1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_InstructionPrinter.hpp"
  27 #include "c1/c1_LIR.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_ValueStack.hpp"
  30 #include "ci/ciInstance.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 Register LIR_OprDesc::as_register() const {
  34   return FrameMap::cpu_rnr2reg(cpu_regnr());
  35 }
  36 
  37 Register LIR_OprDesc::as_register_lo() const {
  38   return FrameMap::cpu_rnr2reg(cpu_regnrLo());
  39 }
  40 
  41 Register LIR_OprDesc::as_register_hi() const {
  42   return FrameMap::cpu_rnr2reg(cpu_regnrHi());
  43 }
  44 
  45 #if defined(X86)
  46 
  47 XMMRegister LIR_OprDesc::as_xmm_float_reg() const {
  48   return FrameMap::nr2xmmreg(xmm_regnr());
  49 }
  50 
  51 XMMRegister LIR_OprDesc::as_xmm_double_reg() const {
  52   assert(xmm_regnrLo() == xmm_regnrHi(), "assumed in calculation");
  53   return FrameMap::nr2xmmreg(xmm_regnrLo());
  54 }
  55 
  56 #endif // X86
  57 
  58 #if defined(SPARC) || defined(PPC32)
  59 
  60 FloatRegister LIR_OprDesc::as_float_reg() const {
  61   return FrameMap::nr2floatreg(fpu_regnr());
  62 }
  63 
  64 FloatRegister LIR_OprDesc::as_double_reg() const {
  65   return FrameMap::nr2floatreg(fpu_regnrHi());
  66 }
  67 
  68 #endif
  69 
  70 #if defined(ARM) || defined(AARCH64) || defined(PPC64)
  71 
  72 FloatRegister LIR_OprDesc::as_float_reg() const {
  73   return as_FloatRegister(fpu_regnr());
  74 }
  75 
  76 FloatRegister LIR_OprDesc::as_double_reg() const {
  77   return as_FloatRegister(fpu_regnrLo());
  78 }
  79 
  80 #endif
  81 
  82 
  83 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
  84 
  85 LIR_Opr LIR_OprFact::value_type(ValueType* type) {
  86   ValueTag tag = type->tag();
  87   switch (tag) {
  88   case metaDataTag : {
  89     ClassConstant* c = type->as_ClassConstant();
  90     if (c != NULL && !c->value()->is_loaded()) {
  91       return LIR_OprFact::metadataConst(NULL);
  92     } else if (c != NULL) {
  93       return LIR_OprFact::metadataConst(c->value()->constant_encoding());
  94     } else {
  95       MethodConstant* m = type->as_MethodConstant();
  96       assert (m != NULL, "not a class or a method?");
  97       return LIR_OprFact::metadataConst(m->value()->constant_encoding());
  98     }
  99   }
 100   case objectTag : {
 101       return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
 102     }
 103   case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
 104   case intTag    : return LIR_OprFact::intConst(type->as_IntConstant()->value());
 105   case floatTag  : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
 106   case longTag   : return LIR_OprFact::longConst(type->as_LongConstant()->value());
 107   case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
 108   default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 109   }
 110 }
 111 
 112 
 113 LIR_Opr LIR_OprFact::dummy_value_type(ValueType* type) {
 114   switch (type->tag()) {
 115     case objectTag: return LIR_OprFact::oopConst(NULL);
 116     case addressTag:return LIR_OprFact::addressConst(0);
 117     case intTag:    return LIR_OprFact::intConst(0);
 118     case floatTag:  return LIR_OprFact::floatConst(0.0);
 119     case longTag:   return LIR_OprFact::longConst(0);
 120     case doubleTag: return LIR_OprFact::doubleConst(0.0);
 121     default:        ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 122   }
 123   return illegalOpr;
 124 }
 125 
 126 
 127 
 128 //---------------------------------------------------
 129 
 130 
 131 LIR_Address::Scale LIR_Address::scale(BasicType type) {
 132   int elem_size = type2aelembytes(type);
 133   switch (elem_size) {
 134   case 1: return LIR_Address::times_1;
 135   case 2: return LIR_Address::times_2;
 136   case 4: return LIR_Address::times_4;
 137   case 8: return LIR_Address::times_8;
 138   }
 139   ShouldNotReachHere();
 140   return LIR_Address::times_1;
 141 }
 142 
 143 
 144 #ifndef PRODUCT
 145 void LIR_Address::verify0() const {
 146 #if defined(SPARC) || defined(PPC)
 147   assert(scale() == times_1, "Scaled addressing mode not available on SPARC/PPC and should not be used");
 148   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 149 #endif
 150 #ifdef _LP64
 151   assert(base()->is_cpu_register(), "wrong base operand");
 152 #ifndef AARCH64
 153   assert(index()->is_illegal() || index()->is_double_cpu(), "wrong index operand");
 154 #else
 155   assert(index()->is_illegal() || index()->is_double_cpu() || index()->is_single_cpu(), "wrong index operand");
 156 #endif
 157   assert(base()->type() == T_OBJECT || base()->type() == T_LONG || base()->type() == T_METADATA,
 158          "wrong type for addresses");
 159 #else
 160   assert(base()->is_single_cpu(), "wrong base operand");
 161   assert(index()->is_illegal() || index()->is_single_cpu(), "wrong index operand");
 162   assert(base()->type() == T_OBJECT || base()->type() == T_INT || base()->type() == T_METADATA,
 163          "wrong type for addresses");
 164 #endif
 165 }
 166 #endif
 167 
 168 
 169 //---------------------------------------------------
 170 
 171 char LIR_OprDesc::type_char(BasicType t) {
 172   switch (t) {
 173     case T_ARRAY:
 174       t = T_OBJECT;
 175     case T_BOOLEAN:
 176     case T_CHAR:
 177     case T_FLOAT:
 178     case T_DOUBLE:
 179     case T_BYTE:
 180     case T_SHORT:
 181     case T_INT:
 182     case T_LONG:
 183     case T_OBJECT:
 184     case T_ADDRESS:
 185     case T_VOID:
 186       return ::type2char(t);
 187     case T_METADATA:
 188       return 'M';
 189     case T_ILLEGAL:
 190       return '?';
 191 
 192     default:
 193       ShouldNotReachHere();
 194       return '?';
 195   }
 196 }
 197 
 198 #ifndef PRODUCT
 199 void LIR_OprDesc::validate_type() const {
 200 
 201 #ifdef ASSERT
 202   if (!is_pointer() && !is_illegal()) {
 203     OprKind kindfield = kind_field(); // Factored out because of compiler bug, see 8002160
 204     switch (as_BasicType(type_field())) {
 205     case T_LONG:
 206       assert((kindfield == cpu_register || kindfield == stack_value) &&
 207              size_field() == double_size, "must match");
 208       break;
 209     case T_FLOAT:
 210       // FP return values can be also in CPU registers on ARM and PPC32 (softfp ABI)
 211       assert((kindfield == fpu_register || kindfield == stack_value
 212              ARM_ONLY(|| kindfield == cpu_register)
 213              PPC32_ONLY(|| kindfield == cpu_register) ) &&
 214              size_field() == single_size, "must match");
 215       break;
 216     case T_DOUBLE:
 217       // FP return values can be also in CPU registers on ARM and PPC32 (softfp ABI)
 218       assert((kindfield == fpu_register || kindfield == stack_value
 219              ARM_ONLY(|| kindfield == cpu_register)
 220              PPC32_ONLY(|| kindfield == cpu_register) ) &&
 221              size_field() == double_size, "must match");
 222       break;
 223     case T_BOOLEAN:
 224     case T_CHAR:
 225     case T_BYTE:
 226     case T_SHORT:
 227     case T_INT:
 228     case T_ADDRESS:
 229     case T_OBJECT:
 230     case T_METADATA:
 231     case T_ARRAY:
 232       assert((kindfield == cpu_register || kindfield == stack_value) &&
 233              size_field() == single_size, "must match");
 234       break;
 235 
 236     case T_ILLEGAL:
 237       // XXX TKR also means unknown right now
 238       // assert(is_illegal(), "must match");
 239       break;
 240 
 241     default:
 242       ShouldNotReachHere();
 243     }
 244   }
 245 #endif
 246 
 247 }
 248 #endif // PRODUCT
 249 
 250 
 251 bool LIR_OprDesc::is_oop() const {
 252   if (is_pointer()) {
 253     return pointer()->is_oop_pointer();
 254   } else {
 255     OprType t= type_field();
 256     assert(t != unknown_type, "not set");
 257     return t == object_type;
 258   }
 259 }
 260 
 261 
 262 
 263 void LIR_Op2::verify() const {
 264 #ifdef ASSERT
 265   switch (code()) {
 266     case lir_cmove:
 267     case lir_xchg:
 268       break;
 269 
 270     default:
 271       assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
 272              "can't produce oops from arith");
 273   }
 274 
 275   if (TwoOperandLIRForm) {
 276     switch (code()) {
 277     case lir_add:
 278     case lir_sub:
 279     case lir_mul:
 280     case lir_mul_strictfp:
 281     case lir_div:
 282     case lir_div_strictfp:
 283     case lir_rem:
 284     case lir_logic_and:
 285     case lir_logic_or:
 286     case lir_logic_xor:
 287     case lir_shl:
 288     case lir_shr:
 289       assert(in_opr1() == result_opr(), "opr1 and result must match");
 290       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 291       break;
 292 
 293     // special handling for lir_ushr because of write barriers
 294     case lir_ushr:
 295       assert(in_opr1() == result_opr() || in_opr2()->is_constant(), "opr1 and result must match or shift count is constant");
 296       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 297       break;
 298 
 299     }
 300   }
 301 #endif
 302 }
 303 
 304 
 305 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block)
 306   : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 307   , _cond(cond)
 308   , _type(type)
 309   , _label(block->label())
 310   , _block(block)
 311   , _ublock(NULL)
 312   , _stub(NULL) {
 313 }
 314 
 315 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub) :
 316   LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 317   , _cond(cond)
 318   , _type(type)
 319   , _label(stub->entry())
 320   , _block(NULL)
 321   , _ublock(NULL)
 322   , _stub(stub) {
 323 }
 324 
 325 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock)
 326   : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 327   , _cond(cond)
 328   , _type(type)
 329   , _label(block->label())
 330   , _block(block)
 331   , _ublock(ublock)
 332   , _stub(NULL)
 333 {
 334 }
 335 
 336 void LIR_OpBranch::change_block(BlockBegin* b) {
 337   assert(_block != NULL, "must have old block");
 338   assert(_block->label() == label(), "must be equal");
 339 
 340   _block = b;
 341   _label = b->label();
 342 }
 343 
 344 void LIR_OpBranch::change_ublock(BlockBegin* b) {
 345   assert(_ublock != NULL, "must have old block");
 346   _ublock = b;
 347 }
 348 
 349 void LIR_OpBranch::negate_cond() {
 350   switch (_cond) {
 351     case lir_cond_equal:        _cond = lir_cond_notEqual;     break;
 352     case lir_cond_notEqual:     _cond = lir_cond_equal;        break;
 353     case lir_cond_less:         _cond = lir_cond_greaterEqual; break;
 354     case lir_cond_lessEqual:    _cond = lir_cond_greater;      break;
 355     case lir_cond_greaterEqual: _cond = lir_cond_less;         break;
 356     case lir_cond_greater:      _cond = lir_cond_lessEqual;    break;
 357     default: ShouldNotReachHere();
 358   }
 359 }
 360 
 361 
 362 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
 363                                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
 364                                  bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch,
 365                                  CodeStub* stub)
 366 
 367   : LIR_Op(code, result, NULL)
 368   , _object(object)
 369   , _array(LIR_OprFact::illegalOpr)
 370   , _klass(klass)
 371   , _tmp1(tmp1)
 372   , _tmp2(tmp2)
 373   , _tmp3(tmp3)
 374   , _fast_check(fast_check)
 375   , _stub(stub)
 376   , _info_for_patch(info_for_patch)
 377   , _info_for_exception(info_for_exception)
 378   , _profiled_method(NULL)
 379   , _profiled_bci(-1)
 380   , _should_profile(false)
 381 {
 382   if (code == lir_checkcast) {
 383     assert(info_for_exception != NULL, "checkcast throws exceptions");
 384   } else if (code == lir_instanceof) {
 385     assert(info_for_exception == NULL, "instanceof throws no exceptions");
 386   } else {
 387     ShouldNotReachHere();
 388   }
 389 }
 390 
 391 
 392 
 393 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
 394   : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
 395   , _object(object)
 396   , _array(array)
 397   , _klass(NULL)
 398   , _tmp1(tmp1)
 399   , _tmp2(tmp2)
 400   , _tmp3(tmp3)
 401   , _fast_check(false)
 402   , _stub(NULL)
 403   , _info_for_patch(NULL)
 404   , _info_for_exception(info_for_exception)
 405   , _profiled_method(NULL)
 406   , _profiled_bci(-1)
 407   , _should_profile(false)
 408 {
 409   if (code == lir_store_check) {
 410     _stub = new ArrayStoreExceptionStub(object, info_for_exception);
 411     assert(info_for_exception != NULL, "store_check throws exceptions");
 412   } else {
 413     ShouldNotReachHere();
 414   }
 415 }
 416 
 417 
 418 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
 419                                  LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
 420   : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
 421   , _tmp(tmp)
 422   , _src(src)
 423   , _src_pos(src_pos)
 424   , _dst(dst)
 425   , _dst_pos(dst_pos)
 426   , _flags(flags)
 427   , _expected_type(expected_type)
 428   , _length(length) {
 429   _stub = new ArrayCopyStub(this);
 430 }
 431 
 432 LIR_OpUpdateCRC32::LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)
 433   : LIR_Op(lir_updatecrc32, res, NULL)
 434   , _crc(crc)
 435   , _val(val) {
 436 }
 437 
 438 //-------------------verify--------------------------
 439 
 440 void LIR_Op1::verify() const {
 441   switch(code()) {
 442   case lir_move:
 443     assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
 444     break;
 445   case lir_null_check:
 446     assert(in_opr()->is_register(), "must be");
 447     break;
 448   case lir_return:
 449     assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
 450     break;
 451   }
 452 }
 453 
 454 void LIR_OpRTCall::verify() const {
 455   assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
 456 }
 457 
 458 //-------------------visits--------------------------
 459 
 460 // complete rework of LIR instruction visitor.
 461 // The virtual call for each instruction type is replaced by a big
 462 // switch that adds the operands for each instruction
 463 
 464 void LIR_OpVisitState::visit(LIR_Op* op) {
 465   // copy information from the LIR_Op
 466   reset();
 467   set_op(op);
 468 
 469   switch (op->code()) {
 470 
 471 // LIR_Op0
 472     case lir_word_align:               // result and info always invalid
 473     case lir_backwardbranch_target:    // result and info always invalid
 474     case lir_build_frame:              // result and info always invalid
 475     case lir_fpop_raw:                 // result and info always invalid
 476     case lir_24bit_FPU:                // result and info always invalid
 477     case lir_reset_FPU:                // result and info always invalid
 478     case lir_breakpoint:               // result and info always invalid
 479     case lir_membar:                   // result and info always invalid
 480     case lir_membar_acquire:           // result and info always invalid
 481     case lir_membar_release:           // result and info always invalid
 482     case lir_membar_loadload:          // result and info always invalid
 483     case lir_membar_storestore:        // result and info always invalid
 484     case lir_membar_loadstore:         // result and info always invalid
 485     case lir_membar_storeload:         // result and info always invalid
 486     {
 487       assert(op->as_Op0() != NULL, "must be");
 488       assert(op->_info == NULL, "info not used by this instruction");
 489       assert(op->_result->is_illegal(), "not used");
 490       break;
 491     }
 492 
 493     case lir_nop:                      // may have info, result always invalid
 494     case lir_std_entry:                // may have result, info always invalid
 495     case lir_osr_entry:                // may have result, info always invalid
 496     case lir_get_thread:               // may have result, info always invalid
 497     {
 498       assert(op->as_Op0() != NULL, "must be");
 499       if (op->_info != NULL)           do_info(op->_info);
 500       if (op->_result->is_valid())     do_output(op->_result);
 501       break;
 502     }
 503 
 504 
 505 // LIR_OpLabel
 506     case lir_label:                    // result and info always invalid
 507     {
 508       assert(op->as_OpLabel() != NULL, "must be");
 509       assert(op->_info == NULL, "info not used by this instruction");
 510       assert(op->_result->is_illegal(), "not used");
 511       break;
 512     }
 513 
 514 
 515 // LIR_Op1
 516     case lir_fxch:           // input always valid, result and info always invalid
 517     case lir_fld:            // input always valid, result and info always invalid
 518     case lir_ffree:          // input always valid, result and info always invalid
 519     case lir_push:           // input always valid, result and info always invalid
 520     case lir_pop:            // input always valid, result and info always invalid
 521     case lir_return:         // input always valid, result and info always invalid
 522     case lir_leal:           // input and result always valid, info always invalid
 523     case lir_neg:            // input and result always valid, info always invalid
 524     case lir_monaddr:        // input and result always valid, info always invalid
 525     case lir_null_check:     // input and info always valid, result always invalid
 526     case lir_move:           // input and result always valid, may have info
 527     case lir_pack64:         // input and result always valid
 528     case lir_unpack64:       // input and result always valid
 529     {
 530       assert(op->as_Op1() != NULL, "must be");
 531       LIR_Op1* op1 = (LIR_Op1*)op;
 532 
 533       if (op1->_info)                  do_info(op1->_info);
 534       if (op1->_opr->is_valid())       do_input(op1->_opr);
 535       if (op1->_result->is_valid())    do_output(op1->_result);
 536 
 537       break;
 538     }
 539 
 540     case lir_safepoint:
 541     {
 542       assert(op->as_Op1() != NULL, "must be");
 543       LIR_Op1* op1 = (LIR_Op1*)op;
 544 
 545       assert(op1->_info != NULL, "");  do_info(op1->_info);
 546       if (op1->_opr->is_valid())       do_temp(op1->_opr); // safepoints on SPARC need temporary register
 547       assert(op1->_result->is_illegal(), "safepoint does not produce value");
 548 
 549       break;
 550     }
 551 
 552 // LIR_OpConvert;
 553     case lir_convert:        // input and result always valid, info always invalid
 554     {
 555       assert(op->as_OpConvert() != NULL, "must be");
 556       LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
 557 
 558       assert(opConvert->_info == NULL, "must be");
 559       if (opConvert->_opr->is_valid())       do_input(opConvert->_opr);
 560       if (opConvert->_result->is_valid())    do_output(opConvert->_result);
 561 #ifdef PPC32
 562       if (opConvert->_tmp1->is_valid())      do_temp(opConvert->_tmp1);
 563       if (opConvert->_tmp2->is_valid())      do_temp(opConvert->_tmp2);
 564 #endif
 565       do_stub(opConvert->_stub);
 566 
 567       break;
 568     }
 569 
 570 // LIR_OpBranch;
 571     case lir_branch:                   // may have info, input and result register always invalid
 572     case lir_cond_float_branch:        // may have info, input and result register always invalid
 573     {
 574       assert(op->as_OpBranch() != NULL, "must be");
 575       LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
 576 
 577       if (opBranch->_info != NULL)     do_info(opBranch->_info);
 578       assert(opBranch->_result->is_illegal(), "not used");
 579       if (opBranch->_stub != NULL)     opBranch->stub()->visit(this);
 580 
 581       break;
 582     }
 583 
 584 
 585 // LIR_OpAllocObj
 586     case lir_alloc_object:
 587     {
 588       assert(op->as_OpAllocObj() != NULL, "must be");
 589       LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
 590 
 591       if (opAllocObj->_info)                     do_info(opAllocObj->_info);
 592       if (opAllocObj->_opr->is_valid()) {        do_input(opAllocObj->_opr);
 593                                                  do_temp(opAllocObj->_opr);
 594                                         }
 595       if (opAllocObj->_tmp1->is_valid())         do_temp(opAllocObj->_tmp1);
 596       if (opAllocObj->_tmp2->is_valid())         do_temp(opAllocObj->_tmp2);
 597       if (opAllocObj->_tmp3->is_valid())         do_temp(opAllocObj->_tmp3);
 598       if (opAllocObj->_tmp4->is_valid())         do_temp(opAllocObj->_tmp4);
 599       if (opAllocObj->_result->is_valid())       do_output(opAllocObj->_result);
 600                                                  do_stub(opAllocObj->_stub);
 601       break;
 602     }
 603 
 604 
 605 // LIR_OpRoundFP;
 606     case lir_roundfp: {
 607       assert(op->as_OpRoundFP() != NULL, "must be");
 608       LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
 609 
 610       assert(op->_info == NULL, "info not used by this instruction");
 611       assert(opRoundFP->_tmp->is_illegal(), "not used");
 612       do_input(opRoundFP->_opr);
 613       do_output(opRoundFP->_result);
 614 
 615       break;
 616     }
 617 
 618 
 619 // LIR_Op2
 620     case lir_cmp:
 621     case lir_cmp_l2i:
 622     case lir_ucmp_fd2i:
 623     case lir_cmp_fd2i:
 624     case lir_add:
 625     case lir_sub:
 626     case lir_mul:
 627     case lir_div:
 628     case lir_rem:
 629     case lir_sqrt:
 630     case lir_abs:
 631     case lir_logic_and:
 632     case lir_logic_or:
 633     case lir_logic_xor:
 634     case lir_shl:
 635     case lir_shr:
 636     case lir_ushr:
 637     case lir_xadd:
 638     case lir_xchg:
 639     case lir_assert:
 640     {
 641       assert(op->as_Op2() != NULL, "must be");
 642       LIR_Op2* op2 = (LIR_Op2*)op;
 643       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 644              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 645 
 646       if (op2->_info)                     do_info(op2->_info);
 647       if (op2->_opr1->is_valid())         do_input(op2->_opr1);
 648       if (op2->_opr2->is_valid())         do_input(op2->_opr2);
 649       if (op2->_tmp1->is_valid())         do_temp(op2->_tmp1);
 650       if (op2->_result->is_valid())       do_output(op2->_result);
 651       if (op->code() == lir_xchg || op->code() == lir_xadd) {
 652         // on ARM and PPC, return value is loaded first so could
 653         // destroy inputs. On other platforms that implement those
 654         // (x86, sparc), the extra constrainsts are harmless.
 655         if (op2->_opr1->is_valid())       do_temp(op2->_opr1);
 656         if (op2->_opr2->is_valid())       do_temp(op2->_opr2);
 657       }
 658 
 659       break;
 660     }
 661 
 662     // special handling for cmove: right input operand must not be equal
 663     // to the result operand, otherwise the backend fails
 664     case lir_cmove:
 665     {
 666       assert(op->as_Op2() != NULL, "must be");
 667       LIR_Op2* op2 = (LIR_Op2*)op;
 668 
 669       assert(op2->_info == NULL && op2->_tmp1->is_illegal() && op2->_tmp2->is_illegal() &&
 670              op2->_tmp3->is_illegal() && op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 671       assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used");
 672 
 673       do_input(op2->_opr1);
 674       do_input(op2->_opr2);
 675       do_temp(op2->_opr2);
 676       do_output(op2->_result);
 677 
 678       break;
 679     }
 680 
 681     // vspecial handling for strict operations: register input operands
 682     // as temp to guarantee that they do not overlap with other
 683     // registers
 684     case lir_mul_strictfp:
 685     case lir_div_strictfp:
 686     {
 687       assert(op->as_Op2() != NULL, "must be");
 688       LIR_Op2* op2 = (LIR_Op2*)op;
 689 
 690       assert(op2->_info == NULL, "not used");
 691       assert(op2->_opr1->is_valid(), "used");
 692       assert(op2->_opr2->is_valid(), "used");
 693       assert(op2->_result->is_valid(), "used");
 694       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 695              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 696 
 697       do_input(op2->_opr1); do_temp(op2->_opr1);
 698       do_input(op2->_opr2); do_temp(op2->_opr2);
 699       if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1);
 700       do_output(op2->_result);
 701 
 702       break;
 703     }
 704 
 705     case lir_throw: {
 706       assert(op->as_Op2() != NULL, "must be");
 707       LIR_Op2* op2 = (LIR_Op2*)op;
 708 
 709       if (op2->_info)                     do_info(op2->_info);
 710       if (op2->_opr1->is_valid())         do_temp(op2->_opr1);
 711       if (op2->_opr2->is_valid())         do_input(op2->_opr2); // exception object is input parameter
 712       assert(op2->_result->is_illegal(), "no result");
 713       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 714              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 715 
 716       break;
 717     }
 718 
 719     case lir_unwind: {
 720       assert(op->as_Op1() != NULL, "must be");
 721       LIR_Op1* op1 = (LIR_Op1*)op;
 722 
 723       assert(op1->_info == NULL, "no info");
 724       assert(op1->_opr->is_valid(), "exception oop");         do_input(op1->_opr);
 725       assert(op1->_result->is_illegal(), "no result");
 726 
 727       break;
 728     }
 729 
 730 
 731     case lir_tan:
 732     case lir_log10: {
 733       assert(op->as_Op2() != NULL, "must be");
 734       LIR_Op2* op2 = (LIR_Op2*)op;
 735 
 736       // On x86 tan/sin/cos need two temporary fpu stack slots and
 737       // log/log10 need one so handle opr2 and tmp as temp inputs.
 738       // Register input operand as temp to guarantee that it doesn't
 739       // overlap with the input.
 740       assert(op2->_info == NULL, "not used");
 741       assert(op2->_tmp5->is_illegal(), "not used");
 742       assert(op2->_opr1->is_valid(), "used");
 743       do_input(op2->_opr1); do_temp(op2->_opr1);
 744 
 745       if (op2->_opr2->is_valid())         do_temp(op2->_opr2);
 746       if (op2->_tmp1->is_valid())         do_temp(op2->_tmp1);
 747       if (op2->_tmp2->is_valid())         do_temp(op2->_tmp2);
 748       if (op2->_tmp3->is_valid())         do_temp(op2->_tmp3);
 749       if (op2->_tmp4->is_valid())         do_temp(op2->_tmp4);
 750       if (op2->_result->is_valid())       do_output(op2->_result);
 751 
 752       break;
 753     }
 754 
 755 // LIR_Op3
 756     case lir_idiv:
 757     case lir_irem: {
 758       assert(op->as_Op3() != NULL, "must be");
 759       LIR_Op3* op3= (LIR_Op3*)op;
 760 
 761       if (op3->_info)                     do_info(op3->_info);
 762       if (op3->_opr1->is_valid())         do_input(op3->_opr1);
 763 
 764       // second operand is input and temp, so ensure that second operand
 765       // and third operand get not the same register
 766       if (op3->_opr2->is_valid())         do_input(op3->_opr2);
 767       if (op3->_opr2->is_valid())         do_temp(op3->_opr2);
 768       if (op3->_opr3->is_valid())         do_temp(op3->_opr3);
 769 
 770       if (op3->_result->is_valid())       do_output(op3->_result);
 771 
 772       break;
 773     }
 774 
 775 
 776 // LIR_OpJavaCall
 777     case lir_static_call:
 778     case lir_optvirtual_call:
 779     case lir_icvirtual_call:
 780     case lir_virtual_call:
 781     case lir_dynamic_call: {
 782       LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
 783       assert(opJavaCall != NULL, "must be");
 784 
 785       if (opJavaCall->_receiver->is_valid())     do_input(opJavaCall->_receiver);
 786 
 787       // only visit register parameters
 788       int n = opJavaCall->_arguments->length();
 789       for (int i = opJavaCall->_receiver->is_valid() ? 1 : 0; i < n; i++) {
 790         if (!opJavaCall->_arguments->at(i)->is_pointer()) {
 791           do_input(*opJavaCall->_arguments->adr_at(i));
 792         }
 793       }
 794 
 795       if (opJavaCall->_info)                     do_info(opJavaCall->_info);
 796       if (FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr &&
 797           opJavaCall->is_method_handle_invoke()) {
 798         opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
 799         do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
 800       }
 801       do_call();
 802       if (opJavaCall->_result->is_valid())       do_output(opJavaCall->_result);
 803 
 804       break;
 805     }
 806 
 807 
 808 // LIR_OpRTCall
 809     case lir_rtcall: {
 810       assert(op->as_OpRTCall() != NULL, "must be");
 811       LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
 812 
 813       // only visit register parameters
 814       int n = opRTCall->_arguments->length();
 815       for (int i = 0; i < n; i++) {
 816         if (!opRTCall->_arguments->at(i)->is_pointer()) {
 817           do_input(*opRTCall->_arguments->adr_at(i));
 818         }
 819       }
 820       if (opRTCall->_info)                     do_info(opRTCall->_info);
 821       if (opRTCall->_tmp->is_valid())          do_temp(opRTCall->_tmp);
 822       do_call();
 823       if (opRTCall->_result->is_valid())       do_output(opRTCall->_result);
 824 
 825       break;
 826     }
 827 
 828 
 829 // LIR_OpArrayCopy
 830     case lir_arraycopy: {
 831       assert(op->as_OpArrayCopy() != NULL, "must be");
 832       LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
 833 
 834       assert(opArrayCopy->_result->is_illegal(), "unused");
 835       assert(opArrayCopy->_src->is_valid(), "used");          do_input(opArrayCopy->_src);     do_temp(opArrayCopy->_src);
 836       assert(opArrayCopy->_src_pos->is_valid(), "used");      do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
 837       assert(opArrayCopy->_dst->is_valid(), "used");          do_input(opArrayCopy->_dst);     do_temp(opArrayCopy->_dst);
 838       assert(opArrayCopy->_dst_pos->is_valid(), "used");      do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
 839       assert(opArrayCopy->_length->is_valid(), "used");       do_input(opArrayCopy->_length);  do_temp(opArrayCopy->_length);
 840       assert(opArrayCopy->_tmp->is_valid(), "used");          do_temp(opArrayCopy->_tmp);
 841       if (opArrayCopy->_info)                     do_info(opArrayCopy->_info);
 842 
 843       // the implementation of arraycopy always has a call into the runtime
 844       do_call();
 845 
 846       break;
 847     }
 848 
 849 
 850 // LIR_OpUpdateCRC32
 851     case lir_updatecrc32: {
 852       assert(op->as_OpUpdateCRC32() != NULL, "must be");
 853       LIR_OpUpdateCRC32* opUp = (LIR_OpUpdateCRC32*)op;
 854 
 855       assert(opUp->_crc->is_valid(), "used");          do_input(opUp->_crc);     do_temp(opUp->_crc);
 856       assert(opUp->_val->is_valid(), "used");          do_input(opUp->_val);     do_temp(opUp->_val);
 857       assert(opUp->_result->is_valid(), "used");       do_output(opUp->_result);
 858       assert(opUp->_info == NULL, "no info for LIR_OpUpdateCRC32");
 859 
 860       break;
 861     }
 862 
 863 
 864 // LIR_OpLock
 865     case lir_lock:
 866     case lir_unlock: {
 867       assert(op->as_OpLock() != NULL, "must be");
 868       LIR_OpLock* opLock = (LIR_OpLock*)op;
 869 
 870       if (opLock->_info)                          do_info(opLock->_info);
 871 
 872       // TODO: check if these operands really have to be temp
 873       // (or if input is sufficient). This may have influence on the oop map!
 874       assert(opLock->_lock->is_valid(), "used");  do_temp(opLock->_lock);
 875       assert(opLock->_hdr->is_valid(),  "used");  do_temp(opLock->_hdr);
 876       assert(opLock->_obj->is_valid(),  "used");  do_temp(opLock->_obj);
 877 
 878       if (opLock->_scratch->is_valid())           do_temp(opLock->_scratch);
 879       assert(opLock->_result->is_illegal(), "unused");
 880 
 881       do_stub(opLock->_stub);
 882 
 883       break;
 884     }
 885 
 886 
 887 // LIR_OpDelay
 888     case lir_delay_slot: {
 889       assert(op->as_OpDelay() != NULL, "must be");
 890       LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
 891 
 892       visit(opDelay->delay_op());
 893       break;
 894     }
 895 
 896 // LIR_OpTypeCheck
 897     case lir_instanceof:
 898     case lir_checkcast:
 899     case lir_store_check: {
 900       assert(op->as_OpTypeCheck() != NULL, "must be");
 901       LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
 902 
 903       if (opTypeCheck->_info_for_exception)       do_info(opTypeCheck->_info_for_exception);
 904       if (opTypeCheck->_info_for_patch)           do_info(opTypeCheck->_info_for_patch);
 905       if (opTypeCheck->_object->is_valid())       do_input(opTypeCheck->_object);
 906       if (op->code() == lir_store_check && opTypeCheck->_object->is_valid()) {
 907         do_temp(opTypeCheck->_object);
 908       }
 909       if (opTypeCheck->_array->is_valid())        do_input(opTypeCheck->_array);
 910       if (opTypeCheck->_tmp1->is_valid())         do_temp(opTypeCheck->_tmp1);
 911       if (opTypeCheck->_tmp2->is_valid())         do_temp(opTypeCheck->_tmp2);
 912       if (opTypeCheck->_tmp3->is_valid())         do_temp(opTypeCheck->_tmp3);
 913       if (opTypeCheck->_result->is_valid())       do_output(opTypeCheck->_result);
 914                                                   do_stub(opTypeCheck->_stub);
 915       break;
 916     }
 917 
 918 // LIR_OpCompareAndSwap
 919     case lir_cas_long:
 920     case lir_cas_obj:
 921     case lir_cas_int: {
 922       assert(op->as_OpCompareAndSwap() != NULL, "must be");
 923       LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op;
 924 
 925       assert(opCompareAndSwap->_addr->is_valid(),      "used");
 926       assert(opCompareAndSwap->_cmp_value->is_valid(), "used");
 927       assert(opCompareAndSwap->_new_value->is_valid(), "used");
 928       if (opCompareAndSwap->_info)                    do_info(opCompareAndSwap->_info);
 929                                                       do_input(opCompareAndSwap->_addr);
 930                                                       do_temp(opCompareAndSwap->_addr);
 931                                                       do_input(opCompareAndSwap->_cmp_value);
 932                                                       do_temp(opCompareAndSwap->_cmp_value);
 933                                                       do_input(opCompareAndSwap->_new_value);
 934                                                       do_temp(opCompareAndSwap->_new_value);
 935       if (opCompareAndSwap->_tmp1->is_valid())        do_temp(opCompareAndSwap->_tmp1);
 936       if (opCompareAndSwap->_tmp2->is_valid())        do_temp(opCompareAndSwap->_tmp2);
 937       if (opCompareAndSwap->_result->is_valid())      do_output(opCompareAndSwap->_result);
 938 
 939       break;
 940     }
 941 
 942 
 943 // LIR_OpAllocArray;
 944     case lir_alloc_array: {
 945       assert(op->as_OpAllocArray() != NULL, "must be");
 946       LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
 947 
 948       if (opAllocArray->_info)                        do_info(opAllocArray->_info);
 949       if (opAllocArray->_klass->is_valid())           do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass);
 950       if (opAllocArray->_len->is_valid())             do_input(opAllocArray->_len);   do_temp(opAllocArray->_len);
 951       if (opAllocArray->_tmp1->is_valid())            do_temp(opAllocArray->_tmp1);
 952       if (opAllocArray->_tmp2->is_valid())            do_temp(opAllocArray->_tmp2);
 953       if (opAllocArray->_tmp3->is_valid())            do_temp(opAllocArray->_tmp3);
 954       if (opAllocArray->_tmp4->is_valid())            do_temp(opAllocArray->_tmp4);
 955       if (opAllocArray->_result->is_valid())          do_output(opAllocArray->_result);
 956                                                       do_stub(opAllocArray->_stub);
 957       break;
 958     }
 959 
 960 // LIR_OpProfileCall:
 961     case lir_profile_call: {
 962       assert(op->as_OpProfileCall() != NULL, "must be");
 963       LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
 964 
 965       if (opProfileCall->_recv->is_valid())              do_temp(opProfileCall->_recv);
 966       assert(opProfileCall->_mdo->is_valid(), "used");   do_temp(opProfileCall->_mdo);
 967       assert(opProfileCall->_tmp1->is_valid(), "used");  do_temp(opProfileCall->_tmp1);
 968       break;
 969     }
 970 
 971 // LIR_OpProfileType:
 972     case lir_profile_type: {
 973       assert(op->as_OpProfileType() != NULL, "must be");
 974       LIR_OpProfileType* opProfileType = (LIR_OpProfileType*)op;
 975 
 976       do_input(opProfileType->_mdp); do_temp(opProfileType->_mdp);
 977       do_input(opProfileType->_obj);
 978       do_temp(opProfileType->_tmp);
 979       break;
 980     }
 981   default:
 982     ShouldNotReachHere();
 983   }
 984 }
 985 
 986 
 987 void LIR_OpVisitState::do_stub(CodeStub* stub) {
 988   if (stub != NULL) {
 989     stub->visit(this);
 990   }
 991 }
 992 
 993 XHandlers* LIR_OpVisitState::all_xhandler() {
 994   XHandlers* result = NULL;
 995 
 996   int i;
 997   for (i = 0; i < info_count(); i++) {
 998     if (info_at(i)->exception_handlers() != NULL) {
 999       result = info_at(i)->exception_handlers();
1000       break;
1001     }
1002   }
1003 
1004 #ifdef ASSERT
1005   for (i = 0; i < info_count(); i++) {
1006     assert(info_at(i)->exception_handlers() == NULL ||
1007            info_at(i)->exception_handlers() == result,
1008            "only one xhandler list allowed per LIR-operation");
1009   }
1010 #endif
1011 
1012   if (result != NULL) {
1013     return result;
1014   } else {
1015     return new XHandlers();
1016   }
1017 
1018   return result;
1019 }
1020 
1021 
1022 #ifdef ASSERT
1023 bool LIR_OpVisitState::no_operands(LIR_Op* op) {
1024   visit(op);
1025 
1026   return opr_count(inputMode) == 0 &&
1027          opr_count(outputMode) == 0 &&
1028          opr_count(tempMode) == 0 &&
1029          info_count() == 0 &&
1030          !has_call() &&
1031          !has_slow_case();
1032 }
1033 #endif
1034 
1035 //---------------------------------------------------
1036 
1037 
1038 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
1039   masm->emit_call(this);
1040 }
1041 
1042 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
1043   masm->emit_rtcall(this);
1044 }
1045 
1046 void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
1047   masm->emit_opLabel(this);
1048 }
1049 
1050 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
1051   masm->emit_arraycopy(this);
1052   masm->append_code_stub(stub());
1053 }
1054 
1055 void LIR_OpUpdateCRC32::emit_code(LIR_Assembler* masm) {
1056   masm->emit_updatecrc32(this);
1057 }
1058 
1059 void LIR_Op0::emit_code(LIR_Assembler* masm) {
1060   masm->emit_op0(this);
1061 }
1062 
1063 void LIR_Op1::emit_code(LIR_Assembler* masm) {
1064   masm->emit_op1(this);
1065 }
1066 
1067 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
1068   masm->emit_alloc_obj(this);
1069   masm->append_code_stub(stub());
1070 }
1071 
1072 void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
1073   masm->emit_opBranch(this);
1074   if (stub()) {
1075     masm->append_code_stub(stub());
1076   }
1077 }
1078 
1079 void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
1080   masm->emit_opConvert(this);
1081   if (stub() != NULL) {
1082     masm->append_code_stub(stub());
1083   }
1084 }
1085 
1086 void LIR_Op2::emit_code(LIR_Assembler* masm) {
1087   masm->emit_op2(this);
1088 }
1089 
1090 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
1091   masm->emit_alloc_array(this);
1092   masm->append_code_stub(stub());
1093 }
1094 
1095 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
1096   masm->emit_opTypeCheck(this);
1097   if (stub()) {
1098     masm->append_code_stub(stub());
1099   }
1100 }
1101 
1102 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
1103   masm->emit_compare_and_swap(this);
1104 }
1105 
1106 void LIR_Op3::emit_code(LIR_Assembler* masm) {
1107   masm->emit_op3(this);
1108 }
1109 
1110 void LIR_OpLock::emit_code(LIR_Assembler* masm) {
1111   masm->emit_lock(this);
1112   if (stub()) {
1113     masm->append_code_stub(stub());
1114   }
1115 }
1116 
1117 #ifdef ASSERT
1118 void LIR_OpAssert::emit_code(LIR_Assembler* masm) {
1119   masm->emit_assert(this);
1120 }
1121 #endif
1122 
1123 void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
1124   masm->emit_delay(this);
1125 }
1126 
1127 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
1128   masm->emit_profile_call(this);
1129 }
1130 
1131 void LIR_OpProfileType::emit_code(LIR_Assembler* masm) {
1132   masm->emit_profile_type(this);
1133 }
1134 
1135 // LIR_List
1136 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
1137   : _operations(8)
1138   , _compilation(compilation)
1139 #ifndef PRODUCT
1140   , _block(block)
1141 #endif
1142 #ifdef ASSERT
1143   , _file(NULL)
1144   , _line(0)
1145 #endif
1146 { }
1147 
1148 
1149 #ifdef ASSERT
1150 void LIR_List::set_file_and_line(const char * file, int line) {
1151   const char * f = strrchr(file, '/');
1152   if (f == NULL) f = strrchr(file, '\\');
1153   if (f == NULL) {
1154     f = file;
1155   } else {
1156     f++;
1157   }
1158   _file = f;
1159   _line = line;
1160 }
1161 #endif
1162 
1163 
1164 void LIR_List::append(LIR_InsertionBuffer* buffer) {
1165   assert(this == buffer->lir_list(), "wrong lir list");
1166   const int n = _operations.length();
1167 
1168   if (buffer->number_of_ops() > 0) {
1169     // increase size of instructions list
1170     _operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
1171     // insert ops from buffer into instructions list
1172     int op_index = buffer->number_of_ops() - 1;
1173     int ip_index = buffer->number_of_insertion_points() - 1;
1174     int from_index = n - 1;
1175     int to_index = _operations.length() - 1;
1176     for (; ip_index >= 0; ip_index --) {
1177       int index = buffer->index_at(ip_index);
1178       // make room after insertion point
1179       while (index < from_index) {
1180         _operations.at_put(to_index --, _operations.at(from_index --));
1181       }
1182       // insert ops from buffer
1183       for (int i = buffer->count_at(ip_index); i > 0; i --) {
1184         _operations.at_put(to_index --, buffer->op_at(op_index --));
1185       }
1186     }
1187   }
1188 
1189   buffer->finish();
1190 }
1191 
1192 
1193 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
1194   assert(reg->type() == T_OBJECT, "bad reg");
1195   append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),  reg, T_OBJECT, lir_patch_normal, info));
1196 }
1197 
1198 void LIR_List::klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info) {
1199   assert(reg->type() == T_METADATA, "bad reg");
1200   append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg, T_METADATA, lir_patch_normal, info));
1201 }
1202 
1203 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1204   append(new LIR_Op1(
1205             lir_move,
1206             LIR_OprFact::address(addr),
1207             src,
1208             addr->type(),
1209             patch_code,
1210             info));
1211 }
1212 
1213 
1214 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1215   append(new LIR_Op1(
1216             lir_move,
1217             LIR_OprFact::address(address),
1218             dst,
1219             address->type(),
1220             patch_code,
1221             info, lir_move_volatile));
1222 }
1223 
1224 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1225   append(new LIR_Op1(
1226             lir_move,
1227             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1228             dst,
1229             type,
1230             patch_code,
1231             info, lir_move_volatile));
1232 }
1233 
1234 
1235 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1236   append(new LIR_Op1(
1237             lir_move,
1238             LIR_OprFact::intConst(v),
1239             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1240             type,
1241             patch_code,
1242             info));
1243 }
1244 
1245 
1246 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1247   append(new LIR_Op1(
1248             lir_move,
1249             LIR_OprFact::oopConst(o),
1250             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1251             type,
1252             patch_code,
1253             info));
1254 }
1255 
1256 
1257 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1258   append(new LIR_Op1(
1259             lir_move,
1260             src,
1261             LIR_OprFact::address(addr),
1262             addr->type(),
1263             patch_code,
1264             info));
1265 }
1266 
1267 
1268 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1269   append(new LIR_Op1(
1270             lir_move,
1271             src,
1272             LIR_OprFact::address(addr),
1273             addr->type(),
1274             patch_code,
1275             info,
1276             lir_move_volatile));
1277 }
1278 
1279 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1280   append(new LIR_Op1(
1281             lir_move,
1282             src,
1283             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1284             type,
1285             patch_code,
1286             info, lir_move_volatile));
1287 }
1288 
1289 
1290 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1291   append(new LIR_Op3(
1292                     lir_idiv,
1293                     left,
1294                     right,
1295                     tmp,
1296                     res,
1297                     info));
1298 }
1299 
1300 
1301 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1302   append(new LIR_Op3(
1303                     lir_idiv,
1304                     left,
1305                     LIR_OprFact::intConst(right),
1306                     tmp,
1307                     res,
1308                     info));
1309 }
1310 
1311 
1312 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1313   append(new LIR_Op3(
1314                     lir_irem,
1315                     left,
1316                     right,
1317                     tmp,
1318                     res,
1319                     info));
1320 }
1321 
1322 
1323 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1324   append(new LIR_Op3(
1325                     lir_irem,
1326                     left,
1327                     LIR_OprFact::intConst(right),
1328                     tmp,
1329                     res,
1330                     info));
1331 }
1332 
1333 
1334 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
1335   append(new LIR_Op2(
1336                     lir_cmp,
1337                     condition,
1338                     LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
1339                     LIR_OprFact::intConst(c),
1340                     info));
1341 }
1342 
1343 
1344 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
1345   append(new LIR_Op2(
1346                     lir_cmp,
1347                     condition,
1348                     reg,
1349                     LIR_OprFact::address(addr),
1350                     info));
1351 }
1352 
1353 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1354                                int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
1355   append(new LIR_OpAllocObj(
1356                            klass,
1357                            dst,
1358                            t1,
1359                            t2,
1360                            t3,
1361                            t4,
1362                            header_size,
1363                            object_size,
1364                            init_check,
1365                            stub));
1366 }
1367 
1368 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
1369   append(new LIR_OpAllocArray(
1370                            klass,
1371                            len,
1372                            dst,
1373                            t1,
1374                            t2,
1375                            t3,
1376                            t4,
1377                            type,
1378                            stub));
1379 }
1380 
1381 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1382  append(new LIR_Op2(
1383                     lir_shl,
1384                     value,
1385                     count,
1386                     dst,
1387                     tmp));
1388 }
1389 
1390 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1391  append(new LIR_Op2(
1392                     lir_shr,
1393                     value,
1394                     count,
1395                     dst,
1396                     tmp));
1397 }
1398 
1399 
1400 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1401  append(new LIR_Op2(
1402                     lir_ushr,
1403                     value,
1404                     count,
1405                     dst,
1406                     tmp));
1407 }
1408 
1409 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
1410   append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
1411                      left,
1412                      right,
1413                      dst));
1414 }
1415 
1416 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) {
1417   append(new LIR_OpLock(
1418                     lir_lock,
1419                     hdr,
1420                     obj,
1421                     lock,
1422                     scratch,
1423                     stub,
1424                     info));
1425 }
1426 
1427 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
1428   append(new LIR_OpLock(
1429                     lir_unlock,
1430                     hdr,
1431                     obj,
1432                     lock,
1433                     scratch,
1434                     stub,
1435                     NULL));
1436 }
1437 
1438 
1439 void check_LIR() {
1440   // cannot do the proper checking as PRODUCT and other modes return different results
1441   // guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table");
1442 }
1443 
1444 
1445 
1446 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1447                           LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1448                           CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1449                           ciMethod* profiled_method, int profiled_bci) {
1450   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
1451                                            tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub);
1452   if (profiled_method != NULL) {
1453     c->set_profiled_method(profiled_method);
1454     c->set_profiled_bci(profiled_bci);
1455     c->set_should_profile(true);
1456   }
1457   append(c);
1458 }
1459 
1460 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
1461   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL);
1462   if (profiled_method != NULL) {
1463     c->set_profiled_method(profiled_method);
1464     c->set_profiled_bci(profiled_bci);
1465     c->set_should_profile(true);
1466   }
1467   append(c);
1468 }
1469 
1470 
1471 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
1472                            CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) {
1473   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception);
1474   if (profiled_method != NULL) {
1475     c->set_profiled_method(profiled_method);
1476     c->set_profiled_bci(profiled_bci);
1477     c->set_should_profile(true);
1478   }
1479   append(c);
1480 }
1481 
1482 
1483 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1484                         LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1485   append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
1486 }
1487 
1488 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1489                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1490   append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
1491 }
1492 
1493 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1494                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1495   append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
1496 }
1497 
1498 
1499 #ifdef PRODUCT
1500 
1501 void print_LIR(BlockList* blocks) {
1502 }
1503 
1504 #else
1505 // LIR_OprDesc
1506 void LIR_OprDesc::print() const {
1507   print(tty);
1508 }
1509 
1510 void LIR_OprDesc::print(outputStream* out) const {
1511   if (is_illegal()) {
1512     return;
1513   }
1514 
1515   out->print("[");
1516   if (is_pointer()) {
1517     pointer()->print_value_on(out);
1518   } else if (is_single_stack()) {
1519     out->print("stack:%d", single_stack_ix());
1520   } else if (is_double_stack()) {
1521     out->print("dbl_stack:%d",double_stack_ix());
1522   } else if (is_virtual()) {
1523     out->print("R%d", vreg_number());
1524   } else if (is_single_cpu()) {
1525     out->print("%s", as_register()->name());
1526   } else if (is_double_cpu()) {
1527     out->print("%s", as_register_hi()->name());
1528     out->print("%s", as_register_lo()->name());
1529 #if defined(X86)
1530   } else if (is_single_xmm()) {
1531     out->print("%s", as_xmm_float_reg()->name());
1532   } else if (is_double_xmm()) {
1533     out->print("%s", as_xmm_double_reg()->name());
1534   } else if (is_single_fpu()) {
1535     out->print("fpu%d", fpu_regnr());
1536   } else if (is_double_fpu()) {
1537     out->print("fpu%d", fpu_regnrLo());
1538 #elif defined(AARCH64)
1539   } else if (is_single_fpu()) {
1540     out->print("fpu%d", fpu_regnr());
1541   } else if (is_double_fpu()) {
1542     out->print("fpu%d", fpu_regnrLo());
1543 #elif defined(ARM)
1544   } else if (is_single_fpu()) {
1545     out->print("s%d", fpu_regnr());
1546   } else if (is_double_fpu()) {
1547     out->print("d%d", fpu_regnrLo() >> 1);
1548 #else
1549   } else if (is_single_fpu()) {
1550     out->print("%s", as_float_reg()->name());
1551   } else if (is_double_fpu()) {
1552     out->print("%s", as_double_reg()->name());
1553 #endif
1554 
1555   } else if (is_illegal()) {
1556     out->print("-");
1557   } else {
1558     out->print("Unknown Operand");
1559   }
1560   if (!is_illegal()) {
1561     out->print("|%c", type_char());
1562   }
1563   if (is_register() && is_last_use()) {
1564     out->print("(last_use)");
1565   }
1566   out->print("]");
1567 }
1568 
1569 
1570 // LIR_Address
1571 void LIR_Const::print_value_on(outputStream* out) const {
1572   switch (type()) {
1573     case T_ADDRESS:out->print("address:%d",as_jint());          break;
1574     case T_INT:    out->print("int:%d",   as_jint());           break;
1575     case T_LONG:   out->print("lng:" JLONG_FORMAT, as_jlong()); break;
1576     case T_FLOAT:  out->print("flt:%f",   as_jfloat());         break;
1577     case T_DOUBLE: out->print("dbl:%f",   as_jdouble());        break;
1578     case T_OBJECT: out->print("obj:" INTPTR_FORMAT, p2i(as_jobject()));        break;
1579     case T_METADATA: out->print("metadata:" INTPTR_FORMAT, p2i(as_metadata()));break;
1580     default:       out->print("%3d:0x" UINT64_FORMAT_X, type(), (uint64_t)as_jlong()); break;
1581   }
1582 }
1583 
1584 // LIR_Address
1585 void LIR_Address::print_value_on(outputStream* out) const {
1586   out->print("Base:"); _base->print(out);
1587   if (!_index->is_illegal()) {
1588     out->print(" Index:"); _index->print(out);
1589     switch (scale()) {
1590     case times_1: break;
1591     case times_2: out->print(" * 2"); break;
1592     case times_4: out->print(" * 4"); break;
1593     case times_8: out->print(" * 8"); break;
1594     }
1595   }
1596   out->print(" Disp: " INTX_FORMAT, _disp);
1597 }
1598 
1599 // debug output of block header without InstructionPrinter
1600 //       (because phi functions are not necessary for LIR)
1601 static void print_block(BlockBegin* x) {
1602   // print block id
1603   BlockEnd* end = x->end();
1604   tty->print("B%d ", x->block_id());
1605 
1606   // print flags
1607   if (x->is_set(BlockBegin::std_entry_flag))               tty->print("std ");
1608   if (x->is_set(BlockBegin::osr_entry_flag))               tty->print("osr ");
1609   if (x->is_set(BlockBegin::exception_entry_flag))         tty->print("ex ");
1610   if (x->is_set(BlockBegin::subroutine_entry_flag))        tty->print("jsr ");
1611   if (x->is_set(BlockBegin::backward_branch_target_flag))  tty->print("bb ");
1612   if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
1613   if (x->is_set(BlockBegin::linear_scan_loop_end_flag))    tty->print("le ");
1614 
1615   // print block bci range
1616   tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci()));
1617 
1618   // print predecessors and successors
1619   if (x->number_of_preds() > 0) {
1620     tty->print("preds: ");
1621     for (int i = 0; i < x->number_of_preds(); i ++) {
1622       tty->print("B%d ", x->pred_at(i)->block_id());
1623     }
1624   }
1625 
1626   if (x->number_of_sux() > 0) {
1627     tty->print("sux: ");
1628     for (int i = 0; i < x->number_of_sux(); i ++) {
1629       tty->print("B%d ", x->sux_at(i)->block_id());
1630     }
1631   }
1632 
1633   // print exception handlers
1634   if (x->number_of_exception_handlers() > 0) {
1635     tty->print("xhandler: ");
1636     for (int i = 0; i < x->number_of_exception_handlers();  i++) {
1637       tty->print("B%d ", x->exception_handler_at(i)->block_id());
1638     }
1639   }
1640 
1641   tty->cr();
1642 }
1643 
1644 void print_LIR(BlockList* blocks) {
1645   tty->print_cr("LIR:");
1646   int i;
1647   for (i = 0; i < blocks->length(); i++) {
1648     BlockBegin* bb = blocks->at(i);
1649     print_block(bb);
1650     tty->print("__id_Instruction___________________________________________"); tty->cr();
1651     bb->lir()->print_instructions();
1652   }
1653 }
1654 
1655 void LIR_List::print_instructions() {
1656   for (int i = 0; i < _operations.length(); i++) {
1657     _operations.at(i)->print(); tty->cr();
1658   }
1659   tty->cr();
1660 }
1661 
1662 // LIR_Ops printing routines
1663 // LIR_Op
1664 void LIR_Op::print_on(outputStream* out) const {
1665   if (id() != -1 || PrintCFGToFile) {
1666     out->print("%4d ", id());
1667   } else {
1668     out->print("     ");
1669   }
1670   out->print("%s ", name());
1671   print_instr(out);
1672   if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci());
1673 #ifdef ASSERT
1674   if (Verbose && _file != NULL) {
1675     out->print(" (%s:%d)", _file, _line);
1676   }
1677 #endif
1678 }
1679 
1680 const char * LIR_Op::name() const {
1681   const char* s = NULL;
1682   switch(code()) {
1683      // LIR_Op0
1684      case lir_membar:                s = "membar";        break;
1685      case lir_membar_acquire:        s = "membar_acquire"; break;
1686      case lir_membar_release:        s = "membar_release"; break;
1687      case lir_membar_loadload:       s = "membar_loadload";   break;
1688      case lir_membar_storestore:     s = "membar_storestore"; break;
1689      case lir_membar_loadstore:      s = "membar_loadstore";  break;
1690      case lir_membar_storeload:      s = "membar_storeload";  break;
1691      case lir_word_align:            s = "word_align";    break;
1692      case lir_label:                 s = "label";         break;
1693      case lir_nop:                   s = "nop";           break;
1694      case lir_backwardbranch_target: s = "backbranch";    break;
1695      case lir_std_entry:             s = "std_entry";     break;
1696      case lir_osr_entry:             s = "osr_entry";     break;
1697      case lir_build_frame:           s = "build_frm";     break;
1698      case lir_fpop_raw:              s = "fpop_raw";      break;
1699      case lir_24bit_FPU:             s = "24bit_FPU";     break;
1700      case lir_reset_FPU:             s = "reset_FPU";     break;
1701      case lir_breakpoint:            s = "breakpoint";    break;
1702      case lir_get_thread:            s = "get_thread";    break;
1703      // LIR_Op1
1704      case lir_fxch:                  s = "fxch";          break;
1705      case lir_fld:                   s = "fld";           break;
1706      case lir_ffree:                 s = "ffree";         break;
1707      case lir_push:                  s = "push";          break;
1708      case lir_pop:                   s = "pop";           break;
1709      case lir_null_check:            s = "null_check";    break;
1710      case lir_return:                s = "return";        break;
1711      case lir_safepoint:             s = "safepoint";     break;
1712      case lir_neg:                   s = "neg";           break;
1713      case lir_leal:                  s = "leal";          break;
1714      case lir_branch:                s = "branch";        break;
1715      case lir_cond_float_branch:     s = "flt_cond_br";   break;
1716      case lir_move:                  s = "move";          break;
1717      case lir_roundfp:               s = "roundfp";       break;
1718      case lir_rtcall:                s = "rtcall";        break;
1719      case lir_throw:                 s = "throw";         break;
1720      case lir_unwind:                s = "unwind";        break;
1721      case lir_convert:               s = "convert";       break;
1722      case lir_alloc_object:          s = "alloc_obj";     break;
1723      case lir_monaddr:               s = "mon_addr";      break;
1724      case lir_pack64:                s = "pack64";        break;
1725      case lir_unpack64:              s = "unpack64";      break;
1726      // LIR_Op2
1727      case lir_cmp:                   s = "cmp";           break;
1728      case lir_cmp_l2i:               s = "cmp_l2i";       break;
1729      case lir_ucmp_fd2i:             s = "ucomp_fd2i";    break;
1730      case lir_cmp_fd2i:              s = "comp_fd2i";     break;
1731      case lir_cmove:                 s = "cmove";         break;
1732      case lir_add:                   s = "add";           break;
1733      case lir_sub:                   s = "sub";           break;
1734      case lir_mul:                   s = "mul";           break;
1735      case lir_mul_strictfp:          s = "mul_strictfp";  break;
1736      case lir_div:                   s = "div";           break;
1737      case lir_div_strictfp:          s = "div_strictfp";  break;
1738      case lir_rem:                   s = "rem";           break;
1739      case lir_abs:                   s = "abs";           break;
1740      case lir_sqrt:                  s = "sqrt";          break;
1741      case lir_tan:                   s = "tan";           break;
1742      case lir_log10:                 s = "log10";         break;
1743      case lir_logic_and:             s = "logic_and";     break;
1744      case lir_logic_or:              s = "logic_or";      break;
1745      case lir_logic_xor:             s = "logic_xor";     break;
1746      case lir_shl:                   s = "shift_left";    break;
1747      case lir_shr:                   s = "shift_right";   break;
1748      case lir_ushr:                  s = "ushift_right";  break;
1749      case lir_alloc_array:           s = "alloc_array";   break;
1750      case lir_xadd:                  s = "xadd";          break;
1751      case lir_xchg:                  s = "xchg";          break;
1752      // LIR_Op3
1753      case lir_idiv:                  s = "idiv";          break;
1754      case lir_irem:                  s = "irem";          break;
1755      // LIR_OpJavaCall
1756      case lir_static_call:           s = "static";        break;
1757      case lir_optvirtual_call:       s = "optvirtual";    break;
1758      case lir_icvirtual_call:        s = "icvirtual";     break;
1759      case lir_virtual_call:          s = "virtual";       break;
1760      case lir_dynamic_call:          s = "dynamic";       break;
1761      // LIR_OpArrayCopy
1762      case lir_arraycopy:             s = "arraycopy";     break;
1763      // LIR_OpUpdateCRC32
1764      case lir_updatecrc32:           s = "updatecrc32";   break;
1765      // LIR_OpLock
1766      case lir_lock:                  s = "lock";          break;
1767      case lir_unlock:                s = "unlock";        break;
1768      // LIR_OpDelay
1769      case lir_delay_slot:            s = "delay";         break;
1770      // LIR_OpTypeCheck
1771      case lir_instanceof:            s = "instanceof";    break;
1772      case lir_checkcast:             s = "checkcast";     break;
1773      case lir_store_check:           s = "store_check";   break;
1774      // LIR_OpCompareAndSwap
1775      case lir_cas_long:              s = "cas_long";      break;
1776      case lir_cas_obj:               s = "cas_obj";      break;
1777      case lir_cas_int:               s = "cas_int";      break;
1778      // LIR_OpProfileCall
1779      case lir_profile_call:          s = "profile_call";  break;
1780      // LIR_OpProfileType
1781      case lir_profile_type:          s = "profile_type";  break;
1782      // LIR_OpAssert
1783 #ifdef ASSERT
1784      case lir_assert:                s = "assert";        break;
1785 #endif
1786      case lir_none:                  ShouldNotReachHere();break;
1787     default:                         s = "illegal_op";    break;
1788   }
1789   return s;
1790 }
1791 
1792 // LIR_OpJavaCall
1793 void LIR_OpJavaCall::print_instr(outputStream* out) const {
1794   out->print("call: ");
1795   out->print("[addr: " INTPTR_FORMAT "]", p2i(address()));
1796   if (receiver()->is_valid()) {
1797     out->print(" [recv: ");   receiver()->print(out);   out->print("]");
1798   }
1799   if (result_opr()->is_valid()) {
1800     out->print(" [result: "); result_opr()->print(out); out->print("]");
1801   }
1802 }
1803 
1804 // LIR_OpLabel
1805 void LIR_OpLabel::print_instr(outputStream* out) const {
1806   out->print("[label:" INTPTR_FORMAT "]", p2i(_label));
1807 }
1808 
1809 // LIR_OpArrayCopy
1810 void LIR_OpArrayCopy::print_instr(outputStream* out) const {
1811   src()->print(out);     out->print(" ");
1812   src_pos()->print(out); out->print(" ");
1813   dst()->print(out);     out->print(" ");
1814   dst_pos()->print(out); out->print(" ");
1815   length()->print(out);  out->print(" ");
1816   tmp()->print(out);     out->print(" ");
1817 }
1818 
1819 // LIR_OpUpdateCRC32
1820 void LIR_OpUpdateCRC32::print_instr(outputStream* out) const {
1821   crc()->print(out);     out->print(" ");
1822   val()->print(out);     out->print(" ");
1823   result_opr()->print(out); out->print(" ");
1824 }
1825 
1826 // LIR_OpCompareAndSwap
1827 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
1828   addr()->print(out);      out->print(" ");
1829   cmp_value()->print(out); out->print(" ");
1830   new_value()->print(out); out->print(" ");
1831   tmp1()->print(out);      out->print(" ");
1832   tmp2()->print(out);      out->print(" ");
1833 
1834 }
1835 
1836 // LIR_Op0
1837 void LIR_Op0::print_instr(outputStream* out) const {
1838   result_opr()->print(out);
1839 }
1840 
1841 // LIR_Op1
1842 const char * LIR_Op1::name() const {
1843   if (code() == lir_move) {
1844     switch (move_kind()) {
1845     case lir_move_normal:
1846       return "move";
1847     case lir_move_unaligned:
1848       return "unaligned move";
1849     case lir_move_volatile:
1850       return "volatile_move";
1851     case lir_move_wide:
1852       return "wide_move";
1853     default:
1854       ShouldNotReachHere();
1855     return "illegal_op";
1856     }
1857   } else {
1858     return LIR_Op::name();
1859   }
1860 }
1861 
1862 
1863 void LIR_Op1::print_instr(outputStream* out) const {
1864   _opr->print(out);         out->print(" ");
1865   result_opr()->print(out); out->print(" ");
1866   print_patch_code(out, patch_code());
1867 }
1868 
1869 
1870 // LIR_Op1
1871 void LIR_OpRTCall::print_instr(outputStream* out) const {
1872   intx a = (intx)addr();
1873   out->print("%s", Runtime1::name_for_address(addr()));
1874   out->print(" ");
1875   tmp()->print(out);
1876 }
1877 
1878 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
1879   switch(code) {
1880     case lir_patch_none:                                 break;
1881     case lir_patch_low:    out->print("[patch_low]");    break;
1882     case lir_patch_high:   out->print("[patch_high]");   break;
1883     case lir_patch_normal: out->print("[patch_normal]"); break;
1884     default: ShouldNotReachHere();
1885   }
1886 }
1887 
1888 // LIR_OpBranch
1889 void LIR_OpBranch::print_instr(outputStream* out) const {
1890   print_condition(out, cond());             out->print(" ");
1891   if (block() != NULL) {
1892     out->print("[B%d] ", block()->block_id());
1893   } else if (stub() != NULL) {
1894     out->print("[");
1895     stub()->print_name(out);
1896     out->print(": " INTPTR_FORMAT "]", p2i(stub()));
1897     if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci());
1898   } else {
1899     out->print("[label:" INTPTR_FORMAT "] ", p2i(label()));
1900   }
1901   if (ublock() != NULL) {
1902     out->print("unordered: [B%d] ", ublock()->block_id());
1903   }
1904 }
1905 
1906 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
1907   switch(cond) {
1908     case lir_cond_equal:           out->print("[EQ]");      break;
1909     case lir_cond_notEqual:        out->print("[NE]");      break;
1910     case lir_cond_less:            out->print("[LT]");      break;
1911     case lir_cond_lessEqual:       out->print("[LE]");      break;
1912     case lir_cond_greaterEqual:    out->print("[GE]");      break;
1913     case lir_cond_greater:         out->print("[GT]");      break;
1914     case lir_cond_belowEqual:      out->print("[BE]");      break;
1915     case lir_cond_aboveEqual:      out->print("[AE]");      break;
1916     case lir_cond_always:          out->print("[AL]");      break;
1917     default:                       out->print("[%d]",cond); break;
1918   }
1919 }
1920 
1921 // LIR_OpConvert
1922 void LIR_OpConvert::print_instr(outputStream* out) const {
1923   print_bytecode(out, bytecode());
1924   in_opr()->print(out);                  out->print(" ");
1925   result_opr()->print(out);              out->print(" ");
1926 #ifdef PPC32
1927   if(tmp1()->is_valid()) {
1928     tmp1()->print(out); out->print(" ");
1929     tmp2()->print(out); out->print(" ");
1930   }
1931 #endif
1932 }
1933 
1934 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
1935   switch(code) {
1936     case Bytecodes::_d2f: out->print("[d2f] "); break;
1937     case Bytecodes::_d2i: out->print("[d2i] "); break;
1938     case Bytecodes::_d2l: out->print("[d2l] "); break;
1939     case Bytecodes::_f2d: out->print("[f2d] "); break;
1940     case Bytecodes::_f2i: out->print("[f2i] "); break;
1941     case Bytecodes::_f2l: out->print("[f2l] "); break;
1942     case Bytecodes::_i2b: out->print("[i2b] "); break;
1943     case Bytecodes::_i2c: out->print("[i2c] "); break;
1944     case Bytecodes::_i2d: out->print("[i2d] "); break;
1945     case Bytecodes::_i2f: out->print("[i2f] "); break;
1946     case Bytecodes::_i2l: out->print("[i2l] "); break;
1947     case Bytecodes::_i2s: out->print("[i2s] "); break;
1948     case Bytecodes::_l2i: out->print("[l2i] "); break;
1949     case Bytecodes::_l2f: out->print("[l2f] "); break;
1950     case Bytecodes::_l2d: out->print("[l2d] "); break;
1951     default:
1952       out->print("[?%d]",code);
1953     break;
1954   }
1955 }
1956 
1957 void LIR_OpAllocObj::print_instr(outputStream* out) const {
1958   klass()->print(out);                      out->print(" ");
1959   obj()->print(out);                        out->print(" ");
1960   tmp1()->print(out);                       out->print(" ");
1961   tmp2()->print(out);                       out->print(" ");
1962   tmp3()->print(out);                       out->print(" ");
1963   tmp4()->print(out);                       out->print(" ");
1964   out->print("[hdr:%d]", header_size()); out->print(" ");
1965   out->print("[obj:%d]", object_size()); out->print(" ");
1966   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
1967 }
1968 
1969 void LIR_OpRoundFP::print_instr(outputStream* out) const {
1970   _opr->print(out);         out->print(" ");
1971   tmp()->print(out);        out->print(" ");
1972   result_opr()->print(out); out->print(" ");
1973 }
1974 
1975 // LIR_Op2
1976 void LIR_Op2::print_instr(outputStream* out) const {
1977   if (code() == lir_cmove || code() == lir_cmp) {
1978     print_condition(out, condition());         out->print(" ");
1979   }
1980   in_opr1()->print(out);    out->print(" ");
1981   in_opr2()->print(out);    out->print(" ");
1982   if (tmp1_opr()->is_valid()) { tmp1_opr()->print(out);    out->print(" "); }
1983   if (tmp2_opr()->is_valid()) { tmp2_opr()->print(out);    out->print(" "); }
1984   if (tmp3_opr()->is_valid()) { tmp3_opr()->print(out);    out->print(" "); }
1985   if (tmp4_opr()->is_valid()) { tmp4_opr()->print(out);    out->print(" "); }
1986   if (tmp5_opr()->is_valid()) { tmp5_opr()->print(out);    out->print(" "); }
1987   result_opr()->print(out);
1988 }
1989 
1990 void LIR_OpAllocArray::print_instr(outputStream* out) const {
1991   klass()->print(out);                   out->print(" ");
1992   len()->print(out);                     out->print(" ");
1993   obj()->print(out);                     out->print(" ");
1994   tmp1()->print(out);                    out->print(" ");
1995   tmp2()->print(out);                    out->print(" ");
1996   tmp3()->print(out);                    out->print(" ");
1997   tmp4()->print(out);                    out->print(" ");
1998   out->print("[type:0x%x]", type());     out->print(" ");
1999   out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2000 }
2001 
2002 
2003 void LIR_OpTypeCheck::print_instr(outputStream* out) const {
2004   object()->print(out);                  out->print(" ");
2005   if (code() == lir_store_check) {
2006     array()->print(out);                 out->print(" ");
2007   }
2008   if (code() != lir_store_check) {
2009     klass()->print_name_on(out);         out->print(" ");
2010     if (fast_check())                 out->print("fast_check ");
2011   }
2012   tmp1()->print(out);                    out->print(" ");
2013   tmp2()->print(out);                    out->print(" ");
2014   tmp3()->print(out);                    out->print(" ");
2015   result_opr()->print(out);              out->print(" ");
2016   if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci());
2017 }
2018 
2019 
2020 // LIR_Op3
2021 void LIR_Op3::print_instr(outputStream* out) const {
2022   in_opr1()->print(out);    out->print(" ");
2023   in_opr2()->print(out);    out->print(" ");
2024   in_opr3()->print(out);    out->print(" ");
2025   result_opr()->print(out);
2026 }
2027 
2028 
2029 void LIR_OpLock::print_instr(outputStream* out) const {
2030   hdr_opr()->print(out);   out->print(" ");
2031   obj_opr()->print(out);   out->print(" ");
2032   lock_opr()->print(out);  out->print(" ");
2033   if (_scratch->is_valid()) {
2034     _scratch->print(out);  out->print(" ");
2035   }
2036   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2037 }
2038 
2039 #ifdef ASSERT
2040 void LIR_OpAssert::print_instr(outputStream* out) const {
2041   print_condition(out, condition()); out->print(" ");
2042   in_opr1()->print(out);             out->print(" ");
2043   in_opr2()->print(out);             out->print(", \"");
2044   out->print("%s", msg());          out->print("\"");
2045 }
2046 #endif
2047 
2048 
2049 void LIR_OpDelay::print_instr(outputStream* out) const {
2050   _op->print_on(out);
2051 }
2052 
2053 
2054 // LIR_OpProfileCall
2055 void LIR_OpProfileCall::print_instr(outputStream* out) const {
2056   profiled_method()->name()->print_symbol_on(out);
2057   out->print(".");
2058   profiled_method()->holder()->name()->print_symbol_on(out);
2059   out->print(" @ %d ", profiled_bci());
2060   mdo()->print(out);           out->print(" ");
2061   recv()->print(out);          out->print(" ");
2062   tmp1()->print(out);          out->print(" ");
2063 }
2064 
2065 // LIR_OpProfileType
2066 void LIR_OpProfileType::print_instr(outputStream* out) const {
2067   out->print("exact = ");
2068   if  (exact_klass() == NULL) {
2069     out->print("unknown");
2070   } else {
2071     exact_klass()->print_name_on(out);
2072   }
2073   out->print(" current = "); ciTypeEntries::print_ciklass(out, current_klass());
2074   out->print(" ");
2075   mdp()->print(out);          out->print(" ");
2076   obj()->print(out);          out->print(" ");
2077   tmp()->print(out);          out->print(" ");
2078 }
2079 
2080 #endif // PRODUCT
2081 
2082 // Implementation of LIR_InsertionBuffer
2083 
2084 void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
2085   assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
2086 
2087   int i = number_of_insertion_points() - 1;
2088   if (i < 0 || index_at(i) < index) {
2089     append_new(index, 1);
2090   } else {
2091     assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
2092     assert(count_at(i) > 0, "check");
2093     set_count_at(i, count_at(i) + 1);
2094   }
2095   _ops.push(op);
2096 
2097   DEBUG_ONLY(verify());
2098 }
2099 
2100 #ifdef ASSERT
2101 void LIR_InsertionBuffer::verify() {
2102   int sum = 0;
2103   int prev_idx = -1;
2104 
2105   for (int i = 0; i < number_of_insertion_points(); i++) {
2106     assert(prev_idx < index_at(i), "index must be ordered ascending");
2107     sum += count_at(i);
2108   }
2109   assert(sum == number_of_ops(), "wrong total sum");
2110 }
2111 #endif