeAryPtr* top_x = x_type->isa_aryptr();
5371   const TypeAryPtr* top_z = z_type->isa_aryptr();
5372   if (top_x  == NULL || top_x->klass()  == NULL ||
5373       top_z  == NULL || top_z->klass()  == NULL) {
5374     // failed array check
5375     return false;
5376   }
5377 
5378   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5379   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5380   if (x_elem != T_INT || z_elem != T_INT) {
5381     return false;
5382   }
5383 
5384 
5385   Node* x_start = array_element_address(x, intcon(0), x_elem);
5386   Node* z_start = array_element_address(z, intcon(0), z_elem);
5387 
5388   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5389                                   OptoRuntime::squareToLen_Type(),
5390                                   stubAddr, stubName, TypePtr::BOTTOM,
5391                                   x_start, len, z_start, zlen);
5392 
5393   set_result(z);
5394   return true;
5395 }
5396 
5397 //-------------inline_mulAdd------------------------------------------
5398 bool LibraryCallKit::inline_mulAdd() {
5399   assert(UseMulAddIntrinsic, "not implemented on this platform");
5400 
5401   address stubAddr = StubRoutines::mulAdd();
5402   if (stubAddr == NULL) {
5403     return false; // Intrinsic's stub is not implemented on this platform
5404   }
5405   const char* stubName = "mulAdd";
5406 
5407   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5408 
5409   Node* out      = argument(0);
5410   Node* in       = argument(1);
5411   Node* offset   = argument(2);
5412   Node* len      = argument(3);
5413   Node* k        = argument(4);
5414 
5415   const Type* out_type = out->Value(&_gvn);
5416   const Type* in_type = in->Value(&_gvn);
5417   const TypeAryPtr* top_out = out_type->isa_aryptr();
5418   const TypeAryPtr* top_in = in_type->isa_aryptr();
5419   if (top_out  == NULL || top_out->klass()  == NULL ||
5420       top_in == NULL || top_in->klass() == NULL) {
5421     // failed array check
5422     return false;
5423   }
5424 
5425   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5426   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5427   if (out_elem != T_INT || in_elem != T_INT) {
5428     return false;
5429   }
5430 
5431   Node* outlen = load_array_length(out);
5432   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5433   Node* out_start = array_element_address(out, intcon(0), out_elem);
5434   Node* in_start = array_element_address(in, intcon(0), in_elem);
5435 
5436   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5437                                   OptoRuntime::mulAdd_Type(),
5438                                   stubAddr, stubName, TypePtr::BOTTOM,
5439                                   out_start,in_start, new_offset, len, k);
5440   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5441   set_result(result);
5442   return true;
5443 }
5444 
5445 //-------------inline_montgomeryMultiply-----------------------------------
5446 bool LibraryCallKit::inline_montgomeryMultiply() {
5447   address stubAddr = StubRoutines::montgomeryMultiply();
5448   if (stubAddr == NULL) {
5449     return false; // Intrinsic's stub is not implemented on this platform
5450   }
5451 
5452   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5453   const char* stubName = "montgomery_square";
5454 
5455   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5456 
5457   Node* a    = argument(0);
5458   Node* b    = argument(1);
5459   Node* n    = argument(2);
5460   Node* len  = argument(3);
5461   Node* inv  = argument(4);
5462   Node* m    = argument(6);
5463 
5464   const Type* a_type = a->Value(&_gvn);
5465   const TypeAryPtr* top_a = a_type->isa_aryptr();
5466   const Type* b_type = b->Value(&_gvn);
5467   const TypeAryPtr* top_b = b_type->isa_aryptr();
5468   const Type* n_type = a->Value(&_gvn);
5469   const TypeAryPtr* top_n = n_type->isa_aryptr();
5470   const Type* m_type = a->Value(&_gvn);
5471   const TypeAryPtr* top_m = m_type->isa_aryptr();
5472   if (top_a  == NULL || top_a->klass()  == NULL ||
5473       top_b == NULL || top_b->klass()  == NULL ||
5474       top_n == NULL || top_n->klass()  == NULL ||
5475       top_m == NULL || top_m->klass()  == NULL) {
5476     // failed array check
5477     return false;
5478   }
5479 
5480   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5481   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5482   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5483   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5484   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5485     return false;
5486   }
5487 
5488   // Make the call
5489   {
5490     Node* a_start = array_element_address(a, intcon(0), a_elem);
5491     Node* b_start = array_element_address(b, intcon(0), b_elem);
5492     Node* n_start = array_element_address(n, intcon(0), n_elem);
5493     Node* m_start = array_element_address(m, intcon(0), m_elem);
5494 
5495     Node* call = make_runtime_call(RC_LEAF,
5496                                    OptoRuntime::montgomeryMultiply_Type(),
5497                                    stubAddr, stubName, TypePtr::BOTTOM,
5498                                    a_start, b_start, n_start, len, inv, top(),
5499                                    m_start);
5500     set_result(m);
5501   }
5502 
5503   return true;
5504 }
5505 
5506 bool LibraryCallKit::inline_montgomerySquare() {
5507   address stubAddr = StubRoutines::montgomerySquare();
5508   if (stubAddr == NULL) {
5509     return false; // Intrinsic's stub is not implemented on this platform
5510   }
5511 
5512   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5513   const char* stubName = "montgomery_square";
5514 
5515   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5516 
5517   Node* a    = argument(0);
5518   Node* n    = argument(1);
5519   Node* len  = argument(2);
5520   Node* inv  = argument(3);
5521   Node* m    = argument(5);
5522 
5523   const Type* a_type = a->Value(&_gvn);
5524   const TypeAryPtr* top_a = a_type->isa_aryptr();
5525   const Type* n_type = a->Value(&_gvn);
5526   const TypeAryPtr* top_n = n_type->isa_aryptr();
5527   const Type* m_type = a->Value(&_gvn);
5528   const TypeAryPtr* top_m = m_type->isa_aryptr();
5529   if (top_a  == NULL || top_a->klass()  == NULL ||
5530       top_n == NULL || top_n->klass()  == NULL ||
5531       top_m == NULL || top_m->klass()  == NULL) {
5532     // failed array check
5533     return false;
5534   }
5535 
5536   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5537   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5538   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5539   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5540     return false;
5541   }
5542 
5543   // Make the call
5544   {
5545     Node* a_start = array_element_address(a, intcon(0), a_elem);
5546     Node* n_start = array_element_address(n, intcon(0), n_elem);
5547     Node* m_start = array_element_address(m, intcon(0), m_elem);
5548 
5549     Node* call = make_runtime_call(RC_LEAF,
5550                                    OptoRuntime::montgomerySquare_Type(),
5551                                    stubAddr, stubName, TypePtr::BOTTOM,
5552                                    a_start, n_start, len, inv, top(),
5553                                    m_start);
5554     set_result(m);
5555   }
5556 
5557   return true;
5558 }
5559 
5560 //-------------inline_vectorizedMismatch------------------------------
5561 bool LibraryCallKit::inline_vectorizedMismatch() {
5562   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5563 
5564   address stubAddr = StubRoutines::vectorizedMismatch();
5565   if (stubAddr == NULL) {
5566     return false; // Intrinsic's stub is not implemented on this platform
5567   }
5568   const char* stubName = "vectorizedMismatch";
5569   int size_l = callee()->signature()->size();
5570   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5571 
5572   Node* obja = argument(0);
5573   Node* aoffset = argument(1);
5574   Node* objb = argument(3);
5575   Node* boffset = argument(4);
5576   Node* length = argument(6);
5577   Node* scale = argument(7);
5578 
5579   const Type* a_type = obja->Value(&_gvn);
5580   const Type* b_type = objb->Value(&_gvn);
5581   const TypeAryPtr* top_a = a_type->isa_aryptr();
5582   const TypeAryPtr* top_b = b_type->isa_aryptr();
5583   if (top_a == NULL || top_a->klass() == NULL ||
5584     top_b == NULL || top_b->klass() == NULL) {
5585     // failed array check
5586     return false;
5587   }
5588 
5589   Node* call;
5590   jvms()->set_should_reexecute(true);
5591 
5592   Node* obja_adr = make_unsafe_address(obja, aoffset);
5593   Node* objb_adr = make_unsafe_address(objb, boffset);
5594 
5595   call = make_runtime_call(RC_LEAF,
5596     OptoRuntime::vectorizedMismatch_Type(),
5597     stubAddr, stubName, TypePtr::BOTTOM,
5598     obja_adr, objb_adr, length, scale);
5599 
5600   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5601   set_result(result);
5602   return true;
5603 }
5604 
5605 /**
5606  * Calculate CRC32 for byte.
5607  * int java.util.zip.CRC32.update(int crc, int b)
5608  */
5609 bool LibraryCallKit::inline_updateCRC32() {
5610   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5611   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5612   // no receiver since it is static method
5613   Node* crc  = argument(0); // type: int
5614   Node* b    = argument(1); // type: int
5615 
5616   /*
5617    *    int c = ~ crc;
5618    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5619    *    b = b ^ (c >>> 8);
5620    *    crc = ~b;
5621    */
5622 
5623   Node* M1 = intcon(-1);
5624   crc = _gvn.transform(new XorINode(crc, M1));
5625   Node* result = _gvn.transform(new XorINode(crc, b));
5626   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5627 
5628   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5629   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5630   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5631   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5632 
5633   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5634   result = _gvn.transform(new XorINode(crc, result));
5635   result = _gvn.transform(new XorINode(result, M1));
5636   set_result(result);
5637   return true;
5638 }
5639 
5640 /**
5641  * Calculate CRC32 for byte[] array.
5642  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5643  */
5644 bool LibraryCallKit::inline_updateBytesCRC32() {
5645   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5646   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5647   // no receiver since it is static method
5648   Node* crc     = argument(0); // type: int
5649   Node* src     = argument(1); // type: oop
5650   Node* offset  = argument(2); // type: int
5651   Node* length  = argument(3); // type: int
5652 
5653   const Type* src_type = src->Value(&_gvn);
5654   const TypeAryPtr* top_src = src_type->isa_aryptr();
5655   if (top_src  == NULL || top_src->klass()  == NULL) {
5656     // failed array check
5657     return false;
5658   }
5659 
5660   // Figure out the size and type of the elements we will be copying.
5661   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5662   if (src_elem != T_BYTE) {
5663     return false;
5664   }
5665 
5666   // 'src_start' points to src array + scaled offset
5667   Node* src_start = array_element_address(src, offset, src_elem);
5668 
5669   // We assume that range check is done by caller.
5670   // TODO: generate range check (offset+length < src.length) in debug VM.
5671 
5672   // Call the stub.
5673   address stubAddr = StubRoutines::updateBytesCRC32();
5674   const char *stubName = "updateBytesCRC32";
5675 
5676   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5677                                  stubAddr, stubName, TypePtr::BOTTOM,
5678                                  crc, src_start, length);
5679   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5680   set_result(result);
5681   return true;
5682 }
5683 
5684 /**
5685  * Calculate CRC32 for ByteBuffer.
5686  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5687  */
5688 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5689   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5690   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5691   // no receiver since it is static method
5692   Node* crc     = argument(0); // type: int
5693   Node* src     = argument(1); // type: long
5694   Node* offset  = argument(3); // type: int
5695   Node* length  = argument(4); // type: int
5696 
5697   src = ConvL2X(src);  // adjust Java long to machine word
5698   Node* base = _gvn.transform(new CastX2PNode(src));
5699   offset = ConvI2X(offset);
5700 
5701   // 'src_start' points to src array + scaled offset
5702   Node* src_start = basic_plus_adr(top(), base, offset);
5703 
5704   // Call the stub.
5705   address stubAddr = StubRoutines::updateBytesCRC32();
5706   const char *stubName = "updateBytesCRC32";
5707 
5708   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5709                                  stubAddr, stubName, TypePtr::BOTTOM,
5710                                  crc, src_start, length);
5711   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5712   set_result(result);
5713   return true;
5714 }
5715 
5716 //------------------------------get_table_from_crc32c_class-----------------------
5717 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5718   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5719   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5720 
5721   return table;
5722 }
5723 
5724 //------------------------------inline_updateBytesCRC32C-----------------------
5725 //
5726 // Calculate CRC32C for byte[] array.
5727 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5728 //
5729 bool LibraryCallKit::inline_updateBytesCRC32C() {
5730   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5731   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5732   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5733   // no receiver since it is a static method
5734   Node* crc     = argument(0); // type: int
5735   Node* src     = argument(1); // type: oop
5736   Node* offset  = argument(2); // type: int
5737   Node* end     = argument(3); // type: int
5738 
5739   Node* length = _gvn.transform(new SubINode(end, offset));
5740 
5741   const Type* src_type = src->Value(&_gvn);
5742   const TypeAryPtr* top_src = src_type->isa_aryptr();
5743   if (top_src  == NULL || top_src->klass()  == NULL) {
5744     // failed array check
5745     return false;
5746   }
5747 
5748   // Figure out the size and type of the elements we will be copying.
5749   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5750   if (src_elem != T_BYTE) {
5751     return false;
5752   }
5753 
5754   // 'src_start' points to src array + scaled offset
5755   Node* src_start = array_element_address(src, offset, src_elem);
5756 
5757   // static final int[] byteTable in class CRC32C
5758   Node* table = get_table_from_crc32c_class(callee()->holder());
5759   Node* table_start = array_element_address(table, intcon(0), T_INT);
5760 
5761   // We assume that range check is done by caller.
5762   // TODO: generate range check (offset+length < src.length) in debug VM.
5763 
5764   // Call the stub.
5765   address stubAddr = StubRoutines::updateBytesCRC32C();
5766   const char *stubName = "updateBytesCRC32C";
5767 
5768   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5769                                  stubAddr, stubName, TypePtr::BOTTOM,
5770                                  crc, src_start, length, table_start);
5771   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5772   set_result(result);
5773   return true;
5774 }
5775 
5776 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5777 //
5778 // Calculate CRC32C for DirectByteBuffer.
5779 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5780 //
5781 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5782   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5783   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5784   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5785   // no receiver since it is a static method
5786   Node* crc     = argument(0); // type: int
5787   Node* src     = argument(1); // type: long
5788   Node* offset  = argument(3); // type: int
5789   Node* end     = argument(4); // type: int
5790 
5791   Node* length = _gvn.transform(new SubINode(end, offset));
5792 
5793   src = ConvL2X(src);  // adjust Java long to machine word
5794   Node* base = _gvn.transform(new CastX2PNode(src));
5795   offset = ConvI2X(offset);
5796 
5797   // 'src_start' points to src array + scaled offset
5798   Node* src_start = basic_plus_adr(top(), base, offset);
5799 
5800   // static final int[] byteTable in class CRC32C
5801   Node* table = get_table_from_crc32c_class(callee()->holder());
5802   Node* table_start = array_element_address(table, intcon(0), T_INT);
5803 
5804   // Call the stub.
5805   address stubAddr = StubRoutines::updateBytesCRC32C();
5806   const char *stubName = "updateBytesCRC32C";
5807 
5808   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5809                                  stubAddr, stubName, TypePtr::BOTTOM,
5810                                  crc, src_start, length, table_start);
5811   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5812   set_result(result);
5813   return true;
5814 }
5815 
5816 //------------------------------inline_updateBytesAdler32----------------------
5817 //
5818 // Calculate Adler32 checksum for byte[] array.
5819 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5820 //
5821 bool LibraryCallKit::inline_updateBytesAdler32() {
5822   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5823   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5824   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5825   // no receiver since it is static method
5826   Node* crc     = argument(0); // type: int
5827   Node* src     = argument(1); // type: oop
5828   Node* offset  = argument(2); // type: int
5829   Node* length  = argument(3); // type: int
5830 
5831   const Type* src_type = src->Value(&_gvn);
5832   const TypeAryPtr* top_src = src_type->isa_aryptr();
5833   if (top_src  == NULL || top_src->klass()  == NULL) {
5834     // failed array check
5835     return false;
5836   }
5837 
5838   // Figure out the size and type of the elements we will be copying.
5839   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5840   if (src_elem != T_BYTE) {
5841     return false;
5842   }
5843 
5844   // 'src_start' points to src array + scaled offset
5845   Node* src_start = array_element_address(src, offset, src_elem);
5846 
5847   // We assume that range check is done by caller.
5848   // TODO: generate range check (offset+length < src.length) in debug VM.
5849 
5850   // Call the stub.
5851   address stubAddr = StubRoutines::updateBytesAdler32();
5852   const char *stubName = "updateBytesAdler32";
5853 
5854   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5855                                  stubAddr, stubName, TypePtr::BOTTOM,
5856                                  crc, src_start, length);
5857   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5858   set_result(result);
5859   return true;
5860 }
5861 
5862 //------------------------------inline_updateByteBufferAdler32---------------
5863 //
5864 // Calculate Adler32 checksum for DirectByteBuffer.
5865 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5866 //
5867 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5868   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5869   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5870   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5871   // no receiver since it is static method
5872   Node* crc     = argument(0); // type: int
5873   Node* src     = argument(1); // type: long
5874   Node* offset  = argument(3); // type: int
5875   Node* length  = argument(4); // type: int
5876 
5877   src = ConvL2X(src);  // adjust Java long to machine word
5878   Node* base = _gvn.transform(new CastX2PNode(src));
5879   offset = ConvI2X(offset);
5880 
5881   // 'src_start' points to src array + scaled offset
5882   Node* src_start = basic_plus_adr(top(), base, offset);
5883 
5884   // Call the stub.
5885   address stubAddr = StubRoutines::updateBytesAdler32();
5886   const char *stubName = "updateBytesAdler32";
5887 
5888   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5889                                  stubAddr, stubName, TypePtr::BOTTOM,
5890                                  crc, src_start, length);
5891 
5892   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5893   set_result(result);
5894   return true;
5895 }
5896 
5897 //----------------------------inline_reference_get----------------------------
5898 // public T java.lang.ref.Reference.get();
5899 bool LibraryCallKit::inline_reference_get() {
5900   const int referent_offset = java_lang_ref_Reference::referent_offset;
5901   guarantee(referent_offset > 0, "should have already been set");
5902 
5903   // Get the argument:
5904   Node* reference_obj = null_check_receiver();
5905   if (stopped()) return true;
5906 
5907   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5908 
5909   ciInstanceKlass* klass = env()->Object_klass();
5910   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5911 
5912   Node* no_ctrl = NULL;
5913   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5914 
5915   // Use the pre-barrier to record the value in the referent field
5916   pre_barrier(false /* do_load */,
5917               control(),
5918               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5919               result /* pre_val */,
5920               T_OBJECT);
5921 
5922   // Add memory barrier to prevent commoning reads from this field
5923   // across safepoint since GC can change its value.
5924   insert_mem_bar(Op_MemBarCPUOrder);
5925 
5926   set_result(result);
5927   return true;
5928 }
5929 
5930 
5931 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5932                                               bool is_exact=true, bool is_static=false,
5933                                               ciInstanceKlass * fromKls=NULL) {
5934   if (fromKls == NULL) {
5935     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5936     assert(tinst != NULL, "obj is null");
5937     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5938     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5939     fromKls = tinst->klass()->as_instance_klass();
5940   } else {
5941     assert(is_static, "only for static field access");
5942   }
5943   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5944                                               ciSymbol::make(fieldTypeString),
5945                                               is_static);
5946 
5947   assert (field != NULL, "undefined field");
5948   if (field == NULL) return (Node *) NULL;
5949 
5950   if (is_static) {
5951     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5952     fromObj = makecon(tip);
5953   }
5954 
5955   // Next code  copied from Parse::do_get_xxx():
5956 
5957   // Compute address and memory type.
5958   int offset  = field->offset_in_bytes();
5959   bool is_vol = field->is_volatile();
5960   ciType* field_klass = field->type();
5961   assert(field_klass->is_loaded(), "should be loaded");
5962   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5963   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5964   BasicType bt = field->layout_type();
5965 
5966   // Build the resultant type of the load
5967   const Type *type;
5968   if (bt == T_OBJECT) {
5969     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5970   } else {
5971     type = Type::get_const_basic_type(bt);
5972   }
5973 
5974   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5975     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5976   }
5977   // Build the load.
5978   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5979   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5980   // If reference is volatile, prevent following memory ops from
5981   // floating up past the volatile read.  Also prevents commoning
5982   // another volatile read.
5983   if (is_vol) {
5984     // Memory barrier includes bogus read of value to force load BEFORE membar
5985     insert_mem_bar(Op_MemBarAcquire, loadedField);
5986   }
5987   return loadedField;
5988 }
5989 
5990 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5991                                                  bool is_exact = true, bool is_static = false,
5992                                                  ciInstanceKlass * fromKls = NULL) {
5993   if (fromKls == NULL) {
5994     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5995     assert(tinst != NULL, "obj is null");
5996     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5997     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5998     fromKls = tinst->klass()->as_instance_klass();
5999   }
6000   else {
6001     assert(is_static, "only for static field access");
6002   }
6003   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6004     ciSymbol::make(fieldTypeString),
6005     is_static);
6006 
6007   assert(field != NULL, "undefined field");
6008   assert(!field->is_volatile(), "not defined for volatile fields");
6009 
6010   if (is_static) {
6011     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6012     fromObj = makecon(tip);
6013   }
6014 
6015   // Next code  copied from Parse::do_get_xxx():
6016 
6017   // Compute address and memory type.
6018   int offset = field->offset_in_bytes();
6019   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6020 
6021   return adr;
6022 }
6023 
6024 //------------------------------inline_aescrypt_Block-----------------------
6025 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6026   address stubAddr = NULL;
6027   const char *stubName;
6028   assert(UseAES, "need AES instruction support");
6029 
6030   switch(id) {
6031   case vmIntrinsics::_aescrypt_encryptBlock:
6032     stubAddr = StubRoutines::aescrypt_encryptBlock();
6033     stubName = "aescrypt_encryptBlock";
6034     break;
6035   case vmIntrinsics::_aescrypt_decryptBlock:
6036     stubAddr = StubRoutines::aescrypt_decryptBlock();
6037     stubName = "aescrypt_decryptBlock";
6038     break;
6039   }
6040   if (stubAddr == NULL) return false;
6041 
6042   Node* aescrypt_object = argument(0);
6043   Node* src             = argument(1);
6044   Node* src_offset      = argument(2);
6045   Node* dest            = argument(3);
6046   Node* dest_offset     = argument(4);
6047 
6048   // (1) src and dest are arrays.
6049   const Type* src_type = src->Value(&_gvn);
6050   const Type* dest_type = dest->Value(&_gvn);
6051   const TypeAryPtr* top_src = src_type->isa_aryptr();
6052   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6053   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6054 
6055   // for the quick and dirty code we will skip all the checks.
6056   // we are just trying to get the call to be generated.
6057   Node* src_start  = src;
6058   Node* dest_start = dest;
6059   if (src_offset != NULL || dest_offset != NULL) {
6060     assert(src_offset != NULL && dest_offset != NULL, "");
6061     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6062     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6063   }
6064 
6065   // now need to get the start of its expanded key array
6066   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6067   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6068   if (k_start == NULL) return false;
6069 
6070   if (Matcher::pass_original_key_for_aes()) {
6071     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6072     // compatibility issues between Java key expansion and SPARC crypto instructions
6073     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6074     if (original_k_start == NULL) return false;
6075 
6076     // Call the stub.
6077     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6078                       stubAddr, stubName, TypePtr::BOTTOM,
6079                       src_start, dest_start, k_start, original_k_start);
6080   } else {
6081     // Call the stub.
6082     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6083                       stubAddr, stubName, TypePtr::BOTTOM,
6084                       src_start, dest_start, k_start);
6085   }
6086 
6087   return true;
6088 }
6089 
6090 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6091 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6092   address stubAddr = NULL;
6093   const char *stubName = NULL;
6094 
6095   assert(UseAES, "need AES instruction support");
6096 
6097   switch(id) {
6098   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6099     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6100     stubName = "cipherBlockChaining_encryptAESCrypt";
6101     break;
6102   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6103     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6104     stubName = "cipherBlockChaining_decryptAESCrypt";
6105     break;
6106   }
6107   if (stubAddr == NULL) return false;
6108 
6109   Node* cipherBlockChaining_object = argument(0);
6110   Node* src                        = argument(1);
6111   Node* src_offset                 = argument(2);
6112   Node* len                        = argument(3);
6113   Node* dest                       = argument(4);
6114   Node* dest_offset                = argument(5);
6115 
6116   // (1) src and dest are arrays.
6117   const Type* src_type = src->Value(&_gvn);
6118   const Type* dest_type = dest->Value(&_gvn);
6119   const TypeAryPtr* top_src = src_type->isa_aryptr();
6120   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6121   assert (top_src  != NULL && top_src->klass()  != NULL
6122           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6123 
6124   // checks are the responsibility of the caller
6125   Node* src_start  = src;
6126   Node* dest_start = dest;
6127   if (src_offset != NULL || dest_offset != NULL) {
6128     assert(src_offset != NULL && dest_offset != NULL, "");
6129     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6130     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6131   }
6132 
6133   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6134   // (because of the predicated logic executed earlier).
6135   // so we cast it here safely.
6136   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6137 
6138   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6139   if (embeddedCipherObj == NULL) return false;
6140 
6141   // cast it to what we know it will be at runtime
6142   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6143   assert(tinst != NULL, "CBC obj is null");
6144   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6145   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6146   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6147 
6148   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6149   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6150   const TypeOopPtr* xtype = aklass->as_instance_type();
6151   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6152   aescrypt_object = _gvn.transform(aescrypt_object);
6153 
6154   // we need to get the start of the aescrypt_object's expanded key array
6155   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6156   if (k_start == NULL) return false;
6157 
6158   // similarly, get the start address of the r vector
6159   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6160   if (objRvec == NULL) return false;
6161   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6162 
6163   Node* cbcCrypt;
6164   if (Matcher::pass_original_key_for_aes()) {
6165     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6166     // compatibility issues between Java key expansion and SPARC crypto instructions
6167     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6168     if (original_k_start == NULL) return false;
6169 
6170     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6171     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6172                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6173                                  stubAddr, stubName, TypePtr::BOTTOM,
6174                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6175   } else {
6176     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6177     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6178                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6179                                  stubAddr, stubName, TypePtr::BOTTOM,
6180                                  src_start, dest_start, k_start, r_start, len);
6181   }
6182 
6183   // return cipher length (int)
6184   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6185   set_result(retvalue);
6186   return true;
6187 }
6188 
6189 //------------------------------inline_counterMode_AESCrypt-----------------------
6190 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6191   assert(UseAES, "need AES instruction support");
6192   if (!UseAESCTRIntrinsics) return false;
6193 
6194   address stubAddr = NULL;
6195   const char *stubName = NULL;
6196   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6197     stubAddr = StubRoutines::counterMode_AESCrypt();
6198     stubName = "counterMode_AESCrypt";
6199   }
6200   if (stubAddr == NULL) return false;
6201 
6202   Node* counterMode_object = argument(0);
6203   Node* src = argument(1);
6204   Node* src_offset = argument(2);
6205   Node* len = argument(3);
6206   Node* dest = argument(4);
6207   Node* dest_offset = argument(5);
6208 
6209   // (1) src and dest are arrays.
6210   const Type* src_type = src->Value(&_gvn);
6211   const Type* dest_type = dest->Value(&_gvn);
6212   const TypeAryPtr* top_src = src_type->isa_aryptr();
6213   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6214   assert(top_src != NULL && top_src->klass() != NULL &&
6215          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6216 
6217   // checks are the responsibility of the caller
6218   Node* src_start = src;
6219   Node* dest_start = dest;
6220   if (src_offset != NULL || dest_offset != NULL) {
6221     assert(src_offset != NULL && dest_offset != NULL, "");
6222     src_start = array_element_address(src, src_offset, T_BYTE);
6223     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6224   }
6225 
6226   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6227   // (because of the predicated logic executed earlier).
6228   // so we cast it here safely.
6229   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6230   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6231   if (embeddedCipherObj == NULL) return false;
6232   // cast it to what we know it will be at runtime
6233   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6234   assert(tinst != NULL, "CTR obj is null");
6235   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6236   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6237   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6238   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6239   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6240   const TypeOopPtr* xtype = aklass->as_instance_type();
6241   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6242   aescrypt_object = _gvn.transform(aescrypt_object);
6243   // we need to get the start of the aescrypt_object's expanded key array
6244   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6245   if (k_start == NULL) return false;
6246   // similarly, get the start address of the r vector
6247   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6248   if (obj_counter == NULL) return false;
6249   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6250 
6251   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6252   if (saved_encCounter == NULL) return false;
6253   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6254   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6255 
6256   Node* ctrCrypt;
6257   if (Matcher::pass_original_key_for_aes()) {
6258     // no SPARC version for AES/CTR intrinsics now.
6259     return false;
6260   }
6261   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6262   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6263                                OptoRuntime::counterMode_aescrypt_Type(),
6264                                stubAddr, stubName, TypePtr::BOTTOM,
6265                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6266 
6267   // return cipher length (int)
6268   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6269   set_result(retvalue);
6270   return true;
6271 }
6272 
6273 //------------------------------get_key_start_from_aescrypt_object-----------------------
6274 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6275 #ifdef PPC64
6276   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6277   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6278   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6279   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6280   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6281   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6282   if (objSessionK == NULL) {
6283     return (Node *) NULL;
6284   }
6285   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6286 #else
6287   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6288 #endif // PPC64
6289   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6290   if (objAESCryptKey == NULL) return (Node *) NULL;
6291 
6292   // now have the array, need to get the start address of the K array
6293   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6294   return k_start;
6295 }
6296 
6297 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6298 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6299   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6300   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6301   if (objAESCryptKey == NULL) return (Node *) NULL;
6302 
6303   // now have the array, need to get the start address of the lastKey array
6304   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6305   return original_k_start;
6306 }
6307 
6308 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6309 // Return node representing slow path of predicate check.
6310 // the pseudo code we want to emulate with this predicate is:
6311 // for encryption:
6312 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6313 // for decryption:
6314 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6315 //    note cipher==plain is more conservative than the original java code but that's OK
6316 //
6317 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6318   // The receiver was checked for NULL already.
6319   Node* objCBC = argument(0);
6320 
6321   // Load embeddedCipher field of CipherBlockChaining object.
6322   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6323 
6324   // get AESCrypt klass for instanceOf check
6325   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6326   // will have same classloader as CipherBlockChaining object
6327   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6328   assert(tinst != NULL, "CBCobj is null");
6329   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6330 
6331   // we want to do an instanceof comparison against the AESCrypt class
6332   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6333   if (!klass_AESCrypt->is_loaded()) {
6334     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6335     Node* ctrl = control();
6336     set_control(top()); // no regular fast path
6337     return ctrl;
6338   }
6339   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6340 
6341   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6342   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6343   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6344 
6345   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6346 
6347   // for encryption, we are done
6348   if (!decrypting)
6349     return instof_false;  // even if it is NULL
6350 
6351   // for decryption, we need to add a further check to avoid
6352   // taking the intrinsic path when cipher and plain are the same
6353   // see the original java code for why.
6354   RegionNode* region = new RegionNode(3);
6355   region->init_req(1, instof_false);
6356   Node* src = argument(1);
6357   Node* dest = argument(4);
6358   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6359   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6360   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6361   region->init_req(2, src_dest_conjoint);
6362 
6363   record_for_igvn(region);
6364   return _gvn.transform(region);
6365 }
6366 
6367 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6368 // Return node representing slow path of predicate check.
6369 // the pseudo code we want to emulate with this predicate is:
6370 // for encryption:
6371 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6372 // for decryption:
6373 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6374 //    note cipher==plain is more conservative than the original java code but that's OK
6375 //
6376 
6377 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6378   // The receiver was checked for NULL already.
6379   Node* objCTR = argument(0);
6380 
6381   // Load embeddedCipher field of CipherBlockChaining object.
6382   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6383 
6384   // get AESCrypt klass for instanceOf check
6385   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6386   // will have same classloader as CipherBlockChaining object
6387   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6388   assert(tinst != NULL, "CTRobj is null");
6389   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6390 
6391   // we want to do an instanceof comparison against the AESCrypt class
6392   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6393   if (!klass_AESCrypt->is_loaded()) {
6394     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6395     Node* ctrl = control();
6396     set_control(top()); // no regular fast path
6397     return ctrl;
6398   }
6399 
6400   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6401   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6402   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6403   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6404   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6405 
6406   return instof_false; // even if it is NULL
6407 }
6408 
6409 //------------------------------inline_ghash_processBlocks
6410 bool LibraryCallKit::inline_ghash_processBlocks() {
6411   address stubAddr;
6412   const char *stubName;
6413   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6414 
6415   stubAddr = StubRoutines::ghash_processBlocks();
6416   stubName = "ghash_processBlocks";
6417 
6418   Node* data           = argument(0);
6419   Node* offset         = argument(1);
6420   Node* len            = argument(2);
6421   Node* state          = argument(3);
6422   Node* subkeyH        = argument(4);
6423 
6424   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6425   assert(state_start, "state is NULL");
6426   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6427   assert(subkeyH_start, "subkeyH is NULL");
6428   Node* data_start  = array_element_address(data, offset, T_BYTE);
6429   assert(data_start, "data is NULL");
6430 
6431   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6432                                   OptoRuntime::ghash_processBlocks_Type(),
6433                                   stubAddr, stubName, TypePtr::BOTTOM,
6434                                   state_start, subkeyH_start, data_start, len);
6435   return true;
6436 }
6437 
6438 //------------------------------inline_sha_implCompress-----------------------
6439 //
6440 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6441 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6442 //
6443 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6444 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6445 //
6446 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6447 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6448 //
6449 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6450   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6451 
6452   Node* sha_obj = argument(0);
6453   Node* src     = argument(1); // type oop
6454   Node* ofs     = argument(2); // type int
6455 
6456   const Type* src_type = src->Value(&_gvn);
6457   const TypeAryPtr* top_src = src_type->isa_aryptr();
6458   if (top_src  == NULL || top_src->klass()  == NULL) {
6459     // failed array check
6460     return false;
6461   }
6462   // Figure out the size and type of the elements we will be copying.
6463   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6464   if (src_elem != T_BYTE) {
6465     return false;
6466   }
6467   // 'src_start' points to src array + offset
6468   Node* src_start = array_element_address(src, ofs, src_elem);
6469   Node* state = NULL;
6470   address stubAddr;
6471   const char *stubName;
6472 
6473   switch(id) {
6474   case vmIntrinsics::_sha_implCompress:
6475     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6476     state = get_state_from_sha_object(sha_obj);
6477     stubAddr = StubRoutines::sha1_implCompress();
6478     stubName = "sha1_implCompress";
6479     break;
6480   case vmIntrinsics::_sha2_implCompress:
6481     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6482     state = get_state_from_sha_object(sha_obj);
6483     stubAddr = StubRoutines::sha256_implCompress();
6484     stubName = "sha256_implCompress";
6485     break;
6486   case vmIntrinsics::_sha5_implCompress:
6487     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6488     state = get_state_from_sha5_object(sha_obj);
6489     stubAddr = StubRoutines::sha512_implCompress();
6490     stubName = "sha512_implCompress";
6491     break;
6492   default:
6493     fatal_unexpected_iid(id);
6494     return false;
6495   }
6496   if (state == NULL) return false;
6497 
6498   // Call the stub.
6499   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6500                                  stubAddr, stubName, TypePtr::BOTTOM,
6501                                  src_start, state);
6502 
6503   return true;
6504 }
6505 
6506 //------------------------------inline_digestBase_implCompressMB-----------------------
6507 //
6508 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6509 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6510 //
6511 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6512   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6513          "need SHA1/SHA256/SHA512 instruction support");
6514   assert((uint)predicate < 3, "sanity");
6515   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6516 
6517   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6518   Node* src            = argument(1); // byte[] array
6519   Node* ofs            = argument(2); // type int
6520   Node* limit          = argument(3); // type int
6521 
6522   const Type* src_type = src->Value(&_gvn);
6523   const TypeAryPtr* top_src = src_type->isa_aryptr();
6524   if (top_src  == NULL || top_src->klass()  == NULL) {
6525     // failed array check
6526     return false;
6527   }
6528   // Figure out the size and type of the elements we will be copying.
6529   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6530   if (src_elem != T_BYTE) {
6531     return false;
6532   }
6533   // 'src_start' points to src array + offset
6534   Node* src_start = array_element_address(src, ofs, src_elem);
6535 
6536   const char* klass_SHA_name = NULL;
6537   const char* stub_name = NULL;
6538   address     stub_addr = NULL;
6539   bool        long_state = false;
6540 
6541   switch (predicate) {
6542   case 0:
6543     if (UseSHA1Intrinsics) {
6544       klass_SHA_name = "sun/security/provider/SHA";
6545       stub_name = "sha1_implCompressMB";
6546       stub_addr = StubRoutines::sha1_implCompressMB();
6547     }
6548     break;
6549   case 1:
6550     if (UseSHA256Intrinsics) {
6551       klass_SHA_name = "sun/security/provider/SHA2";
6552       stub_name = "sha256_implCompressMB";
6553       stub_addr = StubRoutines::sha256_implCompressMB();
6554     }
6555     break;
6556   case 2:
6557     if (UseSHA512Intrinsics) {
6558       klass_SHA_name = "sun/security/provider/SHA5";
6559       stub_name = "sha512_implCompressMB";
6560       stub_addr = StubRoutines::sha512_implCompressMB();
6561       long_state = true;
6562     }
6563     break;
6564   default:
6565     fatal("unknown SHA intrinsic predicate: %d", predicate);
6566   }
6567   if (klass_SHA_name != NULL) {
6568     // get DigestBase klass to lookup for SHA klass
6569     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6570     assert(tinst != NULL, "digestBase_obj is not instance???");
6571     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6572 
6573     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6574     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6575     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6576     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6577   }
6578   return false;
6579 }
6580 //------------------------------inline_sha_implCompressMB-----------------------
6581 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6582                                                bool long_state, address stubAddr, const char *stubName,
6583                                                Node* src_start, Node* ofs, Node* limit) {
6584   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6585   const TypeOopPtr* xtype = aklass->as_instance_type();
6586   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6587   sha_obj = _gvn.transform(sha_obj);
6588 
6589   Node* state;
6590   if (long_state) {
6591     state = get_state_from_sha5_object(sha_obj);
6592   } else {
6593     state = get_state_from_sha_object(sha_obj);
6594   }
6595   if (state == NULL) return false;
6596 
6597   // Call the stub.
6598   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6599                                  OptoRuntime::digestBase_implCompressMB_Type(),
6600                                  stubAddr, stubName, TypePtr::BOTTOM,
6601                                  src_start, state, ofs, limit);
6602   // return ofs (int)
6603   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6604   set_result(result);
6605 
6606   return true;
6607 }
6608 
6609 //------------------------------get_state_from_sha_object-----------------------
6610 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6611   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6612   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6613   if (sha_state == NULL) return (Node *) NULL;
6614 
6615   // now have the array, need to get the start address of the state array
6616   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6617   return state;
6618 }
6619 
6620 //------------------------------get_state_from_sha5_object-----------------------
6621 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6622   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6623   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6624   if (sha_state == NULL) return (Node *) NULL;
6625 
6626   // now have the array, need to get the start address of the state array
6627   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6628   return state;
6629 }
6630 
6631 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6632 // Return node representing slow path of predicate check.
6633 // the pseudo code we want to emulate with this predicate is:
6634 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6635 //
6636 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6637   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6638          "need SHA1/SHA256/SHA512 instruction support");
6639   assert((uint)predicate < 3, "sanity");
6640 
6641   // The receiver was checked for NULL already.
6642   Node* digestBaseObj = argument(0);
6643 
6644   // get DigestBase klass for instanceOf check
6645   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6646   assert(tinst != NULL, "digestBaseObj is null");
6647   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6648 
6649   const char* klass_SHA_name = NULL;
6650   switch (predicate) {
6651   case 0:
6652     if (UseSHA1Intrinsics) {
6653       // we want to do an instanceof comparison against the SHA class
6654       klass_SHA_name = "sun/security/provider/SHA";
6655     }
6656     break;
6657   case 1:
6658     if (UseSHA256Intrinsics) {
6659       // we want to do an instanceof comparison against the SHA2 class
6660       klass_SHA_name = "sun/security/provider/SHA2";
6661     }
6662     break;
6663   case 2:
6664     if (UseSHA512Intrinsics) {
6665       // we want to do an instanceof comparison against the SHA5 class
6666       klass_SHA_name = "sun/security/provider/SHA5";
6667     }
6668     break;
6669   default:
6670     fatal("unknown SHA intrinsic predicate: %d", predicate);
6671   }
6672 
6673   ciKlass* klass_SHA = NULL;
6674   if (klass_SHA_name != NULL) {
6675     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6676   }
6677   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6678     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6679     Node* ctrl = control();
6680     set_control(top()); // no intrinsic path
6681     return ctrl;
6682   }
6683   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6684 
6685   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6686   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6687   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6688   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6689 
6690   return instof_false;  // even if it is NULL
6691 }
6692 
6693 bool LibraryCallKit::inline_profileBoolean() {
6694   Node* counts = argument(1);
6695   const TypeAryPtr* ary = NULL;
6696   ciArray* aobj = NULL;
6697   if (counts->is_Con()
6698       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6699       && (aobj = ary->const_oop()->as_array()) != NULL
6700       && (aobj->length() == 2)) {
6701     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6702     jint false_cnt = aobj->element_value(0).as_int();
6703     jint  true_cnt = aobj->element_value(1).as_int();
6704 
6705     if (C->log() != NULL) {
6706       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6707                      false_cnt, true_cnt);
6708     }
6709 
6710     if (false_cnt + true_cnt == 0) {
6711       // According to profile, never executed.
6712       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6713                           Deoptimization::Action_reinterpret);
6714       return true;
6715     }
6716 
6717     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6718     // is a number of each value occurrences.
6719     Node* result = argument(0);
6720     if (false_cnt == 0 || true_cnt == 0) {
6721       // According to profile, one value has been never seen.
6722       int expected_val = (false_cnt == 0) ? 1 : 0;
6723 
6724       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6725       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6726 
6727       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6728       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6729       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6730 
6731       { // Slow path: uncommon trap for never seen value and then reexecute
6732         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6733         // the value has been seen at least once.
6734         PreserveJVMState pjvms(this);
6735         PreserveReexecuteState preexecs(this);
6736         jvms()->set_should_reexecute(true);
6737 
6738         set_control(slow_path);
6739         set_i_o(i_o());
6740 
6741         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6742                             Deoptimization::Action_reinterpret);
6743       }
6744       // The guard for never seen value enables sharpening of the result and
6745       // returning a constant. It allows to eliminate branches on the same value
6746       // later on.
6747       set_control(fast_path);
6748       result = intcon(expected_val);
6749     }
6750     // Stop profiling.
6751     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6752     // By replacing method body with profile data (represented as ProfileBooleanNode
6753     // on IR level) we effectively disable profiling.
6754     // It enables full speed execution once optimized code is generated.
6755     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6756     C->record_for_igvn(profile);
6757     set_result(profile);
6758     return true;
6759   } else {
6760     // Continue profiling.
6761     // Profile data isn't available at the moment. So, execute method's bytecode version.
6762     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6763     // is compiled and counters aren't available since corresponding MethodHandle
6764     // isn't a compile-time constant.
6765     return false;
6766   }
6767 }
6768 
6769 bool LibraryCallKit::inline_isCompileConstant() {
6770   Node* n = argument(0);
6771   set_result(n->is_Con() ? intcon(1) : intcon(0));
6772   return true;
6773 }