1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 398     int evex_encoding = _attributes->get_evex_encoding();
 399     int tuple_type = _attributes->get_tuple_type();
 400     switch (tuple_type) {
 401     case EVEX_FV:
 402       if ((evex_encoding & VEX_W) == VEX_W) {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 404       } else {
 405         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 406       }
 407       break;
 408 
 409     case EVEX_HV:
 410       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 411       break;
 412 
 413     case EVEX_FVM:
 414       break;
 415 
 416     case EVEX_T1S:
 417       switch (_attributes->get_input_size()) {
 418       case EVEX_8bit:
 419         break;
 420 
 421       case EVEX_16bit:
 422         mod_idx = 1;
 423         break;
 424 
 425       case EVEX_32bit:
 426         mod_idx = 2;
 427         break;
 428 
 429       case EVEX_64bit:
 430         mod_idx = 3;
 431         break;
 432       }
 433       break;
 434 
 435     case EVEX_T1F:
 436     case EVEX_T2:
 437     case EVEX_T4:
 438       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 439       break;
 440 
 441     case EVEX_T8:
 442       break;
 443 
 444     case EVEX_HVM:
 445       break;
 446 
 447     case EVEX_QVM:
 448       break;
 449 
 450     case EVEX_OVM:
 451       break;
 452 
 453     case EVEX_M128:
 454       break;
 455 
 456     case EVEX_DUP:
 457       break;
 458 
 459     default:
 460       assert(0, "no valid evex tuple_table entry");
 461       break;
 462     }
 463 
 464     int vector_len = _attributes->get_vector_len();
 465     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 466       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 467       if ((disp % disp_factor) == 0) {
 468         int new_disp = disp / disp_factor;
 469         if (is8bit(new_disp)) {
 470           disp = new_disp;
 471         }
 472       } else {
 473         return false;
 474       }
 475     }
 476   }
 477   return is8bit(disp);
 478 }
 479 
 480 
 481 void Assembler::emit_operand(Register reg, Register base, Register index,
 482                              Address::ScaleFactor scale, int disp,
 483                              RelocationHolder const& rspec,
 484                              int rip_relative_correction) {
 485   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 486 
 487   // Encode the registers as needed in the fields they are used in
 488 
 489   int regenc = encode(reg) << 3;
 490   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 491   int baseenc = base->is_valid() ? encode(base) : 0;
 492 
 493   if (base->is_valid()) {
 494     if (index->is_valid()) {
 495       assert(scale != Address::no_scale, "inconsistent address");
 496       // [base + index*scale + disp]
 497       if (disp == 0 && rtype == relocInfo::none  &&
 498           base != rbp LP64_ONLY(&& base != r13)) {
 499         // [base + index*scale]
 500         // [00 reg 100][ss index base]
 501         assert(index != rsp, "illegal addressing mode");
 502         emit_int8(0x04 | regenc);
 503         emit_int8(scale << 6 | indexenc | baseenc);
 504       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 505         // [base + index*scale + imm8]
 506         // [01 reg 100][ss index base] imm8
 507         assert(index != rsp, "illegal addressing mode");
 508         emit_int8(0x44 | regenc);
 509         emit_int8(scale << 6 | indexenc | baseenc);
 510         emit_int8(disp & 0xFF);
 511       } else {
 512         // [base + index*scale + disp32]
 513         // [10 reg 100][ss index base] disp32
 514         assert(index != rsp, "illegal addressing mode");
 515         emit_int8(0x84 | regenc);
 516         emit_int8(scale << 6 | indexenc | baseenc);
 517         emit_data(disp, rspec, disp32_operand);
 518       }
 519     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 520       // [rsp + disp]
 521       if (disp == 0 && rtype == relocInfo::none) {
 522         // [rsp]
 523         // [00 reg 100][00 100 100]
 524         emit_int8(0x04 | regenc);
 525         emit_int8(0x24);
 526       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 527         // [rsp + imm8]
 528         // [01 reg 100][00 100 100] disp8
 529         emit_int8(0x44 | regenc);
 530         emit_int8(0x24);
 531         emit_int8(disp & 0xFF);
 532       } else {
 533         // [rsp + imm32]
 534         // [10 reg 100][00 100 100] disp32
 535         emit_int8(0x84 | regenc);
 536         emit_int8(0x24);
 537         emit_data(disp, rspec, disp32_operand);
 538       }
 539     } else {
 540       // [base + disp]
 541       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 542       if (disp == 0 && rtype == relocInfo::none &&
 543           base != rbp LP64_ONLY(&& base != r13)) {
 544         // [base]
 545         // [00 reg base]
 546         emit_int8(0x00 | regenc | baseenc);
 547       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 548         // [base + disp8]
 549         // [01 reg base] disp8
 550         emit_int8(0x40 | regenc | baseenc);
 551         emit_int8(disp & 0xFF);
 552       } else {
 553         // [base + disp32]
 554         // [10 reg base] disp32
 555         emit_int8(0x80 | regenc | baseenc);
 556         emit_data(disp, rspec, disp32_operand);
 557       }
 558     }
 559   } else {
 560     if (index->is_valid()) {
 561       assert(scale != Address::no_scale, "inconsistent address");
 562       // [index*scale + disp]
 563       // [00 reg 100][ss index 101] disp32
 564       assert(index != rsp, "illegal addressing mode");
 565       emit_int8(0x04 | regenc);
 566       emit_int8(scale << 6 | indexenc | 0x05);
 567       emit_data(disp, rspec, disp32_operand);
 568     } else if (rtype != relocInfo::none ) {
 569       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 570       // [00 000 101] disp32
 571 
 572       emit_int8(0x05 | regenc);
 573       // Note that the RIP-rel. correction applies to the generated
 574       // disp field, but _not_ to the target address in the rspec.
 575 
 576       // disp was created by converting the target address minus the pc
 577       // at the start of the instruction. That needs more correction here.
 578       // intptr_t disp = target - next_ip;
 579       assert(inst_mark() != NULL, "must be inside InstructionMark");
 580       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 581       int64_t adjusted = disp;
 582       // Do rip-rel adjustment for 64bit
 583       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 584       assert(is_simm32(adjusted),
 585              "must be 32bit offset (RIP relative address)");
 586       emit_data((int32_t) adjusted, rspec, disp32_operand);
 587 
 588     } else {
 589       // 32bit never did this, did everything as the rip-rel/disp code above
 590       // [disp] ABSOLUTE
 591       // [00 reg 100][00 100 101] disp32
 592       emit_int8(0x04 | regenc);
 593       emit_int8(0x25);
 594       emit_data(disp, rspec, disp32_operand);
 595     }
 596   }
 597 }
 598 
 599 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 600                              Address::ScaleFactor scale, int disp,
 601                              RelocationHolder const& rspec) {
 602   if (UseAVX > 2) {
 603     int xreg_enc = reg->encoding();
 604     if (xreg_enc > 15) {
 605       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 606       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 607       return;
 608     }
 609   }
 610   emit_operand((Register)reg, base, index, scale, disp, rspec);
 611 }
 612 
 613 // Secret local extension to Assembler::WhichOperand:
 614 #define end_pc_operand (_WhichOperand_limit)
 615 
 616 address Assembler::locate_operand(address inst, WhichOperand which) {
 617   // Decode the given instruction, and return the address of
 618   // an embedded 32-bit operand word.
 619 
 620   // If "which" is disp32_operand, selects the displacement portion
 621   // of an effective address specifier.
 622   // If "which" is imm64_operand, selects the trailing immediate constant.
 623   // If "which" is call32_operand, selects the displacement of a call or jump.
 624   // Caller is responsible for ensuring that there is such an operand,
 625   // and that it is 32/64 bits wide.
 626 
 627   // If "which" is end_pc_operand, find the end of the instruction.
 628 
 629   address ip = inst;
 630   bool is_64bit = false;
 631 
 632   debug_only(bool has_disp32 = false);
 633   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 634 
 635   again_after_prefix:
 636   switch (0xFF & *ip++) {
 637 
 638   // These convenience macros generate groups of "case" labels for the switch.
 639 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 640 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 641              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 642 #define REP16(x) REP8((x)+0): \
 643               case REP8((x)+8)
 644 
 645   case CS_segment:
 646   case SS_segment:
 647   case DS_segment:
 648   case ES_segment:
 649   case FS_segment:
 650   case GS_segment:
 651     // Seems dubious
 652     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 653     assert(ip == inst+1, "only one prefix allowed");
 654     goto again_after_prefix;
 655 
 656   case 0x67:
 657   case REX:
 658   case REX_B:
 659   case REX_X:
 660   case REX_XB:
 661   case REX_R:
 662   case REX_RB:
 663   case REX_RX:
 664   case REX_RXB:
 665     NOT_LP64(assert(false, "64bit prefixes"));
 666     goto again_after_prefix;
 667 
 668   case REX_W:
 669   case REX_WB:
 670   case REX_WX:
 671   case REX_WXB:
 672   case REX_WR:
 673   case REX_WRB:
 674   case REX_WRX:
 675   case REX_WRXB:
 676     NOT_LP64(assert(false, "64bit prefixes"));
 677     is_64bit = true;
 678     goto again_after_prefix;
 679 
 680   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 681   case 0x88: // movb a, r
 682   case 0x89: // movl a, r
 683   case 0x8A: // movb r, a
 684   case 0x8B: // movl r, a
 685   case 0x8F: // popl a
 686     debug_only(has_disp32 = true);
 687     break;
 688 
 689   case 0x68: // pushq #32
 690     if (which == end_pc_operand) {
 691       return ip + 4;
 692     }
 693     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 694     return ip;                  // not produced by emit_operand
 695 
 696   case 0x66: // movw ... (size prefix)
 697     again_after_size_prefix2:
 698     switch (0xFF & *ip++) {
 699     case REX:
 700     case REX_B:
 701     case REX_X:
 702     case REX_XB:
 703     case REX_R:
 704     case REX_RB:
 705     case REX_RX:
 706     case REX_RXB:
 707     case REX_W:
 708     case REX_WB:
 709     case REX_WX:
 710     case REX_WXB:
 711     case REX_WR:
 712     case REX_WRB:
 713     case REX_WRX:
 714     case REX_WRXB:
 715       NOT_LP64(assert(false, "64bit prefix found"));
 716       goto again_after_size_prefix2;
 717     case 0x8B: // movw r, a
 718     case 0x89: // movw a, r
 719       debug_only(has_disp32 = true);
 720       break;
 721     case 0xC7: // movw a, #16
 722       debug_only(has_disp32 = true);
 723       tail_size = 2;  // the imm16
 724       break;
 725     case 0x0F: // several SSE/SSE2 variants
 726       ip--;    // reparse the 0x0F
 727       goto again_after_prefix;
 728     default:
 729       ShouldNotReachHere();
 730     }
 731     break;
 732 
 733   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 734     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 735     // these asserts are somewhat nonsensical
 736 #ifndef _LP64
 737     assert(which == imm_operand || which == disp32_operand,
 738            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 739 #else
 740     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 741            which == narrow_oop_operand && !is_64bit,
 742            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 743 #endif // _LP64
 744     return ip;
 745 
 746   case 0x69: // imul r, a, #32
 747   case 0xC7: // movl a, #32(oop?)
 748     tail_size = 4;
 749     debug_only(has_disp32 = true); // has both kinds of operands!
 750     break;
 751 
 752   case 0x0F: // movx..., etc.
 753     switch (0xFF & *ip++) {
 754     case 0x3A: // pcmpestri
 755       tail_size = 1;
 756     case 0x38: // ptest, pmovzxbw
 757       ip++; // skip opcode
 758       debug_only(has_disp32 = true); // has both kinds of operands!
 759       break;
 760 
 761     case 0x70: // pshufd r, r/a, #8
 762       debug_only(has_disp32 = true); // has both kinds of operands!
 763     case 0x73: // psrldq r, #8
 764       tail_size = 1;
 765       break;
 766 
 767     case 0x12: // movlps
 768     case 0x28: // movaps
 769     case 0x2E: // ucomiss
 770     case 0x2F: // comiss
 771     case 0x54: // andps
 772     case 0x55: // andnps
 773     case 0x56: // orps
 774     case 0x57: // xorps
 775     case 0x58: // addpd
 776     case 0x59: // mulpd
 777     case 0x6E: // movd
 778     case 0x7E: // movd
 779     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 780     case 0xFE: // paddd
 781       debug_only(has_disp32 = true);
 782       break;
 783 
 784     case 0xAD: // shrd r, a, %cl
 785     case 0xAF: // imul r, a
 786     case 0xBE: // movsbl r, a (movsxb)
 787     case 0xBF: // movswl r, a (movsxw)
 788     case 0xB6: // movzbl r, a (movzxb)
 789     case 0xB7: // movzwl r, a (movzxw)
 790     case REP16(0x40): // cmovl cc, r, a
 791     case 0xB0: // cmpxchgb
 792     case 0xB1: // cmpxchg
 793     case 0xC1: // xaddl
 794     case 0xC7: // cmpxchg8
 795     case REP16(0x90): // setcc a
 796       debug_only(has_disp32 = true);
 797       // fall out of the switch to decode the address
 798       break;
 799 
 800     case 0xC4: // pinsrw r, a, #8
 801       debug_only(has_disp32 = true);
 802     case 0xC5: // pextrw r, r, #8
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case 0xAC: // shrd r, a, #8
 807       debug_only(has_disp32 = true);
 808       tail_size = 1;  // the imm8
 809       break;
 810 
 811     case REP16(0x80): // jcc rdisp32
 812       if (which == end_pc_operand)  return ip + 4;
 813       assert(which == call32_operand, "jcc has no disp32 or imm");
 814       return ip;
 815     default:
 816       ShouldNotReachHere();
 817     }
 818     break;
 819 
 820   case 0x81: // addl a, #32; addl r, #32
 821     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 822     // on 32bit in the case of cmpl, the imm might be an oop
 823     tail_size = 4;
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     break;
 826 
 827   case 0x83: // addl a, #8; addl r, #8
 828     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 829     debug_only(has_disp32 = true); // has both kinds of operands!
 830     tail_size = 1;
 831     break;
 832 
 833   case 0x9B:
 834     switch (0xFF & *ip++) {
 835     case 0xD9: // fnstcw a
 836       debug_only(has_disp32 = true);
 837       break;
 838     default:
 839       ShouldNotReachHere();
 840     }
 841     break;
 842 
 843   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 844   case REP4(0x10): // adc...
 845   case REP4(0x20): // and...
 846   case REP4(0x30): // xor...
 847   case REP4(0x08): // or...
 848   case REP4(0x18): // sbb...
 849   case REP4(0x28): // sub...
 850   case 0xF7: // mull a
 851   case 0x8D: // lea r, a
 852   case 0x87: // xchg r, a
 853   case REP4(0x38): // cmp...
 854   case 0x85: // test r, a
 855     debug_only(has_disp32 = true); // has both kinds of operands!
 856     break;
 857 
 858   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 859   case 0xC6: // movb a, #8
 860   case 0x80: // cmpb a, #8
 861   case 0x6B: // imul r, a, #8
 862     debug_only(has_disp32 = true); // has both kinds of operands!
 863     tail_size = 1; // the imm8
 864     break;
 865 
 866   case 0xC4: // VEX_3bytes
 867   case 0xC5: // VEX_2bytes
 868     assert((UseAVX > 0), "shouldn't have VEX prefix");
 869     assert(ip == inst+1, "no prefixes allowed");
 870     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 871     // but they have prefix 0x0F and processed when 0x0F processed above.
 872     //
 873     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 874     // instructions (these instructions are not supported in 64-bit mode).
 875     // To distinguish them bits [7:6] are set in the VEX second byte since
 876     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 877     // those VEX bits REX and vvvv bits are inverted.
 878     //
 879     // Fortunately C2 doesn't generate these instructions so we don't need
 880     // to check for them in product version.
 881 
 882     // Check second byte
 883     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 884 
 885     int vex_opcode;
 886     // First byte
 887     if ((0xFF & *inst) == VEX_3bytes) {
 888       vex_opcode = VEX_OPCODE_MASK & *ip;
 889       ip++; // third byte
 890       is_64bit = ((VEX_W & *ip) == VEX_W);
 891     } else {
 892       vex_opcode = VEX_OPCODE_0F;
 893     }
 894     ip++; // opcode
 895     // To find the end of instruction (which == end_pc_operand).
 896     switch (vex_opcode) {
 897       case VEX_OPCODE_0F:
 898         switch (0xFF & *ip) {
 899         case 0x70: // pshufd r, r/a, #8
 900         case 0x71: // ps[rl|ra|ll]w r, #8
 901         case 0x72: // ps[rl|ra|ll]d r, #8
 902         case 0x73: // ps[rl|ra|ll]q r, #8
 903         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 904         case 0xC4: // pinsrw r, r, r/a, #8
 905         case 0xC5: // pextrw r/a, r, #8
 906         case 0xC6: // shufp[s|d] r, r, r/a, #8
 907           tail_size = 1;  // the imm8
 908           break;
 909         }
 910         break;
 911       case VEX_OPCODE_0F_3A:
 912         tail_size = 1;
 913         break;
 914     }
 915     ip++; // skip opcode
 916     debug_only(has_disp32 = true); // has both kinds of operands!
 917     break;
 918 
 919   case 0x62: // EVEX_4bytes
 920     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 921     assert(ip == inst+1, "no prefixes allowed");
 922     // no EVEX collisions, all instructions that have 0x62 opcodes
 923     // have EVEX versions and are subopcodes of 0x66
 924     ip++; // skip P0 and exmaine W in P1
 925     is_64bit = ((VEX_W & *ip) == VEX_W);
 926     ip++; // move to P2
 927     ip++; // skip P2, move to opcode
 928     // To find the end of instruction (which == end_pc_operand).
 929     switch (0xFF & *ip) {
 930     case 0x22: // pinsrd r, r/a, #8
 931     case 0x61: // pcmpestri r, r/a, #8
 932     case 0x70: // pshufd r, r/a, #8
 933     case 0x73: // psrldq r, #8
 934       tail_size = 1;  // the imm8
 935       break;
 936     default:
 937       break;
 938     }
 939     ip++; // skip opcode
 940     debug_only(has_disp32 = true); // has both kinds of operands!
 941     break;
 942 
 943   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 944   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 945   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 946   case 0xDD: // fld_d a; fst_d a; fstp_d a
 947   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 948   case 0xDF: // fild_d a; fistp_d a
 949   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 950   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 951   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 952     debug_only(has_disp32 = true);
 953     break;
 954 
 955   case 0xE8: // call rdisp32
 956   case 0xE9: // jmp  rdisp32
 957     if (which == end_pc_operand)  return ip + 4;
 958     assert(which == call32_operand, "call has no disp32 or imm");
 959     return ip;
 960 
 961   case 0xF0:                    // Lock
 962     assert(os::is_MP(), "only on MP");
 963     goto again_after_prefix;
 964 
 965   case 0xF3:                    // For SSE
 966   case 0xF2:                    // For SSE2
 967     switch (0xFF & *ip++) {
 968     case REX:
 969     case REX_B:
 970     case REX_X:
 971     case REX_XB:
 972     case REX_R:
 973     case REX_RB:
 974     case REX_RX:
 975     case REX_RXB:
 976     case REX_W:
 977     case REX_WB:
 978     case REX_WX:
 979     case REX_WXB:
 980     case REX_WR:
 981     case REX_WRB:
 982     case REX_WRX:
 983     case REX_WRXB:
 984       NOT_LP64(assert(false, "found 64bit prefix"));
 985       ip++;
 986     default:
 987       ip++;
 988     }
 989     debug_only(has_disp32 = true); // has both kinds of operands!
 990     break;
 991 
 992   default:
 993     ShouldNotReachHere();
 994 
 995 #undef REP8
 996 #undef REP16
 997   }
 998 
 999   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
1000 #ifdef _LP64
1001   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1002 #else
1003   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1004   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1005 #endif // LP64
1006   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1007 
1008   // parse the output of emit_operand
1009   int op2 = 0xFF & *ip++;
1010   int base = op2 & 0x07;
1011   int op3 = -1;
1012   const int b100 = 4;
1013   const int b101 = 5;
1014   if (base == b100 && (op2 >> 6) != 3) {
1015     op3 = 0xFF & *ip++;
1016     base = op3 & 0x07;   // refetch the base
1017   }
1018   // now ip points at the disp (if any)
1019 
1020   switch (op2 >> 6) {
1021   case 0:
1022     // [00 reg  100][ss index base]
1023     // [00 reg  100][00   100  esp]
1024     // [00 reg base]
1025     // [00 reg  100][ss index  101][disp32]
1026     // [00 reg  101]               [disp32]
1027 
1028     if (base == b101) {
1029       if (which == disp32_operand)
1030         return ip;              // caller wants the disp32
1031       ip += 4;                  // skip the disp32
1032     }
1033     break;
1034 
1035   case 1:
1036     // [01 reg  100][ss index base][disp8]
1037     // [01 reg  100][00   100  esp][disp8]
1038     // [01 reg base]               [disp8]
1039     ip += 1;                    // skip the disp8
1040     break;
1041 
1042   case 2:
1043     // [10 reg  100][ss index base][disp32]
1044     // [10 reg  100][00   100  esp][disp32]
1045     // [10 reg base]               [disp32]
1046     if (which == disp32_operand)
1047       return ip;                // caller wants the disp32
1048     ip += 4;                    // skip the disp32
1049     break;
1050 
1051   case 3:
1052     // [11 reg base]  (not a memory addressing mode)
1053     break;
1054   }
1055 
1056   if (which == end_pc_operand) {
1057     return ip + tail_size;
1058   }
1059 
1060 #ifdef _LP64
1061   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1062 #else
1063   assert(which == imm_operand, "instruction has only an imm field");
1064 #endif // LP64
1065   return ip;
1066 }
1067 
1068 address Assembler::locate_next_instruction(address inst) {
1069   // Secretly share code with locate_operand:
1070   return locate_operand(inst, end_pc_operand);
1071 }
1072 
1073 
1074 #ifdef ASSERT
1075 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1076   address inst = inst_mark();
1077   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1078   address opnd;
1079 
1080   Relocation* r = rspec.reloc();
1081   if (r->type() == relocInfo::none) {
1082     return;
1083   } else if (r->is_call() || format == call32_operand) {
1084     // assert(format == imm32_operand, "cannot specify a nonzero format");
1085     opnd = locate_operand(inst, call32_operand);
1086   } else if (r->is_data()) {
1087     assert(format == imm_operand || format == disp32_operand
1088            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1089     opnd = locate_operand(inst, (WhichOperand)format);
1090   } else {
1091     assert(format == imm_operand, "cannot specify a format");
1092     return;
1093   }
1094   assert(opnd == pc(), "must put operand where relocs can find it");
1095 }
1096 #endif // ASSERT
1097 
1098 void Assembler::emit_operand32(Register reg, Address adr) {
1099   assert(reg->encoding() < 8, "no extended registers");
1100   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1101   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1102                adr._rspec);
1103 }
1104 
1105 void Assembler::emit_operand(Register reg, Address adr,
1106                              int rip_relative_correction) {
1107   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1108                adr._rspec,
1109                rip_relative_correction);
1110 }
1111 
1112 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1113   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1114                adr._rspec);
1115 }
1116 
1117 // MMX operations
1118 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1119   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1120   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1121 }
1122 
1123 // work around gcc (3.2.1-7a) bug
1124 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1125   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1126   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1127 }
1128 
1129 
1130 void Assembler::emit_farith(int b1, int b2, int i) {
1131   assert(isByte(b1) && isByte(b2), "wrong opcode");
1132   assert(0 <= i &&  i < 8, "illegal stack offset");
1133   emit_int8(b1);
1134   emit_int8(b2 + i);
1135 }
1136 
1137 
1138 // Now the Assembler instructions (identical for 32/64 bits)
1139 
1140 void Assembler::adcl(Address dst, int32_t imm32) {
1141   InstructionMark im(this);
1142   prefix(dst);
1143   emit_arith_operand(0x81, rdx, dst, imm32);
1144 }
1145 
1146 void Assembler::adcl(Address dst, Register src) {
1147   InstructionMark im(this);
1148   prefix(dst, src);
1149   emit_int8(0x11);
1150   emit_operand(src, dst);
1151 }
1152 
1153 void Assembler::adcl(Register dst, int32_t imm32) {
1154   prefix(dst);
1155   emit_arith(0x81, 0xD0, dst, imm32);
1156 }
1157 
1158 void Assembler::adcl(Register dst, Address src) {
1159   InstructionMark im(this);
1160   prefix(src, dst);
1161   emit_int8(0x13);
1162   emit_operand(dst, src);
1163 }
1164 
1165 void Assembler::adcl(Register dst, Register src) {
1166   (void) prefix_and_encode(dst->encoding(), src->encoding());
1167   emit_arith(0x13, 0xC0, dst, src);
1168 }
1169 
1170 void Assembler::addl(Address dst, int32_t imm32) {
1171   InstructionMark im(this);
1172   prefix(dst);
1173   emit_arith_operand(0x81, rax, dst, imm32);
1174 }
1175 
1176 void Assembler::addl(Address dst, Register src) {
1177   InstructionMark im(this);
1178   prefix(dst, src);
1179   emit_int8(0x01);
1180   emit_operand(src, dst);
1181 }
1182 
1183 void Assembler::addl(Register dst, int32_t imm32) {
1184   prefix(dst);
1185   emit_arith(0x81, 0xC0, dst, imm32);
1186 }
1187 
1188 void Assembler::addl(Register dst, Address src) {
1189   InstructionMark im(this);
1190   prefix(src, dst);
1191   emit_int8(0x03);
1192   emit_operand(dst, src);
1193 }
1194 
1195 void Assembler::addl(Register dst, Register src) {
1196   (void) prefix_and_encode(dst->encoding(), src->encoding());
1197   emit_arith(0x03, 0xC0, dst, src);
1198 }
1199 
1200 void Assembler::addr_nop_4() {
1201   assert(UseAddressNop, "no CPU support");
1202   // 4 bytes: NOP DWORD PTR [EAX+0]
1203   emit_int8(0x0F);
1204   emit_int8(0x1F);
1205   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1206   emit_int8(0);    // 8-bits offset (1 byte)
1207 }
1208 
1209 void Assembler::addr_nop_5() {
1210   assert(UseAddressNop, "no CPU support");
1211   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1212   emit_int8(0x0F);
1213   emit_int8(0x1F);
1214   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1215   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1216   emit_int8(0);    // 8-bits offset (1 byte)
1217 }
1218 
1219 void Assembler::addr_nop_7() {
1220   assert(UseAddressNop, "no CPU support");
1221   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1222   emit_int8(0x0F);
1223   emit_int8(0x1F);
1224   emit_int8((unsigned char)0x80);
1225                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1226   emit_int32(0);   // 32-bits offset (4 bytes)
1227 }
1228 
1229 void Assembler::addr_nop_8() {
1230   assert(UseAddressNop, "no CPU support");
1231   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1232   emit_int8(0x0F);
1233   emit_int8(0x1F);
1234   emit_int8((unsigned char)0x84);
1235                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1236   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1237   emit_int32(0);   // 32-bits offset (4 bytes)
1238 }
1239 
1240 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1241   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1242   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1243   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1244   emit_int8(0x58);
1245   emit_int8((unsigned char)(0xC0 | encode));
1246 }
1247 
1248 void Assembler::addsd(XMMRegister dst, Address src) {
1249   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1250   InstructionMark im(this);
1251   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1252   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1253   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1254   emit_int8(0x58);
1255   emit_operand(dst, src);
1256 }
1257 
1258 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1259   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1260   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1261   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1262   emit_int8(0x58);
1263   emit_int8((unsigned char)(0xC0 | encode));
1264 }
1265 
1266 void Assembler::addss(XMMRegister dst, Address src) {
1267   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1268   InstructionMark im(this);
1269   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1270   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1271   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1272   emit_int8(0x58);
1273   emit_operand(dst, src);
1274 }
1275 
1276 void Assembler::aesdec(XMMRegister dst, Address src) {
1277   assert(VM_Version::supports_aes(), "");
1278   InstructionMark im(this);
1279   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1280   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1281   emit_int8((unsigned char)0xDE);
1282   emit_operand(dst, src);
1283 }
1284 
1285 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1286   assert(VM_Version::supports_aes(), "");
1287   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1288   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1289   emit_int8((unsigned char)0xDE);
1290   emit_int8(0xC0 | encode);
1291 }
1292 
1293 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1294   assert(VM_Version::supports_aes(), "");
1295   InstructionMark im(this);
1296   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1297   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1298   emit_int8((unsigned char)0xDF);
1299   emit_operand(dst, src);
1300 }
1301 
1302 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1303   assert(VM_Version::supports_aes(), "");
1304   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1305   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1306   emit_int8((unsigned char)0xDF);
1307   emit_int8((unsigned char)(0xC0 | encode));
1308 }
1309 
1310 void Assembler::aesenc(XMMRegister dst, Address src) {
1311   assert(VM_Version::supports_aes(), "");
1312   InstructionMark im(this);
1313   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1314   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1315   emit_int8((unsigned char)0xDC);
1316   emit_operand(dst, src);
1317 }
1318 
1319 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1320   assert(VM_Version::supports_aes(), "");
1321   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1322   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1323   emit_int8((unsigned char)0xDC);
1324   emit_int8(0xC0 | encode);
1325 }
1326 
1327 void Assembler::aesenclast(XMMRegister dst, Address src) {
1328   assert(VM_Version::supports_aes(), "");
1329   InstructionMark im(this);
1330   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1331   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1332   emit_int8((unsigned char)0xDD);
1333   emit_operand(dst, src);
1334 }
1335 
1336 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1337   assert(VM_Version::supports_aes(), "");
1338   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1339   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1340   emit_int8((unsigned char)0xDD);
1341   emit_int8((unsigned char)(0xC0 | encode));
1342 }
1343 
1344 void Assembler::andl(Address dst, int32_t imm32) {
1345   InstructionMark im(this);
1346   prefix(dst);
1347   emit_int8((unsigned char)0x81);
1348   emit_operand(rsp, dst, 4);
1349   emit_int32(imm32);
1350 }
1351 
1352 void Assembler::andl(Register dst, int32_t imm32) {
1353   prefix(dst);
1354   emit_arith(0x81, 0xE0, dst, imm32);
1355 }
1356 
1357 void Assembler::andl(Register dst, Address src) {
1358   InstructionMark im(this);
1359   prefix(src, dst);
1360   emit_int8(0x23);
1361   emit_operand(dst, src);
1362 }
1363 
1364 void Assembler::andl(Register dst, Register src) {
1365   (void) prefix_and_encode(dst->encoding(), src->encoding());
1366   emit_arith(0x23, 0xC0, dst, src);
1367 }
1368 
1369 void Assembler::andnl(Register dst, Register src1, Register src2) {
1370   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1371   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1372   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1373   emit_int8((unsigned char)0xF2);
1374   emit_int8((unsigned char)(0xC0 | encode));
1375 }
1376 
1377 void Assembler::andnl(Register dst, Register src1, Address src2) {
1378   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1379   InstructionMark im(this);
1380   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1381   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1382   emit_int8((unsigned char)0xF2);
1383   emit_operand(dst, src2);
1384 }
1385 
1386 void Assembler::bsfl(Register dst, Register src) {
1387   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1388   emit_int8(0x0F);
1389   emit_int8((unsigned char)0xBC);
1390   emit_int8((unsigned char)(0xC0 | encode));
1391 }
1392 
1393 void Assembler::bsrl(Register dst, Register src) {
1394   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1395   emit_int8(0x0F);
1396   emit_int8((unsigned char)0xBD);
1397   emit_int8((unsigned char)(0xC0 | encode));
1398 }
1399 
1400 void Assembler::bswapl(Register reg) { // bswap
1401   int encode = prefix_and_encode(reg->encoding());
1402   emit_int8(0x0F);
1403   emit_int8((unsigned char)(0xC8 | encode));
1404 }
1405 
1406 void Assembler::blsil(Register dst, Register src) {
1407   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1408   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1409   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1410   emit_int8((unsigned char)0xF3);
1411   emit_int8((unsigned char)(0xC0 | encode));
1412 }
1413 
1414 void Assembler::blsil(Register dst, Address src) {
1415   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1416   InstructionMark im(this);
1417   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1418   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1419   emit_int8((unsigned char)0xF3);
1420   emit_operand(rbx, src);
1421 }
1422 
1423 void Assembler::blsmskl(Register dst, Register src) {
1424   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1425   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1426   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1427   emit_int8((unsigned char)0xF3);
1428   emit_int8((unsigned char)(0xC0 | encode));
1429 }
1430 
1431 void Assembler::blsmskl(Register dst, Address src) {
1432   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1433   InstructionMark im(this);
1434   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1435   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1436   emit_int8((unsigned char)0xF3);
1437   emit_operand(rdx, src);
1438 }
1439 
1440 void Assembler::blsrl(Register dst, Register src) {
1441   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1442   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1443   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1444   emit_int8((unsigned char)0xF3);
1445   emit_int8((unsigned char)(0xC0 | encode));
1446 }
1447 
1448 void Assembler::blsrl(Register dst, Address src) {
1449   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1450   InstructionMark im(this);
1451   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1452   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1453   emit_int8((unsigned char)0xF3);
1454   emit_operand(rcx, src);
1455 }
1456 
1457 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1458   // suspect disp32 is always good
1459   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1460 
1461   if (L.is_bound()) {
1462     const int long_size = 5;
1463     int offs = (int)( target(L) - pc() );
1464     assert(offs <= 0, "assembler error");
1465     InstructionMark im(this);
1466     // 1110 1000 #32-bit disp
1467     emit_int8((unsigned char)0xE8);
1468     emit_data(offs - long_size, rtype, operand);
1469   } else {
1470     InstructionMark im(this);
1471     // 1110 1000 #32-bit disp
1472     L.add_patch_at(code(), locator());
1473 
1474     emit_int8((unsigned char)0xE8);
1475     emit_data(int(0), rtype, operand);
1476   }
1477 }
1478 
1479 void Assembler::call(Register dst) {
1480   int encode = prefix_and_encode(dst->encoding());
1481   emit_int8((unsigned char)0xFF);
1482   emit_int8((unsigned char)(0xD0 | encode));
1483 }
1484 
1485 
1486 void Assembler::call(Address adr) {
1487   InstructionMark im(this);
1488   prefix(adr);
1489   emit_int8((unsigned char)0xFF);
1490   emit_operand(rdx, adr);
1491 }
1492 
1493 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1494   assert(entry != NULL, "call most probably wrong");
1495   InstructionMark im(this);
1496   emit_int8((unsigned char)0xE8);
1497   intptr_t disp = entry - (pc() + sizeof(int32_t));
1498   assert(is_simm32(disp), "must be 32bit offset (call2)");
1499   // Technically, should use call32_operand, but this format is
1500   // implied by the fact that we're emitting a call instruction.
1501 
1502   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1503   emit_data((int) disp, rspec, operand);
1504 }
1505 
1506 void Assembler::cdql() {
1507   emit_int8((unsigned char)0x99);
1508 }
1509 
1510 void Assembler::cld() {
1511   emit_int8((unsigned char)0xFC);
1512 }
1513 
1514 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1515   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1516   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1517   emit_int8(0x0F);
1518   emit_int8(0x40 | cc);
1519   emit_int8((unsigned char)(0xC0 | encode));
1520 }
1521 
1522 
1523 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1524   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1525   prefix(src, dst);
1526   emit_int8(0x0F);
1527   emit_int8(0x40 | cc);
1528   emit_operand(dst, src);
1529 }
1530 
1531 void Assembler::cmpb(Address dst, int imm8) {
1532   InstructionMark im(this);
1533   prefix(dst);
1534   emit_int8((unsigned char)0x80);
1535   emit_operand(rdi, dst, 1);
1536   emit_int8(imm8);
1537 }
1538 
1539 void Assembler::cmpl(Address dst, int32_t imm32) {
1540   InstructionMark im(this);
1541   prefix(dst);
1542   emit_int8((unsigned char)0x81);
1543   emit_operand(rdi, dst, 4);
1544   emit_int32(imm32);
1545 }
1546 
1547 void Assembler::cmpl(Register dst, int32_t imm32) {
1548   prefix(dst);
1549   emit_arith(0x81, 0xF8, dst, imm32);
1550 }
1551 
1552 void Assembler::cmpl(Register dst, Register src) {
1553   (void) prefix_and_encode(dst->encoding(), src->encoding());
1554   emit_arith(0x3B, 0xC0, dst, src);
1555 }
1556 
1557 void Assembler::cmpl(Register dst, Address  src) {
1558   InstructionMark im(this);
1559   prefix(src, dst);
1560   emit_int8((unsigned char)0x3B);
1561   emit_operand(dst, src);
1562 }
1563 
1564 void Assembler::cmpw(Address dst, int imm16) {
1565   InstructionMark im(this);
1566   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1567   emit_int8(0x66);
1568   emit_int8((unsigned char)0x81);
1569   emit_operand(rdi, dst, 2);
1570   emit_int16(imm16);
1571 }
1572 
1573 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1574 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1575 // The ZF is set if the compared values were equal, and cleared otherwise.
1576 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1577   InstructionMark im(this);
1578   prefix(adr, reg);
1579   emit_int8(0x0F);
1580   emit_int8((unsigned char)0xB1);
1581   emit_operand(reg, adr);
1582 }
1583 
1584 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1585 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1586 // The ZF is set if the compared values were equal, and cleared otherwise.
1587 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1588   InstructionMark im(this);
1589   prefix(adr, reg, true);
1590   emit_int8(0x0F);
1591   emit_int8((unsigned char)0xB0);
1592   emit_operand(reg, adr);
1593 }
1594 
1595 void Assembler::comisd(XMMRegister dst, Address src) {
1596   // NOTE: dbx seems to decode this as comiss even though the
1597   // 0x66 is there. Strangly ucomisd comes out correct
1598   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1599   InstructionMark im(this);
1600   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1601   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1602   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1603   emit_int8(0x2F);
1604   emit_operand(dst, src);
1605 }
1606 
1607 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1608   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1609   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1610   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1611   emit_int8(0x2F);
1612   emit_int8((unsigned char)(0xC0 | encode));
1613 }
1614 
1615 void Assembler::comiss(XMMRegister dst, Address src) {
1616   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1617   InstructionMark im(this);
1618   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1619   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1620   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1621   emit_int8(0x2F);
1622   emit_operand(dst, src);
1623 }
1624 
1625 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1626   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1627   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1628   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1629   emit_int8(0x2F);
1630   emit_int8((unsigned char)(0xC0 | encode));
1631 }
1632 
1633 void Assembler::cpuid() {
1634   emit_int8(0x0F);
1635   emit_int8((unsigned char)0xA2);
1636 }
1637 
1638 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1639 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1640 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1641 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1642 //
1643 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1644 //
1645 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1646 //
1647 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1648 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1649   assert(VM_Version::supports_sse4_2(), "");
1650   int8_t w = 0x01;
1651   Prefix p = Prefix_EMPTY;
1652 
1653   emit_int8((int8_t)0xF2);
1654   switch (sizeInBytes) {
1655   case 1:
1656     w = 0;
1657     break;
1658   case 2:
1659   case 4:
1660     break;
1661   LP64_ONLY(case 8:)
1662     // This instruction is not valid in 32 bits
1663     // Note:
1664     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1665     //
1666     // Page B - 72   Vol. 2C says
1667     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1668     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1669     //                                                                            F0!!!
1670     // while 3 - 208 Vol. 2A
1671     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1672     //
1673     // the 0 on a last bit is reserved for a different flavor of this instruction :
1674     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1675     p = REX_W;
1676     break;
1677   default:
1678     assert(0, "Unsupported value for a sizeInBytes argument");
1679     break;
1680   }
1681   LP64_ONLY(prefix(crc, v, p);)
1682   emit_int8((int8_t)0x0F);
1683   emit_int8(0x38);
1684   emit_int8((int8_t)(0xF0 | w));
1685   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1686 }
1687 
1688 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1689   assert(VM_Version::supports_sse4_2(), "");
1690   InstructionMark im(this);
1691   int8_t w = 0x01;
1692   Prefix p = Prefix_EMPTY;
1693 
1694   emit_int8((int8_t)0xF2);
1695   switch (sizeInBytes) {
1696   case 1:
1697     w = 0;
1698     break;
1699   case 2:
1700   case 4:
1701     break;
1702   LP64_ONLY(case 8:)
1703     // This instruction is not valid in 32 bits
1704     p = REX_W;
1705     break;
1706   default:
1707     assert(0, "Unsupported value for a sizeInBytes argument");
1708     break;
1709   }
1710   LP64_ONLY(prefix(crc, adr, p);)
1711   emit_int8((int8_t)0x0F);
1712   emit_int8(0x38);
1713   emit_int8((int8_t)(0xF0 | w));
1714   emit_operand(crc, adr);
1715 }
1716 
1717 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1718   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1719   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1720   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1721   emit_int8((unsigned char)0xE6);
1722   emit_int8((unsigned char)(0xC0 | encode));
1723 }
1724 
1725 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1727   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1728   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1729   emit_int8(0x5B);
1730   emit_int8((unsigned char)(0xC0 | encode));
1731 }
1732 
1733 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1734   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1735   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1736   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1737   emit_int8(0x5A);
1738   emit_int8((unsigned char)(0xC0 | encode));
1739 }
1740 
1741 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1742   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1743   InstructionMark im(this);
1744   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1745   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1746   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1747   emit_int8(0x5A);
1748   emit_operand(dst, src);
1749 }
1750 
1751 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1752   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1753   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1754   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1755   emit_int8(0x2A);
1756   emit_int8((unsigned char)(0xC0 | encode));
1757 }
1758 
1759 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1760   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1761   InstructionMark im(this);
1762   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1763   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1764   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1765   emit_int8(0x2A);
1766   emit_operand(dst, src);
1767 }
1768 
1769 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1770   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1771   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1772   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1773   emit_int8(0x2A);
1774   emit_int8((unsigned char)(0xC0 | encode));
1775 }
1776 
1777 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1778   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1779   InstructionMark im(this);
1780   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1781   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1782   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1783   emit_int8(0x2A);
1784   emit_operand(dst, src);
1785 }
1786 
1787 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1788   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1789   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1790   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1791   emit_int8(0x2A);
1792   emit_int8((unsigned char)(0xC0 | encode));
1793 }
1794 
1795 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1796   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1797   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1798   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1799   emit_int8(0x5A);
1800   emit_int8((unsigned char)(0xC0 | encode));
1801 }
1802 
1803 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1804   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1805   InstructionMark im(this);
1806   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1807   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1808   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1809   emit_int8(0x5A);
1810   emit_operand(dst, src);
1811 }
1812 
1813 
1814 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1815   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1816   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1817   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1818   emit_int8(0x2C);
1819   emit_int8((unsigned char)(0xC0 | encode));
1820 }
1821 
1822 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1823   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1824   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1825   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1826   emit_int8(0x2C);
1827   emit_int8((unsigned char)(0xC0 | encode));
1828 }
1829 
1830 void Assembler::decl(Address dst) {
1831   // Don't use it directly. Use MacroAssembler::decrement() instead.
1832   InstructionMark im(this);
1833   prefix(dst);
1834   emit_int8((unsigned char)0xFF);
1835   emit_operand(rcx, dst);
1836 }
1837 
1838 void Assembler::divsd(XMMRegister dst, Address src) {
1839   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1840   InstructionMark im(this);
1841   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1842   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1843   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1844   emit_int8(0x5E);
1845   emit_operand(dst, src);
1846 }
1847 
1848 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1849   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1850   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1851   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1852   emit_int8(0x5E);
1853   emit_int8((unsigned char)(0xC0 | encode));
1854 }
1855 
1856 void Assembler::divss(XMMRegister dst, Address src) {
1857   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1858   InstructionMark im(this);
1859   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1860   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1861   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1862   emit_int8(0x5E);
1863   emit_operand(dst, src);
1864 }
1865 
1866 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1867   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1868   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1869   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1870   emit_int8(0x5E);
1871   emit_int8((unsigned char)(0xC0 | encode));
1872 }
1873 
1874 void Assembler::emms() {
1875   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1876   emit_int8(0x0F);
1877   emit_int8(0x77);
1878 }
1879 
1880 void Assembler::hlt() {
1881   emit_int8((unsigned char)0xF4);
1882 }
1883 
1884 void Assembler::idivl(Register src) {
1885   int encode = prefix_and_encode(src->encoding());
1886   emit_int8((unsigned char)0xF7);
1887   emit_int8((unsigned char)(0xF8 | encode));
1888 }
1889 
1890 void Assembler::divl(Register src) { // Unsigned
1891   int encode = prefix_and_encode(src->encoding());
1892   emit_int8((unsigned char)0xF7);
1893   emit_int8((unsigned char)(0xF0 | encode));
1894 }
1895 
1896 void Assembler::imull(Register src) {
1897   int encode = prefix_and_encode(src->encoding());
1898   emit_int8((unsigned char)0xF7);
1899   emit_int8((unsigned char)(0xE8 | encode));
1900 }
1901 
1902 void Assembler::imull(Register dst, Register src) {
1903   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1904   emit_int8(0x0F);
1905   emit_int8((unsigned char)0xAF);
1906   emit_int8((unsigned char)(0xC0 | encode));
1907 }
1908 
1909 
1910 void Assembler::imull(Register dst, Register src, int value) {
1911   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1912   if (is8bit(value)) {
1913     emit_int8(0x6B);
1914     emit_int8((unsigned char)(0xC0 | encode));
1915     emit_int8(value & 0xFF);
1916   } else {
1917     emit_int8(0x69);
1918     emit_int8((unsigned char)(0xC0 | encode));
1919     emit_int32(value);
1920   }
1921 }
1922 
1923 void Assembler::imull(Register dst, Address src) {
1924   InstructionMark im(this);
1925   prefix(src, dst);
1926   emit_int8(0x0F);
1927   emit_int8((unsigned char) 0xAF);
1928   emit_operand(dst, src);
1929 }
1930 
1931 
1932 void Assembler::incl(Address dst) {
1933   // Don't use it directly. Use MacroAssembler::increment() instead.
1934   InstructionMark im(this);
1935   prefix(dst);
1936   emit_int8((unsigned char)0xFF);
1937   emit_operand(rax, dst);
1938 }
1939 
1940 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1941   InstructionMark im(this);
1942   assert((0 <= cc) && (cc < 16), "illegal cc");
1943   if (L.is_bound()) {
1944     address dst = target(L);
1945     assert(dst != NULL, "jcc most probably wrong");
1946 
1947     const int short_size = 2;
1948     const int long_size = 6;
1949     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1950     if (maybe_short && is8bit(offs - short_size)) {
1951       // 0111 tttn #8-bit disp
1952       emit_int8(0x70 | cc);
1953       emit_int8((offs - short_size) & 0xFF);
1954     } else {
1955       // 0000 1111 1000 tttn #32-bit disp
1956       assert(is_simm32(offs - long_size),
1957              "must be 32bit offset (call4)");
1958       emit_int8(0x0F);
1959       emit_int8((unsigned char)(0x80 | cc));
1960       emit_int32(offs - long_size);
1961     }
1962   } else {
1963     // Note: could eliminate cond. jumps to this jump if condition
1964     //       is the same however, seems to be rather unlikely case.
1965     // Note: use jccb() if label to be bound is very close to get
1966     //       an 8-bit displacement
1967     L.add_patch_at(code(), locator());
1968     emit_int8(0x0F);
1969     emit_int8((unsigned char)(0x80 | cc));
1970     emit_int32(0);
1971   }
1972 }
1973 
1974 void Assembler::jccb(Condition cc, Label& L) {
1975   if (L.is_bound()) {
1976     const int short_size = 2;
1977     address entry = target(L);
1978 #ifdef ASSERT
1979     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1980     intptr_t delta = short_branch_delta();
1981     if (delta != 0) {
1982       dist += (dist < 0 ? (-delta) :delta);
1983     }
1984     assert(is8bit(dist), "Dispacement too large for a short jmp");
1985 #endif
1986     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1987     // 0111 tttn #8-bit disp
1988     emit_int8(0x70 | cc);
1989     emit_int8((offs - short_size) & 0xFF);
1990   } else {
1991     InstructionMark im(this);
1992     L.add_patch_at(code(), locator());
1993     emit_int8(0x70 | cc);
1994     emit_int8(0);
1995   }
1996 }
1997 
1998 void Assembler::jmp(Address adr) {
1999   InstructionMark im(this);
2000   prefix(adr);
2001   emit_int8((unsigned char)0xFF);
2002   emit_operand(rsp, adr);
2003 }
2004 
2005 void Assembler::jmp(Label& L, bool maybe_short) {
2006   if (L.is_bound()) {
2007     address entry = target(L);
2008     assert(entry != NULL, "jmp most probably wrong");
2009     InstructionMark im(this);
2010     const int short_size = 2;
2011     const int long_size = 5;
2012     intptr_t offs = entry - pc();
2013     if (maybe_short && is8bit(offs - short_size)) {
2014       emit_int8((unsigned char)0xEB);
2015       emit_int8((offs - short_size) & 0xFF);
2016     } else {
2017       emit_int8((unsigned char)0xE9);
2018       emit_int32(offs - long_size);
2019     }
2020   } else {
2021     // By default, forward jumps are always 32-bit displacements, since
2022     // we can't yet know where the label will be bound.  If you're sure that
2023     // the forward jump will not run beyond 256 bytes, use jmpb to
2024     // force an 8-bit displacement.
2025     InstructionMark im(this);
2026     L.add_patch_at(code(), locator());
2027     emit_int8((unsigned char)0xE9);
2028     emit_int32(0);
2029   }
2030 }
2031 
2032 void Assembler::jmp(Register entry) {
2033   int encode = prefix_and_encode(entry->encoding());
2034   emit_int8((unsigned char)0xFF);
2035   emit_int8((unsigned char)(0xE0 | encode));
2036 }
2037 
2038 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2039   InstructionMark im(this);
2040   emit_int8((unsigned char)0xE9);
2041   assert(dest != NULL, "must have a target");
2042   intptr_t disp = dest - (pc() + sizeof(int32_t));
2043   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2044   emit_data(disp, rspec.reloc(), call32_operand);
2045 }
2046 
2047 void Assembler::jmpb(Label& L) {
2048   if (L.is_bound()) {
2049     const int short_size = 2;
2050     address entry = target(L);
2051     assert(entry != NULL, "jmp most probably wrong");
2052 #ifdef ASSERT
2053     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2054     intptr_t delta = short_branch_delta();
2055     if (delta != 0) {
2056       dist += (dist < 0 ? (-delta) :delta);
2057     }
2058     assert(is8bit(dist), "Dispacement too large for a short jmp");
2059 #endif
2060     intptr_t offs = entry - pc();
2061     emit_int8((unsigned char)0xEB);
2062     emit_int8((offs - short_size) & 0xFF);
2063   } else {
2064     InstructionMark im(this);
2065     L.add_patch_at(code(), locator());
2066     emit_int8((unsigned char)0xEB);
2067     emit_int8(0);
2068   }
2069 }
2070 
2071 void Assembler::ldmxcsr( Address src) {
2072   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2073   InstructionMark im(this);
2074   prefix(src);
2075   emit_int8(0x0F);
2076   emit_int8((unsigned char)0xAE);
2077   emit_operand(as_Register(2), src);
2078 }
2079 
2080 void Assembler::leal(Register dst, Address src) {
2081   InstructionMark im(this);
2082 #ifdef _LP64
2083   emit_int8(0x67); // addr32
2084   prefix(src, dst);
2085 #endif // LP64
2086   emit_int8((unsigned char)0x8D);
2087   emit_operand(dst, src);
2088 }
2089 
2090 void Assembler::lfence() {
2091   emit_int8(0x0F);
2092   emit_int8((unsigned char)0xAE);
2093   emit_int8((unsigned char)0xE8);
2094 }
2095 
2096 void Assembler::lock() {
2097   emit_int8((unsigned char)0xF0);
2098 }
2099 
2100 void Assembler::lzcntl(Register dst, Register src) {
2101   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2102   emit_int8((unsigned char)0xF3);
2103   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2104   emit_int8(0x0F);
2105   emit_int8((unsigned char)0xBD);
2106   emit_int8((unsigned char)(0xC0 | encode));
2107 }
2108 
2109 // Emit mfence instruction
2110 void Assembler::mfence() {
2111   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2112   emit_int8(0x0F);
2113   emit_int8((unsigned char)0xAE);
2114   emit_int8((unsigned char)0xF0);
2115 }
2116 
2117 void Assembler::mov(Register dst, Register src) {
2118   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2119 }
2120 
2121 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2122   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2123   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2124   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2125   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2126   emit_int8(0x28);
2127   emit_int8((unsigned char)(0xC0 | encode));
2128 }
2129 
2130 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2131   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2132   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2133   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2134   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2135   emit_int8(0x28);
2136   emit_int8((unsigned char)(0xC0 | encode));
2137 }
2138 
2139 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2140   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2141   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2142   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2143   emit_int8(0x16);
2144   emit_int8((unsigned char)(0xC0 | encode));
2145 }
2146 
2147 void Assembler::movb(Register dst, Address src) {
2148   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2149   InstructionMark im(this);
2150   prefix(src, dst, true);
2151   emit_int8((unsigned char)0x8A);
2152   emit_operand(dst, src);
2153 }
2154 
2155 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2156   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2157   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2158   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2159   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2160   emit_int8(0x12);
2161   emit_int8(0xC0 | encode);
2162 }
2163 
2164 void Assembler::kmovbl(KRegister dst, Register src) {
2165   assert(VM_Version::supports_avx512dq(), "");
2166   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2167   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2168   emit_int8((unsigned char)0x92);
2169   emit_int8((unsigned char)(0xC0 | encode));
2170 }
2171 
2172 void Assembler::kmovbl(Register dst, KRegister src) {
2173   assert(VM_Version::supports_avx512dq(), "");
2174   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2175   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2176   emit_int8((unsigned char)0x93);
2177   emit_int8((unsigned char)(0xC0 | encode));
2178 }
2179 
2180 void Assembler::kmovwl(KRegister dst, Register src) {
2181   assert(VM_Version::supports_evex(), "");
2182   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2183   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2184   emit_int8((unsigned char)0x92);
2185   emit_int8((unsigned char)(0xC0 | encode));
2186 }
2187 
2188 void Assembler::kmovwl(Register dst, KRegister src) {
2189   assert(VM_Version::supports_evex(), "");
2190   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2191   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2192   emit_int8((unsigned char)0x93);
2193   emit_int8((unsigned char)(0xC0 | encode));
2194 }
2195 
2196 void Assembler::kmovdl(KRegister dst, Register src) {
2197   assert(VM_Version::supports_avx512bw(), "");
2198   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2199   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2200   emit_int8((unsigned char)0x92);
2201   emit_int8((unsigned char)(0xC0 | encode));
2202 }
2203 
2204 void Assembler::kmovdl(Register dst, KRegister src) {
2205   assert(VM_Version::supports_avx512bw(), "");
2206   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2207   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2208   emit_int8((unsigned char)0x93);
2209   emit_int8((unsigned char)(0xC0 | encode));
2210 }
2211 
2212 void Assembler::kmovql(KRegister dst, KRegister src) {
2213   assert(VM_Version::supports_avx512bw(), "");
2214   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2215   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2216   emit_int8((unsigned char)0x90);
2217   emit_int8((unsigned char)(0xC0 | encode));
2218 }
2219 
2220 void Assembler::kmovql(KRegister dst, Address src) {
2221   assert(VM_Version::supports_avx512bw(), "");
2222   InstructionMark im(this);
2223   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2224   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2225   emit_int8((unsigned char)0x90);
2226   emit_operand((Register)dst, src);
2227 }
2228 
2229 void Assembler::kmovql(Address dst, KRegister src) {
2230   assert(VM_Version::supports_avx512bw(), "");
2231   InstructionMark im(this);
2232   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2233   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2234   emit_int8((unsigned char)0x90);
2235   emit_operand((Register)src, dst);
2236 }
2237 
2238 void Assembler::kmovql(KRegister dst, Register src) {
2239   assert(VM_Version::supports_avx512bw(), "");
2240   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2241   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2242   emit_int8((unsigned char)0x92);
2243   emit_int8((unsigned char)(0xC0 | encode));
2244 }
2245 
2246 void Assembler::kmovql(Register dst, KRegister src) {
2247   assert(VM_Version::supports_avx512bw(), "");
2248   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2249   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2250   emit_int8((unsigned char)0x93);
2251   emit_int8((unsigned char)(0xC0 | encode));
2252 }
2253 
2254 // This instruction produces ZF or CF flags
2255 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2256   assert(VM_Version::supports_avx512dq(), "");
2257   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2258   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2259   emit_int8((unsigned char)0x98);
2260   emit_int8((unsigned char)(0xC0 | encode));
2261 }
2262 
2263 // This instruction produces ZF or CF flags
2264 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2265   assert(VM_Version::supports_evex(), "");
2266   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2267   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2268   emit_int8((unsigned char)0x98);
2269   emit_int8((unsigned char)(0xC0 | encode));
2270 }
2271 
2272 // This instruction produces ZF or CF flags
2273 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2274   assert(VM_Version::supports_avx512bw(), "");
2275   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2276   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2277   emit_int8((unsigned char)0x98);
2278   emit_int8((unsigned char)(0xC0 | encode));
2279 }
2280 
2281 // This instruction produces ZF or CF flags
2282 void Assembler::kortestql(KRegister src1, KRegister src2) {
2283   assert(VM_Version::supports_avx512bw(), "");
2284   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2285   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2286   emit_int8((unsigned char)0x98);
2287   emit_int8((unsigned char)(0xC0 | encode));
2288 }
2289 
2290 void Assembler::movb(Address dst, int imm8) {
2291   InstructionMark im(this);
2292    prefix(dst);
2293   emit_int8((unsigned char)0xC6);
2294   emit_operand(rax, dst, 1);
2295   emit_int8(imm8);
2296 }
2297 
2298 
2299 void Assembler::movb(Address dst, Register src) {
2300   assert(src->has_byte_register(), "must have byte register");
2301   InstructionMark im(this);
2302   prefix(dst, src, true);
2303   emit_int8((unsigned char)0x88);
2304   emit_operand(src, dst);
2305 }
2306 
2307 void Assembler::movdl(XMMRegister dst, Register src) {
2308   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2309   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2310   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2311   emit_int8(0x6E);
2312   emit_int8((unsigned char)(0xC0 | encode));
2313 }
2314 
2315 void Assembler::movdl(Register dst, XMMRegister src) {
2316   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2317   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2318   // swap src/dst to get correct prefix
2319   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2320   emit_int8(0x7E);
2321   emit_int8((unsigned char)(0xC0 | encode));
2322 }
2323 
2324 void Assembler::movdl(XMMRegister dst, Address src) {
2325   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2326   InstructionMark im(this);
2327   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2328   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2329   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2330   emit_int8(0x6E);
2331   emit_operand(dst, src);
2332 }
2333 
2334 void Assembler::movdl(Address dst, XMMRegister src) {
2335   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2336   InstructionMark im(this);
2337   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2338   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2339   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2340   emit_int8(0x7E);
2341   emit_operand(src, dst);
2342 }
2343 
2344 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2345   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2346   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2347   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2348   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2349   emit_int8(0x6F);
2350   emit_int8((unsigned char)(0xC0 | encode));
2351 }
2352 
2353 void Assembler::movdqa(XMMRegister dst, Address src) {
2354   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2355   InstructionMark im(this);
2356   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2357   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2358   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2359   emit_int8(0x6F);
2360   emit_operand(dst, src);
2361 }
2362 
2363 void Assembler::movdqu(XMMRegister dst, Address src) {
2364   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2365   InstructionMark im(this);
2366   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2367   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2368   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2369   emit_int8(0x6F);
2370   emit_operand(dst, src);
2371 }
2372 
2373 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2374   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2375   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2376   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2377   emit_int8(0x6F);
2378   emit_int8((unsigned char)(0xC0 | encode));
2379 }
2380 
2381 void Assembler::movdqu(Address dst, XMMRegister src) {
2382   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2383   InstructionMark im(this);
2384   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2385   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2386   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2387   emit_int8(0x7F);
2388   emit_operand(src, dst);
2389 }
2390 
2391 // Move Unaligned 256bit Vector
2392 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2393   assert(UseAVX > 0, "");
2394   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2395   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2396   emit_int8(0x6F);
2397   emit_int8((unsigned char)(0xC0 | encode));
2398 }
2399 
2400 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2401   assert(UseAVX > 0, "");
2402   InstructionMark im(this);
2403   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2404   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2405   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2406   emit_int8(0x6F);
2407   emit_operand(dst, src);
2408 }
2409 
2410 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2411   assert(UseAVX > 0, "");
2412   InstructionMark im(this);
2413   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2414   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2415   // swap src<->dst for encoding
2416   assert(src != xnoreg, "sanity");
2417   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2418   emit_int8(0x7F);
2419   emit_operand(src, dst);
2420 }
2421 
2422 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2423 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2424   assert(VM_Version::supports_evex(), "");
2425   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2426   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2427   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2428   emit_int8(0x6F);
2429   emit_int8((unsigned char)(0xC0 | encode));
2430 }
2431 
2432 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2433   assert(VM_Version::supports_evex(), "");
2434   InstructionMark im(this);
2435   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2436   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2437   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2438   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2439   emit_int8(0x6F);
2440   emit_operand(dst, src);
2441 }
2442 
2443 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2444   assert(VM_Version::supports_evex(), "");
2445   assert(src != xnoreg, "sanity");
2446   InstructionMark im(this);
2447   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2448   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2449   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2450   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2451   emit_int8(0x7F);
2452   emit_operand(src, dst);
2453 }
2454 
2455 void Assembler::evmovdquw(XMMRegister dst, XMMRegister src, int vector_len) {
2456   assert(VM_Version::supports_evex(), "");
2457   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2458   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2459   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2460   emit_int8(0x6F);
2461   emit_int8((unsigned char)(0xC0 | encode));
2462 }
2463 
2464 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2465   assert(VM_Version::supports_evex(), "");
2466   InstructionMark im(this);
2467   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2468   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2469   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2470   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2471   emit_int8(0x6F);
2472   emit_operand(dst, src);
2473 }
2474 
2475 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2476   assert(VM_Version::supports_evex(), "");
2477   assert(src != xnoreg, "sanity");
2478   InstructionMark im(this);
2479   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2480   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2481   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2482   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2483   emit_int8(0x7F);
2484   emit_operand(src, dst);
2485 }
2486 
2487 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2488   assert(VM_Version::supports_evex(), "");
2489   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2490   attributes.set_is_evex_instruction();
2491   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2492   emit_int8(0x6F);
2493   emit_int8((unsigned char)(0xC0 | encode));
2494 }
2495 
2496 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2497   assert(VM_Version::supports_evex(), "");
2498   InstructionMark im(this);
2499   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ true);
2500   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2501   attributes.set_is_evex_instruction();
2502   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2503   emit_int8(0x6F);
2504   emit_operand(dst, src);
2505 }
2506 
2507 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2508   assert(VM_Version::supports_evex(), "");
2509   assert(src != xnoreg, "sanity");
2510   InstructionMark im(this);
2511   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2512   attributes.set_is_evex_instruction();
2513   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2514   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2515   emit_int8(0x7F);
2516   emit_operand(src, dst);
2517 }
2518 
2519 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2520   assert(VM_Version::supports_evex(), "");
2521   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2522   attributes.set_is_evex_instruction();
2523   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2524   emit_int8(0x6F);
2525   emit_int8((unsigned char)(0xC0 | encode));
2526 }
2527 
2528 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2529   assert(VM_Version::supports_evex(), "");
2530   InstructionMark im(this);
2531   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2532   attributes.set_is_evex_instruction();
2533   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2534   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2535   emit_int8(0x6F);
2536   emit_operand(dst, src);
2537 }
2538 
2539 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2540   assert(VM_Version::supports_evex(), "");
2541   assert(src != xnoreg, "sanity");
2542   InstructionMark im(this);
2543   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2544   attributes.set_is_evex_instruction();
2545   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2546   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2547   emit_int8(0x7F);
2548   emit_operand(src, dst);
2549 }
2550 
2551 // Uses zero extension on 64bit
2552 
2553 void Assembler::movl(Register dst, int32_t imm32) {
2554   int encode = prefix_and_encode(dst->encoding());
2555   emit_int8((unsigned char)(0xB8 | encode));
2556   emit_int32(imm32);
2557 }
2558 
2559 void Assembler::movl(Register dst, Register src) {
2560   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2561   emit_int8((unsigned char)0x8B);
2562   emit_int8((unsigned char)(0xC0 | encode));
2563 }
2564 
2565 void Assembler::movl(Register dst, Address src) {
2566   InstructionMark im(this);
2567   prefix(src, dst);
2568   emit_int8((unsigned char)0x8B);
2569   emit_operand(dst, src);
2570 }
2571 
2572 void Assembler::movl(Address dst, int32_t imm32) {
2573   InstructionMark im(this);
2574   prefix(dst);
2575   emit_int8((unsigned char)0xC7);
2576   emit_operand(rax, dst, 4);
2577   emit_int32(imm32);
2578 }
2579 
2580 void Assembler::movl(Address dst, Register src) {
2581   InstructionMark im(this);
2582   prefix(dst, src);
2583   emit_int8((unsigned char)0x89);
2584   emit_operand(src, dst);
2585 }
2586 
2587 // New cpus require to use movsd and movss to avoid partial register stall
2588 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2589 // The selection is done in MacroAssembler::movdbl() and movflt().
2590 void Assembler::movlpd(XMMRegister dst, Address src) {
2591   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2592   InstructionMark im(this);
2593   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2594   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2595   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2596   emit_int8(0x12);
2597   emit_operand(dst, src);
2598 }
2599 
2600 void Assembler::movq( MMXRegister dst, Address src ) {
2601   assert( VM_Version::supports_mmx(), "" );
2602   emit_int8(0x0F);
2603   emit_int8(0x6F);
2604   emit_operand(dst, src);
2605 }
2606 
2607 void Assembler::movq( Address dst, MMXRegister src ) {
2608   assert( VM_Version::supports_mmx(), "" );
2609   emit_int8(0x0F);
2610   emit_int8(0x7F);
2611   // workaround gcc (3.2.1-7a) bug
2612   // In that version of gcc with only an emit_operand(MMX, Address)
2613   // gcc will tail jump and try and reverse the parameters completely
2614   // obliterating dst in the process. By having a version available
2615   // that doesn't need to swap the args at the tail jump the bug is
2616   // avoided.
2617   emit_operand(dst, src);
2618 }
2619 
2620 void Assembler::movq(XMMRegister dst, Address src) {
2621   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2622   InstructionMark im(this);
2623   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2624   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2625   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2626   emit_int8(0x7E);
2627   emit_operand(dst, src);
2628 }
2629 
2630 void Assembler::movq(Address dst, XMMRegister src) {
2631   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2632   InstructionMark im(this);
2633   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2634   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2635   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2636   emit_int8((unsigned char)0xD6);
2637   emit_operand(src, dst);
2638 }
2639 
2640 void Assembler::movsbl(Register dst, Address src) { // movsxb
2641   InstructionMark im(this);
2642   prefix(src, dst);
2643   emit_int8(0x0F);
2644   emit_int8((unsigned char)0xBE);
2645   emit_operand(dst, src);
2646 }
2647 
2648 void Assembler::movsbl(Register dst, Register src) { // movsxb
2649   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2650   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2651   emit_int8(0x0F);
2652   emit_int8((unsigned char)0xBE);
2653   emit_int8((unsigned char)(0xC0 | encode));
2654 }
2655 
2656 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2657   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2658   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2659   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2660   emit_int8(0x10);
2661   emit_int8((unsigned char)(0xC0 | encode));
2662 }
2663 
2664 void Assembler::movsd(XMMRegister dst, Address src) {
2665   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2666   InstructionMark im(this);
2667   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2668   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2669   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2670   emit_int8(0x10);
2671   emit_operand(dst, src);
2672 }
2673 
2674 void Assembler::movsd(Address dst, XMMRegister src) {
2675   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2676   InstructionMark im(this);
2677   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2678   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2679   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2680   emit_int8(0x11);
2681   emit_operand(src, dst);
2682 }
2683 
2684 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2685   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2686   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2687   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2688   emit_int8(0x10);
2689   emit_int8((unsigned char)(0xC0 | encode));
2690 }
2691 
2692 void Assembler::movss(XMMRegister dst, Address src) {
2693   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2694   InstructionMark im(this);
2695   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2696   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2697   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2698   emit_int8(0x10);
2699   emit_operand(dst, src);
2700 }
2701 
2702 void Assembler::movss(Address dst, XMMRegister src) {
2703   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2704   InstructionMark im(this);
2705   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2706   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2707   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2708   emit_int8(0x11);
2709   emit_operand(src, dst);
2710 }
2711 
2712 void Assembler::movswl(Register dst, Address src) { // movsxw
2713   InstructionMark im(this);
2714   prefix(src, dst);
2715   emit_int8(0x0F);
2716   emit_int8((unsigned char)0xBF);
2717   emit_operand(dst, src);
2718 }
2719 
2720 void Assembler::movswl(Register dst, Register src) { // movsxw
2721   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2722   emit_int8(0x0F);
2723   emit_int8((unsigned char)0xBF);
2724   emit_int8((unsigned char)(0xC0 | encode));
2725 }
2726 
2727 void Assembler::movw(Address dst, int imm16) {
2728   InstructionMark im(this);
2729 
2730   emit_int8(0x66); // switch to 16-bit mode
2731   prefix(dst);
2732   emit_int8((unsigned char)0xC7);
2733   emit_operand(rax, dst, 2);
2734   emit_int16(imm16);
2735 }
2736 
2737 void Assembler::movw(Register dst, Address src) {
2738   InstructionMark im(this);
2739   emit_int8(0x66);
2740   prefix(src, dst);
2741   emit_int8((unsigned char)0x8B);
2742   emit_operand(dst, src);
2743 }
2744 
2745 void Assembler::movw(Address dst, Register src) {
2746   InstructionMark im(this);
2747   emit_int8(0x66);
2748   prefix(dst, src);
2749   emit_int8((unsigned char)0x89);
2750   emit_operand(src, dst);
2751 }
2752 
2753 void Assembler::movzbl(Register dst, Address src) { // movzxb
2754   InstructionMark im(this);
2755   prefix(src, dst);
2756   emit_int8(0x0F);
2757   emit_int8((unsigned char)0xB6);
2758   emit_operand(dst, src);
2759 }
2760 
2761 void Assembler::movzbl(Register dst, Register src) { // movzxb
2762   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2763   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2764   emit_int8(0x0F);
2765   emit_int8((unsigned char)0xB6);
2766   emit_int8(0xC0 | encode);
2767 }
2768 
2769 void Assembler::movzwl(Register dst, Address src) { // movzxw
2770   InstructionMark im(this);
2771   prefix(src, dst);
2772   emit_int8(0x0F);
2773   emit_int8((unsigned char)0xB7);
2774   emit_operand(dst, src);
2775 }
2776 
2777 void Assembler::movzwl(Register dst, Register src) { // movzxw
2778   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2779   emit_int8(0x0F);
2780   emit_int8((unsigned char)0xB7);
2781   emit_int8(0xC0 | encode);
2782 }
2783 
2784 void Assembler::mull(Address src) {
2785   InstructionMark im(this);
2786   prefix(src);
2787   emit_int8((unsigned char)0xF7);
2788   emit_operand(rsp, src);
2789 }
2790 
2791 void Assembler::mull(Register src) {
2792   int encode = prefix_and_encode(src->encoding());
2793   emit_int8((unsigned char)0xF7);
2794   emit_int8((unsigned char)(0xE0 | encode));
2795 }
2796 
2797 void Assembler::mulsd(XMMRegister dst, Address src) {
2798   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2799   InstructionMark im(this);
2800   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2801   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2802   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2803   emit_int8(0x59);
2804   emit_operand(dst, src);
2805 }
2806 
2807 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2808   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2809   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2810   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2811   emit_int8(0x59);
2812   emit_int8((unsigned char)(0xC0 | encode));
2813 }
2814 
2815 void Assembler::mulss(XMMRegister dst, Address src) {
2816   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2817   InstructionMark im(this);
2818   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2819   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2820   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2821   emit_int8(0x59);
2822   emit_operand(dst, src);
2823 }
2824 
2825 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2826   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2827   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2828   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2829   emit_int8(0x59);
2830   emit_int8((unsigned char)(0xC0 | encode));
2831 }
2832 
2833 void Assembler::negl(Register dst) {
2834   int encode = prefix_and_encode(dst->encoding());
2835   emit_int8((unsigned char)0xF7);
2836   emit_int8((unsigned char)(0xD8 | encode));
2837 }
2838 
2839 void Assembler::nop(int i) {
2840 #ifdef ASSERT
2841   assert(i > 0, " ");
2842   // The fancy nops aren't currently recognized by debuggers making it a
2843   // pain to disassemble code while debugging. If asserts are on clearly
2844   // speed is not an issue so simply use the single byte traditional nop
2845   // to do alignment.
2846 
2847   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2848   return;
2849 
2850 #endif // ASSERT
2851 
2852   if (UseAddressNop && VM_Version::is_intel()) {
2853     //
2854     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2855     //  1: 0x90
2856     //  2: 0x66 0x90
2857     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2858     //  4: 0x0F 0x1F 0x40 0x00
2859     //  5: 0x0F 0x1F 0x44 0x00 0x00
2860     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2861     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2862     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2863     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2864     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2865     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2866 
2867     // The rest coding is Intel specific - don't use consecutive address nops
2868 
2869     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2870     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2871     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2872     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2873 
2874     while(i >= 15) {
2875       // For Intel don't generate consecutive addess nops (mix with regular nops)
2876       i -= 15;
2877       emit_int8(0x66);   // size prefix
2878       emit_int8(0x66);   // size prefix
2879       emit_int8(0x66);   // size prefix
2880       addr_nop_8();
2881       emit_int8(0x66);   // size prefix
2882       emit_int8(0x66);   // size prefix
2883       emit_int8(0x66);   // size prefix
2884       emit_int8((unsigned char)0x90);
2885                          // nop
2886     }
2887     switch (i) {
2888       case 14:
2889         emit_int8(0x66); // size prefix
2890       case 13:
2891         emit_int8(0x66); // size prefix
2892       case 12:
2893         addr_nop_8();
2894         emit_int8(0x66); // size prefix
2895         emit_int8(0x66); // size prefix
2896         emit_int8(0x66); // size prefix
2897         emit_int8((unsigned char)0x90);
2898                          // nop
2899         break;
2900       case 11:
2901         emit_int8(0x66); // size prefix
2902       case 10:
2903         emit_int8(0x66); // size prefix
2904       case 9:
2905         emit_int8(0x66); // size prefix
2906       case 8:
2907         addr_nop_8();
2908         break;
2909       case 7:
2910         addr_nop_7();
2911         break;
2912       case 6:
2913         emit_int8(0x66); // size prefix
2914       case 5:
2915         addr_nop_5();
2916         break;
2917       case 4:
2918         addr_nop_4();
2919         break;
2920       case 3:
2921         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2922         emit_int8(0x66); // size prefix
2923       case 2:
2924         emit_int8(0x66); // size prefix
2925       case 1:
2926         emit_int8((unsigned char)0x90);
2927                          // nop
2928         break;
2929       default:
2930         assert(i == 0, " ");
2931     }
2932     return;
2933   }
2934   if (UseAddressNop && VM_Version::is_amd()) {
2935     //
2936     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2937     //  1: 0x90
2938     //  2: 0x66 0x90
2939     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2940     //  4: 0x0F 0x1F 0x40 0x00
2941     //  5: 0x0F 0x1F 0x44 0x00 0x00
2942     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2943     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2944     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2945     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2946     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2947     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2948 
2949     // The rest coding is AMD specific - use consecutive address nops
2950 
2951     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2952     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2953     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2954     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2955     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2956     //     Size prefixes (0x66) are added for larger sizes
2957 
2958     while(i >= 22) {
2959       i -= 11;
2960       emit_int8(0x66); // size prefix
2961       emit_int8(0x66); // size prefix
2962       emit_int8(0x66); // size prefix
2963       addr_nop_8();
2964     }
2965     // Generate first nop for size between 21-12
2966     switch (i) {
2967       case 21:
2968         i -= 1;
2969         emit_int8(0x66); // size prefix
2970       case 20:
2971       case 19:
2972         i -= 1;
2973         emit_int8(0x66); // size prefix
2974       case 18:
2975       case 17:
2976         i -= 1;
2977         emit_int8(0x66); // size prefix
2978       case 16:
2979       case 15:
2980         i -= 8;
2981         addr_nop_8();
2982         break;
2983       case 14:
2984       case 13:
2985         i -= 7;
2986         addr_nop_7();
2987         break;
2988       case 12:
2989         i -= 6;
2990         emit_int8(0x66); // size prefix
2991         addr_nop_5();
2992         break;
2993       default:
2994         assert(i < 12, " ");
2995     }
2996 
2997     // Generate second nop for size between 11-1
2998     switch (i) {
2999       case 11:
3000         emit_int8(0x66); // size prefix
3001       case 10:
3002         emit_int8(0x66); // size prefix
3003       case 9:
3004         emit_int8(0x66); // size prefix
3005       case 8:
3006         addr_nop_8();
3007         break;
3008       case 7:
3009         addr_nop_7();
3010         break;
3011       case 6:
3012         emit_int8(0x66); // size prefix
3013       case 5:
3014         addr_nop_5();
3015         break;
3016       case 4:
3017         addr_nop_4();
3018         break;
3019       case 3:
3020         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3021         emit_int8(0x66); // size prefix
3022       case 2:
3023         emit_int8(0x66); // size prefix
3024       case 1:
3025         emit_int8((unsigned char)0x90);
3026                          // nop
3027         break;
3028       default:
3029         assert(i == 0, " ");
3030     }
3031     return;
3032   }
3033 
3034   // Using nops with size prefixes "0x66 0x90".
3035   // From AMD Optimization Guide:
3036   //  1: 0x90
3037   //  2: 0x66 0x90
3038   //  3: 0x66 0x66 0x90
3039   //  4: 0x66 0x66 0x66 0x90
3040   //  5: 0x66 0x66 0x90 0x66 0x90
3041   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3042   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3043   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3044   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3045   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3046   //
3047   while(i > 12) {
3048     i -= 4;
3049     emit_int8(0x66); // size prefix
3050     emit_int8(0x66);
3051     emit_int8(0x66);
3052     emit_int8((unsigned char)0x90);
3053                      // nop
3054   }
3055   // 1 - 12 nops
3056   if(i > 8) {
3057     if(i > 9) {
3058       i -= 1;
3059       emit_int8(0x66);
3060     }
3061     i -= 3;
3062     emit_int8(0x66);
3063     emit_int8(0x66);
3064     emit_int8((unsigned char)0x90);
3065   }
3066   // 1 - 8 nops
3067   if(i > 4) {
3068     if(i > 6) {
3069       i -= 1;
3070       emit_int8(0x66);
3071     }
3072     i -= 3;
3073     emit_int8(0x66);
3074     emit_int8(0x66);
3075     emit_int8((unsigned char)0x90);
3076   }
3077   switch (i) {
3078     case 4:
3079       emit_int8(0x66);
3080     case 3:
3081       emit_int8(0x66);
3082     case 2:
3083       emit_int8(0x66);
3084     case 1:
3085       emit_int8((unsigned char)0x90);
3086       break;
3087     default:
3088       assert(i == 0, " ");
3089   }
3090 }
3091 
3092 void Assembler::notl(Register dst) {
3093   int encode = prefix_and_encode(dst->encoding());
3094   emit_int8((unsigned char)0xF7);
3095   emit_int8((unsigned char)(0xD0 | encode));
3096 }
3097 
3098 void Assembler::orl(Address dst, int32_t imm32) {
3099   InstructionMark im(this);
3100   prefix(dst);
3101   emit_arith_operand(0x81, rcx, dst, imm32);
3102 }
3103 
3104 void Assembler::orl(Register dst, int32_t imm32) {
3105   prefix(dst);
3106   emit_arith(0x81, 0xC8, dst, imm32);
3107 }
3108 
3109 void Assembler::orl(Register dst, Address src) {
3110   InstructionMark im(this);
3111   prefix(src, dst);
3112   emit_int8(0x0B);
3113   emit_operand(dst, src);
3114 }
3115 
3116 void Assembler::orl(Register dst, Register src) {
3117   (void) prefix_and_encode(dst->encoding(), src->encoding());
3118   emit_arith(0x0B, 0xC0, dst, src);
3119 }
3120 
3121 void Assembler::orl(Address dst, Register src) {
3122   InstructionMark im(this);
3123   prefix(dst, src);
3124   emit_int8(0x09);
3125   emit_operand(src, dst);
3126 }
3127 
3128 void Assembler::packuswb(XMMRegister dst, Address src) {
3129   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3130   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3131   InstructionMark im(this);
3132   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3133   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3134   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3135   emit_int8(0x67);
3136   emit_operand(dst, src);
3137 }
3138 
3139 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3140   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3141   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3142   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3143   emit_int8(0x67);
3144   emit_int8((unsigned char)(0xC0 | encode));
3145 }
3146 
3147 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3148   assert(UseAVX > 0, "some form of AVX must be enabled");
3149   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3150   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3151   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3152   emit_int8(0x67);
3153   emit_int8((unsigned char)(0xC0 | encode));
3154 }
3155 
3156 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3157   assert(VM_Version::supports_avx2(), "");
3158   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3159   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3160   emit_int8(0x00);
3161   emit_int8(0xC0 | encode);
3162   emit_int8(imm8);
3163 }
3164 
3165 void Assembler::pause() {
3166   emit_int8((unsigned char)0xF3);
3167   emit_int8((unsigned char)0x90);
3168 }
3169 
3170 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3171   assert(VM_Version::supports_sse4_2(), "");
3172   InstructionMark im(this);
3173   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3174   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3175   emit_int8(0x61);
3176   emit_operand(dst, src);
3177   emit_int8(imm8);
3178 }
3179 
3180 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3181   assert(VM_Version::supports_sse4_2(), "");
3182   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3183   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3184   emit_int8(0x61);
3185   emit_int8((unsigned char)(0xC0 | encode));
3186   emit_int8(imm8);
3187 }
3188 
3189 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3190 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3191   assert(VM_Version::supports_sse2(), "");
3192   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3193   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3194   emit_int8(0x74);
3195   emit_int8((unsigned char)(0xC0 | encode));
3196 }
3197 
3198 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3199 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3200   assert(VM_Version::supports_avx(), "");
3201   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3202   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3203   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3204   emit_int8(0x74);
3205   emit_int8((unsigned char)(0xC0 | encode));
3206 }
3207 
3208 // In this context, kdst is written the mask used to process the equal components
3209 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3210   assert(VM_Version::supports_avx512bw(), "");
3211   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3212   attributes.set_is_evex_instruction();
3213   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3214   int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3215   emit_int8(0x74);
3216   emit_int8((unsigned char)(0xC0 | encode));
3217 }
3218 
3219 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3220   assert(VM_Version::supports_avx512bw(), "");
3221   InstructionMark im(this);
3222   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3223   attributes.set_is_evex_instruction();
3224   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3225   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3226   int dst_enc = kdst->encoding();
3227   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3228   emit_int8(0x74);
3229   emit_operand(as_Register(dst_enc), src);
3230 }
3231 
3232 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3233 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3234   assert(VM_Version::supports_sse2(), "");
3235   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3236   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3237   emit_int8(0x75);
3238   emit_int8((unsigned char)(0xC0 | encode));
3239 }
3240 
3241 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3242 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3243   assert(VM_Version::supports_avx(), "");
3244   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3245   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3246   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3247   emit_int8(0x75);
3248   emit_int8((unsigned char)(0xC0 | encode));
3249 }
3250 
3251 // In this context, kdst is written the mask used to process the equal components
3252 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3253   assert(VM_Version::supports_avx512bw(), "");
3254   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3255   attributes.set_is_evex_instruction();
3256   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3257   int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3258   emit_int8(0x75);
3259   emit_int8((unsigned char)(0xC0 | encode));
3260 }
3261 
3262 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3263   assert(VM_Version::supports_avx512bw(), "");
3264   InstructionMark im(this);
3265   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3266   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3267   attributes.set_is_evex_instruction();
3268   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3269   int dst_enc = kdst->encoding();
3270   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3271   emit_int8(0x75);
3272   emit_operand(as_Register(dst_enc), src);
3273 }
3274 
3275 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3276 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3277   assert(VM_Version::supports_sse2(), "");
3278   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3279   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3280   emit_int8(0x76);
3281   emit_int8((unsigned char)(0xC0 | encode));
3282 }
3283 
3284 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3285 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3286   assert(VM_Version::supports_avx(), "");
3287   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3288   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3289   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3290   emit_int8(0x76);
3291   emit_int8((unsigned char)(0xC0 | encode));
3292 }
3293 
3294 // In this context, kdst is written the mask used to process the equal components
3295 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3296   assert(VM_Version::supports_evex(), "");
3297   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3298   attributes.set_is_evex_instruction();
3299   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3300   int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3301   emit_int8(0x76);
3302   emit_int8((unsigned char)(0xC0 | encode));
3303 }
3304 
3305 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3306   assert(VM_Version::supports_evex(), "");
3307   InstructionMark im(this);
3308   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3309   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3310   attributes.set_is_evex_instruction();
3311   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3312   int dst_enc = kdst->encoding();
3313   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3314   emit_int8(0x76);
3315   emit_operand(as_Register(dst_enc), src);
3316 }
3317 
3318 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3319 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3320   assert(VM_Version::supports_sse4_1(), "");
3321   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3322   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3323   emit_int8(0x29);
3324   emit_int8((unsigned char)(0xC0 | encode));
3325 }
3326 
3327 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3328 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3329   assert(VM_Version::supports_avx(), "");
3330   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3331   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3332   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3333   emit_int8(0x29);
3334   emit_int8((unsigned char)(0xC0 | encode));
3335 }
3336 
3337 // In this context, kdst is written the mask used to process the equal components
3338 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3339   assert(VM_Version::supports_evex(), "");
3340   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3341   attributes.set_is_evex_instruction();
3342   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3343   int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3344   emit_int8(0x29);
3345   emit_int8((unsigned char)(0xC0 | encode));
3346 }
3347 
3348 // In this context, kdst is written the mask used to process the equal components
3349 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3350   assert(VM_Version::supports_evex(), "");
3351   InstructionMark im(this);
3352   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3353   attributes.set_is_evex_instruction();
3354   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3355   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3356   int dst_enc = kdst->encoding();
3357   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3358   emit_int8(0x29);
3359   emit_operand(as_Register(dst_enc), src);
3360 }
3361 
3362 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3363   assert(VM_Version::supports_sse2(), "");
3364   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3365   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3366   emit_int8((unsigned char)0xD7);
3367   emit_int8((unsigned char)(0xC0 | encode));
3368 }
3369 
3370 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3371   assert(VM_Version::supports_avx2(), "");
3372   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3373   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3374   emit_int8((unsigned char)0xD7);
3375   emit_int8((unsigned char)(0xC0 | encode));
3376 }
3377 
3378 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3379   assert(VM_Version::supports_sse4_1(), "");
3380   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3381   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3382   emit_int8(0x16);
3383   emit_int8((unsigned char)(0xC0 | encode));
3384   emit_int8(imm8);
3385 }
3386 
3387 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3388   assert(VM_Version::supports_sse4_1(), "");
3389   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3390   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3391   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3392   emit_int8(0x16);
3393   emit_operand(src, dst);
3394   emit_int8(imm8);
3395 }
3396 
3397 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3398   assert(VM_Version::supports_sse4_1(), "");
3399   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3400   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3401   emit_int8(0x16);
3402   emit_int8((unsigned char)(0xC0 | encode));
3403   emit_int8(imm8);
3404 }
3405 
3406 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3407   assert(VM_Version::supports_sse4_1(), "");
3408   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3409   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3410   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3411   emit_int8(0x16);
3412   emit_operand(src, dst);
3413   emit_int8(imm8);
3414 }
3415 
3416 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3417   assert(VM_Version::supports_sse2(), "");
3418   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3419   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3420   emit_int8((unsigned char)0xC5);
3421   emit_int8((unsigned char)(0xC0 | encode));
3422   emit_int8(imm8);
3423 }
3424 
3425 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3426   assert(VM_Version::supports_sse4_1(), "");
3427   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3428   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3429   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3430   emit_int8((unsigned char)0x15);
3431   emit_operand(src, dst);
3432   emit_int8(imm8);
3433 }
3434 
3435 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3436   assert(VM_Version::supports_sse4_1(), "");
3437   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3438   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3439   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3440   emit_int8(0x14);
3441   emit_operand(src, dst);
3442   emit_int8(imm8);
3443 }
3444 
3445 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3446   assert(VM_Version::supports_sse4_1(), "");
3447   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3448   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3449   emit_int8(0x22);
3450   emit_int8((unsigned char)(0xC0 | encode));
3451   emit_int8(imm8);
3452 }
3453 
3454 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3455   assert(VM_Version::supports_sse4_1(), "");
3456   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3457   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3458   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3459   emit_int8(0x22);
3460   emit_operand(dst,src);
3461   emit_int8(imm8);
3462 }
3463 
3464 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3465   assert(VM_Version::supports_sse4_1(), "");
3466   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3467   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3468   emit_int8(0x22);
3469   emit_int8((unsigned char)(0xC0 | encode));
3470   emit_int8(imm8);
3471 }
3472 
3473 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3474   assert(VM_Version::supports_sse4_1(), "");
3475   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3476   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3477   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3478   emit_int8(0x22);
3479   emit_operand(dst, src);
3480   emit_int8(imm8);
3481 }
3482 
3483 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3484   assert(VM_Version::supports_sse2(), "");
3485   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3486   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3487   emit_int8((unsigned char)0xC4);
3488   emit_int8((unsigned char)(0xC0 | encode));
3489   emit_int8(imm8);
3490 }
3491 
3492 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3493   assert(VM_Version::supports_sse2(), "");
3494   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3495   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3496   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3497   emit_int8((unsigned char)0xC4);
3498   emit_operand(dst, src);
3499   emit_int8(imm8);
3500 }
3501 
3502 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3503   assert(VM_Version::supports_sse4_1(), "");
3504   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3505   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3506   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3507   emit_int8(0x20);
3508   emit_operand(dst, src);
3509   emit_int8(imm8);
3510 }
3511 
3512 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3513   assert(VM_Version::supports_sse4_1(), "");
3514   InstructionMark im(this);
3515   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3516   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3517   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3518   emit_int8(0x30);
3519   emit_operand(dst, src);
3520 }
3521 
3522 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3523   assert(VM_Version::supports_sse4_1(), "");
3524   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3525   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3526   emit_int8(0x30);
3527   emit_int8((unsigned char)(0xC0 | encode));
3528 }
3529 
3530 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3531   assert(VM_Version::supports_avx(), "");
3532   InstructionMark im(this);
3533   assert(dst != xnoreg, "sanity");
3534   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3535   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3536   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3537   emit_int8(0x30);
3538   emit_operand(dst, src);
3539 }
3540 
3541 // generic
3542 void Assembler::pop(Register dst) {
3543   int encode = prefix_and_encode(dst->encoding());
3544   emit_int8(0x58 | encode);
3545 }
3546 
3547 void Assembler::popcntl(Register dst, Address src) {
3548   assert(VM_Version::supports_popcnt(), "must support");
3549   InstructionMark im(this);
3550   emit_int8((unsigned char)0xF3);
3551   prefix(src, dst);
3552   emit_int8(0x0F);
3553   emit_int8((unsigned char)0xB8);
3554   emit_operand(dst, src);
3555 }
3556 
3557 void Assembler::popcntl(Register dst, Register src) {
3558   assert(VM_Version::supports_popcnt(), "must support");
3559   emit_int8((unsigned char)0xF3);
3560   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3561   emit_int8(0x0F);
3562   emit_int8((unsigned char)0xB8);
3563   emit_int8((unsigned char)(0xC0 | encode));
3564 }
3565 
3566 void Assembler::popf() {
3567   emit_int8((unsigned char)0x9D);
3568 }
3569 
3570 #ifndef _LP64 // no 32bit push/pop on amd64
3571 void Assembler::popl(Address dst) {
3572   // NOTE: this will adjust stack by 8byte on 64bits
3573   InstructionMark im(this);
3574   prefix(dst);
3575   emit_int8((unsigned char)0x8F);
3576   emit_operand(rax, dst);
3577 }
3578 #endif
3579 
3580 void Assembler::prefetch_prefix(Address src) {
3581   prefix(src);
3582   emit_int8(0x0F);
3583 }
3584 
3585 void Assembler::prefetchnta(Address src) {
3586   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3587   InstructionMark im(this);
3588   prefetch_prefix(src);
3589   emit_int8(0x18);
3590   emit_operand(rax, src); // 0, src
3591 }
3592 
3593 void Assembler::prefetchr(Address src) {
3594   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3595   InstructionMark im(this);
3596   prefetch_prefix(src);
3597   emit_int8(0x0D);
3598   emit_operand(rax, src); // 0, src
3599 }
3600 
3601 void Assembler::prefetcht0(Address src) {
3602   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3603   InstructionMark im(this);
3604   prefetch_prefix(src);
3605   emit_int8(0x18);
3606   emit_operand(rcx, src); // 1, src
3607 }
3608 
3609 void Assembler::prefetcht1(Address src) {
3610   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3611   InstructionMark im(this);
3612   prefetch_prefix(src);
3613   emit_int8(0x18);
3614   emit_operand(rdx, src); // 2, src
3615 }
3616 
3617 void Assembler::prefetcht2(Address src) {
3618   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3619   InstructionMark im(this);
3620   prefetch_prefix(src);
3621   emit_int8(0x18);
3622   emit_operand(rbx, src); // 3, src
3623 }
3624 
3625 void Assembler::prefetchw(Address src) {
3626   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3627   InstructionMark im(this);
3628   prefetch_prefix(src);
3629   emit_int8(0x0D);
3630   emit_operand(rcx, src); // 1, src
3631 }
3632 
3633 void Assembler::prefix(Prefix p) {
3634   emit_int8(p);
3635 }
3636 
3637 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3638   assert(VM_Version::supports_ssse3(), "");
3639   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3640   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3641   emit_int8(0x00);
3642   emit_int8((unsigned char)(0xC0 | encode));
3643 }
3644 
3645 void Assembler::pshufb(XMMRegister dst, Address src) {
3646   assert(VM_Version::supports_ssse3(), "");
3647   InstructionMark im(this);
3648   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3649   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3650   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3651   emit_int8(0x00);
3652   emit_operand(dst, src);
3653 }
3654 
3655 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3656   assert(isByte(mode), "invalid value");
3657   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3658   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
3659   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3660   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3661   emit_int8(0x70);
3662   emit_int8((unsigned char)(0xC0 | encode));
3663   emit_int8(mode & 0xFF);
3664 }
3665 
3666 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3667   assert(isByte(mode), "invalid value");
3668   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3669   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3670   InstructionMark im(this);
3671   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3672   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3673   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3674   emit_int8(0x70);
3675   emit_operand(dst, src);
3676   emit_int8(mode & 0xFF);
3677 }
3678 
3679 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3680   assert(isByte(mode), "invalid value");
3681   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3682   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3683   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3684   emit_int8(0x70);
3685   emit_int8((unsigned char)(0xC0 | encode));
3686   emit_int8(mode & 0xFF);
3687 }
3688 
3689 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3690   assert(isByte(mode), "invalid value");
3691   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3692   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3693   InstructionMark im(this);
3694   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3695   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3696   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3697   emit_int8(0x70);
3698   emit_operand(dst, src);
3699   emit_int8(mode & 0xFF);
3700 }
3701 
3702 void Assembler::psrldq(XMMRegister dst, int shift) {
3703   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3704   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3705   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3706   // XMM3 is for /3 encoding: 66 0F 73 /3 ib
3707   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3708   emit_int8(0x73);
3709   emit_int8((unsigned char)(0xC0 | encode));
3710   emit_int8(shift);
3711 }
3712 
3713 void Assembler::pslldq(XMMRegister dst, int shift) {
3714   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3715   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3716   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3717   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
3718   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3719   emit_int8(0x73);
3720   emit_int8((unsigned char)(0xC0 | encode));
3721   emit_int8(shift);
3722 }
3723 
3724 void Assembler::ptest(XMMRegister dst, Address src) {
3725   assert(VM_Version::supports_sse4_1(), "");
3726   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3727   InstructionMark im(this);
3728   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3729   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3730   emit_int8(0x17);
3731   emit_operand(dst, src);
3732 }
3733 
3734 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3735   assert(VM_Version::supports_sse4_1(), "");
3736   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3737   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3738   emit_int8(0x17);
3739   emit_int8((unsigned char)(0xC0 | encode));
3740 }
3741 
3742 void Assembler::vptest(XMMRegister dst, Address src) {
3743   assert(VM_Version::supports_avx(), "");
3744   InstructionMark im(this);
3745   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3746   assert(dst != xnoreg, "sanity");
3747   // swap src<->dst for encoding
3748   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3749   emit_int8(0x17);
3750   emit_operand(dst, src);
3751 }
3752 
3753 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3754   assert(VM_Version::supports_avx(), "");
3755   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3756   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3757   emit_int8(0x17);
3758   emit_int8((unsigned char)(0xC0 | encode));
3759 }
3760 
3761 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3762   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3763   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3764   InstructionMark im(this);
3765   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3766   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3767   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3768   emit_int8(0x60);
3769   emit_operand(dst, src);
3770 }
3771 
3772 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3773   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3774   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3775   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3776   emit_int8(0x60);
3777   emit_int8((unsigned char)(0xC0 | encode));
3778 }
3779 
3780 void Assembler::punpckldq(XMMRegister dst, Address src) {
3781   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3782   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3783   InstructionMark im(this);
3784   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3785   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3786   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3787   emit_int8(0x62);
3788   emit_operand(dst, src);
3789 }
3790 
3791 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3792   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3793   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3794   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3795   emit_int8(0x62);
3796   emit_int8((unsigned char)(0xC0 | encode));
3797 }
3798 
3799 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3800   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3801   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3802   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3803   emit_int8(0x6C);
3804   emit_int8((unsigned char)(0xC0 | encode));
3805 }
3806 
3807 void Assembler::push(int32_t imm32) {
3808   // in 64bits we push 64bits onto the stack but only
3809   // take a 32bit immediate
3810   emit_int8(0x68);
3811   emit_int32(imm32);
3812 }
3813 
3814 void Assembler::push(Register src) {
3815   int encode = prefix_and_encode(src->encoding());
3816 
3817   emit_int8(0x50 | encode);
3818 }
3819 
3820 void Assembler::pushf() {
3821   emit_int8((unsigned char)0x9C);
3822 }
3823 
3824 #ifndef _LP64 // no 32bit push/pop on amd64
3825 void Assembler::pushl(Address src) {
3826   // Note this will push 64bit on 64bit
3827   InstructionMark im(this);
3828   prefix(src);
3829   emit_int8((unsigned char)0xFF);
3830   emit_operand(rsi, src);
3831 }
3832 #endif
3833 
3834 void Assembler::rcll(Register dst, int imm8) {
3835   assert(isShiftCount(imm8), "illegal shift count");
3836   int encode = prefix_and_encode(dst->encoding());
3837   if (imm8 == 1) {
3838     emit_int8((unsigned char)0xD1);
3839     emit_int8((unsigned char)(0xD0 | encode));
3840   } else {
3841     emit_int8((unsigned char)0xC1);
3842     emit_int8((unsigned char)0xD0 | encode);
3843     emit_int8(imm8);
3844   }
3845 }
3846 
3847 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
3848   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3849   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3850   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
3851   emit_int8(0x53);
3852   emit_int8((unsigned char)(0xC0 | encode));
3853 }
3854 
3855 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
3856   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3857   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3858   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3859   emit_int8(0x53);
3860   emit_int8((unsigned char)(0xC0 | encode));
3861 }
3862 
3863 void Assembler::rdtsc() {
3864   emit_int8((unsigned char)0x0F);
3865   emit_int8((unsigned char)0x31);
3866 }
3867 
3868 // copies data from [esi] to [edi] using rcx pointer sized words
3869 // generic
3870 void Assembler::rep_mov() {
3871   emit_int8((unsigned char)0xF3);
3872   // MOVSQ
3873   LP64_ONLY(prefix(REX_W));
3874   emit_int8((unsigned char)0xA5);
3875 }
3876 
3877 // sets rcx bytes with rax, value at [edi]
3878 void Assembler::rep_stosb() {
3879   emit_int8((unsigned char)0xF3); // REP
3880   LP64_ONLY(prefix(REX_W));
3881   emit_int8((unsigned char)0xAA); // STOSB
3882 }
3883 
3884 // sets rcx pointer sized words with rax, value at [edi]
3885 // generic
3886 void Assembler::rep_stos() {
3887   emit_int8((unsigned char)0xF3); // REP
3888   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3889   emit_int8((unsigned char)0xAB);
3890 }
3891 
3892 // scans rcx pointer sized words at [edi] for occurance of rax,
3893 // generic
3894 void Assembler::repne_scan() { // repne_scan
3895   emit_int8((unsigned char)0xF2);
3896   // SCASQ
3897   LP64_ONLY(prefix(REX_W));
3898   emit_int8((unsigned char)0xAF);
3899 }
3900 
3901 #ifdef _LP64
3902 // scans rcx 4 byte words at [edi] for occurance of rax,
3903 // generic
3904 void Assembler::repne_scanl() { // repne_scan
3905   emit_int8((unsigned char)0xF2);
3906   // SCASL
3907   emit_int8((unsigned char)0xAF);
3908 }
3909 #endif
3910 
3911 void Assembler::ret(int imm16) {
3912   if (imm16 == 0) {
3913     emit_int8((unsigned char)0xC3);
3914   } else {
3915     emit_int8((unsigned char)0xC2);
3916     emit_int16(imm16);
3917   }
3918 }
3919 
3920 void Assembler::sahf() {
3921 #ifdef _LP64
3922   // Not supported in 64bit mode
3923   ShouldNotReachHere();
3924 #endif
3925   emit_int8((unsigned char)0x9E);
3926 }
3927 
3928 void Assembler::sarl(Register dst, int imm8) {
3929   int encode = prefix_and_encode(dst->encoding());
3930   assert(isShiftCount(imm8), "illegal shift count");
3931   if (imm8 == 1) {
3932     emit_int8((unsigned char)0xD1);
3933     emit_int8((unsigned char)(0xF8 | encode));
3934   } else {
3935     emit_int8((unsigned char)0xC1);
3936     emit_int8((unsigned char)(0xF8 | encode));
3937     emit_int8(imm8);
3938   }
3939 }
3940 
3941 void Assembler::sarl(Register dst) {
3942   int encode = prefix_and_encode(dst->encoding());
3943   emit_int8((unsigned char)0xD3);
3944   emit_int8((unsigned char)(0xF8 | encode));
3945 }
3946 
3947 void Assembler::sbbl(Address dst, int32_t imm32) {
3948   InstructionMark im(this);
3949   prefix(dst);
3950   emit_arith_operand(0x81, rbx, dst, imm32);
3951 }
3952 
3953 void Assembler::sbbl(Register dst, int32_t imm32) {
3954   prefix(dst);
3955   emit_arith(0x81, 0xD8, dst, imm32);
3956 }
3957 
3958 
3959 void Assembler::sbbl(Register dst, Address src) {
3960   InstructionMark im(this);
3961   prefix(src, dst);
3962   emit_int8(0x1B);
3963   emit_operand(dst, src);
3964 }
3965 
3966 void Assembler::sbbl(Register dst, Register src) {
3967   (void) prefix_and_encode(dst->encoding(), src->encoding());
3968   emit_arith(0x1B, 0xC0, dst, src);
3969 }
3970 
3971 void Assembler::setb(Condition cc, Register dst) {
3972   assert(0 <= cc && cc < 16, "illegal cc");
3973   int encode = prefix_and_encode(dst->encoding(), true);
3974   emit_int8(0x0F);
3975   emit_int8((unsigned char)0x90 | cc);
3976   emit_int8((unsigned char)(0xC0 | encode));
3977 }
3978 
3979 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
3980   assert(VM_Version::supports_ssse3(), "");
3981   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3982   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3983   emit_int8((unsigned char)0x0F);
3984   emit_int8((unsigned char)(0xC0 | encode));
3985   emit_int8(imm8);
3986 }
3987 
3988 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
3989   assert(VM_Version::supports_sse4_1(), "");
3990   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3991   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3992   emit_int8((unsigned char)0x0E);
3993   emit_int8((unsigned char)(0xC0 | encode));
3994   emit_int8(imm8);
3995 }
3996 
3997 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
3998   assert(VM_Version::supports_sha(), "");
3999   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4000   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_3A, &attributes);
4001   emit_int8((unsigned char)0xCC);
4002   emit_int8((unsigned char)(0xC0 | encode));
4003   emit_int8((unsigned char)imm8);
4004 }
4005 
4006 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
4007   assert(VM_Version::supports_sha(), "");
4008   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4009   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4010   emit_int8((unsigned char)0xC8);
4011   emit_int8((unsigned char)(0xC0 | encode));
4012 }
4013 
4014 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
4015   assert(VM_Version::supports_sha(), "");
4016   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4017   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4018   emit_int8((unsigned char)0xC9);
4019   emit_int8((unsigned char)(0xC0 | encode));
4020 }
4021 
4022 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4023   assert(VM_Version::supports_sha(), "");
4024   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4025   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4026   emit_int8((unsigned char)0xCA);
4027   emit_int8((unsigned char)(0xC0 | encode));
4028 }
4029 
4030 // xmm0 is implicit additional source to this instruction.
4031 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4032   assert(VM_Version::supports_sha(), "");
4033   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4034   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4035   emit_int8((unsigned char)0xCB);
4036   emit_int8((unsigned char)(0xC0 | encode));
4037 }
4038 
4039 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4040   assert(VM_Version::supports_sha(), "");
4041   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4042   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4043   emit_int8((unsigned char)0xCC);
4044   emit_int8((unsigned char)(0xC0 | encode));
4045 }
4046 
4047 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4048   assert(VM_Version::supports_sha(), "");
4049   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4050   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4051   emit_int8((unsigned char)0xCD);
4052   emit_int8((unsigned char)(0xC0 | encode));
4053 }
4054 
4055 
4056 void Assembler::shll(Register dst, int imm8) {
4057   assert(isShiftCount(imm8), "illegal shift count");
4058   int encode = prefix_and_encode(dst->encoding());
4059   if (imm8 == 1 ) {
4060     emit_int8((unsigned char)0xD1);
4061     emit_int8((unsigned char)(0xE0 | encode));
4062   } else {
4063     emit_int8((unsigned char)0xC1);
4064     emit_int8((unsigned char)(0xE0 | encode));
4065     emit_int8(imm8);
4066   }
4067 }
4068 
4069 void Assembler::shll(Register dst) {
4070   int encode = prefix_and_encode(dst->encoding());
4071   emit_int8((unsigned char)0xD3);
4072   emit_int8((unsigned char)(0xE0 | encode));
4073 }
4074 
4075 void Assembler::shrl(Register dst, int imm8) {
4076   assert(isShiftCount(imm8), "illegal shift count");
4077   int encode = prefix_and_encode(dst->encoding());
4078   emit_int8((unsigned char)0xC1);
4079   emit_int8((unsigned char)(0xE8 | encode));
4080   emit_int8(imm8);
4081 }
4082 
4083 void Assembler::shrl(Register dst) {
4084   int encode = prefix_and_encode(dst->encoding());
4085   emit_int8((unsigned char)0xD3);
4086   emit_int8((unsigned char)(0xE8 | encode));
4087 }
4088 
4089 // copies a single word from [esi] to [edi]
4090 void Assembler::smovl() {
4091   emit_int8((unsigned char)0xA5);
4092 }
4093 
4094 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4095   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4096   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4097   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4098   emit_int8(0x51);
4099   emit_int8((unsigned char)(0xC0 | encode));
4100 }
4101 
4102 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4103   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4104   InstructionMark im(this);
4105   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4106   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4107   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4108   emit_int8(0x51);
4109   emit_operand(dst, src);
4110 }
4111 
4112 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4113   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4114   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4115   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4116   emit_int8(0x51);
4117   emit_int8((unsigned char)(0xC0 | encode));
4118 }
4119 
4120 void Assembler::std() {
4121   emit_int8((unsigned char)0xFD);
4122 }
4123 
4124 void Assembler::sqrtss(XMMRegister dst, Address src) {
4125   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4126   InstructionMark im(this);
4127   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4128   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4129   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4130   emit_int8(0x51);
4131   emit_operand(dst, src);
4132 }
4133 
4134 void Assembler::stmxcsr( Address dst) {
4135   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4136   InstructionMark im(this);
4137   prefix(dst);
4138   emit_int8(0x0F);
4139   emit_int8((unsigned char)0xAE);
4140   emit_operand(as_Register(3), dst);
4141 }
4142 
4143 void Assembler::subl(Address dst, int32_t imm32) {
4144   InstructionMark im(this);
4145   prefix(dst);
4146   emit_arith_operand(0x81, rbp, dst, imm32);
4147 }
4148 
4149 void Assembler::subl(Address dst, Register src) {
4150   InstructionMark im(this);
4151   prefix(dst, src);
4152   emit_int8(0x29);
4153   emit_operand(src, dst);
4154 }
4155 
4156 void Assembler::subl(Register dst, int32_t imm32) {
4157   prefix(dst);
4158   emit_arith(0x81, 0xE8, dst, imm32);
4159 }
4160 
4161 // Force generation of a 4 byte immediate value even if it fits into 8bit
4162 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4163   prefix(dst);
4164   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4165 }
4166 
4167 void Assembler::subl(Register dst, Address src) {
4168   InstructionMark im(this);
4169   prefix(src, dst);
4170   emit_int8(0x2B);
4171   emit_operand(dst, src);
4172 }
4173 
4174 void Assembler::subl(Register dst, Register src) {
4175   (void) prefix_and_encode(dst->encoding(), src->encoding());
4176   emit_arith(0x2B, 0xC0, dst, src);
4177 }
4178 
4179 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4180   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4181   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4182   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4183   emit_int8(0x5C);
4184   emit_int8((unsigned char)(0xC0 | encode));
4185 }
4186 
4187 void Assembler::subsd(XMMRegister dst, Address src) {
4188   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4189   InstructionMark im(this);
4190   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4191   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4192   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4193   emit_int8(0x5C);
4194   emit_operand(dst, src);
4195 }
4196 
4197 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4198   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4199   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ false);
4200   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4201   emit_int8(0x5C);
4202   emit_int8((unsigned char)(0xC0 | encode));
4203 }
4204 
4205 void Assembler::subss(XMMRegister dst, Address src) {
4206   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4207   InstructionMark im(this);
4208   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4209   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4210   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4211   emit_int8(0x5C);
4212   emit_operand(dst, src);
4213 }
4214 
4215 void Assembler::testb(Register dst, int imm8) {
4216   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4217   (void) prefix_and_encode(dst->encoding(), true);
4218   emit_arith_b(0xF6, 0xC0, dst, imm8);
4219 }
4220 
4221 void Assembler::testb(Address dst, int imm8) {
4222   InstructionMark im(this);
4223   prefix(dst);
4224   emit_int8((unsigned char)0xF6);
4225   emit_operand(rax, dst, 1);
4226   emit_int8(imm8);
4227 }
4228 
4229 void Assembler::testl(Register dst, int32_t imm32) {
4230   // not using emit_arith because test
4231   // doesn't support sign-extension of
4232   // 8bit operands
4233   int encode = dst->encoding();
4234   if (encode == 0) {
4235     emit_int8((unsigned char)0xA9);
4236   } else {
4237     encode = prefix_and_encode(encode);
4238     emit_int8((unsigned char)0xF7);
4239     emit_int8((unsigned char)(0xC0 | encode));
4240   }
4241   emit_int32(imm32);
4242 }
4243 
4244 void Assembler::testl(Register dst, Register src) {
4245   (void) prefix_and_encode(dst->encoding(), src->encoding());
4246   emit_arith(0x85, 0xC0, dst, src);
4247 }
4248 
4249 void Assembler::testl(Register dst, Address src) {
4250   InstructionMark im(this);
4251   prefix(src, dst);
4252   emit_int8((unsigned char)0x85);
4253   emit_operand(dst, src);
4254 }
4255 
4256 void Assembler::tzcntl(Register dst, Register src) {
4257   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4258   emit_int8((unsigned char)0xF3);
4259   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4260   emit_int8(0x0F);
4261   emit_int8((unsigned char)0xBC);
4262   emit_int8((unsigned char)0xC0 | encode);
4263 }
4264 
4265 void Assembler::tzcntq(Register dst, Register src) {
4266   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4267   emit_int8((unsigned char)0xF3);
4268   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4269   emit_int8(0x0F);
4270   emit_int8((unsigned char)0xBC);
4271   emit_int8((unsigned char)(0xC0 | encode));
4272 }
4273 
4274 void Assembler::ucomisd(XMMRegister dst, Address src) {
4275   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4276   InstructionMark im(this);
4277   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4278   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4279   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4280   emit_int8(0x2E);
4281   emit_operand(dst, src);
4282 }
4283 
4284 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4285   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4286   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4287   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4288   emit_int8(0x2E);
4289   emit_int8((unsigned char)(0xC0 | encode));
4290 }
4291 
4292 void Assembler::ucomiss(XMMRegister dst, Address src) {
4293   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4294   InstructionMark im(this);
4295   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4296   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4297   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4298   emit_int8(0x2E);
4299   emit_operand(dst, src);
4300 }
4301 
4302 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4303   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4304   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4305   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4306   emit_int8(0x2E);
4307   emit_int8((unsigned char)(0xC0 | encode));
4308 }
4309 
4310 void Assembler::xabort(int8_t imm8) {
4311   emit_int8((unsigned char)0xC6);
4312   emit_int8((unsigned char)0xF8);
4313   emit_int8((unsigned char)(imm8 & 0xFF));
4314 }
4315 
4316 void Assembler::xaddl(Address dst, Register src) {
4317   InstructionMark im(this);
4318   prefix(dst, src);
4319   emit_int8(0x0F);
4320   emit_int8((unsigned char)0xC1);
4321   emit_operand(src, dst);
4322 }
4323 
4324 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4325   InstructionMark im(this);
4326   relocate(rtype);
4327   if (abort.is_bound()) {
4328     address entry = target(abort);
4329     assert(entry != NULL, "abort entry NULL");
4330     intptr_t offset = entry - pc();
4331     emit_int8((unsigned char)0xC7);
4332     emit_int8((unsigned char)0xF8);
4333     emit_int32(offset - 6); // 2 opcode + 4 address
4334   } else {
4335     abort.add_patch_at(code(), locator());
4336     emit_int8((unsigned char)0xC7);
4337     emit_int8((unsigned char)0xF8);
4338     emit_int32(0);
4339   }
4340 }
4341 
4342 void Assembler::xchgl(Register dst, Address src) { // xchg
4343   InstructionMark im(this);
4344   prefix(src, dst);
4345   emit_int8((unsigned char)0x87);
4346   emit_operand(dst, src);
4347 }
4348 
4349 void Assembler::xchgl(Register dst, Register src) {
4350   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4351   emit_int8((unsigned char)0x87);
4352   emit_int8((unsigned char)(0xC0 | encode));
4353 }
4354 
4355 void Assembler::xend() {
4356   emit_int8((unsigned char)0x0F);
4357   emit_int8((unsigned char)0x01);
4358   emit_int8((unsigned char)0xD5);
4359 }
4360 
4361 void Assembler::xgetbv() {
4362   emit_int8(0x0F);
4363   emit_int8(0x01);
4364   emit_int8((unsigned char)0xD0);
4365 }
4366 
4367 void Assembler::xorl(Register dst, int32_t imm32) {
4368   prefix(dst);
4369   emit_arith(0x81, 0xF0, dst, imm32);
4370 }
4371 
4372 void Assembler::xorl(Register dst, Address src) {
4373   InstructionMark im(this);
4374   prefix(src, dst);
4375   emit_int8(0x33);
4376   emit_operand(dst, src);
4377 }
4378 
4379 void Assembler::xorl(Register dst, Register src) {
4380   (void) prefix_and_encode(dst->encoding(), src->encoding());
4381   emit_arith(0x33, 0xC0, dst, src);
4382 }
4383 
4384 void Assembler::xorb(Register dst, Address src) {
4385   InstructionMark im(this);
4386   prefix(src, dst);
4387   emit_int8(0x32);
4388   emit_operand(dst, src);
4389 }
4390 
4391 // AVX 3-operands scalar float-point arithmetic instructions
4392 
4393 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4394   assert(VM_Version::supports_avx(), "");
4395   InstructionMark im(this);
4396   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4397   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4398   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4399   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4400   emit_int8(0x58);
4401   emit_operand(dst, src);
4402 }
4403 
4404 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4405   assert(VM_Version::supports_avx(), "");
4406   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4407   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4408   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4409   emit_int8(0x58);
4410   emit_int8((unsigned char)(0xC0 | encode));
4411 }
4412 
4413 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4414   assert(VM_Version::supports_avx(), "");
4415   InstructionMark im(this);
4416   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4417   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4418   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4419   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4420   emit_int8(0x58);
4421   emit_operand(dst, src);
4422 }
4423 
4424 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4425   assert(VM_Version::supports_avx(), "");
4426   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4427   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4428   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4429   emit_int8(0x58);
4430   emit_int8((unsigned char)(0xC0 | encode));
4431 }
4432 
4433 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4434   assert(VM_Version::supports_avx(), "");
4435   InstructionMark im(this);
4436   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4437   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4438   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4439   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4440   emit_int8(0x5E);
4441   emit_operand(dst, src);
4442 }
4443 
4444 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4445   assert(VM_Version::supports_avx(), "");
4446   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4447   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4448   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4449   emit_int8(0x5E);
4450   emit_int8((unsigned char)(0xC0 | encode));
4451 }
4452 
4453 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
4454   assert(VM_Version::supports_avx(), "");
4455   InstructionMark im(this);
4456   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4457   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4458   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4459   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4460   emit_int8(0x5E);
4461   emit_operand(dst, src);
4462 }
4463 
4464 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4465   assert(VM_Version::supports_avx(), "");
4466   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4467   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4468   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4469   emit_int8(0x5E);
4470   emit_int8((unsigned char)(0xC0 | encode));
4471 }
4472 
4473 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
4474   assert(VM_Version::supports_avx(), "");
4475   InstructionMark im(this);
4476   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4477   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4478   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4479   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4480   emit_int8(0x59);
4481   emit_operand(dst, src);
4482 }
4483 
4484 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4485   assert(VM_Version::supports_avx(), "");
4486   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4487   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4488   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4489   emit_int8(0x59);
4490   emit_int8((unsigned char)(0xC0 | encode));
4491 }
4492 
4493 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4494   assert(VM_Version::supports_avx(), "");
4495   InstructionMark im(this);
4496   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4497   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4498   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4499   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4500   emit_int8(0x59);
4501   emit_operand(dst, src);
4502 }
4503 
4504 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4505   assert(VM_Version::supports_avx(), "");
4506   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4507   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4508   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4509   emit_int8(0x59);
4510   emit_int8((unsigned char)(0xC0 | encode));
4511 }
4512 
4513 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4514   assert(VM_Version::supports_avx(), "");
4515   InstructionMark im(this);
4516   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4517   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4518   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4519   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4520   emit_int8(0x5C);
4521   emit_operand(dst, src);
4522 }
4523 
4524 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4525   assert(VM_Version::supports_avx(), "");
4526   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4527   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4528   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4529   emit_int8(0x5C);
4530   emit_int8((unsigned char)(0xC0 | encode));
4531 }
4532 
4533 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
4534   assert(VM_Version::supports_avx(), "");
4535   InstructionMark im(this);
4536   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4537   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4538   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4539   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4540   emit_int8(0x5C);
4541   emit_operand(dst, src);
4542 }
4543 
4544 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4545   assert(VM_Version::supports_avx(), "");
4546   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4547   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4548   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4549   emit_int8(0x5C);
4550   emit_int8((unsigned char)(0xC0 | encode));
4551 }
4552 
4553 //====================VECTOR ARITHMETIC=====================================
4554 
4555 // Float-point vector arithmetic
4556 
4557 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4558   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4559   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4560   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4561   emit_int8(0x58);
4562   emit_int8((unsigned char)(0xC0 | encode));
4563 }
4564 
4565 void Assembler::addpd(XMMRegister dst, Address src) {
4566   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4567   InstructionMark im(this);
4568   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4569   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4570   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4571   emit_int8(0x58);
4572   emit_operand(dst, src);
4573 }
4574 
4575 
4576 void Assembler::addps(XMMRegister dst, XMMRegister src) {
4577   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4578   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4579   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4580   emit_int8(0x58);
4581   emit_int8((unsigned char)(0xC0 | encode));
4582 }
4583 
4584 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4585   assert(VM_Version::supports_avx(), "");
4586   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4587   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4588   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4589   emit_int8(0x58);
4590   emit_int8((unsigned char)(0xC0 | encode));
4591 }
4592 
4593 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4594   assert(VM_Version::supports_avx(), "");
4595   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4596   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4597   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4598   emit_int8(0x58);
4599   emit_int8((unsigned char)(0xC0 | encode));
4600 }
4601 
4602 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4603   assert(VM_Version::supports_avx(), "");
4604   InstructionMark im(this);
4605   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4606   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4607   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4608   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4609   emit_int8(0x58);
4610   emit_operand(dst, src);
4611 }
4612 
4613 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4614   assert(VM_Version::supports_avx(), "");
4615   InstructionMark im(this);
4616   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4617   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4618   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4619   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4620   emit_int8(0x58);
4621   emit_operand(dst, src);
4622 }
4623 
4624 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
4625   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4626   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4627   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4628   emit_int8(0x5C);
4629   emit_int8((unsigned char)(0xC0 | encode));
4630 }
4631 
4632 void Assembler::subps(XMMRegister dst, XMMRegister src) {
4633   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4634   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4635   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4636   emit_int8(0x5C);
4637   emit_int8((unsigned char)(0xC0 | encode));
4638 }
4639 
4640 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4641   assert(VM_Version::supports_avx(), "");
4642   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4643   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4644   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4645   emit_int8(0x5C);
4646   emit_int8((unsigned char)(0xC0 | encode));
4647 }
4648 
4649 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4650   assert(VM_Version::supports_avx(), "");
4651   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4652   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4653   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4654   emit_int8(0x5C);
4655   emit_int8((unsigned char)(0xC0 | encode));
4656 }
4657 
4658 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4659   assert(VM_Version::supports_avx(), "");
4660   InstructionMark im(this);
4661   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4662   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4663   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4664   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4665   emit_int8(0x5C);
4666   emit_operand(dst, src);
4667 }
4668 
4669 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4670   assert(VM_Version::supports_avx(), "");
4671   InstructionMark im(this);
4672   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4673   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4674   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4675   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4676   emit_int8(0x5C);
4677   emit_operand(dst, src);
4678 }
4679 
4680 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
4681   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4682   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4683   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4684   emit_int8(0x59);
4685   emit_int8((unsigned char)(0xC0 | encode));
4686 }
4687 
4688 void Assembler::mulpd(XMMRegister dst, Address src) {
4689   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4690   InstructionMark im(this);
4691   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4692   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4693   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4694   emit_int8(0x59);
4695   emit_operand(dst, src);
4696 }
4697 
4698 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
4699   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4700   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4701   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4702   emit_int8(0x59);
4703   emit_int8((unsigned char)(0xC0 | encode));
4704 }
4705 
4706 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4707   assert(VM_Version::supports_avx(), "");
4708   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4709   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4710   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4711   emit_int8(0x59);
4712   emit_int8((unsigned char)(0xC0 | encode));
4713 }
4714 
4715 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4716   assert(VM_Version::supports_avx(), "");
4717   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4718   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4719   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4720   emit_int8(0x59);
4721   emit_int8((unsigned char)(0xC0 | encode));
4722 }
4723 
4724 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4725   assert(VM_Version::supports_avx(), "");
4726   InstructionMark im(this);
4727   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4728   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4729   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4730   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4731   emit_int8(0x59);
4732   emit_operand(dst, src);
4733 }
4734 
4735 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4736   assert(VM_Version::supports_avx(), "");
4737   InstructionMark im(this);
4738   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4739   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4740   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4741   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4742   emit_int8(0x59);
4743   emit_operand(dst, src);
4744 }
4745 
4746 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
4747   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4748   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4749   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4750   emit_int8(0x5E);
4751   emit_int8((unsigned char)(0xC0 | encode));
4752 }
4753 
4754 void Assembler::divps(XMMRegister dst, XMMRegister src) {
4755   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4756   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4757   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4758   emit_int8(0x5E);
4759   emit_int8((unsigned char)(0xC0 | encode));
4760 }
4761 
4762 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4763   assert(VM_Version::supports_avx(), "");
4764   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4765   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4766   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4767   emit_int8(0x5E);
4768   emit_int8((unsigned char)(0xC0 | encode));
4769 }
4770 
4771 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4772   assert(VM_Version::supports_avx(), "");
4773   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4774   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4775   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4776   emit_int8(0x5E);
4777   emit_int8((unsigned char)(0xC0 | encode));
4778 }
4779 
4780 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4781   assert(VM_Version::supports_avx(), "");
4782   InstructionMark im(this);
4783   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4784   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4785   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4786   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4787   emit_int8(0x5E);
4788   emit_operand(dst, src);
4789 }
4790 
4791 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4792   assert(VM_Version::supports_avx(), "");
4793   InstructionMark im(this);
4794   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4795   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4796   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4797   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4798   emit_int8(0x5E);
4799   emit_operand(dst, src);
4800 }
4801 
4802 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
4803   assert(VM_Version::supports_avx(), "");
4804   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4805   int nds_enc = 0;
4806   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4807   emit_int8(0x51);
4808   emit_int8((unsigned char)(0xC0 | encode));
4809 }
4810 
4811 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
4812   assert(VM_Version::supports_avx(), "");
4813   InstructionMark im(this);
4814   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4815   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4816   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4817   emit_int8(0x51);
4818   emit_operand(dst, src);
4819 }
4820 
4821 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
4822   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4823   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4824   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4825   emit_int8(0x54);
4826   emit_int8((unsigned char)(0xC0 | encode));
4827 }
4828 
4829 void Assembler::andps(XMMRegister dst, XMMRegister src) {
4830   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4831   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4832   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4833   emit_int8(0x54);
4834   emit_int8((unsigned char)(0xC0 | encode));
4835 }
4836 
4837 void Assembler::andps(XMMRegister dst, Address src) {
4838   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4839   InstructionMark im(this);
4840   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4841   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4842   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4843   emit_int8(0x54);
4844   emit_operand(dst, src);
4845 }
4846 
4847 void Assembler::andpd(XMMRegister dst, Address src) {
4848   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4849   InstructionMark im(this);
4850   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4851   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4852   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4853   emit_int8(0x54);
4854   emit_operand(dst, src);
4855 }
4856 
4857 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4858   assert(VM_Version::supports_avx(), "");
4859   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4860   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4861   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4862   emit_int8(0x54);
4863   emit_int8((unsigned char)(0xC0 | encode));
4864 }
4865 
4866 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4867   assert(VM_Version::supports_avx(), "");
4868   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4869   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4870   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4871   emit_int8(0x54);
4872   emit_int8((unsigned char)(0xC0 | encode));
4873 }
4874 
4875 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4876   assert(VM_Version::supports_avx(), "");
4877   InstructionMark im(this);
4878   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4879   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4880   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4881   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4882   emit_int8(0x54);
4883   emit_operand(dst, src);
4884 }
4885 
4886 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4887   assert(VM_Version::supports_avx(), "");
4888   InstructionMark im(this);
4889   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4890   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4891   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4892   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4893   emit_int8(0x54);
4894   emit_operand(dst, src);
4895 }
4896 
4897 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
4898   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4899   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4900   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4901   emit_int8(0x15);
4902   emit_int8((unsigned char)(0xC0 | encode));
4903 }
4904 
4905 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
4906   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4907   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4908   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4909   emit_int8(0x14);
4910   emit_int8((unsigned char)(0xC0 | encode));
4911 }
4912 
4913 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4914   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4915   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4916   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4917   emit_int8(0x57);
4918   emit_int8((unsigned char)(0xC0 | encode));
4919 }
4920 
4921 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4922   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4923   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4924   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4925   emit_int8(0x57);
4926   emit_int8((unsigned char)(0xC0 | encode));
4927 }
4928 
4929 void Assembler::xorpd(XMMRegister dst, Address src) {
4930   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4931   InstructionMark im(this);
4932   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4933   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4934   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4935   emit_int8(0x57);
4936   emit_operand(dst, src);
4937 }
4938 
4939 void Assembler::xorps(XMMRegister dst, Address src) {
4940   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4941   InstructionMark im(this);
4942   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4943   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4944   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4945   emit_int8(0x57);
4946   emit_operand(dst, src);
4947 }
4948 
4949 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4950   assert(VM_Version::supports_avx(), "");
4951   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4952   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4953   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4954   emit_int8(0x57);
4955   emit_int8((unsigned char)(0xC0 | encode));
4956 }
4957 
4958 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4959   assert(VM_Version::supports_avx(), "");
4960   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4961   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4962   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4963   emit_int8(0x57);
4964   emit_int8((unsigned char)(0xC0 | encode));
4965 }
4966 
4967 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4968   assert(VM_Version::supports_avx(), "");
4969   InstructionMark im(this);
4970   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4971   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4972   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4973   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4974   emit_int8(0x57);
4975   emit_operand(dst, src);
4976 }
4977 
4978 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4979   assert(VM_Version::supports_avx(), "");
4980   InstructionMark im(this);
4981   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4982   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4983   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4984   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4985   emit_int8(0x57);
4986   emit_operand(dst, src);
4987 }
4988 
4989 // Integer vector arithmetic
4990 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4991   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4992          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4993   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4994   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4995   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4996   emit_int8(0x01);
4997   emit_int8((unsigned char)(0xC0 | encode));
4998 }
4999 
5000 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5001   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5002          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5003   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5004   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5005   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5006   emit_int8(0x02);
5007   emit_int8((unsigned char)(0xC0 | encode));
5008 }
5009 
5010 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
5011   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5012   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5013   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5014   emit_int8((unsigned char)0xFC);
5015   emit_int8((unsigned char)(0xC0 | encode));
5016 }
5017 
5018 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
5019   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5020   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5021   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5022   emit_int8((unsigned char)0xFD);
5023   emit_int8((unsigned char)(0xC0 | encode));
5024 }
5025 
5026 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
5027   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5028   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5029   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5030   emit_int8((unsigned char)0xFE);
5031   emit_int8((unsigned char)(0xC0 | encode));
5032 }
5033 
5034 void Assembler::paddd(XMMRegister dst, Address src) {
5035   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5036   InstructionMark im(this);
5037   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5038   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5039   emit_int8((unsigned char)0xFE);
5040   emit_operand(dst, src);
5041 }
5042 
5043 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
5044   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5045   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5046   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5047   emit_int8((unsigned char)0xD4);
5048   emit_int8((unsigned char)(0xC0 | encode));
5049 }
5050 
5051 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
5052   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
5053   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5054   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5055   emit_int8(0x01);
5056   emit_int8((unsigned char)(0xC0 | encode));
5057 }
5058 
5059 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5060   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
5061   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5062   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5063   emit_int8(0x02);
5064   emit_int8((unsigned char)(0xC0 | encode));
5065 }
5066 
5067 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5068   assert(UseAVX > 0, "requires some form of AVX");
5069   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5070   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5071   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5072   emit_int8((unsigned char)0xFC);
5073   emit_int8((unsigned char)(0xC0 | encode));
5074 }
5075 
5076 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5077   assert(UseAVX > 0, "requires some form of AVX");
5078   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5079   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5080   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5081   emit_int8((unsigned char)0xFD);
5082   emit_int8((unsigned char)(0xC0 | encode));
5083 }
5084 
5085 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5086   assert(UseAVX > 0, "requires some form of AVX");
5087   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5088   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5089   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5090   emit_int8((unsigned char)0xFE);
5091   emit_int8((unsigned char)(0xC0 | encode));
5092 }
5093 
5094 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5095   assert(UseAVX > 0, "requires some form of AVX");
5096   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5097   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5098   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5099   emit_int8((unsigned char)0xD4);
5100   emit_int8((unsigned char)(0xC0 | encode));
5101 }
5102 
5103 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5104   assert(UseAVX > 0, "requires some form of AVX");
5105   InstructionMark im(this);
5106   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5107   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5108   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5109   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5110   emit_int8((unsigned char)0xFC);
5111   emit_operand(dst, src);
5112 }
5113 
5114 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5115   assert(UseAVX > 0, "requires some form of AVX");
5116   InstructionMark im(this);
5117   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5118   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5119   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5120   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5121   emit_int8((unsigned char)0xFD);
5122   emit_operand(dst, src);
5123 }
5124 
5125 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5126   assert(UseAVX > 0, "requires some form of AVX");
5127   InstructionMark im(this);
5128   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5129   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5130   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5131   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5132   emit_int8((unsigned char)0xFE);
5133   emit_operand(dst, src);
5134 }
5135 
5136 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5137   assert(UseAVX > 0, "requires some form of AVX");
5138   InstructionMark im(this);
5139   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5140   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5141   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5142   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5143   emit_int8((unsigned char)0xD4);
5144   emit_operand(dst, src);
5145 }
5146 
5147 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5148   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5149   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5150   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5151   emit_int8((unsigned char)0xF8);
5152   emit_int8((unsigned char)(0xC0 | encode));
5153 }
5154 
5155 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5156   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5157   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5158   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5159   emit_int8((unsigned char)0xF9);
5160   emit_int8((unsigned char)(0xC0 | encode));
5161 }
5162 
5163 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5164   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5165   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5166   emit_int8((unsigned char)0xFA);
5167   emit_int8((unsigned char)(0xC0 | encode));
5168 }
5169 
5170 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5171   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5172   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5173   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5174   emit_int8((unsigned char)0xFB);
5175   emit_int8((unsigned char)(0xC0 | encode));
5176 }
5177 
5178 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5179   assert(UseAVX > 0, "requires some form of AVX");
5180   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5181   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5182   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5183   emit_int8((unsigned char)0xF8);
5184   emit_int8((unsigned char)(0xC0 | encode));
5185 }
5186 
5187 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5188   assert(UseAVX > 0, "requires some form of AVX");
5189   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5190   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5191   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5192   emit_int8((unsigned char)0xF9);
5193   emit_int8((unsigned char)(0xC0 | encode));
5194 }
5195 
5196 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5197   assert(UseAVX > 0, "requires some form of AVX");
5198   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5199   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5200   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5201   emit_int8((unsigned char)0xFA);
5202   emit_int8((unsigned char)(0xC0 | encode));
5203 }
5204 
5205 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5206   assert(UseAVX > 0, "requires some form of AVX");
5207   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5208   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5209   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5210   emit_int8((unsigned char)0xFB);
5211   emit_int8((unsigned char)(0xC0 | encode));
5212 }
5213 
5214 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5215   assert(UseAVX > 0, "requires some form of AVX");
5216   InstructionMark im(this);
5217   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5218   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5219   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5220   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5221   emit_int8((unsigned char)0xF8);
5222   emit_operand(dst, src);
5223 }
5224 
5225 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5226   assert(UseAVX > 0, "requires some form of AVX");
5227   InstructionMark im(this);
5228   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5229   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5230   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5231   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5232   emit_int8((unsigned char)0xF9);
5233   emit_operand(dst, src);
5234 }
5235 
5236 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5237   assert(UseAVX > 0, "requires some form of AVX");
5238   InstructionMark im(this);
5239   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5240   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5241   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5242   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5243   emit_int8((unsigned char)0xFA);
5244   emit_operand(dst, src);
5245 }
5246 
5247 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5248   assert(UseAVX > 0, "requires some form of AVX");
5249   InstructionMark im(this);
5250   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5251   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5252   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5253   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5254   emit_int8((unsigned char)0xFB);
5255   emit_operand(dst, src);
5256 }
5257 
5258 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5259   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5260   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5261   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5262   emit_int8((unsigned char)0xD5);
5263   emit_int8((unsigned char)(0xC0 | encode));
5264 }
5265 
5266 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5267   assert(VM_Version::supports_sse4_1(), "");
5268   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5269   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5270   emit_int8(0x40);
5271   emit_int8((unsigned char)(0xC0 | encode));
5272 }
5273 
5274 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5275   assert(UseAVX > 0, "requires some form of AVX");
5276   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5277   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5278   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5279   emit_int8((unsigned char)0xD5);
5280   emit_int8((unsigned char)(0xC0 | encode));
5281 }
5282 
5283 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5284   assert(UseAVX > 0, "requires some form of AVX");
5285   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5286   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5287   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5288   emit_int8(0x40);
5289   emit_int8((unsigned char)(0xC0 | encode));
5290 }
5291 
5292 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5293   assert(UseAVX > 2, "requires some form of AVX");
5294   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5295   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5296   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5297   emit_int8(0x40);
5298   emit_int8((unsigned char)(0xC0 | encode));
5299 }
5300 
5301 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5302   assert(UseAVX > 0, "requires some form of AVX");
5303   InstructionMark im(this);
5304   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5305   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5306   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5307   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5308   emit_int8((unsigned char)0xD5);
5309   emit_operand(dst, src);
5310 }
5311 
5312 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5313   assert(UseAVX > 0, "requires some form of AVX");
5314   InstructionMark im(this);
5315   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5316   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5317   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5318   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5319   emit_int8(0x40);
5320   emit_operand(dst, src);
5321 }
5322 
5323 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5324   assert(UseAVX > 0, "requires some form of AVX");
5325   InstructionMark im(this);
5326   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5327   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5328   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5329   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5330   emit_int8(0x40);
5331   emit_operand(dst, src);
5332 }
5333 
5334 // Shift packed integers left by specified number of bits.
5335 void Assembler::psllw(XMMRegister dst, int shift) {
5336   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5337   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5338   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5339   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5340   emit_int8(0x71);
5341   emit_int8((unsigned char)(0xC0 | encode));
5342   emit_int8(shift & 0xFF);
5343 }
5344 
5345 void Assembler::pslld(XMMRegister dst, int shift) {
5346   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5347   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5348   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5349   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5350   emit_int8(0x72);
5351   emit_int8((unsigned char)(0xC0 | encode));
5352   emit_int8(shift & 0xFF);
5353 }
5354 
5355 void Assembler::psllq(XMMRegister dst, int shift) {
5356   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5357   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5358   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5359   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5360   emit_int8(0x73);
5361   emit_int8((unsigned char)(0xC0 | encode));
5362   emit_int8(shift & 0xFF);
5363 }
5364 
5365 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5366   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5367   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5368   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5369   emit_int8((unsigned char)0xF1);
5370   emit_int8((unsigned char)(0xC0 | encode));
5371 }
5372 
5373 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5374   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5375   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5376   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5377   emit_int8((unsigned char)0xF2);
5378   emit_int8((unsigned char)(0xC0 | encode));
5379 }
5380 
5381 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5382   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5383   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5384   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5385   emit_int8((unsigned char)0xF3);
5386   emit_int8((unsigned char)(0xC0 | encode));
5387 }
5388 
5389 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5390   assert(UseAVX > 0, "requires some form of AVX");
5391   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5392   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5393   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5394   emit_int8(0x71);
5395   emit_int8((unsigned char)(0xC0 | encode));
5396   emit_int8(shift & 0xFF);
5397 }
5398 
5399 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5400   assert(UseAVX > 0, "requires some form of AVX");
5401   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5402   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5403   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5404   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5405   emit_int8(0x72);
5406   emit_int8((unsigned char)(0xC0 | encode));
5407   emit_int8(shift & 0xFF);
5408 }
5409 
5410 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5411   assert(UseAVX > 0, "requires some form of AVX");
5412   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5413   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5414   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5415   emit_int8(0x73);
5416   emit_int8((unsigned char)(0xC0 | encode));
5417   emit_int8(shift & 0xFF);
5418 }
5419 
5420 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5421   assert(UseAVX > 0, "requires some form of AVX");
5422   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5423   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5424   emit_int8((unsigned char)0xF1);
5425   emit_int8((unsigned char)(0xC0 | encode));
5426 }
5427 
5428 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5429   assert(UseAVX > 0, "requires some form of AVX");
5430   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5431   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5432   emit_int8((unsigned char)0xF2);
5433   emit_int8((unsigned char)(0xC0 | encode));
5434 }
5435 
5436 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5437   assert(UseAVX > 0, "requires some form of AVX");
5438   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5439   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5440   emit_int8((unsigned char)0xF3);
5441   emit_int8((unsigned char)(0xC0 | encode));
5442 }
5443 
5444 // Shift packed integers logically right by specified number of bits.
5445 void Assembler::psrlw(XMMRegister dst, int shift) {
5446   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5447   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5448   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5449   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5450   emit_int8(0x71);
5451   emit_int8((unsigned char)(0xC0 | encode));
5452   emit_int8(shift & 0xFF);
5453 }
5454 
5455 void Assembler::psrld(XMMRegister dst, int shift) {
5456   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5457   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5458   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5459   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5460   emit_int8(0x72);
5461   emit_int8((unsigned char)(0xC0 | encode));
5462   emit_int8(shift & 0xFF);
5463 }
5464 
5465 void Assembler::psrlq(XMMRegister dst, int shift) {
5466   // Do not confuse it with psrldq SSE2 instruction which
5467   // shifts 128 bit value in xmm register by number of bytes.
5468   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5469   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5470   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5471   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5472   emit_int8(0x73);
5473   emit_int8((unsigned char)(0xC0 | encode));
5474   emit_int8(shift & 0xFF);
5475 }
5476 
5477 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
5478   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5479   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5480   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5481   emit_int8((unsigned char)0xD1);
5482   emit_int8((unsigned char)(0xC0 | encode));
5483 }
5484 
5485 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
5486   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5487   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5488   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5489   emit_int8((unsigned char)0xD2);
5490   emit_int8((unsigned char)(0xC0 | encode));
5491 }
5492 
5493 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
5494   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5495   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5496   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5497   emit_int8((unsigned char)0xD3);
5498   emit_int8((unsigned char)(0xC0 | encode));
5499 }
5500 
5501 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5502   assert(UseAVX > 0, "requires some form of AVX");
5503   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5504   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5505   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5506   emit_int8(0x71);
5507   emit_int8((unsigned char)(0xC0 | encode));
5508   emit_int8(shift & 0xFF);
5509 }
5510 
5511 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5512   assert(UseAVX > 0, "requires some form of AVX");
5513   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5514   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5515   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5516   emit_int8(0x72);
5517   emit_int8((unsigned char)(0xC0 | encode));
5518   emit_int8(shift & 0xFF);
5519 }
5520 
5521 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5522   assert(UseAVX > 0, "requires some form of AVX");
5523   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5524   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5525   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5526   emit_int8(0x73);
5527   emit_int8((unsigned char)(0xC0 | encode));
5528   emit_int8(shift & 0xFF);
5529 }
5530 
5531 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5532   assert(UseAVX > 0, "requires some form of AVX");
5533   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5534   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5535   emit_int8((unsigned char)0xD1);
5536   emit_int8((unsigned char)(0xC0 | encode));
5537 }
5538 
5539 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5540   assert(UseAVX > 0, "requires some form of AVX");
5541   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5542   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5543   emit_int8((unsigned char)0xD2);
5544   emit_int8((unsigned char)(0xC0 | encode));
5545 }
5546 
5547 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5548   assert(UseAVX > 0, "requires some form of AVX");
5549   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5550   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5551   emit_int8((unsigned char)0xD3);
5552   emit_int8((unsigned char)(0xC0 | encode));
5553 }
5554 
5555 // Shift packed integers arithmetically right by specified number of bits.
5556 void Assembler::psraw(XMMRegister dst, int shift) {
5557   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5558   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5559   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5560   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5561   emit_int8(0x71);
5562   emit_int8((unsigned char)(0xC0 | encode));
5563   emit_int8(shift & 0xFF);
5564 }
5565 
5566 void Assembler::psrad(XMMRegister dst, int shift) {
5567   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5568   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5569   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
5570   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5571   emit_int8(0x72);
5572   emit_int8((unsigned char)(0xC0 | encode));
5573   emit_int8(shift & 0xFF);
5574 }
5575 
5576 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
5577   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5578   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5579   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5580   emit_int8((unsigned char)0xE1);
5581   emit_int8((unsigned char)(0xC0 | encode));
5582 }
5583 
5584 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
5585   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5586   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5587   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5588   emit_int8((unsigned char)0xE2);
5589   emit_int8((unsigned char)(0xC0 | encode));
5590 }
5591 
5592 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5593   assert(UseAVX > 0, "requires some form of AVX");
5594   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5595   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5596   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5597   emit_int8(0x71);
5598   emit_int8((unsigned char)(0xC0 | encode));
5599   emit_int8(shift & 0xFF);
5600 }
5601 
5602 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5603   assert(UseAVX > 0, "requires some form of AVX");
5604   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5605   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5606   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5607   emit_int8(0x72);
5608   emit_int8((unsigned char)(0xC0 | encode));
5609   emit_int8(shift & 0xFF);
5610 }
5611 
5612 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5613   assert(UseAVX > 0, "requires some form of AVX");
5614   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5615   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5616   emit_int8((unsigned char)0xE1);
5617   emit_int8((unsigned char)(0xC0 | encode));
5618 }
5619 
5620 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5621   assert(UseAVX > 0, "requires some form of AVX");
5622   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5623   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5624   emit_int8((unsigned char)0xE2);
5625   emit_int8((unsigned char)(0xC0 | encode));
5626 }
5627 
5628 
5629 // logical operations packed integers
5630 void Assembler::pand(XMMRegister dst, XMMRegister src) {
5631   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5632   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5633   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5634   emit_int8((unsigned char)0xDB);
5635   emit_int8((unsigned char)(0xC0 | encode));
5636 }
5637 
5638 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5639   assert(UseAVX > 0, "requires some form of AVX");
5640   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5641   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5642   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5643   emit_int8((unsigned char)0xDB);
5644   emit_int8((unsigned char)(0xC0 | encode));
5645 }
5646 
5647 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5648   assert(UseAVX > 0, "requires some form of AVX");
5649   InstructionMark im(this);
5650   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5651   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5652   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5653   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5654   emit_int8((unsigned char)0xDB);
5655   emit_operand(dst, src);
5656 }
5657 
5658 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
5659   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5660   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5661   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5662   emit_int8((unsigned char)0xDF);
5663   emit_int8((unsigned char)(0xC0 | encode));
5664 }
5665 
5666 void Assembler::por(XMMRegister dst, XMMRegister src) {
5667   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5668   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5669   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5670   emit_int8((unsigned char)0xEB);
5671   emit_int8((unsigned char)(0xC0 | encode));
5672 }
5673 
5674 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5675   assert(UseAVX > 0, "requires some form of AVX");
5676   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5677   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5678   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5679   emit_int8((unsigned char)0xEB);
5680   emit_int8((unsigned char)(0xC0 | encode));
5681 }
5682 
5683 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5684   assert(UseAVX > 0, "requires some form of AVX");
5685   InstructionMark im(this);
5686   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5687   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5688   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5689   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5690   emit_int8((unsigned char)0xEB);
5691   emit_operand(dst, src);
5692 }
5693 
5694 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
5695   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5696   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5697   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5698   emit_int8((unsigned char)0xEF);
5699   emit_int8((unsigned char)(0xC0 | encode));
5700 }
5701 
5702 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5703   assert(UseAVX > 0, "requires some form of AVX");
5704   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5705   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5706   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5707   emit_int8((unsigned char)0xEF);
5708   emit_int8((unsigned char)(0xC0 | encode));
5709 }
5710 
5711 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5712   assert(UseAVX > 0, "requires some form of AVX");
5713   InstructionMark im(this);
5714   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5715   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5716   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5717   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5718   emit_int8((unsigned char)0xEF);
5719   emit_operand(dst, src);
5720 }
5721 
5722 
5723 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5724   assert(VM_Version::supports_avx(), "");
5725   assert(imm8 <= 0x01, "imm8: %u", imm8);
5726   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5727   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5728   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5729   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5730   emit_int8(0x18);
5731   emit_int8((unsigned char)(0xC0 | encode));
5732   // 0x00 - insert into lower 128 bits
5733   // 0x01 - insert into upper 128 bits
5734   emit_int8(imm8 & 0x01);
5735 }
5736 
5737 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5738   assert(VM_Version::supports_evex(), "");
5739   assert(imm8 <= 0x01, "imm8: %u", imm8);
5740   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5741   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5742   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5743   emit_int8(0x1A);
5744   emit_int8((unsigned char)(0xC0 | encode));
5745   // 0x00 - insert into lower 256 bits
5746   // 0x01 - insert into upper 256 bits
5747   emit_int8(imm8 & 0x01);
5748 }
5749 
5750 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5751   assert(VM_Version::supports_evex(), "");
5752   assert(dst != xnoreg, "sanity");
5753   assert(imm8 <= 0x01, "imm8: %u", imm8);
5754   InstructionMark im(this);
5755   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5756   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5757   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
5758   // swap src<->dst for encoding
5759   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5760   emit_int8(0x1A);
5761   emit_operand(dst, src);
5762   // 0x00 - insert into lower 256 bits
5763   // 0x01 - insert into upper 256 bits
5764   emit_int8(imm8 & 0x01);
5765 }
5766 
5767 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5768   assert(VM_Version::supports_evex(), "");
5769   assert(imm8 <= 0x03, "imm8: %u", imm8);
5770   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5771   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5772   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5773   emit_int8(0x18);
5774   emit_int8((unsigned char)(0xC0 | encode));
5775   // 0x00 - insert into q0 128 bits (0..127)
5776   // 0x01 - insert into q1 128 bits (128..255)
5777   // 0x02 - insert into q2 128 bits (256..383)
5778   // 0x03 - insert into q3 128 bits (384..511)
5779   emit_int8(imm8 & 0x03);
5780 }
5781 
5782 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5783   assert(VM_Version::supports_avx(), "");
5784   assert(dst != xnoreg, "sanity");
5785   assert(imm8 <= 0x03, "imm8: %u", imm8);
5786   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5787   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5788   InstructionMark im(this);
5789   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5790   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5791   // swap src<->dst for encoding
5792   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5793   emit_int8(0x18);
5794   emit_operand(dst, src);
5795   // 0x00 - insert into q0 128 bits (0..127)
5796   // 0x01 - insert into q1 128 bits (128..255)
5797   // 0x02 - insert into q2 128 bits (256..383)
5798   // 0x03 - insert into q3 128 bits (384..511)
5799   emit_int8(imm8 & 0x03);
5800 }
5801 
5802 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5803   assert(VM_Version::supports_avx(), "");
5804   assert(dst != xnoreg, "sanity");
5805   assert(imm8 <= 0x01, "imm8: %u", imm8);
5806   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5807   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5808   InstructionMark im(this);
5809   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5810   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5811   // swap src<->dst for encoding
5812   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5813   emit_int8(0x18);
5814   emit_operand(dst, src);
5815   // 0x00 - insert into lower 128 bits
5816   // 0x01 - insert into upper 128 bits
5817   emit_int8(imm8 & 0x01);
5818 }
5819 
5820 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5821   assert(VM_Version::supports_avx(), "");
5822   assert(imm8 <= 0x01, "imm8: %u", imm8);
5823   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5824   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5825   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5826   emit_int8(0x19);
5827   emit_int8((unsigned char)(0xC0 | encode));
5828   // 0x00 - extract from lower 128 bits
5829   // 0x01 - extract from upper 128 bits
5830   emit_int8(imm8 & 0x01);
5831 }
5832 
5833 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
5834   assert(VM_Version::supports_avx(), "");
5835   assert(src != xnoreg, "sanity");
5836   assert(imm8 <= 0x01, "imm8: %u", imm8);
5837   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5838   InstructionMark im(this);
5839   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5840   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5841   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5842   emit_int8(0x19);
5843   emit_operand(src, dst);
5844   // 0x00 - extract from lower 128 bits
5845   // 0x01 - extract from upper 128 bits
5846   emit_int8(imm8 & 0x01);
5847 }
5848 
5849 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5850   assert(VM_Version::supports_avx2(), "");
5851   assert(imm8 <= 0x01, "imm8: %u", imm8);
5852   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5853   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5854   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5855   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5856   emit_int8(0x38);
5857   emit_int8((unsigned char)(0xC0 | encode));
5858   // 0x00 - insert into lower 128 bits
5859   // 0x01 - insert into upper 128 bits
5860   emit_int8(imm8 & 0x01);
5861 }
5862 
5863 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5864   assert(VM_Version::supports_evex(), "");
5865   assert(imm8 <= 0x01, "imm8: %u", imm8);
5866   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5867   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5868   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5869   emit_int8(0x38);
5870   emit_int8((unsigned char)(0xC0 | encode));
5871   // 0x00 - insert into lower 256 bits
5872   // 0x01 - insert into upper 256 bits
5873   emit_int8(imm8 & 0x01);
5874 }
5875 
5876 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5877   assert(VM_Version::supports_avx2(), "");
5878   assert(dst != xnoreg, "sanity");
5879   assert(imm8 <= 0x01, "imm8: %u", imm8);
5880   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5881   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5882   InstructionMark im(this);
5883   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5884   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5885   // swap src<->dst for encoding
5886   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5887   emit_int8(0x38);
5888   emit_operand(dst, src);
5889   // 0x00 - insert into lower 128 bits
5890   // 0x01 - insert into upper 128 bits
5891   emit_int8(imm8 & 0x01);
5892 }
5893 
5894 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5895   assert(VM_Version::supports_avx(), "");
5896   assert(imm8 <= 0x01, "imm8: %u", imm8);
5897   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5898   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5899   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5900   emit_int8(0x39);
5901   emit_int8((unsigned char)(0xC0 | encode));
5902   // 0x00 - extract from lower 128 bits
5903   // 0x01 - extract from upper 128 bits
5904   emit_int8(imm8 & 0x01);
5905 }
5906 
5907 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
5908   assert(VM_Version::supports_avx2(), "");
5909   assert(src != xnoreg, "sanity");
5910   assert(imm8 <= 0x01, "imm8: %u", imm8);
5911   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5912   InstructionMark im(this);
5913   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5914   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5915   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5916   emit_int8(0x39);
5917   emit_operand(src, dst);
5918   // 0x00 - extract from lower 128 bits
5919   // 0x01 - extract from upper 128 bits
5920   emit_int8(imm8 & 0x01);
5921 }
5922 
5923 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5924   assert(VM_Version::supports_evex(), "");
5925   assert(imm8 <= 0x01, "imm8: %u", imm8);
5926   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5927   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5928   emit_int8(0x3B);
5929   emit_int8((unsigned char)(0xC0 | encode));
5930   // 0x00 - extract from lower 256 bits
5931   // 0x01 - extract from upper 256 bits
5932   emit_int8(imm8 & 0x01);
5933 }
5934 
5935 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5936   assert(VM_Version::supports_evex(), "");
5937   assert(imm8 <= 0x03, "imm8: %u", imm8);
5938   InstructionAttr attributes(AVX_512bit, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5939   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5940   emit_int8(0x39);
5941   emit_int8((unsigned char)(0xC0 | encode));
5942   // 0x00 - extract from bits 127:0
5943   // 0x01 - extract from bits 255:128
5944   // 0x02 - extract from bits 383:256
5945   // 0x03 - extract from bits 511:384
5946   emit_int8(imm8 & 0x03);
5947 }
5948 
5949 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5950   assert(VM_Version::supports_evex(), "");
5951   assert(imm8 <= 0x01, "imm8: %u", imm8);
5952   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5953   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5954   emit_int8(0x1B);
5955   emit_int8((unsigned char)(0xC0 | encode));
5956   // 0x00 - extract from lower 256 bits
5957   // 0x01 - extract from upper 256 bits
5958   emit_int8(imm8 & 0x01);
5959 }
5960 
5961 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
5962   assert(VM_Version::supports_evex(), "");
5963   assert(src != xnoreg, "sanity");
5964   assert(imm8 <= 0x01, "imm8: %u", imm8);
5965   InstructionMark im(this);
5966   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5967   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
5968   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5969   emit_int8(0x1B);
5970   emit_operand(src, dst);
5971   // 0x00 - extract from lower 256 bits
5972   // 0x01 - extract from upper 256 bits
5973   emit_int8(imm8 & 0x01);
5974 }
5975 
5976 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5977   assert(VM_Version::supports_avx(), "");
5978   assert(imm8 <= 0x03, "imm8: %u", imm8);
5979   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5980   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5981   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5982   emit_int8(0x19);
5983   emit_int8((unsigned char)(0xC0 | encode));
5984   // 0x00 - extract from bits 127:0
5985   // 0x01 - extract from bits 255:128
5986   // 0x02 - extract from bits 383:256
5987   // 0x03 - extract from bits 511:384
5988   emit_int8(imm8 & 0x03);
5989 }
5990 
5991 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
5992   assert(VM_Version::supports_evex(), "");
5993   assert(src != xnoreg, "sanity");
5994   assert(imm8 <= 0x03, "imm8: %u", imm8);
5995   InstructionMark im(this);
5996   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5997   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5998   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5999   emit_int8(0x19);
6000   emit_operand(src, dst);
6001   // 0x00 - extract from bits 127:0
6002   // 0x01 - extract from bits 255:128
6003   // 0x02 - extract from bits 383:256
6004   // 0x03 - extract from bits 511:384
6005   emit_int8(imm8 & 0x03);
6006 }
6007 
6008 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6009   assert(VM_Version::supports_evex(), "");
6010   assert(imm8 <= 0x03, "imm8: %u", imm8);
6011   InstructionAttr attributes(AVX_512bit, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6012   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6013   emit_int8(0x19);
6014   emit_int8((unsigned char)(0xC0 | encode));
6015   // 0x00 - extract from bits 127:0
6016   // 0x01 - extract from bits 255:128
6017   // 0x02 - extract from bits 383:256
6018   // 0x03 - extract from bits 511:384
6019   emit_int8(imm8 & 0x03);
6020 }
6021 
6022 // duplicate 4-bytes integer data from src into 8 locations in dest
6023 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
6024   assert(VM_Version::supports_avx2(), "");
6025   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6026   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6027   emit_int8(0x58);
6028   emit_int8((unsigned char)(0xC0 | encode));
6029 }
6030 
6031 // duplicate 2-bytes integer data from src into 16 locations in dest
6032 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
6033   assert(VM_Version::supports_avx2(), "");
6034   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6035   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6036   emit_int8(0x79);
6037   emit_int8((unsigned char)(0xC0 | encode));
6038 }
6039 
6040 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
6041 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6042   assert(VM_Version::supports_evex(), "");
6043   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6044   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6045   emit_int8(0x78);
6046   emit_int8((unsigned char)(0xC0 | encode));
6047 }
6048 
6049 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6050   assert(VM_Version::supports_evex(), "");
6051   assert(dst != xnoreg, "sanity");
6052   InstructionMark im(this);
6053   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6054   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6055   // swap src<->dst for encoding
6056   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6057   emit_int8(0x78);
6058   emit_operand(dst, src);
6059 }
6060 
6061 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
6062 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6063   assert(VM_Version::supports_evex(), "");
6064   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6065   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6066   emit_int8(0x79);
6067   emit_int8((unsigned char)(0xC0 | encode));
6068 }
6069 
6070 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6071   assert(VM_Version::supports_evex(), "");
6072   assert(dst != xnoreg, "sanity");
6073   InstructionMark im(this);
6074   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6075   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6076   // swap src<->dst for encoding
6077   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6078   emit_int8(0x79);
6079   emit_operand(dst, src);
6080 }
6081 
6082 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
6083 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6084   assert(VM_Version::supports_evex(), "");
6085   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6086   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6087   emit_int8(0x58);
6088   emit_int8((unsigned char)(0xC0 | encode));
6089 }
6090 
6091 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6092   assert(VM_Version::supports_evex(), "");
6093   assert(dst != xnoreg, "sanity");
6094   InstructionMark im(this);
6095   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6096   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6097   // swap src<->dst for encoding
6098   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6099   emit_int8(0x58);
6100   emit_operand(dst, src);
6101 }
6102 
6103 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
6104 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6105   assert(VM_Version::supports_evex(), "");
6106   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6107   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6108   emit_int8(0x59);
6109   emit_int8((unsigned char)(0xC0 | encode));
6110 }
6111 
6112 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6113   assert(VM_Version::supports_evex(), "");
6114   assert(dst != xnoreg, "sanity");
6115   InstructionMark im(this);
6116   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6117   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6118   // swap src<->dst for encoding
6119   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6120   emit_int8(0x59);
6121   emit_operand(dst, src);
6122 }
6123 
6124 // duplicate single precision fp from src into 4|8|16 locations in dest : requires AVX512VL
6125 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6126   assert(VM_Version::supports_evex(), "");
6127   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6128   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6129   emit_int8(0x18);
6130   emit_int8((unsigned char)(0xC0 | encode));
6131 }
6132 
6133 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
6134   assert(VM_Version::supports_evex(), "");
6135   assert(dst != xnoreg, "sanity");
6136   InstructionMark im(this);
6137   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6138   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6139   // swap src<->dst for encoding
6140   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6141   emit_int8(0x18);
6142   emit_operand(dst, src);
6143 }
6144 
6145 // duplicate double precision fp from src into 2|4|8 locations in dest : requires AVX512VL
6146 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6147   assert(VM_Version::supports_evex(), "");
6148   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6149   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6150   emit_int8(0x19);
6151   emit_int8((unsigned char)(0xC0 | encode));
6152 }
6153 
6154 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6155   assert(VM_Version::supports_evex(), "");
6156   assert(dst != xnoreg, "sanity");
6157   InstructionMark im(this);
6158   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6159   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6160   // swap src<->dst for encoding
6161   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6162   emit_int8(0x19);
6163   emit_operand(dst, src);
6164 }
6165 
6166 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
6167 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6168   assert(VM_Version::supports_evex(), "");
6169   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6170   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6171   if (attributes.is_evex_instruction()) {
6172     emit_int8(0x7A);
6173   } else {
6174     emit_int8(0x78);
6175   }
6176   emit_int8((unsigned char)(0xC0 | encode));
6177 }
6178 
6179 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
6180 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6181   assert(VM_Version::supports_evex(), "");
6182   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6183   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6184   if (attributes.is_evex_instruction()) {
6185     emit_int8(0x7B);
6186   } else {
6187     emit_int8(0x79);
6188   }
6189   emit_int8((unsigned char)(0xC0 | encode));
6190 }
6191 
6192 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
6193 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6194   assert(VM_Version::supports_evex(), "");
6195   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6196   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6197   if (attributes.is_evex_instruction()) {
6198     emit_int8(0x7C);
6199   } else {
6200     emit_int8(0x58);
6201   }
6202   emit_int8((unsigned char)(0xC0 | encode));
6203 }
6204 
6205 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
6206 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6207   assert(VM_Version::supports_evex(), "");
6208   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6209   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6210   if (attributes.is_evex_instruction()) {
6211     emit_int8(0x7C);
6212   } else {
6213     emit_int8(0x59);
6214   }
6215   emit_int8((unsigned char)(0xC0 | encode));
6216 }
6217 
6218 // Carry-Less Multiplication Quadword
6219 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
6220   assert(VM_Version::supports_clmul(), "");
6221   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6222   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6223   emit_int8(0x44);
6224   emit_int8((unsigned char)(0xC0 | encode));
6225   emit_int8((unsigned char)mask);
6226 }
6227 
6228 // Carry-Less Multiplication Quadword
6229 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
6230   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
6231   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6232   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6233   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6234   emit_int8(0x44);
6235   emit_int8((unsigned char)(0xC0 | encode));
6236   emit_int8((unsigned char)mask);
6237 }
6238 
6239 void Assembler::vzeroupper() {
6240   assert(VM_Version::supports_avx(), "");
6241   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6242   (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6243   emit_int8(0x77);
6244 }
6245 
6246 
6247 #ifndef _LP64
6248 // 32bit only pieces of the assembler
6249 
6250 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6251   // NO PREFIX AS NEVER 64BIT
6252   InstructionMark im(this);
6253   emit_int8((unsigned char)0x81);
6254   emit_int8((unsigned char)(0xF8 | src1->encoding()));
6255   emit_data(imm32, rspec, 0);
6256 }
6257 
6258 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6259   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
6260   InstructionMark im(this);
6261   emit_int8((unsigned char)0x81);
6262   emit_operand(rdi, src1);
6263   emit_data(imm32, rspec, 0);
6264 }
6265 
6266 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
6267 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
6268 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
6269 void Assembler::cmpxchg8(Address adr) {
6270   InstructionMark im(this);
6271   emit_int8(0x0F);
6272   emit_int8((unsigned char)0xC7);
6273   emit_operand(rcx, adr);
6274 }
6275 
6276 void Assembler::decl(Register dst) {
6277   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6278  emit_int8(0x48 | dst->encoding());
6279 }
6280 
6281 #endif // _LP64
6282 
6283 // 64bit typically doesn't use the x87 but needs to for the trig funcs
6284 
6285 void Assembler::fabs() {
6286   emit_int8((unsigned char)0xD9);
6287   emit_int8((unsigned char)0xE1);
6288 }
6289 
6290 void Assembler::fadd(int i) {
6291   emit_farith(0xD8, 0xC0, i);
6292 }
6293 
6294 void Assembler::fadd_d(Address src) {
6295   InstructionMark im(this);
6296   emit_int8((unsigned char)0xDC);
6297   emit_operand32(rax, src);
6298 }
6299 
6300 void Assembler::fadd_s(Address src) {
6301   InstructionMark im(this);
6302   emit_int8((unsigned char)0xD8);
6303   emit_operand32(rax, src);
6304 }
6305 
6306 void Assembler::fadda(int i) {
6307   emit_farith(0xDC, 0xC0, i);
6308 }
6309 
6310 void Assembler::faddp(int i) {
6311   emit_farith(0xDE, 0xC0, i);
6312 }
6313 
6314 void Assembler::fchs() {
6315   emit_int8((unsigned char)0xD9);
6316   emit_int8((unsigned char)0xE0);
6317 }
6318 
6319 void Assembler::fcom(int i) {
6320   emit_farith(0xD8, 0xD0, i);
6321 }
6322 
6323 void Assembler::fcomp(int i) {
6324   emit_farith(0xD8, 0xD8, i);
6325 }
6326 
6327 void Assembler::fcomp_d(Address src) {
6328   InstructionMark im(this);
6329   emit_int8((unsigned char)0xDC);
6330   emit_operand32(rbx, src);
6331 }
6332 
6333 void Assembler::fcomp_s(Address src) {
6334   InstructionMark im(this);
6335   emit_int8((unsigned char)0xD8);
6336   emit_operand32(rbx, src);
6337 }
6338 
6339 void Assembler::fcompp() {
6340   emit_int8((unsigned char)0xDE);
6341   emit_int8((unsigned char)0xD9);
6342 }
6343 
6344 void Assembler::fcos() {
6345   emit_int8((unsigned char)0xD9);
6346   emit_int8((unsigned char)0xFF);
6347 }
6348 
6349 void Assembler::fdecstp() {
6350   emit_int8((unsigned char)0xD9);
6351   emit_int8((unsigned char)0xF6);
6352 }
6353 
6354 void Assembler::fdiv(int i) {
6355   emit_farith(0xD8, 0xF0, i);
6356 }
6357 
6358 void Assembler::fdiv_d(Address src) {
6359   InstructionMark im(this);
6360   emit_int8((unsigned char)0xDC);
6361   emit_operand32(rsi, src);
6362 }
6363 
6364 void Assembler::fdiv_s(Address src) {
6365   InstructionMark im(this);
6366   emit_int8((unsigned char)0xD8);
6367   emit_operand32(rsi, src);
6368 }
6369 
6370 void Assembler::fdiva(int i) {
6371   emit_farith(0xDC, 0xF8, i);
6372 }
6373 
6374 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
6375 //       is erroneous for some of the floating-point instructions below.
6376 
6377 void Assembler::fdivp(int i) {
6378   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
6379 }
6380 
6381 void Assembler::fdivr(int i) {
6382   emit_farith(0xD8, 0xF8, i);
6383 }
6384 
6385 void Assembler::fdivr_d(Address src) {
6386   InstructionMark im(this);
6387   emit_int8((unsigned char)0xDC);
6388   emit_operand32(rdi, src);
6389 }
6390 
6391 void Assembler::fdivr_s(Address src) {
6392   InstructionMark im(this);
6393   emit_int8((unsigned char)0xD8);
6394   emit_operand32(rdi, src);
6395 }
6396 
6397 void Assembler::fdivra(int i) {
6398   emit_farith(0xDC, 0xF0, i);
6399 }
6400 
6401 void Assembler::fdivrp(int i) {
6402   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
6403 }
6404 
6405 void Assembler::ffree(int i) {
6406   emit_farith(0xDD, 0xC0, i);
6407 }
6408 
6409 void Assembler::fild_d(Address adr) {
6410   InstructionMark im(this);
6411   emit_int8((unsigned char)0xDF);
6412   emit_operand32(rbp, adr);
6413 }
6414 
6415 void Assembler::fild_s(Address adr) {
6416   InstructionMark im(this);
6417   emit_int8((unsigned char)0xDB);
6418   emit_operand32(rax, adr);
6419 }
6420 
6421 void Assembler::fincstp() {
6422   emit_int8((unsigned char)0xD9);
6423   emit_int8((unsigned char)0xF7);
6424 }
6425 
6426 void Assembler::finit() {
6427   emit_int8((unsigned char)0x9B);
6428   emit_int8((unsigned char)0xDB);
6429   emit_int8((unsigned char)0xE3);
6430 }
6431 
6432 void Assembler::fist_s(Address adr) {
6433   InstructionMark im(this);
6434   emit_int8((unsigned char)0xDB);
6435   emit_operand32(rdx, adr);
6436 }
6437 
6438 void Assembler::fistp_d(Address adr) {
6439   InstructionMark im(this);
6440   emit_int8((unsigned char)0xDF);
6441   emit_operand32(rdi, adr);
6442 }
6443 
6444 void Assembler::fistp_s(Address adr) {
6445   InstructionMark im(this);
6446   emit_int8((unsigned char)0xDB);
6447   emit_operand32(rbx, adr);
6448 }
6449 
6450 void Assembler::fld1() {
6451   emit_int8((unsigned char)0xD9);
6452   emit_int8((unsigned char)0xE8);
6453 }
6454 
6455 void Assembler::fld_d(Address adr) {
6456   InstructionMark im(this);
6457   emit_int8((unsigned char)0xDD);
6458   emit_operand32(rax, adr);
6459 }
6460 
6461 void Assembler::fld_s(Address adr) {
6462   InstructionMark im(this);
6463   emit_int8((unsigned char)0xD9);
6464   emit_operand32(rax, adr);
6465 }
6466 
6467 
6468 void Assembler::fld_s(int index) {
6469   emit_farith(0xD9, 0xC0, index);
6470 }
6471 
6472 void Assembler::fld_x(Address adr) {
6473   InstructionMark im(this);
6474   emit_int8((unsigned char)0xDB);
6475   emit_operand32(rbp, adr);
6476 }
6477 
6478 void Assembler::fldcw(Address src) {
6479   InstructionMark im(this);
6480   emit_int8((unsigned char)0xD9);
6481   emit_operand32(rbp, src);
6482 }
6483 
6484 void Assembler::fldenv(Address src) {
6485   InstructionMark im(this);
6486   emit_int8((unsigned char)0xD9);
6487   emit_operand32(rsp, src);
6488 }
6489 
6490 void Assembler::fldlg2() {
6491   emit_int8((unsigned char)0xD9);
6492   emit_int8((unsigned char)0xEC);
6493 }
6494 
6495 void Assembler::fldln2() {
6496   emit_int8((unsigned char)0xD9);
6497   emit_int8((unsigned char)0xED);
6498 }
6499 
6500 void Assembler::fldz() {
6501   emit_int8((unsigned char)0xD9);
6502   emit_int8((unsigned char)0xEE);
6503 }
6504 
6505 void Assembler::flog() {
6506   fldln2();
6507   fxch();
6508   fyl2x();
6509 }
6510 
6511 void Assembler::flog10() {
6512   fldlg2();
6513   fxch();
6514   fyl2x();
6515 }
6516 
6517 void Assembler::fmul(int i) {
6518   emit_farith(0xD8, 0xC8, i);
6519 }
6520 
6521 void Assembler::fmul_d(Address src) {
6522   InstructionMark im(this);
6523   emit_int8((unsigned char)0xDC);
6524   emit_operand32(rcx, src);
6525 }
6526 
6527 void Assembler::fmul_s(Address src) {
6528   InstructionMark im(this);
6529   emit_int8((unsigned char)0xD8);
6530   emit_operand32(rcx, src);
6531 }
6532 
6533 void Assembler::fmula(int i) {
6534   emit_farith(0xDC, 0xC8, i);
6535 }
6536 
6537 void Assembler::fmulp(int i) {
6538   emit_farith(0xDE, 0xC8, i);
6539 }
6540 
6541 void Assembler::fnsave(Address dst) {
6542   InstructionMark im(this);
6543   emit_int8((unsigned char)0xDD);
6544   emit_operand32(rsi, dst);
6545 }
6546 
6547 void Assembler::fnstcw(Address src) {
6548   InstructionMark im(this);
6549   emit_int8((unsigned char)0x9B);
6550   emit_int8((unsigned char)0xD9);
6551   emit_operand32(rdi, src);
6552 }
6553 
6554 void Assembler::fnstsw_ax() {
6555   emit_int8((unsigned char)0xDF);
6556   emit_int8((unsigned char)0xE0);
6557 }
6558 
6559 void Assembler::fprem() {
6560   emit_int8((unsigned char)0xD9);
6561   emit_int8((unsigned char)0xF8);
6562 }
6563 
6564 void Assembler::fprem1() {
6565   emit_int8((unsigned char)0xD9);
6566   emit_int8((unsigned char)0xF5);
6567 }
6568 
6569 void Assembler::frstor(Address src) {
6570   InstructionMark im(this);
6571   emit_int8((unsigned char)0xDD);
6572   emit_operand32(rsp, src);
6573 }
6574 
6575 void Assembler::fsin() {
6576   emit_int8((unsigned char)0xD9);
6577   emit_int8((unsigned char)0xFE);
6578 }
6579 
6580 void Assembler::fsqrt() {
6581   emit_int8((unsigned char)0xD9);
6582   emit_int8((unsigned char)0xFA);
6583 }
6584 
6585 void Assembler::fst_d(Address adr) {
6586   InstructionMark im(this);
6587   emit_int8((unsigned char)0xDD);
6588   emit_operand32(rdx, adr);
6589 }
6590 
6591 void Assembler::fst_s(Address adr) {
6592   InstructionMark im(this);
6593   emit_int8((unsigned char)0xD9);
6594   emit_operand32(rdx, adr);
6595 }
6596 
6597 void Assembler::fstp_d(Address adr) {
6598   InstructionMark im(this);
6599   emit_int8((unsigned char)0xDD);
6600   emit_operand32(rbx, adr);
6601 }
6602 
6603 void Assembler::fstp_d(int index) {
6604   emit_farith(0xDD, 0xD8, index);
6605 }
6606 
6607 void Assembler::fstp_s(Address adr) {
6608   InstructionMark im(this);
6609   emit_int8((unsigned char)0xD9);
6610   emit_operand32(rbx, adr);
6611 }
6612 
6613 void Assembler::fstp_x(Address adr) {
6614   InstructionMark im(this);
6615   emit_int8((unsigned char)0xDB);
6616   emit_operand32(rdi, adr);
6617 }
6618 
6619 void Assembler::fsub(int i) {
6620   emit_farith(0xD8, 0xE0, i);
6621 }
6622 
6623 void Assembler::fsub_d(Address src) {
6624   InstructionMark im(this);
6625   emit_int8((unsigned char)0xDC);
6626   emit_operand32(rsp, src);
6627 }
6628 
6629 void Assembler::fsub_s(Address src) {
6630   InstructionMark im(this);
6631   emit_int8((unsigned char)0xD8);
6632   emit_operand32(rsp, src);
6633 }
6634 
6635 void Assembler::fsuba(int i) {
6636   emit_farith(0xDC, 0xE8, i);
6637 }
6638 
6639 void Assembler::fsubp(int i) {
6640   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
6641 }
6642 
6643 void Assembler::fsubr(int i) {
6644   emit_farith(0xD8, 0xE8, i);
6645 }
6646 
6647 void Assembler::fsubr_d(Address src) {
6648   InstructionMark im(this);
6649   emit_int8((unsigned char)0xDC);
6650   emit_operand32(rbp, src);
6651 }
6652 
6653 void Assembler::fsubr_s(Address src) {
6654   InstructionMark im(this);
6655   emit_int8((unsigned char)0xD8);
6656   emit_operand32(rbp, src);
6657 }
6658 
6659 void Assembler::fsubra(int i) {
6660   emit_farith(0xDC, 0xE0, i);
6661 }
6662 
6663 void Assembler::fsubrp(int i) {
6664   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
6665 }
6666 
6667 void Assembler::ftan() {
6668   emit_int8((unsigned char)0xD9);
6669   emit_int8((unsigned char)0xF2);
6670   emit_int8((unsigned char)0xDD);
6671   emit_int8((unsigned char)0xD8);
6672 }
6673 
6674 void Assembler::ftst() {
6675   emit_int8((unsigned char)0xD9);
6676   emit_int8((unsigned char)0xE4);
6677 }
6678 
6679 void Assembler::fucomi(int i) {
6680   // make sure the instruction is supported (introduced for P6, together with cmov)
6681   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6682   emit_farith(0xDB, 0xE8, i);
6683 }
6684 
6685 void Assembler::fucomip(int i) {
6686   // make sure the instruction is supported (introduced for P6, together with cmov)
6687   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6688   emit_farith(0xDF, 0xE8, i);
6689 }
6690 
6691 void Assembler::fwait() {
6692   emit_int8((unsigned char)0x9B);
6693 }
6694 
6695 void Assembler::fxch(int i) {
6696   emit_farith(0xD9, 0xC8, i);
6697 }
6698 
6699 void Assembler::fyl2x() {
6700   emit_int8((unsigned char)0xD9);
6701   emit_int8((unsigned char)0xF1);
6702 }
6703 
6704 void Assembler::frndint() {
6705   emit_int8((unsigned char)0xD9);
6706   emit_int8((unsigned char)0xFC);
6707 }
6708 
6709 void Assembler::f2xm1() {
6710   emit_int8((unsigned char)0xD9);
6711   emit_int8((unsigned char)0xF0);
6712 }
6713 
6714 void Assembler::fldl2e() {
6715   emit_int8((unsigned char)0xD9);
6716   emit_int8((unsigned char)0xEA);
6717 }
6718 
6719 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
6720 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
6721 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
6722 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
6723 
6724 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
6725 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6726   if (pre > 0) {
6727     emit_int8(simd_pre[pre]);
6728   }
6729   if (rex_w) {
6730     prefixq(adr, xreg);
6731   } else {
6732     prefix(adr, xreg);
6733   }
6734   if (opc > 0) {
6735     emit_int8(0x0F);
6736     int opc2 = simd_opc[opc];
6737     if (opc2 > 0) {
6738       emit_int8(opc2);
6739     }
6740   }
6741 }
6742 
6743 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6744   if (pre > 0) {
6745     emit_int8(simd_pre[pre]);
6746   }
6747   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
6748   if (opc > 0) {
6749     emit_int8(0x0F);
6750     int opc2 = simd_opc[opc];
6751     if (opc2 > 0) {
6752       emit_int8(opc2);
6753     }
6754   }
6755   return encode;
6756 }
6757 
6758 
6759 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
6760   int vector_len = _attributes->get_vector_len();
6761   bool vex_w = _attributes->is_rex_vex_w();
6762   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
6763     prefix(VEX_3bytes);
6764 
6765     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
6766     byte1 = (~byte1) & 0xE0;
6767     byte1 |= opc;
6768     emit_int8(byte1);
6769 
6770     int byte2 = ((~nds_enc) & 0xf) << 3;
6771     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
6772     emit_int8(byte2);
6773   } else {
6774     prefix(VEX_2bytes);
6775 
6776     int byte1 = vex_r ? VEX_R : 0;
6777     byte1 = (~byte1) & 0x80;
6778     byte1 |= ((~nds_enc) & 0xf) << 3;
6779     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
6780     emit_int8(byte1);
6781   }
6782 }
6783 
6784 // This is a 4 byte encoding
6785 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
6786   // EVEX 0x62 prefix
6787   prefix(EVEX_4bytes);
6788   bool vex_w = _attributes->is_rex_vex_w();
6789   int evex_encoding = (vex_w ? VEX_W : 0);
6790   // EVEX.b is not currently used for broadcast of single element or data rounding modes
6791   _attributes->set_evex_encoding(evex_encoding);
6792 
6793   // P0: byte 2, initialized to RXBR`00mm
6794   // instead of not'd
6795   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
6796   byte2 = (~byte2) & 0xF0;
6797   // confine opc opcode extensions in mm bits to lower two bits
6798   // of form {0F, 0F_38, 0F_3A}
6799   byte2 |= opc;
6800   emit_int8(byte2);
6801 
6802   // P1: byte 3 as Wvvvv1pp
6803   int byte3 = ((~nds_enc) & 0xf) << 3;
6804   // p[10] is always 1
6805   byte3 |= EVEX_F;
6806   byte3 |= (vex_w & 1) << 7;
6807   // confine pre opcode extensions in pp bits to lower two bits
6808   // of form {66, F3, F2}
6809   byte3 |= pre;
6810   emit_int8(byte3);
6811 
6812   // P2: byte 4 as zL'Lbv'aaa
6813   int byte4 = (_attributes->is_no_reg_mask()) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
6814   // EVEX.v` for extending EVEX.vvvv or VIDX
6815   byte4 |= (evex_v ? 0: EVEX_V);
6816   // third EXEC.b for broadcast actions
6817   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
6818   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
6819   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
6820   // last is EVEX.z for zero/merge actions
6821   byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
6822   emit_int8(byte4);
6823 }
6824 
6825 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
6826   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
6827   bool vex_b = adr.base_needs_rex();
6828   bool vex_x = adr.index_needs_rex();
6829   set_attributes(attributes);
6830   attributes->set_current_assembler(this);
6831 
6832   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6833   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
6834     switch (attributes->get_vector_len()) {
6835     case AVX_128bit:
6836     case AVX_256bit:
6837       attributes->set_is_legacy_mode();
6838       break;
6839     }
6840   }
6841 
6842   // For pure EVEX check and see if this instruction
6843   // is allowed in legacy mode and has resources which will
6844   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
6845   // else that field is set when we encode to EVEX
6846   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
6847       !_is_managed && !attributes->is_evex_instruction()) {
6848     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
6849       bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
6850       if (check_register_bank) {
6851         // check nds_enc and xreg_enc for upper bank usage
6852         if (nds_enc < 16 && xreg_enc < 16) {
6853           attributes->set_is_legacy_mode();
6854         }
6855       } else {
6856         attributes->set_is_legacy_mode();
6857       }
6858     }
6859   }
6860 
6861   _is_managed = false;
6862   if (UseAVX > 2 && !attributes->is_legacy_mode())
6863   {
6864     bool evex_r = (xreg_enc >= 16);
6865     bool evex_v = (nds_enc >= 16);
6866     attributes->set_is_evex_instruction();
6867     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
6868   } else {
6869     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
6870   }
6871 }
6872 
6873 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
6874   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
6875   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
6876   bool vex_x = false;
6877   set_attributes(attributes);
6878   attributes->set_current_assembler(this);
6879   bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
6880 
6881   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6882   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
6883     switch (attributes->get_vector_len()) {
6884     case AVX_128bit:
6885     case AVX_256bit:
6886       if (check_register_bank) {
6887         if (dst_enc >= 16 || nds_enc >= 16 || src_enc >= 16) {
6888           // up propagate arithmetic instructions to meet RA requirements
6889           attributes->set_vector_len(AVX_512bit);
6890         } else {
6891           attributes->set_is_legacy_mode();
6892         }
6893       } else {
6894         attributes->set_is_legacy_mode();
6895       }
6896       break;
6897     }
6898   }
6899 
6900   // For pure EVEX check and see if this instruction
6901   // is allowed in legacy mode and has resources which will
6902   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
6903   // else that field is set when we encode to EVEX
6904   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
6905       !_is_managed && !attributes->is_evex_instruction()) {
6906     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
6907       if (check_register_bank) {
6908         // check dst_enc, nds_enc and src_enc for upper bank usage
6909         if (dst_enc < 16 && nds_enc < 16 && src_enc < 16) {
6910           attributes->set_is_legacy_mode();
6911         }
6912       } else {
6913         attributes->set_is_legacy_mode();
6914       }
6915     }
6916   }
6917 
6918   _is_managed = false;
6919   if (UseAVX > 2 && !attributes->is_legacy_mode())
6920   {
6921     bool evex_r = (dst_enc >= 16);
6922     bool evex_v = (nds_enc >= 16);
6923     // can use vex_x as bank extender on rm encoding
6924     vex_x = (src_enc >= 16);
6925     attributes->set_is_evex_instruction();
6926     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
6927   } else {
6928     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
6929   }
6930 
6931   // return modrm byte components for operands
6932   return (((dst_enc & 7) << 3) | (src_enc & 7));
6933 }
6934 
6935 
6936 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
6937                             VexOpcode opc, InstructionAttr *attributes) {
6938   if (UseAVX > 0) {
6939     int xreg_enc = xreg->encoding();
6940     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6941     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
6942   } else {
6943     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
6944     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
6945   }
6946 }
6947 
6948 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
6949                                       VexOpcode opc, InstructionAttr *attributes) {
6950   int dst_enc = dst->encoding();
6951   int src_enc = src->encoding();
6952   if (UseAVX > 0) {
6953     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6954     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
6955   } else {
6956     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
6957     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
6958   }
6959 }
6960 
6961 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
6962   assert(VM_Version::supports_avx(), "");
6963   assert(!VM_Version::supports_evex(), "");
6964   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6965   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6966   emit_int8((unsigned char)0xC2);
6967   emit_int8((unsigned char)(0xC0 | encode));
6968   emit_int8((unsigned char)(0xF & cop));
6969 }
6970 
6971 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
6972   assert(VM_Version::supports_avx(), "");
6973   assert(!VM_Version::supports_evex(), "");
6974   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6975   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6976   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6977   emit_int8((unsigned char)0x4B);
6978   emit_int8((unsigned char)(0xC0 | encode));
6979   int src2_enc = src2->encoding();
6980   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
6981 }
6982 
6983 
6984 #ifndef _LP64
6985 
6986 void Assembler::incl(Register dst) {
6987   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6988   emit_int8(0x40 | dst->encoding());
6989 }
6990 
6991 void Assembler::lea(Register dst, Address src) {
6992   leal(dst, src);
6993 }
6994 
6995 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
6996   InstructionMark im(this);
6997   emit_int8((unsigned char)0xC7);
6998   emit_operand(rax, dst);
6999   emit_data((int)imm32, rspec, 0);
7000 }
7001 
7002 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7003   InstructionMark im(this);
7004   int encode = prefix_and_encode(dst->encoding());
7005   emit_int8((unsigned char)(0xB8 | encode));
7006   emit_data((int)imm32, rspec, 0);
7007 }
7008 
7009 void Assembler::popa() { // 32bit
7010   emit_int8(0x61);
7011 }
7012 
7013 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
7014   InstructionMark im(this);
7015   emit_int8(0x68);
7016   emit_data(imm32, rspec, 0);
7017 }
7018 
7019 void Assembler::pusha() { // 32bit
7020   emit_int8(0x60);
7021 }
7022 
7023 void Assembler::set_byte_if_not_zero(Register dst) {
7024   emit_int8(0x0F);
7025   emit_int8((unsigned char)0x95);
7026   emit_int8((unsigned char)(0xE0 | dst->encoding()));
7027 }
7028 
7029 void Assembler::shldl(Register dst, Register src) {
7030   emit_int8(0x0F);
7031   emit_int8((unsigned char)0xA5);
7032   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7033 }
7034 
7035 // 0F A4 / r ib
7036 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
7037   emit_int8(0x0F);
7038   emit_int8((unsigned char)0xA4);
7039   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7040   emit_int8(imm8);
7041 }
7042 
7043 void Assembler::shrdl(Register dst, Register src) {
7044   emit_int8(0x0F);
7045   emit_int8((unsigned char)0xAD);
7046   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7047 }
7048 
7049 #else // LP64
7050 
7051 void Assembler::set_byte_if_not_zero(Register dst) {
7052   int enc = prefix_and_encode(dst->encoding(), true);
7053   emit_int8(0x0F);
7054   emit_int8((unsigned char)0x95);
7055   emit_int8((unsigned char)(0xE0 | enc));
7056 }
7057 
7058 // 64bit only pieces of the assembler
7059 // This should only be used by 64bit instructions that can use rip-relative
7060 // it cannot be used by instructions that want an immediate value.
7061 
7062 bool Assembler::reachable(AddressLiteral adr) {
7063   int64_t disp;
7064   // None will force a 64bit literal to the code stream. Likely a placeholder
7065   // for something that will be patched later and we need to certain it will
7066   // always be reachable.
7067   if (adr.reloc() == relocInfo::none) {
7068     return false;
7069   }
7070   if (adr.reloc() == relocInfo::internal_word_type) {
7071     // This should be rip relative and easily reachable.
7072     return true;
7073   }
7074   if (adr.reloc() == relocInfo::virtual_call_type ||
7075       adr.reloc() == relocInfo::opt_virtual_call_type ||
7076       adr.reloc() == relocInfo::static_call_type ||
7077       adr.reloc() == relocInfo::static_stub_type ) {
7078     // This should be rip relative within the code cache and easily
7079     // reachable until we get huge code caches. (At which point
7080     // ic code is going to have issues).
7081     return true;
7082   }
7083   if (adr.reloc() != relocInfo::external_word_type &&
7084       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
7085       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
7086       adr.reloc() != relocInfo::runtime_call_type ) {
7087     return false;
7088   }
7089 
7090   // Stress the correction code
7091   if (ForceUnreachable) {
7092     // Must be runtimecall reloc, see if it is in the codecache
7093     // Flipping stuff in the codecache to be unreachable causes issues
7094     // with things like inline caches where the additional instructions
7095     // are not handled.
7096     if (CodeCache::find_blob(adr._target) == NULL) {
7097       return false;
7098     }
7099   }
7100   // For external_word_type/runtime_call_type if it is reachable from where we
7101   // are now (possibly a temp buffer) and where we might end up
7102   // anywhere in the codeCache then we are always reachable.
7103   // This would have to change if we ever save/restore shared code
7104   // to be more pessimistic.
7105   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7106   if (!is_simm32(disp)) return false;
7107   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7108   if (!is_simm32(disp)) return false;
7109 
7110   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7111 
7112   // Because rip relative is a disp + address_of_next_instruction and we
7113   // don't know the value of address_of_next_instruction we apply a fudge factor
7114   // to make sure we will be ok no matter the size of the instruction we get placed into.
7115   // We don't have to fudge the checks above here because they are already worst case.
7116 
7117   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
7118   // + 4 because better safe than sorry.
7119   const int fudge = 12 + 4;
7120   if (disp < 0) {
7121     disp -= fudge;
7122   } else {
7123     disp += fudge;
7124   }
7125   return is_simm32(disp);
7126 }
7127 
7128 // Check if the polling page is not reachable from the code cache using rip-relative
7129 // addressing.
7130 bool Assembler::is_polling_page_far() {
7131   intptr_t addr = (intptr_t)os::get_polling_page();
7132   return ForceUnreachable ||
7133          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
7134          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
7135 }
7136 
7137 void Assembler::emit_data64(jlong data,
7138                             relocInfo::relocType rtype,
7139                             int format) {
7140   if (rtype == relocInfo::none) {
7141     emit_int64(data);
7142   } else {
7143     emit_data64(data, Relocation::spec_simple(rtype), format);
7144   }
7145 }
7146 
7147 void Assembler::emit_data64(jlong data,
7148                             RelocationHolder const& rspec,
7149                             int format) {
7150   assert(imm_operand == 0, "default format must be immediate in this file");
7151   assert(imm_operand == format, "must be immediate");
7152   assert(inst_mark() != NULL, "must be inside InstructionMark");
7153   // Do not use AbstractAssembler::relocate, which is not intended for
7154   // embedded words.  Instead, relocate to the enclosing instruction.
7155   code_section()->relocate(inst_mark(), rspec, format);
7156 #ifdef ASSERT
7157   check_relocation(rspec, format);
7158 #endif
7159   emit_int64(data);
7160 }
7161 
7162 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
7163   if (reg_enc >= 8) {
7164     prefix(REX_B);
7165     reg_enc -= 8;
7166   } else if (byteinst && reg_enc >= 4) {
7167     prefix(REX);
7168   }
7169   return reg_enc;
7170 }
7171 
7172 int Assembler::prefixq_and_encode(int reg_enc) {
7173   if (reg_enc < 8) {
7174     prefix(REX_W);
7175   } else {
7176     prefix(REX_WB);
7177     reg_enc -= 8;
7178   }
7179   return reg_enc;
7180 }
7181 
7182 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
7183   if (dst_enc < 8) {
7184     if (src_enc >= 8) {
7185       prefix(REX_B);
7186       src_enc -= 8;
7187     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
7188       prefix(REX);
7189     }
7190   } else {
7191     if (src_enc < 8) {
7192       prefix(REX_R);
7193     } else {
7194       prefix(REX_RB);
7195       src_enc -= 8;
7196     }
7197     dst_enc -= 8;
7198   }
7199   return dst_enc << 3 | src_enc;
7200 }
7201 
7202 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
7203   if (dst_enc < 8) {
7204     if (src_enc < 8) {
7205       prefix(REX_W);
7206     } else {
7207       prefix(REX_WB);
7208       src_enc -= 8;
7209     }
7210   } else {
7211     if (src_enc < 8) {
7212       prefix(REX_WR);
7213     } else {
7214       prefix(REX_WRB);
7215       src_enc -= 8;
7216     }
7217     dst_enc -= 8;
7218   }
7219   return dst_enc << 3 | src_enc;
7220 }
7221 
7222 void Assembler::prefix(Register reg) {
7223   if (reg->encoding() >= 8) {
7224     prefix(REX_B);
7225   }
7226 }
7227 
7228 void Assembler::prefix(Register dst, Register src, Prefix p) {
7229   if (src->encoding() >= 8) {
7230     p = (Prefix)(p | REX_B);
7231   }
7232   if (dst->encoding() >= 8) {
7233     p = (Prefix)( p | REX_R);
7234   }
7235   if (p != Prefix_EMPTY) {
7236     // do not generate an empty prefix
7237     prefix(p);
7238   }
7239 }
7240 
7241 void Assembler::prefix(Register dst, Address adr, Prefix p) {
7242   if (adr.base_needs_rex()) {
7243     if (adr.index_needs_rex()) {
7244       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7245     } else {
7246       prefix(REX_B);
7247     }
7248   } else {
7249     if (adr.index_needs_rex()) {
7250       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7251     }
7252   }
7253   if (dst->encoding() >= 8) {
7254     p = (Prefix)(p | REX_R);
7255   }
7256   if (p != Prefix_EMPTY) {
7257     // do not generate an empty prefix
7258     prefix(p);
7259   }
7260 }
7261 
7262 void Assembler::prefix(Address adr) {
7263   if (adr.base_needs_rex()) {
7264     if (adr.index_needs_rex()) {
7265       prefix(REX_XB);
7266     } else {
7267       prefix(REX_B);
7268     }
7269   } else {
7270     if (adr.index_needs_rex()) {
7271       prefix(REX_X);
7272     }
7273   }
7274 }
7275 
7276 void Assembler::prefixq(Address adr) {
7277   if (adr.base_needs_rex()) {
7278     if (adr.index_needs_rex()) {
7279       prefix(REX_WXB);
7280     } else {
7281       prefix(REX_WB);
7282     }
7283   } else {
7284     if (adr.index_needs_rex()) {
7285       prefix(REX_WX);
7286     } else {
7287       prefix(REX_W);
7288     }
7289   }
7290 }
7291 
7292 
7293 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
7294   if (reg->encoding() < 8) {
7295     if (adr.base_needs_rex()) {
7296       if (adr.index_needs_rex()) {
7297         prefix(REX_XB);
7298       } else {
7299         prefix(REX_B);
7300       }
7301     } else {
7302       if (adr.index_needs_rex()) {
7303         prefix(REX_X);
7304       } else if (byteinst && reg->encoding() >= 4 ) {
7305         prefix(REX);
7306       }
7307     }
7308   } else {
7309     if (adr.base_needs_rex()) {
7310       if (adr.index_needs_rex()) {
7311         prefix(REX_RXB);
7312       } else {
7313         prefix(REX_RB);
7314       }
7315     } else {
7316       if (adr.index_needs_rex()) {
7317         prefix(REX_RX);
7318       } else {
7319         prefix(REX_R);
7320       }
7321     }
7322   }
7323 }
7324 
7325 void Assembler::prefixq(Address adr, Register src) {
7326   if (src->encoding() < 8) {
7327     if (adr.base_needs_rex()) {
7328       if (adr.index_needs_rex()) {
7329         prefix(REX_WXB);
7330       } else {
7331         prefix(REX_WB);
7332       }
7333     } else {
7334       if (adr.index_needs_rex()) {
7335         prefix(REX_WX);
7336       } else {
7337         prefix(REX_W);
7338       }
7339     }
7340   } else {
7341     if (adr.base_needs_rex()) {
7342       if (adr.index_needs_rex()) {
7343         prefix(REX_WRXB);
7344       } else {
7345         prefix(REX_WRB);
7346       }
7347     } else {
7348       if (adr.index_needs_rex()) {
7349         prefix(REX_WRX);
7350       } else {
7351         prefix(REX_WR);
7352       }
7353     }
7354   }
7355 }
7356 
7357 void Assembler::prefix(Address adr, XMMRegister reg) {
7358   if (reg->encoding() < 8) {
7359     if (adr.base_needs_rex()) {
7360       if (adr.index_needs_rex()) {
7361         prefix(REX_XB);
7362       } else {
7363         prefix(REX_B);
7364       }
7365     } else {
7366       if (adr.index_needs_rex()) {
7367         prefix(REX_X);
7368       }
7369     }
7370   } else {
7371     if (adr.base_needs_rex()) {
7372       if (adr.index_needs_rex()) {
7373         prefix(REX_RXB);
7374       } else {
7375         prefix(REX_RB);
7376       }
7377     } else {
7378       if (adr.index_needs_rex()) {
7379         prefix(REX_RX);
7380       } else {
7381         prefix(REX_R);
7382       }
7383     }
7384   }
7385 }
7386 
7387 void Assembler::prefixq(Address adr, XMMRegister src) {
7388   if (src->encoding() < 8) {
7389     if (adr.base_needs_rex()) {
7390       if (adr.index_needs_rex()) {
7391         prefix(REX_WXB);
7392       } else {
7393         prefix(REX_WB);
7394       }
7395     } else {
7396       if (adr.index_needs_rex()) {
7397         prefix(REX_WX);
7398       } else {
7399         prefix(REX_W);
7400       }
7401     }
7402   } else {
7403     if (adr.base_needs_rex()) {
7404       if (adr.index_needs_rex()) {
7405         prefix(REX_WRXB);
7406       } else {
7407         prefix(REX_WRB);
7408       }
7409     } else {
7410       if (adr.index_needs_rex()) {
7411         prefix(REX_WRX);
7412       } else {
7413         prefix(REX_WR);
7414       }
7415     }
7416   }
7417 }
7418 
7419 void Assembler::adcq(Register dst, int32_t imm32) {
7420   (void) prefixq_and_encode(dst->encoding());
7421   emit_arith(0x81, 0xD0, dst, imm32);
7422 }
7423 
7424 void Assembler::adcq(Register dst, Address src) {
7425   InstructionMark im(this);
7426   prefixq(src, dst);
7427   emit_int8(0x13);
7428   emit_operand(dst, src);
7429 }
7430 
7431 void Assembler::adcq(Register dst, Register src) {
7432   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7433   emit_arith(0x13, 0xC0, dst, src);
7434 }
7435 
7436 void Assembler::addq(Address dst, int32_t imm32) {
7437   InstructionMark im(this);
7438   prefixq(dst);
7439   emit_arith_operand(0x81, rax, dst,imm32);
7440 }
7441 
7442 void Assembler::addq(Address dst, Register src) {
7443   InstructionMark im(this);
7444   prefixq(dst, src);
7445   emit_int8(0x01);
7446   emit_operand(src, dst);
7447 }
7448 
7449 void Assembler::addq(Register dst, int32_t imm32) {
7450   (void) prefixq_and_encode(dst->encoding());
7451   emit_arith(0x81, 0xC0, dst, imm32);
7452 }
7453 
7454 void Assembler::addq(Register dst, Address src) {
7455   InstructionMark im(this);
7456   prefixq(src, dst);
7457   emit_int8(0x03);
7458   emit_operand(dst, src);
7459 }
7460 
7461 void Assembler::addq(Register dst, Register src) {
7462   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7463   emit_arith(0x03, 0xC0, dst, src);
7464 }
7465 
7466 void Assembler::adcxq(Register dst, Register src) {
7467   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7468   emit_int8((unsigned char)0x66);
7469   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7470   emit_int8(0x0F);
7471   emit_int8(0x38);
7472   emit_int8((unsigned char)0xF6);
7473   emit_int8((unsigned char)(0xC0 | encode));
7474 }
7475 
7476 void Assembler::adoxq(Register dst, Register src) {
7477   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7478   emit_int8((unsigned char)0xF3);
7479   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7480   emit_int8(0x0F);
7481   emit_int8(0x38);
7482   emit_int8((unsigned char)0xF6);
7483   emit_int8((unsigned char)(0xC0 | encode));
7484 }
7485 
7486 void Assembler::andq(Address dst, int32_t imm32) {
7487   InstructionMark im(this);
7488   prefixq(dst);
7489   emit_int8((unsigned char)0x81);
7490   emit_operand(rsp, dst, 4);
7491   emit_int32(imm32);
7492 }
7493 
7494 void Assembler::andq(Register dst, int32_t imm32) {
7495   (void) prefixq_and_encode(dst->encoding());
7496   emit_arith(0x81, 0xE0, dst, imm32);
7497 }
7498 
7499 void Assembler::andq(Register dst, Address src) {
7500   InstructionMark im(this);
7501   prefixq(src, dst);
7502   emit_int8(0x23);
7503   emit_operand(dst, src);
7504 }
7505 
7506 void Assembler::andq(Register dst, Register src) {
7507   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7508   emit_arith(0x23, 0xC0, dst, src);
7509 }
7510 
7511 void Assembler::andnq(Register dst, Register src1, Register src2) {
7512   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7513   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7514   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7515   emit_int8((unsigned char)0xF2);
7516   emit_int8((unsigned char)(0xC0 | encode));
7517 }
7518 
7519 void Assembler::andnq(Register dst, Register src1, Address src2) {
7520   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7521   InstructionMark im(this);
7522   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7523   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7524   emit_int8((unsigned char)0xF2);
7525   emit_operand(dst, src2);
7526 }
7527 
7528 void Assembler::bsfq(Register dst, Register src) {
7529   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7530   emit_int8(0x0F);
7531   emit_int8((unsigned char)0xBC);
7532   emit_int8((unsigned char)(0xC0 | encode));
7533 }
7534 
7535 void Assembler::bsrq(Register dst, Register src) {
7536   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7537   emit_int8(0x0F);
7538   emit_int8((unsigned char)0xBD);
7539   emit_int8((unsigned char)(0xC0 | encode));
7540 }
7541 
7542 void Assembler::bswapq(Register reg) {
7543   int encode = prefixq_and_encode(reg->encoding());
7544   emit_int8(0x0F);
7545   emit_int8((unsigned char)(0xC8 | encode));
7546 }
7547 
7548 void Assembler::blsiq(Register dst, Register src) {
7549   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7550   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7551   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7552   emit_int8((unsigned char)0xF3);
7553   emit_int8((unsigned char)(0xC0 | encode));
7554 }
7555 
7556 void Assembler::blsiq(Register dst, Address src) {
7557   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7558   InstructionMark im(this);
7559   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7560   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7561   emit_int8((unsigned char)0xF3);
7562   emit_operand(rbx, src);
7563 }
7564 
7565 void Assembler::blsmskq(Register dst, Register src) {
7566   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7567   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7568   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7569   emit_int8((unsigned char)0xF3);
7570   emit_int8((unsigned char)(0xC0 | encode));
7571 }
7572 
7573 void Assembler::blsmskq(Register dst, Address src) {
7574   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7575   InstructionMark im(this);
7576   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7577   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7578   emit_int8((unsigned char)0xF3);
7579   emit_operand(rdx, src);
7580 }
7581 
7582 void Assembler::blsrq(Register dst, Register src) {
7583   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7584   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7585   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7586   emit_int8((unsigned char)0xF3);
7587   emit_int8((unsigned char)(0xC0 | encode));
7588 }
7589 
7590 void Assembler::blsrq(Register dst, Address src) {
7591   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7592   InstructionMark im(this);
7593   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7594   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7595   emit_int8((unsigned char)0xF3);
7596   emit_operand(rcx, src);
7597 }
7598 
7599 void Assembler::cdqq() {
7600   prefix(REX_W);
7601   emit_int8((unsigned char)0x99);
7602 }
7603 
7604 void Assembler::clflush(Address adr) {
7605   prefix(adr);
7606   emit_int8(0x0F);
7607   emit_int8((unsigned char)0xAE);
7608   emit_operand(rdi, adr);
7609 }
7610 
7611 void Assembler::cmovq(Condition cc, Register dst, Register src) {
7612   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7613   emit_int8(0x0F);
7614   emit_int8(0x40 | cc);
7615   emit_int8((unsigned char)(0xC0 | encode));
7616 }
7617 
7618 void Assembler::cmovq(Condition cc, Register dst, Address src) {
7619   InstructionMark im(this);
7620   prefixq(src, dst);
7621   emit_int8(0x0F);
7622   emit_int8(0x40 | cc);
7623   emit_operand(dst, src);
7624 }
7625 
7626 void Assembler::cmpq(Address dst, int32_t imm32) {
7627   InstructionMark im(this);
7628   prefixq(dst);
7629   emit_int8((unsigned char)0x81);
7630   emit_operand(rdi, dst, 4);
7631   emit_int32(imm32);
7632 }
7633 
7634 void Assembler::cmpq(Register dst, int32_t imm32) {
7635   (void) prefixq_and_encode(dst->encoding());
7636   emit_arith(0x81, 0xF8, dst, imm32);
7637 }
7638 
7639 void Assembler::cmpq(Address dst, Register src) {
7640   InstructionMark im(this);
7641   prefixq(dst, src);
7642   emit_int8(0x3B);
7643   emit_operand(src, dst);
7644 }
7645 
7646 void Assembler::cmpq(Register dst, Register src) {
7647   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7648   emit_arith(0x3B, 0xC0, dst, src);
7649 }
7650 
7651 void Assembler::cmpq(Register dst, Address  src) {
7652   InstructionMark im(this);
7653   prefixq(src, dst);
7654   emit_int8(0x3B);
7655   emit_operand(dst, src);
7656 }
7657 
7658 void Assembler::cmpxchgq(Register reg, Address adr) {
7659   InstructionMark im(this);
7660   prefixq(adr, reg);
7661   emit_int8(0x0F);
7662   emit_int8((unsigned char)0xB1);
7663   emit_operand(reg, adr);
7664 }
7665 
7666 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
7667   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7668   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7669   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7670   emit_int8(0x2A);
7671   emit_int8((unsigned char)(0xC0 | encode));
7672 }
7673 
7674 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
7675   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7676   InstructionMark im(this);
7677   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7678   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7679   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7680   emit_int8(0x2A);
7681   emit_operand(dst, src);
7682 }
7683 
7684 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
7685   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7686   InstructionMark im(this);
7687   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7688   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7689   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7690   emit_int8(0x2A);
7691   emit_operand(dst, src);
7692 }
7693 
7694 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
7695   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7696   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7697   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7698   emit_int8(0x2C);
7699   emit_int8((unsigned char)(0xC0 | encode));
7700 }
7701 
7702 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
7703   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7704   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7705   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7706   emit_int8(0x2C);
7707   emit_int8((unsigned char)(0xC0 | encode));
7708 }
7709 
7710 void Assembler::decl(Register dst) {
7711   // Don't use it directly. Use MacroAssembler::decrementl() instead.
7712   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
7713   int encode = prefix_and_encode(dst->encoding());
7714   emit_int8((unsigned char)0xFF);
7715   emit_int8((unsigned char)(0xC8 | encode));
7716 }
7717 
7718 void Assembler::decq(Register dst) {
7719   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7720   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7721   int encode = prefixq_and_encode(dst->encoding());
7722   emit_int8((unsigned char)0xFF);
7723   emit_int8(0xC8 | encode);
7724 }
7725 
7726 void Assembler::decq(Address dst) {
7727   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7728   InstructionMark im(this);
7729   prefixq(dst);
7730   emit_int8((unsigned char)0xFF);
7731   emit_operand(rcx, dst);
7732 }
7733 
7734 void Assembler::fxrstor(Address src) {
7735   prefixq(src);
7736   emit_int8(0x0F);
7737   emit_int8((unsigned char)0xAE);
7738   emit_operand(as_Register(1), src);
7739 }
7740 
7741 void Assembler::xrstor(Address src) {
7742   prefixq(src);
7743   emit_int8(0x0F);
7744   emit_int8((unsigned char)0xAE);
7745   emit_operand(as_Register(5), src);
7746 }
7747 
7748 void Assembler::fxsave(Address dst) {
7749   prefixq(dst);
7750   emit_int8(0x0F);
7751   emit_int8((unsigned char)0xAE);
7752   emit_operand(as_Register(0), dst);
7753 }
7754 
7755 void Assembler::xsave(Address dst) {
7756   prefixq(dst);
7757   emit_int8(0x0F);
7758   emit_int8((unsigned char)0xAE);
7759   emit_operand(as_Register(4), dst);
7760 }
7761 
7762 void Assembler::idivq(Register src) {
7763   int encode = prefixq_and_encode(src->encoding());
7764   emit_int8((unsigned char)0xF7);
7765   emit_int8((unsigned char)(0xF8 | encode));
7766 }
7767 
7768 void Assembler::imulq(Register dst, Register src) {
7769   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7770   emit_int8(0x0F);
7771   emit_int8((unsigned char)0xAF);
7772   emit_int8((unsigned char)(0xC0 | encode));
7773 }
7774 
7775 void Assembler::imulq(Register dst, Register src, int value) {
7776   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7777   if (is8bit(value)) {
7778     emit_int8(0x6B);
7779     emit_int8((unsigned char)(0xC0 | encode));
7780     emit_int8(value & 0xFF);
7781   } else {
7782     emit_int8(0x69);
7783     emit_int8((unsigned char)(0xC0 | encode));
7784     emit_int32(value);
7785   }
7786 }
7787 
7788 void Assembler::imulq(Register dst, Address src) {
7789   InstructionMark im(this);
7790   prefixq(src, dst);
7791   emit_int8(0x0F);
7792   emit_int8((unsigned char) 0xAF);
7793   emit_operand(dst, src);
7794 }
7795 
7796 void Assembler::incl(Register dst) {
7797   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7798   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7799   int encode = prefix_and_encode(dst->encoding());
7800   emit_int8((unsigned char)0xFF);
7801   emit_int8((unsigned char)(0xC0 | encode));
7802 }
7803 
7804 void Assembler::incq(Register dst) {
7805   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7806   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7807   int encode = prefixq_and_encode(dst->encoding());
7808   emit_int8((unsigned char)0xFF);
7809   emit_int8((unsigned char)(0xC0 | encode));
7810 }
7811 
7812 void Assembler::incq(Address dst) {
7813   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7814   InstructionMark im(this);
7815   prefixq(dst);
7816   emit_int8((unsigned char)0xFF);
7817   emit_operand(rax, dst);
7818 }
7819 
7820 void Assembler::lea(Register dst, Address src) {
7821   leaq(dst, src);
7822 }
7823 
7824 void Assembler::leaq(Register dst, Address src) {
7825   InstructionMark im(this);
7826   prefixq(src, dst);
7827   emit_int8((unsigned char)0x8D);
7828   emit_operand(dst, src);
7829 }
7830 
7831 void Assembler::mov64(Register dst, int64_t imm64) {
7832   InstructionMark im(this);
7833   int encode = prefixq_and_encode(dst->encoding());
7834   emit_int8((unsigned char)(0xB8 | encode));
7835   emit_int64(imm64);
7836 }
7837 
7838 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
7839   InstructionMark im(this);
7840   int encode = prefixq_and_encode(dst->encoding());
7841   emit_int8(0xB8 | encode);
7842   emit_data64(imm64, rspec);
7843 }
7844 
7845 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7846   InstructionMark im(this);
7847   int encode = prefix_and_encode(dst->encoding());
7848   emit_int8((unsigned char)(0xB8 | encode));
7849   emit_data((int)imm32, rspec, narrow_oop_operand);
7850 }
7851 
7852 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
7853   InstructionMark im(this);
7854   prefix(dst);
7855   emit_int8((unsigned char)0xC7);
7856   emit_operand(rax, dst, 4);
7857   emit_data((int)imm32, rspec, narrow_oop_operand);
7858 }
7859 
7860 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
7861   InstructionMark im(this);
7862   int encode = prefix_and_encode(src1->encoding());
7863   emit_int8((unsigned char)0x81);
7864   emit_int8((unsigned char)(0xF8 | encode));
7865   emit_data((int)imm32, rspec, narrow_oop_operand);
7866 }
7867 
7868 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
7869   InstructionMark im(this);
7870   prefix(src1);
7871   emit_int8((unsigned char)0x81);
7872   emit_operand(rax, src1, 4);
7873   emit_data((int)imm32, rspec, narrow_oop_operand);
7874 }
7875 
7876 void Assembler::lzcntq(Register dst, Register src) {
7877   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
7878   emit_int8((unsigned char)0xF3);
7879   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7880   emit_int8(0x0F);
7881   emit_int8((unsigned char)0xBD);
7882   emit_int8((unsigned char)(0xC0 | encode));
7883 }
7884 
7885 void Assembler::movdq(XMMRegister dst, Register src) {
7886   // table D-1 says MMX/SSE2
7887   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7888   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7889   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7890   emit_int8(0x6E);
7891   emit_int8((unsigned char)(0xC0 | encode));
7892 }
7893 
7894 void Assembler::movdq(Register dst, XMMRegister src) {
7895   // table D-1 says MMX/SSE2
7896   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7897   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7898   // swap src/dst to get correct prefix
7899   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7900   emit_int8(0x7E);
7901   emit_int8((unsigned char)(0xC0 | encode));
7902 }
7903 
7904 void Assembler::movq(Register dst, Register src) {
7905   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7906   emit_int8((unsigned char)0x8B);
7907   emit_int8((unsigned char)(0xC0 | encode));
7908 }
7909 
7910 void Assembler::movq(Register dst, Address src) {
7911   InstructionMark im(this);
7912   prefixq(src, dst);
7913   emit_int8((unsigned char)0x8B);
7914   emit_operand(dst, src);
7915 }
7916 
7917 void Assembler::movq(Address dst, Register src) {
7918   InstructionMark im(this);
7919   prefixq(dst, src);
7920   emit_int8((unsigned char)0x89);
7921   emit_operand(src, dst);
7922 }
7923 
7924 void Assembler::movsbq(Register dst, Address src) {
7925   InstructionMark im(this);
7926   prefixq(src, dst);
7927   emit_int8(0x0F);
7928   emit_int8((unsigned char)0xBE);
7929   emit_operand(dst, src);
7930 }
7931 
7932 void Assembler::movsbq(Register dst, Register src) {
7933   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7934   emit_int8(0x0F);
7935   emit_int8((unsigned char)0xBE);
7936   emit_int8((unsigned char)(0xC0 | encode));
7937 }
7938 
7939 void Assembler::movslq(Register dst, int32_t imm32) {
7940   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
7941   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
7942   // as a result we shouldn't use until tested at runtime...
7943   ShouldNotReachHere();
7944   InstructionMark im(this);
7945   int encode = prefixq_and_encode(dst->encoding());
7946   emit_int8((unsigned char)(0xC7 | encode));
7947   emit_int32(imm32);
7948 }
7949 
7950 void Assembler::movslq(Address dst, int32_t imm32) {
7951   assert(is_simm32(imm32), "lost bits");
7952   InstructionMark im(this);
7953   prefixq(dst);
7954   emit_int8((unsigned char)0xC7);
7955   emit_operand(rax, dst, 4);
7956   emit_int32(imm32);
7957 }
7958 
7959 void Assembler::movslq(Register dst, Address src) {
7960   InstructionMark im(this);
7961   prefixq(src, dst);
7962   emit_int8(0x63);
7963   emit_operand(dst, src);
7964 }
7965 
7966 void Assembler::movslq(Register dst, Register src) {
7967   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7968   emit_int8(0x63);
7969   emit_int8((unsigned char)(0xC0 | encode));
7970 }
7971 
7972 void Assembler::movswq(Register dst, Address src) {
7973   InstructionMark im(this);
7974   prefixq(src, dst);
7975   emit_int8(0x0F);
7976   emit_int8((unsigned char)0xBF);
7977   emit_operand(dst, src);
7978 }
7979 
7980 void Assembler::movswq(Register dst, Register src) {
7981   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7982   emit_int8((unsigned char)0x0F);
7983   emit_int8((unsigned char)0xBF);
7984   emit_int8((unsigned char)(0xC0 | encode));
7985 }
7986 
7987 void Assembler::movzbq(Register dst, Address src) {
7988   InstructionMark im(this);
7989   prefixq(src, dst);
7990   emit_int8((unsigned char)0x0F);
7991   emit_int8((unsigned char)0xB6);
7992   emit_operand(dst, src);
7993 }
7994 
7995 void Assembler::movzbq(Register dst, Register src) {
7996   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7997   emit_int8(0x0F);
7998   emit_int8((unsigned char)0xB6);
7999   emit_int8(0xC0 | encode);
8000 }
8001 
8002 void Assembler::movzwq(Register dst, Address src) {
8003   InstructionMark im(this);
8004   prefixq(src, dst);
8005   emit_int8((unsigned char)0x0F);
8006   emit_int8((unsigned char)0xB7);
8007   emit_operand(dst, src);
8008 }
8009 
8010 void Assembler::movzwq(Register dst, Register src) {
8011   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8012   emit_int8((unsigned char)0x0F);
8013   emit_int8((unsigned char)0xB7);
8014   emit_int8((unsigned char)(0xC0 | encode));
8015 }
8016 
8017 void Assembler::mulq(Address src) {
8018   InstructionMark im(this);
8019   prefixq(src);
8020   emit_int8((unsigned char)0xF7);
8021   emit_operand(rsp, src);
8022 }
8023 
8024 void Assembler::mulq(Register src) {
8025   int encode = prefixq_and_encode(src->encoding());
8026   emit_int8((unsigned char)0xF7);
8027   emit_int8((unsigned char)(0xE0 | encode));
8028 }
8029 
8030 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
8031   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8032   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8033   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
8034   emit_int8((unsigned char)0xF6);
8035   emit_int8((unsigned char)(0xC0 | encode));
8036 }
8037 
8038 void Assembler::negq(Register dst) {
8039   int encode = prefixq_and_encode(dst->encoding());
8040   emit_int8((unsigned char)0xF7);
8041   emit_int8((unsigned char)(0xD8 | encode));
8042 }
8043 
8044 void Assembler::notq(Register dst) {
8045   int encode = prefixq_and_encode(dst->encoding());
8046   emit_int8((unsigned char)0xF7);
8047   emit_int8((unsigned char)(0xD0 | encode));
8048 }
8049 
8050 void Assembler::orq(Address dst, int32_t imm32) {
8051   InstructionMark im(this);
8052   prefixq(dst);
8053   emit_int8((unsigned char)0x81);
8054   emit_operand(rcx, dst, 4);
8055   emit_int32(imm32);
8056 }
8057 
8058 void Assembler::orq(Register dst, int32_t imm32) {
8059   (void) prefixq_and_encode(dst->encoding());
8060   emit_arith(0x81, 0xC8, dst, imm32);
8061 }
8062 
8063 void Assembler::orq(Register dst, Address src) {
8064   InstructionMark im(this);
8065   prefixq(src, dst);
8066   emit_int8(0x0B);
8067   emit_operand(dst, src);
8068 }
8069 
8070 void Assembler::orq(Register dst, Register src) {
8071   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8072   emit_arith(0x0B, 0xC0, dst, src);
8073 }
8074 
8075 void Assembler::popa() { // 64bit
8076   movq(r15, Address(rsp, 0));
8077   movq(r14, Address(rsp, wordSize));
8078   movq(r13, Address(rsp, 2 * wordSize));
8079   movq(r12, Address(rsp, 3 * wordSize));
8080   movq(r11, Address(rsp, 4 * wordSize));
8081   movq(r10, Address(rsp, 5 * wordSize));
8082   movq(r9,  Address(rsp, 6 * wordSize));
8083   movq(r8,  Address(rsp, 7 * wordSize));
8084   movq(rdi, Address(rsp, 8 * wordSize));
8085   movq(rsi, Address(rsp, 9 * wordSize));
8086   movq(rbp, Address(rsp, 10 * wordSize));
8087   // skip rsp
8088   movq(rbx, Address(rsp, 12 * wordSize));
8089   movq(rdx, Address(rsp, 13 * wordSize));
8090   movq(rcx, Address(rsp, 14 * wordSize));
8091   movq(rax, Address(rsp, 15 * wordSize));
8092 
8093   addq(rsp, 16 * wordSize);
8094 }
8095 
8096 void Assembler::popcntq(Register dst, Address src) {
8097   assert(VM_Version::supports_popcnt(), "must support");
8098   InstructionMark im(this);
8099   emit_int8((unsigned char)0xF3);
8100   prefixq(src, dst);
8101   emit_int8((unsigned char)0x0F);
8102   emit_int8((unsigned char)0xB8);
8103   emit_operand(dst, src);
8104 }
8105 
8106 void Assembler::popcntq(Register dst, Register src) {
8107   assert(VM_Version::supports_popcnt(), "must support");
8108   emit_int8((unsigned char)0xF3);
8109   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8110   emit_int8((unsigned char)0x0F);
8111   emit_int8((unsigned char)0xB8);
8112   emit_int8((unsigned char)(0xC0 | encode));
8113 }
8114 
8115 void Assembler::popq(Address dst) {
8116   InstructionMark im(this);
8117   prefixq(dst);
8118   emit_int8((unsigned char)0x8F);
8119   emit_operand(rax, dst);
8120 }
8121 
8122 void Assembler::pusha() { // 64bit
8123   // we have to store original rsp.  ABI says that 128 bytes
8124   // below rsp are local scratch.
8125   movq(Address(rsp, -5 * wordSize), rsp);
8126 
8127   subq(rsp, 16 * wordSize);
8128 
8129   movq(Address(rsp, 15 * wordSize), rax);
8130   movq(Address(rsp, 14 * wordSize), rcx);
8131   movq(Address(rsp, 13 * wordSize), rdx);
8132   movq(Address(rsp, 12 * wordSize), rbx);
8133   // skip rsp
8134   movq(Address(rsp, 10 * wordSize), rbp);
8135   movq(Address(rsp, 9 * wordSize), rsi);
8136   movq(Address(rsp, 8 * wordSize), rdi);
8137   movq(Address(rsp, 7 * wordSize), r8);
8138   movq(Address(rsp, 6 * wordSize), r9);
8139   movq(Address(rsp, 5 * wordSize), r10);
8140   movq(Address(rsp, 4 * wordSize), r11);
8141   movq(Address(rsp, 3 * wordSize), r12);
8142   movq(Address(rsp, 2 * wordSize), r13);
8143   movq(Address(rsp, wordSize), r14);
8144   movq(Address(rsp, 0), r15);
8145 }
8146 
8147 void Assembler::pushq(Address src) {
8148   InstructionMark im(this);
8149   prefixq(src);
8150   emit_int8((unsigned char)0xFF);
8151   emit_operand(rsi, src);
8152 }
8153 
8154 void Assembler::rclq(Register dst, int imm8) {
8155   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8156   int encode = prefixq_and_encode(dst->encoding());
8157   if (imm8 == 1) {
8158     emit_int8((unsigned char)0xD1);
8159     emit_int8((unsigned char)(0xD0 | encode));
8160   } else {
8161     emit_int8((unsigned char)0xC1);
8162     emit_int8((unsigned char)(0xD0 | encode));
8163     emit_int8(imm8);
8164   }
8165 }
8166 
8167 void Assembler::rcrq(Register dst, int imm8) {
8168   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8169   int encode = prefixq_and_encode(dst->encoding());
8170   if (imm8 == 1) {
8171     emit_int8((unsigned char)0xD1);
8172     emit_int8((unsigned char)(0xD8 | encode));
8173   } else {
8174     emit_int8((unsigned char)0xC1);
8175     emit_int8((unsigned char)(0xD8 | encode));
8176     emit_int8(imm8);
8177   }
8178 }
8179 
8180 void Assembler::rorq(Register dst, int imm8) {
8181   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8182   int encode = prefixq_and_encode(dst->encoding());
8183   if (imm8 == 1) {
8184     emit_int8((unsigned char)0xD1);
8185     emit_int8((unsigned char)(0xC8 | encode));
8186   } else {
8187     emit_int8((unsigned char)0xC1);
8188     emit_int8((unsigned char)(0xc8 | encode));
8189     emit_int8(imm8);
8190   }
8191 }
8192 
8193 void Assembler::rorxq(Register dst, Register src, int imm8) {
8194   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8195   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8196   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8197   emit_int8((unsigned char)0xF0);
8198   emit_int8((unsigned char)(0xC0 | encode));
8199   emit_int8(imm8);
8200 }
8201 
8202 void Assembler::sarq(Register dst, int imm8) {
8203   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8204   int encode = prefixq_and_encode(dst->encoding());
8205   if (imm8 == 1) {
8206     emit_int8((unsigned char)0xD1);
8207     emit_int8((unsigned char)(0xF8 | encode));
8208   } else {
8209     emit_int8((unsigned char)0xC1);
8210     emit_int8((unsigned char)(0xF8 | encode));
8211     emit_int8(imm8);
8212   }
8213 }
8214 
8215 void Assembler::sarq(Register dst) {
8216   int encode = prefixq_and_encode(dst->encoding());
8217   emit_int8((unsigned char)0xD3);
8218   emit_int8((unsigned char)(0xF8 | encode));
8219 }
8220 
8221 void Assembler::sbbq(Address dst, int32_t imm32) {
8222   InstructionMark im(this);
8223   prefixq(dst);
8224   emit_arith_operand(0x81, rbx, dst, imm32);
8225 }
8226 
8227 void Assembler::sbbq(Register dst, int32_t imm32) {
8228   (void) prefixq_and_encode(dst->encoding());
8229   emit_arith(0x81, 0xD8, dst, imm32);
8230 }
8231 
8232 void Assembler::sbbq(Register dst, Address src) {
8233   InstructionMark im(this);
8234   prefixq(src, dst);
8235   emit_int8(0x1B);
8236   emit_operand(dst, src);
8237 }
8238 
8239 void Assembler::sbbq(Register dst, Register src) {
8240   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8241   emit_arith(0x1B, 0xC0, dst, src);
8242 }
8243 
8244 void Assembler::shlq(Register dst, int imm8) {
8245   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8246   int encode = prefixq_and_encode(dst->encoding());
8247   if (imm8 == 1) {
8248     emit_int8((unsigned char)0xD1);
8249     emit_int8((unsigned char)(0xE0 | encode));
8250   } else {
8251     emit_int8((unsigned char)0xC1);
8252     emit_int8((unsigned char)(0xE0 | encode));
8253     emit_int8(imm8);
8254   }
8255 }
8256 
8257 void Assembler::shlq(Register dst) {
8258   int encode = prefixq_and_encode(dst->encoding());
8259   emit_int8((unsigned char)0xD3);
8260   emit_int8((unsigned char)(0xE0 | encode));
8261 }
8262 
8263 void Assembler::shrq(Register dst, int imm8) {
8264   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8265   int encode = prefixq_and_encode(dst->encoding());
8266   emit_int8((unsigned char)0xC1);
8267   emit_int8((unsigned char)(0xE8 | encode));
8268   emit_int8(imm8);
8269 }
8270 
8271 void Assembler::shrq(Register dst) {
8272   int encode = prefixq_and_encode(dst->encoding());
8273   emit_int8((unsigned char)0xD3);
8274   emit_int8(0xE8 | encode);
8275 }
8276 
8277 void Assembler::subq(Address dst, int32_t imm32) {
8278   InstructionMark im(this);
8279   prefixq(dst);
8280   emit_arith_operand(0x81, rbp, dst, imm32);
8281 }
8282 
8283 void Assembler::subq(Address dst, Register src) {
8284   InstructionMark im(this);
8285   prefixq(dst, src);
8286   emit_int8(0x29);
8287   emit_operand(src, dst);
8288 }
8289 
8290 void Assembler::subq(Register dst, int32_t imm32) {
8291   (void) prefixq_and_encode(dst->encoding());
8292   emit_arith(0x81, 0xE8, dst, imm32);
8293 }
8294 
8295 // Force generation of a 4 byte immediate value even if it fits into 8bit
8296 void Assembler::subq_imm32(Register dst, int32_t imm32) {
8297   (void) prefixq_and_encode(dst->encoding());
8298   emit_arith_imm32(0x81, 0xE8, dst, imm32);
8299 }
8300 
8301 void Assembler::subq(Register dst, Address src) {
8302   InstructionMark im(this);
8303   prefixq(src, dst);
8304   emit_int8(0x2B);
8305   emit_operand(dst, src);
8306 }
8307 
8308 void Assembler::subq(Register dst, Register src) {
8309   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8310   emit_arith(0x2B, 0xC0, dst, src);
8311 }
8312 
8313 void Assembler::testq(Register dst, int32_t imm32) {
8314   // not using emit_arith because test
8315   // doesn't support sign-extension of
8316   // 8bit operands
8317   int encode = dst->encoding();
8318   if (encode == 0) {
8319     prefix(REX_W);
8320     emit_int8((unsigned char)0xA9);
8321   } else {
8322     encode = prefixq_and_encode(encode);
8323     emit_int8((unsigned char)0xF7);
8324     emit_int8((unsigned char)(0xC0 | encode));
8325   }
8326   emit_int32(imm32);
8327 }
8328 
8329 void Assembler::testq(Register dst, Register src) {
8330   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8331   emit_arith(0x85, 0xC0, dst, src);
8332 }
8333 
8334 void Assembler::xaddq(Address dst, Register src) {
8335   InstructionMark im(this);
8336   prefixq(dst, src);
8337   emit_int8(0x0F);
8338   emit_int8((unsigned char)0xC1);
8339   emit_operand(src, dst);
8340 }
8341 
8342 void Assembler::xchgq(Register dst, Address src) {
8343   InstructionMark im(this);
8344   prefixq(src, dst);
8345   emit_int8((unsigned char)0x87);
8346   emit_operand(dst, src);
8347 }
8348 
8349 void Assembler::xchgq(Register dst, Register src) {
8350   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8351   emit_int8((unsigned char)0x87);
8352   emit_int8((unsigned char)(0xc0 | encode));
8353 }
8354 
8355 void Assembler::xorq(Register dst, Register src) {
8356   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8357   emit_arith(0x33, 0xC0, dst, src);
8358 }
8359 
8360 void Assembler::xorq(Register dst, Address src) {
8361   InstructionMark im(this);
8362   prefixq(src, dst);
8363   emit_int8(0x33);
8364   emit_operand(dst, src);
8365 }
8366 
8367 #endif // !LP64